WO2019059620A1 - Substrate treatment method and apparatus - Google Patents

Substrate treatment method and apparatus Download PDF

Info

Publication number
WO2019059620A1
WO2019059620A1 PCT/KR2018/011009 KR2018011009W WO2019059620A1 WO 2019059620 A1 WO2019059620 A1 WO 2019059620A1 KR 2018011009 W KR2018011009 W KR 2018011009W WO 2019059620 A1 WO2019059620 A1 WO 2019059620A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
silicon substrate
hydrogen
silicon
supply path
Prior art date
Application number
PCT/KR2018/011009
Other languages
French (fr)
Korean (ko)
Inventor
김인준
이길광
박재양
임두호
Original Assignee
무진전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무진전자 주식회사 filed Critical 무진전자 주식회사
Priority to JP2020538511A priority Critical patent/JP2020534707A/en
Priority to CN201880060924.7A priority patent/CN111133555B/en
Publication of WO2019059620A1 publication Critical patent/WO2019059620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • H01L21/02049Dry cleaning only with gaseous HF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Definitions

  • the present invention relates to a substrate processing method and apparatus. More particularly, the present invention relates to a substrate processing method and a substrate processing method, in which fluorine remaining on the substrate surface during dry cleaning is removed using a hydrogen-containing gas heated to a predetermined temperature, ≪ / RTI >
  • Silicon oxide and nitride are dielectric compound materials that are typically used in semiconductor devices. Wet etching and dry etching methods have heretofore been used as methods of etching these thin films.
  • the conventional dry cleaning method for etching a native oxide film has a problem in that residual fluorine remains on the substrate surface due to excessive fluorine reaction similarly to wet etching using dilute hydrofluoric acid (DHF) or buffered hydrofluoric acid (BHF) The problem is to give.
  • DHF dilute hydrofluoric acid
  • BHF buffered hydrofluoric acid
  • 1 is a view showing a conventional technique for removing fluorine remaining on a substrate surface after dry cleaning.
  • a technique disclosed in Korean Patent Laid-Open No. 10-2009-0071368 is a method for removing residual fluorine by heating a substrate in a hydrogen gas atmosphere, in which a hydrogen atom to be reacted with a fluorine atom exists in a state of low reactivity Therefore, it is difficult to implement the in-situ process because the fluorine removal rate is low and the substrate is heated at a high temperature.
  • the technique disclosed in Korean Patent Publication No. 10-0784661 is a method of removing residual fluorine by using hydrogen plasma, which is advantageous in that the residual fluorine removal rate is increased by a hydrogen radical having high reactivity.
  • the surface of the substrate may be damaged by the plasma.
  • Patent Document 0001 Korean Patent Laid-Open No. 10-2009-0071368 (Published Date: July 01, 2009, titled: substrate processing method, substrate processing apparatus and storage medium)
  • Patent Document 0002 Korean Patent Registration No. 10-0784661 (Registered Date: December 05, 2007, titled: Method of manufacturing semiconductor device)
  • the present invention provides a substrate processing method and apparatus capable of greatly improving fluorine removal efficiency and productivity by removing fluorine remaining on the substrate surface during dry cleaning using a hydrogen-containing gas heated to a predetermined temperature It is a technical task.
  • the present invention also provides a substrate processing method and apparatus capable of stably implementing an in-situ process for repeatedly generating and removing ammonium hexafluorosilicate in one chamber and improving productivity and hardware stability And to provide a method of manufacturing the same.
  • a substrate processing method for removing silicon oxide or silicon nitride formed on a silicon substrate comprising the steps of: plasma to the gas supply at least a portion of the silicon oxide or the silicon nitride silicate ammonium ((NH 4) 2 SiF 6 ) the reaction product generation step, the silicon substrate with the silicate of ammonium produced by the above-hexafluoro changing a hexafluoro Removing an ammonium hexafluorosilicate by supplying an untreated inert gas, and removing the ammonium hexafluorosilicate on the silicon substrate from which the hydrogen-containing gas transferred into the excited state by heating And is sprayed on the surface of the silicon substrate And a residue removing step of removing the residue containing fluorine (F).
  • plasma to the gas supply at least a portion of the silicon oxide or the silicon nitride silicate ammonium ((NH 4) 2 SiF 6 ) the reaction product generation step the silicon substrate with the silicate of ammonium
  • the hydrogen-containing gas is characterized by containing at least H 2 or NH 3 or H 2 O.
  • the reaction product generating step includes disposing the silicon substrate in a heated chuck inside the chamber, plasma processing the first reaction gas containing at least NF 3 And supplying the second reaction gas containing at least H 2, NH 3, or H 2 O to the silicon substrate without plasma processing.
  • the substrate processing method according to the present invention may further include a step of supplying a hydrogen containing gas transferred into the chamber to the excited state by heating to the inside of the chamber before the reaction product removing step after the reaction product forming step, And removing the fluorine adsorbed on the showerhead.
  • the heating temperature of the hydrogen-containing gas is 100-1000 ⁇ ⁇ .
  • the heating temperature of the hydrogen-containing gas is 200-900 ° C.
  • the heating temperature of the chuck provided in the chamber and on which the silicon substrate is disposed is 80-100 ° C.
  • the heating temperature of the shower head provided in the chamber and through which the hydrogen-containing gas is sprayed is 100-200 ° C.
  • the heating temperature of the inner wall surface of the chamber is 80-100 ° C.
  • the present invention relates to a substrate processing apparatus for removing silicon oxide or silicon nitride formed on a silicon substrate, comprising: a chuck provided in a chamber and on which a silicon substrate to be processed is disposed; a chuck heating unit for heating the chuck; An RF electrode to which an RF power source is applied and has a first gas supply path, a second electrode connected to the ground terminal of the RF power source and spaced apart from the RF electrode via a plasma generation region, A showerhead having a third gas supply path physically separated from the gas supply path, and a gas heating unit for heating the gas supplied to the shower head, wherein the silicon substrate is heated by the heating temperature of the chuck heated by the chuck heating unit , And the first reaction gas including at least NF 3 that has passed through the first gas supply path is heated by the RF power source And a second reaction gas supplied to the silicon substrate through the second gas supply path and containing at least H 2 or NH 3 or H 2 O is not plasma-treated through the third gas supply path, Wherein at
  • a hydrogen-containing gas heated by the gas heating unit and transferred to an excited state is supplied through the third gas supply path, And the electrode and the fluorine adsorbed on the showerhead are removed.
  • the hydrogen-containing gas includes at least H 2 or NH 3 or H 2 O.
  • the heating temperature of the hydrogen-containing gas is 100-1000 ⁇ ⁇ .
  • the heating temperature of the hydrogen-containing gas is 200 to 900 ⁇ ⁇ .
  • the heating temperature of the chuck is 80-100 ° C.
  • a substrate processing method and apparatus capable of greatly improving fluorine removal efficiency and productivity by removing fluorine remaining on the substrate surface during dry cleaning using a hydrogen-containing gas heated to a predetermined temperature .
  • a substrate processing method and apparatus capable of stably implementing an in-situ process for repeatedly generating and removing ammonium hexafluorosilicate in one chamber, and improving productivity and hardware stability It is effective.
  • FIG. 1 is a view for explaining a conventional substrate processing method
  • FIG. 2 is a view for explaining the basic principle of a substrate processing method and apparatus according to the present invention
  • FIG. 3 is a view illustrating a substrate processing method according to the first embodiment of the present invention
  • FIG. 4 is a view illustrating a substrate processing method according to a second embodiment of the present invention.
  • FIG. 5 is a view illustrating a substrate processing apparatus according to an embodiment of the present invention.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms.
  • the terms may be named for the purpose of distinguishing one element from another, for example, without departing from the scope of the right according to the concept of the present invention, the first element may be referred to as a second element,
  • the component may also be referred to as a first component.
  • FIG. 2 is a view for explaining the basic principle of a substrate processing method and apparatus according to the present invention.
  • dielectric materials such as a natural oxide film formed on a substrate are reacted with a gas or a radical to produce ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) Dry clean technology was introduced.
  • the conventional dry cleaning method for etching a native oxide film has a problem in that residual fluorine remains on the substrate surface due to excessive fluorine reaction similarly to wet etching using dilute hydrofluoric acid (DHF) or buffered hydrofluoric acid (BHF) The problem is to give.
  • DHF dilute hydrofluoric acid
  • BHF buffered hydrofluoric acid
  • the present invention heats a hydrogen-containing gas such as H 2 , NH 3, and H 2 O or the like to a temperature above a certain temperature to spray the substrate. Since the hydrogen-containing gas heated to a certain temperature or higher is excited in a highly reactive state, it is possible to increase the rate of fluorine removal without plasma damage to the substrate surface, In-situ process is possible, which can contribute to productivity and yield improvement.
  • a hydrogen-containing gas such as H 2 , NH 3, and H 2 O or the like
  • FIG. 3 is a diagrammatic representation of the present invention.
  • FIG. 3 is a view showing a substrate processing method according to a first embodiment of the present invention
  • FIG. 5 is a view showing an exemplary configuration of a substrate processing apparatus in which a substrate processing method according to the first embodiment of the present invention is performed.
  • a substrate processing method is a method for removing silicon oxide or silicon nitride formed on a silicon substrate 40, including a reaction product generation step S100, Removal step S300 and a residue removal step S400.
  • reaction product production step (S100) a reaction gas which reacts with silicon oxide or silicon nitride is supplied to the silicon substrate 40 heated in a state of being disposed inside the chamber 10 to induce the reaction, thereby forming a silicon oxide or silicon nitride Is changed to ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ). That is, after the reaction product production step (S100) is performed, all or part of the silicon oxide or silicon nitride existing on the surface of the silicon substrate 40 is replaced with the ammonium hexafluorosilicate solid layer.
  • reaction product generation step (S100) may include steps S110, S120, S130, S140, and S150.
  • step S110 the process of disposing the silicon substrate 40 on the heated chuck 20 inside the chamber 10 is performed.
  • the silicon substrate 40 can be transferred to and disposed in the chuck 20 inside the chamber 10 by a transfer device (not shown), and the chuck 20 is transferred to the 80- 100 < 0 > C. Since the silicon substrate 40 is placed in contact with the chuck 20, the silicon substrate 40 is heated to a temperature corresponding to the heating temperature of the chuck 20.
  • the first reaction gas may comprise at least NF 3 , and more specifically, NF 3 , He, Ar, N 2 , O 2 .
  • the first reaction gas may be injected from the top of the chamber 10 into the plasma generation region, and for this purpose, the RF electrode 60 disposed in the upper region of the chamber 10 is supplied with the first reaction gas A first gas supply path 62 for providing an injection path may be provided.
  • step S130 a process of generating a plasma in the plasma generation region by applying the RF power source 50 is performed.
  • the RF electrode 60 may be disposed on the upper side of the chamber 10
  • the showerhead 70 may be disposed on the lower side of the chamber 10 with the plasma generation region interposed therebetween. May be electrically connected to the RF electrode 60 and the cathode may be electrically connected to the showerhead 70.
  • the RF power source 50 is applied, the first reaction gas injected into the RF electrode 60 and the showerhead 70 is radiated by the plasma reaction and is supplied to the second gas supply path 72 to the silicon substrate 40.
  • step S140 a process of directly injecting the second reaction gas into the showerhead 70 without plasma processing and supplying the second reaction gas to the silicon substrate 40 is performed.
  • the showerhead 70 disposed below the plasma generation region may further include a second reaction gas
  • the third gas supply path 72 and the third gas supply path 74 may be provided with a path that is physically separated from the first gas supply path 72 and the third gas supply path 74.
  • the second reaction gas may comprise at least H 2 or NH 3 or H 2 O, and more specifically, H 2 , NH 3 , H 2 O.
  • step S150 the process in which the plasma-treated first reaction gas and the non-plasma-treated second reaction gas react with silicon oxide or silicon nitride formed on the silicon substrate 40 to produce ammonium hexafluorosilicate as a reaction product .
  • ammonium hexafluorosilicate may be produced as a solid layer, and all or a portion of the silicon oxide or silicon nitride present on the surface of the silicon substrate 40 may be replaced by an ammonium hexafluorosilicate solid layer .
  • reaction product removal step (S300) a process for removing ammonium hexafluorosilicate is performed by supplying an inert gas, which is not plasma-treated, to the silicon substrate 40 on which ammonium hexafluorosilicate is formed.
  • an inert gas which is not plasma-treated
  • the silicon substrate 40 maintains the heated state at a temperature corresponding to the heating temperature of the chuck 20, so that the ammonium hexafluorosilicate It is removed by vaporization.
  • the hydrogen-containing gas transferred into the excited state by heating is sprayed onto the silicon substrate 40 from which the ammonium hexafluorosilicate has been removed to leave the residue on the surface of the silicon substrate 40
  • a process for removing residues containing fluorine (F) is performed.
  • the hydrogen-containing gas may be preheated by the gas heating unit 80 provided outside the chamber 10 before being injected into the chamber 10 through the showerhead 70.
  • a hydrogen-containing gas such as H 2 , NH 3 , and H 2 O is heated to a predetermined temperature or higher to efficiently remove residual fluorine that may occur after dry cleaning, Spray. Since the hydrogen-containing gas heated to a certain temperature or higher is excited to a highly reactive state, the fluorine removal rate can be increased without plasma damage on the surface of the silicon substrate 40 unlike the prior art, and the residual fluorine can be removed The in-situ process can be performed because it is not necessary to construct a separate chamber 10 for the purpose of improving productivity and yield.
  • the hydrogen containing gas may comprise at least H 2 or NH 3 or H 2 O, and more specifically may comprise H 2 , NH 3 , H 2 O.
  • the heating temperature of the hydrogen-containing gas may be 100-1000 ⁇ ⁇ , and more preferably 200-900 ⁇ ⁇ .
  • the heating temperature of the hydrogen-containing gas is set in this manner, the reactivity of the hydrogen-containing gas can be raised to a level at which fluorine remaining on the surface of the silicon substrate 40 can be effectively removed.
  • the heating temperature of the showerhead 70 may be 100-200 ⁇ ⁇ , and the heating temperature of the inner wall of the chamber 10 may be 80-100 ⁇ ⁇ .
  • FIG. 4 is a view illustrating a substrate processing method according to a second embodiment of the present invention.
  • a feature of the second embodiment in comparison with the first embodiment is that step S200 is further performed, and in the following, a substrate processing method according to the second embodiment of the present invention, focusing on this difference, Explain.
  • the substrate processing method according to the second embodiment of the present invention includes a reaction product formation step (S100) for producing ammonium hexafluorosilicate, a reaction product removal process for removing ammonium hexafluorosilicate Before the step S300, the hydrogen-containing gas transferred to the excited state by heating is supplied to the inside of the chamber 10, so that the RF electrode 60 provided in the chamber 10 and the plasma (Step S200).
  • the heated hydrogen-containing gas is injected in the plasma off state, and the RF electrode 60 and the showerhead Since the fluorine adsorbed on the RF electrode 60 and the showerhead 70 are removed and the heat treatment using the hydrogen-containing gas is performed again, the influence of fluorine which may be released from the RF electrode 60 and the showerhead 70, And has advantages in terms of process reproducibility.
  • the heating temperature of the hydrogen-containing gas may be 100-1000 ⁇ ⁇ , more preferably 200-900 ⁇ ⁇ .
  • FIG. 5 is a view illustrating a substrate processing apparatus according to an embodiment of the present invention.
  • an embodiment of the present invention is a substrate processing apparatus for removing silicon oxide or silicon nitride formed on a silicon substrate 40, including a chamber 10, a chuck 20, a chuck heating unit 30, An RF electrode 60, a showerhead 70, and a gas heating unit 80. It should be noted that other components other than the components disclosed in FIG. 5 may be included in the substrate processing apparatus, but components that are not related to the features of the present invention are omitted from FIG. It is also noted that the substrate processing apparatus according to an embodiment of the present invention is an exemplary apparatus configuration for performing the substrate processing method described in detail above, and the description of the method can also be applied to the apparatus.
  • the chamber 10 provides a space in which the entire process of removing silicon oxide or silicon nitride formed on the silicon substrate 40 is performed.
  • the chuck 20 is a component which is provided inside the chamber 10 and on which the silicon substrate 40 to be processed is disposed.
  • the chuck heating section 30 is a component that heats the chuck 20.
  • the RF electrode 60 is disposed in an upper region of the chamber 10 and is provided with a first gas supply path 62 to which an RF power source 50 for generating plasma is applied.
  • the showerhead 70 is electrically connected to the ground terminal of the RF power supply 50 and is spaced apart from the RF electrode 60 with the plasma generation region therebetween.
  • the second gas supply path 72 and the second gas supply path And a third gas supply passage 74 that is physically separated from the second gas supply passage 72.
  • the first reaction gas injected into the RF electrode 60 and the showerhead 70 is radiated by the plasma reaction and is supplied to the second gas supply path 72 to the silicon substrate 40.
  • the gas heating unit 80 is a component for heating the gas supplied to the shower head 70.
  • the silicon substrate 40 is heated in correspondence with the heating temperature of the chuck 20 heated by the chuck heating section 30.
  • the first reaction gas including at least NF 3 that has passed through the first gas supply path 62 is plasma-treated by the RF power supply 50 and is supplied to the silicon substrate 40 through the second gas supply path 72 And a second reaction gas containing at least H 2 or NH 3 or H 2 O is supplied to the silicon substrate 40 without plasma treatment through the third gas supply path 74 to form silicon oxide or silicon nitride Is changed to ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ).
  • the inert gas which has not been subjected to the plasma treatment and has passed through the first gas supply path 62, is supplied to the silicon substrate 40 via the second gas supply path 72 to remove ammonium hexafluorosilicate.
  • the hydrogen containing gas heated by the gas heating unit 80 and transferred to the excited state is injected into the silicon substrate 40 through the third gas supply path 74 to be supplied to the surface of the silicon substrate 40
  • the residue containing fluorine (F) remaining in the residue is removed.
  • the hydrogen-containing gas heated by the gas heating unit 80 and transferred to the excited state is supplied through the third gas supply path 74 to the RF electrode 60, And the flow-adsorbed to the showerhead 70 can be removed.
  • the fluorine removal efficiency and productivity can be greatly improved. There is an effect that a treatment method and an apparatus are provided.
  • a substrate processing method and apparatus capable of stably implementing an in-situ process for repeatedly generating and removing ammonium hexafluorosilicate in one chamber, and improving productivity and hardware stability It is effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The present invention relates to a substrate treatment method for removing silicon oxide or silicon nitride formed on a silicon substrate, comprising the steps of: converting at least a portion of the silicon oxide or the silicon nitride into ammonium hexafluorosilicate ((NH4)2SiF6) by supplying reaction gas, which reacts with the silicon oxide or the silicon nitride, to the silicon substrate heated when arranged inside a chamber; removing (NH4)2SiF6 by supplying plasma non-treated inert gas to the silicon substrate having generated (NH4)2SiF6; and removing residue, including fluorine (F) remaining on the surface of the silicon substrate, by spraying, onto the silicon substrate from which (NH4)2SiF6 has been removed, hydrogen-containing gas having transitioned to an excited state through heating. According to the present invention, F remaining on the surface of a substrate during dry cleaning can be removed using hydrogen-containing gas heated to a predetermined temperature, thereby enabling F removal efficiency and productivity to be greatly improved.

Description

기판 처리 방법 및 장치Substrate processing method and apparatus
본 발명은 기판 처리 방법 및 장치에 관한 것이다. 보다 구체적으로, 본 발명은 건식 세정 시 기판 표면에 잔류하는 플루오르(Fluorine)를 일정 온도로 가열된 수소 함유 가스를 사용하여 제거함으로써, 종래 기술과 비교하여 제거 효율 및 생산성이 크게 향상된 기판 처리 방법 및 장치에 관한 것이다.The present invention relates to a substrate processing method and apparatus. More particularly, the present invention relates to a substrate processing method and a substrate processing method, in which fluorine remaining on the substrate surface during dry cleaning is removed using a hydrogen-containing gas heated to a predetermined temperature, ≪ / RTI >
실리콘 산화물과 질화물은 반도체 소자에서 대표적으로 사용되고 있는 유전체 화합 물질로서, 이들 박막을 식각하는 방법으로 종래에는 습식 식각과 건식 식각 방법이 사용되어 왔다.Silicon oxide and nitride are dielectric compound materials that are typically used in semiconductor devices. Wet etching and dry etching methods have heretofore been used as methods of etching these thin films.
그러나 반도 장치 회로가 점차 고집적화 및 고미세화 됨에 따라, 기존 습식 식각으로는 고종횡비(High Aspect Ratio) 패턴에 존재하는 자연산화막 제거가 어렵고, 원자 레벨(atomic level)의 미세 식각을 위한 선택비 제어가 어려운 문제를 가지고 있다.However, as the semiconductor device circuit gradually becomes highly integrated and refined, it is difficult to remove the native oxide film existing in the high aspect ratio pattern by the conventional wet etching, and the selective control for the micro-etching of the atomic level I have a difficult problem.
또한, 건식 식각은 웨이퍼 표면에 입사되는 이온 충격(Ion Bombardment)으로 인하여, 식각 후 웨이퍼 표면에 손상층(Damage layer)이 생성되기 때문에, 이를 제거하기 위한 후속 공정들이 필요한 문제가 있다.In addition, since the dry etching generates a damage layer on the surface of the wafer after etching due to ion bombardment incident on the wafer surface, there is a problem in that a subsequent process is required to remove the damage layer.
최근 들어, 이러한 문제점을 해결하는 대체 기술로, 실리콘 산화물 또는 질화물을 헥사플루오로규산암모늄((NH4)2SiF6) 고체층으로 변화시키고, 이렇게 생성된 헥사플루오로규산암모늄 고체층을 가열하여 제거하는 건식 세정 기술이 도입되었다.In recent years, alternative technologies to solve this problem, using the silicon oxide or nitride heating the silicate of ammonium ((NH 4) 2 SiF 6 ) silicic acid ammonium solid layer by changing into a solid layer, so produced hexafluoro-hexafluoro Dry cleaning technology has been introduced.
하지만, 자연산화막을 식각하기 위한 종래의 건식 세정 방식은 희석불산(DHF) 또는 완충불산(BHF)을 이용한 습식 식각과 유사하게 과다 플루오르(Fluorine) 반응으로 인해 기판 표면에 잔류 플루오르가 남아 수율에 영향을 주는 문제를 안고 있다.However, the conventional dry cleaning method for etching a native oxide film has a problem in that residual fluorine remains on the substrate surface due to excessive fluorine reaction similarly to wet etching using dilute hydrofluoric acid (DHF) or buffered hydrofluoric acid (BHF) The problem is to give.
도 1은 건식 세정 후 기판 표면에 남아 있는 플루오르를 제거하기 위한 종래 기술을 나타낸 도면이다.1 is a view showing a conventional technique for removing fluorine remaining on a substrate surface after dry cleaning.
먼저, 대한민국 공개특허공보 제10-2009-0071368호에 개시된 기술은, 수소 가스 분위기에서 기판 가열을 통해 잔류 플루오르를 제거하는 방식으로서, 불소 원자와 반응해야 할 수소 원자가 반응성이 낮은 가스 상태로 존재하기 때문에 플루오르 제거 속도가 낮고, 높은 온도로 기판을 가열하는 것이 필수 요소이므로 인시튜(In-situ) 공정 구현이 어렵다.First, a technique disclosed in Korean Patent Laid-Open No. 10-2009-0071368 is a method for removing residual fluorine by heating a substrate in a hydrogen gas atmosphere, in which a hydrogen atom to be reacted with a fluorine atom exists in a state of low reactivity Therefore, it is difficult to implement the in-situ process because the fluorine removal rate is low and the substrate is heated at a high temperature.
또한, 대한민국 등록특허공보 제10-0784661호에 개시된 기술은 수소 플라즈마를 이용하여 잔류 플루오르를 제거하는 방식으로서, 반응성이 높은 수소 라디칼에 의해 잔류 플루오르 제거 속도가 높아지는 장점이 있으나, 플라즈마 생성을 위한 별도의 챔버가 필요하며 기판 표면이 플라즈마에 의해 손상될 수 있다는 문제점이 있다.The technique disclosed in Korean Patent Publication No. 10-0784661 is a method of removing residual fluorine by using hydrogen plasma, which is advantageous in that the residual fluorine removal rate is increased by a hydrogen radical having high reactivity. However, There is a problem that the surface of the substrate may be damaged by the plasma.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
(특허문헌 0001) 대한민국 공개특허공보 제10-2009-0071368호(공개일자: 2009년 07월 01일, 명칭: 기판 처리 방법, 기판 처리 장치 및 기억 매체)(Patent Document 0001) Korean Patent Laid-Open No. 10-2009-0071368 (Published Date: July 01, 2009, titled: substrate processing method, substrate processing apparatus and storage medium)
(특허문헌 0002) 대한민국 등록특허공보 제10-0784661호(등록일자: 2007년 12월 05일, 명칭: 반도체 소자의 제조방법)(Patent Document 0002) Korean Patent Registration No. 10-0784661 (Registered Date: December 05, 2007, titled: Method of manufacturing semiconductor device)
본 발명은 건식 세정 시 기판 표면에 잔류하는 플루오르(Fluorine)를 일정 온도로 가열된 수소 함유 가스를 사용하여 제거함으로써, 플루오르 제거 효율 및 생산성을 크게 향상시킬 수 있는 기판 처리 방법 및 장치를 제공하는 것을 기술적 과제로 한다.The present invention provides a substrate processing method and apparatus capable of greatly improving fluorine removal efficiency and productivity by removing fluorine remaining on the substrate surface during dry cleaning using a hydrogen-containing gas heated to a predetermined temperature It is a technical task.
또한, 본 발명은 하나의 챔버에서 헥사플루오로규산암모늄을 반복적으로 생성시키고 제거하는 인시튜(In-situ) 공정을 안정적으로 구현할 수 있고, 생산성과 하드웨어 안정성을 개선할 수 있는 기판 처리 방법 및 장치를 제공하는 것을 기술적 과제로 한다.The present invention also provides a substrate processing method and apparatus capable of stably implementing an in-situ process for repeatedly generating and removing ammonium hexafluorosilicate in one chamber and improving productivity and hardware stability And to provide a method of manufacturing the same.
이러한 기술적 과제를 해결하기 위한 본 발명은 실리콘 기판에 형성된 실리콘 산화물 또는 실리콘 질화물을 제거하는 기판 처리 방법으로서, 챔버 내부에 배치된 상태로 가열된 실리콘 기판에 상기 실리콘 산화물 또는 상기 실리콘 질화물과 반응하는 반응가스를 공급하여 상기 실리콘 산화물 또는 상기 실리콘 질화물의 적어도 일부를 헥사플루오로규산암모늄((NH4)2SiF6)으로 변화시키는 반응 생성물 생성단계, 상기 헥사플루오로규산암모늄이 생성된 실리콘 기판에 플라즈마 처리되지 않은 불활성 가스를 공급하여 상기 헥사플루오로규산암모늄을 제거하는 반응 생성물 제거단계 및 상기 헥사플루오로규산암모늄이 제거된 실리콘 기판에 가열에 의해 여기 상태(excited state)로 전이된 수소 함유 가스를 분사하여 상기 실리콘 기판의 표면에 잔류하는 플루오르(F)를 포함하는 잔류물을 제거하는 잔류물 제거단계를 포함한다.According to an aspect of the present invention, there is provided a substrate processing method for removing silicon oxide or silicon nitride formed on a silicon substrate, the method comprising the steps of: plasma to the gas supply at least a portion of the silicon oxide or the silicon nitride silicate ammonium ((NH 4) 2 SiF 6 ) the reaction product generation step, the silicon substrate with the silicate of ammonium produced by the above-hexafluoro changing a hexafluoro Removing an ammonium hexafluorosilicate by supplying an untreated inert gas, and removing the ammonium hexafluorosilicate on the silicon substrate from which the hydrogen-containing gas transferred into the excited state by heating And is sprayed on the surface of the silicon substrate And a residue removing step of removing the residue containing fluorine (F).
본 발명에 따른 기판 처리 방법에 있어서, 상기 수소 함유 가스는 적어도 H2 또는 NH3 또는 H20를 포함하는 것을 특징으로 한다.In the method of processing a substrate according to the present invention, the hydrogen-containing gas is characterized by containing at least H 2 or NH 3 or H 2 O.
본 발명에 따른 기판 처리 방법에 있어서, 상기 반응 생성물 생성단계는, 상기 실리콘 기판을 상기 챔버 내부의 가열된 척(chuck)에 배치하는 단계, 적어도 NF3를 포함하는 제1 반응가스를 플라즈마 처리하여 상기 실리콘 기판으로 공급하는 단계 및 적어도 H2 또는 NH3 또는 H20를 포함하는 제2 반응가스를 플라즈마 처리를 하지 않고 상기 실리콘 기판으로 공급하는 단계를 포함하는 것을 특징으로 한다.In the method of processing a substrate according to the present invention, the reaction product generating step includes disposing the silicon substrate in a heated chuck inside the chamber, plasma processing the first reaction gas containing at least NF 3 And supplying the second reaction gas containing at least H 2, NH 3, or H 2 O to the silicon substrate without plasma processing.
본 발명에 따른 기판 처리 방법은, 상기 반응 생성물 생성단계 이후 상기 반응 생성물 제거단계 이전에, 상기 챔버 내부로 가열에 의해 여기 상태로 전이된 수소 함유 가스를 공급하여 상기 챔버 내부에 구비된 RF 전극과 샤워 헤드에 흡착된 플로오르를 제거하는 단계를 더 포함하는 것을 특징으로 한다.The substrate processing method according to the present invention may further include a step of supplying a hydrogen containing gas transferred into the chamber to the excited state by heating to the inside of the chamber before the reaction product removing step after the reaction product forming step, And removing the fluorine adsorbed on the showerhead.
본 발명에 따른 기판 처리 방법에 있어서, 상기 수소 함유 가스의 가열온도는 100-1000℃인 것을 특징으로 한다.In the substrate processing method according to the present invention, the heating temperature of the hydrogen-containing gas is 100-1000 占 폚.
본 발명에 따른 기판 처리 방법에 있어서, 상기 수소 함유 가스의 가열온도는 200-900℃인 것을 특징으로 한다.In the substrate processing method according to the present invention, the heating temperature of the hydrogen-containing gas is 200-900 ° C.
본 발명에 따른 기판 처리 방법에 있어서, 상기 챔버 내부에 구비되며 상기 실리콘 기판이 배치되는 척의 가열온도는 80-100℃인 것을 특징으로 한다.In the substrate processing method according to the present invention, the heating temperature of the chuck provided in the chamber and on which the silicon substrate is disposed is 80-100 ° C.
본 발명에 따른 기판 처리 방법에 있어서, 상기 챔버 내부에 구비되며 상기 수소 함유 가스가 분사되는 샤워 헤드의 가열온도는 100-200℃인 것을 특징으로 한다.In the method of treating a substrate according to the present invention, the heating temperature of the shower head provided in the chamber and through which the hydrogen-containing gas is sprayed is 100-200 ° C.
본 발명에 따른 기판 처리 방법에 있어서, 상기 챔버 내부 벽면의 가열온도는 80-100℃인 것을 특징으로 한다.In the substrate processing method according to the present invention, the heating temperature of the inner wall surface of the chamber is 80-100 ° C.
본 발명은 실리콘 기판에 형성된 실리콘 산화물 또는 실리콘 질화물을 제거하는 기판 처리 장치로서, 챔버 내부에 구비되며 처리 대상인 실리콘 기판이 배치되는 척(chuck), 상기 척을 가열하는 척 가열부, 플라즈마 발생을 위한 RF 전원이 인가되며 제1 가스 공급로가 구비된 RF 전극, 상기 RF 전원의 접지단에 연결된 상태로 플라즈마 생성영역을 사이에 두고 상기 RF 전극과 이격되어 있으며, 제2 가스 공급로 및 상기 제2 가스 공급로와 물리적으로 구분된 제3 가스 공급로가 구비된 샤워 헤드 및 상기 샤워 헤드로 공급되는 가스를 가열하는 가스 가열부를 포함하고, 상기 실리콘 기판은 상기 척 가열부에 의해 가열되는 척의 가열온도에 대응하여 가열되고, 상기 제1 가스 공급로를 통과한 적어도 NF3를 포함하는 제1 반응가스가 상기 RF 전원에 의해 플라즈마 처리되어 상기 제2 가스 공급로를 거쳐 상기 실리콘 기판으로 공급되고, 적어도 H2 또는 NH3 또는 H20를 포함하는 제2 반응가스가 상기 제3 가스 공급로를 통해 플라즈마 처리되지 않은 상태로 상기 실리콘 기판으로 공급되어 상기 실리콘 산화물 또는 상기 실리콘 질화물의 적어도 일부가 헥사플루오로규산암모늄((NH4)2SiF6)로 변화되고, 상기 제1 가스 공급로를 통과한 플라즈마 처리되지 않은 불활성 가스가 상기 제2 가스 공급로를 거쳐 상기 실리콘 기판에 공급되어 상기 헥사플루오로규산암모늄이 제거되고, 상기 가스 가열부에 의해 가열되어 여기 상태(excited state)로 전이된 수소 함유 가스가 상기 제3 가스 공급로를 통해 상기 실리콘 기판에 분사되어 상기 실리콘 기판의 표면에 잔류하는 플루오르(F)를 포함하는 잔류물이 제거된다.The present invention relates to a substrate processing apparatus for removing silicon oxide or silicon nitride formed on a silicon substrate, comprising: a chuck provided in a chamber and on which a silicon substrate to be processed is disposed; a chuck heating unit for heating the chuck; An RF electrode to which an RF power source is applied and has a first gas supply path, a second electrode connected to the ground terminal of the RF power source and spaced apart from the RF electrode via a plasma generation region, A showerhead having a third gas supply path physically separated from the gas supply path, and a gas heating unit for heating the gas supplied to the shower head, wherein the silicon substrate is heated by the heating temperature of the chuck heated by the chuck heating unit , And the first reaction gas including at least NF 3 that has passed through the first gas supply path is heated by the RF power source And a second reaction gas supplied to the silicon substrate through the second gas supply path and containing at least H 2 or NH 3 or H 2 O is not plasma-treated through the third gas supply path, Wherein at least a part of the silicon oxide or the silicon nitride is supplied to the silicon substrate and is changed to ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ), and the non-plasma-treated inert gas passing through the first gas supply path Containing gas which is supplied to the silicon substrate through the second gas supply path to remove the ammonium hexafluorosilicate and is heated by the gas heating unit and transferred to an excited state is supplied to the third gas supply The residue containing fluorine (F) remaining on the surface of the silicon substrate is removed by spraying the silicon substrate through the furnace.
본 발명에 따른 기판 처리 장치에 있어서, 상기 헥사플루오로규산암모늄이 제거되기 전에, 상기 가스 가열부에 의해 가열되어 여기 상태로 전이된 수소 함유 가스가 상기 제3 가스 공급로를 통해 공급되어 상기 RF 전극과 상기 샤워 헤드에 흡착된 플로오르가 제거되는 것을 특징으로 한다.In the substrate processing apparatus according to the present invention, before the ammonium hexafluorosilicate is removed, a hydrogen-containing gas heated by the gas heating unit and transferred to an excited state is supplied through the third gas supply path, And the electrode and the fluorine adsorbed on the showerhead are removed.
본 발명에 따른 기판 처리 장치에 있어서, 상기 수소 함유 가스는 적어도 H2 또는 NH3 또는 H20를 포함하는 것을 특징으로 한다.In the substrate processing apparatus according to the present invention, the hydrogen-containing gas includes at least H 2 or NH 3 or H 2 O.
본 발명에 따른 기판 처리 장치에 있어서, 상기 수소 함유 가스의 가열온도는 100-1000℃인 것을 특징으로 한다.In the substrate processing apparatus according to the present invention, the heating temperature of the hydrogen-containing gas is 100-1000 占 폚.
본 발명에 따른 기판 처리 장치에 있어서, 상기 수소 함유 가스의 가열온도는 200-900℃인 것을 특징으로 한다.In the substrate processing apparatus according to the present invention, the heating temperature of the hydrogen-containing gas is 200 to 900 占 폚.
본 발명에 따른 기판 처리 장치에 있어서, 상기 척의 가열온도는 80-100℃인 것을 특징으로 한다.In the substrate processing apparatus according to the present invention, the heating temperature of the chuck is 80-100 ° C.
본 발명에 따르면, 건식 세정 시 기판 표면에 잔류하는 플루오르(Fluorine)를 일정 온도로 가열된 수소 함유 가스를 사용하여 제거함으로써, 플루오르 제거 효율 및 생산성을 크게 향상시킬 수 있는 기판 처리 방법 및 장치가 제공되는 효과가 있다.According to the present invention, there is provided a substrate processing method and apparatus capable of greatly improving fluorine removal efficiency and productivity by removing fluorine remaining on the substrate surface during dry cleaning using a hydrogen-containing gas heated to a predetermined temperature .
또한, 하나의 챔버에서 헥사플루오로규산암모늄을 반복적으로 생성시키고 제거하는 인시튜(In-situ) 공정을 안정적으로 구현할 수 있고, 생산성과 하드웨어 안정성을 개선할 수 있는 기판 처리 방법 및 장치가 제공되는 효과가 있다.Further, there is provided a substrate processing method and apparatus capable of stably implementing an in-situ process for repeatedly generating and removing ammonium hexafluorosilicate in one chamber, and improving productivity and hardware stability It is effective.
도 1은 종래의 기판 처리 방식을 설명하기 위한 도면이고,FIG. 1 is a view for explaining a conventional substrate processing method,
도 2는 본 발명에 따른 기판 처리 방법 및 장치의 기본 원리를 설명하기 위한 도면이고,2 is a view for explaining the basic principle of a substrate processing method and apparatus according to the present invention,
도 3은 본 발명의 제1 실시 예에 따른 기판 처리 방법을 나타낸 도면이고,3 is a view illustrating a substrate processing method according to the first embodiment of the present invention,
도 4는 본 발명의 제2 실시 예에 따른 기판 처리 방법을 나타낸 도면이고,4 is a view illustrating a substrate processing method according to a second embodiment of the present invention,
도 5는 본 발명의 일 실시 예에 따른 기판 처리 장치를 나타낸 도면이다.5 is a view illustrating a substrate processing apparatus according to an embodiment of the present invention.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.It is to be understood that the specific structural or functional description of embodiments of the present invention disclosed herein is for illustrative purposes only and is not intended to limit the scope of the inventive concept But may be embodied in many different forms and is not limited to the embodiments set forth herein.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.The embodiments according to the concept of the present invention can make various changes and can take various forms, so that the embodiments are illustrated in the drawings and described in detail herein. It should be understood, however, that it is not intended to limit the embodiments according to the concepts of the present invention to the particular forms disclosed, but includes all modifications, equivalents, or alternatives falling within the spirit and scope of the invention.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2구성 요소는 제1구성 요소로도 명명될 수 있다.The terms first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The terms may be named for the purpose of distinguishing one element from another, for example, without departing from the scope of the right according to the concept of the present invention, the first element may be referred to as a second element, The component may also be referred to as a first component.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.It is to be understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, . On the other hand, when an element is referred to as being "directly connected" or "directly connected" to another element, it should be understood that there are no other elements in between. Other expressions that describe the relationship between components, such as "between" and "between" or "neighboring to" and "directly adjacent to" should be interpreted as well.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms "comprises" or "having" and the like are used to specify that there are features, numbers, steps, operations, elements, parts or combinations thereof described herein, But do not preclude the presence or addition of one or more other features, integers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the meaning of the context in the relevant art and, unless explicitly defined herein, are to be interpreted as ideal or overly formal Do not.
도 2는 본 발명에 따른 기판 처리 방법 및 장치의 기본 원리를 설명하기 위한 도면이다.2 is a view for explaining the basic principle of a substrate processing method and apparatus according to the present invention.
앞서, 도 1을 참조하여 설명한 바와 같이, 기판에 형성되는 자연산화막과 같은 유전체들을 가스 또는 라디칼과 반응하여 헥사플루오르규산암모늄((NH4)2SiF6)을 생성시킨 후, 이를 가열하여 제거하는 건식 세정(Dry Clean) 기술이 도입되었다.As described above with reference to FIG. 1, dielectric materials such as a natural oxide film formed on a substrate are reacted with a gas or a radical to produce ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) Dry clean technology was introduced.
하지만, 자연산화막을 식각하기 위한 종래의 건식 세정 방식은 희석불산(DHF) 또는 완충불산(BHF)을 이용한 습식 식각과 유사하게 과다 플루오르(Fluorine) 반응으로 인해 기판 표면에 잔류 플루오르가 남아 수율에 영향을 주는 문제를 안고 있다.However, the conventional dry cleaning method for etching a native oxide film has a problem in that residual fluorine remains on the substrate surface due to excessive fluorine reaction similarly to wet etching using dilute hydrofluoric acid (DHF) or buffered hydrofluoric acid (BHF) The problem is to give.
본 발명은 건식 세정 후에 발생할 수 있는 잔류 플루오르의 효율적인 제거를 위해, H2, NH3 그리고 H2O 등과 같은 수소 함유 가스를 일정 온도 이상으로 가열하여 기판에 분사한다. 일정 온도 이상으로 가열된 수소 함유 가스는 반응성이 높은 상태로 여기되기(excited) 때문에, 기판 표면에 대한 플라즈마 손상(Plasma damage)없이 플루오르 제거 속도를 높일 수 있고 별도의 챔버 구성이 필요 없는 인시튜(In-situ) 공정이 가능하여 생산성 및 수율 향상에 기여할 수 있다.In order to efficiently remove residual fluorine that may occur after dry cleaning, the present invention heats a hydrogen-containing gas such as H 2 , NH 3, and H 2 O or the like to a temperature above a certain temperature to spray the substrate. Since the hydrogen-containing gas heated to a certain temperature or higher is excited in a highly reactive state, it is possible to increase the rate of fluorine removal without plasma damage to the substrate surface, In-situ process is possible, which can contribute to productivity and yield improvement.
이하에서는 도 3 내지 도 5를 추가로 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 3 to 5. FIG.
도 3은 본 발명의 제1 실시 예에 따른 기판 처리 방법을 나타낸 도면이고, 도 5는 본 발명의 제1 실시 예에 따른 기판 처리 방법이 수행되는 기판 처리 장치의 예시적인 구성을 나타낸 도면이다.FIG. 3 is a view showing a substrate processing method according to a first embodiment of the present invention, and FIG. 5 is a view showing an exemplary configuration of a substrate processing apparatus in which a substrate processing method according to the first embodiment of the present invention is performed.
도 3 및 도 5를 참조하면, 본 발명의 제1 실시 예에 따른 기판 처리 방법은 실리콘 기판(40)에 형성된 실리콘 산화물 또는 실리콘 질화물을 제거하는 방법으로서, 반응 생성물 생성단계(S100), 반응 생성물 제거단계(S300) 및 잔류물 제거단계(S400)를 포함한다.3 and 5, a substrate processing method according to the first embodiment of the present invention is a method for removing silicon oxide or silicon nitride formed on a silicon substrate 40, including a reaction product generation step S100, Removal step S300 and a residue removal step S400.
반응 생성물 생성단계(S100)에서는, 챔버(10) 내부에 배치된 상태로 가열된 실리콘 기판(40)에 실리콘 산화물 또는 실리콘 질화물과 반응하는 반응가스를 공급하여 반응을 유도함으로써, 실리콘 산화물 또는 실리콘 질화물의 적어도 일부를 헥사플루오로규산암모늄((NH4)2SiF6)으로 변화시키는 과정이 수행된다. 즉, 반응 생성물 생성단계(S100)가 수행되고 나면, 실리콘 기판(40)의 표면에 존재하던 실리콘 산화물 또는 실리콘 질화물의 전부 또는 일부가 헥사플루오로규산암모늄 고체층으로 치환된다.In the reaction product production step (S100), a reaction gas which reacts with silicon oxide or silicon nitride is supplied to the silicon substrate 40 heated in a state of being disposed inside the chamber 10 to induce the reaction, thereby forming a silicon oxide or silicon nitride Is changed to ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ). That is, after the reaction product production step (S100) is performed, all or part of the silicon oxide or silicon nitride existing on the surface of the silicon substrate 40 is replaced with the ammonium hexafluorosilicate solid layer.
예를 들어, 반응 생성물 생성단계(S100)는, 단계 S110, 단계 S120, 단계 S130, 단계 S140, 단계 S150을 포함하여 구성될 수 있다.For example, the reaction product generation step (S100) may include steps S110, S120, S130, S140, and S150.
단계 S110에서는, 실리콘 기판(40)을 챔버(10) 내부의 가열된 척(20)에 배치하는 과정이 수행된다. 예를 들어, 실리콘 기판(40)은 도시하지 않은 이송장치에 의해 챔버(10) 내부의 척(20)으로 이송되어 배치될 수 있으며, 척(20)은 척 가열부(30)에 의해 80-100℃의 온도 범위에서 가열될 수 있다. 실리콘 기판(40)은 척(20)에 접촉된 상태로 배치되기 때문에, 척(20)의 가열온도에 대응하는 온도로 가열된다.In step S110, the process of disposing the silicon substrate 40 on the heated chuck 20 inside the chamber 10 is performed. For example, the silicon substrate 40 can be transferred to and disposed in the chuck 20 inside the chamber 10 by a transfer device (not shown), and the chuck 20 is transferred to the 80- 100 < 0 > C. Since the silicon substrate 40 is placed in contact with the chuck 20, the silicon substrate 40 is heated to a temperature corresponding to the heating temperature of the chuck 20. [
단계 S120에서는, 제1 반응가스를 플라즈마 생성영역으로 주입하는 과정이 수행된다. 예를 들어, 제1 반응가스는 적어도 NF3를 포함할 수 있으며, 보다 구체적으로는, NF3, He, Ar, N2, O2를 포함할 수 있다. 예를 들어, 이러한 제1 반응가스는 챔버(10)의 상단으로부터 플라즈마 생성영역으로 주입될 수 있으며, 이를 위해, 챔버(10)의 상부 영역에 배치된 RF 전극(60)에는 제1 반응가스의 주입 경로를 제공하는 제1 가스 공급로(62)가 구비될 수 있다.In step S120, a process of injecting the first reaction gas into the plasma generation region is performed. For example, the first reaction gas may comprise at least NF 3 , and more specifically, NF 3 , He, Ar, N 2 , O 2 . For example, the first reaction gas may be injected from the top of the chamber 10 into the plasma generation region, and for this purpose, the RF electrode 60 disposed in the upper region of the chamber 10 is supplied with the first reaction gas A first gas supply path 62 for providing an injection path may be provided.
단계 S130에서는, RF 전원(50)을 인가하여 플라즈마 생성영역에 플라즈마를 생성하는 과정이 수행된다. 예를 들어, 챔버(10)의 내부에는 플라즈마 생성영역을 사이에 두고 상측에 RF 전극(60)이 배치되고 하측에 후술하는 샤워 헤드(70)가 배치될 수 있으며, RF 전원(50)의 양극은 RF 전극(60)에 전기적으로 연결되고 음극은 샤워 헤드(70)에 전기적으로 연결될 수 있다. RF 전원(50)이 인가되는 경우, RF 전극(60)과 샤워 헤드(70)로 주입된 제1 반응가스가 플라즈마 반응에 의해 라디칼화되어 샤워 헤드(70)에 구비된 제2 가스 공급로(72)를 통해 실리콘 기판(40)으로 공급된다.In step S130, a process of generating a plasma in the plasma generation region by applying the RF power source 50 is performed. For example, the RF electrode 60 may be disposed on the upper side of the chamber 10, and the showerhead 70 may be disposed on the lower side of the chamber 10 with the plasma generation region interposed therebetween. May be electrically connected to the RF electrode 60 and the cathode may be electrically connected to the showerhead 70. When the RF power source 50 is applied, the first reaction gas injected into the RF electrode 60 and the showerhead 70 is radiated by the plasma reaction and is supplied to the second gas supply path 72 to the silicon substrate 40.
단계 S140에서는, 제2 반응가스를 플라즈마 처리를 하지 않고 샤워 헤드(70)로 직접 주입하여 실리콘 기판(40)으로 공급하는 과정이 수행된다. 예를 들어, 플라즈마 생성영역의 하측에 배치되는 샤워 헤드(70)에는 라디칼화된 제1 반응가스가 통과하는 경로를 제공하는 제2 가스 공급로(72) 이외에 추가로, 제2 반응가스 및 후술하는 수소 함유 가스가 주입되는 통로를 제공하는 제3 가스 공급로(74)가 구비될 수 있으며, 제2 가스 공급로(72)와 제3 가스 공급로(74)는 물리적으로 구분되는 경로를 갖도록 구성될 수 있다. 예를 들어, 제2 반응가스는 적어도 H2 또는 NH3 또는 H20를 포함할 수 있으며, 보다 구체적으로는, H2, NH3, H20를 포함할 수 있다.In step S140, a process of directly injecting the second reaction gas into the showerhead 70 without plasma processing and supplying the second reaction gas to the silicon substrate 40 is performed. For example, in addition to the second gas supply path 72 for providing a path through which the radicalized first reaction gas passes, the showerhead 70 disposed below the plasma generation region may further include a second reaction gas, The third gas supply path 72 and the third gas supply path 74 may be provided with a path that is physically separated from the first gas supply path 72 and the third gas supply path 74. [ Lt; / RTI > For example, the second reaction gas may comprise at least H 2 or NH 3 or H 2 O, and more specifically, H 2 , NH 3 , H 2 O.
단계 S150에서는, 플라즈마 처리된 제1 반응가스와 플라즈마 처리되지 않은 제2 반응가스가 실리콘 기판(40)에 형성된 실리콘 산화물 또는 실리콘 질화물과 반응하여, 반응 생성물로서 헥사플루오로규산암모늄이 생성되는 과정이 수행된다. 예를 들어, 헥사플루오로규산암모늄은 고체층으로 생성될 수 있으며, 실리콘 기판(40)의 표면에 존재하던 실리콘 산화물 또는 실리콘 질화물의 전부 또는 일부가 헥사플루오로규산암모늄 고체층으로 치환될 수 있다.In step S150, the process in which the plasma-treated first reaction gas and the non-plasma-treated second reaction gas react with silicon oxide or silicon nitride formed on the silicon substrate 40 to produce ammonium hexafluorosilicate as a reaction product . For example, ammonium hexafluorosilicate may be produced as a solid layer, and all or a portion of the silicon oxide or silicon nitride present on the surface of the silicon substrate 40 may be replaced by an ammonium hexafluorosilicate solid layer .
실리콘 기판(40)에 실리콘 산화물이 형성되어 있는 경우를 예로 들어, 플라즈마 처리되어 공급되는 제1 반응가스에 함유된 라디칼 성분들과 플라즈마 처리되지 않고 공급되는 제2 반응가스의 가스 성분들의 반응에 의해 실리콘 산화물이 헥사플루오로규산암모늄으로 변화되는 과정을 반응식으로 설명하면 다음과 같다.For example, in the case where silicon oxide is formed on the silicon substrate 40, by the reaction of the radical components contained in the first reaction gas supplied by the plasma treatment and the gas components of the second reaction gas supplied without plasma treatment The process by which the silicon oxide is changed to ammonium hexafluorosilicate is described as follows.
2NH4F(g) + 4HF(g) + SiO2 = (NH4)2SiF6(g) + 2H2O2 NH 4 F (g) + 4 HF (g) + SiO 2 = (NH 4 ) 2 SiF 6 (g) + 2H 2 O
반응 생성물 제거단계(S300)에서는, 헥사플루오로규산암모늄이 생성된 실리콘 기판(40)에 플라즈마 처리되지 않은 불활성 가스를 공급하여 헥사플루오로규산암모늄을 제거하는 과정이 수행된다. 예를 들어, 실리콘 기판(40)은 가열된 상태의 척(20)에 접촉 배치되어 있기 때문에 척(20)의 가열온도에 대응하는 온도로 가열된 상태를 유지하기 때문에, 헥사플루오로규산암모늄은 기화에 의해 제거된다.In the reaction product removal step (S300), a process for removing ammonium hexafluorosilicate is performed by supplying an inert gas, which is not plasma-treated, to the silicon substrate 40 on which ammonium hexafluorosilicate is formed. For example, since the silicon substrate 40 is placed in contact with the chuck 20 in a heated state, the silicon substrate 40 maintains the heated state at a temperature corresponding to the heating temperature of the chuck 20, so that the ammonium hexafluorosilicate It is removed by vaporization.
헥사플루오로규산암모늄이 기화에 의해 제거되는 과정을 반응식으로 설명하면 다음과 같다.The process by which ammonium hexafluorosilicate is removed by vaporization will be described in the following reaction scheme.
(NH4)2SiF6(g) = SiF4(g) + 2NH3(g) + 2HF(g) (NH 4) 2 SiF 6 ( g) = SiF 4 (g) + 2NH 3 (g) + 2HF (g)
잔류물 제거단계(S400)에서는, 헥사플루오로규산암모늄이 제거된 실리콘 기판(40)에 가열에 의해 여기 상태(excited state)로 전이된 수소 함유 가스를 분사하여 실리콘 기판(40)의 표면에 잔류하는 플루오르(F)를 포함하는 잔류물을 제거하는 과정이 수행된다. 예를 들어, 수소 함유 가스는 샤워 헤드(70)를 통해 챔버(10) 내부로 주입되기 이전에, 챔버(10) 외부에 구비된 가스 가열부(80)에 의해 미리 가열될 수 있다.In the residue removing step S400, the hydrogen-containing gas transferred into the excited state by heating is sprayed onto the silicon substrate 40 from which the ammonium hexafluorosilicate has been removed to leave the residue on the surface of the silicon substrate 40 A process for removing residues containing fluorine (F) is performed. For example, the hydrogen-containing gas may be preheated by the gas heating unit 80 provided outside the chamber 10 before being injected into the chamber 10 through the showerhead 70.
이와 같이 본 발명의 일 실시 예에 따르면, 건식 세정 후에 발생할 수 있는 잔류 플루오르의 효율적인 제거를 위해 H2, NH3, H2O 등 수소 함유 가스를 일정 온도 이상으로 가열하여 실리콘 기판(40)에 분사한다. 일정 온도 이상으로 가열된 수소 함유 가스는 반응성이 높은 상태로 여기되기 때문에, 종래 기술과는 달리 실리콘 기판(40) 표면의 플라즈마 손상(Plasma damage)없이 플루오르 제거 속도를 높일 수 있고, 잔류 플루오르를 제거하기 위한 별도의 챔버(10) 구성이 필요없기 때문에 인시튜(In-situ) 공정이 가능하여 생산성 및 수율 향상에 기여할 수 있다.According to an embodiment of the present invention, a hydrogen-containing gas such as H 2 , NH 3 , and H 2 O is heated to a predetermined temperature or higher to efficiently remove residual fluorine that may occur after dry cleaning, Spray. Since the hydrogen-containing gas heated to a certain temperature or higher is excited to a highly reactive state, the fluorine removal rate can be increased without plasma damage on the surface of the silicon substrate 40 unlike the prior art, and the residual fluorine can be removed The in-situ process can be performed because it is not necessary to construct a separate chamber 10 for the purpose of improving productivity and yield.
예를 들어, 수소 함유 가스는 적어도 H2 또는 NH3 또는 H20를 포함할 수 있으며, 보다 구체적으로는, H2, NH3, H20를 포함할 수 있다.For example, the hydrogen containing gas may comprise at least H 2 or NH 3 or H 2 O, and more specifically may comprise H 2 , NH 3 , H 2 O.
또한, 예를 들어, 수소 함유 가스의 가열온도는 100-1000℃일 수 있으며, 보다 바람직하게는, 200-900℃일 수 있다. 수소 함유 가스의 가열온도를 이와 같이 구성하면, 수소 함유 가스의 반응성을 실리콘 기판(40)의 표면에 잔류하는 플루오르를 효과적으로 제거할 수 있는 수준으로 높일 수 있다.Further, for example, the heating temperature of the hydrogen-containing gas may be 100-1000 占 폚, and more preferably 200-900 占 폚. When the heating temperature of the hydrogen-containing gas is set in this manner, the reactivity of the hydrogen-containing gas can be raised to a level at which fluorine remaining on the surface of the silicon substrate 40 can be effectively removed.
예를 들어, 샤워 헤드(70)의 가열온도는 100-200℃일 수 있으며, 챔버(10) 내부 벽면의 가열온도는 80-100℃일 수 있다.For example, the heating temperature of the showerhead 70 may be 100-200 占 폚, and the heating temperature of the inner wall of the chamber 10 may be 80-100 占 폚.
도 4는 본 발명의 제2 실시 예에 따른 기판 처리 방법을 나타낸 도면이다.4 is a view illustrating a substrate processing method according to a second embodiment of the present invention.
제1 실시 예와 비교하여 제2 실시 예가 갖는 특징은 단계 S200이 추가로 수행된다는 것이며, 이하에서는 설명의 중복을 피하기 위해 이 차이점에 초점을 맞춰 본 발명의 제2 실시 예에 따른 기판 처리 방법을 설명한다.A feature of the second embodiment in comparison with the first embodiment is that step S200 is further performed, and in the following, a substrate processing method according to the second embodiment of the present invention, focusing on this difference, Explain.
도 4 및 도 5를 참조하면, 본 발명의 제2 실시 예에 따른 기판 처리 방법은 헥사플루오로규산암모늄을 생성하는 반응 생성물 생성단계(S100) 이후, 헥사플루오로규산암모늄을 제거하는 반응 생성물 제거단계(S300) 이전에, 챔버(10) 내부로 가열에 의해 여기 상태로 전이된 수소 함유 가스를 공급하여 챔버(10) 내부에 구비된 RF 전극(60)과 샤워 헤드(70)에 흡착된 플로오르를 제거하는 단계(S200)를 더 포함한다.4 and 5, the substrate processing method according to the second embodiment of the present invention includes a reaction product formation step (S100) for producing ammonium hexafluorosilicate, a reaction product removal process for removing ammonium hexafluorosilicate Before the step S300, the hydrogen-containing gas transferred to the excited state by heating is supplied to the inside of the chamber 10, so that the RF electrode 60 provided in the chamber 10 and the plasma (Step S200).
본 발명의 제2 실시 예에 따르면, 헥사플루오로규산암모늄 생성 이후, 플라즈마 오프(Plasma Off) 상태에서 가열된 수소 함유 가스를 주입하여 반응 생성물 생성단계(S100)에서 RF 전극(60) 및 샤워 헤드(70)에 흡착된 플루오르를 제거하고, 다시 수소 함유 가스를 이용한 열처리를 진행하기 때문에, 열처리 시 RF 전극(60) 및 샤워 헤드(70) 등에서 떨어져 나올 수 있는 플루오르에 의한 영향을 차단할 수 있으며, 공정 재현성 측면에서 장점을 갖는다.According to the second embodiment of the present invention, after the formation of the ammonium hexafluorosilicate, the heated hydrogen-containing gas is injected in the plasma off state, and the RF electrode 60 and the showerhead Since the fluorine adsorbed on the RF electrode 60 and the showerhead 70 are removed and the heat treatment using the hydrogen-containing gas is performed again, the influence of fluorine which may be released from the RF electrode 60 and the showerhead 70, And has advantages in terms of process reproducibility.
예를 들어, 단계 S200에서, 수소 함유 가스의 가열온도는 100-1000℃, 보다 바람직하게는, 200-900℃일 수 있다.For example, in step S200, the heating temperature of the hydrogen-containing gas may be 100-1000 占 폚, more preferably 200-900 占 폚.
도 5는 본 발명의 일 실시 예에 따른 기판 처리 장치를 나타낸 도면이다.5 is a view illustrating a substrate processing apparatus according to an embodiment of the present invention.
도 5를 참조하면, 본 발명의 일 실시 예는 실리콘 기판(40)에 형성된 실리콘 산화물 또는 실리콘 질화물을 제거하는 기판 처리 장치로서, 챔버(10), 척(20), 척 가열부(30), RF 전극(60), 샤워 헤드(70) 및 가스 가열부(80)를 포함한다. 도 5에 개시된 구성요소 이외에도 다른 구성요소들이 기판 처리 장치에 포함될 수 있으나, 본 발명의 특징과 관련성이 낮은 구성요소들은 도 5에서 생략하였음을 밝혀둔다. 또한, 본 발명의 일 실시 예에 따른 기판 처리 장치는 앞서 상세히 설명한 기판 처리 방법을 수행하는 예시적인 장치 구성으로서, 방법에 대한 설명이 장치에도 적용될 수 있음을 밝혀둔다.Referring to FIG. 5, an embodiment of the present invention is a substrate processing apparatus for removing silicon oxide or silicon nitride formed on a silicon substrate 40, including a chamber 10, a chuck 20, a chuck heating unit 30, An RF electrode 60, a showerhead 70, and a gas heating unit 80. It should be noted that other components other than the components disclosed in FIG. 5 may be included in the substrate processing apparatus, but components that are not related to the features of the present invention are omitted from FIG. It is also noted that the substrate processing apparatus according to an embodiment of the present invention is an exemplary apparatus configuration for performing the substrate processing method described in detail above, and the description of the method can also be applied to the apparatus.
챔버(10)는 실리콘 기판(40)에 형성된 실리콘 산화물 또는 실리콘 질화물을 제거하는 전체 공정이 수행되는 공간을 제공한다.The chamber 10 provides a space in which the entire process of removing silicon oxide or silicon nitride formed on the silicon substrate 40 is performed.
척(20)은 챔버(10) 내부에 구비되며 처리 대상인 실리콘 기판(40)이 배치되는 구성요소이다.The chuck 20 is a component which is provided inside the chamber 10 and on which the silicon substrate 40 to be processed is disposed.
척 가열부(30)는 척(20)을 가열하는 구성요소이다.The chuck heating section 30 is a component that heats the chuck 20.
RF 전극(60)은 챔버(10) 내부의 상부 영역에 배치되어 있으며 플라즈마 발생을 위한 RF 전원(50)이 인가되며 제1 가스 공급로(62)가 구비되어 있다.The RF electrode 60 is disposed in an upper region of the chamber 10 and is provided with a first gas supply path 62 to which an RF power source 50 for generating plasma is applied.
샤워 헤드(70)는 RF 전원(50)의 접지단에 전기적으로 연결된 상태로 플라즈마 생성영역을 사이에 두고 RF 전극(60)과 이격되어 있으며, 제2 가스 공급로(72) 및 제2 가스 공급로(72)와 물리적으로 구분된 제3 가스 공급로(74)가 구비되어 있다. 샤워 헤드(70)는 RF 전원(50)의 접지단에 연결되어 접지되어 있기 때문에, 실리콘 기판(40)으로 주입되는 이온(Ion) 성분은 최대한 억제하면서 반응성 라디칼 성분만 통과시킬 수 있다.The showerhead 70 is electrically connected to the ground terminal of the RF power supply 50 and is spaced apart from the RF electrode 60 with the plasma generation region therebetween. The second gas supply path 72 and the second gas supply path And a third gas supply passage 74 that is physically separated from the second gas supply passage 72. [ Since the showerhead 70 is connected to the ground terminal of the RF power source 50 and is grounded, only the reactive radical component can pass through while suppressing the ion component injected into the silicon substrate 40 as much as possible.
RF 전원(50)이 인가되는 경우, RF 전극(60)과 샤워 헤드(70)로 주입된 제1 반응가스가 플라즈마 반응에 의해 라디칼화되어 샤워 헤드(70)에 구비된 제2 가스 공급로(72)를 통해 실리콘 기판(40)으로 공급된다.When the RF power source 50 is applied, the first reaction gas injected into the RF electrode 60 and the showerhead 70 is radiated by the plasma reaction and is supplied to the second gas supply path 72 to the silicon substrate 40.
가스 가열부(80)는 샤워 헤드(70)로 공급되는 가스를 가열하는 구성요소이다.The gas heating unit 80 is a component for heating the gas supplied to the shower head 70.
본 발명의 일 실시 예에 따른 기판 처리 장치의 이러한 구성 하에서, 실리콘 기판(40)은 척 가열부(30)에 의해 가열되는 척(20)의 가열온도에 대응하여 가열된다.In this configuration of the substrate processing apparatus according to the embodiment of the present invention, the silicon substrate 40 is heated in correspondence with the heating temperature of the chuck 20 heated by the chuck heating section 30.
또한, 제1 가스 공급로(62)를 통과한 적어도 NF3를 포함하는 제1 반응가스가 RF 전원(50)에 의해 플라즈마 처리되어 제2 가스 공급로(72)를 거쳐 실리콘 기판(40)으로 공급되고, 적어도 H2 또는 NH3 또는 H20를 포함하는 제2 반응가스가 제3 가스 공급로(74)를 통해 플라즈마 처리되지 않은 상태로 실리콘 기판(40)으로 공급되어 실리콘 산화물 또는 실리콘 질화물의 적어도 일부가 헥사플루오로규산암모늄((NH4)2SiF6)로 변화된다.The first reaction gas including at least NF 3 that has passed through the first gas supply path 62 is plasma-treated by the RF power supply 50 and is supplied to the silicon substrate 40 through the second gas supply path 72 And a second reaction gas containing at least H 2 or NH 3 or H 2 O is supplied to the silicon substrate 40 without plasma treatment through the third gas supply path 74 to form silicon oxide or silicon nitride Is changed to ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ).
또한, 제1 가스 공급로(62)를 통과한 플라즈마 처리되지 않은 불활성 가스가 제2 가스 공급로(72)를 거쳐 실리콘 기판(40)에 공급되어 헥사플루오로규산암모늄이 제거된다.Further, the inert gas, which has not been subjected to the plasma treatment and has passed through the first gas supply path 62, is supplied to the silicon substrate 40 via the second gas supply path 72 to remove ammonium hexafluorosilicate.
또한, 가스 가열부(80)에 의해 가열되어 여기 상태(excited state)로 전이된 수소 함유 가스가 제3 가스 공급로(74)를 통해 실리콘 기판(40)에 분사되어 실리콘 기판(40)의 표면에 잔류하는 플루오르(F)를 포함하는 잔류물이 제거된다.The hydrogen containing gas heated by the gas heating unit 80 and transferred to the excited state is injected into the silicon substrate 40 through the third gas supply path 74 to be supplied to the surface of the silicon substrate 40 The residue containing fluorine (F) remaining in the residue is removed.
예를 들어, 헥사플루오로규산암모늄이 제거되기 전에, 가스 가열부(80)에 의해 가열되어 여기 상태로 전이된 수소 함유 가스가 제3 가스 공급로(74)를 통해 공급되어 RF 전극(60)과 샤워 헤드(70)에 흡착된 플로오르가 제거되도록 구성될 수 있다.For example, before the ammonium hexafluorosilicate is removed, the hydrogen-containing gas heated by the gas heating unit 80 and transferred to the excited state is supplied through the third gas supply path 74 to the RF electrode 60, And the flow-adsorbed to the showerhead 70 can be removed.
이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 건식 세정 시 기판 표면에 잔류하는 플루오르(Fluorine)를 일정 온도로 가열된 수소 함유 가스를 사용하여 제거함으로써, 플루오르 제거 효율 및 생산성을 크게 향상시킬 수 있는 기판 처리 방법 및 장치가 제공되는 효과가 있다.As described above, according to the present invention, by removing fluorine remaining on the substrate surface during dry cleaning using a hydrogen-containing gas heated to a predetermined temperature, the fluorine removal efficiency and productivity can be greatly improved. There is an effect that a treatment method and an apparatus are provided.
또한, 하나의 챔버에서 헥사플루오로규산암모늄을 반복적으로 생성시키고 제거하는 인시튜(In-situ) 공정을 안정적으로 구현할 수 있고, 생산성과 하드웨어 안정성을 개선할 수 있는 기판 처리 방법 및 장치가 제공되는 효과가 있다.Further, there is provided a substrate processing method and apparatus capable of stably implementing an in-situ process for repeatedly generating and removing ammonium hexafluorosilicate in one chamber, and improving productivity and hardware stability It is effective.
[부호의 설명][Description of Symbols]
10: 챔버10: chamber
20: 척(chuck)20: chuck
30: 척 가열부30: chuck heating section
40: 실리콘 기판40: silicon substrate
50: RF 전원50: RF power
60: RF 전극60: RF electrode
62: 제1 가스 공급로62: a first gas supply path
70: 샤워 헤드70: Shower head
72: 제2 가스 공급로72: second gas supply path
74: 제3 가스 공급로74: third gas supply path
80: 가스 가열부80: gas heating section
S100: 반응 생성물 생성단계S100: reaction product production step
S300: 반응 생성물 제거단계S300: reaction product removal step
S400: 잔류물 제거단계S400: residue removal step

Claims (15)

  1. 실리콘 기판에 형성된 실리콘 산화물 또는 실리콘 질화물을 제거하는 기판 처리 방법으로서,A substrate processing method for removing silicon oxide or silicon nitride formed on a silicon substrate,
    챔버 내부에 배치된 상태로 가열된 실리콘 기판에 상기 실리콘 산화물 또는 상기 실리콘 질화물과 반응하는 반응가스를 공급하여 상기 실리콘 산화물 또는 상기 실리콘 질화물의 적어도 일부를 헥사플루오로규산암모늄((NH4)2SiF6)으로 변화시키는 반응 생성물 생성단계;A reaction gas which reacts with the silicon oxide or the silicon nitride is supplied to the heated silicon substrate in a state in which the silicon oxide or the silicon nitride is disposed in the chamber so that at least a part of the silicon oxide or the silicon nitride is reacted with ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 );
    상기 헥사플루오로규산암모늄이 생성된 실리콘 기판에 플라즈마 처리되지 않은 불활성 가스를 공급하여 상기 헥사플루오로규산암모늄을 제거하는 반응 생성물 제거단계; 및A reaction product removing step of removing the ammonium hexafluorosilicate by supplying a non-plasma-treated inert gas to the silicon substrate on which the ammonium hexafluorosilicate is formed; And
    상기 헥사플루오로규산암모늄이 제거된 실리콘 기판에 가열에 의해 여기 상태(excited state)로 전이된 수소 함유 가스를 분사하여 상기 실리콘 기판의 표면에 잔류하는 플루오르(F)를 포함하는 잔류물을 제거하는 잔류물 제거단계를 포함하는, 기판 처리 방법.The hydrogen-containing gas transferred into the excited state by heating is sprayed onto the silicon substrate from which the ammonium hexafluorosilicate has been removed to remove residues containing fluorine (F) remaining on the surface of the silicon substrate And removing the residue.
  2. 제1항에 있어서,The method according to claim 1,
    상기 수소 함유 가스는 적어도 H2 또는 NH3 또는 H20를 포함하는 것을 특징으로 하는, 기판 처리 방법.The hydrogen containing gas is a substrate processing method, it characterized in that it comprises at least H 2 or NH 3 or H 2 0.
  3. 제1항에 있어서,The method according to claim 1,
    상기 반응 생성물 생성단계는,In the reaction product producing step,
    상기 실리콘 기판을 상기 챔버 내부의 가열된 척(chuck)에 배치하는 단계;Disposing the silicon substrate in a heated chuck inside the chamber;
    적어도 NF3를 포함하는 제1 반응가스를 플라즈마 처리하여 상기 실리콘 기판으로 공급하는 단계; 및Plasma processing a first reaction gas containing at least NF 3 and supplying the first reaction gas to the silicon substrate; And
    적어도 H2 또는 NH3 또는 H20를 포함하는 제2 반응가스를 플라즈마 처리를 하지 않고 상기 실리콘 기판으로 공급하는 단계를 포함하는 것을 특징으로 하는, 기판 처리 방법.And supplying a second reaction gas containing at least H 2 or NH 3 or H 2 O to the silicon substrate without plasma processing.
  4. 제1항에 있어서,The method according to claim 1,
    상기 반응 생성물 생성단계 이후 상기 반응 생성물 제거단계 이전에,Before the reaction product removal step after the reaction product production step,
    상기 챔버 내부로 가열에 의해 여기 상태로 전이된 수소 함유 가스를 공급하여 상기 챔버 내부에 구비된 RF 전극과 샤워 헤드에 흡착된 플로오르를 제거하는 단계를 더 포함하는 것을 특징으로 하는, 기판 처리 방법.Further comprising the step of supplying hydrogen-containing gas that has been transferred into the excited state into the chamber by heating to remove the fluorine adsorbed on the showerhead and the RF electrode provided in the chamber, .
  5. 제1항 또는 제5항에 있어서,6. The method according to claim 1 or 5,
    상기 수소 함유 가스의 가열온도는 100-1000℃인 것을 특징으로 하는, 기판 처리 방법.Wherein the heating temperature of the hydrogen-containing gas is 100-1000 占 폚.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 수소 함유 가스의 가열온도는 200-900℃인 것을 특징으로 하는, 기판 처리 방법.Wherein the heating temperature of the hydrogen-containing gas is 200 to 900 占 폚.
  7. 제1항에 있어서,The method according to claim 1,
    상기 챔버 내부에 구비되며 상기 실리콘 기판이 배치되는 척의 가열온도는 80-100℃인 것을 특징으로 하는, 기판 처리 방법.Wherein the heating temperature of the chuck provided in the chamber and in which the silicon substrate is disposed is 80-100 ° C.
  8. 제1항에 있어서,The method according to claim 1,
    상기 챔버 내부에 구비되며 상기 수소 함유 가스가 분사되는 샤워 헤드의 가열온도는 100-200℃인 것을 특징으로 하는, 기판 처리 방법.Wherein the heating temperature of the showerhead provided in the chamber and through which the hydrogen-containing gas is injected is 100-200 占 폚.
  9. 제1항에 있어서,The method according to claim 1,
    상기 챔버 내부 벽면의 가열온도는 80-100℃인 것을 특징으로 하는, 기판 처리 방법.Wherein the heating temperature of the chamber inner wall surface is 80-100 占 폚.
  10. 실리콘 기판에 형성된 실리콘 산화물 또는 실리콘 질화물을 제거하는 기판 처리 장치로서,1. A substrate processing apparatus for removing silicon oxide or silicon nitride formed on a silicon substrate,
    챔버 내부에 구비되며 처리 대상인 실리콘 기판이 배치되는 척(chuck);A chuck provided in the chamber and on which a silicon substrate to be processed is disposed;
    상기 척을 가열하는 척 가열부;A chuck heating section for heating the chuck;
    플라즈마 발생을 위한 RF 전원이 인가되며 제1 가스 공급로가 구비된 RF 전극;An RF electrode to which a RF power source for plasma generation is applied and has a first gas supply path;
    상기 RF 전원의 접지단에 연결된 상태로 플라즈마 생성영역을 사이에 두고 상기 RF 전극과 이격되어 있으며, 제2 가스 공급로 및 상기 제2 가스 공급로와 물리적으로 구분된 제3 가스 공급로가 구비된 샤워 헤드; 및And a third gas supply path which is separated from the RF electrode and is physically separated from the second gas supply path and the second gas supply path while being connected to the ground terminal of the RF power supply, Shower head; And
    상기 샤워 헤드로 공급되는 가스를 가열하는 가스 가열부를 포함하고,And a gas heating unit for heating the gas supplied to the showerhead,
    상기 실리콘 기판은 상기 척 가열부에 의해 가열되는 척의 가열온도에 대응하여 가열되고,The silicon substrate is heated in response to a heating temperature of the chuck to be heated by the chuck heating unit,
    상기 제1 가스 공급로를 통과한 적어도 NF3를 포함하는 제1 반응가스가 상기 RF 전원에 의해 플라즈마 처리되어 상기 제2 가스 공급로를 거쳐 상기 실리콘 기판으로 공급되고, 적어도 H2 또는 NH3 또는 H20를 포함하는 제2 반응가스가 상기 제3 가스 공급로를 통해 플라즈마 처리되지 않은 상태로 상기 실리콘 기판으로 공급되어 상기 실리콘 산화물 또는 상기 실리콘 질화물의 적어도 일부가 헥사플루오로규산암모늄((NH4)2SiF6)로 변화되고,A first reaction gas containing at least NF 3 that has passed through the first gas supply path is plasma-treated by the RF power source and supplied to the silicon substrate through the second gas supply path, and at least H 2 or NH 3 or H 2 O is supplied to the silicon substrate without being plasma-treated through the third gas supply path so that at least a part of the silicon oxide or the silicon nitride is doped with ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 )
    상기 제1 가스 공급로를 통과한 플라즈마 처리되지 않은 불활성 가스가 상기 제2 가스 공급로를 거쳐 상기 실리콘 기판에 공급되어 상기 헥사플루오로규산암모늄이 제거되고,A non-plasma-treated inert gas that has passed through the first gas supply path is supplied to the silicon substrate through the second gas supply path to remove the ammonium hexafluorosilicate,
    상기 가스 가열부에 의해 가열되어 여기 상태(excited state)로 전이된 수소 함유 가스가 상기 제3 가스 공급로를 통해 상기 실리콘 기판에 분사되어 상기 실리콘 기판의 표면에 잔류하는 플루오르(F)를 포함하는 잔류물이 제거되는, 기판 처리 장치.And a hydrogen containing gas heated by the gas heating unit and transferred to an excited state is injected onto the silicon substrate through the third gas supply path to contain fluorine (F) remaining on the surface of the silicon substrate And the residue is removed.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 헥사플루오로규산암모늄이 제거되기 전에,Before the ammonium hexafluorosilicate is removed,
    상기 가스 가열부에 의해 가열되어 여기 상태로 전이된 수소 함유 가스가 상기 제3 가스 공급로를 통해 공급되어 상기 RF 전극과 상기 샤워 헤드에 흡착된 플로오르가 제거되는 것을 특징으로 하는, 기판 처리 장치.Wherein the hydrogen containing gas heated by the gas heating unit and transferred to the excited state is supplied through the third gas supply path to remove the fluorine adsorbed to the RF electrode and the showerhead, .
  12. 제10항 또는 제11항에 있어서,The method according to claim 10 or 11,
    상기 수소 함유 가스는 적어도 H2 또는 NH3 또는 H20를 포함하는 것을 특징으로 하는, 기판 처리 장치.The hydrogen containing gas is a substrate processing apparatus, it characterized in that it comprises at least H 2 or NH 3 or H 2 0.
  13. 제10항에 있어서,11. The method of claim 10,
    상기 수소 함유 가스의 가열온도는 100-1000℃인 것을 특징으로 하는, 기판 처리 장치.Wherein the heating temperature of the hydrogen-containing gas is 100-1000 占 폚.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 수소 함유 가스의 가열온도는 200-900℃인 것을 특징으로 하는, 기판 처리 장치.Wherein the heating temperature of the hydrogen-containing gas is 200 to 900 占 폚.
  15. 제10항에 있어서,11. The method of claim 10,
    상기 척의 가열온도는 80-100℃인 것을 특징으로 하는, 기판 처리 장치.Wherein the heating temperature of the chuck is 80-100 占 폚.
PCT/KR2018/011009 2017-09-19 2018-09-19 Substrate treatment method and apparatus WO2019059620A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020538511A JP2020534707A (en) 2017-09-19 2018-09-19 Substrate processing method and equipment
CN201880060924.7A CN111133555B (en) 2017-09-19 2018-09-19 Substrate processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0120461 2017-09-19
KR1020170120461A KR101981738B1 (en) 2017-09-19 2017-09-19 Substrate processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2019059620A1 true WO2019059620A1 (en) 2019-03-28

Family

ID=65811449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011009 WO2019059620A1 (en) 2017-09-19 2018-09-19 Substrate treatment method and apparatus

Country Status (4)

Country Link
JP (1) JP2020534707A (en)
KR (1) KR101981738B1 (en)
CN (1) CN111133555B (en)
WO (1) WO2019059620A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178593B1 (en) * 2019-05-17 2020-11-16 무진전자 주식회사 Dry cleaning method using plasma and steam
KR102179717B1 (en) * 2019-05-17 2020-11-17 무진전자 주식회사 Dry cleaning apparatus using plasma and steam
KR102281826B1 (en) * 2019-07-08 2021-07-23 세메스 주식회사 Apparatus and method for processing substrate
KR20230103419A (en) 2021-12-31 2023-07-07 세메스 주식회사 Method of treating substrate and apparatus for treating the substrate
KR102666967B1 (en) * 2022-01-05 2024-05-21 (주)금강쿼츠 Diffusion bonding apparatus and methods using remote plasma

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119417A (en) * 2002-09-24 2004-04-15 Tadahiro Omi Rotary silicon wafer cleaning equipment
KR20080037565A (en) * 2006-10-26 2008-04-30 어플라이드 머티어리얼스, 인코포레이티드 Integrated method for removal of halogen residues from etched substrates by thermal process
KR20150109288A (en) * 2014-03-19 2015-10-01 에이에스엠 아이피 홀딩 비.브이. Plasma pre-clean module and process
KR20160082476A (en) * 2014-12-30 2016-07-08 에이에스엠 아이피 홀딩 비.브이. Germanium oxide pre-clean module and process
KR20170058282A (en) * 2015-11-11 2017-05-26 노벨러스 시스템즈, 인코포레이티드 Ultrahigh selective polysilicon etch with high throughput

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784661B1 (en) 2006-12-26 2007-12-12 피에스케이 주식회사 The method of manufacturing semiconductor device
JP5374039B2 (en) * 2007-12-27 2013-12-25 東京エレクトロン株式会社 Substrate processing method, substrate processing apparatus, and storage medium
JP5703590B2 (en) * 2010-05-10 2015-04-22 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
US9023734B2 (en) * 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
JP2015142016A (en) * 2014-01-29 2015-08-03 東京エレクトロン株式会社 substrate processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119417A (en) * 2002-09-24 2004-04-15 Tadahiro Omi Rotary silicon wafer cleaning equipment
KR20080037565A (en) * 2006-10-26 2008-04-30 어플라이드 머티어리얼스, 인코포레이티드 Integrated method for removal of halogen residues from etched substrates by thermal process
KR20150109288A (en) * 2014-03-19 2015-10-01 에이에스엠 아이피 홀딩 비.브이. Plasma pre-clean module and process
KR20160082476A (en) * 2014-12-30 2016-07-08 에이에스엠 아이피 홀딩 비.브이. Germanium oxide pre-clean module and process
KR20170058282A (en) * 2015-11-11 2017-05-26 노벨러스 시스템즈, 인코포레이티드 Ultrahigh selective polysilicon etch with high throughput

Also Published As

Publication number Publication date
KR20190032030A (en) 2019-03-27
JP2020534707A (en) 2020-11-26
CN111133555B (en) 2023-08-01
CN111133555A (en) 2020-05-08
KR101981738B1 (en) 2019-05-27

Similar Documents

Publication Publication Date Title
WO2019059620A1 (en) Substrate treatment method and apparatus
WO2019059621A1 (en) In-situ dry cleaning method and apparatus
KR100442167B1 (en) Method of removing native oxide film
CN101490810B (en) Photoresist stripping chamber and methods of etching photoresist on substrates
US6767698B2 (en) High speed stripping for damaged photoresist
US20050214455A1 (en) Post-cleaning chamber seasoning method
WO2017171346A1 (en) Method for selectively etching silicon oxide film
WO2019107729A1 (en) Dry cleaning apparatus and method for selectively removing polysilicon
WO2020235822A1 (en) Dry cleaning apparatus using plasma and steam
WO2020040463A1 (en) Dry cleaning method for high-selective removal of silicon oxide
WO2019107728A1 (en) Dry cleaning apparatus and method for removing silicon oxide with high selectivity
WO2019124736A1 (en) Plasma apparatus for dry cleaning semiconductor substrate
WO2020235823A1 (en) Dry cleaning method using plasma and steam
WO2019156489A1 (en) Chamber cleaning device and chamber cleaning method
WO2020040464A1 (en) Dry cleaning device and method using atmospheric pressure plasma and steam
WO2019194540A1 (en) Plasma dry cleaning device using complex rf frequencies
TWI237319B (en) Process of dual damascene or damascene
WO2013055023A1 (en) Systems and methods for processing substrates
WO2024063439A1 (en) Substrate processing method
JP3020065B2 (en) Semiconductor manufacturing apparatus cleaning method and semiconductor manufacturing apparatus
Gottscho et al. Use of plasma processing in making integrated circuits and flat-panel displays
KR101311277B1 (en) Substrate processing system
WO2021054670A1 (en) Method and system for removing l-fc in plasma etching process
KR20100119208A (en) Method for treating substrates
WO2012033299A2 (en) Production method for a semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857904

Country of ref document: EP

Kind code of ref document: A1