WO2019059055A1 - Crystal oscillator - Google Patents

Crystal oscillator Download PDF

Info

Publication number
WO2019059055A1
WO2019059055A1 PCT/JP2018/033724 JP2018033724W WO2019059055A1 WO 2019059055 A1 WO2019059055 A1 WO 2019059055A1 JP 2018033724 W JP2018033724 W JP 2018033724W WO 2019059055 A1 WO2019059055 A1 WO 2019059055A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
crystal
face
major surface
end surface
Prior art date
Application number
PCT/JP2018/033724
Other languages
French (fr)
Japanese (ja)
Inventor
竜一 河合
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019059055A1 publication Critical patent/WO2019059055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Definitions

  • the present invention relates to a quartz oscillator.
  • a quartz crystal unit (quartz crystal unit) includes a quartz piece, a substrate, and a conductive adhesive member.
  • the crystal piece is flat and has a pair of main surfaces. Each of the pair of main surfaces is rectangular.
  • the quartz crystal piece is fixed to the substrate by a conductive adhesive member at one end in the longitudinal direction. That is, the crystal piece is cantilevered by the conductive adhesive member.
  • Such a crystal unit is disclosed in Patent Document 1.
  • an object of the present invention is to provide a quartz oscillator capable of reducing crystal impedance.
  • the crystal unit according to one aspect of the present invention is A quartz-cut quartz piece provided with rectangular first and second major surfaces having long sides along the X-axis and short sides along the Z'-axis; An external electrode provided on the surface of the crystal piece; A substrate, And a conductive adhesive member for fixing the crystal piece to the substrate by contacting the substrate and the external electrode.
  • An end face on the negative side of the X axis of the crystal piece is closer to the first main surface than the second main surface, and an angle formed with the first main surface is ⁇ 1 (90 ° ⁇ ⁇ 1 ⁇ 180 °).
  • a second main surface side end surface which is closer to the second main surface than the first main surface side and whose angle formed with the second main surface is ⁇ 1.
  • the end face on the + side of the X axis of the crystal piece is closer to the first main surface than the second main surface, and the angle formed with the first main surface is ⁇ 2 larger than ⁇ 1 (90 ° ⁇ 2 ⁇ 180 °) And a second main surface side other end surface which is closer to the second main surface than the first main surface and has an angle of ⁇ 2 with the second main surface,
  • the conductive adhesive member is provided across the first main surface side end surface and the first main surface.
  • a quartz oscillator is A quartz-cut quartz piece provided with rectangular first and second major surfaces having long sides extending along the Z 'axis and short sides extending along the X axis; An external electrode provided on the surface of the crystal piece; A substrate, And a conductive adhesive member for fixing the crystal piece to the substrate by contacting the substrate and the external electrode.
  • the end face on one side of the Z ′ axis of the crystal piece is closer to the first main surface than the second main surface, and the angle formed with the first main surface is ⁇ 3 (90 ° ⁇ ⁇ 3 ⁇ 180 °).
  • the conductive adhesive member is provided across the low angle end surface and the first main surface.
  • the crystal oscillator of the present invention can reduce its crystal impedance.
  • FIG. 1 is an external perspective view of a quartz oscillator 10.
  • FIG. 2 is an exploded perspective view of the crystal unit 10.
  • FIG. 3A is a sectional structural view taken along line AA of FIG.
  • FIG. 3B is an enlarged sectional view showing the vicinity of the crystal piece 17 of FIG. 3A.
  • FIG. 4 is a cross-sectional view for explaining the method of producing the crystal piece 17.
  • FIG. 5 is a cross-sectional view of the crystal vibrating element 16 and the conductive adhesive member 210 provided in the quartz oscillator 10, and the cross-sectional structure of the quartz vibrating element 16 and the conductive adhesive member 210 provided in the quartz oscillator 510.
  • FIG. FIG. 6 is a cross-sectional view of the quartz crystal vibrating element 16A and the conductive adhesive member 210.
  • FIG. 7 is a cross-sectional view of the quartz crystal vibrating element 16A and the conductive adhesive member 210 provided in the quartz oscillator 10A, and the cross-sectional structure of the quartz vibrating element 16A and the conductive adhesive member 210 provided in the quartz oscillator 520.
  • FIG. FIG. 8 is a cross-sectional view of the crystal vibrating element 16B and the conductive adhesive member 210.
  • FIG. 9A is a sectional structural view for illustrating a method of manufacturing the crystal piece 37.
  • FIG. 9B is a cross-sectional view for explaining the method for manufacturing the crystal piece 37.
  • FIG. 9C is a cross-sectional view for explaining the method for manufacturing the crystal piece 37.
  • FIG. 10 is a cross-sectional view of the crystal vibrating element 16B and the conductive adhesive member 210 provided in the quartz oscillator 10B, and the cross-sectional structure of the quartz vibrating element 16B and the conductive adhesive member 210 provided in the quartz oscillator 530.
  • FIG. 10 is a cross-sectional view of the crystal vibrating element 16B and the conductive adhesive member 210 provided in the quartz oscillator 10B, and the cross-sectional structure of the quartz vibrating element 16B and the conductive adhesive member 210 provided in the quartz oscillator 530.
  • FIG. 1 is an external perspective view of a quartz oscillator 10.
  • FIG. 2 is an exploded perspective view of the crystal unit 10.
  • FIG. 3A is a sectional structural view taken along line AA of FIG.
  • FIG. 3B is an enlarged sectional view showing the vicinity of the crystal piece 17 of FIG. 3A.
  • the normal direction to the main surface of the quartz oscillator 10 is defined as the vertical direction, and the direction in which the long side of the quartz oscillator 10 extends when viewed from the upper side is defined as the anteroposterior direction
  • the direction in which the short sides of 10 extend is defined as the left-right direction.
  • the crystal unit 10 includes a holder (Enclosure) 11 and a quartz crystal resonator (Quartz Crystal Resonator) 16 as shown in FIGS. 1 to 3A.
  • the holder 11 includes a substrate 12, a cap 14, and a brazing material 30, and is a rectangular parallelepiped sealed container.
  • the holder 11 has a space Sp (internal space) internally isolated from the outside.
  • the holder 11 has a gas tight structure and a liquid tight structure. That is, the space Sp is hermetically sealed in a liquid tight manner. Therefore, it is possible to prevent the permeation of a gas such as water vapor and a liquid such as water between the outside of the holder 11 and the space Sp.
  • the substrate 12 includes a substrate body 21, external electrodes 22, 26, 40, 42, 44 and 46 and via conductors 32 and 34.
  • the substrate body 21 is plate-like and rectangular when viewed from the upper side. Therefore, the substrate body 21 has rectangular upper and lower surfaces.
  • a rectangle is a meaning also including a square.
  • the rectangular shape is meant to include, in addition to the rectangle, a shape slightly deformed from the rectangle.
  • the substrate body 21 is, for example, a ceramic insulating material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a glass ceramic sintered body, quartz, glass , Silicon and the like.
  • the substrate body 21 is made of an aluminum oxide sintered body.
  • the external electrode 22 is a rectangular conductor layer provided in the vicinity of the rear left corner of the top surface of the substrate body 21.
  • the external electrode 26 is a rectangular conductive layer provided in the vicinity of the rear right corner of the top surface of the substrate body 21.
  • the external electrode 22 and the external electrode 26 are aligned in the left-right direction.
  • the external electrode 40 is a square-shaped conductor layer provided in the vicinity of the rear right corner of the lower surface of the substrate body 21.
  • the external electrode 42 is a square-shaped conductor layer provided in the vicinity of the rear left corner of the lower surface of the substrate body 21.
  • the external electrode 44 is a square-shaped conductor layer provided in the vicinity of the front right corner of the lower surface of the substrate body 21.
  • the external electrode 46 is a square-shaped conductor layer provided in the vicinity of the left front corner of the lower surface of the substrate body 21.
  • Each of the external electrodes 22, 26, 40, 42, 44, and 46 has a three-layer structure, and specifically, a molybdenum layer, a nickel layer, and a gold layer are stacked from the lower layer side to the upper layer side. Is configured by.
  • the via conductors 32 and 34 penetrate the substrate body 21 in the thickness direction (vertical direction).
  • the via conductor 32 connects the external electrode 22 and the external electrode 42.
  • the via conductor 34 connects the external electrode 26 and the external electrode 40.
  • the via conductors 32 and 34 are made of a conductor such as molybdenum.
  • the cap 14 is a rectangular parallelepiped metal casing opened at the lower side.
  • the cap 14 includes a main surface portion 14a, an annular portion 14b, and a flange 14c.
  • the main surface portion 14a, the annular portion 14b and the flange 14c are configured as an integral member. Specifically, as described later, the annular portion 14 b and the flange 14 c are formed by bending one metal plate by drawing.
  • the main surface portion 14a is flat.
  • flat form is a meaning including the shape by which the main surface was slightly curved besides a flat plate, for example, a thing slightly deformed from a flat plate.
  • the annular portion 14 b has four plate-like portions extending in a direction substantially normal to the main surface portion 14 a. When viewed from the up and down direction, the annular portion 14b has an annular structure surrounding the lower surface 15A of the main surface portion 14a.
  • a recess 15 is formed in the cap 14 by the main surface portion 14 a and the annular portion 14 b.
  • the lower surface 15A of the main surface portion 14a is the bottom surface of the recess 15.
  • the cap 14 has a rectangular opening.
  • the flange 14c protrudes from the opening edge (outer edge) of the annular portion 14b in a direction along the lower surface 15A of the main surface 14a, that is, in a direction substantially parallel to the main surface 14a and outward of the recess 15.
  • the cap 14 includes a base material and a plating layer provided on the surface of the base material.
  • the base material is made of, for example, an iron-nickel alloy (for example, one having a nickel content of 42% by mass) or an iron-nickel-cobalt alloy (Kovar).
  • the plating layer has a two-layer structure of a nickel layer as a base and a gold layer provided on the nickel layer.
  • the cap 14 is manufactured by applying nickel plating and gold plating to the surface of a base material of an iron-nickel alloy.
  • the brazing material 30 has a rectangular annular shape and surrounds the quartz crystal vibrating element 16 and the external electrodes 22 and 26 when viewed from the upper side.
  • the brazing material 30 is, for example, a gold-tin alloy or a tin-lead alloy.
  • the brazing material 30 plays a role of joining the substrate 12 and the cap 14. In bonding, the brazing material 30 is melted and solidified in a state where the opening edge of the cap 14 is superimposed on the edge of the substrate 12 via the brazing material 30. As a result, an alloyed layer is formed between the brazing material 30 and the opening edge of the cap 14, and the brazing material 30 adheres to the edge of the substrate 12.
  • the cap 14 is bonded to the top surface 12A of the substrate 12 all around the opening edge.
  • the recess 15 is sealed by the upper surface 12A of the substrate 12.
  • a space Sp is formed by the upper surface 12A of the substrate body 21 and the cap 14.
  • an adhesive member made of another material may be used instead of the brazing material 30.
  • an adhesive mainly composed of an organic substance may be used instead of the brazing material 30.
  • the crystal vibrating element 16 is housed in the holder 11 so as to be excitable.
  • the quartz crystal vibrating element 16 includes a quartz piece 17, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103.
  • the crystal piece 17 is a plate having an upper surface and a lower surface, and is rectangular when viewed from the upper side.
  • the crystal piece 17 is a crystal having a predetermined crystallographic orientation (crystallographic axis), and specifically, is an AT-cut type crystal piece.
  • the quartz crystal piece 17 is obtained, for example, by cutting it out of synthetic quartz crystal at a predetermined angle.
  • the dimension of the crystal piece 17 is, for example, a dimension within which the length in the front-rear direction is 2.0 mm and the width in the left-right direction is 1.6 mm.
  • the length of the crystal piece 17 in the front-rear direction is 1.500 mm or less, and the width of the crystal piece 17 in the left-right direction is 1.2.
  • the crystal piece 17 is designed to be equal to or less than 00 mm.
  • the length direction (front-rear direction) of the crystal piece 17 is along the X-axis direction
  • the width direction (left-right direction) of the crystal piece 17 is along the Z'-axis direction
  • the thickness direction (vertical direction) of the crystal piece 17 is the Y'-axis Along the direction.
  • the back side of the crystal piece 17 is the ⁇ side in the X axis direction
  • the front side of the crystal piece 17 is the + side in the X axis direction.
  • the main vibration mode of the crystal piece 17 is thickness shear vibration.
  • the crystal piece 17 has a first major surface 17A, which is the lower surface, and a second major surface 17B, which is the upper surface.
  • Each of the first major surface 17A and the second major surface 17B has a rectangular shape having a long side along the X-axis and a short side along the Z'-axis.
  • the end face on the back side (the ⁇ side in the X-axis direction) of crystal piece 17 includes a first major surface side end surface 17C and a second major surface side end surface 17D.
  • the first major surface side end surface 17C is adjacent to the first major surface 17A.
  • An angle formed by the first major surface side end surface 17C with the first major surface 17A is ⁇ 1 (90 ° ⁇ ⁇ 1 ⁇ 180 °).
  • the second major surface side end surface 17D is adjacent to the second major surface 17B.
  • An angle formed by the second major surface side end surface 17D with the second major surface 17B is ⁇ 1.
  • the front end (+ side in the X-axis direction) end face of the crystal piece 17 includes a first main surface side other end surface 17E and a second main surface side other end surface 17F.
  • the first major surface side other end surface 17E is adjacent to the first major surface 17A.
  • the angle formed by the first main surface side other end surface 17E with the first main surface 17A is ⁇ 2 (90 ° ⁇ 2 ⁇ 180 °) larger than ⁇ 1.
  • the second major surface side other end surface 17F is adjacent to the second major surface 17B.
  • the angle between the second major surface 17F and the second major surface 17B is ⁇ 2.
  • first major surface side end surface 17C and the first major surface 17A another surface which is not parallel to any of the first major surface side one end surface 17C and the first major surface 17A may be interposed. . In this case, the first major surface side end surface 17C is closer to the first major surface 17A than the second major surface 17B. Between the second main surface side end surface 17D and the second main surface 17B, another surface which is not parallel to either the second main surface side one end surface 17D or the second main surface 17B may be interposed. . In this case, it is assumed that the second major surface side end surface 17D is closer to the second major surface 17B than the first major surface 17A.
  • first main surface side other end surface 17E and the first main surface 17A another surface which is not parallel to any of the first main surface side other end surface 17E and the first main surface 17A may be interposed.
  • first major surface side other end surface 17E is closer to the first major surface 17A than the second major surface 17B.
  • second main surface side other end surface 17F and the second main surface 17B another surface which is not parallel to any of the second main surface side other end surface 17F and the second main surface 17B may be interposed.
  • the second main surface side other end surface 17F is closer to the second main surface 17B than the first main surface 17A.
  • the external electrode 97 is a conductor layer provided at the rear left corner of the quartz piece 17 and in the vicinity thereof.
  • the external electrode 97 is formed across the first major surface 17A, the first major surface side end surface 17C, the second major surface side end surface 17D, the second major surface 17B, and the left surface.
  • the outer electrode 98 is a conductor layer provided at the rear right corner of the quartz piece 17 and in the vicinity thereof.
  • the external electrode 98 is formed across the first major surface 17A, the first major surface side end surface 17C, the second major surface side end surface 17D, the second major surface 17B, and the right surface.
  • the external electrodes 97 and 98 are aligned in the left-right direction, that is, along the short side of the quartz piece 17.
  • the excitation electrode 100 is provided at the center of the second major surface 17B of the crystal piece 17, and has a rectangular shape when viewed from the upper side.
  • the excitation electrode 101 is provided at the center of the first major surface 17A of the quartz piece 17, and has a rectangular shape when viewed from the upper side.
  • the excitation electrode 100 and the excitation electrode 101 overlap such that their outer edges coincide when viewed from the upper side.
  • the lead conductor 102 is provided on the second main surface 17B of the crystal piece 17, and connects the external electrode 97 and the excitation electrode 100.
  • the lead conductor 103 is provided on the first main surface 17A of the crystal piece 17, and connects the external electrode 98 and the excitation electrode 101.
  • Each of the external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 has a two-layer structure, and includes a chromium layer and a gold layer.
  • the chromium layer is provided on the surface of the quartz piece 17.
  • the gold layer is a surface metal layer provided on the chromium layer. The gold layer has low adhesion to the quartz piece 17.
  • the chromium layer is provided between the gold layer and the crystal piece 17 to function as an adhesion layer to the surface of the crystal piece 17 of the external electrodes 97, 98, the excitation electrodes 100, 101 and the lead conductors 102, 103. doing.
  • another metal layer such as a titanium layer may be used as the adhesion layer.
  • the crystal vibrating element 16 is mounted on the upper surface 12 A of the substrate 12 by the conductive adhesive members 210 and 212.
  • the conductive adhesive members 210 and 212 fix the crystal piece 17 to the substrate 12 by contacting the substrate 12 and the external electrodes 97 and 98 of the crystal vibrating element 16.
  • the quartz crystal vibrating element 16 (quartz piece 17) is cantilevered by the conductive adhesive members 210 and 212 at its rear end.
  • the external electrode 22 and the external electrode 97 are electrically connected by the conductive adhesive member 210.
  • the external electrode 26 and the external electrode 98 are electrically connected by the conductive adhesive member 212.
  • the material of the conductive adhesive members 210 and 212 is, for example, an epoxy resin base material containing a conductive material filler such as a silver filler.
  • the conductive adhesive members 210 and 212 are provided across the first major surface side end surface 17C and the first major surface 17A.
  • the conductive adhesive members 210 and 212 being provided across the first major surface side end surface 17C and the first major surface 17A include the following aspects (i) and (ii).
  • the formation regions of the conductive adhesive members 210 and 212 do not protrude from the formation regions of the external electrodes 97 and 98. That is, as shown in FIGS. 3A and 3B, the external electrodes 97 and 98 intervene over the entire area between the crystal piece 17 and the conductive adhesive members 210 and 212. There is no portion where the crystal piece 17 and the conductive adhesive members 210 and 212 are in direct contact with each other. The conductive adhesive members 210 and 212 are opposed to the first major surface side end surface 17C and the first major surface 17A. (ii) The formation regions of the conductive adhesive members 210 and 212 protrude from the formation regions of the external electrodes 97 and 98.
  • the conductive adhesive members 210 and 212 directly contact the crystal piece 17.
  • the portions of the conductive adhesive members 210 and 212 not in direct contact with the crystal piece 17 are opposed to the first major surface side end face 17C or the first major surface 17A via the external electrodes 97 and 98.
  • the conductive adhesive members 210 and 212 are provided in a region including the whole or a part of the formation region of the external electrodes 97 and 98.
  • the cap 14 is manufactured. Prepare a flat metal plate. This metal plate is drawn and formed by press work to be processed into a shape having the main surface portion 14a, the annular portion 14b and the flange 14c. Since this processing is a general process, the description is omitted.
  • the substrate 12 is manufactured.
  • a mother substrate in which a plurality of substrate bodies 21 are arranged in a matrix is prepared.
  • the mother substrate is made of the same material as the substrate body 21.
  • ceramic-based insulation such as aluminum oxide sintered body, mullite sintered body, aluminum nitride sintered body, silicon carbide sintered body, glass ceramics sintered body, etc. Material, quartz crystal, glass, silicon and the like.
  • a beam is irradiated to a position where the via conductors 32 and 34 are disposed, to form a circular through hole (via hole). Then, the via conductors 32 and 34 are embedded in the through holes.
  • base electrodes of the external electrodes 40, 42, 44, and 46 are formed on the lower surface of the mother substrate. Specifically, a molybdenum layer is printed on the lower surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. Thereby, base electrodes of the external electrodes 40, 42, 44 and 46 are formed.
  • base electrodes of the external electrodes 22 and 26 are formed on the upper surface of the mother substrate. Specifically, a molybdenum layer is printed on the upper surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. Thereby, base electrodes of the external electrodes 22 and 26 are formed.
  • nickel plating and gold plating are applied to the base electrodes of the external electrodes 40, 42, 44, 46, 22, 26 in this order. Thereby, the external electrodes 40, 42, 44, 46, 22, 26 are formed.
  • the mother substrate is divided into a plurality of substrate bodies 21 by a dicing blade.
  • the mother substrate may be divided into a plurality of substrate bodies 21 after the division grooves are formed on the mother substrate by irradiation with a laser beam. Thereby, the substrate 12 is completed.
  • FIG. 4 is a cross-sectional view for explaining the method of producing the crystal piece 17.
  • a crystal plate 19 corresponding to a plurality of crystal pieces 17 arranged in a matrix in the X axis direction and the Z 'axis direction is prepared.
  • FIG. 4 shows a cross section of the crystal plate 19 in a direction orthogonal to the Z ′ axis.
  • the quartz plate 19 has substantially the same thickness as the quartz piece 17.
  • the mask M1 is provided on one surface of the quartz plate 19 (the surface corresponding to the first major surface 17A of the quartz piece 17), and the other surface of the quartz plate 19 (the surface corresponding to the second major surface 17B of the quartz piece 17). ), A mask M2 is provided.
  • the mask M1 is provided with a grid-like opening Mo1 extending in the X-axis direction and the Z'-axis direction.
  • the mask M2 is provided with lattice-like openings Mo2 extending in the X-axis direction and the Z'-axis direction.
  • the masks M1 and M2 are provided such that the contours of the openings Mo1 and Mo2 coincide and overlap when viewed from the direction along the Y 'axis.
  • the quartz plate 19 is wet-etched through the openings Mo1 and Mo2 of the masks M1 and M2.
  • a mixed aqueous solution of HF (hydrogen fluoride) and NH 4 F (ammonium fluoride) can be used.
  • HF hydrogen fluoride
  • NH 4 F ammonium fluoride
  • an etching surface corresponding to the crystal plane of the quartz crystal appears in the portion of the quartz plate 19 in contact with the etching solution. Due to the anisotropy of the etching rate of quartz, an etching surface having different angles with the first and second major surfaces 17A and 17B appears on the ⁇ side and the + side in the X-axis direction.
  • the angle formed with the first major surface 17A adjacent to the first major surface 17A is ⁇ 1 (90 ° ⁇ ⁇ 1 ⁇ 180 °) as an etching surface.
  • a first main surface side end surface 17C and a second main surface side end surface 17D adjacent to the second main surface 17B and forming an angle of ⁇ 1 with the second main surface 17B appear.
  • the etching surface is adjacent to the first major surface 17A and the angle formed with the first major surface 17A is ⁇ 2 larger than ⁇ 1 (90 ° ⁇ 2 ⁇ 180 °)
  • a first main surface side other end surface 17E and a second main surface side other end surface 17F adjacent to the second main surface 17B and forming an angle of ⁇ 2 with the second main surface 17B appear.
  • the obtained crystal piece 17 is further beveled using a barrel processing device, if necessary. As a result, the vicinity of the ridgeline of the crystal piece 17 is scraped off to obtain a bevel-shaped crystal piece 17.
  • external electrodes 97 and 98, lead conductors 102 and 103, and excitation electrodes 100 and 101 are formed on the surface of the crystal piece 17.
  • the formation of the external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 is a general process, and thus the description thereof is omitted. Thereby, the crystal vibrating element 16 is completed.
  • the crystal vibrating element 16 is mounted on the upper surface 12A of the substrate 12. Specifically, as shown in FIGS. 2 and 3A, the outer electrode 22 and the outer electrode 97 are bonded by the conductive adhesive member 210, and the outer electrode 26 and the outer electrode 98 are bonded by the conductive adhesive member 212. Do.
  • the holder 11 is sealed.
  • the brazing material 30 is sandwiched between the lower surfaces of the annular portion 14 b and the flange 14 c and the edge of the upper surface 12 A of the substrate 12.
  • the brazing material 30 is melted by heating the brazing material 30 together with the cap 14 and the substrate 12.
  • the brazing material 30 is solidified by cooling the brazing material 30 together with the cap 14 and the substrate 12.
  • the holder 11 is sealed.
  • FIG. 5 is an enlarged sectional view showing the vicinity of a bonding portion between the quartz crystal vibrating element 16 and the conductive adhesive member 210.
  • FIG. 5 (a) is a cross-sectional view of the crystal unit 10 shown in FIGS. 1 to 3B.
  • FIG. 5B is a cross-sectional view of the crystal unit 510 in which the crystal vibrating element 16 is bonded to the conductive adhesive member 210 at the + side end of the X axis.
  • the quartz oscillator 510 is a comparative example.
  • the external electrode 97 is provided across the first major surface 17A, the other major surface 17E, the other major surface 17F, and the second major surface 17B.
  • the crystal piece 17 is supported at one end at the negative side in the X-axis direction.
  • the conductive adhesive member 210 is provided across the first major surface side end surface 17C and the first major surface 17A. In this cross section, the conductive adhesive member 210 is provided in the entire area of the first major surface side end surface 17C and in the region adjacent to the first major surface side end surface 17C in the first major surface 17A.
  • the crystal piece 17 is cantilevered at the + side end in the X-axis direction.
  • the conductive adhesive member 210 is provided across the first main surface side other end surface 17E and the first main surface 17A. In this cross section, the conductive adhesive member 210 is provided in the entire area of the first main surface side other end surface 17E and in a region adjacent to the first main surface side other end surface 17E in the first main surface 17A.
  • the length (length along the surface of the crystal piece 17) of the region where the crystal piece 17 is held by the conductive adhesive member 210 (hereinafter referred to as a holding region) is shown in FIG. Is the same as the crystal unit 10 of FIG. 5 and the crystal unit 510 of FIG. Thereby, the quartz crystal piece 17 is held by the quartz oscillator 10 and the quartz oscillator 510 with the same force.
  • the length Lh1 of the holding area in the crystal unit 10 is shorter than the length of the holding area Lh2 in the crystal unit 510.
  • the conductive adhesive members 210 and 212 are provided across the first major surface other end surface 17E and the first major surface 17A, the first major surface end surface 17C and the first major surface side
  • the conductive adhesive members 210 and 212 can be disposed in a region far from the vibration center of the crystal piece 17 when provided across the main surface 17A.
  • the vibration center is an intersection point of diagonal lines in each of the excitation electrodes 100 and 101.
  • the shape of the crystal piece 17 is symmetrical with respect to the vertical direction. Specifically, it is symmetrical with respect to a plane S (see FIG. 3B) passing through the center in the thickness direction of the crystal piece 17. Therefore, the crystal unit in which the conductive adhesive member 210 is provided across the second main surface side end surface 17D and the second main surface 17B can exhibit the same effect as the crystal unit 10.
  • the second main surface 17B, the second main surface side end surface 17D, and the second main surface side other end surface 17F are respectively the first main surface 17A, the first main surface side end surface 17C, and the first main surface. It can be regarded as the other side end face 17E.
  • FIG. 6 is a cross-sectional structural view of a quartz crystal vibrating element 16A and a conductive adhesive member 210 provided in a quartz vibrator 10A according to a second embodiment of the present invention.
  • parts and parts common to parts and parts shown in FIGS. 1 to 5 are denoted by the same reference numerals, and redundant description will be omitted.
  • the difference between the crystal unit 10A and the crystal unit 10 according to the first embodiment is that the crystal unit 10A includes a crystal vibrating element 16A instead of the quartz crystal vibrating element 16. Except for this, the crystal unit 10A has the same configuration as the crystal unit 10.
  • the crystal vibrating element 16A includes a crystal piece 27, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103 (excitation electrodes 100 and 101 and lead conductors 102 and 103 (see FIGS. 2 and 3A) , Not shown in FIG.
  • the crystal piece 27 is a plate having an upper surface and a lower surface, and is rectangular when viewed from the upper side.
  • the length direction (longitudinal direction) of the crystal piece 27 is along the Z 'axis direction
  • the width direction (left and right direction) of the crystal piece 27 is along the X axis direction
  • the thickness direction (vertical direction) of the crystal piece 27 is Y' axis Along the direction.
  • the main vibration mode of the crystal piece 27 is thickness shear vibration.
  • the crystal piece 27 has a first main surface 27A, which is a lower surface, and a second main surface 27B, which is an upper surface.
  • Each of the first major surface 27A and the second major surface 27B has a rectangular shape having a long side along the Z 'axis and a short side along the X axis.
  • the end face on the rear side (one side in the Z′-axis direction) of the crystal piece 27 includes a low angle end face (an example of a low angle end face) 27C and a high angle end face (an example of a high angle end face) 27D.
  • the low angle end face 27C is adjacent to the first major surface 27A.
  • An angle formed by the low angle one end surface 27C with the first major surface 27A is ⁇ 3 (90 ° ⁇ ⁇ 3 ⁇ 180 °). ⁇ 3 is approximately 90 °.
  • the high angle end face 27D is adjacent to the second major surface 27B and the low angle end face 27C.
  • the angle formed by the high angle one end surface 27D with the second main surface 27B is ⁇ 4 (90 ° ⁇ 4 ⁇ 180 °) larger than ⁇ 3.
  • the end surface of the front side (the other side in the Z′-axis direction) of the crystal piece 27 includes a low angle other end surface 27E and a high angle other end surface 27F.
  • the low angle other end surface 27E is adjacent to the second major surface 27B.
  • the angle which the low angle other end surface 27E forms with the second major surface 27B is ⁇ 3 (approximately 90 °).
  • the high angle other end surface 27F is adjacent to the first major surface 27A and the low angle other end surface 27E.
  • the angle formed by the high angle other end surface 27F with the first major surface 27A is approximately ⁇ 4.
  • the shape of the crystal piece 27 is substantially twice rotational symmetric with respect to the X axis.
  • Another surface which is not parallel to any of the low angle end surface 27C and the first main surface 27A may be interposed between the low angle end surface 27C and the first main surface 27A.
  • the low angle one end surface 27C is closer to the first major surface 27A than the second major surface 27B.
  • another surface which is not parallel to any of the high angle end surface 27D and the second main surface 27B may be interposed.
  • the high angle one end surface 27D is closer to the second major surface 27B than the first major surface 27A.
  • Another surface which is not parallel to any of the low angle other end surface 27E and the second main surface 27B may be interposed between the low angle other end surface 27E and the second main surface 27B.
  • the low angle other end surface 27E is closer to the second major surface 27B than the first major surface 27A.
  • another surface which is not parallel to any of the high angle other end surface 27F and the first main surface 27A may be interposed.
  • the high angle other end surface 27F is closer to the first major surface 27A than the second major surface 27B.
  • the external electrodes 97 and 98 are provided across the low angle end surface 27C and the first main surface 27A, and are not provided on the high angle end surface 27D and the second main surface 27B.
  • the external electrode 97 may or may not be provided on the left surface of the crystal piece 27.
  • the external electrode 98 may or may not be provided on the right surface of the crystal piece 27.
  • the conductive adhesive members 210 and 212 are provided across the low angle end surface 27C and the first major surface 27A.
  • the conductive adhesive members 210 and 212 are provided across the low angle end surface 27C and the first main surface 27A in the first embodiment, in the first embodiment, the conductive adhesive members 210 and 212 are on the first main surface side end surface. It means the same thing as being provided straddling 17C and the first major surface 17A.
  • the crystal unit 10A can be manufactured by the same method as the crystal unit 10.
  • the crystal piece 27 can be manufactured by the same method as the crystal piece 17. At that time, the mesa processing described later may be performed.
  • FIG. 7 is an enlarged cross-sectional view showing the vicinity of a bonding portion between the quartz crystal vibrating element 16A and the conductive adhesive member 210.
  • FIG. 7 (a) shows the same cross section as FIG.
  • FIG. 7B is a cross-sectional view of the crystal unit 520 in which the crystal vibrating element 16A is bonded to the conductive adhesive member 210 in the direction opposite to that of the crystal unit 10A in the Y′-axis direction.
  • the quartz oscillator 520 is a comparative example.
  • the external electrode 97 is provided across the high angle one end surface 27D and the second major surface 27B.
  • the conductive adhesive member 210 is provided across the low angle one end surface 27C and the first major surface 27A. In this cross section, the conductive adhesive member 210 is provided in the entire area of the low angle end face 27C and in a region adjacent to the low angle end face 27C on the first major surface 27A. In the crystal unit 520 of FIG. 7B, the conductive adhesive member 210 is provided across the high angle one end surface 27D and the second main surface 27B. In this cross section, the conductive adhesive member 210 is provided in the entire area of the high angle end face 27D and in a region adjacent to the high angle end face 27D on the second major surface 27B.
  • the length of the holding area of the quartz piece 27 by the conductive adhesive member 210 is the quartz oscillator 10A of FIG. 7A and FIG. Is the same as the quartz oscillator 520 of FIG.
  • the quartz crystal piece 27 is held by the quartz oscillator 10A and the quartz oscillator 520 with the same force.
  • the length Lh3 of the holding area in the crystal unit 10A is shorter than the length Lh4 of the holding area in the crystal unit 520. This is because by ⁇ 3 ⁇ 4, the length in the Z ′ axis direction becomes shorter as the end face formed with the first main surface 27A or the second main surface 27B (90 ° or more and less than 180 °) decreases. .
  • the conductive adhesive members 210 and 212 are provided across the high angle end face 27D and the second main surface 27B, the conductive adhesion members 210 and 212 extend over the low angle end face 27C and the first main surface 27A. If provided, the conductive adhesive members 210 and 212 can be arranged in a region far from the vibration center with respect to the length direction (Z ′ axis direction) of the quartz crystal piece 27. Thereby, in the crystal unit 10A, the vibration of the crystal piece 27 is less likely to be inhibited, so that the crystal impedance can be reduced.
  • the crystal oscillator in which the conductive adhesive member 210 is provided across the low angle other end surface 27E and the second main surface 27B The same effect as that of the child 10A can be achieved.
  • the second major surface 27B, the low angle other end surface 27E, and the high angle other end surface 27F can be regarded as the first major surface 27A, the low angle one end surface 27C, and the high angle one end surface 27D, respectively.
  • the quartz crystal vibrating element 16A When mounting the crystal vibrating element 16A on a substrate, it is necessary to specify the surface of the crystal piece 27 to be opposed to the substrate 12 and the portion to be attached to the conductive adhesive members 210 and 212. It is difficult to distinguish between the low angle end face 27C and the high angle end face 27D from the shape of the crystal piece 27 by the image sensor.
  • the external electrodes 97 and 98 are provided on the low angle end face 27C and not provided on the high angle end face 27D. Therefore, the low angle one end surface 27C and the high angle one end surface 27D can be determined by determining the presence or absence of the external electrodes 97 and 98 by the image sensor. Thereby, in the quartz crystal vibrating element 16A, it is possible to specify the surface to be opposed to the substrate 12 and the portion to which the conductive adhesive members 210 and 212 should be attached.
  • FIG. 8 is a cross-sectional structural view of a crystal vibrating element 16B and a conductive adhesive member 210 provided in a crystal unit 10B according to a third embodiment of the present invention.
  • parts and parts common to parts and parts shown in FIGS. 1 to 5 are denoted by the same reference numerals, and redundant description will be omitted.
  • the difference between the crystal unit 10B and the crystal unit 10 according to the first embodiment is that the crystal unit 10B includes the crystal unit 16B instead of the crystal unit 16. Other than this, the crystal unit 10B is a crystal unit.
  • the element 10 B has the same configuration as the crystal unit 10.
  • the quartz crystal vibrating element 16B includes a quartz piece 37, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103 (excitation electrodes 100 and 101 and lead conductors 102 and 103 (see FIGS. 2 and 3A) , Not shown in FIG. 8).
  • the crystal piece 37 is a plate having an upper surface and a lower surface, and is rectangular when viewed from the upper side.
  • the length direction (longitudinal direction) of the crystal piece 37 is along the Z 'axis direction
  • the width direction (left and right direction) of the crystal piece 37 is along the X axis direction
  • the thickness direction (vertical direction) of the crystal piece 37 is Y' axis Along the direction.
  • the main vibration mode of the crystal piece 37 is thickness shear vibration.
  • the crystal piece 37 has a first main surface 37A, which is a lower surface, and a second main surface 37B, which is an upper surface.
  • Each of the first major surface 37A and the second major surface 37B has a rectangular shape having a long side along the Z 'axis and a short side along the X axis.
  • An end face on the rear side (one side in the Z ′ axis direction) of the crystal piece 37 is a low angle end face (an example of a low angle end face) 37C, a high angle end face (an example of a high angle end face) 37D, and an intermediate end face And 37G.
  • the low angle end face 37C is adjacent to the first major surface 37A.
  • An angle formed by the low angle one end surface 37C with the first major surface 37A is ⁇ 3 (90 ° ⁇ ⁇ 3 ⁇ 180 °).
  • the high angle one end face 37D is adjacent to the second major surface 37B.
  • the angle formed by the high angle one end surface 37D with the second major surface 37B is ⁇ 4 (90 ° ⁇ 4 ⁇ 180 °) larger than ⁇ 3.
  • the intermediate end face 37G is interposed between the low angle end face 37C and the high angle end face 37D.
  • the angle (larger than 90 ° and smaller than or equal to 180 °) that the intermediate end surface 37G forms with the first major surface 37A or the second major surface 37B is different from both ⁇ 3 and ⁇ 4.
  • the end face on the front side (the other side in the Z′-axis direction) of the crystal piece 37 includes a low angle other end surface 37E, a high angle other end surface 37F, and an intermediate other end surface 37H.
  • the low angle other end surface 37E is adjacent to the second major surface 37B.
  • the angle which the low angle other end surface 37E forms with the second major surface 37B is ⁇ 3.
  • the high angle other end surface 37F is adjacent to the first major surface 37A.
  • the angle formed by the high angle other end surface 37F with the first major surface 37A is ⁇ 4.
  • the middle other end surface 37H is interposed between the low angle other end surface 37E and the high angle other end surface 37F.
  • the angle (larger than 90 ° and smaller than or equal to 180 °) that the intermediate other end surface 37H forms with the first major surface 37A or the second major surface 37B is different from both ⁇ 3 and ⁇ 4.
  • the shape of the crystal piece 37 is substantially twice rotational symmetric with respect to the X axis.
  • Another surface which is not parallel to any of the low angle one end surface 37C and the first main surface 37A may be interposed between the low angle one end surface 37C and the first main surface 37A.
  • the low angle one end surface 37C is closer to the first major surface 37A than the second major surface 37B.
  • Another surface which is not parallel to any of the high angle end surface 37D and the second main surface 37B may be interposed between the high angle end surface 37D and the second main surface 37B.
  • the high angle one end surface 37D is closer to the second major surface 37B than the first major surface 37A.
  • Another surface which is not parallel to any of the low angle other end surface 37E and the second main surface 37B may be interposed between the low angle other end surface 37E and the second main surface 37B.
  • the low angle other end surface 37E is closer to the second major surface 37B than the first major surface 37A.
  • another surface which is not parallel to any of the high angle other end surface 37F and the first main surface 37A may be interposed.
  • the high angle other end surface 37F is closer to the first major surface 37A than the second major surface 37B.
  • the external electrodes 97 and 98 are provided across the low angle end surface 37C and the first main surface 37A, and are not provided on the high angle end surface 37D and the second main surface 37B.
  • the external electrode 97 may or may not be provided on the left surface of the crystal piece 37.
  • the external electrode 98 may or may not be provided on the right surface of the crystal piece 37.
  • the conductive adhesive members 210 and 212 are provided across the low angle one end surface 37C and the first major surface 37A.
  • the conductive adhesive members 210 and 212 are provided across the low angle end surface 37C and the first main surface 37A in the first embodiment, in the first embodiment, the conductive adhesive members 210 and 212 are on the first main surface side end surface. It means the same thing as being provided straddling 17C and the first major surface 17A.
  • the crystal unit 10B can be manufactured by the same method as the crystal unit 10.
  • the crystal piece 37 can be manufactured by the same method as the crystal piece 17.
  • the number of steps required for etching can be reduced by providing the crystal plate 19 with the opening Mo1 of the mask M1 and the opening Mo2 of the mask M2 shifted in the Z ′ axis direction by a predetermined amount and etching the crystal plate 19. it can.
  • This technique is described, for example, in Patent Document 2.
  • FIG. 9A to 9C are cross-sectional views for explaining the method of manufacturing the crystal piece 37.
  • mask M1 is provided on one surface of quartz plate 19 (the surface corresponding to first major surface 37A of quartz piece 37), and the other surface of quartz plate 19 (second major surface 37B of quartz plate 37).
  • a mask M2 is provided on the surface corresponding to.
  • the mask M1 and the mask M2 are provided such that the openings Mo1 and Mo2 are displaced by a predetermined amount in the Z 'axis direction.
  • the quartz plate 19 is etched through the openings Mo1 and Mo2.
  • the recess formed in the exposed portion through the opening Mo1 and the recess formed in the exposed portion through the opening Mo2 are connected.
  • the chip C in which the quartz plate 19 is divided is obtained.
  • the end faces 37W and 37X which are etching surfaces corresponding to the crystal plane of the crystal, appear on the end face on one side of the chip C in the Z 'axis direction, and the end face on the other side of the chip C in the Z' axis direction
  • the end faces 37W and 37Z are adjacent to the first major surface 37A.
  • the end surfaces 37X and 37Y are adjacent to the second major surface 37B.
  • the angle between the end face 37W and the first major surface 37A is substantially equal to the angle between the end face 37Y and the second major surface 37B.
  • the angle between the end surface 37X and the second main surface 37B is substantially equal to the angle between the end surface 37Z and the first main surface 37A.
  • masks M3 and M4 for mesa processing are provided on first and second main surfaces 37A and 37B, respectively. More specifically, the mask M3 is provided in the region excluding the vicinity of the end faces 37W and 37Z on the first major surface 37A. The mask M4 is provided in an area excluding the vicinity of the end faces 37X and 37Y in the second major surface 37B.
  • the chip C when the chip C in this state is etched, the chip C has a ratio to the portion provided with the masks M3 and M4 on one side and the other side in the Z ′ axis direction. As a result, a thin portion with a small thickness is formed.
  • the low angle end face 37C, the high angle end face 37D and the intermediate end face 37G appear on the end face on one side in the Z ′ axis direction, and the low angle other end face 37E on the end face on the other side in the Z ′ axis direction.
  • the high angle other end surface 37F and the middle other end surface 37H appear.
  • the end surface on one side in the Z′-axis direction of the crystal piece 37 and the end surface on the other side each have three end surfaces.
  • the first major surface 37A includes a thinner portion first major surface 37At, which is a surface on one side in the Y′-axis direction in the thinner portion.
  • the second major surface 37B includes a thinner portion second major surface 37Bt, which is the surface on the other side in the Y′-axis direction in the thinner portion.
  • FIG. 10 is an enlarged cross-sectional view showing the vicinity of a bonding portion between the crystal vibrating element 16B and the conductive adhesive member 210. As shown in FIG. In FIG. 8 and FIG. 10, illustration of the thin-walled portion formed by mesa processing is omitted.
  • FIG. 10 (a) shows the same cross section as FIG. FIG. 10B is a cross-sectional view of the crystal unit 530 in which the crystal unit 16B is bonded to the conductive adhesive member 210 in the direction opposite to that of the crystal unit 10B in the Y′-axis direction.
  • the quartz oscillator 530 is a comparative example.
  • the external electrode 97 is provided across the high angle one end surface 37D and the second major surface 37B.
  • the conductive adhesive member 210 is provided across the low angle one end surface 37C and the first major surface 37A. In this cross section, the conductive adhesive member 210 is provided in the entire area of the intermediate end surface 37G, the entire area of the low angle end surface 37C, and the region adjacent to the low angle end surface 37C on the first major surface 37A.
  • the conductive adhesive member 210 is provided across the high angle one end surface 37D and the second main surface 37B. In this cross section, the conductive adhesive member 210 is provided in the entire area of the high angle end face 37D and in a region adjacent to the high angle end face 37D on the second major surface 37B.
  • the area in which the conductive adhesive members 210 and 212 are provided is set to about half the thickness of the crystal piece 37 in the thickness direction of the crystal piece 37.
  • the length (the length along the surface of the crystal piece 37) of the holding area of the crystal piece 37 by the conductive adhesive member 210 is the crystal oscillator 10B of FIG. 10 (a) and FIG. Is the same as the quartz oscillator 530 of FIG. Thereby, the quartz crystal piece 37 is held by the quartz oscillator 10B and the quartz oscillator 530 with the same force.
  • the length direction (Z ′ axis direction) of the crystal piece 37 is shorter than the length of the holding area Lh6 in the crystal unit 530. This is because by ⁇ 3 ⁇ 4, the length in the Z ′ axis direction becomes shorter as the end face formed with the first main surface 37A or the second main surface 37B (90 ° or more and less than 180 °) decreases. .
  • the conductive adhesive members 210 and 212 are provided across the high angle end face 37D and the second main surface 37B, the middle end face 37G, the low angle end face 37C, and the first
  • the conductive adhesive members 210 and 212 can be disposed in a region far from the vibration center with respect to the length direction (Z ′ axis direction) of the quartz crystal piece 37 if provided so as to straddle the main surface 37A. Thereby, in the crystal unit 10B, the vibration of the crystal piece 37 is less likely to be inhibited, so that the crystal impedance can be reduced.
  • the external electrodes 97 and 98 and the conductive adhesive member 210 straddle the middle other end surface 37H, the low angle other end surface 37E and the second main surface 37B.
  • the quartz oscillator provided can have the same effect as the quartz oscillator 10B.
  • the second main surface 37B, the low angle other end surface 37E, the middle other end surface 37H, and the high angle other end surface 37F are respectively the first main surface 37A, the low angle one end surface 37C, the middle one end surface 37G, and It can be considered as an angle end face 37D.
  • the external electrodes 97 and 98 are provided on the low angle one end face 37C and not provided on the high angle one end face 37D. By determining the presence or absence of the external electrodes 97 and 98, it is possible to distinguish between the low angle end face 37C and the high angle end face 37D. Thereby, in the quartz crystal vibrating element 16B, the surface to be opposed to the substrate 12 and the portion to which the conductive adhesive members 210 and 212 are to be attached can be specified.
  • the crystal piece 17 of the first embodiment may be mesa-processed.
  • the configurations of the above embodiments may be combined arbitrarily.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

The purpose of the present invention is to provide a crystal oscillator with which crystal impedance can be reduced. The crystal oscillator of the present invention comprises: a crystal piece which is AT-cut and provided with rectangular first and second major surfaces having long sides along the X-axis and short sides along the Z'-axis; an external electrode disposed on a surface of the crystal piece; a substrate; and an electrically conductive adhesive member which fixes the crystal piece to the substrate by contacting the substrate and the external electrode. An end surface on a -side of the X-axis of the crystal piece includes a first major surface-side one end surface which forms an angle θ1 (90° ≤ θ1 < 180°) with the first major surface, and a second major surface-side one end surface forming the angle θ1 with the second major surface. An end surface on a +side of the X-axis of the crystal piece includes a first major surface-side other end surface forming an angle θ2 (90° < θ2 < 180°) greater than θ1 with the first major surface, and a second major surface-side other end surface forming the angle θ2 with the second major surface. The electrically conductive adhesive member spans between the first major surface-side one end surface and the first major surface.

Description

水晶振動子Crystal oscillator
 本発明は、水晶振動子に関する。 The present invention relates to a quartz oscillator.
 水晶振動子(Quartz Crystal Unit)は、水晶片と、基板と、導電性接着部材とを含む。水晶片は、平板状であり、1対の主面を有する。1対の主面の各々は、長方形状である。水晶片は、その長さ方向の一端部で、導電性接着部材により、基板に固定されている。すなわち、水晶片は、導電性接着部材により片持ち支持されている。このような水晶振動子は、特許文献1に開示されている。 A quartz crystal unit (quartz crystal unit) includes a quartz piece, a substrate, and a conductive adhesive member. The crystal piece is flat and has a pair of main surfaces. Each of the pair of main surfaces is rectangular. The quartz crystal piece is fixed to the substrate by a conductive adhesive member at one end in the longitudinal direction. That is, the crystal piece is cantilevered by the conductive adhesive member. Such a crystal unit is disclosed in Patent Document 1.
特開2015-15769号公報JP, 2015-15769, A 特開2008-67345号公報JP 2008-67345 A
 ところで、近年、水晶振動子の小型化が進んでいる。これに伴い、水晶片において、中心と導電性接着部材との接合部との距離が小さくなってきている。ここで、中心とは、振動の中心である。導電性接着部材との接合部では、水晶片の振動が阻害されるので、水晶片の小型化は、水晶片の振動のロス(いわゆる保持ロス)を招く。これにより、クリスタルインピーダンスが大きくなる。 By the way, in recent years, miniaturization of the quartz oscillator has been advanced. Along with this, in the quartz crystal piece, the distance between the center and the bonding portion between the conductive adhesive member is becoming smaller. Here, the center is the center of vibration. At the junction with the conductive adhesive member, the vibration of the quartz piece is inhibited, so the miniaturization of the quartz piece causes a loss of vibration (so-called holding loss) of the quartz piece. This increases the crystal impedance.
 そこで、本発明の目的は、クリスタルインピーダンスを低減できる水晶振動子を提供することである。 Therefore, an object of the present invention is to provide a quartz oscillator capable of reducing crystal impedance.
 本発明の一形態に係る水晶振動子は、
 ATカットされた水晶片であって、X軸に沿う長辺とZ’軸に沿う短辺とを有する長方形状の第1及び第2主面を備えた水晶片と、
 前記水晶片の表面に設けられた外部電極と、
 基板と、
 前記基板及び前記外部電極に接触することにより、前記水晶片を前記基板に固定する導電性接着部材と
 を含み、
 前記水晶片のX軸の-側の端面が、前記第2主面より前記第1主面に近接し前記第1主面となす角度がθ1(90°≦θ1<180°)である第1主面側一端面と、前記第1主面より前記第2主面に近接し前記第2主面となす角度がθ1である第2主面側一端面とを含み、
 前記水晶片のX軸の+側の端面が、前記第2主面より前記第1主面に近接し前記第1主面となす角度がθ1より大きいθ2(90°<θ2<180°)である第1主面側他端面と、前記第1主面より前記第2主面に近接し前記第2主面となす角度がθ2である第2主面側他端面とを含み、
 前記導電性接着部材が、前記第1主面側一端面と、前記第1主面とに跨って設けられている。
The crystal unit according to one aspect of the present invention is
A quartz-cut quartz piece provided with rectangular first and second major surfaces having long sides along the X-axis and short sides along the Z'-axis;
An external electrode provided on the surface of the crystal piece;
A substrate,
And a conductive adhesive member for fixing the crystal piece to the substrate by contacting the substrate and the external electrode.
An end face on the negative side of the X axis of the crystal piece is closer to the first main surface than the second main surface, and an angle formed with the first main surface is θ1 (90 ° ≦ θ1 <180 °). And a second main surface side end surface which is closer to the second main surface than the first main surface side and whose angle formed with the second main surface is θ1.
The end face on the + side of the X axis of the crystal piece is closer to the first main surface than the second main surface, and the angle formed with the first main surface is θ2 larger than θ1 (90 ° <θ2 <180 °) And a second main surface side other end surface which is closer to the second main surface than the first main surface and has an angle of θ2 with the second main surface,
The conductive adhesive member is provided across the first main surface side end surface and the first main surface.
 本発明の他の形態に係る水晶振動子は、
 ATカットされた水晶片であって、Z’軸に沿う長辺とX軸に沿う短辺とを有する長方形状の第1及び第2主面を備えた水晶片と、
 前記水晶片の表面に設けられた外部電極と、
 基板と、
 前記基板及び前記外部電極に接触することにより、前記水晶片を前記基板に固定する導電性接着部材と
 を含み、
 前記水晶片のZ’軸の一方側の端面が、前記第2主面より前記第1主面に近接し前記第1主面となす角度がθ3(90°≦θ3<180°)である低角度端面と、前記第1主面より前記第2主面に近接し前記第2主面となす角度がθ3より大きいθ4(90°<θ4<180°)である高角度端面とを含み、
 前記導電性接着部材が、前記低角度端面と、前記第1主面とに跨って設けられている。
A quartz oscillator according to another aspect of the present invention is
A quartz-cut quartz piece provided with rectangular first and second major surfaces having long sides extending along the Z 'axis and short sides extending along the X axis;
An external electrode provided on the surface of the crystal piece;
A substrate,
And a conductive adhesive member for fixing the crystal piece to the substrate by contacting the substrate and the external electrode.
The end face on one side of the Z ′ axis of the crystal piece is closer to the first main surface than the second main surface, and the angle formed with the first main surface is θ3 (90 ° ≦ θ3 <180 °). An angular end face, and a high angle end face that is closer to the second main surface than the first main surface and that forms an angle θ4 larger than θ3 (90 ° <θ4 <180 °),
The conductive adhesive member is provided across the low angle end surface and the first main surface.
 本発明の水晶振動子は、そのクリスタルインピーダンスを小さくすることができる。 The crystal oscillator of the present invention can reduce its crystal impedance.
図1は、水晶振動子10の外観斜視図である。FIG. 1 is an external perspective view of a quartz oscillator 10. 図2は、水晶振動子10の分解斜視図である。FIG. 2 is an exploded perspective view of the crystal unit 10. 図3Aは、図1のA-Aにおける断面構造図である。FIG. 3A is a sectional structural view taken along line AA of FIG. 図3Bは、図3Aの水晶片17付近を拡大して示す断面構造図である。FIG. 3B is an enlarged sectional view showing the vicinity of the crystal piece 17 of FIG. 3A. 図4は、水晶片17を作製する方法を説明するための断面構造図である。FIG. 4 is a cross-sectional view for explaining the method of producing the crystal piece 17. 図5は、水晶振動子10に備えられた水晶振動素子16及び導電性接着部材210の断面構造図、並びに、水晶振動子510に備えられた水晶振動素子16及び導電性接着部材210の断面構造図である。FIG. 5 is a cross-sectional view of the crystal vibrating element 16 and the conductive adhesive member 210 provided in the quartz oscillator 10, and the cross-sectional structure of the quartz vibrating element 16 and the conductive adhesive member 210 provided in the quartz oscillator 510. FIG. 図6は、水晶振動素子16A及び導電性接着部材210の断面構造図である。FIG. 6 is a cross-sectional view of the quartz crystal vibrating element 16A and the conductive adhesive member 210. As shown in FIG. 図7は、水晶振動子10Aに備えられた水晶振動素子16A及び導電性接着部材210の断面構造図、並びに、水晶振動子520に備えられた水晶振動素子16A及び導電性接着部材210の断面構造図である。FIG. 7 is a cross-sectional view of the quartz crystal vibrating element 16A and the conductive adhesive member 210 provided in the quartz oscillator 10A, and the cross-sectional structure of the quartz vibrating element 16A and the conductive adhesive member 210 provided in the quartz oscillator 520. FIG. 図8は、水晶振動素子16B及び導電性接着部材210の断面構造図である。FIG. 8 is a cross-sectional view of the crystal vibrating element 16B and the conductive adhesive member 210. As shown in FIG. 図9Aは、水晶片37を製造する方法を説明するための断面構造図である。FIG. 9A is a sectional structural view for illustrating a method of manufacturing the crystal piece 37. As shown in FIG. 図9Bは、水晶片37を製造する方法を説明するための断面構造図である。FIG. 9B is a cross-sectional view for explaining the method for manufacturing the crystal piece 37. As shown in FIG. 図9Cは、水晶片37を製造する方法を説明するための断面構造図である。FIG. 9C is a cross-sectional view for explaining the method for manufacturing the crystal piece 37. As shown in FIG. 図10は、水晶振動子10Bに備えられた水晶振動素子16B及び導電性接着部材210の断面構造図、並びに、水晶振動子530に備えられた水晶振動素子16B及び導電性接着部材210の断面構造図である。FIG. 10 is a cross-sectional view of the crystal vibrating element 16B and the conductive adhesive member 210 provided in the quartz oscillator 10B, and the cross-sectional structure of the quartz vibrating element 16B and the conductive adhesive member 210 provided in the quartz oscillator 530. FIG.
〈第1実施形態〉
 以下に、本発明の第1実施形態に係る水晶振動子について、図面を参照しながら説明する。
(水晶振動子の構造)
 図1は、水晶振動子10の外観斜視図である。図2は、水晶振動子10の分解斜視図である。図3Aは、図1のA-Aにおける断面構造図である。図3Bは、図3Aの水晶片17付近を拡大して示す断面構造図である。
First Embodiment
Hereinafter, a crystal unit according to a first embodiment of the present invention will be described with reference to the drawings.
(Structure of quartz oscillator)
FIG. 1 is an external perspective view of a quartz oscillator 10. FIG. 2 is an exploded perspective view of the crystal unit 10. FIG. 3A is a sectional structural view taken along line AA of FIG. FIG. 3B is an enlarged sectional view showing the vicinity of the crystal piece 17 of FIG. 3A.
 以下では、水晶振動子10の主面に対する法線方向を上下方向と定義し、上側から見たときに、水晶振動子10の長辺が延在する方向を前後方向と定義し、水晶振動子10の短辺が延在する方向を左右方向と定義する。 In the following, the normal direction to the main surface of the quartz oscillator 10 is defined as the vertical direction, and the direction in which the long side of the quartz oscillator 10 extends when viewed from the upper side is defined as the anteroposterior direction The direction in which the short sides of 10 extend is defined as the left-right direction.
 水晶振動子10は、図1~図3Aに示すように、保持器(Enclosure)11、及び水晶振動素子(Quartz Crystal Resonator)16を備えている。保持器11は、基板12、キャップ14、及びろう材30を含み、直方体状の密封容器である。保持器11は、その内部に外部から隔離された空間Sp(内部空間)を有している。保持器11は気密構造及び液密構造を有している。すなわち、空間Spは、気密かつ液密に封止されている。そのため、保持器11外と空間Spとの間で、水蒸気などの気体、及び水などの液体の透過を防止できる。 The crystal unit 10 includes a holder (Enclosure) 11 and a quartz crystal resonator (Quartz Crystal Resonator) 16 as shown in FIGS. 1 to 3A. The holder 11 includes a substrate 12, a cap 14, and a brazing material 30, and is a rectangular parallelepiped sealed container. The holder 11 has a space Sp (internal space) internally isolated from the outside. The holder 11 has a gas tight structure and a liquid tight structure. That is, the space Sp is hermetically sealed in a liquid tight manner. Therefore, it is possible to prevent the permeation of a gas such as water vapor and a liquid such as water between the outside of the holder 11 and the space Sp.
 基板12は、基板本体21、外部電極22,26,40,42,44,46及びビア導体32,34を含んでいる。 The substrate 12 includes a substrate body 21, external electrodes 22, 26, 40, 42, 44 and 46 and via conductors 32 and 34.
 基板本体21は、板状であり、上側から見たときに、長方形状である。そのため、基板本体21は、長方形状の上面及び下面を有している。長方形は正方形も含む意味である。長方形状とは、長方形の他に長方形から僅かに変形した形状も含む意味である。基板本体21は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、炭化ケイ素質焼結体、ガラスセラミックス焼結体等のセラミックス系絶縁性材料、水晶、ガラス、シリコン等により作製されている。本実施形態では、基板本体21は、酸化アルミニウム質焼結体により作製されている。 The substrate body 21 is plate-like and rectangular when viewed from the upper side. Therefore, the substrate body 21 has rectangular upper and lower surfaces. A rectangle is a meaning also including a square. The rectangular shape is meant to include, in addition to the rectangle, a shape slightly deformed from the rectangle. The substrate body 21 is, for example, a ceramic insulating material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a glass ceramic sintered body, quartz, glass , Silicon and the like. In the present embodiment, the substrate body 21 is made of an aluminum oxide sintered body.
 外部電極22は、基板本体21の上面の左後ろの角近傍に設けられている長方形状の導体層である。外部電極26は、基板本体21の上面の右後ろの角近傍に設けられている長方形状の導体層である。外部電極22と外部電極26とは、左右方向に並んでいる。 The external electrode 22 is a rectangular conductor layer provided in the vicinity of the rear left corner of the top surface of the substrate body 21. The external electrode 26 is a rectangular conductive layer provided in the vicinity of the rear right corner of the top surface of the substrate body 21. The external electrode 22 and the external electrode 26 are aligned in the left-right direction.
 外部電極40は、基板本体21の下面の右後ろの角近傍に設けられている正方形状の導体層である。外部電極42は、基板本体21の下面の左後ろの角近傍に設けられている正方形状の導体層である。外部電極44は、基板本体21の下面の右前の角近傍に設けられている正方形状の導体層である。外部電極46は、基板本体21の下面の左前の角近傍に設けられている正方形状の導体層である。 The external electrode 40 is a square-shaped conductor layer provided in the vicinity of the rear right corner of the lower surface of the substrate body 21. The external electrode 42 is a square-shaped conductor layer provided in the vicinity of the rear left corner of the lower surface of the substrate body 21. The external electrode 44 is a square-shaped conductor layer provided in the vicinity of the front right corner of the lower surface of the substrate body 21. The external electrode 46 is a square-shaped conductor layer provided in the vicinity of the left front corner of the lower surface of the substrate body 21.
 外部電極22,26,40,42,44,46の各々は、3層構造を有しており、具体的には、下層側から上層側へとモリブデン層、ニッケル層及び金層が積層されることにより構成されている。 Each of the external electrodes 22, 26, 40, 42, 44, and 46 has a three-layer structure, and specifically, a molybdenum layer, a nickel layer, and a gold layer are stacked from the lower layer side to the upper layer side. Is configured by.
 ビア導体32,34は、基板本体21をその厚み方向(上下方向)に貫通している。ビア導体32は、外部電極22と外部電極42とを接続している。ビア導体34は、外部電極26と外部電極40とを接続している。ビア導体32,34は、モリブデン等の導体により作製されている。 The via conductors 32 and 34 penetrate the substrate body 21 in the thickness direction (vertical direction). The via conductor 32 connects the external electrode 22 and the external electrode 42. The via conductor 34 connects the external electrode 26 and the external electrode 40. The via conductors 32 and 34 are made of a conductor such as molybdenum.
 キャップ14は、下側が開口した直方体状の金属製筺体である。キャップ14は、主面部14aと、環状部14bと、フランジ14cとを含んでいる。主面部14a、環状部14b及びフランジ14cは、一体の部材として構成されている。具体的には、後述のように、環状部14b及びフランジ14cは、一つの金属板が絞り加工により屈曲されて形成されている。 The cap 14 is a rectangular parallelepiped metal casing opened at the lower side. The cap 14 includes a main surface portion 14a, an annular portion 14b, and a flange 14c. The main surface portion 14a, the annular portion 14b and the flange 14c are configured as an integral member. Specifically, as described later, the annular portion 14 b and the flange 14 c are formed by bending one metal plate by drawing.
 主面部14aは、平板状である。主面部14aについて、平板状とは、平板の他に平板から僅かに変形した形状、例えば、主面が僅かに湾曲したものも含む意味である。環状部14bは、主面部14aの略法線方向に延びる4つの板状部を有する。上下方向から見て、環状部14bは、主面部14aの下面15Aを囲む環状構造を有する。主面部14a及び環状部14bにより、キャップ14には凹部15が構成されている。主面部14aの下面15Aは、凹部15の底面である。キャップ14は、長方形状の開口を有する。フランジ14cは、環状部14bの開口縁部(外縁)から、主面部14aの下面15Aに沿う方向、すなわち、主面部14aに略平行な方向、かつ凹部15の外方に突出している。 The main surface portion 14a is flat. About main surface part 14a, flat form is a meaning including the shape by which the main surface was slightly curved besides a flat plate, for example, a thing slightly deformed from a flat plate. The annular portion 14 b has four plate-like portions extending in a direction substantially normal to the main surface portion 14 a. When viewed from the up and down direction, the annular portion 14b has an annular structure surrounding the lower surface 15A of the main surface portion 14a. A recess 15 is formed in the cap 14 by the main surface portion 14 a and the annular portion 14 b. The lower surface 15A of the main surface portion 14a is the bottom surface of the recess 15. The cap 14 has a rectangular opening. The flange 14c protrudes from the opening edge (outer edge) of the annular portion 14b in a direction along the lower surface 15A of the main surface 14a, that is, in a direction substantially parallel to the main surface 14a and outward of the recess 15.
 キャップ14は、母材と、母材の表面に設けられためっき層とを備えている。母材は、例えば、鉄ニッケル合金(例えば、ニッケル含有率が42質量%であるもの)又は鉄ニッケルコバルト合金(コバール)からなる。めっき層は、下地としてのニッケル層と、ニッケル層の上に設けられた金層との2層構造を有する。本実施形態では、キャップ14は、鉄ニッケル合金の母材の表面にニッケルめっき及び金めっきが施されることにより作製されている。 The cap 14 includes a base material and a plating layer provided on the surface of the base material. The base material is made of, for example, an iron-nickel alloy (for example, one having a nickel content of 42% by mass) or an iron-nickel-cobalt alloy (Kovar). The plating layer has a two-layer structure of a nickel layer as a base and a gold layer provided on the nickel layer. In the present embodiment, the cap 14 is manufactured by applying nickel plating and gold plating to the surface of a base material of an iron-nickel alloy.
 ろう材30は、長方形状の環状であり、上側から見たときに、水晶振動素子16及び外部電極22,26を囲んでいる。ろう材30は、例えば、金錫合金、又は錫鉛合金である。ろう材30は、基板12とキャップ14とを接合する役割を果たす。接合する際には、基板12の縁部の上にろう材30を介してキャップ14の開口縁部が重ねられた状態で、ろう材30が溶融及び固化させられる。これにより、ろう材30とキャップ14の開口縁部との間で合金化層が形成されるとともに、ろう材30が基板12の縁部に固着する。すなわち、キャップ14は、開口縁部の全周において基板12の上面12Aに接合する。このようにして、凹部15は、基板12の上面12Aにより密閉される。その結果、基板本体21の上面12A及びキャップ14により、空間Spが形成されている。 The brazing material 30 has a rectangular annular shape and surrounds the quartz crystal vibrating element 16 and the external electrodes 22 and 26 when viewed from the upper side. The brazing material 30 is, for example, a gold-tin alloy or a tin-lead alloy. The brazing material 30 plays a role of joining the substrate 12 and the cap 14. In bonding, the brazing material 30 is melted and solidified in a state where the opening edge of the cap 14 is superimposed on the edge of the substrate 12 via the brazing material 30. As a result, an alloyed layer is formed between the brazing material 30 and the opening edge of the cap 14, and the brazing material 30 adheres to the edge of the substrate 12. That is, the cap 14 is bonded to the top surface 12A of the substrate 12 all around the opening edge. Thus, the recess 15 is sealed by the upper surface 12A of the substrate 12. As a result, a space Sp is formed by the upper surface 12A of the substrate body 21 and the cap 14.
 水晶振動子10に要求される特性によって、ろう材30の代わりに、他の材料からなる接着部材が用いられてもよい。例えば、水晶振動子10に気密構造が要求され液密構造が要求されない場合は、ろう材30の代わりに、有機物を主体とする接着剤が用いられてもよい。 Depending on the characteristics required for the quartz oscillator 10, instead of the brazing material 30, an adhesive member made of another material may be used. For example, when a gas tight structure is required for the quartz crystal vibrator 10 and a liquid tight structure is not required, an adhesive mainly composed of an organic substance may be used instead of the brazing material 30.
 水晶振動素子16は、保持器11内に励振可能に収納されている。水晶振動素子16は、水晶片17、外部電極97,98、励振電極100,101及び引き出し導体102,103を含む。水晶片17は、上面及び下面を有する板状であり、上側から見たときに、長方形状である。 The crystal vibrating element 16 is housed in the holder 11 so as to be excitable. The quartz crystal vibrating element 16 includes a quartz piece 17, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103. The crystal piece 17 is a plate having an upper surface and a lower surface, and is rectangular when viewed from the upper side.
 水晶片17は、所定の結晶方位(Crystallographic Axis)を有する水晶であり、具体的には、ATカット型の水晶片である。水晶片17は、例えば、人工水晶(Synthetic Quartz Crystal)から所定の角度で切り出して得られる。水晶片17の寸法は、例えば、前後方向の長さが2.0mm、左右方向の幅が1.6mmの範囲に収まる寸法である。保持器11の壁厚み、封止材のにじみ、素子のマウント精度等を考慮して、水晶片17の前後方向の長さが1.500mm以下となり、水晶片17の左右方向の幅が1.00mm以下となるように水晶片17が設計される。 The crystal piece 17 is a crystal having a predetermined crystallographic orientation (crystallographic axis), and specifically, is an AT-cut type crystal piece. The quartz crystal piece 17 is obtained, for example, by cutting it out of synthetic quartz crystal at a predetermined angle. The dimension of the crystal piece 17 is, for example, a dimension within which the length in the front-rear direction is 2.0 mm and the width in the left-right direction is 1.6 mm. The length of the crystal piece 17 in the front-rear direction is 1.500 mm or less, and the width of the crystal piece 17 in the left-right direction is 1.2. The crystal piece 17 is designed to be equal to or less than 00 mm.
 水晶片17の長さ方向(前後方向)はX軸方向に沿い、水晶片17の幅方向(左右方向)はZ’軸方向に沿い、水晶片17の厚み方向(上下方向)はY’軸方向に沿う。図1~図3Bで、水晶片17の後ろ側がX軸方向の-側であり、水晶片17の前側がX軸方向の+側である。水晶片17の主たる振動モードは、厚みすべり振動(Thickness Shear Vibration)である。水晶片17は、下面である第1主面17Aと、上面である第2主面17Bとを有する。第1主面17A及び第2主面17Bの各々は、X軸に沿う長辺と、Z’軸に沿う短辺とを有する長方形状である。 The length direction (front-rear direction) of the crystal piece 17 is along the X-axis direction, the width direction (left-right direction) of the crystal piece 17 is along the Z'-axis direction, and the thickness direction (vertical direction) of the crystal piece 17 is the Y'-axis Along the direction. In FIGS. 1 to 3B, the back side of the crystal piece 17 is the − side in the X axis direction, and the front side of the crystal piece 17 is the + side in the X axis direction. The main vibration mode of the crystal piece 17 is thickness shear vibration. The crystal piece 17 has a first major surface 17A, which is the lower surface, and a second major surface 17B, which is the upper surface. Each of the first major surface 17A and the second major surface 17B has a rectangular shape having a long side along the X-axis and a short side along the Z'-axis.
 図3Bを参照して、水晶片17の後ろ側(X軸方向の-側)の端面は、第1主面側一端面17Cと第2主面側一端面17Dとを含む。第1主面側一端面17Cは、第1主面17Aに隣接している。第1主面側一端面17Cが第1主面17Aとなす角度を、θ1(90°≦θ1<180°)とする。第2主面側一端面17Dは、第2主面17Bに隣接している。第2主面側一端面17Dが第2主面17Bとなす角度は、θ1である。水晶片17の前側(X軸方向の+側)の端面は、第1主面側他端面17Eと第2主面側他端面17Fとを含む。第1主面側他端面17Eは、第1主面17Aに隣接している。第1主面側他端面17Eが第1主面17Aとなす角度は、θ1より大きいθ2(90°<θ2<180°)である。第2主面側他端面17Fは、第2主面17Bに隣接している。第2主面側他端面17Fが第2主面17Bとなす角度は、θ2である。 Referring to FIG. 3B, the end face on the back side (the − side in the X-axis direction) of crystal piece 17 includes a first major surface side end surface 17C and a second major surface side end surface 17D. The first major surface side end surface 17C is adjacent to the first major surface 17A. An angle formed by the first major surface side end surface 17C with the first major surface 17A is θ1 (90 ° ≦ θ1 <180 °). The second major surface side end surface 17D is adjacent to the second major surface 17B. An angle formed by the second major surface side end surface 17D with the second major surface 17B is θ1. The front end (+ side in the X-axis direction) end face of the crystal piece 17 includes a first main surface side other end surface 17E and a second main surface side other end surface 17F. The first major surface side other end surface 17E is adjacent to the first major surface 17A. The angle formed by the first main surface side other end surface 17E with the first main surface 17A is θ2 (90 ° <θ2 <180 °) larger than θ1. The second major surface side other end surface 17F is adjacent to the second major surface 17B. The angle between the second major surface 17F and the second major surface 17B is θ2.
 第1主面側一端面17Cと第1主面17Aとの間には、第1主面側一端面17C及び第1主面17Aのいずれとも平行ではない他の面が介在していてもよい。この場合、第1主面側一端面17Cは、第2主面17Bより第1主面17Aに近接しているものとする。第2主面側一端面17Dと第2主面17Bとの間には、第2主面側一端面17D及び第2主面17Bのいずれとも平行ではない他の面が介在していてもよい。この場合、第2主面側一端面17Dは、第1主面17Aより第2主面17Bに近接しているものとする。 Between the first major surface side end surface 17C and the first major surface 17A, another surface which is not parallel to any of the first major surface side one end surface 17C and the first major surface 17A may be interposed. . In this case, the first major surface side end surface 17C is closer to the first major surface 17A than the second major surface 17B. Between the second main surface side end surface 17D and the second main surface 17B, another surface which is not parallel to either the second main surface side one end surface 17D or the second main surface 17B may be interposed. . In this case, it is assumed that the second major surface side end surface 17D is closer to the second major surface 17B than the first major surface 17A.
 第1主面側他端面17Eと第1主面17Aとの間には、第1主面側他端面17E及び第1主面17Aのいずれとも平行ではない他の面が介在していてもよい。この場合、第1主面側他端面17Eは、第2主面17Bより第1主面17Aに近接しているものとする。第2主面側他端面17Fと第2主面17Bとの間には、第2主面側他端面17F及び第2主面17Bのいずれとも平行ではない他の面が介在していてもよい。この場合、第2主面側他端面17Fは、第1主面17Aより第2主面17Bに近接しているものとする。 Between the first main surface side other end surface 17E and the first main surface 17A, another surface which is not parallel to any of the first main surface side other end surface 17E and the first main surface 17A may be interposed. . In this case, the first major surface side other end surface 17E is closer to the first major surface 17A than the second major surface 17B. Between the second main surface side other end surface 17F and the second main surface 17B, another surface which is not parallel to any of the second main surface side other end surface 17F and the second main surface 17B may be interposed. . In this case, the second main surface side other end surface 17F is closer to the second main surface 17B than the first main surface 17A.
 図2及び図3Aを参照して、外部電極97は、水晶片17の左後ろの角及びその近傍に設けられている導体層である。外部電極97は、第1主面17A、第1主面側一端面17C、第2主面側一端面17D、第2主面17B及び左面に跨って形成されている。外部電極98は、水晶片17の右後ろの角及びその近傍に設けられている導体層である。外部電極98は、第1主面17A、第1主面側一端面17C、第2主面側一端面17D、第2主面17B及び右面に跨って形成されている。外部電極97,98は、左右方向に、すなわち、水晶片17の短辺に沿って並んでいる。 Referring to FIGS. 2 and 3A, the external electrode 97 is a conductor layer provided at the rear left corner of the quartz piece 17 and in the vicinity thereof. The external electrode 97 is formed across the first major surface 17A, the first major surface side end surface 17C, the second major surface side end surface 17D, the second major surface 17B, and the left surface. The outer electrode 98 is a conductor layer provided at the rear right corner of the quartz piece 17 and in the vicinity thereof. The external electrode 98 is formed across the first major surface 17A, the first major surface side end surface 17C, the second major surface side end surface 17D, the second major surface 17B, and the right surface. The external electrodes 97 and 98 are aligned in the left-right direction, that is, along the short side of the quartz piece 17.
 励振電極100は、水晶片17の第2主面17Bの中央に設けられており、上側から見たときに長方形状である。励振電極101は、水晶片17の第1主面17Aの中央に設けられており、上側から見たときに長方形状である。励振電極100と励振電極101とは、上側から見たときに、これらの外縁が一致するように重なっている。 The excitation electrode 100 is provided at the center of the second major surface 17B of the crystal piece 17, and has a rectangular shape when viewed from the upper side. The excitation electrode 101 is provided at the center of the first major surface 17A of the quartz piece 17, and has a rectangular shape when viewed from the upper side. The excitation electrode 100 and the excitation electrode 101 overlap such that their outer edges coincide when viewed from the upper side.
 図2を参照して、引き出し導体102は、水晶片17の第2主面17Bに設けられており、外部電極97と励振電極100とを接続している。引き出し導体103は、水晶片17の第1主面17Aに設けられており、外部電極98と励振電極101とを接続している。外部電極97,98、励振電極100,101及び引き出し導体102,103の各々は、2層構造を有しており、クロム層及び金層を含んでいる。クロム層は、水晶片17の表面上に設けられている。金層は、クロム層の上に設けられている表面金属層である。金層は水晶片17への密着性が低い。そのため、クロム層は、金層と水晶片17との間に設けられることによって、外部電極97,98、励振電極100,101及び引き出し導体102,103の水晶片17の表面への密着層として機能している。なお、クロム層の代わりにチタン層等の他の金属層を密着層として用いてもよい。 Referring to FIG. 2, the lead conductor 102 is provided on the second main surface 17B of the crystal piece 17, and connects the external electrode 97 and the excitation electrode 100. The lead conductor 103 is provided on the first main surface 17A of the crystal piece 17, and connects the external electrode 98 and the excitation electrode 101. Each of the external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 has a two-layer structure, and includes a chromium layer and a gold layer. The chromium layer is provided on the surface of the quartz piece 17. The gold layer is a surface metal layer provided on the chromium layer. The gold layer has low adhesion to the quartz piece 17. Therefore, the chromium layer is provided between the gold layer and the crystal piece 17 to function as an adhesion layer to the surface of the crystal piece 17 of the external electrodes 97, 98, the excitation electrodes 100, 101 and the lead conductors 102, 103. doing. In place of the chromium layer, another metal layer such as a titanium layer may be used as the adhesion layer.
 水晶振動素子16は、導電性接着部材210,212により、基板12の上面12Aに実装されている。導電性接着部材210,212は、基板12、及び水晶振動素子16の外部電極97,98に接触することにより、水晶片17を基板12に固定している。水晶振動素子16(水晶片17)は、その後ろ側の端部で、導電性接着部材210,212により片持ち支持されている。外部電極22と外部電極97とは、導電性接着部材210により電気的に接続されている。外部電極26と外部電極98とは、導電性接着部材212により電気的に接続されている。導電性接着部材210,212の材料は、例えば、エポキシ系樹脂基材に銀フィラーなどの導電性材料フィラーを含有したものである。 The crystal vibrating element 16 is mounted on the upper surface 12 A of the substrate 12 by the conductive adhesive members 210 and 212. The conductive adhesive members 210 and 212 fix the crystal piece 17 to the substrate 12 by contacting the substrate 12 and the external electrodes 97 and 98 of the crystal vibrating element 16. The quartz crystal vibrating element 16 (quartz piece 17) is cantilevered by the conductive adhesive members 210 and 212 at its rear end. The external electrode 22 and the external electrode 97 are electrically connected by the conductive adhesive member 210. The external electrode 26 and the external electrode 98 are electrically connected by the conductive adhesive member 212. The material of the conductive adhesive members 210 and 212 is, for example, an epoxy resin base material containing a conductive material filler such as a silver filler.
 導電性接着部材210,212は、第1主面側一端面17Cと第1主面17Aとに跨って設けられている。ここで、導電性接着部材210,212が第1主面側一端面17Cと第1主面17Aとに跨って設けられているとは、下記(i)及び(ii)の態様を含む。 The conductive adhesive members 210 and 212 are provided across the first major surface side end surface 17C and the first major surface 17A. Here, the conductive adhesive members 210 and 212 being provided across the first major surface side end surface 17C and the first major surface 17A include the following aspects (i) and (ii).
(i) 導電性接着部材210,212の形成領域が、外部電極97,98の形成領域からはみ出していない。すなわち、図3A及び図3Bに示すように、水晶片17と導電性接着部材210,212との間の全域に渡って外部電極97,98が介在している。水晶片17と導電性接着部材210,212とが直接接触している部分は存在しない。導電性接着部材210,212は、第1主面側一端面17C及び第1主面17Aに対向している。
(ii) 導電性接着部材210,212の形成領域が、外部電極97,98の形成領域からはみ出している。すなわち、第1主面側一端面17C及び第1主面17Aの少なくともいずれかにおいて、導電性接着部材210,212が水晶片17に直接接触する部分が存在する。導電性接着部材210,212において水晶片17に直接接触していない部分は、外部電極97,98を介して第1主面側一端面17C又は第1主面17Aに対向している。導電性接着部材210,212は、外部電極97,98の形成領域の全体又は一部を含む領域に設けられていている。
(i) The formation regions of the conductive adhesive members 210 and 212 do not protrude from the formation regions of the external electrodes 97 and 98. That is, as shown in FIGS. 3A and 3B, the external electrodes 97 and 98 intervene over the entire area between the crystal piece 17 and the conductive adhesive members 210 and 212. There is no portion where the crystal piece 17 and the conductive adhesive members 210 and 212 are in direct contact with each other. The conductive adhesive members 210 and 212 are opposed to the first major surface side end surface 17C and the first major surface 17A.
(ii) The formation regions of the conductive adhesive members 210 and 212 protrude from the formation regions of the external electrodes 97 and 98. That is, at least one of the first principal surface side end surface 17C and the first principal surface 17A, there is a portion where the conductive adhesive members 210 and 212 directly contact the crystal piece 17. The portions of the conductive adhesive members 210 and 212 not in direct contact with the crystal piece 17 are opposed to the first major surface side end face 17C or the first major surface 17A via the external electrodes 97 and 98. The conductive adhesive members 210 and 212 are provided in a region including the whole or a part of the formation region of the external electrodes 97 and 98.
(水晶振動子の製造方法)
 以下に、水晶振動子10の製造方法について図面を参照しながら説明する。
(Method of manufacturing quartz oscillator)
Hereinafter, a method of manufacturing the crystal unit 10 will be described with reference to the drawings.
 まず、キャップ14を作製する。平板状の金属板を準備する。この金属板を、プレス加工により絞り成形して、主面部14a、環状部14b及びフランジ14cを有する形状に加工する。この加工については、一般的な工程であるので説明を省略する。 First, the cap 14 is manufactured. Prepare a flat metal plate. This metal plate is drawn and formed by press work to be processed into a shape having the main surface portion 14a, the annular portion 14b and the flange 14c. Since this processing is a general process, the description is omitted.
 次に、基板12を作製する。複数の基板本体21がマトリクス状に配列されたマザー基板を準備する。マザー基板は、基板本体21と同じ材料、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、炭化ケイ素質焼結体、ガラスセラミックス焼結体等のセラミックス系絶縁性材料、水晶、ガラス、シリコン等により作製されている。 Next, the substrate 12 is manufactured. A mother substrate in which a plurality of substrate bodies 21 are arranged in a matrix is prepared. The mother substrate is made of the same material as the substrate body 21. For example, ceramic-based insulation such as aluminum oxide sintered body, mullite sintered body, aluminum nitride sintered body, silicon carbide sintered body, glass ceramics sintered body, etc. Material, quartz crystal, glass, silicon and the like.
 次に、マザー基板において、ビア導体32,34が配置される位置にビームを照射して、円形の貫通孔(ビアホール)を形成する。そして、この貫通孔内にビア導体32,34を埋め込む。 Next, in the mother substrate, a beam is irradiated to a position where the via conductors 32 and 34 are disposed, to form a circular through hole (via hole). Then, the via conductors 32 and 34 are embedded in the through holes.
 次に、外部電極40,42,44,46の下地電極をマザー基板の下面に形成する。具体的には、モリブデン層をマザー基板の下面上に印刷し、乾燥させる。その後、モリブデン層を焼結する。これにより、外部電極40,42,44,46の下地電極が形成される。 Next, base electrodes of the external electrodes 40, 42, 44, and 46 are formed on the lower surface of the mother substrate. Specifically, a molybdenum layer is printed on the lower surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. Thereby, base electrodes of the external electrodes 40, 42, 44 and 46 are formed.
 次に、外部電極22,26の下地電極をマザー基板の上面に形成する。具体的には、モリブデン層をマザー基板の上面上に印刷し、乾燥させる。その後、モリブデン層を焼結する。これにより、外部電極22,26の下地電極が形成される。 Next, base electrodes of the external electrodes 22 and 26 are formed on the upper surface of the mother substrate. Specifically, a molybdenum layer is printed on the upper surface of the mother substrate and dried. Thereafter, the molybdenum layer is sintered. Thereby, base electrodes of the external electrodes 22 and 26 are formed.
 次に、外部電極40,42,44,46,22,26の下地電極に、ニッケルめっき及び金めっきをこの順に施す。これにより、外部電極40,42,44,46,22,26が形成される。 Next, nickel plating and gold plating are applied to the base electrodes of the external electrodes 40, 42, 44, 46, 22, 26 in this order. Thereby, the external electrodes 40, 42, 44, 46, 22, 26 are formed.
 次に、ダイシングブレードにより、マザー基板を複数の基板本体21に分割する。なお、レーザビームを照射してマザー基板に分割溝を形成した後、マザー基板を複数の基板本体21に分割してもよい。これにより、基板12が完成する。 Next, the mother substrate is divided into a plurality of substrate bodies 21 by a dicing blade. The mother substrate may be divided into a plurality of substrate bodies 21 after the division grooves are formed on the mother substrate by irradiation with a laser beam. Thereby, the substrate 12 is completed.
 次に、水晶振動素子16を作製する。人工水晶をATカットにより切り出して、長方形状の板状の水晶片17を得る。図4は、水晶片17を作製する方法を説明するための断面構造図である。X軸方向及びZ’軸方向にマトリクス状に配列された複数の水晶片17に対応する水晶板19を準備する。図4では、水晶板19のZ’軸に直交する方向の断面を示している。水晶板19は、水晶片17とほぼ同じ厚みを有する。 Next, the crystal vibrating element 16 is manufactured. The artificial quartz is cut out by AT cutting to obtain a rectangular plate-like quartz piece 17. FIG. 4 is a cross-sectional view for explaining the method of producing the crystal piece 17. A crystal plate 19 corresponding to a plurality of crystal pieces 17 arranged in a matrix in the X axis direction and the Z 'axis direction is prepared. FIG. 4 shows a cross section of the crystal plate 19 in a direction orthogonal to the Z ′ axis. The quartz plate 19 has substantially the same thickness as the quartz piece 17.
 次に、水晶板19の一方表面(水晶片17における第1主面17Aに対応する面)にマスクM1を設け、水晶板19の他方表面(水晶片17における第2主面17Bに対応する面)に、マスクM2を設ける。マスクM1には、X軸方向及びZ’軸方向に延びる格子状の開口Mo1が設けられている。同様に、マスクM2には、X軸方向及びZ’軸方向に延びる格子状の開口Mo2が設けられている。マスクM1とマスクM2とは、Y’軸に沿う方向から見たときに、これらの開口Mo1,Mo2の輪郭が一致して重なるように設ける。 Next, the mask M1 is provided on one surface of the quartz plate 19 (the surface corresponding to the first major surface 17A of the quartz piece 17), and the other surface of the quartz plate 19 (the surface corresponding to the second major surface 17B of the quartz piece 17). ), A mask M2 is provided. The mask M1 is provided with a grid-like opening Mo1 extending in the X-axis direction and the Z'-axis direction. Similarly, the mask M2 is provided with lattice-like openings Mo2 extending in the X-axis direction and the Z'-axis direction. The masks M1 and M2 are provided such that the contours of the openings Mo1 and Mo2 coincide and overlap when viewed from the direction along the Y 'axis.
 次に、マスクM1,M2の開口Mo1,Mo2を介して、水晶板19をウェットエッチングする。エッチング液としては、例えば、HF(フッ化水素)とNHF(フッ化アンモニウム)との混合水溶液を用いることができる。水晶板19において、各マスクM1,M2の開口Mo1,Mo2を介して露出した部分には、エッチングにより凹部が形成される。更にエッチングが進行すると、凹部は水晶板19を貫通する。これにより、複数の水晶片17が得られる。 Next, the quartz plate 19 is wet-etched through the openings Mo1 and Mo2 of the masks M1 and M2. As the etching solution, for example, a mixed aqueous solution of HF (hydrogen fluoride) and NH 4 F (ammonium fluoride) can be used. In the portion of the quartz plate 19 exposed through the openings Mo1 and Mo2 of the masks M1 and M2, concave portions are formed by etching. When the etching further proceeds, the recess penetrates the quartz plate 19. Thereby, a plurality of crystal pieces 17 are obtained.
 エッチングが進行する過程で、水晶板19においてエッチング液と接触する部分には、水晶の結晶面に対応するエッチング面が現れる。水晶のエッチング速度の異方性により、X軸方向の-側と+側とで、第1及び第2主面17A,17Bとのなす角度が異なるエッチング面が現れる。 As the etching progresses, an etching surface corresponding to the crystal plane of the quartz crystal appears in the portion of the quartz plate 19 in contact with the etching solution. Due to the anisotropy of the etching rate of quartz, an etching surface having different angles with the first and second major surfaces 17A and 17B appears on the − side and the + side in the X-axis direction.
 具体的には、水晶板19のX軸方向の-側には、エッチング面として、第1主面17Aに隣接し第1主面17Aとなす角度がθ1(90°≦θ1<180°)である第1主面側一端面17Cと、第2主面17Bに隣接し第2主面17Bとなす角度がθ1である第2主面側一端面17Dとが現れる。一方、水晶板19のX軸方向の+側には、エッチング面として、第1主面17Aに隣接し第1主面17Aとなす角度がθ1より大きいθ2(90°<θ2<180°)である第1主面側他端面17Eと、第2主面17Bに隣接し第2主面17Bとなす角度がθ2である第2主面側他端面17Fとが現れる。 Specifically, on the − side in the X-axis direction of the crystal plate 19, the angle formed with the first major surface 17A adjacent to the first major surface 17A is θ1 (90 ° ≦ θ1 <180 °) as an etching surface. A first main surface side end surface 17C and a second main surface side end surface 17D adjacent to the second main surface 17B and forming an angle of θ1 with the second main surface 17B appear. On the other hand, on the + side in the X-axis direction of the crystal plate 19, the etching surface is adjacent to the first major surface 17A and the angle formed with the first major surface 17A is θ2 larger than θ1 (90 ° <θ2 <180 °) A first main surface side other end surface 17E and a second main surface side other end surface 17F adjacent to the second main surface 17B and forming an angle of θ2 with the second main surface 17B appear.
 得られた水晶片17に対して、必要に応じて、更にバレル加工装置を用いてベベル加工を施す。これにより、水晶片17の稜線付近が削り取られ、ベベル形状の水晶片17が得られる。 The obtained crystal piece 17 is further beveled using a barrel processing device, if necessary. As a result, the vicinity of the ridgeline of the crystal piece 17 is scraped off to obtain a bevel-shaped crystal piece 17.
 次に、水晶片17の表面に外部電極97,98、引き出し導体102,103及び励振電極100,101を形成する。なお、外部電極97,98、励振電極100,101及び引き出し導体102,103の形成については、一般的な工程であるので説明を省略する。これにより、水晶振動素子16が完成する。 Next, external electrodes 97 and 98, lead conductors 102 and 103, and excitation electrodes 100 and 101 are formed on the surface of the crystal piece 17. The formation of the external electrodes 97 and 98, the excitation electrodes 100 and 101, and the lead conductors 102 and 103 is a general process, and thus the description thereof is omitted. Thereby, the crystal vibrating element 16 is completed.
 次に、基板12の上面12Aに水晶振動素子16を実装する。具体的には、図2及び図3Aに示すように、外部電極22と外部電極97とを導電性接着部材210により接着するとともに、外部電極26と外部電極98とを導電性接着部材212により接着する。 Next, the crystal vibrating element 16 is mounted on the upper surface 12A of the substrate 12. Specifically, as shown in FIGS. 2 and 3A, the outer electrode 22 and the outer electrode 97 are bonded by the conductive adhesive member 210, and the outer electrode 26 and the outer electrode 98 are bonded by the conductive adhesive member 212. Do.
 次に、保持器11を密封する。ろう材30を、環状部14b及びフランジ14cの下面と基板12の上面12Aの縁部との間に挟む。この状態で、キャップ14及び基板12とともにろう材30を加熱することにより、ろう材30を溶融させる。その後、キャップ14及び基板12とともにろう材30を冷却することにより、ろう材30を固化させる。これにより、保持器11が密封される。以上の工程を経て、水晶振動子10が完成する。 Next, the holder 11 is sealed. The brazing material 30 is sandwiched between the lower surfaces of the annular portion 14 b and the flange 14 c and the edge of the upper surface 12 A of the substrate 12. In this state, the brazing material 30 is melted by heating the brazing material 30 together with the cap 14 and the substrate 12. Thereafter, the brazing material 30 is solidified by cooling the brazing material 30 together with the cap 14 and the substrate 12. Thereby, the holder 11 is sealed. Through the above steps, the crystal unit 10 is completed.
(効果)
 図5は、水晶振動素子16と導電性接着部材210との接合部付近を拡大して示す断面構造図である。図5(a)は、図1~図3Bに示す水晶振動子10の断面構造図である。図5(b)は、水晶振動素子16がX軸の+側端部で導電性接着部材210に接合されている水晶振動子510の断面構造図である。水晶振動子510は、比較例である。水晶振動子510では、外部電極97は、第1主面17A、第1主面側他端面17E、第2主面側他端面17F、及び第2主面17Bに跨って設けられている。
(effect)
FIG. 5 is an enlarged sectional view showing the vicinity of a bonding portion between the quartz crystal vibrating element 16 and the conductive adhesive member 210. As shown in FIG. FIG. 5 (a) is a cross-sectional view of the crystal unit 10 shown in FIGS. 1 to 3B. FIG. 5B is a cross-sectional view of the crystal unit 510 in which the crystal vibrating element 16 is bonded to the conductive adhesive member 210 at the + side end of the X axis. The quartz oscillator 510 is a comparative example. In the crystal unit 510, the external electrode 97 is provided across the first major surface 17A, the other major surface 17E, the other major surface 17F, and the second major surface 17B.
 図5(a)の水晶振動子10では、水晶片17は、X軸方向の-側端部で片持ち支持されている。導電性接着部材210は、第1主面側一端面17Cと第1主面17Aとに跨って設けられている。この断面では、導電性接着部材210は、第1主面側一端面17Cの全域と、第1主面17Aにおいて第1主面側一端面17Cに隣接する領域とに設けられている。図5(b)の水晶振動子510では、水晶片17は、X軸方向の+側端部で片持ち支持されている。導電性接着部材210は、第1主面側他端面17Eと第1主面17Aとに跨って設けられている。この断面では、導電性接着部材210は、第1主面側他端面17Eの全域と、第1主面17Aにおいて第1主面側他端面17Eに隣接する領域とに設けられている。 In the crystal unit 10 of FIG. 5A, the crystal piece 17 is supported at one end at the negative side in the X-axis direction. The conductive adhesive member 210 is provided across the first major surface side end surface 17C and the first major surface 17A. In this cross section, the conductive adhesive member 210 is provided in the entire area of the first major surface side end surface 17C and in the region adjacent to the first major surface side end surface 17C in the first major surface 17A. In the crystal unit 510 shown in FIG. 5B, the crystal piece 17 is cantilevered at the + side end in the X-axis direction. The conductive adhesive member 210 is provided across the first main surface side other end surface 17E and the first main surface 17A. In this cross section, the conductive adhesive member 210 is provided in the entire area of the first main surface side other end surface 17E and in a region adjacent to the first main surface side other end surface 17E in the first main surface 17A.
 図5の断面で、水晶片17が導電性接着部材210により保持される領域(以下、保持領域と呼ぶ。)の長さ(水晶片17の表面に沿う長さ)は、図5(a)の水晶振動子10と図5(b)の水晶振動子510とで同じである。これにより、水晶振動子10と水晶振動子510とで、水晶片17は同等の力で保持されている。一方、水晶片17の長さ方向(X軸方向)に関しては、水晶振動子10における保持領域の長さLh1は、水晶振動子510における保持領域Lh2の長さより短い。これは、θ1<θ2であることにより、第1主面17Aとなす角度が小さい端面ほどX軸方向の長さが短くなることによる。ここで、90°≦θ1<θ2<180°であることにより、第1主面17Aとなす角度が小さいとは、第1主面17Aとなす角度が90°に近いことをいう。 In the cross section of FIG. 5, the length (length along the surface of the crystal piece 17) of the region where the crystal piece 17 is held by the conductive adhesive member 210 (hereinafter referred to as a holding region) is shown in FIG. Is the same as the crystal unit 10 of FIG. 5 and the crystal unit 510 of FIG. Thereby, the quartz crystal piece 17 is held by the quartz oscillator 10 and the quartz oscillator 510 with the same force. On the other hand, with respect to the length direction (X-axis direction) of the crystal piece 17, the length Lh1 of the holding area in the crystal unit 10 is shorter than the length of the holding area Lh2 in the crystal unit 510. This is because the length in the X-axis direction becomes shorter as the angle formed by the first major surface 17A is smaller because θ1 <θ2. Here, that 90 ° ≦ θ1 <θ2 <180 ° means that the angle formed with the first major surface 17A is small means that the angle formed with the first major surface 17A is close to 90 °.
 以上のことから、導電性接着部材210,212が、第1主面側他端面17Eと第1主面17Aとに跨って設けられていることより、第1主面側一端面17Cと第1主面17Aとに跨って設けられていた方が、水晶片17の振動中心から遠い領域に導電性接着部材210,212を配置することができる。振動中心は、具体的には、各励振電極100,101における対角線の交点である。これにより、水晶振動子10では、水晶片17の振動が阻害されにくくなるので、クリスタルインピーダンスを低減できる。 From the above, since the conductive adhesive members 210 and 212 are provided across the first major surface other end surface 17E and the first major surface 17A, the first major surface end surface 17C and the first major surface side The conductive adhesive members 210 and 212 can be disposed in a region far from the vibration center of the crystal piece 17 when provided across the main surface 17A. Specifically, the vibration center is an intersection point of diagonal lines in each of the excitation electrodes 100 and 101. Thereby, in the crystal unit 10, the vibration of the crystal piece 17 is less likely to be inhibited, so that the crystal impedance can be reduced.
 水晶片17の形状は、上下方向に関して対称である。具体的には、水晶片17の厚み方向中心を通る面S(図3B参照)に関して対称である。このため、導電性接着部材210が、第2主面側一端面17Dと第2主面17Bとに跨って設けられた水晶振動子は、水晶振動子10と同様の効果を奏することができる。この場合は、第2主面17B、第2主面側一端面17D及び第2主面側他端面17Fを、それぞれ、第1主面17A、第1主面側一端面17C及び第1主面側他端面17Eとみなすことができる。 The shape of the crystal piece 17 is symmetrical with respect to the vertical direction. Specifically, it is symmetrical with respect to a plane S (see FIG. 3B) passing through the center in the thickness direction of the crystal piece 17. Therefore, the crystal unit in which the conductive adhesive member 210 is provided across the second main surface side end surface 17D and the second main surface 17B can exhibit the same effect as the crystal unit 10. In this case, the second main surface 17B, the second main surface side end surface 17D, and the second main surface side other end surface 17F are respectively the first main surface 17A, the first main surface side end surface 17C, and the first main surface. It can be regarded as the other side end face 17E.
〈第2実施形態〉
 図6は、本発明の第2実施形態に係る水晶振動子10Aに備えられた水晶振動素子16A及び導電性接着部材210の断面構造図である。図6で、図1~図5に表された部品、部分と共通する部品、部分には、同じ符号を付し、重複する説明は省略する。水晶振動子10Aと第1実施形態に係る水晶振動子10との違いは、水晶振動子10Aが水晶振動素子16の代わりに水晶振動素子16Aを備えていることである。これ以外は、水晶振動子10Aは水晶振動子10と同様の構成を有する。
Second Embodiment
FIG. 6 is a cross-sectional structural view of a quartz crystal vibrating element 16A and a conductive adhesive member 210 provided in a quartz vibrator 10A according to a second embodiment of the present invention. In FIG. 6, parts and parts common to parts and parts shown in FIGS. 1 to 5 are denoted by the same reference numerals, and redundant description will be omitted. The difference between the crystal unit 10A and the crystal unit 10 according to the first embodiment is that the crystal unit 10A includes a crystal vibrating element 16A instead of the quartz crystal vibrating element 16. Except for this, the crystal unit 10A has the same configuration as the crystal unit 10.
 水晶振動素子16Aは、水晶片27、外部電極97,98、励振電極100,101及び引き出し導体102,103を含む(励振電極100,101及び引き出し導体102,103(図2及び図3A参照)は、図6では、図示せず)。水晶片27は、上面及び下面を有する板状であり、上側から見たときに、長方形状である。 The crystal vibrating element 16A includes a crystal piece 27, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103 ( excitation electrodes 100 and 101 and lead conductors 102 and 103 (see FIGS. 2 and 3A) , Not shown in FIG. The crystal piece 27 is a plate having an upper surface and a lower surface, and is rectangular when viewed from the upper side.
 水晶片27の長さ方向(前後方向)はZ’軸方向に沿い、水晶片27の幅方向(左右方向)はX軸方向に沿い、水晶片27の厚み方向(上下方向)はY’軸方向に沿う。水晶片27の主たる振動モードは、厚みすべり振動である。水晶片27は、下面である第1主面27Aと、上面である第2主面27Bとを有する。第1主面27A及び第2主面27Bの各々は、Z’軸に沿う長辺と、X軸に沿う短辺とを有する長方形状である。 The length direction (longitudinal direction) of the crystal piece 27 is along the Z 'axis direction, the width direction (left and right direction) of the crystal piece 27 is along the X axis direction, and the thickness direction (vertical direction) of the crystal piece 27 is Y' axis Along the direction. The main vibration mode of the crystal piece 27 is thickness shear vibration. The crystal piece 27 has a first main surface 27A, which is a lower surface, and a second main surface 27B, which is an upper surface. Each of the first major surface 27A and the second major surface 27B has a rectangular shape having a long side along the Z 'axis and a short side along the X axis.
 水晶片27の後ろ側(Z’軸方向の一方側)の端面は、低角度一端面(低角度端面の一例)27Cと高角度一端面(高角度端面の一例)27Dとを含む。低角度一端面27Cは、第1主面27Aに隣接している。低角度一端面27Cが第1主面27Aとなす角度を、θ3(90°≦θ3<180°)とする。θ3は略90°である。高角度一端面27Dは、第2主面27B及び低角度一端面27Cに隣接している。高角度一端面27Dが第2主面27Bとなす角度は、θ3より大きいθ4(90°<θ4<180°)である。 The end face on the rear side (one side in the Z′-axis direction) of the crystal piece 27 includes a low angle end face (an example of a low angle end face) 27C and a high angle end face (an example of a high angle end face) 27D. The low angle end face 27C is adjacent to the first major surface 27A. An angle formed by the low angle one end surface 27C with the first major surface 27A is θ3 (90 ° ≦ θ3 <180 °). θ3 is approximately 90 °. The high angle end face 27D is adjacent to the second major surface 27B and the low angle end face 27C. The angle formed by the high angle one end surface 27D with the second main surface 27B is θ4 (90 ° <θ4 <180 °) larger than θ3.
 水晶片27の前側(Z’軸方向の他方側)の端面は、低角度他端面27Eと高角度他端面27Fとを含む。低角度他端面27Eは、第2主面27Bに隣接している。低角度他端面27Eが第2主面27Bとなす角度は、θ3(略90°)である。高角度他端面27Fは、第1主面27A及び低角度他端面27Eに隣接している。高角度他端面27Fが第1主面27Aとなす角度は、略θ4である。水晶片27の形状は、X軸に関して実質的に2回回転対称である。 The end surface of the front side (the other side in the Z′-axis direction) of the crystal piece 27 includes a low angle other end surface 27E and a high angle other end surface 27F. The low angle other end surface 27E is adjacent to the second major surface 27B. The angle which the low angle other end surface 27E forms with the second major surface 27B is θ3 (approximately 90 °). The high angle other end surface 27F is adjacent to the first major surface 27A and the low angle other end surface 27E. The angle formed by the high angle other end surface 27F with the first major surface 27A is approximately θ4. The shape of the crystal piece 27 is substantially twice rotational symmetric with respect to the X axis.
 低角度一端面27Cと第1主面27Aとの間には、低角度一端面27C及び第1主面27Aのいずれとも平行ではない他の面が介在していてもよい。この場合、低角度一端面27Cは、第2主面27Bより第1主面27Aに近接しているものとする。高角度一端面27Dと第2主面27Bとの間には、高角度一端面27D及び第2主面27Bのいずれとも平行ではない他の面が介在していてもよい。この場合、高角度一端面27Dは、第1主面27Aより第2主面27Bに近接しているものとする。 Another surface which is not parallel to any of the low angle end surface 27C and the first main surface 27A may be interposed between the low angle end surface 27C and the first main surface 27A. In this case, the low angle one end surface 27C is closer to the first major surface 27A than the second major surface 27B. Between the high angle end surface 27D and the second main surface 27B, another surface which is not parallel to any of the high angle end surface 27D and the second main surface 27B may be interposed. In this case, the high angle one end surface 27D is closer to the second major surface 27B than the first major surface 27A.
 低角度他端面27Eと第2主面27Bとの間には、低角度他端面27E及び第2主面27Bのいずれとも平行ではない他の面が介在していてもよい。この場合、低角度他端面27Eは、第1主面27Aより第2主面27Bに近接しているものとする。高角度他端面27Fと第1主面27Aとの間には、高角度他端面27F及び第1主面27Aのいずれとも平行ではない他の面が介在していてもよい。この場合、高角度他端面27Fは、第2主面27Bより第1主面27Aに近接しているものとする。 Another surface which is not parallel to any of the low angle other end surface 27E and the second main surface 27B may be interposed between the low angle other end surface 27E and the second main surface 27B. In this case, the low angle other end surface 27E is closer to the second major surface 27B than the first major surface 27A. Between the high angle other end surface 27F and the first main surface 27A, another surface which is not parallel to any of the high angle other end surface 27F and the first main surface 27A may be interposed. In this case, the high angle other end surface 27F is closer to the first major surface 27A than the second major surface 27B.
 外部電極97,98は、低角度一端面27C及び第1主面27Aに跨って設けられており、高角度一端面27D及び第2主面27Bには設けられていない。外部電極97は、水晶片27の左面に、設けられていてもよく、設けられていなくてもよい。外部電極98は、水晶片27の右面には、設けられていてもよく、設けられていなくてもよい。 The external electrodes 97 and 98 are provided across the low angle end surface 27C and the first main surface 27A, and are not provided on the high angle end surface 27D and the second main surface 27B. The external electrode 97 may or may not be provided on the left surface of the crystal piece 27. The external electrode 98 may or may not be provided on the right surface of the crystal piece 27.
 導電性接着部材210,212は、低角度一端面27Cと第1主面27Aとに跨って設けられている。導電性接着部材210,212が低角度一端面27Cと第1主面27Aとに跨って設けられているとは、第1実施形態で導電性接着部材210,212が第1主面側一端面17Cと第1主面17Aとに跨って設けられていることと同様のことを意味する。 The conductive adhesive members 210 and 212 are provided across the low angle end surface 27C and the first major surface 27A. The conductive adhesive members 210 and 212 are provided across the low angle end surface 27C and the first main surface 27A in the first embodiment, in the first embodiment, the conductive adhesive members 210 and 212 are on the first main surface side end surface. It means the same thing as being provided straddling 17C and the first major surface 17A.
 この水晶振動子10Aは、水晶振動子10と同様の方法により製造することができる。水晶片27は、水晶片17と同様の方法により製造することができる。その際、後述のメサ加工を行ってもよい。 The crystal unit 10A can be manufactured by the same method as the crystal unit 10. The crystal piece 27 can be manufactured by the same method as the crystal piece 17. At that time, the mesa processing described later may be performed.
 次に、図7を参照して、水晶振動子10Aにより奏することができる効果について説明する。図7は、水晶振動素子16Aと導電性接着部材210との接合部付近を拡大して示す断面構造図である。図7(a)は、図6と同じ断面を示している。図7(b)は、水晶振動素子16AがY’軸方向に関して水晶振動子10Aとは逆向きで導電性接着部材210に接合されている水晶振動子520の断面構造図である。水晶振動子520は、比較例である。水晶振動子520では、外部電極97は、高角度一端面27Dと第2主面27Bとに跨って設けられている。 Next, with reference to FIG. 7, an effect that can be achieved by the crystal unit 10A will be described. FIG. 7 is an enlarged cross-sectional view showing the vicinity of a bonding portion between the quartz crystal vibrating element 16A and the conductive adhesive member 210. As shown in FIG. FIG. 7 (a) shows the same cross section as FIG. FIG. 7B is a cross-sectional view of the crystal unit 520 in which the crystal vibrating element 16A is bonded to the conductive adhesive member 210 in the direction opposite to that of the crystal unit 10A in the Y′-axis direction. The quartz oscillator 520 is a comparative example. In the crystal unit 520, the external electrode 97 is provided across the high angle one end surface 27D and the second major surface 27B.
 図7(a)の水晶振動子10Aでは、導電性接着部材210は、低角度一端面27Cと第1主面27Aとに跨って設けられている。この断面では、導電性接着部材210は、低角度一端面27Cの全域と、第1主面27Aにおいて低角度一端面27Cに隣接する領域とに設けられている。図7(b)の水晶振動子520では、導電性接着部材210は、高角度一端面27Dと第2主面27Bとに跨って設けられている。この断面では、導電性接着部材210は、高角度一端面27Dの全域と、第2主面27Bにおいて高角度一端面27Dに隣接する領域とに設けられている。 In the crystal unit 10A of FIG. 7A, the conductive adhesive member 210 is provided across the low angle one end surface 27C and the first major surface 27A. In this cross section, the conductive adhesive member 210 is provided in the entire area of the low angle end face 27C and in a region adjacent to the low angle end face 27C on the first major surface 27A. In the crystal unit 520 of FIG. 7B, the conductive adhesive member 210 is provided across the high angle one end surface 27D and the second main surface 27B. In this cross section, the conductive adhesive member 210 is provided in the entire area of the high angle end face 27D and in a region adjacent to the high angle end face 27D on the second major surface 27B.
 図7の断面で、導電性接着部材210による水晶片27の保持領域の長さ(水晶片27の表面に沿う長さ)は、図7(a)の水晶振動子10Aと図7(b)の水晶振動子520とで同じである。これにより、水晶振動子10Aと水晶振動子520とで、水晶片27は同等の力で保持されている。一方、水晶片27の長さ方向(Z’軸方向)に関しては、水晶振動子10Aにおける保持領域の長さLh3は、水晶振動子520における保持領域の長さLh4より短い。これは、θ3<θ4であることにより、第1主面27A又は第2主面27Bとなす角度(90°以上、180°未満)が小さい端面ほどZ’軸方向の長さが短くなることによる。 In the cross section of FIG. 7, the length of the holding area of the quartz piece 27 by the conductive adhesive member 210 (length along the surface of the quartz piece 27) is the quartz oscillator 10A of FIG. 7A and FIG. Is the same as the quartz oscillator 520 of FIG. Thus, the quartz crystal piece 27 is held by the quartz oscillator 10A and the quartz oscillator 520 with the same force. On the other hand, with respect to the length direction (Z ′ axis direction) of the crystal piece 27, the length Lh3 of the holding area in the crystal unit 10A is shorter than the length Lh4 of the holding area in the crystal unit 520. This is because by θ3 <θ4, the length in the Z ′ axis direction becomes shorter as the end face formed with the first main surface 27A or the second main surface 27B (90 ° or more and less than 180 °) decreases. .
 以上のことから、導電性接着部材210,212が、高角度一端面27Dと第2主面27Bとに跨って設けられているより、低角度一端面27Cと第1主面27Aとに跨って設けられていた方が、水晶片27の長さ方向(Z’軸方向)に関して、振動中心から遠い領域に導電性接着部材210,212を配置することができる。これにより、水晶振動子10Aでは、水晶片27の振動が阻害されにくくなるので、クリスタルインピーダンスを低減できる。 From the above, since the conductive adhesive members 210 and 212 are provided across the high angle end face 27D and the second main surface 27B, the conductive adhesion members 210 and 212 extend over the low angle end face 27C and the first main surface 27A. If provided, the conductive adhesive members 210 and 212 can be arranged in a region far from the vibration center with respect to the length direction (Z ′ axis direction) of the quartz crystal piece 27. Thereby, in the crystal unit 10A, the vibration of the crystal piece 27 is less likely to be inhibited, so that the crystal impedance can be reduced.
 水晶片27の形状は、X軸に関して2回回転対称であるので、導電性接着部材210が、低角度他端面27Eと第2主面27Bとに跨って設けられた水晶振動子は、水晶振動子10Aと同様の効果を奏することができる。この場合は、第2主面27B、低角度他端面27E、及び高角度他端面27Fを、それぞれ、第1主面27A、低角度一端面27C、及び高角度一端面27Dとみなすことができる。 Since the shape of the crystal piece 27 is twice rotational symmetric with respect to the X-axis, the crystal oscillator in which the conductive adhesive member 210 is provided across the low angle other end surface 27E and the second main surface 27B The same effect as that of the child 10A can be achieved. In this case, the second major surface 27B, the low angle other end surface 27E, and the high angle other end surface 27F can be regarded as the first major surface 27A, the low angle one end surface 27C, and the high angle one end surface 27D, respectively.
 水晶振動素子16Aを基板に実装する際、水晶片27において、基板12に対向させるべき面、及び導電性接着部材210,212と付着させるべき部分を特定する必要がある。イメージセンサにより、水晶片27の形状から、低角度一端面27Cと高角度一端面27Dとを判別するのは困難である。外部電極97,98は、低角度一端面27Cに設けられており、高角度一端面27Dには設けられていない。そのため、イメージセンサにより、外部電極97,98の有無を判別することにより、低角度一端面27Cと高角度一端面27Dとを判別することができる。これにより、水晶振動素子16Aにおいて、基板12に対向させるべき面、及び導電性接着部材210,212を付着させるべき部分を特定することができる。 When mounting the crystal vibrating element 16A on a substrate, it is necessary to specify the surface of the crystal piece 27 to be opposed to the substrate 12 and the portion to be attached to the conductive adhesive members 210 and 212. It is difficult to distinguish between the low angle end face 27C and the high angle end face 27D from the shape of the crystal piece 27 by the image sensor. The external electrodes 97 and 98 are provided on the low angle end face 27C and not provided on the high angle end face 27D. Therefore, the low angle one end surface 27C and the high angle one end surface 27D can be determined by determining the presence or absence of the external electrodes 97 and 98 by the image sensor. Thereby, in the quartz crystal vibrating element 16A, it is possible to specify the surface to be opposed to the substrate 12 and the portion to which the conductive adhesive members 210 and 212 should be attached.
〈第3実施形態〉
 図8は、本発明の第3実施形態に係る水晶振動子10Bに備えられた水晶振動素子16B及び導電性接着部材210の断面構造図である。図8で、図1~図5に表された部品、部分と共通する部品、部分には、同じ符号を付し、重複する説明は省略する。水晶振動子10Bと第1実施形態に係る水晶振動子10との違いは、水晶振動子10Bが水晶振動素子16の代わりに水晶振動素子16Bを備えていることであり、これ以外は、水晶振動子10Bは水晶振動子10と同様の構成を有する。
Third Embodiment
FIG. 8 is a cross-sectional structural view of a crystal vibrating element 16B and a conductive adhesive member 210 provided in a crystal unit 10B according to a third embodiment of the present invention. In FIG. 8, parts and parts common to parts and parts shown in FIGS. 1 to 5 are denoted by the same reference numerals, and redundant description will be omitted. The difference between the crystal unit 10B and the crystal unit 10 according to the first embodiment is that the crystal unit 10B includes the crystal unit 16B instead of the crystal unit 16. Other than this, the crystal unit 10B is a crystal unit. The element 10 B has the same configuration as the crystal unit 10.
 水晶振動素子16Bは、水晶片37、外部電極97,98、励振電極100,101及び引き出し導体102,103を含む(励振電極100,101及び引き出し導体102,103(図2及び図3A参照)は、図8では、図示せず)。水晶片37は、上面及び下面を有する板状であり、上側から見たときに、長方形状である。 The quartz crystal vibrating element 16B includes a quartz piece 37, external electrodes 97 and 98, excitation electrodes 100 and 101, and lead conductors 102 and 103 ( excitation electrodes 100 and 101 and lead conductors 102 and 103 (see FIGS. 2 and 3A) , Not shown in FIG. 8). The crystal piece 37 is a plate having an upper surface and a lower surface, and is rectangular when viewed from the upper side.
 水晶片37の長さ方向(前後方向)はZ’軸方向に沿い、水晶片37の幅方向(左右方向)はX軸方向に沿い、水晶片37の厚み方向(上下方向)はY’軸方向に沿う。水晶片37の主たる振動モードは、厚みすべり振動である。水晶片37は、下面である第1主面37Aと、上面である第2主面37Bとを有する。第1主面37A及び第2主面37Bの各々は、Z’軸に沿う長辺と、X軸に沿う短辺とを有する長方形状である。 The length direction (longitudinal direction) of the crystal piece 37 is along the Z 'axis direction, the width direction (left and right direction) of the crystal piece 37 is along the X axis direction, and the thickness direction (vertical direction) of the crystal piece 37 is Y' axis Along the direction. The main vibration mode of the crystal piece 37 is thickness shear vibration. The crystal piece 37 has a first main surface 37A, which is a lower surface, and a second main surface 37B, which is an upper surface. Each of the first major surface 37A and the second major surface 37B has a rectangular shape having a long side along the Z 'axis and a short side along the X axis.
 水晶片37の後ろ側(Z’軸方向の一方側)の端面は、低角度一端面(低角度端面の一例)37Cと、高角度一端面(高角度端面の一例)37Dと、中間一端面37Gとを含む。低角度一端面37Cは、第1主面37Aに隣接している。低角度一端面37Cが第1主面37Aとなす角度を、θ3(90°≦θ3<180°)とする。高角度一端面37Dは、第2主面37Bに隣接している。高角度一端面37Dが第2主面37Bとなす角度は、θ3より大きいθ4(90°<θ4<180°)である。 An end face on the rear side (one side in the Z ′ axis direction) of the crystal piece 37 is a low angle end face (an example of a low angle end face) 37C, a high angle end face (an example of a high angle end face) 37D, and an intermediate end face And 37G. The low angle end face 37C is adjacent to the first major surface 37A. An angle formed by the low angle one end surface 37C with the first major surface 37A is θ3 (90 ° ≦ θ3 <180 °). The high angle one end face 37D is adjacent to the second major surface 37B. The angle formed by the high angle one end surface 37D with the second major surface 37B is θ4 (90 ° <θ4 <180 °) larger than θ3.
 中間一端面37Gは、低角度一端面37Cと高角度一端面37Dとの間に介在している。中間一端面37Gが第1主面37A又は第2主面37Bとなす角度(90°より大きく、180°以下)は、θ3及びθ4のいずれとも異なる。 The intermediate end face 37G is interposed between the low angle end face 37C and the high angle end face 37D. The angle (larger than 90 ° and smaller than or equal to 180 °) that the intermediate end surface 37G forms with the first major surface 37A or the second major surface 37B is different from both θ3 and θ4.
 水晶片37の前側(Z’軸方向の他方側)の端面は、低角度他端面37Eと、高角度他端面37Fと、中間他端面37Hとを含む。低角度他端面37Eは、第2主面37Bに隣接している。低角度他端面37Eが第2主面37Bとなす角度は、θ3である。高角度他端面37Fは、第1主面37Aに隣接している。高角度他端面37Fが第1主面37Aとなす角度は、θ4である。 The end face on the front side (the other side in the Z′-axis direction) of the crystal piece 37 includes a low angle other end surface 37E, a high angle other end surface 37F, and an intermediate other end surface 37H. The low angle other end surface 37E is adjacent to the second major surface 37B. The angle which the low angle other end surface 37E forms with the second major surface 37B is θ3. The high angle other end surface 37F is adjacent to the first major surface 37A. The angle formed by the high angle other end surface 37F with the first major surface 37A is θ4.
 中間他端面37Hは、低角度他端面37Eと高角度他端面37Fとの間に介在している。中間他端面37Hが第1主面37A又は第2主面37Bとなす角度(90°より大きく、180°以下)は、θ3及びθ4のいずれとも異なる。水晶片37の形状は、X軸に関して実質的に2回回転対称である。 The middle other end surface 37H is interposed between the low angle other end surface 37E and the high angle other end surface 37F. The angle (larger than 90 ° and smaller than or equal to 180 °) that the intermediate other end surface 37H forms with the first major surface 37A or the second major surface 37B is different from both θ3 and θ4. The shape of the crystal piece 37 is substantially twice rotational symmetric with respect to the X axis.
 低角度一端面37Cと第1主面37Aとの間には、低角度一端面37C及び第1主面37Aのいずれとも平行ではない他の面が介在していてもよい。この場合、低角度一端面37Cは、第2主面37Bより第1主面37Aに近接しているものとする。高角度一端面37Dと第2主面37Bとの間には、高角度一端面37D及び第2主面37Bのいずれとも平行ではない他の面が介在していてもよい。この場合、高角度一端面37Dは、第1主面37Aより第2主面37Bに近接しているものとする。 Another surface which is not parallel to any of the low angle one end surface 37C and the first main surface 37A may be interposed between the low angle one end surface 37C and the first main surface 37A. In this case, the low angle one end surface 37C is closer to the first major surface 37A than the second major surface 37B. Another surface which is not parallel to any of the high angle end surface 37D and the second main surface 37B may be interposed between the high angle end surface 37D and the second main surface 37B. In this case, the high angle one end surface 37D is closer to the second major surface 37B than the first major surface 37A.
 低角度他端面37Eと第2主面37Bとの間には、低角度他端面37E及び第2主面37Bのいずれとも平行ではない他の面が介在していてもよい。この場合、低角度他端面37Eは、第1主面37Aより第2主面37Bに近接しているものとする。高角度他端面37Fと第1主面37Aとの間には、高角度他端面37F及び第1主面37Aのいずれとも平行ではない他の面が介在していてもよい。この場合、高角度他端面37Fは、第2主面37Bより第1主面37Aに近接しているものとする。 Another surface which is not parallel to any of the low angle other end surface 37E and the second main surface 37B may be interposed between the low angle other end surface 37E and the second main surface 37B. In this case, the low angle other end surface 37E is closer to the second major surface 37B than the first major surface 37A. Between the high angle other end surface 37F and the first main surface 37A, another surface which is not parallel to any of the high angle other end surface 37F and the first main surface 37A may be interposed. In this case, the high angle other end surface 37F is closer to the first major surface 37A than the second major surface 37B.
 外部電極97,98は、低角度一端面37C及び第1主面37Aに跨って設けられており、高角度一端面37D及び第2主面37Bには設けられていない。外部電極97は、水晶片37の左面に、設けられていてもよく、設けられていなくてもよい。外部電極98は、水晶片37の右面に、設けられていてもよく、設けられていなくてもよい。 The external electrodes 97 and 98 are provided across the low angle end surface 37C and the first main surface 37A, and are not provided on the high angle end surface 37D and the second main surface 37B. The external electrode 97 may or may not be provided on the left surface of the crystal piece 37. The external electrode 98 may or may not be provided on the right surface of the crystal piece 37.
 導電性接着部材210,212は、低角度一端面37Cと第1主面37Aとに跨って設けられている。導電性接着部材210,212が低角度一端面37Cと第1主面37Aとに跨って設けられているとは、第1実施形態で導電性接着部材210,212が第1主面側一端面17Cと第1主面17Aとに跨って設けられていることと同様のことを意味する。 The conductive adhesive members 210 and 212 are provided across the low angle one end surface 37C and the first major surface 37A. The conductive adhesive members 210 and 212 are provided across the low angle end surface 37C and the first main surface 37A in the first embodiment, in the first embodiment, the conductive adhesive members 210 and 212 are on the first main surface side end surface. It means the same thing as being provided straddling 17C and the first major surface 17A.
 この水晶振動子10Bは、水晶振動子10と同様の方法により製造することができる。水晶片37は、水晶片17と同様の方法により製造することができる。その際、マスクM1の開口Mo1とマスクM2の開口Mo2とをZ’軸方向に所定量ずらして水晶板19に設けて、水晶板19をエッチングすることにより、エッチングに要する工数を削減することができる。この技術については、例えば、特許文献2に記載されている。 The crystal unit 10B can be manufactured by the same method as the crystal unit 10. The crystal piece 37 can be manufactured by the same method as the crystal piece 17. At this time, the number of steps required for etching can be reduced by providing the crystal plate 19 with the opening Mo1 of the mask M1 and the opening Mo2 of the mask M2 shifted in the Z ′ axis direction by a predetermined amount and etching the crystal plate 19. it can. This technique is described, for example, in Patent Document 2.
 図9A~図9Cは、水晶片37の製造方法を説明するための断面構造図である。図9Aを参照して、水晶板19の一方表面(水晶片37における第1主面37Aに対応する面)にマスクM1を設け、水晶板19の他方表面(水晶片37における第2主面37Bに対応する面)に、マスクM2を設ける。マスクM1とマスクM2とは、開口Mo1と開口Mo2とがZ’軸方向に所定量ずれるように設ける。 9A to 9C are cross-sectional views for explaining the method of manufacturing the crystal piece 37. As shown in FIG. Referring to FIG. 9A, mask M1 is provided on one surface of quartz plate 19 (the surface corresponding to first major surface 37A of quartz piece 37), and the other surface of quartz plate 19 (second major surface 37B of quartz plate 37). A mask M2 is provided on the surface corresponding to. The mask M1 and the mask M2 are provided such that the openings Mo1 and Mo2 are displaced by a predetermined amount in the Z 'axis direction.
 次に、開口Mo1,Mo2を介して水晶板19をエッチングする。図9A及び図9Bを参照して、エッチングが進行すると、水晶板19において、開口Mo1を介して露出した部分に形成される凹部と開口Mo2を介して露出した部分に形成される凹部とがつながり、水晶板19が分断されたチップCが得られる。チップCのZ’軸方向の一方側の端面には、水晶の結晶面に対応するエッチング面である端面37W,37Xが現れ、チップCのZ’軸方向の他方側の端面には、水晶の結晶面に対応するエッチング面である端面37Y,37Zが現れる。すなわち、チップCのZ’軸方向の一方側の端面及び他方側の端面は、それぞれ、2つの端面を有する。 Next, the quartz plate 19 is etched through the openings Mo1 and Mo2. Referring to FIGS. 9A and 9B, as etching proceeds, in the quartz crystal plate 19, the recess formed in the exposed portion through the opening Mo1 and the recess formed in the exposed portion through the opening Mo2 are connected. The chip C in which the quartz plate 19 is divided is obtained. The end faces 37W and 37X, which are etching surfaces corresponding to the crystal plane of the crystal, appear on the end face on one side of the chip C in the Z 'axis direction, and the end face on the other side of the chip C in the Z' axis direction The end faces 37Y and 37Z, which are etching planes corresponding to crystal planes, appear. That is, the end face on one side of the chip C in the Z 'axis direction and the end face on the other side each have two end faces.
 端面37W,37Zは、第1主面37Aに隣接している。端面37X,37Yは、第2主面37Bに隣接している。端面37Wと第1主面37Aとがなす角度は、端面37Yと第2主面37Bとがなす角度にほぼ等しい。端面37Xと第2主面37Bとがなす角度は、端面37Zと第1主面37Aとがなす角度にほぼ等しい。 The end faces 37W and 37Z are adjacent to the first major surface 37A. The end surfaces 37X and 37Y are adjacent to the second major surface 37B. The angle between the end face 37W and the first major surface 37A is substantially equal to the angle between the end face 37Y and the second major surface 37B. The angle between the end surface 37X and the second main surface 37B is substantially equal to the angle between the end surface 37Z and the first main surface 37A.
 次に、チップCに対して、メサ加工を行い、水晶片37を得る。図9Bを参照して、まず、マスクM1,M2を除去した後、第1及び第2主面37A,37Bに、それぞれ、メサ加工用のマスクM3,M4を設ける。より詳細には、マスクM3は、第1主面37Aにおいて、端面37W,37Zの近傍を除く領域に設ける。マスクM4は、第2主面37Bにおいて、端面37X,37Yの近傍を除く領域に設ける。 Next, mesa processing is performed on the chip C to obtain a crystal piece 37. Referring to FIG. 9B, first, after removing masks M1 and M2, masks M3 and M4 for mesa processing are provided on first and second main surfaces 37A and 37B, respectively. More specifically, the mask M3 is provided in the region excluding the vicinity of the end faces 37W and 37Z on the first major surface 37A. The mask M4 is provided in an area excluding the vicinity of the end faces 37X and 37Y in the second major surface 37B.
 図9Cを参照して、この状態のチップCに対して、エッチングを行うと、チップCにおいて、Z’軸方向の一方側及び他方側の部分に、マスクM3,M4が設けられた部分に比して厚みが薄い薄肉部が形成される。これに伴い、Z’軸方向の一方側の端面に、低角度一端面37C、高角度一端面37D及び中間一端面37Gが現れ、Z’軸方向の他方側の端面に、低角度他端面37E、高角度他端面37F及び中間他端面37Hが現れる。水晶片37のZ’軸方向の一方側の端面及び他方側の端面は、それぞれ、3つの端面を有する。 Referring to FIG. 9C, when the chip C in this state is etched, the chip C has a ratio to the portion provided with the masks M3 and M4 on one side and the other side in the Z ′ axis direction. As a result, a thin portion with a small thickness is formed. Along with this, the low angle end face 37C, the high angle end face 37D and the intermediate end face 37G appear on the end face on one side in the Z ′ axis direction, and the low angle other end face 37E on the end face on the other side in the Z ′ axis direction. , The high angle other end surface 37F and the middle other end surface 37H appear. The end surface on one side in the Z′-axis direction of the crystal piece 37 and the end surface on the other side each have three end surfaces.
 第1主面37Aは、薄肉部においてY’軸方向の一方側の表面である薄肉部第1主面37Atを含むものとする。第2主面37Bは、薄肉部においてY’軸方向の他方側の表面である薄肉部第2主面37Btを含むものとする。その後、マスクM3,M4を除去する。 The first major surface 37A includes a thinner portion first major surface 37At, which is a surface on one side in the Y′-axis direction in the thinner portion. The second major surface 37B includes a thinner portion second major surface 37Bt, which is the surface on the other side in the Y′-axis direction in the thinner portion. Thereafter, the masks M3 and M4 are removed.
 次に、図10を参照して、水晶振動子10Bにより奏することができる効果について説明する。図10は、水晶振動素子16Bと導電性接着部材210との接合部付近を拡大して示す断面構造図である。図8及び図10では、メサ加工により形成された薄肉部の図示を省略している。 Next, with reference to FIG. 10, an effect that can be achieved by the crystal unit 10B will be described. FIG. 10 is an enlarged cross-sectional view showing the vicinity of a bonding portion between the crystal vibrating element 16B and the conductive adhesive member 210. As shown in FIG. In FIG. 8 and FIG. 10, illustration of the thin-walled portion formed by mesa processing is omitted.
 図10(a)は、図8と同じ断面を示している。図10(b)は、水晶振動素子16BがY’軸方向に関して水晶振動子10Bとは逆向きで導電性接着部材210に接合されている水晶振動子530の断面構造図である。水晶振動子530は、比較例である。水晶振動子530では、外部電極97は、高角度一端面37Dと第2主面37Bとに跨って設けられている。 FIG. 10 (a) shows the same cross section as FIG. FIG. 10B is a cross-sectional view of the crystal unit 530 in which the crystal unit 16B is bonded to the conductive adhesive member 210 in the direction opposite to that of the crystal unit 10B in the Y′-axis direction. The quartz oscillator 530 is a comparative example. In the crystal unit 530, the external electrode 97 is provided across the high angle one end surface 37D and the second major surface 37B.
 図10(a)の水晶振動子10Bでは、導電性接着部材210は、低角度一端面37Cと第1主面37Aとに跨って設けられている。この断面では、導電性接着部材210は、中間一端面37Gの全域と、低角度一端面37Cの全域と、第1主面37Aにおいて低角度一端面37Cに隣接する領域とに設けられている。図10(b)の水晶振動子530では、導電性接着部材210は、高角度一端面37Dと第2主面37Bとに跨って設けられている。この断面では、導電性接着部材210は、高角度一端面37Dの全域と、第2主面37Bにおいて高角度一端面37Dに隣接する領域とに設けられている。水晶振動子10B及び水晶振動子530では、いずれも水晶片37の厚み方向に関して、導電性接着部材210,212を設ける領域を、水晶片37の厚みの約半分の領域に設定している。 In the crystal unit 10B of FIG. 10A, the conductive adhesive member 210 is provided across the low angle one end surface 37C and the first major surface 37A. In this cross section, the conductive adhesive member 210 is provided in the entire area of the intermediate end surface 37G, the entire area of the low angle end surface 37C, and the region adjacent to the low angle end surface 37C on the first major surface 37A. In the crystal unit 530 of FIG. 10B, the conductive adhesive member 210 is provided across the high angle one end surface 37D and the second main surface 37B. In this cross section, the conductive adhesive member 210 is provided in the entire area of the high angle end face 37D and in a region adjacent to the high angle end face 37D on the second major surface 37B. In each of the crystal unit 10B and the crystal unit 530, the area in which the conductive adhesive members 210 and 212 are provided is set to about half the thickness of the crystal piece 37 in the thickness direction of the crystal piece 37.
 図10の断面で、導電性接着部材210による水晶片37の保持領域の長さ(水晶片37の表面に沿う長さ)は、図10(a)の水晶振動子10Bと図10(b)の水晶振動子530とで同じである。これにより、水晶振動子10Bと水晶振動子530とで、水晶片37は同等の力で保持されている。一方、水晶片37の長さ方向(Z’軸方向)に関しては、水晶振動子10Bにおける保持領域の長さLh5は、水晶振動子530における保持領域Lh6の長さより短い。これは、θ3<θ4であることにより、第1主面37A又は第2主面37Bとなす角度(90°以上、180°未満)が小さい端面ほどZ’軸方向の長さが短くなることによる。 In the cross section of FIG. 10, the length (the length along the surface of the crystal piece 37) of the holding area of the crystal piece 37 by the conductive adhesive member 210 is the crystal oscillator 10B of FIG. 10 (a) and FIG. Is the same as the quartz oscillator 530 of FIG. Thereby, the quartz crystal piece 37 is held by the quartz oscillator 10B and the quartz oscillator 530 with the same force. On the other hand, with respect to the length direction (Z ′ axis direction) of the crystal piece 37, the length Lh5 of the holding area in the crystal unit 10B is shorter than the length of the holding area Lh6 in the crystal unit 530. This is because by θ3 <θ4, the length in the Z ′ axis direction becomes shorter as the end face formed with the first main surface 37A or the second main surface 37B (90 ° or more and less than 180 °) decreases. .
 以上のことから、導電性接着部材210,212が、高角度一端面37Dと第2主面37Bとに跨って設けられているより、中間一端面37Gと、低角度一端面37Cと、第1主面37Aとに跨って設けられていた方が、水晶片37の長さ方向(Z’軸方向)に関して、振動中心から遠い領域に導電性接着部材210,212を配置することができる。これにより、水晶振動子10Bでは、水晶片37の振動が阻害されにくくなるので、クリスタルインピーダンスを低減できる。 From the above, since the conductive adhesive members 210 and 212 are provided across the high angle end face 37D and the second main surface 37B, the middle end face 37G, the low angle end face 37C, and the first The conductive adhesive members 210 and 212 can be disposed in a region far from the vibration center with respect to the length direction (Z ′ axis direction) of the quartz crystal piece 37 if provided so as to straddle the main surface 37A. Thereby, in the crystal unit 10B, the vibration of the crystal piece 37 is less likely to be inhibited, so that the crystal impedance can be reduced.
 水晶片37の形状は、X軸に関して2回回転対称であるので、外部電極97,98及び導電性接着部材210が、中間他端面37H、低角度他端面37Eと第2主面37Bとに跨って設けられた水晶振動子は、水晶振動子10Bと同様の効果を奏することができる。この場合は、第2主面37B、低角度他端面37E、中間他端面37H、及び高角度他端面37Fを、それぞれ、第1主面37A、低角度一端面37C、中間一端面37G、及び高角度一端面37Dとみなすことができる。 Since the shape of the crystal piece 37 is twice rotational symmetric with respect to the X axis, the external electrodes 97 and 98 and the conductive adhesive member 210 straddle the middle other end surface 37H, the low angle other end surface 37E and the second main surface 37B. The quartz oscillator provided can have the same effect as the quartz oscillator 10B. In this case, the second main surface 37B, the low angle other end surface 37E, the middle other end surface 37H, and the high angle other end surface 37F are respectively the first main surface 37A, the low angle one end surface 37C, the middle one end surface 37G, and It can be considered as an angle end face 37D.
 水晶振動素子16Aと同様に、水晶振動素子16Bにおいても、外部電極97,98は、低角度一端面37Cに設けられており、高角度一端面37Dには設けられていないため、イメージセンサにより、外部電極97,98の有無を判別することにより、低角度一端面37Cと高角度一端面37Dとを判別することができる。これにより、水晶振動素子16Bにおいて、基板12に対向させるべき面、及び導電性接着部材210,212を付着させるべき部分を特定することができる。 Similarly to the quartz crystal vibrating element 16A, also in the quartz crystal vibrating element 16B, the external electrodes 97 and 98 are provided on the low angle one end face 37C and not provided on the high angle one end face 37D. By determining the presence or absence of the external electrodes 97 and 98, it is possible to distinguish between the low angle end face 37C and the high angle end face 37D. Thereby, in the quartz crystal vibrating element 16B, the surface to be opposed to the substrate 12 and the portion to which the conductive adhesive members 210 and 212 are to be attached can be specified.
(その他の実施形態)
 第1実施形態の水晶片17は、メサ加工されたものであってもよい。上記実施形態の構成は、任意に組み合わせてもよい。
(Other embodiments)
The crystal piece 17 of the first embodiment may be mesa-processed. The configurations of the above embodiments may be combined arbitrarily.
10,10A,10B:水晶振動子
11:保持器
12:基板
12A:上面
14:キャップ
14a:主面部
14b:環状部
14c:フランジ
15:凹部
15A:下面
16,16A,16B:水晶振動素子
17,27,37:水晶片
17A,27A,37A:第1主面
17B,27B,37B:第2主面
17C:第1主面側一端面
17D:第2主面側一端面
17E:第1主面側他端面
17F:第2主面側他端面
21:基板本体
27C,37C:低角度一端面
27D,37D:高角度一端面
27E,37E:低角度他端面
27F,37F:高角度他端面
30:ろう材
37G:中間一端面
37H:中間他端面
97,98:外部電極
100,101:励振電極
210,212:導電性接着部材
Sp:空間
10, 10A, 10B: quartz crystal vibrator 11: holder 12: baseplate 12A: top surface 14: cap 14a: main surface section 14b: annular section 14c: flange 15: concave section 15A: lower surface 16, 16A, 16B: crystal vibrating element 17, 27, 37: quartz crystal pieces 17A, 27A, 37A: first main surfaces 17B, 27B, 37B: second main surface 17C: first main surface side one end surface 17D: second main surface side one end surface 17E: first main surface Side other end surface 17F: Second main surface side other end surface 21: Substrate body 27C, 37C: Low angle end surface 27D, 37D: High angle end surface 27E, 37E: Low angle other end surface 27F, 37F: High angle other end surface 30: Brazing material 37G: middle one end face 37H: middle other end face 97, 98: external electrode 100, 101: excitation electrode 210, 212: conductive adhesive member Sp: space

Claims (5)

  1.  ATカットされた水晶片であって、X軸に沿う長辺とZ’軸に沿う短辺とを有する長方形状の第1及び第2主面を備えた水晶片と、
     前記水晶片の表面に設けられた外部電極と、
     基板と、
     前記基板及び前記外部電極に接触することにより、前記水晶片を前記基板に固定する導電性接着部材と
     を含み、
     前記水晶片のX軸の-側の端面が、前記第2主面より前記第1主面に近接し前記第1主面となす角度がθ1(90°≦θ1<180°)である第1主面側一端面と、前記第1主面より前記第2主面に近接し前記第2主面となす角度がθ1である第2主面側一端面とを含み、
     前記水晶片のX軸の+側の端面が、前記第2主面より前記第1主面に近接し前記第1主面となす角度がθ1より大きいθ2(90°<θ2<180°)である第1主面側他端面と、前記第1主面より前記第2主面に近接し前記第2主面となす角度がθ2である第2主面側他端面とを含み、
     前記導電性接着部材が、前記第1主面側一端面と、前記第1主面とに跨って設けられている、
     水晶振動子。
    A quartz-cut quartz piece provided with rectangular first and second major surfaces having long sides along the X-axis and short sides along the Z'-axis;
    An external electrode provided on the surface of the crystal piece;
    A substrate,
    And a conductive adhesive member for fixing the crystal piece to the substrate by contacting the substrate and the external electrode.
    An end face on the negative side of the X axis of the crystal piece is closer to the first main surface than the second main surface, and an angle formed with the first main surface is θ1 (90 ° ≦ θ1 <180 °). And a second main surface side end surface which is closer to the second main surface than the first main surface side and whose angle formed with the second main surface is θ1.
    The end face on the + side of the X axis of the crystal piece is closer to the first main surface than the second main surface, and the angle formed with the first main surface is θ2 larger than θ1 (90 ° <θ2 <180 °) And a second main surface side other end surface which is closer to the second main surface than the first main surface and has an angle of θ2 with the second main surface,
    The conductive adhesive member is provided across the first main surface side end surface and the first main surface.
    Crystal oscillator.
  2.  ATカットされた水晶片であって、Z’軸に沿う長辺とX軸に沿う短辺とを有する長方形状の第1及び第2主面を備えた水晶片と、
     前記水晶片の表面に設けられた外部電極と、
     基板と、
     前記基板及び前記外部電極に接触することにより、前記水晶片を前記基板に固定する導電性接着部材と
     を含み、
     前記水晶片のZ’軸の一方側の端面が、前記第2主面より前記第1主面に近接し前記第1主面となす角度がθ3(90°≦θ3<180°)である低角度端面と、前記第1主面より前記第2主面に近接し前記第2主面となす角度がθ3より大きいθ4(90°<θ4<180°)である高角度端面とを含み、
     前記導電性接着部材が、前記低角度端面と、前記第1主面とに跨って設けられている、
     水晶振動子。
    A quartz-cut quartz piece provided with rectangular first and second major surfaces having long sides extending along the Z 'axis and short sides extending along the X axis;
    An external electrode provided on the surface of the crystal piece;
    A substrate,
    And a conductive adhesive member for fixing the crystal piece to the substrate by contacting the substrate and the external electrode.
    The end face on one side of the Z ′ axis of the crystal piece is closer to the first main surface than the second main surface, and the angle formed with the first main surface is θ3 (90 ° ≦ θ3 <180 °). An angular end face, and a high angle end face that is closer to the second main surface than the first main surface and that forms an angle θ4 larger than θ3 (90 ° <θ4 <180 °),
    The conductive adhesive member is provided across the low angle end face and the first main surface.
    Crystal oscillator.
  3.  前記低角度端面と前記高角度端面とが隣接しており、
     前記低角度端面と前記第1主面とがなす角度が、略90°である、
     請求項2に記載の水晶振動子。
    The low angle end face and the high angle end face are adjacent to each other,
    The angle between the low angle end face and the first main surface is approximately 90 degrees,
    The crystal unit according to claim 2.
  4.  前記水晶片のZ’軸の前記一方側の端面が、前記低角度端面と前記高角度端面との間に、中間端面を更に含む、
     請求項2に記載の水晶振動子。
    The end face on one side of the Z ′ axis of the crystal piece further includes an intermediate end face between the low angle end face and the high angle end face,
    The crystal unit according to claim 2.
  5.  前記外部電極が、前記第1主面及び前記低角度端面の少なくとも一方に設けられているとともに、前記第2主面及び前記高角度端面のいずれにも設けられていない、
     請求項2乃至請求項4のいずれか1項に記載の水晶振動子。
    The external electrode is provided on at least one of the first main surface and the low angle end surface, and is not provided on any of the second main surface and the high angle end surface.
    The crystal oscillator according to any one of claims 2 to 4.
PCT/JP2018/033724 2017-09-22 2018-09-12 Crystal oscillator WO2019059055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-182997 2017-09-22
JP2017182997 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059055A1 true WO2019059055A1 (en) 2019-03-28

Family

ID=65809706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033724 WO2019059055A1 (en) 2017-09-22 2018-09-12 Crystal oscillator

Country Status (1)

Country Link
WO (1) WO2019059055A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027506A (en) * 2012-07-27 2014-02-06 Seiko Epson Corp Vibration piece, vibration element, vibrator, electronic device, electronic apparatus, movable body and manufacturing method for vibration piece
JP2014075707A (en) * 2012-10-04 2014-04-24 Nippon Dempa Kogyo Co Ltd Electronic component, and method of manufacturing the same
JP2014143587A (en) * 2013-01-24 2014-08-07 Daishinku Corp Crystal oscillator and production method of the same
JP2014179773A (en) * 2013-03-14 2014-09-25 Sii Crystal Technology Inc Crystal oscillator piece, method of manufacturing crystal oscillator piece, and crystal oscillator
JP2014179771A (en) * 2013-03-14 2014-09-25 Sii Crystal Technology Inc Crystal oscillator, oscillator, electronic apparatus and radio clock
JP2014179769A (en) * 2013-03-14 2014-09-25 Sii Crystal Technology Inc Crystal oscillator, oscillator, electronic apparatus and radio clock
JP2015186241A (en) * 2014-03-26 2015-10-22 エスアイアイ・クリスタルテクノロジー株式会社 Method for manufacturing piezoelectric vibration piece, piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece
JP2016197778A (en) * 2015-04-02 2016-11-24 日本電波工業株式会社 At cut crystal piece and crystal oscillator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027506A (en) * 2012-07-27 2014-02-06 Seiko Epson Corp Vibration piece, vibration element, vibrator, electronic device, electronic apparatus, movable body and manufacturing method for vibration piece
JP2014075707A (en) * 2012-10-04 2014-04-24 Nippon Dempa Kogyo Co Ltd Electronic component, and method of manufacturing the same
JP2014143587A (en) * 2013-01-24 2014-08-07 Daishinku Corp Crystal oscillator and production method of the same
JP2014179773A (en) * 2013-03-14 2014-09-25 Sii Crystal Technology Inc Crystal oscillator piece, method of manufacturing crystal oscillator piece, and crystal oscillator
JP2014179771A (en) * 2013-03-14 2014-09-25 Sii Crystal Technology Inc Crystal oscillator, oscillator, electronic apparatus and radio clock
JP2014179769A (en) * 2013-03-14 2014-09-25 Sii Crystal Technology Inc Crystal oscillator, oscillator, electronic apparatus and radio clock
JP2015186241A (en) * 2014-03-26 2015-10-22 エスアイアイ・クリスタルテクノロジー株式会社 Method for manufacturing piezoelectric vibration piece, piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece
JP2016197778A (en) * 2015-04-02 2016-11-24 日本電波工業株式会社 At cut crystal piece and crystal oscillator

Similar Documents

Publication Publication Date Title
JP4830069B2 (en) Piezoelectric wafer
US7015630B2 (en) Piezoelectric vibration piece, piezoelectric device using piezoelectric vibration piece, portable phone unit using piezoelectric device, and electronic equipment using piezoelectric device
EP2624450B1 (en) Piezoelectric vibrating reed, piezoelectric vibrator, method for manufacturing piezoelectric vibrating reed, and method for manufacturing piezoelectric vibrator
US20130193807A1 (en) Quartz crystal vibrating piece and quartz crystal device
US8907545B2 (en) Crystal element and crystal device
JP2007325250A (en) Piezoelectric resonator and method for manufacturing thereof
TW201351737A (en) Piezoelectric vibrating piece and piezoelectric device
JP2005151423A (en) Piezoelectric vibration chip and piezoelectric device and method of manufacturing them, and mobile telephone apparatus using piezoelectric device, and electronic apparatus using piezoelectric device
JP5652122B2 (en) Vibrating piece, vibrating device and electronic device
US20130241358A1 (en) Quartz crystal device and method for fabricating the same
JP5213614B2 (en) Piezoelectric device and manufacturing method thereof
JP5088613B2 (en) Frequency adjusting method for vibration device, vibration device and electronic device
CN107534431B (en) Crystal oscillator and method for manufacturing same
JP2007158566A (en) Piezoelectric vibration chip and piezoelectric device
JP4825952B2 (en) Piezoelectric wafer etching method and piezoelectric device
CN107210725B (en) Crystal oscillator and crystal oscillator device
JP4636170B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP2008092505A (en) Crystal piece aggregate, crystal oscillating piece, and crystal device
CN109891746B (en) Tuning fork type vibrator
WO2019059055A1 (en) Crystal oscillator
US9030081B2 (en) Piezoelectric device
JP5495080B2 (en) Frequency adjusting method for vibration device, vibration device, and electronic device
JP7227571B2 (en) Vibrating element, vibrator, and method for manufacturing vibrating element
JP2006074272A (en) Crystal vibrating plate and its manufacturing method
JP2014192802A (en) Piezoelectric vibration piece, process of manufacturing the same, and piezoelectric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP