WO2019059740A1 - 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019059740A1
WO2019059740A1 PCT/KR2018/011387 KR2018011387W WO2019059740A1 WO 2019059740 A1 WO2019059740 A1 WO 2019059740A1 KR 2018011387 W KR2018011387 W KR 2018011387W WO 2019059740 A1 WO2019059740 A1 WO 2019059740A1
Authority
WO
WIPO (PCT)
Prior art keywords
ran
ims voice
voice
network
ims
Prior art date
Application number
PCT/KR2018/011387
Other languages
English (en)
French (fr)
Inventor
김래영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/648,517 priority Critical patent/US11356915B2/en
Priority to CN201880062017.6A priority patent/CN111149386B/zh
Priority to EP18858359.5A priority patent/EP3661265A4/en
Publication of WO2019059740A1 publication Critical patent/WO2019059740A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1059End-user terminal functionalities specially adapted for real-time communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1073Registration or de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving a signal related to IMS (IP Multimedia Subsystem) voice support by an NG-RAN (Next Generation Radio Access Network).
  • IMS IP Multimedia Subsystem
  • NG-RAN Next Generation Radio Access Network
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, a single carrier frequency division multiple access (MC-FDMA) system, and a multi-carrier frequency division multiple access (MC-FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • MC-FDMA single carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • a method for performing UE capability and network configuration check with NG-RAN regarding continuity of IMS voice is a technical problem.
  • an NG-RAN Next Generation Radio Access Network
  • IMS IP Multimedia Subsystem
  • the apparatus comprising: a transceiver; And a processor, wherein the processor receives from the AMF a capability-related request of the UE for IMS voice through the transceiver, checks whether the capability of the UE and the network configuration are compatible, The network configuration of the network node that enables IMS voice even though the NG-RAN does not support IMS voice, and the network configuration of the network node that enables the IMS voice, And an NG-RAN device.
  • IMS IP Multimedia Subsystem
  • an AMF apparatus for transmitting and receiving signals related to IMS (IP Multimedia Subsystem) voice support in a wireless communication system
  • the apparatus comprising: a transceiver; And a processor, wherein the processor transmits a capability-related request of the UE for the IMS voice to the Next Generation Radio Access Network (NG-RAN) through the transceiver, and the capability of the UE and the configuration of the network From the NG-RAN via the transceiver, a response including a check result of compatibility, the network configuration including: a network configuration of the NG-RAN and an IMS voice even if the NG-RAN does not support IMS voice Gt; network < / RTI >
  • IMS IP Multimedia Subsystem
  • the UE may use the IMS voice by handover or redirection of the UE to EPS when a voice call is generated.
  • the network node enabling the IMS voice may be a network node that may be the target of EPS fallback.
  • the network node that can be the target of the EPS fallback may be an eNB.
  • the NG-RAN may be configured to support EPS fallback for IMS voice.
  • IMS voice is available even though the NG-RAN does not support IMS voice, it may be possible to use the IMS voice by handover or redirection of the UE to the NG-RAN supported by the IMS voice when a voice call is generated to the UE .
  • the network node enabling the IMS voice may be a network node that may be the target of RAT fallback.
  • the network node that can be the target of the RAT fallback may be the ng-eNB.
  • the NG-RAN may be configured to support RAT fallback for IMS voice.
  • the capability related request of the UE for the IMS voice may include registration area information.
  • the network configuration of the network node that enables IMS voice is set in the NG-RAN, that the NG-RAN is obtained when setting up the interface with the network node Or the NG-RAN requested by the network node.
  • the NG-RAN can solve the problem of not confirming capabilities with the UE at all in terms of IMS voice, misrecognizing voice support match, and various problems caused thereby.
  • EPS evolved packet system
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary diagram illustrating an architecture of a general E-UTRAN and an EPC.
  • 3 is an exemplary diagram illustrating the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane.
  • 5 is a flowchart for explaining the random access procedure.
  • RRC radio resource control
  • FIG. 7 is a diagram for explaining a 5G system.
  • 9 to 10 are diagrams for explaining UE capability and network configuration check according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or characteristic may be considered optional unless otherwise expressly stated.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some of the elements and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of certain embodiments may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • Embodiments of the present invention may be supported by standard documents disclosed in connection with at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, the steps or portions of the embodiments of the present invention that are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • Universal Mobile Telecommunications System A third generation (3G) mobile communication technology based on Global System for Mobile Communication (GSM) developed by 3GPP.
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • PS packet switched core network
  • IP Internet Protocol
  • UMTS is an evolved form of network.
  • Node B base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell scale.
  • - eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell scale.
  • the UE may be referred to as a terminal, a mobile equipment (ME), a mobile station (MS), or the like.
  • the UE may be a portable device such as a notebook, a mobile phone, a PDA (Personal Digital Assistant), a smart phone, a multimedia device, or the like, or a non-portable device such as a PC (Personal Computer) or a vehicle-mounted device.
  • the term UE or terminal may refer to an MTC device.
  • Home NodeB Home NodeB
  • Home NodeB It is installed in indoor area as a base station of UMTS network, and the coverage is micro cell scale.
  • - HeNB Home eNodeB: Installed indoors as a base station of EPS network, the coverage is micro cell scale.
  • Mobility Management Entity A network node in the EPS network that performs Mobility Management (MM) and Session Management (SM) functions.
  • MM Mobility Management
  • SM Session Management
  • - PDN-GW / PGW A network node in the EPS network that performs UE IP address allocation, packet screening and filtering, and charging data collection functions.
  • SGW Serving Gateway: A network node in the EPS network that performs mobility anchor, packet routing, idle mode packet buffering, triggering the MME to page the UE, and so on.
  • Non-Access Stratum The upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (for example, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • - PDN connection a logical connection between the UE and the PDN, expressed as one IP address (one IPv4 address and / or one IPv6 prefix).
  • Radio Access Network A unit that includes NodeB, eNodeB and RNC (Radio Network Controller) controlling them in 3GPP network. Lt; / RTI > between UEs and provides connectivity to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service A service that enables discovery and mutual direct communication between physically adjacent devices, or communication via a base station or communication via a third device. At this time, user plane data is exchanged via a direct data path without going through a 3GPP core network (e.g., EPC).
  • EPC 3GPP core network
  • EPC Evolved Packet Core
  • EPS evolved packet system
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project that determines the network structure that supports mobility between various types of networks.
  • SAE aims to provide an optimized packet-based system, such as, for example, supporting various wireless access technologies on an IP-based basis and providing improved data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system, and can support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second- or third-generation mobile communication system
  • CS Circuit-Switched
  • Packet- Function has been implemented.
  • the 3GPP LTE system which is an evolution of the 3G mobile communication system
  • the CS and PS sub-domains are unified into one IP domain.
  • the connection between the terminal and the terminal having the IP capability is established between an IP-based base station (eNodeB (evolved Node B), an EPC, an application domain (for example, IMS IP Multimedia Subsystem).
  • eNodeB evolved Node B
  • EPC an application domain
  • IMS IP Multimedia Subsystem IMS IP Multimedia Subsystem
  • the EPC may include various components.
  • a Serving Gateway SGW
  • PDN GW Packet Data Network Gateway
  • MME Mobility Management Entity
  • ePDG Enhanced Packet Data Gateway
  • the SGW (or S-GW) is an element that functions as a boundary point between the radio access network (RAN) and the core network and functions to maintain the data path between the eNodeB and the PDN GW.
  • the SGW acts as a local mobility anchor point. That is, the packets can be routed through the SGW for mobility within the E-UTRAN (Evolved-Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network defined after 3GPP Release-8).
  • the SGW can also provide mobility to other 3GPP networks (RANs defined before 3GPP Release-8, for example UTRAN or GERAN (Global System for Mobile Communication) / EDGE (Enhanced Data Rates for Global Evolution) As an anchor point.
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW can support policy enforcement features, packet filtering, and charging support.
  • mobility management with 3GPP networks and non-3GPP networks e.g., untrusted networks such as Interworking Wireless Local Area Network (I-WLAN), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax) It can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Network (I-WLAN), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax
  • I-WLAN Interworking Wireless Local Area Network
  • CDMA Code Division Multiple Access
  • WiMax trusted networks
  • the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to the Single Gateway Configuration Option.
  • the MME is an element that performs signaling and control functions to support UE access to network connections, allocation, tracking, paging, roaming, and handover of network resources.
  • the MME controls the control plane functions related to subscriber and session management.
  • the MME manages a large number of eNodeBs and performs signaling for selection of conventional gateways for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • the SGSN handles all packet data such as the user's mobility management and authentication to another 3GPP network (e.g., GPRS network).
  • 3GPP network e.g., GPRS network
  • ePDG acts as a secure node for an untrusted Non-3GPP network (e.g., I-WLAN, WiFi hotspot, etc.).
  • an untrusted Non-3GPP network e.g., I-WLAN, WiFi hotspot, etc.
  • a terminal having IP capability can access an IP service network (not shown) provided by a provider (i.e., an operator) via various elements in the EPC, (E. G., IMS). ≪ / RTI >
  • FIG. 1 also shows various reference points (e.g., S1-U, S1-MME, etc.).
  • reference points e.g., S1-U, S1-MME, etc.
  • 3GPP system a conceptual link connecting two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 summarizes the reference points shown in FIG.
  • various reference points may exist depending on the network structure.
  • Reference point Explanation S1-MME A reference point for the control plane protocol between the E-UTRAN and the MME (reference point for the control plane protocol between the E-UTRAN and the MME)
  • S1-U A reference point between E-UTRAN and SGW for path switching between eNBs during handover and user plane tunneling per bearer (reference point between E-UTRAN and Serving GW for inter-eNodeB path switching during handover)
  • S3 A reference point between the MME and the SGSN that provides user and bearer information exchange for 3GPP access network mobility in an idle and / or active state.
  • This reference point may be used in PLMN- or PLMN- (for example, in the case of a PLMN-to-PLMN handover)) (It is user and bearer information exchange for inter-3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).
  • S4 A reference point between the SGW and the SGSN that provides the associated control and mobility support between the GPRS core and the 3GPP anchor function of the SGW, and also provides user plane tunneling if a direct tunnel is not established. and the 3GPP Anchor function of Serving GW.In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 A reference point that provides user plane tunneling and tunnel management between the SGW and the PDN GW. It is used for SGW relocation because of terminal mobility and connection to PDN GW where SGW is not located together for required PDN connectivity. It is used for Serving GW and PDN GW. Serving GW relocation due to UE mobility and if Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.
  • the PDN may be an operator external public or private PDN or, for example, an operator-in-PDN for the provision of an IMS service.
  • This reference point corresponds to Gi of 3GPP access (It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra-operator packet data network, eg for provision of IMS services. This reference point corresponds to 3G for 3GPP accesses.)
  • S2a and S2b correspond to a Non-3GPP interface.
  • S2a is a reference point that provides the user plane with the associated control and mobility support between trusted Non-3GPP access and PDN GW.
  • S2b is a reference point providing the user plane with the associated control and mobility support between the ePDG and the PDN GW.
  • FIG. 2 is an exemplary diagram illustrating an architecture of a general E-UTRAN and an EPC.
  • the eNodeB is responsible for routing to the gateway, scheduling and transmission of paging messages, scheduling and transmission of the Broadcast Channel (BCH), and resources in the uplink and downlink, while the RRC (Radio Resource Control) To the UE, to perform functions such as setting and providing for measurement of the eNodeB, radio bearer control, radio admission control, and connection mobility control.
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is a diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is a diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the wireless interface protocol horizontally comprises a physical layer, a data link layer, and a network layer, and vertically includes a user plane for data information transmission and a control plane And a control plane for signal transmission.
  • the protocol layers are classified into L1 (first layer), L2 (second layer) and L3 (third layer) based on the lower three layers of an Open System Interconnection (OSI) ).
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to an upper Medium Access Control layer through a transport channel, and data is transmitted between the medium access control layer and the physical layer through the transport channel. Data is transmitted between the different physical layers, that is, between the transmitting side and the receiving side physical layer through the physical channel.
  • a physical channel is composed of several subframes on the time axis and several subcarriers on the frequency axis.
  • one sub-frame is composed of a plurality of symbols and a plurality of sub-carriers on the time axis.
  • One subframe is composed of a plurality of resource blocks, and one resource block is composed of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is the unit time at which data is transmitted, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitter and the receiver can be classified into a Physical Downlink Shared Channel (PDSCH), a Physical Uplink Shared Channel (PUSCH) and a Physical Downlink Control Channel (PDCCH)
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the Medium Access Control (MAC) layer of the second layer maps various logical channels to various transport channels, and also performs logical channel multiplexing (Multiplexing).
  • the MAC layer is connected to an RLC layer, which is an upper layer, through a logical channel.
  • a logical channel includes a control channel for transmitting control plane information according to the type of information to be transmitted, And a traffic channel for transmitting information of a user plane (User Plane).
  • the Radio Link Control (RLC) layer of the second layer divides and concatenates the data received from the upper layer to adjust the data size so that the lower layer is suitable for transmitting data in the radio section .
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP (Packet Data Convergence Protocol) layer that is relatively large and contains unnecessary control information in order to efficiently transmit IP packets, such as IPv4 or IPv6, It performs header compression to reduce packet header size.
  • IP Packet Data Convergence Protocol
  • the PDCP layer also performs a security function, which consists of ciphering to prevent third party data interception and integrity protection to prevent third party data manipulation.
  • a radio resource control (RRC) layer located at the uppermost level of the third layer is defined only in the control plane and includes a configuration of a radio bearer (RB), a re- -configuration and release of the logical channel, the transport channel, and the physical channel.
  • the RB means a service provided by the second layer for data transmission between the UE and the E-UTRAN.
  • the UE If there is an RRC connection between the RRC of the UE and the RRC layer of the wireless network, the UE is in an RRC Connected Mode, and if not, it is in an RRC Idle Mode.
  • the RRC state refers to whether or not the RRC of the UE is a logical connection with the RRC of the E-UTRAN. If the RRC is connected, it is called the RRC_CONNECTED state, and if it is not connected, it is called the RRC_IDLE state. Since the UE in the RRC_CONNECTED state has the RRC connection, the E-UTRAN can grasp the existence of the UE in the cell unit, and thus can effectively control the UE.
  • the terminal in the RRC_IDLE state can not grasp the existence of the terminal in the E-UTRAN, and the core network manages the TA (Tracking Area) unit, which is a larger area unit than the cell. That is, the UE in the RRC_IDLE state only knows whether the corresponding UE is present in a larger area than the cell, and the UE must transition to the RRC_CONNECTED state in order to receive ordinary mobile communication services such as voice or data.
  • Each TA is identified by a tracking area identity (TAI).
  • a terminal can construct a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAI tracking area identity
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, establishes an RRC connection in the corresponding cell, and registers the terminal information in the core network. Thereafter, the terminal remains in the RRC_IDLE state. The terminal staying in the RRC_IDLE state selects (re-selects) the cell as needed and checks the system information and paging information. It is said to camp on the cell.
  • the terminal When a terminal that has stayed in the RRC_IDLE state needs to establish an RRC connection, the terminal establishes an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and transitions to the RRC_CONNECTED state.
  • the UE in the RRC_IDLE state needs to make an RRC connection. For example, when the UE needs a call attempt or a data transmission attempt, or receives a paging message from the E-UTRAN, Response message transmission, and the like.
  • a non-access stratum (NAS) layer located at an upper level of the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • the NAS layer shown in FIG. 3 will be described in detail below.
  • ESM Evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and the terminal is responsible for controlling the PS service from the network.
  • the default bearer resource is allocated from the network when it is first connected to a specific Packet Data Network (PDN) when connected to the network.
  • PDN Packet Data Network
  • the network allocates available IP addresses to the UE so that the UE can use the data service, and allocates the QoS of the default bearer.
  • LTE supports two types of bearers: Guaranteed bit rate (GBR) QoS, which guarantees a specific bandwidth for data transmission and reception, and Non-GBR bearer, which has best effort QoS without bandwidth guarantee.
  • GBR Guaranteed bit rate
  • Non-GBR bearer which has best effort QoS without bandwidth guarantee.
  • a non-GBR bearer is allocated.
  • bearers having QoS characteristics of GBR or non-GBR can be allocated.
  • a bearer assigned to a terminal in the network is called an evolved packet service (EPS) bearer.
  • EPS evolved packet service
  • the network assigns an ID. This is called EPS Bearer ID.
  • An EPS bearer has QoS characteristics of a maximum bit rate (MBR) and / or a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to obtain UL synchronization with the base station or to allocate UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the transmission of the random access preamble is limited to specific time and frequency resources for each cell.
  • the PRACH setting index indicates a specific subframe and a preamble format in which a random access preamble can be transmitted.
  • the UE transmits the randomly selected random access preamble to the eNodeB.
  • the UE selects one of 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH setting index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB receiving the random access preamble sends a random access response (RAR) to the UE.
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE receives a random access response in a Medium Access Control (MAC) PDU (Protocol Data Unit) on the PDSCH indicated by the detected PDCCH.
  • MAC Medium Access Control
  • FIG. 6 shows a connection procedure in the radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected or not.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is a logical connection with an entity of the RRC layer of the eNodeB. If the entity is connected, it is referred to as an RRC connected state, Is referred to as an RRC idle state.
  • the E-UTRAN can grasp the existence of the corresponding UE on a cell basis, and thus can effectively control the UE.
  • UEs in an idle state can not be grasped by an eNodeB, but are managed by a core network in a tracking area unit, which is an area unit larger than a cell.
  • the tracking area is a set of cells. That is, an idle state UE is only detected in a large area, and in order to receive normal mobile communication services such as voice and data, the UE must transition to a connected state.
  • the UE When the user first turns on the power of the UE, the UE first searches for an appropriate cell and stays in an idle state in the corresponding cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through the RRC connection procedure and transitions to the RRC connected state .
  • the UE in the idle state needs to make an RRC connection. For example, when a user needs a call attempt or uplink data transmission or receives a paging message from the EUTRAN And sending a response message to the user.
  • the RRC connection process includes a process of transmitting an RRC connection request message to the eNodeB by the UE, a process of transmitting an RRC connection setup message to the UE by the eNodeB, a process of establishing an RRC connection setup with the eNodeB (RRC connection setup complete) message. This process will be described in more detail with reference to FIG.
  • the UE When the UE in an idle state tries to make an RRC connection for a reason such as a call attempt, a data transmission attempt, or a response to paging of an eNodeB, the UE first transmits an RRC connection request message eNodeB.
  • the eNB Upon receiving the RRC connection request message from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message (RRC connection setup message) as a response message to the UE .
  • RRC connection setup message RRC connection setup message
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection setup message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connection mode.
  • the MME is separated into AMF (Core Access and Mobility Management Function) and SMF (Session Management Function) in the Next Generation system (or 5G CN (Core Network)). Therefore, the NAS interaction with the UE and the MM (Mobility Management) are performed by the AMF, and the SM (Session Management) is performed by the SMF.
  • the SMF manages UPF (User Plane Function), which is a gateway that has a user plane function, that is, a gateway for routing user traffic.
  • UPF User Plane Function
  • the control plane portion of the S-GW and the P- The user-plane portion can be regarded as the UPF.
  • UPF User Plane Function
  • DN Data Network
  • UPF User Plane Function
  • Figure 8 shows a General Registration procedure in a 5G system. This procedure is initiated by the UE sending a registration request to the (R) AN.
  • the transmission of the registration acceptance of step 21 can inform the UE that the AMF supports IMS Voice over PS (i.e., packet switched voice service) in the registration area through IMS Voice over PS session supported indication .
  • the AMF establishes an IMS Voice over PS session supported indication as described in clause 5.16.3.2 of TS 23.501.
  • the AMF In order to establish the IMS Voice over PS session supported indication, the AMF needs to perform the UE / RAN Radio Information and Compatibility Request procedure of Section 4.2.8 of TS 23.502 to check UE and RAN radio capabilities related to IMS Voice over PS . If the AMF has not yet received a Voice Support Match Indicator from the NG-RAN, the AMF may establish an IMS Voice over PS session supported indication and update it at a later stage, depending on the implementation.
  • the UE / RAN Radio Information and Compatibility Request procedure (4.2.8 of TS 23.502) or the UE capability
  • the UE and the RAN can confirm whether their radio capabilities are compatible with respect to IMS voice. For example, if the NG-RAN provides IMS voice with TDD and the UE can only use IMS voice with FDD, the NG-RAN will indicate to the AMF that the UE does not match the voice support (with parameters such as Voice Support Match Indicator) Can be informed.
  • the AMF informs the UE that the IMS voice is not supported if the UE does not match the voice support, i.e., the IMS voice related capabilities of the UE are not matched with the NG-RAN, from the NG-RAN. It informs. See Section 5.16.3.5 (Domain selection for UE originating sessions / calls) in TS 23.501 for the operation of UEs that received IMS voice not supported. If the IMS voice is supported, the UE receives the IMS voice through the IMS registration.
  • the AMF provides information on whether the UE can use IMS voice in the registration area. Basically, if the IMS voice can not be provided in the registration area (for example, Bar), the UE can be informed that IMS voice is not available. However, according to Section 5.16.3.2 (IMS voice over PS Session Supported Indication) of TS 23.501, the network can not provide a successful IMS voice over PS session through NR connected to 5GC
  • - E-UTRA connected to 5GC supports voice and NG RAN can trigger handover (HO: HandOver) to E-UTRA connected to 5GC from establishment of QoS flow for voice. or
  • - UE supports HO to EPS
  • EPS supports voice
  • NG RAN can trigger handover to EPS when establishing QoS flow for voice
  • the serving PLMN AMF indicates to the UE that the IMS voice over PS session supported.
  • the gNB sends the UE to the E-UTRA connected to the 5GC to provide IMS voice even though the IMS voice is not supported through the NR (i.e., gNB) ENB) handover, or if the gNB can handover the UE to the EPS to provide the IMS voice, the UE may be informed that the IMS voice is supported.
  • the NR i.e., gNB
  • the AMF performs UE / RAN Radio Information and Compatibility Request procedure or UE capability match request procedure with NG-RAN (gNBs and / or ng-eNBs) to establish IMS Voice over PS session supported indication
  • RAN is not an NG-RAN that actually provides IMS voice
  • NG-RAN is not an IMS voice in terms of IMS voice. problems may occur that do not acknowledge capabilities (which may result in AMF not responding to the voice support match), or that the voice support does not match the UE.
  • AMF determines that it can support IMS voice. If UE informs UE, voice call occurs and UE can fall back to EPS or 5GC When the UE is fallback to another RAT, the UE and RAN capabilities are not compatible with each other in terms of voice support, so that a voice call can not be performed. This may cause problems in terms of user experience.
  • the AMC informs the UE that the IMS voice can not be supported based on this, and the voice centric UE sends the voice to a successfully usable system , EPS) (see section 5.16.3.5 Domain selection for TS originating sessions / calls in TS 23.501).
  • EPS successfully usable system
  • the NG-RAN may receive a capability related request (e.g., UE capability match request) of the UE for the IMS voice from the AMF (S901). That is, the AMF may indicate whether the AMF wants to receive a Voice support match indicator.
  • This request may include UE radio capability information previously received from the NG-RAN or the registration area of the UE.
  • the AMF may include the EPS fallback related information or the RAT fallback related information. This can be interpreted that the IMS voice is configured to be provided as EPS fallback type or RAT fallback type on the Core Network, and that the AMF provides the EPS fallback indication or the RAT fallback indication to the NG-RAN.
  • the NG-RAN can check whether the capability of the UE and the network configuration are compatible.
  • the network configuration for checking compatibility of the NG-RAN with the capability of the UE includes a network configuration of the NG-RAN and a network configuration of a network node enabling IMS voice even if the NG-RAN does not support IMS voice can do. That is, compared to checking that the NG-RAN does not support IMS voice, the conventional compatibility check confirms that the NG-RAN network configuration and the UE capability are compatible with IMS voice, And the capability of the UE is compatible with the IMS voice aspect.
  • the UE may use the IMS voice by handover or redirection of the UE to EPS when a voice call is generated.
  • the NG-RAN is configured to support EPS fallback for IMS voice.
  • NG-RAN when NG-RAN is configured to support EPS fallback for IMS voice, it means that NG-RAN sends UE to EPS in handover or redirection when voice call is made to UE to use IMS voice,
  • the network node enabling the IMS voice is a network node that can be a target of the EPS fallback, and the eNB may correspond to the network node.
  • the UE is allowed to use the IMS voice by handover or redirection of the UE to the NG-RAN supported by the IMS voice when a voice call is generated .
  • the NG-RAN is configured to support RAT fallback for IMS voice.
  • the fact that the NG-RAN is configured to support RAT fallback for IMS voice means that the NG-RAN (eg gNB) in the handover or redirection of the UE to the NG-RAN (eg, ng-eNB) to use the IMS vocie.
  • the network node enabling the IMS voice may be the target of the RAT fallback, which may be the ng-eNB.
  • the network that can be the target of EPS fallback or RAT fallback (which is EPS / E-UTRAN (i. e., < / RTI > eNB or 5GS / NG-RAN / ng-eNB / gNB) (Or the UE supports certain capabilities required for voice continuity of voice calls using IMS PS).
  • EPS / E-UTRAN i. e., < / RTI > eNB or 5GS / NG-RAN / ng-eNB / gNB
  • the UE supports certain capabilities required for voice continuity of voice calls using IMS PS.
  • This may mean that the NG-RAN performs a voice service related compatibility check of the UE in consideration of an EPS fallback or a RAT fallback.
  • the NG-RAN uses the set information (e.g., set by the O & M method) and / or if the AMF provides the registration area of the UE in step S901 And may be determined / derived on the basis thereof.
  • the NG-RAN is configured to support the EPS fallback or the RAT fallback for the IMS voice, or in place of this configuration, based on the EPS fallback indication or the RAT fallback indication provided by the AMF in step S901, And may perform a voice service related compatibility check of the UE.
  • the network configuration of the network node that enables IMS voice is set in the NG-RAN, that the NG-RAN is obtained when setting up the interface with the network node Or the NG-RAN requested by the network node.
  • RAN is set in the NG-RAN (for example, by the O & M method); II) when the NG-RAN is set up as a candidate network and interfaces (usually deployed) Acquired by exchanging information.
  • III) The NG-RAN obtains the network configuration information from the candidate network by requesting it. This assumes that there is an interface between each other. At this time, it indicates that the network configuration related to the voice service is requested and only information about the network configuration can be acquired. In addition, it may store network configuration information already reserved for another UE. In this case, the stored information may be used.
  • the NG-RAN can be configured to check by the operator whether it supports the specific capability needed for voice continuity of voice calls using IMS voice.
  • the NG-RAN can maintain its configuration by separating into PLMN units. Which checks to perform depends on the network configuration, for example:
  • the NG-RAN provides the AMF with a Voice Support Match Indicator to indicate whether the UE capabilities and network configuration are compatible to ensure voice service continuity of voice calls initiated at the IMS.
  • the information about the voice support match that the NG-RAN provides to the AMF may be implicitly or explicitly informed that it is not a match information with the own network configuration.
  • it may be implicitly or explicitly informed that it is match information with the network configuration of the eNB (connected to the EPC) or match information with the network configuration of the ng-eNB (connected to the 5GC).
  • Additionally and / or voice support match information may be implicitly or explicitly informed that it is related to EPS fallback or that it is related to RAT fallback.
  • the AMF stores the received voice support match indicator in the 5GMM context and uses it as an input to configure the IMS voice over PS Session Supported Indication.
  • the NG-RAN may perform a procedure for confirming the UE capability to the UE. This procedure may be performed prior to the NG-RAN check procedure described above, but this procedure is not necessarily preceded by the check procedure and may be omitted.
  • the NG-RAN If the NG-RAN has not received UE radio capabilities from the UE or from the AMF in step S901 in step S901, the NG-RAN uploads the UE radio capability information in step S902 Ask them to do.
  • the UE provides the UE radio capabilities sending the RRC UE Capability Information to the NG-RAN (S903).
  • the NG-RAN may transmit a response including a result of checking whether the capability of the UE is compatible with the network configuration, to the AMF.
  • AMF may perform the UE Capability Match Request procedure in the following cases in addition to the case described in Section 4.2.8a of TS 23.502.
  • IMS voice is successfully supported with 5G QoS Flow supporting voice, but not in the area covered by itself (this supports IMS voice in the form of EPS fallback or RAT fallback).
  • the IMS voice is successfully supported with 5G QoS Flow supporting voice.
  • the registration area provided / provided to the UE if not, it supports IMS voice in the form of EPS fallback or RAT fallback. Lt; / RTI >
  • the NG-RAN checks the capability, so that the NG-RAN does not check the capabilities with the UE at all in terms of IMS voice, thereby causing no response to the AMF in response to the voice support match. If the NG-RAN does not provide AMF with a voice support match response, AMF determines that it can support IMS voice. If a voice call occurs and the UE falls back to EPS, or if a 5GC If the NG-RAN responds to the AMF that the voice support does not match the UE, the voice centric UE will not be able to voice successfully.
  • FIG. 10 shows an example in which the AMF transmits a Feature Specific UE / RAN information and compatibility request in an NG-RAN ((R) AN in the figure), similar to FIG.
  • the names of the messages are different, the basic contents are as described in Fig. 9, so that the description below can also be applied to Fig. 9 as well, as long as it does not conflict with the description of Fig. 9, The present invention can be applied to the description of FIG.
  • the AMF may include a registration area of the UE when transmitting a Feature Specific UE / RAN information and compatibility request to the RAN. Including the registration area as described above may be always possible, or may be included only when sending the RAN related request to the RAN for RAN related information.
  • step S1004 if the RAN receiving the Feature Specific UE / RAN information and compatibility request from the AMF in step S1001 is a gNB and the gNB does not support IMS voice (which can be interpreted as a cell of the gNB) If the UE can handover to E-UTRA (which is E-UTRA or EPS connected to 5GC), the gNB (i.e., NG-RAN) may perform the following to provide a response to the AMF.
  • E-UTRA which is E-UTRA or EPS connected to 5GC
  • the gNB checks whether the radio capabilities of the UE are compatible with the network configuration of the candidate eNB (s) that can be handed over to receive the voice service with respect to the voice service (ie, IMS voice). This can be interpreted as a result that the gNB does not check whether the radio capabilities of the UE are compatible with its network configuration with respect to the voice service (i.e., IMS voice). As a result of the check, if there are a plurality of candidate eNBs, if the network configurations of all the eNBs are compatible with the voice service related radio capabilities of the UE, the gNB can determine that the voice support is compatible or compatible.
  • the candidate eNB (s) to which the UE can be handed over to receive the voice service may be set in the gNB (e.g., by the O & M method). If the AMF provides the registration area of the UE in step S1001 .
  • the eNB may be an ng-eNB connected to 5GC or an eNB connected to an EPC. In the present invention, it is collectively referred to as eNB.
  • the method for obtaining the voice service related network configuration of the candidate eNB (s) by the gNB is as described in FIG.
  • the above operation 1) may be performed at any time after receiving the Feature Specific UE / RAN information and compatibility request from the AMF in step S1001 and before transmitting the Feature Specific UE / RAN information and compatibility response to the AMF in step S1004.
  • the voice support match related information may be implicitly or explicitly informed that it is not a match information with its own network configuration.
  • it can be implicitly or explicitly informed that it is match information with the network configuration of the eNB (connected to the EPC) or match information with the network configuration of the ng-eNB (connected to the 5GC).
  • step S901 when the NG-RAN does not successfully support 5G QoS flows supporting IMS voice (which may mean that it supports IMS voice in the form of EPS fallback or RAT fallback)
  • the AMF does not perform the NG-RAN and UE Capability Match Request procedure.
  • FIG. 11 is a diagram illustrating a configuration of a preferred embodiment of a terminal apparatus and a network node apparatus according to an example of the present invention.
  • the network node apparatus 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data, and information to an external device and receive various signals, data, and information to an external device.
  • the network node device 200 may be connected to an external device in a wired and / or wireless manner.
  • the processor 220 may control the operation of the entire network node apparatus 200 and may be configured to perform a function of operating the network node apparatus 200 to process information to be transmitted and received with the external apparatus.
  • the memory 230 may store the processed information or the like for a predetermined time, and may be replaced with a component such as a buffer (not shown).
  • the processor 220 may be configured to perform the network node operations proposed in the present invention.
  • the processor of the NG-RAN apparatus receives a capability related request of the UE for the IMS voice from the AMF through the transceiver, checks whether the capability of the UE is compatible with the network configuration, The network configuration of the network node that enables IMS voice even though the NG-RAN does not support IMS voice, and the network configuration of the network node that enables the IMS voice, . ≪ / RTI >
  • a terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data, and information to an external device, and receive various signals, data, and information from the external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100 and may be configured to perform a function of computing and processing information to be transmitted and received with the external device.
  • the memory 130 may store the processed information or the like for a predetermined time, and may be replaced with a component such as a buffer (not shown).
  • the processor 120 may be configured to perform the terminal operation proposed in the present invention.
  • the specific configurations of the terminal device 100 and the network device 200 may be implemented independently of those described in the various embodiments of the present invention, or two or more embodiments may be applied at the same time, The description is omitted for the sake of clarity.
  • embodiments of the present invention can be implemented by various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs) , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to embodiments of the present invention may be implemented in the form of an apparatus, a procedure, or a function for performing the functions or operations described above.
  • the software code can be stored in a memory unit and driven by the processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 NG-RAN(Next Generation Radio Access Network)이 IMS(IP Multimedia Subsystem) voice 지원에 관련된 신호를 송수신하는 방법에 있어서, 상기 NG-RAN이 AMF로부터 IMS voice에 대한 UE의 capability 관련 요청을 수신하는 단계; 상기 NG-RAN이 상기 UE의 capability와 네트워크 구성(configuration)이 호환되는지 체크하는 단계; 및 상기 NG-RAN이 상기 체크 결과를 포함하는 응답을 상기 AMF로 전송하는 단계를 포함하며, 상기 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함하는, IMS voice 지원에 관련된 신호 송수신 방법이다.

Description

무선 통신 시스템에서 NG-RAN이 IMS VOICE 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 NG-RAN(Next Generation Radio Access Network)이 IMS(IP Multimedia Subsystem) voice 지원에 관련된 신호를 송수신하는 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 NG-RAN이 IMS voice의 연속성과 관련하여 UE capability와 네트워크 구성 체크를 수행하는 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 NG-RAN(Next Generation Radio Access Network)이 IMS(IP Multimedia Subsystem) voice 지원에 관련된 신호를 송수신하는 방법에 있어서, 상기 NG-RAN이 AMF로부터 IMS voice에 대한 UE의 capability 관련 요청을 수신하는 단계; 상기 NG-RAN이 상기 UE의 capability와 네트워크 구성(configuration)이 호환되는지 체크하는 단계; 및 상기 NG-RAN이 상기 체크 결과를 포함하는 응답을 상기 AMF로 전송하는 단계를 포함하며, 상기 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함하는, IMS voice 지원에 관련된 신호 송수신 방법이다.
본 발명의 일 실시예는, 무선통신시스템에서 IMS(IP Multimedia Subsystem) voice 지원에 관련된 신호를 송수신하는 NG-RAN(Next Generation Radio Access Network) 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, AMF로부터 IMS voice에 대한 UE의 capability 관련 요청을 상기 송수신 장치를 통해 수신하고, 상기 UE의 capability와 네트워크 구성(configuration)이 호환되는지 체크하며, 상기 체크 결과를 포함하는 응답을 상기 송수신 장치를 통해 상기 AMF로 전송하며, 상기 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함하는, NG-RAN 장치이다.
본 발명의 일 실시예는, 무선통신시스템에서 IMS(IP Multimedia Subsystem) voice 지원에 관련된 신호를 송수신하는 AMF 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, IMS voice에 대한 UE의 capability 관련 요청을 상기 송수신 장치를 통해 NG-RAN(Next Generation Radio Access Network)에 전송하고, 상기 UE의 capability와 네트워크 구성(configuration)의 호환성에 대한 체크 결과를 포함하는 응답을 상기 송수신 장치를 통해 상기 NG-RAN으로부터 수신하며, 상기 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함하는, AMF 장치이다.
상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice가 가능한 경우는, 상기 UE에게 voice call 발생 시 상기 UE를 EPS로 handover 또는 redirection시킴으로써 IMS voice를 사용하도록 하는 것일 수 있다.
상기 IMS voice를 가능하게 하는 네트워크 노드는 EPS fallback의 타겟이 될 수 있는 네트워크 노드일 수 있다.
상기 EPS fallback의 타겟이 될 수 있는 네트워크 노드는 eNB일 수 있다.
상기 NG-RAN은 IMS voice를 위한 EPS fallback을 지원하는 것으로 구성되어 있는 것일 수 있다.
상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice가 가능한 경우는, 상기 UE에게 voice call 발생 시 상기 UE를 IMS voice가 지원되는 NG-RAN으로 handover 또는 redirection 시킴으로써 IMS voice를 사용하도록 하는 것일 수 있다.
상기 IMS voice를 가능하게 하는 네트워크 노드는 RAT fallback의 target이 될 수 있는 네트워크 노드일 수 있다.
상기 RAT fallback의 타겟이 될 수 있는 네트워크 노드는 ng-eNB일 수 있다.
상기 NG-RAN은 IMS voice를 위한 RAT fallback을 지원하는 것으로 구성되어 있는 것일 수 있다.
상기 IMS voice에 대한 UE의 capability 관련 요청은 registration area 정보를 포함할 수 있다.
상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성은, 상기 NG-RAN에 설정되어 있는 것, 상기 NG-RAN이 상기 네트워크 노드와 인터페이스를 셋업 시 획득된 것 또는 상기 NG-RAN이 상기 네트워크 노드에게 요청하여 획득한 것 중 하나일 수 있다.
본 발명에 따르면, NG-RAN이 IMS voice 측면에서 아예 UE와의 capabilities를 확인하지 않는 문제, voice support 매치 여부를 잘못 알려주는 문제 및 이로 인해 발생하는 여러 문제들을 해결할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 5G 시스템을 설명하기 위한 도면이다.
도 8은 5G 시스템에서 일반적 등록(General Registration) 절차이다.
도 9 내지 도 10은 본 발명의 실시예에 의한 UE capability와 네트워크 구성 체크를 설명하기 위한 도면이다.
도 11은 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
종래 EPC에서의 MME는 Next Generation system(또는 5G CN(Core Network))에서는 AMF(Core Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 즉, 종래 EPC는 5G에서 도 7에 예시된 바와 같이 구성될 수 있다. 또한, 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다.
도 8에는 5G 시스템에서 일반적 등록(General Registration) 절차가 도시되어 있다. 이 절차는 UE가 (R)AN에게 등록 요청(registration request)를 전송함으로써 개시되는데 각 단계에 대한 상세한 설명은 TS 23.502의 4.2.2.2.2절에 있는 내용을 참조한다. 상기 등록 절차에서 특히 단계 21 registration accept 의 전송은, AMF가 UE에게 registration area에서 IMS Voice over PS (즉, packet switched 방식의 voice service)가 지원되는지를 IMS Voice over PS session supported Indication을 통해 알릴 수 있다. 구체적으로, AMF는 TS 23.501의 5.16.3.2 절에 기술된 바와 같이 IMS Voice over PS session supported Indication를 설정한다. IMS Voice over PS session supported Indication 를 설정하기 위해, AMF는 TS 23.502의 4.2.8 절의 UE/RAN Radio information and Compatibility Request 절차를 수행하여 IMS Voice over PS와 관련된 UE 및 RAN radio capabilities 을 검사할 필요가 있다. AMF가 NG-RAN으로부터 Voice Support Match Indicator 를 아직 수신하지 않았다면, AMF는, 구현에 따라, IMS Voice over PS session supported Indication 을 설정하고 이후 단계에서 이를 업데이트 할 수 있다.
그런데, 단계 21 registration accept 의 전송을 살펴보면, AMF가 IMS Voice over PS session supported Indication을 설정하기 위해, NG-RAN으로 UE/RAN Radio information and Compatibility Request procedure (TS 23.502의 4.2.8절) 또는 UE capability match request 절차를 수행하여, UE와 RAN이 서로 IMS voice 관련하여 radio capabilities가 compatible한지를 확인할 수 있다. 예를 들면, NG-RAN이 TDD로 IMS voice를 제공하는데 UE는 FDD로만 IMS voice를 사용할 수 있다면 NG-RAN은 AMF로 UE가 voice support가 match되지 않음을 (Voice Support Match Indicator와 같은 파라미터로) 알릴 수 있다.
AMF는 NG-RAN으로부터 UE가 voice support가 match되지 않음을, 즉 UE의 IMS voice 관련 capabilities가 NG-RAN과 match되지 않음을 응답으로 받은 경우, UE에게 IMS voice가 지원되지 않는다고 Registration Accept 메시지를 통해 알린다. IMS voice가 지원되지 않는다고 수신한 UE의 동작은 TS 23.501의 5.16.3.5절 (Domain selection for UE originating sessions / calls)을 참고한다. 만약, IMS voice가 지원되는 것으로 수신한 UE는 IMS 등록을 통해 IMS voice를 사용하게 된다.
살펴본 바와 같이 UE가 registration area에서 IMS voice를 사용할 수 있는지에 대한 정보를 AMF가 제공하는데, 기본적으로 상기 registration area에서 IMS voice를 제공할 수 없는 경우 (예를 들어, radio의 특성상 voice에 적합하지 않은 바), IMS voice를 사용할 수 없는 것으로 UE에게 알릴 수 있다. 다만, TS 23.501의 5.16.3.2절 (IMS voice over PS Session Supported Indication)에 따르면, 네트워크가 5GC에 연결된 NR을 통해 성공적인 IMS voice over PS session을 제공할 수 없지만
- 5GC에 연결된 E-UTRA가 voice를 지원하고 NG RAN이 voice를 위한 QoS 흐름(Flow) 수립에서 5GC에 연결된 E-UTRA 로의 핸드 오버(HO: HandOver)를 트리거 할 수 있음. 또는
- UE가 HO to EPS를 지원하고, EPS는 음성을 지원하고, NG RAN이 voice를 위한 QoS 흐름 수립시 EPS 로의 핸드 오버를 트리거 할 수 있음
중 하나를 수행할 수 있는 경우, serving PLMN AMF가 UE에게 IMS voice over PS session supported 라 지시하게 된다.
즉, UE가 NR, 즉 gNB에 camping하였는데, 이 NR(즉, gNB)를 통해서는 IMS voice가 지원되지 않음에도 불구하고, gNB가 IMS voice를 제공키 위해 UE를 5GC에 연결된 E-UTRA로 (즉, ng-eNB로) handover를 시켜줄 수 있는 경우, 또는 gNB가 IMS voice를 제공키 위해 UE를 EPS로 handover를 시켜줄 수 있는 경우, UE에게 IMS voice가 지원된다고 알릴 수 있다.
이런 경우, AMF가 IMS Voice over PS session supported Indication을 설정하기 위해, NG-RAN(gNBs and/or ng-eNBs)으로 UE/RAN Radio information and Compatibility Request procedure 또는 UE capability match request 절차를 수행하여 UE와 RAN이 서로 IMS voice 관련하여 radio capabilities가 compatible한지를 확인하는 동작에 관련하여, 상기 NG-RAN이 실제로는 IMS voice를 제공하는 NG-RAN이 아닌 관계로 NG-RAN은 IMS voice 측면에서 아예 UE와의 capabilities를 확인하지 않는 문제(이로 인해 AMF에게 voice support match 관련 응답을 주지 않거나), 또는 voice support가 UE와 match하지 않는다고 AMF에게 응답하는 문제가 발생할 수 있다.
또한, NG-RAN이 AMF에게 voice support match 관련 답을 주지 않은 경우, AMF 자체적으로 IMS voice를 지원할 수 있다고 결정하여 UE에게 이를 알려주게 되면 실제로 voice call이 발생하여 UE를 EPS로 fallback 시키거나 5GC의 다른 RAT으로 fallback 시켰을 때 voice support 측면에서 UE와 RAN의 capabilities가 compatible하지 않아 voice call을 할 수 없는 문제가 발생할 수 있고, 이는 사용자 경험 측면에서 문제가 될 수 있다. 만약, NG-RAN이 voice support가 UE와 match하지 않는다고 AMF에게 답하는 경우, AMF가 이에 기반하여 UE에게 IMS voice가 지원될 수 없다고 알려주게 되면, voice centric UE는 voice를 성공적으로 사용 가능한 시스템(예, EPS)으로 옮겨간다 (이에 대한 사항은 TS 23.501의 5.16.3.5절 Domain selection for UE originating sessions / calls 참고). 이로 인해 voice call이 발생한 경우에만 EPS 또는 5GC 내의 voice service가 가능한 RAT을 사용하도록 하고 평소에는 5GS에서 좋은 성능으로 data services를 제공할 수 있는데도 불구하고, 5GS에서의 service 제공 가능성이 없어지게 된다. 따라서, 이하에서는 이러한 문제를 해결할 수 있는 방법에 대해 설명한다.
실시예
이하, 도 9를 참조하여, 본 발명의 일 실시예에 대해 살펴본다. 도 9를 참조하면, NG-RAN(도 9의 (R)AN)은 AMF로부터 IMS voice에 대한 UE의 capability 관련 요청(예를 들어 UE capability match request)을 수신할 수 있다(S901). 즉, AMF는 AMF가 Voice support match indicator를 수신하기를 원하는지를 지시할 수 있다. 이 요청은 NG-RAN으로부터 이전에 수신된 UE radio capability information 또는 UE의 registration area를 포함할 수 있다. 또한, AMF는 NG-RAN에게 UE Capability Match Request를 전송 시, EPS fallback 관련 정보 또는 RAT fallback 관련 정보를 포함시킬 수도 있다. 이는 Core Network 상에 IMS voice가 EPS fallback 형태로 또는 RAT fallback 형태로 제공되는 것으로 configure 되어 있는 바, EPS fallback indication을 또는 RAT fallback indication을 AMF가 NG-RAN에게 제공하는 것으로 해석할 수 있다.
상기 NG-RAN은 상기 UE의 capability와 네트워크 구성(configuration)이 호환되는지 체크할 수 있다.
상기 NG-RAN이 상기 UE의 capability와의 호환성을 체크하는 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함할 수 있다. 즉, 종래 호환성 체크가 NG-RAN의 네트워크 구성과 UE의 capability이 IMS voice 측면에서 호환이 되는지만을 확인하는 것과 비교해, 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성과 UE의 capability이 IMS voice 측면에서 호환이 되는지 여부도 확인하는 것이다.
여기서, 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice가 가능한 경우는, 상기 UE에게 voice call 발생 시 상기 UE를 EPS로 handover 또는 redirection시킴으로써 IMS voice를 사용하도록 하는 것일 수 있다. 이는 상기 NG-RAN이 IMS voice를 위한 EPS fallback을 지원하는 것으로 구성되어 있다는 의미이다. 다시 말해, NG-RAN이 IMS voice를 위한 EPS fallback을 지원하는 것으로 configure 되어 있다는 것은 UE에게 voice call 발생 시 NG-RAN이 handover 또는 redirection으로 UE를 EPS로 보내서 IMS voice를 사용하도록 하는 것을 의미하며, 관련 동작은 TS 23.502의 4.13.6.1절 (EPS fallback for IMS voice)을 참고할 수 있다. 이 때, 상기 IMS voice를 가능하게 하는 네트워크 노드는 EPS fallback의 타겟이 될 수 있는 네트워크 노드로써, eNB가 여기에 해당할 수 있다.
또한, 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice가 가능한 경우는, 상기 UE에게 voice call 발생 시 상기 UE를 IMS voice가 지원되는 NG-RAN으로 handover 또는 redirection 시킴으로써 IMS voice를 사용하도록 하는 것일 수 있다. 이는 상기 NG-RAN이 IMS voice를 위한 RAT fallback을 지원하는 것으로 구성되어 있다는 의미일 수 있다. NG-RAN이 IMS voice를 위한 RAT fallback을 지원하는 것으로 configure 되어 있다는 것은 UE에게 voice call 발생 시 NG-RAN (예, gNB)이 handover 또는 redirection으로 UE를 IMS voice가 지원되는 NG-RAN (예, ng-eNB)으로 보내서 IMS vocie를 사용하도록 하는 것을 의미하며, 관련 동작은 TS 23.502의 4.13.6.2절 (Inter RAT Fallback in 5GC for IMS voice)을 참고할 수 있다. 이런 경우, IMS voice를 가능하게 하는 네트워크 노드는 RAT fallback의 target이 될 수 있는 네트워크 노드로써, ng-eNB일 수 있다.
결국 NG-RAN은 자신이 IMS voice를 지원하지는 않지만, IMS voice를 위한 EPS fallback 또는 RAT fallback을 지원하는 것으로 configure 되어 있으면, EPS fallback 또는 RAT fallback의 target이 될 수 있는 network (이는 EPS/E-UTRAN/eNB 또는 5GS/NG-RAN/ng-eNB/gNB를 의미할 수 있음)의 configuration 정보를 이용하여 voice service (즉, IMS voice) 관련하여 UE의 radio capabilities가 상기 target이 될 수 있는 network의 configuration과 compatible한지를 (또는 whether the UE supports certain capabilities required for Voice continuity of voice calls using IMS PS) 체크한다. 이는 NG-RAN이 EPS fallback 또는 RAT fallback도 고려하여 상기 UE의 voice service 관련 compatibility 체크를 수행하는 것을 의미할 수 있다.
상기 EPS fallback 또는 RAT fallback의 target이 될 수 있는 network을 결정 시 NG-RAN은 설정되어 있는 정보 (예, O&M 방법 등으로 설정된)를 이용 및/또는 S901에서 AMF가 UE의 registration area를 제공한 경우 이에 기반하여 결정/유도할 수도 있다. 상기와 같이 NG-RAN이 IMS voice를 위한 EPS fallback 또는 RAT fallback을 지원하는 것으로 configure되어 있는 것과 함께 또는, 이러한 configuration 대신에 상기 S901에서 AMF가 제공한 EPS fallback indication 또는 RAT fallback indication에 기반하여, 상기 UE의 voice service 관련 compatibility 체크를 수행할 수도 있다.
상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성은, 상기 NG-RAN에 설정되어 있는 것, 상기 NG-RAN이 상기 네트워크 노드와 인터페이스를 셋업 시 획득된 것 또는 상기 NG-RAN이 상기 네트워크 노드에게 요청하여 획득한 것 중 하나일 수 있다. 구체적으로, I) 상기 NG-RAN에 설정되어 있음(예를 들어, O&M 방법으로), II) 상기 NG-RAN이 후보가 되는 network과 인터페이스를 셋업 시 (보통 deploy 시), voice service 관련 network configuration 정보를 교환함으로써 획득. III) 상기 NG-RAN이 후보가 되는 network에게 network configuration 정보를 요청하여 획득. 이는 서로 간에 인터페이스가 있어서 가능한 것임을 가정한다. 이때 voice service 관련한 network configuration을 요청함을 가리키고 이에 대한 정보만 획득할 수도 있다. 또한, 이미 다른 UE를 위해 기획득한 network configuration 정보를 저장하고 있을 수도 있는데, 이 경우 저장하고 있는 정보를 사용할 수도 있다.
적절한 UE Radio Capability Match Response를 결정하기 위해, NG-RAN은 오퍼레이터에 의해 IMS voice를 사용한 Voice continuity of voice call을 위해 필요한 특정 capability를 지원하는지 체크하도록 구성될 수 있다. 공용 네트워크에서, NG-RAN은 PLMN 단위로 분리하여 구성을 유지할 수 있다. 어떤 체크를 수행해야 하는지는 네트워크 구성에 종속되는데, 예를 들어, 다음과 같은 것이 해당한다.
- UTRAN/E-UTRAN/NG-RAN Voice over PS capabilities;
- the Radio capabilities for UTRAN/E-UTRAN/NG-RAN FDD and/or TDD; and/or
- the support of UTRAN/E-UTRAN/NG-RAN frequency bands.
NG-RAN은, IMS에서 개시된 voice calls 의 음성 서비스 연속성을 보장하기 위해서 UE capabilities 와 네트워크 구성이 호환 가능한지 여부를 지시하기 위한 Voice Support Match Indicator 를 AMF에게 제공한다. 이 때, NG-RAN이 AMF에 제공하는 voice support match 관련 정보는 자신의 network configuration과의 match 정보가 아님을 암시적으로 또는 명시적으로 알릴 수도 있다. 추가적으로/또는 eNB (EPC에 연결된)의 network configuration과의 match 정보임을 또는 ng-eNB (5GC에 연결된)의 network configuration과의 match 정보임을 암시적으로 또는 명시적으로 알릴 수도 있다. 추가적으로/또는 voice support match 관련 정보는 EPS fallback 관련한 것임을 또는 RAT fallback 관련한 것임을 암시적으로 또는 명시적으로 알릴 수도 있다. AMF는 수신된 Voice support match indicator 를 5GMM 컨텍스트에 저장하고 이를 IMS voice over PS Session Supported Indication 설정하기 위한 입력으로 사용한다.
단계 S902, S903에서 NG-RAN은 UE에게 UE capability를 확인하는 절차를 수행할 수도 있다. 이 절차는 앞서 설명된 NG-RAN의 체크 절차에 앞서 수행될 수도 있으나, 이 절차가 체크 절차에 반드시 선행하는 것은 아니며 생략될 수도 있다.
단계 S901에서 NG-RAN이 UE Capability Match Request message를 수신하였는데, 만약 NG-RAN이 UE radio capabilities를 UE로부터 또는 단계 S901의 AMF로부터 수신하지 않았다면, 단계 S902에서 NG-RAN은 UE radio capability information을 업로드할 것을 요청한다. UE는 NG-RAN에게 UE radio capabilities sending the RRC UE Capability Information를 제공한다(S903).
단계 S904에서, 상기 NG-RAN은 상기 UE의 capability와 네트워크 구성이 호환되는지 체크 결과를 포함하는 응답을 상기 AMF로 전송할 수 있다.
AMF는 TS 23.502의 4.2.8a절에 기술된 경우 외에도 다음의 경우에도 상기 UE Capability Match Request procedure를 수행할 수 있다.
a) UE의 이전 serving AMF가 커버하는 지역에서는 IMS voice가 voice를 지원하는 5G QoS Flow로 성공적으로 지원되는데, 자신이 커버하는 지역에서는 그렇지 않은 경우 (이는 EPS fallback 또는 RAT fallback 형태로 IMS voice를 지원함을 의미할 수 있음)
b) 상기 a)와 반대의 경우
c) UE의 이전 Registration Area에서는 IMS voice가 voice를 지원하는 5G QoS Flow로 성공적으로 지원되는데, UE에게 제공할/제공되는 Registration Area에서는 그렇지 않은 경우 (이는 EPS fallback 또는 RAT fallback 형태로 IMS voice를 지원함을 의미할 수 있음)
d) 상기 c)와 반대의 경우
상술한 바와 같이 NG-RAN이 capability를 체크함으로써, NG-RAN이 IMS voice 측면에서 아예 UE와의 capabilities를 확인하지 않는 문제, 이로 인해 AMF에게 voice support match 관련 응답을 주지 않는 문제, voice support가 UE와 match하지 않는다고 AMF에게 응답하는 문제, NG-RAN이 AMF에게 voice support match 관련 답을 주지 않은 경우, AMF 자체적으로 IMS voice를 지원할 수 있다고 결정하고 voice call이 발생하여 UE를 EPS로 fallback 시키거나 5GC의 다른 RAT으로 fallback 시켰을 때 voice support 측면에서 UE와 RAN의 capabilities가 compatible하지 않아 voice call을 할 수 없는 문제, NG-RAN이 voice support가 UE와 match하지 않는다고 AMF에게 답하는 경우 voice centric UE는 voice를 성공적으로 사용 가능한 시스템(예, EPS)으로 옮겨가게 되어, voice call이 발생한 경우에만 EPS 또는 5GC 내의 voice service가 가능한 RAT을 사용하도록 하고 평소에는 5GS에서 좋은 성능으로 data services를 제공할 수 있는데도 불구하고, 5GS에서의 service 제공할 수 없는 문제 등을 해결할 수 있다.
도 10에는 도 9과 유사하지만 AMF가 NG-RAN(도면에서 (R)AN)으로 Feature Specific UE/RAN information and compatibility request을 전송하는 경우의 예가 도시되어 있다. 메시지의 명칭이 상이하지만 기본적인 내용은 도 9에 기술된 바와 같으며, 따라서 이하에서 설명은 도 9에 대한 설명과 상충되지 않는 한 도 9에도 함께 적용될 수 있으며, 또한 도 9에 대한 설명이 상충되지 않는 범위에서 도 10에 대한 설명에 적용될 수 있다.
단계 S1001에서, AMF는 RAN에게 Feature Specific UE/RAN information and compatibility request를 전송 시, UE의 registration area를 포함시킬 수 있다. 상기와 같이 registration area를 포함시키는 것은 항상 그럴 수도 있고, RAN에게 voice service 관련 RAN related information을 요청코자 상기 request를 보낼 때에만 포함시킬 수도 있다.
단계 S1004에서, 단계 S1001에서 AMF로부터 Feature Specific UE/RAN information and compatibility request를 수신한 RAN이 gNB인 경우, 그리고 이 gNB가 (이는 gNB의 cell로 해석 가능) IMS voice를 지원하지 않지만 IMS voice를 위해 UE를 E-UTRA (이는 5GC에 연결된 E-UTRA 또는 EPS)로 handover 시킬 수 있는 경우, 상기 gNB (즉, 상기 NG-RAN)는 AMF에게 응답을 제공하기 위해 다음을 수행할 수 있다.
1) gNB는 voice service (즉, IMS voice) 관련하여 UE의 radio capabilities가 UE가 voice service를 받기 위해 handover될 수 있는 후보 eNB(s)의 network configuration과 compatible한지 체크한다. 이는 결국 gNB가 voice service (즉, IMS voice) 관련하여 UE의 radio capabilities가 자신의 network configuration과 compatible한지를 체크하지 않음으로 해석될 수 있다. 상기 체크 결과 상기 후보 eNB가 다수개인 경우 모든 eNB의 network configuration과 UE의 voice service 관련 radio capabilities가 compatible하면 gNB는 voice support가 match 됨을, 즉 compatible하다고 결정할 수 있다.
상기에서 UE가 voice service를 받기 위해 handover될 수 있는 후보 eNB(s)는 상기 gNB에 설정되어 있을 수도 있고 (예, O&M 방법 등으로), 단계 S1001에서 AMF가 UE의 registration area를 제공한 경우 이를 기반으로 유도할 수도 있다. 상기 eNB는 5GC에 연결된 ng-eNB일 수도 있고, EPC에 연결된 eNB일 수도 있다. 본 발명에서는 eNB로 통칭된다. 상기에서 gNB가 상기 후보 eNB(s)의 voice service 관련 network configuration을 획득하는 방법은 도 9에 설명된 바와 같다.
상술한 1)의 동작은 단계 S1001에서 AMF로부터 Feature Specific UE/RAN information and compatibility request를 수신한 후와 단계 S1004에서 AMF로 Feature Specific UE/RAN information and compatibility response를 전송하기 전에 언제든지 수행될 수 있다. 상기 1)에 추가적으로 gNB가 AMF로 Feature Specific UE/RAN information and compatibility response를 전송 시, voice support match 관련 정보는 자신의 network configuration과의 match 정보가 아님을 암시적으로 또는 명시적으로 알릴 수 있다. 추가적으로/또는 eNB (EPC에 연결된)의 network configuration과의 match 정보임을 또는 ng-eNB (5GC에 연결된)의 network configuration과의 match 정보임을 암시적으로 또는 명시적으로 알릴 수 있다.
도 9를 참조하여 또 다른 실시예로는 NG-RAN이 IMS voice를 지원하는 5G QoS Flow를 성공적으로 지원되지 않는 경우 (이는 EPS fallback 또는 RAT fallback 형태로 IMS voice를 지원함을 의미할 수 있음), 단계 S901에서 AMF는 NG-RAN과 UE Capability Match Request procedure를 수행하지 않는다.
도 11은 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.
도 11을 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다.
구체적으로 NG-RAN 장치의 프로세서는, AMF로부터 IMS voice에 대한 UE의 capability 관련 요청을 상기 송수신 장치를 통해 수신하고, 상기 UE의 capability와 네트워크 구성(configuration)이 호환되는지 체크하며, 상기 체크 결과를 포함하는 응답을 상기 송수신 장치를 통해 상기 AMF로 전송하며, 상기 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함할 수 있다.
또한, AMF 장치의 프로세서는, IMS voice에 대한 UE의 capability 관련 요청을 상기 송수신 장치를 통해 NG-RAN(Next Generation Radio Access Network)에 전송하고, 상기 UE의 capability와 네트워크 구성(configuration)의 호환성에 대한 체크 결과를 포함하는 응답을 상기 송수신 장치를 통해 상기 NG-RAN으로부터 수신하며, 상기 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함할 수 있다.
도 11을 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.

Claims (13)

  1. 무선통신시스템에서 NG-RAN(Next Generation Radio Access Network)이 IMS(IP Multimedia Subsystem) voice 지원에 관련된 신호를 송수신하는 방법에 있어서,
    상기 NG-RAN이 AMF로부터 IMS voice에 대한 UE의 capability 관련 요청을 수신하는 단계;
    상기 NG-RAN이 상기 UE의 capability와 네트워크 구성(configuration)이 호환되는지 체크하는 단계; 및
    상기 NG-RAN이 상기 체크 결과를 포함하는 응답을 상기 AMF로 전송하는 단계;
    를 포함하며,
    상기 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함하는, IMS voice 지원에 관련된 신호 송수신 방법.
  2. 제1항에 있어서,
    상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice가 가능한 경우는, 상기 UE에게 voice call 발생 시 상기 UE를 EPS로 handover 또는 redirection시킴으로써 IMS voice를 사용하도록 하는 것인, IMS voice 지원에 관련된 신호 송수신 방법.
  3. 제2항에 있어서,
    상기 IMS voice를 가능하게 하는 네트워크 노드는 EPS fallback의 타겟이 될 수 있는 네트워크 노드인, IMS voice 지원에 관련된 신호 송수신 방법.
  4. 제1항에 있어서,
    상기 EPS fallback의 타겟이 될 수 있는 네트워크 노드는 eNB인, IMS voice 지원에 관련된 신호 송수신 방법.
  5. 제1항에 있어서,
    상기 NG-RAN은 IMS voice를 위한 EPS fallback을 지원하는 것으로 구성되어 있는 것인, IMS voice 지원에 관련된 신호 송수신 방법.
  6. 제1항에 있어서,
    상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice가 가능한 경우는, 상기 UE에게 voice call 발생 시 상기 UE를 IMS voice가 지원되는 NG-RAN으로 handover 또는 redirection 시킴으로써 IMS voice를 사용하도록 하는 것인, IMS voice 지원에 관련된 신호 송수신 방법.
  7. 제6항에 있어서,
    상기 IMS voice를 가능하게 하는 네트워크 노드는 RAT fallback의 target이 될 수 있는 네트워크 노드인, IMS voice 지원에 관련된 신호 송수신 방법.
  8. 제6항에 있어서,
    상기 RAT fallback의 타겟이 될 수 있는 네트워크 노드는 ng-eNB인, IMS voice 지원에 관련된 신호 송수신 방법.
  9. 제6항에 있어서,
    상기 NG-RAN은 IMS voice를 위한 RAT fallback을 지원하는 것으로 구성되어 있는 것인, IMS voice 지원에 관련된 신호 송수신 방법.
  10. 제1항에 있어서,
    상기 IMS voice에 대한 UE의 capability 관련 요청은 registration area 정보를 포함하는, IMS voice 지원에 관련된 신호 송수신 방법.
  11. 제1항에 있어서,
    상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성은, 상기 NG-RAN에 설정되어 있는 것, 상기 NG-RAN이 상기 네트워크 노드와 인터페이스를 셋업 시 획득된 것 또는 상기 NG-RAN이 상기 네트워크 노드에게 요청하여 획득한 것 중 하나인, IMS voice 지원에 관련된 신호 송수신 방법.
  12. 무선통신시스템에서 IMS(IP Multimedia Subsystem) voice 지원에 관련된 신호를 송수신하는 NG-RAN(Next Generation Radio Access Network) 장치에 있어서,
    송수신 장치; 및
    프로세서를 포함하고,
    상기 프로세서는, AMF로부터 IMS voice에 대한 UE의 capability 관련 요청을 상기 송수신 장치를 통해 수신하고, 상기 UE의 capability와 네트워크 구성(configuration)이 호환되는지 체크하며, 상기 체크 결과를 포함하는 응답을 상기 송수신 장치를 통해 상기 AMF로 전송하며,
    상기 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함하는, NG-RAN 장치.
  13. 무선통신시스템에서 IMS(IP Multimedia Subsystem) voice 지원에 관련된 신호를 송수신하는 AMF 장치에 있어서,
    송수신 장치; 및
    프로세서를 포함하고,
    상기 프로세서는,
    IMS voice에 대한 UE의 capability 관련 요청을 상기 송수신 장치를 통해 NG-RAN(Next Generation Radio Access Network)에 전송하고, 상기 UE의 capability와 네트워크 구성(configuration)의 호환성에 대한 체크 결과를 포함하는 응답을 상기 송수신 장치를 통해 상기 NG-RAN으로부터 수신하며,
    상기 네트워크 구성은, 상기 NG-RAN의 네트워크 구성 및 상기 NG-RAN이 IMS voice를 지원하지 않더라도 IMS voice를 가능하게 하는 네트워크 노드의 네트워크 구성을 포함하는, AMF 장치.
PCT/KR2018/011387 2017-09-25 2018-09-27 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치 WO2019059740A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/648,517 US11356915B2 (en) 2017-09-25 2018-09-27 Method for transmitting/receiving IMS voice support-related signal by NG-RAN in wireless communication system, and apparatus therefor
CN201880062017.6A CN111149386B (zh) 2017-09-25 2018-09-27 在无线通信***中由第一基站执行的方法及其装置
EP18858359.5A EP3661265A4 (en) 2017-09-25 2018-09-27 PROCEDURE FOR SENDING / RECEIVING SIGNALS IN CONNECTION WITH IMS VOICE CARRIERS BY NG-RAN IN WIRELESS COMMUNICATION SYSTEM AND DEVICE FOR IT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762562510P 2017-09-25 2017-09-25
US62/562,510 2017-09-25
US201862688407P 2018-06-22 2018-06-22
US62/688,407 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019059740A1 true WO2019059740A1 (ko) 2019-03-28

Family

ID=65811561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011387 WO2019059740A1 (ko) 2017-09-25 2018-09-27 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US11356915B2 (ko)
EP (1) EP3661265A4 (ko)
CN (1) CN111149386B (ko)
WO (1) WO2019059740A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812176A (zh) * 2019-05-17 2021-12-17 华为技术有限公司 一种选网***及终端设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3088216A1 (en) * 2018-01-11 2019-07-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service-based processing method, terminal device, and network device
CN110049481B (zh) * 2018-01-16 2020-11-20 维沃移动通信有限公司 一种业务指示方法和相关设备
CN110351793B (zh) * 2018-04-04 2022-05-31 维沃移动通信有限公司 业务的实现方法、网络单元和终端
US11064450B2 (en) * 2018-11-12 2021-07-13 Mediatek Inc. Synchronization of QoS flows and rules in mobile communications
US11071036B2 (en) * 2019-10-24 2021-07-20 Cisco Techneiogy, Inc. Managing voice calls in heterogenous network environments
US20210250384A1 (en) * 2020-02-12 2021-08-12 Apple Inc. IMS Support for Non-Voice Services
CN111695999B (zh) * 2020-06-19 2022-11-22 光子云(三河)网络技术有限公司 一种用于区块链的风险数据传输方法及***
US20220338154A1 (en) * 2021-04-14 2022-10-20 Mediatek Singapore Pte. Ltd. Enhancements on voice domain management (vdm) for ip multimedia subsystem (ims) voice provided over a 5g network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160198336A1 (en) * 2012-02-22 2016-07-07 Lg Electronics Inc. Method and device for supporting voice service in wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2622904B1 (en) * 2010-09-28 2023-04-26 BlackBerry Limited Method and user equipment having at least one pdn connection comprising lipa connectivity
EP2590444B1 (en) 2011-11-04 2020-02-12 Alcatel Lucent Enhanced indication of network support of SRVCC and/or voice-over-IMS for an user equipment in an EPS network
CN103313348A (zh) 2012-03-16 2013-09-18 北京三星通信技术研究有限公司 维护终端设备VoIMS能力指示的方法及设备
CN103634864B (zh) * 2013-12-23 2017-08-25 展讯通信(上海)有限公司 多模无线终端及其电路域回落方法
US10485000B2 (en) * 2016-09-28 2019-11-19 Sharp Kabushiki Kaisha User equipment, base stations and methods
EP3524008B1 (en) * 2016-10-07 2022-05-04 Telefonaktiebolaget LM Ericsson (publ) Support of single radio voice call continuity in next generation (5g) networks
CN113810419B (zh) * 2016-11-09 2023-09-19 联发科技股份有限公司 增强多媒体呼叫控制的方法及其基站和用户设备
CN115412995A (zh) * 2017-03-20 2022-11-29 苹果公司 对由用户设备使用设置的变化引起的用户设备覆盖增强模式b无线电能力失配的处理
US11019538B2 (en) * 2017-06-13 2021-05-25 Apple Inc. Systems, methods and devices for legacy system fallback in a cellular communications system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160198336A1 (en) * 2012-02-22 2016-07-07 Lg Electronics Inc. Method and device for supporting voice service in wireless communication system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG SA; Procedures for the 5G System;Stage 2 (Release 15", 3GPP TS 23.502, 22 September 2017 (2017-09-22), XP055441891, Retrieved from the Internet <URL:https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails. aspx?specificationId=3145> *
CHINA MOBILE: "5GC support of T-ADS for IMS voice service", S 2-174215 , SA WG2 MEETING #122, 20 June 2017 (2017-06-20), San Jose Del Cabo, Mexico, XP051309301, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_122_Cabo/Docs> *
QUALCOMM INCORPORATED: "Radio Capability Check (P-CR 38.413", R3-172752, 3GPP TSG-RAN WG3 #97 MEETING, 11 August 2017 (2017-08-11), Berlin, Germany, XP051319598, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG3_Iu/TSGR3_97/Docs> *
QUALCOMM INCORPORATED: "TS 23.501: Framework for UE radio related Informatio n handling", S 2-175029 , SA WG2 MEETING #S2-122, 3 July 2017 (2017-07-03), San Jose Del Cabo, Mexico, XP051310043, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_122_Cabo/Docs> *
See also references of EP3661265A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812176A (zh) * 2019-05-17 2021-12-17 华为技术有限公司 一种选网***及终端设备
CN113812176B (zh) * 2019-05-17 2023-03-31 华为技术有限公司 一种选网***及终端设备

Also Published As

Publication number Publication date
US11356915B2 (en) 2022-06-07
EP3661265A4 (en) 2021-04-28
EP3661265A1 (en) 2020-06-03
CN111149386B (zh) 2021-12-24
US20200288367A1 (en) 2020-09-10
CN111149386A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2018084635A1 (ko) 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치
WO2019160376A1 (ko) 무선 통신 시스템에서 smf의 신호 송수신 방법 및 이를 위한 장치
KR102216156B1 (ko) 무선 통신 시스템에서 액세스의 전환에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2019059740A1 (ko) 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치
WO2018008922A2 (ko) 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치
WO2019066544A1 (ko) 무선 통신 시스템에서 5gs에서 eps로의 핸드오버에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2015174702A1 (ko) 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치
WO2017126948A1 (ko) 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치
WO2017171427A1 (ko) 시스템 정보 전송 방법 및 기지국과 시스템 정보 수신 방법 및 사용자기기
WO2019022442A9 (ko) 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
WO2017026872A1 (ko) 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2018169281A1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2018009025A1 (ko) 무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치
WO2016186414A1 (ko) 무선 통신 시스템에서 브로드캐스트 서비스를 제공하는 방법 및 이를 위한 장치
WO2018221943A1 (ko) 무선 통신 시스템에서 multi-homing 기반 psa 추가와 관련하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2019074250A1 (ko) 무선 통신 시스템에서 등록 해제 관련 메시지 송수신 방법 및 이를 위한 장치
WO2016126092A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2016163635A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2018143758A1 (ko) 무선 통신 시스템에서 제1 ue와 연결을 가진 제2 ue의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치
WO2017026772A1 (ko) 무선 통신 시스템에서 p-cscf 선택 및 sip 메시지 전송 방법 및 이를 위한 장치
WO2016003199A1 (ko) 무선 통신 시스템에서 d2d 통신 수행 방법 및 이를 위한 장치
WO2017030347A1 (ko) 로밍한 사용자 장치의 긴급 서비스 요청 방법 및 그 처리 방법
WO2019194537A1 (ko) 무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018858359

Country of ref document: EP

Effective date: 20200228

NENP Non-entry into the national phase

Ref country code: DE