WO2019059051A1 - 圧電薄膜素子 - Google Patents

圧電薄膜素子 Download PDF

Info

Publication number
WO2019059051A1
WO2019059051A1 PCT/JP2018/033670 JP2018033670W WO2019059051A1 WO 2019059051 A1 WO2019059051 A1 WO 2019059051A1 JP 2018033670 W JP2018033670 W JP 2018033670W WO 2019059051 A1 WO2019059051 A1 WO 2019059051A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
chemical formula
piezoelectric thin
electrode layer
piezoelectric
Prior art date
Application number
PCT/JP2018/033670
Other languages
English (en)
French (fr)
Inventor
純一 木村
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US16/647,491 priority Critical patent/US11594669B2/en
Priority to JP2019543574A priority patent/JP7215426B2/ja
Priority to CN201880044685.6A priority patent/CN110832655B/zh
Publication of WO2019059051A1 publication Critical patent/WO2019059051A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end

Definitions

  • the present invention relates to a piezoelectric thin film element.
  • a MEMS Micro Electro Mechanical Systems
  • a MEMS micro-electro-mechanical system
  • a piezoelectric thin film is used in a MEMS having a function such as a sensor, a filter, a harvester, or an actuator.
  • a lower electrode layer, a piezoelectric thin film, and an upper electrode layer are stacked on a substrate such as silicon or sapphire.
  • a MEMS having arbitrary characteristics can be obtained.
  • a piezoelectric thin film used for a piezoelectric thin film element for example, AlN (aluminum nitride), ZnO (zinc oxide), CdS (cadmium sulfide), LiNbO 3 (lithium niobate), PZT (lead zirconate titanate), etc. are known. It is done.
  • a piezoelectric thin film having a wurtzite structure such as AlN, ZnO and CdS has a small positive piezoelectric constant (d constant) but a small dielectric constant ( ⁇ r ) as compared with PZT having a perovskite structure.
  • the most serious problem is the deterioration of the piezoelectric characteristics derived from the crystal orientation.
  • the orientation in which the piezoelectric characteristics of the piezoelectric thin film having the wurtzite structure are expressed is the (001) plane of the wurtzite structure, but not only the presence of the non- (001) plane of the wurtzite structure but the (001) plane Fluctuation in the orientation of Y degrades the piezoelectric characteristics. Therefore, it is important to suppress the fluctuation of the crystal orientation of the piezoelectric thin film having the wurtzite structure and to enhance the orientation of the (001) plane.
  • Non-Patent Document 1 For example, in the method for producing an AlN thin film described in Non-Patent Document 1, various conditions such as the input power to the sputtering target and the residual gas in the sputtering apparatus are changed in order to enhance the crystal orientation of the AlN thin film. .
  • Lattice mismatch degrades the crystal orientation of the piezoelectric thin film. Due to the deterioration of the crystal orientation, the piezoelectric properties of the piezoelectric thin film are also deteriorated. The lattice mismatch also increases residual stress in the piezoelectric thin film. Residual stress causes cracks in the piezoelectric thin film. Furthermore, the lattice mismatch degrades the surface smoothness of the piezoelectric thin film. The deterioration of the surface smoothness lowers the insulation resistance of the piezoelectric thin film.
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a piezoelectric thin film element in which lattice mismatch between the piezoelectric thin film and the lower electrode layer (first electrode layer) is reduced.
  • a piezoelectric thin film element includes a first electrode layer and a piezoelectric thin film directly stacked on the first electrode layer, and the first electrode layer is composed of two or more metal elements.
  • the first electrode layer has a body-centered cubic lattice structure, and the piezoelectric thin film has a wurtzite structure.
  • the alloy may contain two or more elements selected from the group consisting of Mo, W, V, Cr, Nb and Ta.
  • the alloy may be represented by any of the following chemical formula 3A, chemical formula 3B, chemical formula 3C, chemical formula 3D, chemical formula 3E and chemical formula 3F, and the piezoelectric thin film may contain aluminum nitride .
  • Mo (1-x) W x Chemical formula 3A [0 ⁇ x ⁇ 0.65 in the above chemical formula 3A.
  • Mo (1-x) V x Formula 3B [0 ⁇ x ⁇ 0.82 in the above Chemical Formula 3B.
  • Mo (1-x) Nb x Chemical formula 3C [0 ⁇ x ⁇ 0.18 in the above chemical formula 3C.
  • W (1-x) V x chemical formula 3D [In the above Chemical Formula 3D, 0.10 ⁇ x ⁇ 0.87.
  • the alloy may be represented by any of the following Chemical Formula 4A, Chemical Formula 4B, Chemical Formula 4C, Chemical Formula 4D, and Chemical Formula 4E, and the piezoelectric thin film may contain zinc oxide.
  • Mo (1-y) W y Chemical formula 4A [0.90 ⁇ y ⁇ 1.0 in the above chemical formula 4A. ]
  • Mo (1-y) Nb y Chemical formula 4B [0.25 ⁇ y ⁇ 1.0 in the above chemical formula 4B. ]
  • Mo (1-y) Ta y chemical formula 4C [In the above Chemical Formula 4C, 0.25 ⁇ y ⁇ 1.0. ]
  • W (1-y) Nb y Chemical formula 4D [0 ⁇ y ⁇ 1.0 in the above chemical formula 4D. ]
  • W (1-y) Ta y chemical formula 4E [0 ⁇ y ⁇ 1.0 in the above chemical formula 4E. ]
  • the alloy may contain three or more elements selected from the group consisting of Mo, W, V, Cr, Nb and Ta.
  • the alloy may be represented by any one of the following Chemical Formula 6A, Chemical Formula 6B, and Chemical Formula 6C, and the piezoelectric thin film may contain aluminum nitride.
  • Mo x W y V z chemical formula 6A [In the above Chemical Formula 6A, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.90, 0 ⁇ z ⁇ 0.87. ]
  • Mo x W y Cr z chemical formula 6B [In the above Chemical Formula 6B, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.95, 0 ⁇ z ⁇ 0.46. ]
  • Mo x W y Nb z chemical formula 6C [In the above Chemical Formula 6C, 0.35 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.65, 0 ⁇ z ⁇ 0.18. ]
  • the alloy may be represented by any one of the following Chemical Formula 7A and Chemical Formula 7B, and the piezoelectric thin film may contain zinc oxide.
  • Mo x W y Nb z chemical formula 7A [In the above chemical formula 7A, 0 ⁇ x ⁇ 0.75, 0 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 1.0. ]
  • Mo x W y Ta z chemical formula 7B [0 ⁇ x ⁇ 0.75, 0 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 1.0 in the above Chemical Formula 7B. ]
  • the (110) plane of the body-centered cubic lattice structure of the first electrode layer may be oriented in the normal direction of the interface between the first electrode layer and the piezoelectric thin film.
  • the degree of lattice mismatch between the first electrode layer and the piezoelectric thin film may be 0% or more and 2% or less.
  • the piezoelectric thin film element according to one aspect of the present invention may further include a substrate, and the first electrode layer may be directly laminated on the substrate.
  • the full width at half maximum of the rocking curve of the (002) plane of the wurtzite structure of the piezoelectric thin film may be 0 ° or more and 2.0 ° or less.
  • a piezoelectric thin film element is provided in which the lattice mismatch between the piezoelectric thin film and the lower electrode layer (first electrode layer) is reduced.
  • FIG. 1 is a schematic cross-sectional view of a piezoelectric thin film element according to an embodiment of the present invention
  • (b) in FIG. 1 is a piezoelectric thin film according to another embodiment of the present invention It is a typical sectional view of an element.
  • FIG. 2 is a schematic cross-sectional view of a piezoelectric thin film element according to an embodiment of the present invention.
  • the piezoelectric thin film element 10 As shown in (a) in FIG. 1, the piezoelectric thin film element 10 according to the present embodiment is directly laminated on the substrate 12, the first electrode layer 6a laminated on the substrate 12, and the first electrode layer 6a.
  • the piezoelectric thin film 2 and the second electrode layer 6 b stacked on the piezoelectric thin film 2 are provided.
  • the substrate 12 and the second electrode layer 6 b are not essential to the piezoelectric thin film element according to the present invention.
  • the first electrode layer 6a may be rephrased as a lower electrode layer.
  • the second electrode layer 6b may be rephrased as an upper electrode layer.
  • the first electrode layer 6a contains an alloy composed of two or more metal elements, and the first electrode layer 6a has a body-centered cubic lattice structure.
  • the alloy contained in the first electrode layer 6a is composed of two or more metal elements, and has a body-centered cubic lattice structure.
  • the first electrode layer 6a may be made of only the above-mentioned alloy having a body-centered cubic lattice structure.
  • the piezoelectric thin film 2 has a wurtzite structure. That is, the piezoelectric thin film 2 may include a piezoelectric composition having a wurtzite crystal structure.
  • the piezoelectric composition contained in the piezoelectric thin film 2 is, for example, AlN (aluminum nitride), ZnO (zinc oxide), ZnS (zinc sulfide), ZnTe (zinc telluride), CdS (cadmium sulfide), CdSe (cadmium selenide) And at least one piezoelectric composition selected from the group consisting of CdTe (cadmium telluride).
  • the piezoelectric thin film 2 may consist only of the above-mentioned piezoelectric composition having a wurtzite structure. As long as the lattice matching between the piezoelectric thin film 2 and the first electrode layer 6 a is not impaired, the piezoelectric thin film 2 may contain other additive elements in addition to the above-described elements constituting the piezoelectric thin film 2.
  • the piezoelectric thin film 2 may be composed of a plurality of piezoelectric layers having a wurtzite structure. Another piezoelectric thin film having a wurtzite structure may be disposed between the piezoelectric thin film 2 and the first electrode layer 6a. Another piezoelectric thin film having a wurtzite structure may be disposed between the piezoelectric thin film 2 and the second electrode layer 6b.
  • the second electrode layer 6 b may be stacked directly on the piezoelectric thin film 2.
  • the wurtzite structure of the piezoelectric thin film 2 easily matches the body-centered cubic lattice structure of the first electrode layer 6a.
  • the absolute value of the degree of lattice mismatch between the first electrode layer 6a and the piezoelectric thin film 2 can be 0% or more and 2% or less, or 0.04% or more and 1.76% or less. Therefore, the (001) plane (or (002) plane) that expresses the piezoelectric characteristics of the piezoelectric thin film 2 having the wurtzite structure is easily oriented in the normal direction of the surface of the substrate 12, and the crystal orientation of the piezoelectric thin film 2 is improves.
  • the fluctuation of the orientation of the (001) plane is suppressed in the normal direction of the surface of the substrate 12, and the orientation of the non- (001) plane in the same direction is suppressed.
  • the improvement of the crystal orientation of the piezoelectric thin film 2 improves the piezoelectric characteristics of the piezoelectric thin film 2.
  • the normal direction of the surface of the substrate 12 may be rephrased as the normal direction of the interface between the first electrode layer 6 a and the piezoelectric thin film 2.
  • the lattice mismatch degree ⁇ a / a between the first electrode layer 6 a and the piezoelectric thin film 2 is defined by the following equation 1.
  • a ele. Is a lattice constant of the body-centered cubic lattice structure of the first electrode layer 6 a at the film forming temperature T ° C. (eg 300 ° C.) of the piezoelectric thin film 2.
  • the lattice constant of the body-centered cubic lattice structure of the first electrode layer 6a at room temperature (27 ° C.) is a ele. 0, and the thermal expansion coefficient of the first electrode layer 6a is CTE ele.
  • it is represented as a ele. Is a ele. 0 + CTE ele. Equal to x (T-27). a wurt.
  • the lattice constant of the wurtzite structure of the piezoelectric thin film 2 at room temperature (27 ° C.) is a wurt. It is represented as 0, and the thermal expansion coefficient of the piezoelectric thin film 2 is CTE wurt. When it is expressed as a wurt. Is a wurt. 0 + CTE wurt. Equal to x (T-27).
  • the full width at half maximum (FWHM) of the rocking curve of the (002) plane of the wurtzite structure of the piezoelectric thin film 2 may be 0 ° or more and 2.0 ° or less. As the absolute value of the degree of lattice mismatch between the first electrode layer 6a and the piezoelectric thin film 2 is smaller, the (002) plane of the piezoelectric thin film 2 is more easily oriented, and the full width at half maximum of the rocking curve is smaller. The smaller the full width at half maximum of the rocking curve, the larger the d 33 of the piezoelectric thin film element 10 tends to be.
  • the (110) plane of the body-centered cubic lattice structure of the first electrode layer 6 a may be oriented in the normal direction of the interface between the first electrode layer 6 a and the piezoelectric thin film 2.
  • the atomic arrangement in the (110) plane of the body-centered cubic lattice structure tends to match the atomic arrangement in the (001) plane of the wurtzite structure. Therefore, the (001) plane of the piezoelectric thin film 2 is likely to be oriented parallel to the (110) plane of the first electrode layer 6a.
  • the residual stress in the piezoelectric thin film 2 is also reduced.
  • the residual stress cracks in the piezoelectric thin film 2 are also suppressed, and the piezoelectric characteristics of the piezoelectric thin film 2 are improved.
  • the suppression of the crack in the piezoelectric thin film 2 suppresses the peeling of the piezoelectric thin film 2 from the first electrode layer 6 a or improves the yield in the manufacture of the piezoelectric thin film 2.
  • residual stress ⁇ (unit: GPa) in the case where the substrate 12 is a Si substrate, the first electrode layer is W, and the piezoelectric thin film is AlN is represented by the following Equation 2.
  • a piezoelectric thin film in which the first electrode layer consists only of W is out of the technical scope of the present invention.
  • E in the equation 2 is the Young's modulus (unit: GPa) of the piezoelectric thin film 2.
  • is the Poisson's ratio of the piezoelectric thin film 2.
  • a ele. Is the lattice constant of the first electrode layer (W).
  • a AlN is a lattice constant of a piezoelectric thin film (AlN).
  • ⁇ - AlN is a thermal expansion coefficient of a piezoelectric thin film (AlN), which is about 4.2 ⁇ 10 ⁇ 6 / ° C.
  • ⁇ Si is a thermal expansion coefficient of a silicon substrate (Si) and is about 3.0 ⁇ 10 ⁇ 6 / ° C.
  • ⁇ misfit is a factor derived from the degree of lattice mismatch between the first electrode layer (W) and the piezoelectric thin film (AlN).
  • ⁇ thermal is a factor derived from the difference in thermal expansion coefficient between the silicon substrate (Si) and the piezoelectric thin film (AlN). As shown in Equation 2, reducing the lattice mismatch between the first electrode layer (W) and the piezoelectric thin film (AlN) reduces the residual stress ⁇ in the piezoelectric thin film.
  • the residual stress ⁇ in the piezoelectric thin film is reduced. Assuming that the piezoelectric thin film is formed at 300 ° C., ⁇ misfit is about 2.52% and ⁇ thermal is 3.28 ⁇ 10 ⁇ 4 %. These numerical values suggest that, among the lattice mismatch and the thermal expansion coefficient difference, the lattice mismatch is the dominant factor for the residual stress of the piezoelectric thin film.
  • the surface of the piezoelectric thin film 2 tends to be smooth.
  • the surface of the piezoelectric thin film 2 is the surface of the piezoelectric thin film 2 facing the second electrode layer 6 b and is the back surface of the surface of the piezoelectric thin film 2 facing the first electrode layer 6 a.
  • the smoothness of the surface of the piezoelectric thin film 2 is improved, the insulation resistance of the piezoelectric thin film 2 is increased. The reason is as follows.
  • the piezoelectric thin film 2 is formed by island growth of the Volmer-Weber type, and the surface of the piezoelectric thin film 2 is roughened.
  • the electric field distribution on the surface of the piezoelectric thin film 2 tends to be uneven, and the electric field intensity locally on the surface (e.g., convex portion) of the surface of the piezoelectric thin film 2 tends to be excessively high. As a result, dielectric breakdown occurs in the piezoelectric thin film 2.
  • the piezoelectric thin film 2 is formed by the Frank-Van der Merwe type layer-by-layer growth.
  • the surface is likely to be smooth.
  • an electric field is applied to the piezoelectric thin film 2 whose surface is smooth, the electric field distribution on the surface of the piezoelectric thin film 2 tends to be uniform. As a result, dielectric breakdown in the piezoelectric thin film 2 hardly occurs.
  • the alloy contained in the first electrode layer 6a is at least two selected from the group consisting of Mo (molybdenum), W (tungsten), V (vanadium), Cr (chromium), Nb (niobium) and Ta (tantalum). It may contain an element.
  • Mo molecular weight
  • W tungsten
  • V vanadium
  • Cr chromium
  • Nb niobium
  • Ta tantalum
  • the first electrode layer 6a tends to have a body-centered cubic lattice structure, and lattice mismatch between the piezoelectric thin film 2 and the first electrode layer 6a tends to be reduced.
  • the first electrode layer 6a may contain other additive elements in addition to the above-mentioned metals constituting the alloy.
  • the alloy contained in the first electrode layer 6a contains two or more elements selected from the group consisting of Mo, W, V, Cr, Nb and Ta, the alloy is difficult to oxidize.
  • oxygen is less likely to be introduced and diffused from the first electrode layer 6 a into the piezoelectric thin film 2.
  • the leak current in the piezoelectric thin film 2 is suppressed, and dielectric breakdown in the piezoelectric thin film 2 hardly occurs.
  • the alloy contained in the first electrode layer 6a may be represented by any one of the following chemical formula 3A, chemical formula 3B, chemical formula 3C, chemical formula 3D, chemical formula 3E, and chemical formula 3F.
  • the alloy contained in the first electrode layer 6a is represented by any one of the following chemical formula 3A, chemical formula 3B, chemical formula 3C, chemical formula 3D, chemical formula 3E, and chemical formula 3F
  • a plurality of AlN having (001) plane oriented Columnar crystals easily grow uniformly on the (110) plane of the first electrode layer 6a, and lattice mismatch between the piezoelectric thin film 2 (AlN) and the first electrode layer 6a is easily reduced, and the degree of lattice mismatch
  • the absolute value of is likely to be 2% or less.
  • the free energy change ⁇ G in the oxidation reaction of the alloy is a negative value, and the larger the absolute value of ⁇ G, the easier the alloy is oxidized.
  • the alloy is thus thermodynamically stable by oxidation.
  • the free energy change ⁇ G in the oxidation reaction of the alloy represented by any one of the following chemical formula 3A, chemical formula 3B, chemical formula 3C, chemical formula 3D, chemical formula 3E and chemical formula 3F is a negative value
  • the Gibbs energy change ⁇ G in the oxidation reaction of an alloy represented by any one of the following Chemical Formula 3A, Chemical Formula 3C, Chemical Formula 3D, Chemical Formula 3E, and Chemical Formula 3F may be calculated from a known Ellingham diagram.
  • Mo (1-x) W x Chemical formula 3A [0 ⁇ x ⁇ 0.65 in the above chemical formula 3A.
  • Mo (1-x) V x Formula 3B [0 ⁇ x ⁇ 0.82 in the above Chemical Formula 3B.
  • Mo (1-x) Nb x Chemical formula 3C [0 ⁇ x ⁇ 0.18 in the above chemical formula 3C.
  • W (1-x) V x chemical formula 3D [In the above Chemical Formula 3D, 0.10 ⁇ x ⁇ 0.87.
  • the alloy contained in the first electrode layer 6a may be represented by any one of the following Chemical Formula 4A, Chemical Formula 4B, Chemical Formula 4C, Chemical Formula 4D, and Chemical Formula 4E.
  • the alloy contained in the first electrode layer 6a is represented by any one of the following Chemical Formula 4A, Chemical Formula 4B, Chemical Formula 4C, Chemical Formula 4D, and Chemical Formula 4E, a plurality of ZnO columnar crystals in which (001) planes are oriented Easily grow uniformly on the (110) plane of the first electrode layer 6a, and the lattice mismatch between the piezoelectric thin film 2 (ZnO) and the first electrode layer 6a is easily reduced, and the absolute value of the lattice mismatch degree Tends to be less than 2%.
  • the free energy change ⁇ G in the oxidation reaction of the alloy represented by any one of the following chemical formula 4A, chemical formula 4B, chemical formula 4C, chemical formula 4D and chemical formula 4E is a negative value but the absolute value of ⁇ G is relatively It tends to be small. Therefore, the alloy represented by any one of the following Chemical Formula 4A, Chemical Formula 4B, Chemical Formula 4C, Chemical Formula 4D, and Chemical Formula 4E is difficult to be oxidized and easily suppresses the dielectric breakdown in the piezoelectric thin film 2.
  • the Gibbs energy change ⁇ G in the oxidation reaction of the alloy represented by any one of the following chemical formulas 4A, 4B, 4C, 4D and 4E may be calculated from a known Ellingham diagram.
  • Mo (1-y) W y Chemical formula 4A [0.90 ⁇ y ⁇ 1.0 in the above chemical formula 4A.
  • Mo (1-y) Nb y Chemical formula 4B [0.25 ⁇ y ⁇ 1.0 in the above chemical formula 4B.
  • Mo (1-y) Ta y chemical formula 4C [In the above Chemical Formula 4C, 0.25 ⁇ y ⁇ 1.0.
  • W (1-y) Nb y Chemical formula 4D [0 ⁇ y ⁇ 1.0 in the above chemical formula 4D.
  • W (1-y) Ta y chemical formula 4E [0 ⁇ y ⁇ 1.0 in the above chemical formula 4E. ]
  • the alloy contained in the first electrode layer 6a may contain three or more elements selected from the group consisting of Mo, W, V, Cr, Nb and Ta.
  • the alloy contained in the first electrode layer 6a may be represented by any one of the following Chemical Formula 6A, Chemical Formula 6B, and Chemical Formula 6C.
  • the alloy contained in the first electrode layer 6a is represented by any one of the following chemical formulas 6A, 6B and 6C, a plurality of columnar crystals of AlN in which the (001) plane is oriented is the first electrode layer It is easy to grow uniformly on the (110) plane of 6a, the lattice mismatch between the piezoelectric thin film 2 (AlN) and the first electrode layer 6a is easily reduced, and the absolute value of the lattice mismatch becomes 2% or less. easy.
  • the free energy change ⁇ G in the oxidation reaction of the alloy represented by any one of the following chemical formulas 6A, 6B and 6C is a negative value, the absolute value of ⁇ G tends to be relatively small. Therefore, the alloy represented by any one of the following Chemical Formula 6A, Chemical Formula 6B, and Chemical Formula 6C is not easily oxidized, and easily suppresses the dielectric breakdown in the piezoelectric thin film 2.
  • the Gibbs energy change ⁇ G in the oxidation reaction of the alloy represented by any one of the following chemical formulas 6A, 6B and 6C may be calculated from a known Ellingham diagram.
  • Mo x W y V z chemical formula 6A [In the above Chemical Formula 6A, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.90, 0 ⁇ z ⁇ 0.87. ] Mo x W y Cr z chemical formula 6B [In the above Chemical Formula 6B, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.95, 0 ⁇ z ⁇ 0.46. ] Mo x W y Nb z chemical formula 6C [In the above Chemical Formula 6C, 0.35 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.65, 0 ⁇ z ⁇ 0.18. ]
  • the alloy contained in the first electrode layer 6a may be represented by any one of the following chemical formula 7A and chemical formula 7B.
  • the alloy contained in the first electrode layer 6a is represented by any one of the following chemical formula 7A and chemical formula 7B, a plurality of ZnO columnar crystals in which the (001) plane is oriented corresponds to that of the first electrode layer 6a. It is easy to grow uniformly on the (110) plane, the lattice mismatch between the piezoelectric thin film 2 (ZnO) and the first electrode layer 6a is easily reduced, and the absolute value of the lattice mismatch tends to be 2% or less.
  • the free energy change ⁇ G in the oxidation reaction of the alloy represented by any one of the following Chemical Formula 7A and Chemical Formula 7B is a negative value, the absolute value of ⁇ G tends to be relatively small. Therefore, the alloy represented by any one of the following Chemical Formula 7A and Chemical Formula 7B is hard to be oxidized, and easily suppresses the dielectric breakdown in the piezoelectric thin film 2.
  • the Gibbs energy change ⁇ G in the oxidation reaction of the alloy represented by any one of the following Chemical Formula 7A and Chemical Formula 7B may be calculated from a known Elingham gum diagram.
  • Mo x W y Nb z chemical formula 7A [In the above chemical formula 7A, 0 ⁇ x ⁇ 0.75, 0 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 1.0. ] Mo x W y Ta z chemical formula 7B [0 ⁇ x ⁇ 0.75, 0 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 1.0 in the above Chemical Formula 7B. ]
  • the substrate 12 may be, for example, a semiconductor substrate (silicon substrate or gallium arsenide substrate etc.), an optical crystal substrate (sapphire substrate etc.), an insulator substrate (glass substrate or ceramic substrate etc) or a metal substrate.
  • the first electrode layer 6 a may be laminated, for example, on the (100) plane of the substrate 12.
  • the composition of the substrate used for the other piezoelectric thin film element described later may be the same as the composition of the substrate 12 shown in FIG.
  • the first electrode layer 6 a may be laminated directly on the substrate 12.
  • the first electrode layer directly laminated on the substrate 12 as compared to the case where another electrode layer (for example, another electrode layer having a face-centered cubic lattice structure) is interposed between the first electrode layer 6 a and the substrate 12
  • the body-centered cubic lattice structure 6a is unlikely to be damaged, and lattice mismatch between the first electrode layer 6a and the piezoelectric thin film 2 is likely to be reduced.
  • any residual stress due to the difference in thermal expansion coefficient between both electrode layers is either It tends to occur in the electrode layer.
  • the first electrode layer 6a may be separated from another electrode layer, or the residual stress in the piezoelectric thin film 2 may be increased to induce a crack in the piezoelectric thin film 2.
  • the adhesion layer may be interposed between the first electrode layer 6 a and the substrate 12.
  • the adhesion layer is made of Mg (magnesium), Cu (copper), Al (aluminum), Ni (nickel), Cr (chromium), Ti (titanium), Hf (hafnium), Zr (zirconium) Nb (niobium), and Ta (titanium). And at least one selected from the group consisting of tantalum).
  • the adhesion layer may be a single metal, an alloy or a compound (such as an oxide).
  • the adhesion layer may be composed of another piezoelectric thin film, a polymer, or a ceramic.
  • the (110) plane of the body-centered cubic lattice structure of the first electrode layer 6 a tends to be oriented in the normal direction of the substrate 12 by the interposition of the adhesion layer.
  • the adhesion layer also has a function of suppressing the peeling of the first electrode layer 6a due to mechanical impact or the like.
  • the adhesive layer may be rephrased as a support layer, a buffer layer or an intermediate layer.
  • the second electrode layer 6 b may be a single metal or may be an alloy.
  • the second electrode layer 6b may contain the same metal element as the first electrode layer 6a.
  • the composition of the second electrode layer 6b may be exactly the same as the first electrode layer 6a.
  • the composition of the second electrode layer 6b may be different from that of the first electrode layer 6a.
  • the second electrode layer 6b may be made of Pt (platinum), Ir (iridium), Pd (palladium), Au (gold), Mg (magnesium), Cu (copper), Al (aluminum), Ni (nickel), Cr At least one selected from the group consisting of (chromium), Ti (titanium), Hf (hafnium), Zr (zirconium) Nb (niobium), Ta (tantalum), Mo (molybdenum) W (tungsten) and V (vanadium) It may be.
  • the piezoelectric thin film 2 may contain at least one additive element selected from the group consisting of Sc (scandium), Y (yttrium) and In (indium).
  • the piezoelectric thin film 2 may contain, as an additive element, at least one tetravalent element selected from the group consisting of Ti (titanium), Zr (zirconium) and Hf (hafnium).
  • the piezoelectric thin film 2 may contain Mg (magnesium) in addition to the above-described tetravalent element as an additive element.
  • the piezoelectric thin film 2 may contain, as an additive element, at least one pentavalent element selected from the group consisting of V (vanadium), Nb (niobium) and Ta (tantalum).
  • the lattice constant of the Wurtz structure is adjusted by the piezoelectric thin film 2 containing one or more of the above-described additive elements, and columnar crystals of a large number of piezoelectric compositions having the Wurtz structure are formed on the first electrode layer 6. In the same manner, the piezoelectric characteristics of the piezoelectric thin film 2 may be improved.
  • the thickness of the substrate 12 may be, for example, 50 ⁇ m or more and 10000 ⁇ m or less.
  • the thickness of the first electrode layer 6a may be, for example, 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the piezoelectric thin film 2 may be, for example, 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the second electrode layer 6b may be, for example, 0.01 ⁇ m or more and 1 ⁇ m or less.
  • Each of the first electrode layer 6a, the piezoelectric thin film 2 and the second electrode layer 6b may be individually formed in accordance with the stacking order, for example, by co-sputtering or multi-sputtering using a plurality of targets.
  • the plurality of targets may include at least one of the elements constituting each layer or piezoelectric thin film described above.
  • the first electrode layer 6a, the piezoelectric thin film 2 and the second electrode layer 6b having the target composition can be individually formed by selecting and combining the targets having the predetermined composition.
  • the composition of the atmosphere of sputtering also influences the composition of each of the first electrode layer 6a, the piezoelectric thin film 2 and the second electrode layer 6b.
  • the sputtering atmosphere may be, for example, nitrogen gas.
  • the sputtering atmosphere may be a mixed gas containing a noble gas (eg, argon) and nitrogen.
  • the input power (power density) given to each of the plurality of targets is also a control factor of the composition and thickness of each of the first electrode layer 6a, the piezoelectric thin film 2 and the second electrode layer 6b.
  • the target may be a single metal or may be an alloy.
  • the total pressure of the sputtering atmosphere, the partial pressure or concentration of the source gas (for example, nitrogen) in the atmosphere, the duration of sputtering of each target, the temperature of the substrate surface on which the piezoelectric thin film is formed, and the substrate bias It is a control factor of the composition and thickness of each of the layer 6a, the piezoelectric thin film 2 and the second electrode layer 6b.
  • Etching eg, plasma etching
  • the crystal structure of each of the first electrode layer 6a, the piezoelectric thin film 2 and the second electrode layer 6b may be identified by an X-ray diffraction (XRD) method.
  • the composition of each of the first electrode layer 6a, the piezoelectric thin film 2 and the second electrode layer 6b is X-ray fluorescence analysis (XRF), energy dispersive X-ray analysis (EDX), inductively coupled plasma mass spectrometry (ICP-) MS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and analysis using an electron beam microanalyzer (EPMA), may be specified as at least one of the analysis methods.
  • XRF X-ray fluorescence analysis
  • EDX energy dispersive X-ray analysis
  • ICP- inductively coupled plasma mass spectrometry
  • LA-ICP-MS laser ablation inductively coupled plasma mass spectrometry
  • EPMA electron beam microanalyzer
  • the applications of the piezoelectric thin film element 10 according to the present embodiment are diverse.
  • the piezoelectric thin film element may be, for example, a piezoelectric microphone, a harvester, an oscillator, a resonator, or an acoustic multilayer film.
  • the piezoelectric thin film element may be, for example, a piezoelectric actuator.
  • Piezoelectric actuators may be used, for example, in head assemblies, head stack assemblies, or hard disk drives.
  • the piezoelectric actuator may be used, for example, in a printer head or an inkjet printer device. Piezoelectric actuators may be used for piezoelectric switches.
  • the piezoelectric thin film element may be, for example, a piezoelectric sensor.
  • the piezoelectric sensor may be used, for example, as a gyro sensor, a pressure sensor, a pulse wave sensor, an ultrasonic sensor, or a shock sensor.
  • Each piezoelectric thin film element mentioned above may be a part or all of MEMS.
  • each of the piezoelectric thin film elements (10, 10b, 40) shown in (a) in FIG. 1, (b) in FIG. 1 and in FIG. 2 may be part of a MEMS.
  • the piezoelectric thin film element 10b shown in (b) in FIG. 1 is a substrate 12a, 12b, a first electrode layer 6a disposed on the substrates 12a, 12b, and a piezoelectric thin film laminated on the first electrode layer 6a. 2 and the second electrode layer 6 b stacked on the piezoelectric thin film 2 may be a piezoelectric microphone. Under the piezoelectric thin film 2, an acoustic cavity 12c may be provided.
  • the piezoelectric thin film element shown in FIG. 2 is a piezoelectric switch 40.
  • the piezoelectric switch 40 is disposed on the substrate 12C, the first switch 18A disposed on the surface of the substrate 12C, the first conductive terminal 3A disposed on the tip of the first switch 18A and facing the substrate 12C, and disposed on the surface of the substrate 12C.
  • the second conductive terminal 3B facing the first conductive terminal 3A, the second switch 18B disposed on the surface of the substrate 12C and separated from the first switch 18A, and the tip of the second switch 18B, the substrate 12C
  • a second conductive terminal 3D disposed on the surface of the substrate 12C and facing the first conductive terminal 3C.
  • the first switch 18A has a first electrode layer 6I, a second electrode layer 6J, and a piezoelectric thin film 2F sandwiched between the first electrode layer 6I and the second electrode layer 6J.
  • the second switch 18B has a first electrode layer 6K, a second electrode layer 6L, and a piezoelectric thin film 2G sandwiched between the first electrode layer 6K and the second electrode layer 6L.
  • the piezoelectric thin film 2G is distorted, the tip of the second switch 18B approaches the surface of the substrate 12C, and the first conductive terminal 3C is connected to the second conductive terminal 3D.
  • the thickness of the piezoelectric thin film 2F that the first switch 18A has is thinner than the thickness of the piezoelectric thin film 2G that the second switch 18B has. Therefore, the closing voltage of the first switch 18A is different from the closing voltage of the second switch 18B.
  • Example 1 An adhesion layer of titanium oxide was formed directly on the entire (100) plane of a silicon single crystal substrate by DC magnetron sputtering in a vacuum chamber.
  • the thickness of the single crystal substrate was 625 ⁇ m.
  • the thickness of the adhesion layer was 5 ⁇ 10 ⁇ 3 ⁇ m.
  • the first electrode layer was formed directly on the entire surface of the adhesion layer by DC magnetron sputtering in a vacuum chamber.
  • DC magnetron sputtering sputtering of a plurality of single metal targets was simultaneously performed.
  • a target a single element of metal element EX and metal element EY shown in Table 1 below was used.
  • the metal element EX in the case of Example 1 was V.
  • the metal element EY in the case of Example 1 was Mo.
  • the target of the metal element EZ was not used.
  • the first electrode layer of Example 1 was made of an alloy represented by the chemical formula V x Mo y and had a body-centered cubic (BCC) lattice structure.
  • x is the molar ratio of V in the chemical formula V x Mo y .
  • y is a molar ratio of Mo in V x Mo y .
  • a piezoelectric thin film made of AlN having a wurtzite structure was formed directly on the entire surface of the first electrode layer by RF magnetron sputtering in a vacuum chamber.
  • RF magnetron sputtering a single aluminum target was used.
  • the input power in RF magnetron sputtering was 9.87 W / cm 2 .
  • the temperature (deposition temperature) of the substrate in the process of forming the piezoelectric thin film was maintained at 300.degree.
  • the atmosphere in the vacuum chamber in the process of forming the piezoelectric thin film was a mixed gas of argon and nitrogen.
  • the pressure of the mixed gas in the vacuum chamber was adjusted to 0.30 Pa.
  • the thickness of the piezoelectric thin film was adjusted to 1.3 ⁇ m.
  • the second electrode layer was formed directly on the entire surface of the piezoelectric thin film in the same manner as in the case of the first electrode layer.
  • the composition of the second electrode layer was exactly the same as the composition of the first electrode.
  • the thickness of the second electrode layer was exactly the same as the thickness of the first electrode.
  • the crystal structure of each of the first electrode layer and the piezoelectric thin film described above was identified by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • LA-ICP-MS laser ablation inductively coupled plasma mass spectrometry
  • XRD method a multipurpose X-ray diffractometer (SmartLab) manufactured by Rigaku Corporation was used.
  • An analyzer (ZSX-100e) manufactured by Rigaku Corporation was used for the XRF method.
  • an analyzer (7500 s) manufactured by Agilent was used.
  • the substrate, the adhesion layer laminated directly to the substrate, the first electrode layer laminated directly to the adhesion layer, the piezoelectric thin film laminated directly to the first electrode layer, and the piezoelectric thin film laminated directly And a second electrode was produced. Subsequently, the laminated structure on the substrate was patterned by photolithography. Subsequently, the entire laminated body was cut by dicing to obtain a square-shaped piezoelectric thin film element of Example 1.
  • the piezoelectric thin film element is directly laminated on the substrate, the adhesion layer laminated directly on the substrate, the first electrode layer laminated directly on the adhesion layer, the piezoelectric thin film laminated directly on the first electrode layer, and the piezoelectric thin film And a second electrode.
  • rocking curve of the (400) plane of the silicon single crystal substrate used for producing the piezoelectric thin film element of Example 1 was measured.
  • the above-mentioned X-ray diffractometer was used for the measurement.
  • the measurement range of the rocking curve was the diffraction angle ⁇ 0.5 ° of the maximum value of the diffraction peak derived from the (400) plane of silicon.
  • the measurement interval was 0.01 °.
  • the measurement speed was 2.0 ° / min.
  • the full width at half maximum of the rocking curve of the (400) plane of the silicon single crystal substrate was 0.05 °.
  • the rocking curve of the (002) plane of the piezoelectric thin film (AlN) of Example 1 before the formation of the second electrode layer was measured.
  • the measurement range of the rocking curve was the diffraction angle (36 °) ⁇ 15 ° of the maximum value of the diffraction peak derived from the (002) plane of AlN. Except for this point, the rocking curve of the (002) plane of the piezoelectric thin film of Example 1 was measured in the same manner as in the case of the (400) plane of silicon.
  • the full width at half maximum FWHM (wurt.) Of the rocking curve of the (002) plane of the piezoelectric thin film of Example 1 was a value shown in Table 2 below.
  • the residual stress ⁇ of the piezoelectric thin film provided in the piezoelectric thin film element of Example 1 was calculated by the following procedure. First, the curvature radius R Before of the substrate (that is, the laminate including the substrate, the adhesion layer, and the first electrode layer) before the piezoelectric thin film was formed was measured. Subsequently, the curvature radius R After of the substrate (that is, the laminate including the substrate, the adhesive layer, the first electrode layer, and the piezoelectric thin film) after the piezoelectric thin film was formed was measured. For measurement of each of R Before and R After , a measuring device (P-16 profiler) manufactured by KLA-Tencor was used.
  • P-16 profiler manufactured by KLA-Tencor
  • Example 1 And residual stress (sigma) of Example 1 was computed based on following Numerical formula 3 (Stony's formula).
  • the positive residual stress ⁇ is a tensile stress
  • the negative residual stress ⁇ is a compressive stress.
  • the residual stress ⁇ of Example 1 was a value shown in Table 1 below.
  • E in Formula 3 is the Young's modulus (unit: GPa) of a silicon single crystal substrate.
  • is the Poisson's ratio of the piezoelectric thin film.
  • t sub is the thickness of a silicon single crystal substrate.
  • t film is the thickness of the piezoelectric thin film.
  • Example 1 The 100 mm ⁇ 100 mm plate-like piezoelectric thin film element of Example 1 was cut to prepare 100 samples of 10 mm square. Among the 100 samples, the number n of the samples in which the piezoelectric thin film had a crack was counted by an optical microscope. The crack rate (that is, n%) of Example 1 was a value shown in Table 1 below.
  • the resonant frequency fr is a frequency at which the impedance of the resonant circuit using the piezoelectric thin film element is minimum.
  • the antiresonance frequency f a is a frequency when the impedance of the resonant circuit using the piezoelectric thin film element is maximum.
  • Measurement device Network analyzer (N5244A) manufactured by Agilent Technologies Probe: GS 500 ⁇ m (ACP 40-W-GS-500 manufactured by Cascade Microtech) Power: -10dBm Measurement pitch: 0.25 MHz Electrode area: 200 ⁇ 200 ⁇ m 2 S11 measurement (reflection measurement)
  • the electromechanical coupling coefficient k t 2 (unit:%) was calculated from the measured values of the resonance frequency f r and the antiresonance frequency f a based on the following equation 4. Each of the resonant frequency f r and the antiresonant frequency f a used for calculating the electromechanical coupling coefficient k t 2 was a five-point measurement average value.
  • the electromechanical coupling coefficient k t 2 of Example 1 was a value shown in Table 1 below.
  • the insulation resistivity IR of the piezoelectric thin film of Example 1 was measured.
  • a measuring device (R8340A) manufactured by ADVANTEST was used.
  • an electric field of 1 V / ⁇ m was applied to the piezoelectric thin film.
  • the thickness of the piezoelectric thin film was 1.3 ⁇ m.
  • the area of the portion to which the electric field was applied in each of the first electrode layer and the second electrode layer was 600 ⁇ 600 ⁇ m 2 .
  • the insulation resistivity IR of Example 1 was a value shown in Table 1 below.
  • Example 2 to 11 In the preparation of the first electrode layer of each of Examples 2 to 11, as shown in Table 1 below, targets of at least two kinds of single metals out of the metal elements EX, EY and EZ were used.
  • the first electrode layer of each example is represented by a general chemical formula EX x EY y EZ z .
  • x is a molar ratio of the metal element EX in the chemical formula EX x EY y EZ z .
  • y is a molar ratio of the metal element EY in the chemical formula EX x EY y EZ z .
  • z is a molar ratio of the metal element EZ in the chemical formula EX x EY y EZ z .
  • the compositions of the first electrode layers of Examples 2 to 11 are shown in Table 1 below.
  • the first electrode layers of Examples 2 to 11 were all made of an alloy having a body-centered cubic lattice structure.
  • sputtering of a single zinc target was performed in an oxidizing atmosphere to produce a piezoelectric thin film made of ZnO.
  • the piezoelectric thin film elements of Examples 2 to 11 were individually manufactured in the same manner as in Example 1 except for the above matters.
  • Example 2 The piezoelectric thin film elements of Examples 2 to 11 were analyzed in the same manner as in Example 1. The results of the analysis of each of Examples 2 to 11 are shown in Table 2 below.
  • Comparative Examples 1 to 5 In the preparation of the first electrode layer of each of Comparative Examples 1 to 5, as shown in Table 1 below, only a target of one kind of metal single substance among the metal elements EX, EY and EZ was used. The compositions of the first electrode layers of Comparative Examples 1 to 5 were, as shown in Table 1 below, single metals similar to the target. The crystal structures of the first electrode layers of Comparative Examples 1 to 5 were all body-centered cubic lattice (BCC) structures. In Comparative Example 5, sputtering of a single zinc target was performed in an oxidizing atmosphere to produce a piezoelectric thin film made of ZnO.
  • BCC body-centered cubic lattice
  • Piezoelectric thin film elements of Comparative Examples 1 to 5 were individually manufactured by the same method as Example 1 except for the above matters.
  • the lattice mismatch degree ⁇ a / a is preferably 2% or less, which is a target value.
  • the full width at half maximum FWHM (wurt.) Of the rocking curve is preferably equal to or less than the target value of 2.0 °.
  • the crack rate is preferably 1% or less, which is the target value.
  • the electromechanical coupling coefficient k t 2 is preferably 6% or more, which is a target value.
  • the piezoelectric constant d 33 is preferably 6.0 pC / N or more, which is a target value.
  • the insulation resistivity IR is preferably a target value of 1.0 ⁇ 10 13 ⁇ ⁇ cm or more.
  • Quality B in the following Table 2 means that the target value of three or four evaluation items out of ⁇ a / a, FWHM (wurt.), Crack rate, k t 2 , d 33 and IR was achieved. means.
  • the quality C in the following Table 2 means that the number of evaluation items for which the target value was achieved was 2 or less.
  • a piezoelectric thin film element for example, MEMS in which lattice mismatch between the piezoelectric thin film and the lower electrode layer (first electrode layer) is reduced is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

圧電薄膜と下部電極層(第一電極層)との間の格子不整合が低減された圧電薄膜素子が提供される。圧電薄膜素子10は、第一電極層6aと、第一電極層6aに直接積層された圧電薄膜2と、を備え、第一電極層6aが、二種以上の金属元素から構成される合金を含み、第一電極層6aが、体心立方格子構造を有し、圧電薄膜2が、ウルツ鉱型構造を有する。

Description

圧電薄膜素子
 本発明は、圧電薄膜素子に関する。
 近年、MEMS(Micro Electro Mechanical Systems)が注目されている。MEMS(微小電気機械システム)とは、機械要素部品及び電子回路等が一つの基板上に微細加工技術によって集積化されたデバイスである。センサ、フィルタ、ハーベスタ、又はアクチュエータ等の機能を有するMEMSでは、圧電薄膜が利用される。圧電薄膜を用いたMEMSの製造では、シリコン又はサファイア等の基板上に下部電極層、圧電薄膜、及び上部電極層が積層される。続く微細加工、パターンニング、又はエッチング等の後工程を経ることで、任意の特性を有するMEMSが得られる。特性に優れた圧電薄膜を選択することで、MEMS等の圧電薄膜素子の特性向上及び小型化が可能になる。
 圧電薄膜素子に用いられる圧電薄膜としては、例えば、AlN(窒化アルミニウム)、ZnO(酸化亜鉛)、CdS(硫化カドミウム)、LiNbO(ニオブ酸リチウム)及びPZT(チタン酸ジルコン酸鉛)等が知られている。AlN、ZnO及びCdS等のウルツ鉱型構造を有する圧電薄膜は、ペロブスカイト型構造を有するPZTと比較して、正圧電定数(d定数)が小さいものの、比誘電率(ε)が小さい。したがって、圧電出力係数(g定数=d/εε, εは真空の誘電率である。)が設計上考慮される圧電薄膜素子にとって、ウルツ鉱型構造を有する圧電薄膜は有力な材料の候補である(下記非特許文献1参照。)。
Rajan S. Naik et al., IEEE TRANSACTIONS ON ULTRASONICS,FERROELECTRICS AND FREQUENCY CONTROL,2000,vol. 47,p.292-296
 しかしながら、以下の通り、ウルツ鉱型構造を有する圧電薄膜を用いた圧電薄膜素子においては、いくつかの問題がある。
 もっとも重大な問題は、結晶配向性に由来する圧電特性の劣化である。ウルツ鉱型構造を有する圧電薄膜の圧電特性が発現する方位は、ウルツ鉱型構造の(001)面であるが、ウルツ鉱型構造の非(001)面の存在のみならず、(001)面の配向の揺らぎは圧電特性を劣化させる。したがって、ウルツ鉱型構造を有する圧電薄膜の結晶配向性の揺らぎを抑制し、(001)面の配向性を高めることが重要である。
 例えば、上記非特許文献1に記載のAlN薄膜の製造方法では、AlN薄膜の結晶配向性を高めるために、スパッタターゲットへの入力パワー及びスパッタ装置内の残留ガス等の諸条件が変更されている。
 しかしながら、上記非特許文献1に記載のAlN薄膜のように、ウルツ鉱型構造を有する圧電薄膜を下部電極層に直接積層する場合、AlN薄膜と下部電極層との間の格子不整合が生じ易い。格子不整合は、圧電薄膜の結晶配向性を劣化させる。結晶配向性の劣化により、圧電薄膜の圧電特性も劣化する。また格子不整合により、圧電薄膜における残留応力が増加する。残留応力は圧電薄膜におけるクラック(亀裂)を引き起こす。さらに格子不整合は、圧電薄膜の表面平滑性を劣化させる。表面平滑性の劣化により、圧電薄膜の絶縁抵抗が低下してしまう。
 本発明は、上記事情に鑑みてなされたものであり、圧電薄膜と下部電極層(第一電極層)との間の格子不整合が低減された圧電薄膜素子を提供することを目的とする。
 本発明の一側面に係る圧電薄膜素子は、第一電極層と、第一電極層に直接積層された圧電薄膜と、を備え、第一電極層が、二種以上の金属元素から構成される合金を含み、第一電極層が、体心立方格子構造を有し、圧電薄膜が、ウルツ鉱型構造を有する。
 本発明の一側面においては、合金が、Mo、W、V、Cr、Nb及びTaからなる群より選ばれる二種以上の元素を含んでよい。
 本発明の一側面においては、合金が、下記の化学式3A、化学式3B、化学式3C、化学式3D、化学式3E及び化学式3Fのうちいずれかで表されてよく、圧電薄膜が、窒化アルニミウムを含んでよい。
Mo(1-x)   化学式3A
[上記化学式3A中、0<x<0.65。]
Mo(1-x)   化学式3B
[上記化学式3B中、0<x<0.82。]
Mo(1-x)Nb   化学式3C
[上記化学式3C中、0<x<0.18。]
(1-x)   化学式3D
[上記化学式3D中、0.10<x<0.87。]
Mo(1-x)Cr   化学式3E
[上記化学式3E中、0<x<0.37。]
(1-x)Cr   化学式3F
[上記化学式3F中、0.05<x<0.46。]
 本発明の一側面においては、合金が、下記の化学式4A、化学式4B、化学式4C、化学式4D及び化学式4Eのうちいずれかで表されてよく、圧電薄膜が、酸化亜鉛を含んでよい。
Mo(1-y)   化学式4A
[上記化学式4A中、0.90<y<1.0。]
Mo(1-y)Nb   化学式4B
[上記化学式4B中、0.25<y<1.0。]
Mo(1-y)Ta   化学式4C
[上記化学式4C中、0.25<y<1.0。]
(1-y)Nb   化学式4D
[上記化学式4D中、0<y<1.0。]
(1-y)Ta   化学式4E
[上記化学式4E中、0<y<1.0。]
 本発明の一側面においては、合金が、Mo、W、V、Cr、Nb及びTaからなる群より選ばれる三種以上の元素を含んでよい。
 本発明の一側面においては、合金が、下記の化学式6A、化学式6B及び化学式6Cのうちいずれかで表されてよく、圧電薄膜が、窒化アルミニウムを含んでよい。
Mo   化学式6A
[上記化学式6A中、0<x<1.0、0<y<0.90、0<z<0.87。]
MoCr   化学式6B
[上記化学式6B中、0<x<1.0、0<y<0.95、0<z<0.46。]
MoNb   化学式6C
[上記化学式6C中、0.35<x<1.0、0<y<0.65、0<z<0.18。]
 本発明の一側面においては、合金が、下記の化学式7A及び化学式7Bのうちいずれか一方で表されてよく、圧電薄膜が、酸化亜鉛を含んでよい。
MoNb   化学式7A
[上記化学式7A中、0<x<0.75、0<y<1.0、0<z<1.0。]
MoTa   化学式7B
[上記化学式7B中、0<x<0.75、0<y<1.0、0<z<1.0。]
 本発明の一側面においては、第一電極層の体心立方格子構造の(110)面が、第一電極層と圧電薄膜との間の界面の法線方向において配向していてよい。
 本発明の一側面においては、第一電極層と上記圧電薄膜との間の格子不整合度が、0%以上2%以下であってよい。
 本発明の一側面に係る圧電薄膜素子は、基板を更に備えてよく、第一電極層が上記基板に直接積層されていてよい。
 本発明の一側面においては、圧電薄膜のウルツ鉱型構造の(002)面のロッキングカーブの半値全幅が、0°以上2.0°以下であってよい。
 本発明によれば、圧電薄膜と下部電極層(第一電極層)との間の格子不整合が低減された圧電薄膜素子が提供される。
図1中の(a)は、本発明の一実施形態に係る圧電薄膜素子の模式的な断面図であり、図1中の(b)は、本発明の他の一実施形態に係る圧電薄膜素子の模式的な断面図である。 図2は、本発明の一実施形態に係る圧電薄膜素子の模式的な断面図である。
 以下、場合により図面を参照して、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。図面において、同一又は同等の構成要素には同一の符号を付す。
 図1中の(a)に示されるように、本実施形態に係る圧電薄膜素子10は、基板12と、基板12に積層された第一電極層6aと、第一電極層6aに直接積層された圧電薄膜2と、圧電薄膜2に積層された第二電極層6bを備える。ただし、基板12及び第二電極層6bは、本発明に係る圧電薄膜素子にとって必須ではない。第一電極層6aは、下部電極層と言い換えられてよい。第二電極層6bは、上部電極層と言い換えられてよい。
第一電極層6aは、二種以上の金属元素から構成される合金を含み、第一電極層6aは、体心立方格子構造を有する。換言すれば、第一電極層6aに含まれる合金は、二種以上の金属元素から構成され、且つ体心立方格子構造を有する。第一電極層6aは、体心立方格子構造を有する上記合金のみからなっていてよい。
 圧電薄膜2は、ウルツ鉱型構造を有する。つまり、圧電薄膜2は、ウルツ鉱型の結晶構造を有する圧電組成物を含んでよい。圧電薄膜2に含まれる圧電組成物は、例えば、AlN(窒化アルミニウム)、ZnO(酸化亜鉛)、ZnS(硫化亜鉛)、ZnTe(テルル化亜鉛)、CdS(硫化カドミウム)、CdSe(セレン化カドミウム)及びCdTe(テルル化カドミウム)からなる群より選ばれる少なくとも一種の圧電組成物を含んでよい。圧電薄膜2は、ウルツ鉱型構造を有する上記の圧電組成物のみからなっていてよい。圧電薄膜2と第一電極層6aとの格子整合を損なわない限りにおいて、圧電薄膜2は、圧電薄膜2を構成する上記元素以外に、他の添加元素を含んでもよい。圧電薄膜2は、ウルツ鉱型構造を有する複数種の圧電層から構成されていてよい。ウルツ鉱型構造を有する別の圧電薄膜が、圧電薄膜2と第一電極層6aとの間に配置されていてもよい。ウルツ鉱型構造を有する別の圧電薄膜が、圧電薄膜2と第二電極層6bとの間に配置されていてもよい。第二電極層6bが圧電薄膜2に直接積層されていてもよい。
 圧電薄膜2のウルツ鉱型構造は、第一電極層6aの体心立方格子構造と整合し易い。例えば、第一電極層6aと圧電薄膜2との間の格子不整合度の絶対値は、0%以上2%以下、又は0.04%以上1.76%以下であることが可能である。したがって、ウルツ鉱構造を有する圧電薄膜2の圧電特性を発現する(001)面(又は(002)面)が、基板12の表面の法線方向において配向し易く、圧電薄膜2の結晶配向性が向上する。つまり、本実施形態では、基板12の表面の法線方向において、(001)面の配向の揺らぎが抑制され、同方向における非(001)面の配向が抑制される。圧電薄膜2の結晶配向性の向上により、圧電薄膜2の圧電特性が向上する。基板12の表面の法線方向とは、第一電極層6aと圧電薄膜2との間の界面の法線方向と言い換えてよい。なお、第一電極層6aと圧電薄膜2との間の格子不整合度Δa/aは、下記式1によって定義される。
Figure JPOXMLDOC01-appb-M000001
 数式1中、aele.は、圧電薄膜2の成膜温度T℃(例えば300℃)における第一電極層6aの体心立方格子構造の格子定数である。室温(27℃)における第一電極層6aの体心立方格子構造の格子定数がaele.0と表され、第一電極層6aの熱膨張係数がCTEele.と表されるとき、T℃でのaele.は、aele.0+CTEele.×(T-27)に等しい。awurt.は、圧電薄膜2の成膜温度(例えば300℃)における圧電薄膜2のウルツ型構造の格子定数である。室温(27℃)における圧電薄膜2のウルツ型構造の格子定数がawurt.0と表され、圧電薄膜2の熱膨張係数がCTEwurt.と表されるとき、T℃でのawurt.は、awurt.0+CTEwurt.×(T-27)に等しい。
 圧電薄膜2のウルツ鉱型構造の(002)面のロッキングカーブの半値全幅(FWHM)は、0°以上2.0°以下であってよい。第一電極層6aと圧電薄膜2との間の格子不整合度の絶対値が小さいほど、圧電薄膜2の(002)面が配向し易く、ロッキングカーブの半値全幅が小さい。そして、ロッキングカーブの半値全幅が小さいほど、圧電薄膜素子10のd33が大きい傾向がある。
 第一電極層6aの体心立方格子構造の(110)面は、第一電極層6aと圧電薄膜2との間の界面の法線方向において配向していてよい。体心立方格子構造の(110)面内における原子配列は、ウルツ鉱型構造の(001)面内における原子配列と整合し易い。したがって、圧電薄膜2の(001)面は第一電極層6aの(110)面に平行に配向し易い。例えば、(001)面が配向した複数の圧電組成物の柱状結晶が、第一電極層6aの(110)面上において一様に成長し易く、圧電薄膜2全体の結晶配向性が向上し易い。
 第一電極層6aと圧電薄膜2との間の格子不整合が低減されることにより、圧電薄膜2における残留応力も低減される。残留応力の低減により、圧電薄膜2におけるクラックも抑制され、圧電薄膜2の圧電特性が向上する。また圧電薄膜2におけるクラックの抑制により、第一電極層6aからの圧電薄膜2の剥離が抑制されたり、圧電薄膜2の製造における歩留まりが向上したりする。参考例として、基板12がSi基板であり、第一電極層がWであり、圧電薄膜がAlNである場合の残留応力σ(単位:GPa)は下記数式2で表される。ただし、第一電極層がWのみからなる圧電薄膜は、本発明の技術的範囲外である。
Figure JPOXMLDOC01-appb-M000002
 数式2中のEは、圧電薄膜2のヤング率(単位:GPa)である。νは、圧電薄膜2のポアソン比である。aele.は、第一電極層(W)の格子定数である。aAlNは、圧電薄膜(AlN)の格子定数である。(aele.-aAlN)/aele.は、第一電極層(W)と圧電薄膜(AlN)との間の格子不整合度である。αAlNは、圧電薄膜(AlN)の熱膨張係数であり、約4.2×10-6/℃である。αSiは、シリコン基板(Si)の熱膨張係数であり、約3.0×10-6/℃である。εmisfitは、第一電極層(W)と圧電薄膜(AlN)との間の格子不整合度に由来する因子である。εthermalは、シリコン基板(Si)と圧電薄膜(AlN)との間の熱膨張係数の差に由来する因子である。式2に示される通り、第一電極層(W)と圧電薄膜(AlN)との間の格子不整合を低減することによって、圧電薄膜における残留応力σが減少する。また、シリコン基板(Si)と圧電薄膜(AlN)との間の熱膨張係数の差を低減することによって、圧電薄膜における残留応力σが減少する。圧電薄膜が300℃で製膜されると仮定した場合、εmisfitは、約2.52%であり、εthermalは、3.28×10-4%である。これらの数値は、格子不整合及び熱膨張係数差のうち、格子不整合が圧電薄膜の残留応力にとって支配的な要因であることを示唆している。
 第一電極層6aと圧電薄膜2との間の格子不整合が低減されることにより、圧電薄膜2の表面が平滑になり易い。ここで、圧電薄膜2の表面とは、第二電極層6bに面する圧電薄膜2の表面であり、第一電極層6aに面する圧電薄膜2の表面の裏面である。圧電薄膜2の表面の平滑性が向上することより、圧電薄膜2の絶縁抵抗が高まる。その理由は以下の通りである。
 第一電極層6aと圧電薄膜2との間の格子不整合度が大きい場合、Volmer-Weber型のアイランド成長によって圧電薄膜2が形成されるため、圧電薄膜2の表面が粗くなる。表面が粗い圧電薄膜2に電界を印加した場合、圧電薄膜2の表面における電界分布が偏り易く、圧電薄膜2の表面の局所(例えば、凸部)における電界強度が過度に高くなり易い。その結果、圧電薄膜2における絶縁破壊が起きてしまう。一方、第一電極層6aと圧電薄膜2との間の格子不整合度が小さい場合、Frank‐Van der Merwe型のLayer‐by‐layer成長によって圧電薄膜2が形成されるため、圧電薄膜2の表面が平滑になり易い。表面が平滑である圧電薄膜2に電界を印加した場合、圧電薄膜2の表面における電界分布が均一になり易い。その結果、圧電薄膜2における絶縁破壊が起き難くなる。
 第一電極層6aに含まれる合金は、Mo(モリブデン)、W(タングステン)、V(バナジウム)、Cr(クロム)、Nb(ニオブ)及びTa(タンタル)からなる群より選ばれる二種以上の元素を含んでよい。合金がこれらの金属元素から構成されている場合、第一電極層6aが体心立方格子構造を有し易く、圧電薄膜2と第一電極層6aとの格子不整合が低減され易い。圧電薄膜2と第一電極層6aとの格子整合を損なわない限りにおいて、第一電極層6aは、合金を構成する上記金属以外に、他の添加元素を含んでもよい。
 仮に圧電薄膜2への電界の印加によって、電荷のキャリアである酸素(O2-)が第一電極層6aから圧電薄膜2内へ導入・拡散された場合、圧電薄膜2中の酸素(キャリアパス)を経由してリーク電流が発生し易く、圧電薄膜2における絶縁破壊が起き易い。しかし、第一電極層6aに含まれる合金が、Mo、W、V、Cr、Nb及びTaからなる群より選ばれる二種以上の元素を含む場合、合金は酸化し難い。酸化し難い合金が第一電極層6aを構成することにより、酸素が第一電極層6aから圧電薄膜2内へ導入・拡散され難い。その結果、圧電薄膜2におけるリーク電流が抑制され、圧電薄膜2における絶縁破壊が起き難くなる。
 圧電薄膜2が窒化アルニミウムを含む場合、第一電極層6aに含まれる合金は、下記の化学式3A、化学式3B、化学式3C、化学式3D、化学式3E及び化学式3Fのうちいずれかで表されてよい。第一電極層6aに含まれる合金が、下記の化学式3A、化学式3B、化学式3C、化学式3D、化学式3E及び化学式3Fのうちいずれかで表される場合、(001)面が配向した複数のAlNの柱状結晶が、第一電極層6aの(110)面上において一様に成長し易く、圧電薄膜2(AlN)と第一電極層6aとの格子不整合が低減され易く、格子不整合度の絶対値が2%以下になり易い。一般的に、合金の酸化反応における自由エネルギー変化ΔGは、負の値であり、ΔGの絶対値が大きいほど、合金は酸化され易い。つまり合金は酸化によって熱力学的に安定する。しかし、下記の化学式3A、化学式3B、化学式3C、化学式3D、化学式3E及び化学式3Fのうちいずれかで表される合金の酸化反応における自由エネルギー変化ΔGは、負の値であるものの、ΔGの絶対値は比較的小さい傾向がある。したがって、下記の化学式3A、化学式3B、化学式3C、化学式3D、化学式3E及び化学式3Fのうちいずれかで表される合金は、酸化され難く、圧電薄膜2における絶縁破壊を抑制し易い。下記の化学式3A、化学式3B、化学式3C、化学式3D、化学式3E及び化学式3Fのうちいずれかで表される合金の酸化反応におけるギブスエネルギー変化ΔGは、公知のエリンガムダイアグラムから算出されてよい。
Mo(1-x)   化学式3A
[上記化学式3A中、0<x<0.65。]
Mo(1-x)   化学式3B
[上記化学式3B中、0<x<0.82。]
Mo(1-x)Nb   化学式3C
[上記化学式3C中、0<x<0.18。]
(1-x)   化学式3D
[上記化学式3D中、0.10<x<0.87。]
Mo(1-x)Cr   化学式3E
[上記化学式3E中、0<x<0.37。]
(1-x)Cr   化学式3F
[上記化学式3F中、0.05<x<0.46。]
 圧電薄膜2が酸化亜鉛を含む場合、第一電極層6aに含まれる合金は、下記の化学式4A、化学式4B、化学式4C、化学式4D及び化学式4Eのうちいずれかで表されてよい。第一電極層6aに含まれる合金が、下記の化学式4A、化学式4B、化学式4C、化学式4D及び化学式4Eのうちいずれかで表される場合、(001)面が配向した複数のZnOの柱状結晶が、第一電極層6aの(110)面上において一様に成長し易く、圧電薄膜2(ZnO)と第一電極層6aとの格子不整合が低減され易く、格子不整合度の絶対値が2%以下になり易い。また下記の化学式4A、化学式4B、化学式4C、化学式4D及び化学式4Eのうちいずれかで表される合金の酸化反応における自由エネルギー変化ΔGは、負の値であるものの、ΔGの絶対値は比較的小さい傾向がある。したがって、下記の化学式4A、化学式4B、化学式4C、化学式4D及び化学式4Eのうちいずれかで表される合金は、酸化され難く、圧電薄膜2における絶縁破壊を抑制し易い。下記の化学式4A、化学式4B、化学式4C、化学式4D及び化学式4Eのうちいずれかで表される合金の酸化反応におけるギブスエネルギー変化ΔGは、公知のエリンガムダイアグラムから算出されてよい。
Mo(1-y)   化学式4A
[上記化学式4A中、0.90<y<1.0。]
Mo(1-y)Nb   化学式4B
[上記化学式4B中、0.25<y<1.0。]
Mo(1-y)Ta   化学式4C
[上記化学式4C中、0.25<y<1.0。]
(1-y)Nb   化学式4D
[上記化学式4D中、0<y<1.0。]
(1-y)Ta   化学式4E
[上記化学式4E中、0<y<1.0。]
 第一電極層6aに含まれる合金は、Mo、W、V、Cr、Nb及びTaからなる群より選ばれる三種以上の元素を含んでよい。
 圧電薄膜2が窒化アルニミウムを含む場合、第一電極層6aに含まれる合金は下記の化学式6A、化学式6B及び化学式6Cのうちいずれかで表されてよい。第一電極層6aに含まれる合金が、下記の化学式6A、化学式6B及び化学式6Cのうちいずれかで表される場合、(001)面が配向した複数のAlNの柱状結晶が、第一電極層6aの(110)面上において一様に成長し易く、圧電薄膜2(AlN)と第一電極層6aとの格子不整合が低減され易く、格子不整合度の絶対値が2%以下になり易い。また下記の化学式6A、化学式6B及び化学式6Cのうちいずれかで表される合金の酸化反応における自由エネルギー変化ΔGは、負の値であるものの、ΔGの絶対値は比較的小さい傾向がある。したがって、下記の化学式6A、化学式6B及び化学式6Cのうちいずれかで表される合金は、酸化され難く、圧電薄膜2における絶縁破壊を抑制し易い。下記の化学式6A、化学式6B及び化学式6Cのうちいずれかで表される合金の酸化反応におけるギブスエネルギー変化ΔGは、公知のエリンガムダイアグラムから算出されてよい。
Mo   化学式6A
[上記化学式6A中、0<x<1.0、0<y<0.90、0<z<0.87。]
MoCr   化学式6B
[上記化学式6B中、0<x<1.0、0<y<0.95、0<z<0.46。]
MoNb   化学式6C
[上記化学式6C中、0.35<x<1.0、0<y<0.65、0<z<0.18。]
 圧電薄膜2が酸化亜鉛を含む場合、第一電極層6aに含まれる合金は、下記の化学式7A及び化学式7Bのうちいずれか一方で表されてよい。第一電極層6aに含まれる合金が、下記の化学式7A及び化学式7Bのうちいずれか一方で表される場合、(001)面が配向した複数のZnOの柱状結晶が、第一電極層6aの(110)面上において一様に成長し易く、圧電薄膜2(ZnO)と第一電極層6aとの格子不整合が低減され易く、格子不整合度の絶対値が2%以下になり易い。また下記の化学式7A及び化学式7Bのうちいずれか一方で表される合金の酸化反応における自由エネルギー変化ΔGは、負の値であるものの、ΔGの絶対値は比較的小さい傾向がある。したがって、下記の化学式7A及び化学式7Bのうちいずれか一方で表される合金は、酸化され難く、圧電薄膜2における絶縁破壊を抑制し易い。下記の化学式7A及び化学式7Bのうちいずれか一方で表される合金の酸化反応におけるギブスエネルギー変化ΔGは、公知のエリンガムダイアグラムから算出されてよい。
MoNb   化学式7A
[上記化学式7A中、0<x<0.75、0<y<1.0、0<z<1.0。]
MoTa   化学式7B
[上記化学式7B中、0<x<0.75、0<y<1.0、0<z<1.0。]
 基板12は、例えば、半導体基板(シリコン基板、若しくはガリウム砒素基板等)、光学結晶基板(サファイア基板等)、絶縁体基板(ガラス基板、若しくはセラミックス基板等)又は金属基板であってよい。第一電極層6aは、例えば、基板12の(100)面に積層されてよい。後述される他の圧電薄膜素子に用いられる基板の組成は、図1に示される基板12の組成と同じであってよい。
 第一電極層6aは基板12に直接積層されていてよい。第一電極層6aと基板12との間に他の電極層(例えば、面心立方格子構造を有する別の電極層)が介在する場合に比べて、基板12に直接積層される第一電極層6aの体心立方格子構造は損なわれ難く、第一電極層6aと圧電薄膜2との間の格子不整合が低減され易い。体心立方格子構造を有する第一電極層6aが、面心立方格子構造を有する別の電極層に直接積層されている場合、両電極層間の熱膨張係数差に因る残留応力がいずれかの電極層において生じ易い。その結果、第一電極層6aが別の電極層から剥離したり、圧電薄膜2における残留応力が増加して圧電薄膜2におけるクラックが誘起されたりすることがある。
 第一電極層6aと基板12との間に密着層が介在してよい。密着層は、Mg(マグネシウム)、Cu(銅)、Al(アルミニウム)、Ni(ニッケル)、Cr(クロム)、Ti(チタン)、Hf(ハフニウム)、Zr(ジルコニウム)Nb(ニオブ)及びTa(タンタル)からなる群より選ばれる少なくとも一種であってよい。密着層は、金属単体、合金又は化合物(酸化物など)であってよい。密着層は、別の圧電薄膜、高分子、又はセラミックスから構成されていてもよい。密着層の介在により、第一電極層6aの体心立方格子構造の(110)面が、基板12の法線方向において配向し易い。また密着層は、機械的な衝撃等に因る第一電極層6aの剥離を抑制する機能も有する。密着層は、支持層、バッファ層又は中間層と言い換えられてよい。
 第二電極層6bは、金属単体であってよく、合金であってもよい。第二電極層6bは、第一電極層6aと同様の金属元素を含んでよい。第二電極層6bの組成は、第一電極層6aと全く同じであってよい。第二電極層6bの組成は、第一電極層6aと異なっていてもよい。例えば、第二電極層6bは、Pt(白金)、Ir(イリジウム)、Pd(パラジウム)、Au(金)、Mg(マグネシウム)、Cu(銅)、Al(アルミニウム)、Ni(ニッケル)、Cr(クロム)、Ti(チタン)、Hf(ハフニウム)、Zr(ジルコニウム)Nb(ニオブ)、Ta(タンタル)、Mo(モリブデン)W(タングステン)及びV(バナジウム)からなる群より選ばれる少なくも一種であってよい。
 圧電薄膜2は、Sc(スカンジウム)、Y(イットリウム)及びIn(インジウム)からなる群より選ばれる少なくとも一種の添加元素を含んでよい。圧電薄膜2は、添加元素として、Ti(チタン)、Zr(ジルコニウム)及びHf(ハフニウム)からなる群より選ばれる少なくとも一種の4価元素を含んでよい。圧電薄膜2は、添加元素として上記の4価元素に加えて、Mg(マグネシウム)を含んでもよい。圧電薄膜2は、添加元素として、V(バナジウム)、Nb(ニオブ)及びTa(タンタル)からなる群より選ばれる少なくとも一種の5価元素を含んでもよい。圧電薄膜2が一種又は複数種の上記添加元素を含むことにより、ウルツ型構造の格子定数が調整され、ウルツ型構造を有する多数の圧電組成物の柱状結晶が、第一電極層6上において一様に成長して、圧電薄膜2の圧電特性が向上することがある。
 基板12の厚みは、例えば50μm以上10000μm以下であってよい。第一電極層6aの厚みは、例えば、0.01μm以上1μm以下であってよい。圧電薄膜2の厚みは、例えば、0.1μm以上30μm以下であってよい。第二電極層6bの厚みは、例えば、0.01μm以上1μm以下であってよい。
 第一電極層6a、圧電薄膜2及び第二電極層6bそれぞれは、例えば、複数のターゲットを用いたスパッタリング(co‐sputtering、又はmulti‐sputtering)によって積層順に従って個別に形成されてよい。複数のターゲットは、上述された各層又は圧電薄膜を構成する元素のうち少なくとも一種を含んでよい。所定の組成を有するターゲットの選定及び組合せにより、目的とする組成を有する第一電極層6a、圧電薄膜2及び第二電極層6bそれぞれを個別に形成することができる。スパッタリングの雰囲気の組成も、第一電極層6a、圧電薄膜2及び第二電極層6bそれぞれの組成を左右する。例えば、圧電薄膜2がAlNである場合、スパッタリングの雰囲気は、例えば、窒素ガスであってよい。スパッタリングの雰囲気は、希ガス(例えばアルゴン)と窒素とを含む混合ガスであってもよい。複数のターゲット其々に与えられる入力パワー(電力密度)も、第一電極層6a、圧電薄膜2及び第二電極層6bそれぞれの組成及び厚みの制御因子である。ターゲットは、金属単体あってよく、合金であってもよい。スパッタリングの雰囲気の全圧、雰囲気中の原料ガス(例えば窒素)の分圧又は濃度、各ターゲットのスパッタリングの継続時間、圧電薄膜が形成される基板表面の温度、及び基板バイアス等も、第一電極層6a、圧電薄膜2及び第二電極層6bそれぞれの組成及び厚みの制御因子である。エッチング(例えばプラズマエッチング)により、所望の形状又はパターンを有する圧電薄膜が形成されてよい。
 第一電極層6a、圧電薄膜2及び第二電極層6bそれぞれの結晶構造は、X線回折(XRD)法によって特定されてよい。第一電極層6a、圧電薄膜2及び第二電極層6bそれぞれの組成は、蛍光X線分析法(XRF法)、エネルギー分散型X線分析法(EDX)、誘導結合プラズマ質量分析法(ICP-MS)、レーザーアブレーション誘導結合プラズマ質量分析法(LA-ICP-MS)、及び電子線マイクロアナライザ(EPMA)を用いた分析法、のうち少なくともいずれか一つの分析方法にとって特定されてよい。
 本実施形態に係る圧電薄膜素子10の用途は、多岐にわたる。圧電薄膜素子は、例えば、圧電マイクロフォン、ハーベスタ、発振子、共振子、又は音響多層膜であってよい。圧電薄膜素子は、例えば、圧電アクチュエータであってもよい。圧電アクチュエータは、例えば、ヘッドアセンブリ、ヘッドスタックアセンブリ、又はハードディスクドライブに用いられてよい。圧電アクチュエータは、例えば、プリンタヘッド、又はインクジェットプリンタ装置に用いられてもよい。圧電アクチュエータは、圧電スイッチに用いられてもよい。圧電薄膜素子は、例えば、圧電センサであってもよい。圧電センサは、例えば、ジャイロセンサ、圧力センサ、脈波センサ、超音波センサ、又はショックセンサに用いられてよい。上述された各圧電薄膜素子は、MEMSの一部又は全部であってよい。例えば、図1中の(a)、図1中の(b)、及び図2に示される各圧電薄膜素子(10,10b,40)は、MEMSの一部であってよい。
 以下では、圧電薄膜素子の各具体例を詳しく説明する。
 図1中の(b)に示される圧電薄膜素子10bは、基板12a、12bと、基板12a、12bの上に設置された第一電極層6aと、第一電極層6aに積層された圧電薄膜2と、圧電薄膜2に積層された第二電極層6bと、を備える圧電マイクロフォンであってよい。圧電薄膜2の下方には、音響用の空洞12cが設けられていてよい。
 図2に示される圧電薄膜素子は、圧電スイッチ40である。圧電スイッチ40は、基板12Cと、基板12Cの表面に設置された第一スイッチ18Aと、第一スイッチ18Aの先端に設置され、基板12Cを向く第一導電端子3Aと、基板12Cの表面に設置され、第一導電端子3Aに対面する第二導電端子3Bと、基板12Cの表面に設置され、第一スイッチ18Aと離間する第二スイッチ18Bと、第二スイッチ18Bの先端に設置され、基板12Cを向く第一導電端子3Cと、基板12Cの表面に設置され、第一導電端子3Cに対面する第二導電端子3Dと、を備える。第一スイッチ18Aは、第一電極層6Iと、第二電極層6Jと、第一電極層6I及び第二電極層6Jに挟まれた圧電薄膜2Fと、を有する。第二スイッチ18Bは、第一電極層6Kと、第二電極層6Lと、第一電極層6K及び第二電極層6Lに挟まれた圧電薄膜2Gと、を有する。第一スイッチ18Aの作動により、圧電薄膜2Fが歪み、第一スイッチ18Aの先端が基板12Cの表面に近づき、第一導電端子3Aが第二導電端子3Bと接続される。第二スイッチ18Bの作動により、圧電薄膜2Gが歪み、第二スイッチ18Bの先端が基板12Cの表面に近づき、第一導電端子3Cが第二導電端子3Dと接続される。第一スイッチ18Aが有する圧電薄膜2Fの厚みは、第二スイッチ18Bが有する圧電薄膜2Gの厚みよりも薄い。したがって、第一スイッチ18Aの閉動電圧は、第二スイッチ18Bの閉動電圧と異なる。
 以下では実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 (実施例1)
 真空チャンバー内でのDCマグネトロンスパッタリングにより、酸化チタンからなる密着層をシリコンの単結晶基板の(100)面全体に直接形成した。単結晶基板の厚みは625μmであった。密着層の厚みは、5×10-3μmであった。
 真空チャンバー内でのDCマグネトロンスパッタリングにより、第一電極層を密着層の表面全体に直接形成した。DCマグネトロンスパッタリングでは、複数の金属単体のターゲットのスパッタリングを同時に行った。ターゲットとしては、下記表1に示される金属元素EX及び金属元素EY其々の単体を用いた。実施例1の場合の金属元素EXは、Vであった。実施例1の場合の金属元素EYは、Moであった。実施例1では金属元素EZのターゲットを用いなかった。実施例1の第一電極層は、化学式VMoで表される合金からなり、体心立方(BCC)格子構造を有していた。xは、化学式VMoにおけるVのモル比である。yは、VMoにおけるMoのモル比である。各ターゲットに対する入力パワーの調整により、x及びyは下記表1に示される値に調整された。
 真空チャンバー内でのRFマグネトロンスパッタリングにより、ウルツ型構造を有するAlNからなる圧電薄膜を、第一電極層の表面全体に直接形成した。RFマグネトロンスパッタリングでは、アルミニウム単体のターゲットを用いた。RFマグネトロンスパッタリングにおける入力パワーは、9.87W/cmであった。圧電薄膜の形成過程における基板の温度(成膜温度)は、300℃に維持された。圧電薄膜の形成過程における真空チャンバー内の雰囲気は、アルゴン及び窒素の混合ガスであった。真空チャンバー内の混合ガスの気圧は、0.30Paに調整した。圧電薄膜の厚みは、1.3μmに調整した。
 第一電極層の場合の同様の方法で、第二電極層を圧電薄膜の表面全体に直接形成した。第二電極層の組成は、第一電極の組成と全く同じであった。第二電極層の厚みは、第一電極の厚みと全く同じであった。
 上述の第一電極層及び圧電薄膜それぞれの結晶構造は、X線回折(XRD)法により特定された。上述の第一電極層、圧電薄膜及び第二電極層それぞれの組成は、蛍光X線分析法(XRF法)及びレーザーアブレーション誘導結合プラズマ質量分析法(LA-ICP-MS)により分析された。XRD法には、株式会社リガク製の多目的X線回折装置(SmartLab)を用いた。XRF法には、株式会社リガク製の分析装置(ZSX-100e)を用いた。LA-ICP-MS法には、Agilent社製の分析装置(7500s)を用いた。
 以上の通り、基板と、基板に直接積層された密着層と、密着層に直接積層された第一電極層と、第一電極層に直接積層された圧電薄膜と、圧電薄膜に直接積層された第二電極と、を備える積層体を作製した。続いて、フォトリソグラフィにより、基板上の積層構造のパターニングを行った。続いて、積層体全体を、ダイシングにより切断することにより、四角形状の実施例1の圧電薄膜素子を得た。圧電薄膜素子は、基板と、基板に直接積層された密着層と、密着層に直接積層された第一電極層と、第一電極層に直接積層された圧電薄膜と、圧電薄膜に直接積層された第二電極と、を備えていた。
 [圧電薄膜素子の分析]
 以下の方法で、実施例1の圧電薄膜素子を分析した。
 <格子不整合度Δa/aの算出>
 第一電極層と圧電薄膜との間の格子不整合度Δa/aを算出した。実施例1のΔa/aは、下記表2に示される値であった。
 <ΔGの算出>
 実施例1の第一電極層を構成するV‐Mo合金の酸化反応におけるギブスエネルギー変化ΔGを、公知のエリンガムダイアグラムから算出した。実施例1のΔGは、下記表2に示される値であった。
 <ロッキングカーブの測定>
 実施例1の圧電薄膜素子の作製に用いたシリコンの単結晶基板の(400)面のロッキングカーブを測定した。測定には、上述のX線回折装置を用いた。ロッキングカーブの測定範囲は、シリコンの(400)面に由来する回折ピークの最大値の回折角±0.5°であった。測定間隔は、0.01°であった。測定スピードは、2.0°/分であった。シリコンの単結晶基板の(400)面のロッキングカーブの半値全幅は、0.05°であった。したがって後述される圧電薄膜の(002)面のロッキングカーブの半値全幅が0.05°以上である場合、圧電薄膜のロッキングカーブの半値全幅は圧電薄膜の(002)面の配向性を示唆している、といえる。
 第二電極層が形成される前の実施例1の圧電薄膜(AlN)の(002)面のロッキングカーブを測定した。ロッキングカーブの測定範囲は、AlNの(002)面に由来する回折ピークの最大値の回折角(36°)±15°であった。この点を除いて、シリコンの(400)面の場合と同様の方法で、実施例1の圧電薄膜の(002)面のロッキングカーブを測定した。実施例1の圧電薄膜の(002)面のロッキングカーブの半値全幅FWHM(wurt.)は、下記表2に示される値であった。
 <残留応力σの算出>
 以下の手順で、実施例1の圧電薄膜素子が備える圧電薄膜の残留応力σを算出した。まず、圧電薄膜が形成される前の基板(つまり、基板、密着層及び第一電極層からなる積層体)の曲率半径RBeforeを測定した。続いて、圧電薄膜が形成された後の基板(つまり、基板、密着層、第一電極層及び圧電薄膜からなる積層体)の曲率半径RAfterを測定した。RBefore及びRAfter其々の測定には、KLA‐Tencor社製の測定装置(P‐16プロファイラ)を用いた。そして、下記数式3(ストーニーの式)に基づき、実施例1の残留応力σを算出した。正の残留応力σは、引っ張り応力であり、負の残留応力σは、圧縮応力である。実施例1の残留応力σは、下記表1に示される値であった。
Figure JPOXMLDOC01-appb-M000003
 数式3中のEは、シリコンの単結晶基板のヤング率(単位:GPa)である。νは、圧電薄膜のポアソン比である。tsub.は、シリコンの単結晶基板の厚みである。tfilmは、圧電薄膜の厚みである。
 <クラック率の測定>
 100mm×100mmの板状の実施例1の圧電薄膜素子を切断して、10mm角の100個のサンプルを作製した。100個のサンプルのうち、圧電薄膜にクラックが発生しているサンプルの数nを光学顕微鏡で数えた。実施例1のクラック率(つまりn%)は、下記表1に示される値であった。
 <電気機械結合係数k の算出>
 実施例1の圧電薄膜素子の共振周波数f及び***振周波数fを測定した。共振周波数fは、圧電薄膜素子を用いた共振回路のインピーダンスが最小であるときの周波数である。***振周波数fは、圧電薄膜素子を用いた共振回路のインピーダンスが最大であるときの周波数である。共振周波数f及び***振周波数fの測定の詳細は以下の通りであった。
測定装置: Agilent Technologies社製のネットワークアナライザ(N5244A)
プローブ: GS500μm(Cascade Microtech社製のACP40-W-GS-500)
パワー: -10dBm
測定ピッチ: 0.25MHz
電極面積: 200×200μm
S11測定(反射測定)
 下記数式4に基づき、共振周波数f及び***振周波数fの測定値から、電気機械結合係数k (単位:%)を算出した。電気機械結合係数k の算出に用いた共振周波数f及び***振周波数fのいずれも、5点測定平均値であった。実施例1の電気機械結合係数k は下記表1に示される値であった。
Figure JPOXMLDOC01-appb-M000004
 <圧電定数d33の測定>
 実施例1の圧電薄膜の圧電定数d33(単位:pC/N)を測定した。圧電定数d33の測定の詳細は以下の通りであった。実施例1の圧電定数d33(3点測定点平均値)は下記表1に示される値であった。
測定装置:中国科学院製のd33メーター(ZJ-4B)
周波数: 110Hz
クランプ圧: 0.25N
 <絶縁抵抗率IRの測定>
実施例1の圧電薄膜の絶縁抵抗率IRを測定した。IRの測定には、ADVANTEST社製の測定装置(R8340A)を用いた。絶縁抵抗率IRを測定では、1V/μmの電界を圧電薄膜へ印加した。上述の通り、圧電薄膜の厚みは1.3μmであった。第一電極層及び第二電極層其々において電界が印加された部分の面積は、600×600μmであった。実施例1の絶縁抵抗率IRは、下記表1に示される値であった。
 (実施例2~11)
 実施例2~11其々の第一電極層の作製では、下記表1に示されるように、金属元素EX、EY及びEZのうち少なくとも二種の金属単体のターゲットを用いた。各実施例の第一電極層は、一般的な化学式EXEYEZで表される。xは、化学式EXEYEZにおける金属元素EXのモル比である。yは、化学式EXEYEZにおける金属元素EYのモル比である。zは、化学式EXEYEZにおける金属元素EZのモル比である。実施例2~11其々の第一電極層の組成は、下記表1に示される。実施例2~11其々の第一電極層はいずれも、体心立方格子構造を有する合金からなっていた。実施例10及び11では、酸化雰囲気中において亜鉛単体のターゲットのスパッタリングを行い、ZnOからなる圧電薄膜を作製した。
 以上の事項を除いて実施例1と同様の方法で、実施例2~11其々の圧電薄膜素子を個別に作製した。
 実施例1と同様の方法で、実施例2~11其々の圧電薄膜素子を分析した。実施例2~11其々の分析の結果は下記表2に示される。
 (比較例1~5)
 比較例1~5其々の第一電極層の作製では、下記表1に示されるように、金属元素EX、EY及びEZのうち一種の金属単体のターゲットのみを用いた。比較例1~5其々の第一電極層の組成は、下記表1に示される通り、ターゲットと同様の金属単体であった。比較例1~5其々の第一電極層の結晶構造はいずれも体心立方格子(BCC)構造であった。比較例5では、酸化雰囲気中において亜鉛単体のターゲットのスパッタリングを行い、ZnOからなる圧電薄膜を作製した。
 以上の事項を除いて実施例1と同様の方法で、比較例1~5其々の圧電薄膜素子を個別に作製した。
 実施例1と同様の方法で、比較例1~5其々の圧電薄膜素子の評価を行った。比較例1~5其々の評価結果は下記表2に示される。
 格子不整合度Δa/aは、目標値である2%以下であることが好ましい。
 ロッキングカーブの半値全幅FWHM(wurt.)は、目標値である2.0°以下であることが好ましい。
 クラック率は、目標値である1%以下であることが好ましい。
 電気機械結合係数k は、目標値である6%以上であることが好ましい。
 圧電定数d33は、目標値である6.0pC/N以上であることが好ましい。
 絶縁抵抗率IRは、目標値である1.0×1013Ω・cm以上であることが好ましい。
 下記表2中の品質Aとは、FWHM(wurt.)、クラック率、k 、d33及びIRの5つの評価項目の全ての目標値が達成されたことを意味する。
 下記表2中の品質Bとは、Δa/a、FWHM(wurt.)、クラック率、k 、d33及びIRのうち、3つ又は4つの評価項目の目標値が達成されたことを意味する。
 下記表2中の品質Cとは、目標値が達成された評価項目数が2以下であったことを意味する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明によれば、圧電薄膜と下部電極層(第一電極層)との間の格子不整合が低減された圧電薄膜素子(例えば、MEMS)が提供される。
 2,2F,2G…圧電薄膜、3A,3C…第一導電端子、3B,3D…第二導電端子、6a,6I,6K…第一電極層、6b,6J,6L…第二電極層、10…圧電薄膜素子、10b…圧電薄膜素子(圧電マイクロフォン)、12,12a,12b,12C…基板、18A…第一スイッチ、18B…第二スイッチ、40…圧電スイッチ。

 

Claims (11)

  1.  第一電極層と、
     前記第一電極層に直接積層された圧電薄膜と、
    を備え、
     前記第一電極層が、二種以上の金属元素から構成される合金を含み、
     前記第一電極層が、体心立方格子構造を有し、
     前記圧電薄膜が、ウルツ鉱型構造を有する、
    圧電薄膜素子。
  2.  前記合金が、Mo、W、V、Cr、Nb及びTaからなる群より選ばれる二種以上の元素を含む、
    請求項1に記載の圧電薄膜素子。
  3.  前記合金が、下記の化学式3A、化学式3B、化学式3C、化学式3D、化学式3E及び化学式3Fのうちいずれかで表され、
     前記圧電薄膜が、窒化アルニミウムを含む、
    請求項2に記載の圧電薄膜素子。
    Mo(1-x)   化学式3A
    [前記化学式3A中、0<x<0.65。]
    Mo(1-x)   化学式3B
    [前記化学式3B中、0<x<0.82。]
    Mo(1-x)Nb   化学式3C
    [前記化学式3C中、0<x<0.18。] 
    (1-x)   化学式3D
    [前記化学式3D中、0.10<x<0.87。]
    Mo(1-x)Cr   化学式3E
    [前記化学式3E中、0<x<0.37。]
    (1-x)Cr   化学式3F
    [前記化学式3F中、0.05<x<0.46。]
  4.  前記合金が、下記の化学式4A、化学式4B、化学式4C、化学式4D及び化学式4Eのうちいずれかで表され、
     前記圧電薄膜が、酸化亜鉛を含む、
    請求項2に記載の圧電薄膜素子。
    Mo(1-y)   化学式4A
    [前記化学式4A中、0.90<y<1.0。]
    Mo(1-y)Nb   化学式4B
    [前記化学式4B中、0.25<y<1.0。]
    Mo(1-y)Ta   化学式4C
    [前記化学式4C中、0.25<y<1.0。]
    (1-y)Nb   化学式4D
    [前記化学式4D中、0<y<1.0。]
    (1-y)Ta   化学式4E
    [前記化学式4E中、0<y<1.0。]
  5.  前記合金が、Mo、W、V、Cr、Nb及びTaからなる群より選ばれる三種以上の元素を含む、
    請求項1に記載の圧電薄膜素子。
  6.  前記合金が、下記の化学式6A、化学式6B及び化学式6Cのうちいずれかで表され、
     前記圧電薄膜が、窒化アルミニウムを含む、
    請求項5に記載の圧電薄膜素子。
    Mo   化学式6A
    [前記化学式6A中、0<x<1.0、0<y<0.90、0<z<0.87。]
    MoCr   化学式6B
    [前記化学式6B中、0<x<1.0、0<y<0.95、0<z<0.46。]
    MoNb   化学式6C
    [前記化学式6C中、0.35<x<1.0、0<y<0.65、0<z<0.18。]
  7.  前記合金が、下記の化学式7A及び化学式7Bのうちいずれか一方で表され、
     前記圧電薄膜が、酸化亜鉛を含む、
    請求項5に記載の圧電薄膜素子。
    MoNb   化学式7A
    [前記化学式7A中、0<x<0.75、0<y<1.0、0<z<1.0。]
    MoTa   化学式7B
    [前記化学式7B中、0<x<0.75、0<y<1.0、0<z<1.0。]
  8.  前記第一電極層の前記体心立方格子構造の(110)面が、前記第一電極層と前記圧電薄膜との間の界面の法線方向において配向している、
    請求項1~7のいずれか一項に記載の圧電薄膜素子。
  9.  前記第一電極層と前記圧電薄膜との間の格子不整合度が、0%以上2%以下である、
    請求項1~8のいずれか一項に記載の圧電薄膜素子。
  10.  基板を更に備え、
     前記第一電極層が前記基板に直接積層されている、
    請求項1~9のいずれか一項に記載の圧電薄膜素子。
  11.  前記圧電薄膜の前記ウルツ鉱型構造の(002)面のロッキングカーブの半値全幅が、0°以上2.0°以下である、
    請求項1~10のいずれか一項に記載の圧電薄膜素子。

     
PCT/JP2018/033670 2017-09-22 2018-09-11 圧電薄膜素子 WO2019059051A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/647,491 US11594669B2 (en) 2017-09-22 2018-09-11 Piezoelectric thin film element
JP2019543574A JP7215426B2 (ja) 2017-09-22 2018-09-11 圧電薄膜素子
CN201880044685.6A CN110832655B (zh) 2017-09-22 2018-09-11 压电薄膜元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-182726 2017-09-22
JP2017182726 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059051A1 true WO2019059051A1 (ja) 2019-03-28

Family

ID=65809692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033670 WO2019059051A1 (ja) 2017-09-22 2018-09-11 圧電薄膜素子

Country Status (5)

Country Link
US (1) US11594669B2 (ja)
JP (1) JP7215426B2 (ja)
CN (1) CN110832655B (ja)
TW (1) TWI699439B (ja)
WO (1) WO2019059051A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072316A (ja) * 2019-10-29 2021-05-06 Tdk株式会社 圧電薄膜素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081965B (zh) * 2019-05-17 2021-04-30 电子科技大学中山学院 一种驻波波节、波腹定位探测结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136115A (ja) * 2003-10-30 2005-05-26 Tdk Corp 電子デバイス及びその製造方法
JP2005198117A (ja) * 2004-01-09 2005-07-21 Tdk Corp 電子デバイス作製用構造体及びこれを用いた電子デバイスの製造方法
JP2005197983A (ja) * 2004-01-07 2005-07-21 Tdk Corp 薄膜バルク波共振器
JP2013191870A (ja) * 2006-09-15 2013-09-26 Canon Inc 圧電素子及び液体吐出ヘッド
JP2015128091A (ja) * 2013-12-27 2015-07-09 株式会社ユーテック 強誘電体セラミックス及びその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526048B1 (en) * 1991-07-18 1997-11-12 Ngk Insulators, Ltd. Piezoelectric/electrostrictive element having ceramic substrate formed essentially of stabilized zirconia
US6936837B2 (en) * 2001-05-11 2005-08-30 Ube Industries, Ltd. Film bulk acoustic resonator
JP3953315B2 (ja) * 2001-12-26 2007-08-08 宇部興産株式会社 窒化アルミニウム薄膜−金属電極積層体およびそれを用いた薄膜圧電共振子
JP2004214282A (ja) * 2002-12-27 2004-07-29 Canon Inc 圧電素子
JP4186685B2 (ja) * 2003-04-10 2008-11-26 宇部興産株式会社 窒化アルミニウム薄膜及びそれを用いた圧電薄膜共振子
JP4373949B2 (ja) 2004-04-20 2009-11-25 株式会社東芝 薄膜圧電共振器及びその製造方法
CN100527615C (zh) 2004-04-20 2009-08-12 株式会社东芝 薄膜压电谐振器及其制造方法
JP2006160566A (ja) * 2004-12-08 2006-06-22 Setsunan Univ 正方晶MgSiO3結晶及びその製造方法並びに圧電素子
JP5643472B2 (ja) * 2007-10-25 2014-12-17 パナソニック株式会社 圧電薄膜素子
WO2010122707A1 (ja) * 2009-04-20 2010-10-28 パナソニック株式会社 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5024399B2 (ja) * 2009-07-08 2012-09-12 日立電線株式会社 圧電薄膜素子、圧電薄膜デバイス及び圧電薄膜素子の製造方法
JP5515675B2 (ja) * 2009-11-20 2014-06-11 日立金属株式会社 圧電薄膜素子及び圧電薄膜デバイス
JP5531635B2 (ja) * 2010-01-18 2014-06-25 日立金属株式会社 圧電薄膜素子及び圧電薄膜デバイス
WO2011121863A1 (ja) * 2010-03-29 2011-10-06 日立電線株式会社 圧電薄膜素子及びその製造方法、並びに圧電薄膜デバイス
JP5808262B2 (ja) * 2012-01-23 2015-11-10 株式会社サイオクス 圧電体素子及び圧電体デバイス
US9136460B2 (en) * 2014-01-29 2015-09-15 Canon Kabushiki Kaisha Piezoelectric element, method for manufacturing piezoelectric element, and electronic apparatus
US9680085B2 (en) * 2014-03-07 2017-06-13 Canon Kabushiki Kaisha Ceramic powder, piezoelectric ceramic, piezoelectric element, and electronic equipment
US20170263847A1 (en) * 2016-03-09 2017-09-14 Teledyne Dalsa Semiconductor, Inc. Piezoelectric Alloy Films
EP3220431B1 (en) * 2016-03-16 2019-10-30 Xaar Technology Limited A piezoelectric thin film element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136115A (ja) * 2003-10-30 2005-05-26 Tdk Corp 電子デバイス及びその製造方法
JP2005197983A (ja) * 2004-01-07 2005-07-21 Tdk Corp 薄膜バルク波共振器
JP2005198117A (ja) * 2004-01-09 2005-07-21 Tdk Corp 電子デバイス作製用構造体及びこれを用いた電子デバイスの製造方法
JP2013191870A (ja) * 2006-09-15 2013-09-26 Canon Inc 圧電素子及び液体吐出ヘッド
JP2015128091A (ja) * 2013-12-27 2015-07-09 株式会社ユーテック 強誘電体セラミックス及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072316A (ja) * 2019-10-29 2021-05-06 Tdk株式会社 圧電薄膜素子
JP7425960B2 (ja) 2019-10-29 2024-02-01 Tdk株式会社 圧電薄膜素子

Also Published As

Publication number Publication date
TW201918565A (zh) 2019-05-16
JP7215426B2 (ja) 2023-01-31
CN110832655A (zh) 2020-02-21
US20200274052A1 (en) 2020-08-27
TWI699439B (zh) 2020-07-21
JPWO2019059051A1 (ja) 2020-09-10
CN110832655B (zh) 2023-07-28
US11594669B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
US11411164B2 (en) Piezoelectric thin film device
CN101325240B (zh) 压电体薄膜、压电体及其制造方法、以及压电体谐振子
US7758979B2 (en) Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film
JP4328853B2 (ja) 圧電素子およびその製造方法
JP5836755B2 (ja) 圧電体素子及び液体吐出ヘッド
KR101312485B1 (ko) 스퍼터링된 압전 재료
JP7425960B2 (ja) 圧電薄膜素子
JP7215426B2 (ja) 圧電薄膜素子
JP7215425B2 (ja) 圧電薄膜素子
Fawzy et al. Piezoelectric thin film materials for acoustic mems devices
WO2019235080A1 (ja) 圧電薄膜及び圧電薄膜素子
JP2021086982A (ja) 圧電薄膜素子
JP6426061B2 (ja) 積層薄膜構造体の製造方法、積層薄膜構造体及びそれを備えた圧電素子
JP4328854B2 (ja) 圧電素子およびその製造方法
WO2023195413A1 (ja) 窒化物、圧電体、圧電素子、強誘電体、及び強誘電素子
JP2022124810A (ja) 圧電薄膜素子
JP2023120668A (ja) 圧電薄膜及び圧電薄膜素子
JP2021153074A (ja) 圧電薄膜素子
JP2021153075A (ja) 圧電薄膜及び圧電薄膜素子
WO2024038342A1 (en) Process of epitaxial grown pzt film and method of making a pzt device
Riekkinen Fabrication and characterization of ferro-and piezoelectric multilayer devices for high frequency applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857960

Country of ref document: EP

Kind code of ref document: A1