WO2019059016A1 - Electronic device and manufacturing method therefor - Google Patents

Electronic device and manufacturing method therefor Download PDF

Info

Publication number
WO2019059016A1
WO2019059016A1 PCT/JP2018/033378 JP2018033378W WO2019059016A1 WO 2019059016 A1 WO2019059016 A1 WO 2019059016A1 JP 2018033378 W JP2018033378 W JP 2018033378W WO 2019059016 A1 WO2019059016 A1 WO 2019059016A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electronic device
liquid repellent
gas barrier
thin film
Prior art date
Application number
PCT/JP2018/033378
Other languages
French (fr)
Japanese (ja)
Inventor
憲二郎 福田
シャオミン シュー
ソンジュン パク
隆夫 染谷
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2019543555A priority Critical patent/JPWO2019059016A1/en
Publication of WO2019059016A1 publication Critical patent/WO2019059016A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electronic device and a method of manufacturing the same.
  • thin film electronic devices excellent in variety of applications have attracted attention.
  • organic thin film solar cells organic thin film solar cells, inorganic compound semiconductor solar cells, organic EL (Electro-Luminescence) displays, illuminations and the like have already been commercialized.
  • organic EL Electro-Luminescence
  • thin film electronic devices are thin and the flexibility of thin film electronic devices using flexible substrates is high, such thin film electronic devices can be applied or worn and used comfortably on various places (such as non-flat places) . If properly designed, it can be used for washing (washing).
  • the use of a flexible base material is also advantageous because it is less likely to be broken by deformation and cause dangerous fragments.
  • the durability which can realize a function stably stably for a long period is desired, but the electronic device layer which consists of an electrode, a semiconductor, etc. which constitute an electronic device is a water vapor, oxygen, etc. Degrade by doing.
  • the electronic device layer which consists of an electrode, a semiconductor, etc. which constitute an electronic device is a water vapor, oxygen, etc. Degrade by doing.
  • a photoelectric conversion layer that performs photoelectric conversion is easily degraded by water vapor or the like.
  • an electronic device layer made of an inorganic compound semiconductor or the like is also easily degraded by water vapor or the like.
  • the structure which provides the gas barrier layer for protecting an electronic device layer from water vapor etc. is proposed (patent document 1).
  • a glass gas barrier layer By providing a glass gas barrier layer, the electronic device layer can be effectively protected from water vapor and the like.
  • another thick gas barrier layer the electronic device layer can be effectively protected from water vapor and the like.
  • the electronic device layer can be effectively protected from water vapor or the like while being flexible even by providing a gas barrier layer in which, for example, two or more layers of five or more layers are alternately laminated to alternately form an organic layer and an inorganic thin film layer.
  • the number of gas barrier layers needs to be small and thin.
  • the gas barrier layer is thin, water vapor easily passes through the gas barrier layer, and even if a thin gas barrier layer is provided, the electronic device layer can not be sufficiently protected from water vapor and the like, and the durability of the electronic device can not be sufficiently improved.
  • the function of the electronic device may be impaired or the durability of the electronic device may not be sufficiently improved. Furthermore, there is a problem that the manufacturing cost is increased and it is difficult to assemble a practical manufacturing process.
  • an object of this invention is to provide the electronic device which the practicability as a product, durability, and the ease of manufacturing improved more, without impairing a function.
  • the electronic device of the present invention comprises an electronic device layer and a barrier layer provided on the electronic device layer, and the barrier layer comprises a gas barrier layer and a liquid repellent layer provided on or under the gas barrier layer. And.
  • the electronic device of the present invention in addition to the gas barrier layer having relatively high gas barrier properties (relatively low permeability such as water vapor), preferably it is in contact with the gas barrier layer and has relatively high liquid repellency (water repellency) A liquid repellent layer is further provided.
  • the practicability as a product the durability (such as the durability to water vapor, etc.) and the ease of manufacturing are further improved without losing the function.
  • a thin liquid repellent layer in contact with a thin gas barrier layer in addition to a thin gas barrier layer, practicality, durability, and production as a product without impairing functions such as high flexibility.
  • a thin film electronic device with improved ease can be provided.
  • the liquid repellent layer not only the durability against water vapor and the like but also the durability against water is improved, and therefore the electronic device can be washed with water and the like.
  • the electronic device layer is preferably a semiconductor device layer (a layer made of a semiconductor or the like).
  • the electronic device layer more preferably includes a photoelectric conversion layer (a layer that performs photoelectric conversion), and a first electrode and a second electrode sandwiching the photoelectric conversion layer in the vertical direction.
  • the semiconductor device layer is easily degraded by water vapor and the like, and the photoelectric conversion layer is particularly easily degraded by water vapor and the like. Therefore, when these layers are used, the durability of the electronic device can be greatly improved.
  • the electronic device preferably further comprises a substrate provided below the electronic device layer, and another liquid repellent layer provided below the substrate or between the electronic device layer and the substrate.
  • the substrate preferably has gas barrier properties.
  • the substrate is preferably a polyimide layer (a layer made of polyimide).
  • a polyimide layer a layer made of polyimide.
  • the total light transmittance in the corresponding wavelength band is preferably 70% or more, more preferably 80% or more.
  • the appropriate thickness of the substrate (substrate) varies depending on the application, but is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and most preferably 5 ⁇ m or less for flexible, wearable or washable applications.
  • the gas barrier layer is preferably a paraxylene polymer layer (a layer comprising a paraxylene polymer) or a polyimide layer.
  • the polyimide layer is relatively excellent in heat resistance, flexibility, etc., it can be suitably used for thin film electronic devices. Furthermore, since the polyimide layer is also relatively excellent in gas barrier properties, it can be suitably used as a gas barrier layer.
  • the paraxylene-based polymer layer is also relatively excellent in heat resistance, gas barrier property, flexibility, and the like, and thus can be suitably used as a gas barrier layer of a thin film electronic device. Furthermore, since the paraxylene-based polymer layer is relatively excellent in unevenness followability, it is easy to form uniformly on the uneven surface.
  • the appropriate thickness of the gas barrier layer varies depending on the application, but in flexible, wearable or washable applications, it is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and most preferably 1 ⁇ m or less.
  • the liquid repellent layer is preferably a fluorocarbon resin layer (a layer made of fluorocarbon resin), and particularly preferably an amorphous fluorocarbon resin layer.
  • the fluorine resin layer is also relatively excellent in heat resistance, flexibility and the like, and thus can be suitably used for thin film electronic devices. Furthermore, since the fluorine resin layer is relatively excellent in liquid repellency, it can be suitably used as a liquid repellent layer.
  • the water vapor transmission rate of the gas barrier layer is preferably lower than 3 g ⁇ mm / m 2 ⁇ day, more preferably lower than 0.6 g ⁇ mm / m 2 ⁇ day, 0.1 g ⁇ mm / m 2 ⁇ day It is most preferred that it be lower.
  • the water contact angle of the liquid repellent layer is preferably greater than 100 °, and more preferably greater than 110 °.
  • the surface free energy of the liquid repellent layer is preferably less than 20 mN / m, more preferably less than 10 mN / m. By satisfying at least one of the combinations of these conditions, the durability can be further improved.
  • the method for manufacturing an electronic device comprises the steps of applying a liquid repellent layer on the surface of the electronic device layer in a non-air atmosphere (drying atmosphere not containing water vapor) and forming a gas barrier layer on the surface of the liquid repellent layer. And providing a step.
  • the gas barrier layer is formed on the surface of the liquid repellent layer.
  • the electronic device layer is temporarily exposed to the atmosphere.
  • the inventors of the present invention found that water molecules are adsorbed on the surface of the electronic device layer by exposing the electronic device layer to the atmosphere, water molecules remain at the interface between the electronic device layer and the gas barrier layer, and the remaining water molecules We believe that the rate of deterioration will increase. Then, the inventors believe that the application of the liquid repellent layer to the surface of the electronic device layer under non-atmosphere can suppress the adsorption of water molecules described above and reduce the deterioration rate of the electronic device layer.
  • the liquid repellent layer is preferably coated by spin coating.
  • the inventors believe that the degradation rate of the electronic device layer can be further reduced by the solvent of the spin coating method washing out the adsorbed water molecules.
  • FIG. 1 is a flowchart showing an example of a method of manufacturing an organic thin film solar cell according to the present embodiment.
  • FIG. 2 is a schematic diagram which shows an example of a structure of the organic thin-film solar cell concerning this embodiment.
  • FIG. 3A is a graph showing an example of changes in the short circuit current density Jsc, the open circuit voltage Voc, and the curvilinear factor FF of the organic thin film solar cell according to the present embodiment.
  • FIG. 3B is a graph showing an example of changes in the short circuit current density Jsc, the open circuit voltage Voc, and the fill factor FF of the organic thin film solar cell to be compared.
  • FIG.3 (C) is a graph which shows an example of a change of energy conversion efficiency PCE of the organic thin film solar cell which concerns on this embodiment, and the organic thin film solar cell of comparison object.
  • FIG. 4 is a graph showing an example of changes in the energy conversion efficiency PCE of the organic thin film solar cell according to the present embodiment and the organic thin film solar cell to be compared.
  • FIG. 5 is a graph showing an example of changes in the energy conversion efficiency PCE of the organic thin film solar cell according to the present embodiment and the organic thin film solar cell to be compared.
  • FIG. 6 is a graph showing an example of changes in the short circuit current density Jsc, the open circuit voltage Voc, and the curvilinear factor FF of the organic thin film solar cell according to the present embodiment.
  • FIG. 4 is a graph showing an example of changes in the energy conversion efficiency PCE of the organic thin film solar cell according to the present embodiment and the organic thin film solar cell to be compared.
  • FIG. 5 is a graph showing an example of changes in the energy conversion
  • FIG. 7 is a graph showing an example of changes in the energy conversion efficiency PCE of the organic thin film solar cell according to the present embodiment and the organic thin film solar cell to be compared.
  • FIG. 8 is a table showing an example of water vapor permeability and oxygen permeability according to the present embodiment.
  • FIGS. 9A to 9C are schematic views showing an example of the configuration of the organic thin film solar cell according to the present embodiment.
  • FIG. 10 is a table showing an example of the water contact angle and surface free energy according to the present embodiment.
  • the inventors prepared the electronic device layer 20 in the glove box (step S101). Specifically, the inventors prepared the product in which the electronic device layer 20 was provided on the substrate 10 in a glove box.
  • the inventors used a polyimide layer made of polyimide as the substrate 10.
  • the polyimide layer is relatively excellent in heat resistance, flexibility and the like, and thus can be suitably used for thin film electronic devices such as organic thin film solar cells.
  • the polyimide layer is also relatively excellent in gas barrier properties, it can be suitably used as a gas barrier layer.
  • transparent polyimides such as VICT-Bnp and VICT-C manufactured by Mitsui Chemical Co., Ltd. are relatively excellent in light transmittance (transmittance of light), and therefore, for solar cells etc. where high light transmittance is required It can be used suitably.
  • the inventors used a polyimide layer (transparent polyimide layer) having a thickness of 1 ⁇ m as the substrate 10, but the material is not limited to these as long as the requirements of the present invention are satisfied.
  • the inventors set an active layer (photoelectric conversion layer for performing photoelectric conversion) 23 as an electronic device layer 20, and an upper electrode (first electrode) 25 and a lower electrode (second electrode) sandwiching the active layer 23 in the vertical direction. And 21) were used. Specifically, the inventors used the electronic device layer 20 in which the lower electrode 21, the electron transport layer 22, the active layer 23, the hole transport layer 24, and the upper electrode 25 were stacked in that order.
  • the inventors use a 30 nm thick layer of zinc oxide (ZnO) as the electron transport layer 22 and a 10 nm thick layer of PEDOT: PSS as the hole transport layer 24, using indium tin oxide (ITO A layer of 90 nm in thickness (transparent electrode) is used as the lower electrode 21, and a layer of 100 nm in thickness of silver (Ag) is used as the upper electrode 25. Then, the inventors used, as the active layer 23, a layer having a thickness of 130 nm made of a polymer based organic substance such as PNTz4T, PTzNTz, PTB7-Th manufactured by RIKEN.
  • a fluorine resin layer composed of a fluorine resin such as a fully fluorinated resin, a partially fluorinated resin, a fluorinated resin copolymer, etc. can be suitably used for thin film electronic devices since it is relatively excellent in heat resistance, flexibility, etc. .
  • the fluorine resin layer is relatively excellent in liquid repellency, it can be suitably used as a liquid repellent layer.
  • an amorphous fluorocarbon resin is relatively excellent in light transmittance, it can be used suitably for a solar cell etc.
  • the inventors formed, as the liquid repellent layer 30, a layer having a thickness of 360 nm made of Teflon AF1600 (amorphous fluorine resin) manufactured by Mitsui-Dupont Fluorochemicals Co., Ltd. Specifically, the inventors formed a liquid repellent layer 30 made of AF 1600 by a spin coating method under the following conditions.
  • the amorphous fluorocarbon resin can usually be used at a temperature lower than the glass transition temperature Tg. When the amorphous fluorocarbon resin is heated, the fluidity of the amorphous fluorocarbon resin rapidly increases above the glass transition temperature Tg.
  • glass transition point Tg is high from a viewpoint of a heat resistant improvement. Since the glass transition point Tg of AF1600 is 160 ° C., the liquid repellent layer 30 made of AF 1600 can withstand use at a temperature of 160 ° C. or less.
  • Solute AF1600 Concentration: 3 wt%
  • step S103 the inventors heated the product obtained in step S102 in the glove box (step S103). Specifically, the inventors heated the product at a temperature of 100 ° C. for 30 minutes using a hot plate. Thereby, the liquid repellent layer 30 is dried and fixed to the electronic device layer 20. Since the liquid repellent layer 30 is fixed by natural drying without heating, the process of step S103 may be omitted.
  • a paraxylene polymer layer composed of a paraxylene polymer (aromatic hydrocarbon resin) such as parylene manufactured by KISCO Co., Ltd. is relatively excellent in heat resistance, gas barrier property, flexibility, etc. Can be suitably used as a gas barrier layer of Furthermore, since the paraxylene-based polymer layer is relatively excellent in unevenness followability, it is easy to form uniformly on the uneven surface. Therefore, the inventors formed a 1 ⁇ m thick layer made of parylene manufactured by KISCO Corporation as the gas barrier layer 40.
  • Parylene manufactured by KISCO Corporation includes dix-C, dix-D, dix-N, dix-HR, dix-SR, dix-NR, dix-SF, dix-CF, and the like.
  • the inventors formed a gas barrier layer 40 made of dix-SR by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the product obtained in step S103 was vaporized by heating dix-SR without heating. Since the vaporization temperature of dix-SR is 135 ° C. and the decomposition temperature is 690 ° C., dix-SR was vaporized at 135 to 690 ° C.
  • the organic thin film solar cell 100 shown in FIG. 2 was manufactured by the above steps.
  • the substrate 10 the electronic device layer 20, the liquid repellent layer 30, and the gas barrier layer 40 are stacked in that order.
  • the inventors simultaneously manufacture organic thin film solar cells P1 and C1, and under the conditions of room temperature (about 23 ° C.), room humidity (about 30%), in the air, and under light shielding conditions, The time change of the energy conversion efficiency PCE of the solar cells P1 and C1 was measured.
  • the organic thin film solar cell P1 is an organic thin film solar cell manufactured by the manufacturing method according to the present embodiment, and has the same configuration as the organic thin film solar cell 100.
  • the organic thin film solar cell C1 is an organic thin film solar cell to be compared, which is manufactured by the manufacturing method excluding step S102.
  • the substrate 10, the electronic device layer 20, and the gas barrier layer 40 are stacked in that order, and the liquid repellent layer 30 is not provided.
  • FIGS. 3 (A) to 3 (C) show the measurement results.
  • FIG. 3 (A) shows the measurement result of the organic thin film solar cell P1
  • FIG. 3 (B) shows the measurement result of the organic thin film solar cell C1.
  • the vertical axes in FIGS. 3 (A) and 3 (B) indicate the short circuit current density Jsc, the open circuit voltage Voc, and the fill factor FF of the organic thin film solar cell
  • the horizontal axes in FIGS. 3 (A) and 3 (B). Indicates the time.
  • the values on the vertical axis in FIGS. 3A and 3B are normalized so that the initial value is 1. From FIGS. 3 (A) and 3 (B), the curve factor FF of the organic thin film solar cell C1 is greatly reduced with the passage of time, while the curve factor FF of the organic thin film solar cell P1 is very stable. I understand.
  • the energy conversion efficiency PCE is calculated by multiplication of the short circuit current density Jsc, the open circuit voltage Voc, and the fill factor FF.
  • FIG.3 (C) shows the time change of energy conversion efficiency PCE of organic thin-film solar cell P1, C1.
  • the vertical axis of FIG. 3C indicates the short circuit current density Jsc, the open circuit voltage Voc, and the energy conversion efficiency PCE obtained from the curvilinear factor FF shown in FIGS. 3A and 3B.
  • the horizontal axis of C) shows time.
  • the values on the vertical axis in FIG. 3C are normalized so that the initial value is 1. It can be seen from FIG.
  • the energy conversion efficiency PCE of the organic thin film solar cell C1 significantly decreases from 1 to about 0.6 with the passage of time, whereas the energy conversion efficiency PCE of the organic thin film solar cell P1 is It has been found that over time it has fallen by only about 0.8 and is very stable. That is, it can be seen that the organic thin film solar cell P1 has very excellent long-term storage stability as compared to the organic thin film solar cell C1.
  • the time change (fall) of the energy conversion efficiency PCE of the organic thin film solar cell P1 from 1 to about 0.8 is a category of initial deterioration, no deterioration other than the initial deterioration occurs in the organic thin film solar cell P1. It can be said that.
  • the inventors simultaneously manufacture the organic thin film solar cells P2 and C2, and under the conditions of room temperature (about 23 ° C.), room humidity (about 30%), in the air, and light shielding, the organic thin film solar cells P2 , C2 energy conversion efficiency PCE was measured with time.
  • the organic thin film solar cell P2 is an organic thin film solar cell manufactured by the manufacturing method according to the present embodiment, and has the same configuration as the organic thin film solar cell 100.
  • the organic thin film solar cell C2 is an organic thin film solar cell to be compared, which is manufactured by the manufacturing method excluding steps S102 and S104.
  • the electronic device layer 20 is stacked on the substrate 10, and the liquid repellent layer 30 and the gas barrier layer 40 are not provided.
  • FIG. 4 shows the measurement results. Specifically, FIG. 4 shows a time change of the energy conversion efficiency PCE of the organic thin film solar cells P2, C2.
  • the vertical axis in FIG. 4 indicates the energy conversion efficiency PCE
  • the horizontal axis in FIG. 4 indicates the time.
  • the values on the vertical axis in FIG. 4 are normalized so that the initial value is 1. It can be seen from FIG. 4 that the energy conversion efficiency PCE of the organic thin film solar cell C2 greatly decreases from 1 to about 0.5 with the passage of time, while the energy conversion efficiency PCE of the organic thin film solar cell P2 is with the passage of time 1 It is understood that the value is reduced by only about 0.8 and is very stable.
  • the organic thin film solar cell P2 has very excellent long-term storage stability as compared to the organic thin film solar cell C2.
  • FIG. 3 (C) and 4 show that the organic thin film solar cell which has the very outstanding long-term storage stability by the said manufacturing method which concerns on this embodiment can be manufactured with high probability.
  • ⁇ Evaluation of temperature stability> Inventors evaluated the durability (temperature stability) which can implement
  • FIG. 5 shows the measurement results.
  • the vertical axis in FIG. 5 indicates the energy conversion efficiency PCE
  • the horizontal axis in FIG. 5 indicates the heating time.
  • the values on the vertical axis in FIG. 5 are normalized so that the initial value is 1.
  • the energy conversion efficiency PCE of the organic thin film solar cell C2 is greatly reduced from 1 to about 0.8 by the increase of the heating time
  • the energy conversion efficiency PCE of the organic thin film solar cell P2 has the increased heating time
  • FIG. 6 shows the measurement results.
  • the vertical axis of FIG. 6 indicates the short circuit current density Jsc, the open circuit voltage Voc, and the fill factor FF of the organic thin film solar cell P2, and the horizontal axis of FIG. 6 indicates the heating time.
  • the values on the vertical axis in FIG. 6 are normalized so that the initial value is 1.
  • the plot corresponding to a part of plot of FIG. 5 is abbreviate
  • FIG. 7 shows the measurement results.
  • the vertical axis in FIG. 7 indicates the energy conversion efficiency PCE
  • the horizontal axis in FIG. 7 indicates the heating temperature.
  • the values on the vertical axis in FIG. 7 are normalized so that the initial value is 1. It is understood from FIG. 7 that in the organic thin film solar cell P1, the decrease in energy conversion efficiency PCE due to the increase in heating temperature is smaller than that of the organic thin film solar cell C1. That is, it can be seen that the organic thin film solar cell P1 has excellent temperature stability as compared to the organic thin film solar cell C1.
  • the electronic device layer 20 (in particular, the active layer 23) is easily degraded by a gas such as water vapor or oxygen gas, and particularly easily degraded by water vapor (water).
  • a gas such as water vapor or oxygen gas
  • an amorphous fluororesin such as AF1600 used for the liquid repellent layer 30 has a structure including an annular unit (annular structure), and its gas permeability is very high.
  • the water vapor transmission rate of AF1600 is very high at 75907 g ⁇ mm / m 2 ⁇ day. Therefore, the effect of improving the durability by providing the liquid repellent layer 30 is a very excellent effect exceeding the range of prediction.
  • the water vapor transmission rate of the gas barrier layer 40 is low, even if the thickness of the gas barrier layer 40 is increased from 1 ⁇ m to 1.36 ⁇ m instead of providing the liquid repellent layer 30 having a thickness of 360 nm, the water vapor transmission rate of the gas barrier layer 40 is It hardly changes. Therefore, only durability equivalent to the durability of the organic thin film solar cell C1 having only the gas barrier layer 40 with a thickness of 1 ⁇ m can be obtained.
  • the present invention is applicable to thin film electronic devices other than organic thin film solar cells, and is also applicable to electronic devices other than thin film electronic devices.
  • a solar cell having a certain thickness an organic EL (Electro-Luminescence) panel that emits light in response to power supply, a photodetector that detects the light by outputting an electric signal in response to light irradiation
  • the present invention can be applied to transistors and the like.
  • the thickness of the thin film electronic device is preferably several ⁇ m (eg, 5 ⁇ m or less).
  • the photoelectric conversion layer (active layer 23) of the electronic device layer 20 may be a layer that emits light in response to the supply of power.
  • the electronic device layer 20 may not have a photoelectric conversion layer or the like.
  • the electronic device layer 20 may be a layer having an electronic function.
  • the electronic device layer 20 may be a layer formed of an inorganic substance, or may be a semiconductor device layer formed of a semiconductor (inorganic compound semiconductor or organic compound semiconductor) or the like.
  • the semiconductor device layer is easily degraded by water vapor and the like, and the photoelectric conversion layer is particularly easily degraded by water vapor and the like. Therefore, when these layers are used, the durability of the electronic device can be greatly improved.
  • the liquid repellent layer 30 may be provided below the gas barrier layer 40.
  • another liquid repellent layer 50 may be further provided below the substrate 10.
  • a liquid repellent layer 50 may be further provided between the substrate 10 and the electronic device layer 20.
  • a layer equivalent to the barrier layer layer having the liquid repellent layer 30 and the gas barrier layer 40
  • the upper part of the electronic device is also provided on the lower part of the electronic device.
  • the substrate 10 may not be provided. Although the example in which the substrate 10 has the gas barrier property has been described, the substrate 10 may not have the gas barrier layer. However, durability can be further improved by the substrate 10 having gas barrier properties.
  • the gas barrier layer 40 may be a polyimide layer (such as VICT-Bnp or VICT-C) or another paraxylene polymer layer (such as dix-C, dix-D, dix-N, dix-HR, dix-NR, dix-SF, dix-CF, etc.).
  • the gas barrier layer 40 may be a layer relatively excellent in gas barrier properties.
  • the water vapor transmission rate of VICT-Bnp is 2.5 ⁇ 3 g ⁇ mm / m 2 ⁇ day
  • the water vapor transmission rate of VICT-C is 0.375750.4 g ⁇ mm / m 2 ⁇ day
  • still water vapor permeability of the dix-C is 0.09 ⁇ 0.1g ⁇ mm / m 2 ⁇ day
  • the water vapor transmission rate of the dix-D is an 0.05g ⁇ mm / m 2 ⁇ day
  • the water vapor transmission rate of dix-N is 0.6330.7 g ⁇ mm / m 2 ⁇ day
  • the water vapor transmission rate of dix-HR is 0.07 g ⁇ mm / m 2 ⁇ day
  • dix-SR Water vapor transmission rate is 0.09 0.1 g ⁇ mm / m 2 ⁇ day
  • water vapor transmission rate of dix-NR is 0.62 g ⁇ mm / m 2 ⁇ day
  • the oxygen permeability of VICT-Bnp is 252530 cc ⁇ mm / m 2 ⁇ day ⁇ atm
  • the oxygen permeability of VICT-C is 0.25 cc ⁇ mm / m 2 ⁇ day ⁇ Atm
  • oxygen permeability of dix-C is 2.1 cc ⁇ mm / m 2 ⁇ day ⁇ atm
  • oxygen permeability of dix-D is 1.0 cc ⁇ mm / m 2 ⁇ day ⁇ atm
  • the oxygen permeability of dix-N is 81.1 ⁇ 100 cc ⁇ mm / m 2 ⁇ day ⁇ atm
  • the oxygen permeability of dix-HR is 1.9 cc ⁇ mm / m 2 ⁇ day ⁇ atm
  • the oxygen transmission rate of -SR is 2.0 cc ⁇ mm / m 2 ⁇ day ⁇ atm
  • the oxygen transmission rate of dix-NR is 15 cc ⁇ mm /
  • the liquid repellent layer 30 is not limited to the amorphous fluorocarbon resin layer.
  • the liquid repellent layer 30 may be a crystalline fluorocarbon resin layer (a layer made of crystalline fluorocarbon resin).
  • the material of the liquid repellent layer 30 may be fluoroplastics such as Cytop made by Mihama Co., Ltd., Nobek (Novec 1700 or Nobec 2702) made by 3M Japan Co., Ltd.
  • the liquid repellent layer 30 may not be a fluorine resin layer, and may be a silicon resin as long as the necessary liquid repellency can be ensured.
  • the liquid repellent layer 30 may be a layer relatively excellent in liquid repellency.
  • the water contact angle of AF 1600 is 120 °
  • the water contact angle of Cytop is 110 °
  • the water contact angle of Novec 1700 is 105100100 °
  • the water contact angle of Nobec 2702 Is 105 ⁇ 100 °
  • the water contact angle of polytetrafluoroethylene (PTFE) is 114 °. Therefore, the water contact angle of the liquid repellent layer 30 is preferably larger than 100 °, and the larger, the better. By satisfying this condition, very high durability can be realized.
  • the surface free energy of AF 1600 is 10 mN / m
  • the surface free energy of Cytop is 191920 mN / m
  • the surface free energy of Novec 1700 is 10 to 11 mN / m.
  • the surface free energy of Novec 2702 is 10 to 11 mN / m
  • the surface free energy of PTFE is 18 mN / m. Therefore, the surface free energy of the liquid repellent layer 30 is preferably smaller than 20 mN / m, and the smaller, the better. By satisfying this condition, very high durability can be realized.
  • the method of forming the liquid repellent layer 30 is not limited to the spin coating method.
  • the liquid repellent layer 30 may be applied by another application method performed under non-atmosphere.
  • the liquid repellent layer 30 may be applied under the atmosphere.
  • the barrier layer may not be a double film (double layer) composed of the liquid repellent layer 30 and the gas barrier layer 40.
  • the barrier layer may have three or more layers (trilayer, quadruple, etc.). By increasing the number of layers constituting the barrier layer, further improvement in durability can be expected.
  • substrate 20 electronic device layer 21: lower electrode 22: electron transport layer 24: active layer 24: hole transport layer 25: upper electrode 30: liquid repellent layer 40: gas barrier layer 50: liquid repellent layer 100: organic thin film solar cell

Abstract

This electronic device includes: an electronic device layer (20); and barrier layers disposed above the electronic device layer (20). The barrier layers include: a gas barrier layer (40); and a liquid repelling layer (30) disposed above or below the gas barrier layer (40).

Description

電子デバイスおよびその製造方法Electronic device and method of manufacturing the same
 本発明は、電子デバイスおよびその製造方法に関する。 The present invention relates to an electronic device and a method of manufacturing the same.
 近年、種々の電子デバイスの中でも、用途の多様性に優れた薄膜電子デバイスが注目を集めている。薄膜電子デバイスとして、有機薄膜太陽電池や無機化合物半導体太陽電池、あるいは有機EL(Electro-Luminescence)ディスプレイや照明などが既に商品化されている。薄膜電子デバイスは薄く、フレキシブルな基材を使用した薄膜電子デバイスの柔軟性は高いため、このような薄膜電子デバイスは、様々な個所(平坦でない個所など)に違和感なく貼り付けたり着用し使用できる。適切に設計すれば水洗い(洗濯)にも対応出来る。フレキシブルな基材を使うため、変形により破損して危険な破片が発生しにくい点もメリットである。 In recent years, among various electronic devices, thin film electronic devices excellent in variety of applications have attracted attention. As thin film electronic devices, organic thin film solar cells, inorganic compound semiconductor solar cells, organic EL (Electro-Luminescence) displays, illuminations and the like have already been commercialized. Because thin film electronic devices are thin and the flexibility of thin film electronic devices using flexible substrates is high, such thin film electronic devices can be applied or worn and used comfortably on various places (such as non-flat places) . If properly designed, it can be used for washing (washing). The use of a flexible base material is also advantageous because it is less likely to be broken by deformation and cause dangerous fragments.
 電子デバイスでは、長期間安定して機能を実現できる耐久性が望まれているが、電子デバイスを構成する電極と半導体などからなる電子デバイス層は、水蒸気や酸素など、特に駆動状態で水蒸気が浸透することによって劣化する。例えば、有機薄膜太陽電池や有機ELパネルなどにおいて、光電変換を行う光電変換層は、水蒸気などによって劣化しやすい。また、無機化合物半導体などからなる電子デバイス層も、水蒸気などによって劣化しやすい。 In the electronic device, the durability which can realize a function stably stably for a long period is desired, but the electronic device layer which consists of an electrode, a semiconductor, etc. which constitute an electronic device is a water vapor, oxygen, etc. Degrade by doing. For example, in an organic thin film solar cell, an organic EL panel, or the like, a photoelectric conversion layer that performs photoelectric conversion is easily degraded by water vapor or the like. In addition, an electronic device layer made of an inorganic compound semiconductor or the like is also easily degraded by water vapor or the like.
 そこで、電子デバイス層を水蒸気などから保護するためのガスバリア層を設ける構成が提案されている(特許文献1)。ガラス製のガスバリア層を設けることにより、電子デバイス層を水蒸気などから効果的に保護できる。100μm厚以下好ましくは50μm以下の薄いガラスガスバリア層を設けた場合は、フレキシブルでありながらガスバリア性を確保することが可能である。他の厚いガスバリア層を設けることによっても、電子デバイス層を水蒸気などから効果的に保護できる。有機物からなる層と無機物からなる薄膜層を交互に例えば2種5層以上多層積層したガスバリア層を設けることによっても、フレキシブルでありながら電子デバイス層を水蒸気などから効果的に保護できる。 Then, the structure which provides the gas barrier layer for protecting an electronic device layer from water vapor etc. is proposed (patent document 1). By providing a glass gas barrier layer, the electronic device layer can be effectively protected from water vapor and the like. When a thin glass gas barrier layer having a thickness of 100 μm or less, preferably 50 μm or less, is provided, it is possible to secure gas barrier properties while being flexible. Also by providing another thick gas barrier layer, the electronic device layer can be effectively protected from water vapor and the like. The electronic device layer can be effectively protected from water vapor or the like while being flexible even by providing a gas barrier layer in which, for example, two or more layers of five or more layers are alternately laminated to alternately form an organic layer and an inorganic thin film layer.
特開2009-38019号公報JP, 2009-38019, A
 しかしながら、ガラス製の薄いガスバリア層を形成するのは非常に難しい。100μm厚以下のガラス膜は、製造も難易度が高く、デバイス製造プロセスで破損させないようハンドリングさせることが難しく、適切なコスト以下で対象物上に積層することが非常に難しいとの課題があった。また、有機物からなる層と無機物からなる層を交互に数多く積層した薄いガスバリア層を形成するのも非常に難しい。積層数の多い方がガスバリア性能は高くなるが、厚くなり、厚いガスバリア層を薄膜電子デバイスに使用すると、フレキシブル性、柔軟性などの機能が損なわれる。もちろん積層数が嵩むと適切なコスト以下で対象物上に積層することも難しくなる。そのため、薄膜電子デバイスの機能を維持するためには、ガスバリア層数が少なく薄い必要がある。しかしながら、ガスバリア層が薄くなると水蒸気がガスバリア層を通りやすいため、薄いガスバリア層を設けたとしても、電子デバイス層を水蒸気などから十分に保護できず、電子デバイスの耐久性を十分に向上できない。 However, it is very difficult to form a thin glass barrier layer. Glass films with a thickness of 100 μm or less are also difficult to manufacture and difficult to handle so as not to be damaged in the device manufacturing process, and there was a problem that it was very difficult to laminate on an object at an appropriate cost or less. . In addition, it is very difficult to form a thin gas barrier layer in which a large number of organic layers and a plurality of inorganic layers are alternately stacked. The higher the number of laminations, the higher the gas barrier performance, but the thicker the gas barrier layer becomes, the use of a thick gas barrier layer for thin film electronic devices loses functions such as flexibility and flexibility. Of course, if the number of layers increases, it will also be difficult to stack on the object at an appropriate cost or less. Therefore, in order to maintain the function of the thin film electronic device, the number of gas barrier layers needs to be small and thin. However, when the gas barrier layer is thin, water vapor easily passes through the gas barrier layer, and even if a thin gas barrier layer is provided, the electronic device layer can not be sufficiently protected from water vapor and the like, and the durability of the electronic device can not be sufficiently improved.
 このように、ガスバリア層を設ける従来の構成では、電子デバイスの機能が損なわれたり、電子デバイスの耐久性が十分に向上しなかったりすることがある。さらに製造コストが嵩んだり、実用的な製造プロセス組むことが難しくなる課題があった。 As described above, in the conventional configuration in which the gas barrier layer is provided, the function of the electronic device may be impaired or the durability of the electronic device may not be sufficiently improved. Furthermore, there is a problem that the manufacturing cost is increased and it is difficult to assemble a practical manufacturing process.
 そこで本発明は、機能を損なわずに製品としての実用性、耐久性、さらに製造し易さがより向上した電子デバイスを提供することを目的とする。 Then, an object of this invention is to provide the electronic device which the practicability as a product, durability, and the ease of manufacturing improved more, without impairing a function.
 本発明の電子デバイスは、電子デバイス層と、電子デバイス層の上に設けられたバリア層と、を有し、バリア層は、ガスバリア層と、ガスバリア層の上または下に設けられた撥液層とを有することを特徴とする。 The electronic device of the present invention comprises an electronic device layer and a barrier layer provided on the electronic device layer, and the barrier layer comprises a gas barrier layer and a liquid repellent layer provided on or under the gas barrier layer. And.
 本発明の電子デバイスでは、ガスバリア性が比較的高い(水蒸気などの透過率が比較的低い)ガスバリア層の他に、好ましくはガスバリア層に接触して、撥液性(撥水性)が比較的高い撥液層がさらに設けられる。これにより、機能を損なわずに製品としての実用性、耐久性(水蒸気に対する耐久性など)、さらに製造し易さがより向上した電子デバイスを提供できる。例えば、薄いガスバリア層の他に、好ましくは薄いガスバリア層に接触して、薄い撥液層を設けることにより、高い柔軟性などの機能を損なわずに製品としての実用性、耐久性、さらに製造し易さがより向上した薄膜電子デバイスを提供できる。さらに、撥液層を設けることにより、水蒸気などに対する耐久性だけでなく、水に対する耐久性も向上されるため、電子デバイスの水洗いなどが可能となる。 In the electronic device of the present invention, in addition to the gas barrier layer having relatively high gas barrier properties (relatively low permeability such as water vapor), preferably it is in contact with the gas barrier layer and has relatively high liquid repellency (water repellency) A liquid repellent layer is further provided. As a result, it is possible to provide an electronic device in which the practicability as a product, the durability (such as the durability to water vapor, etc.) and the ease of manufacturing are further improved without losing the function. For example, by providing a thin liquid repellent layer in contact with a thin gas barrier layer, in addition to a thin gas barrier layer, practicality, durability, and production as a product without impairing functions such as high flexibility. A thin film electronic device with improved ease can be provided. Furthermore, by providing the liquid repellent layer, not only the durability against water vapor and the like but also the durability against water is improved, and therefore the electronic device can be washed with water and the like.
 電子デバイス層は半導体デバイス層(半導体などからなる層)であることが好ましい。そして、電子デバイス層は、光電変換層(光電変換を行う層)と、上下方向において光電変換層を挟む第1電極および第2電極とを有することがより好ましい。半導体デバイス層は水蒸気などによって劣化しやすく、光電変換層は水蒸気などによって特に劣化しやすい。そのため、これらの層が使用される場合には、電子デバイスの耐久性を大幅に向上できる。 The electronic device layer is preferably a semiconductor device layer (a layer made of a semiconductor or the like). The electronic device layer more preferably includes a photoelectric conversion layer (a layer that performs photoelectric conversion), and a first electrode and a second electrode sandwiching the photoelectric conversion layer in the vertical direction. The semiconductor device layer is easily degraded by water vapor and the like, and the photoelectric conversion layer is particularly easily degraded by water vapor and the like. Therefore, when these layers are used, the durability of the electronic device can be greatly improved.
 電子デバイスは、電子デバイス層の下に設けられた基板と、基板の下または電子デバイス層と基板の間に設けられた他の撥液層と、をさらに有することが好ましい。そして、基板はガスバリア性を有することが好ましい。これにより、電子デバイスの上部に設けられたバリア層と同等の層が電子デバイスの下部にも設けられるため、耐久性のさらなる向上が期待できる。 The electronic device preferably further comprises a substrate provided below the electronic device layer, and another liquid repellent layer provided below the substrate or between the electronic device layer and the substrate. The substrate preferably has gas barrier properties. As a result, a layer equivalent to the barrier layer provided on the upper part of the electronic device is also provided on the lower part of the electronic device, and thus further improvement of the durability can be expected.
 基板はポリイミド層(ポリイミドからなる層)であることが好ましい。基板側から光を出し入れする構造の場合は、該当する波長帯域で透明度が高いことが望ましい。該当する波長帯域における全光線透過率は好ましくは70%以上、より好ましくは80%以上である。基板(基材)の適切な厚さは用途によって異なるが、フレキシブル、ウエアラブルあるいはウオッシャブルな用途においては、好ましくは30μm以下、より好ましくは10μm以下、最も好ましくは5μm以下である。ガスバリア層はパラキシレン系ポリマー層(パラキシレン系ポリマーからなる層)またはポリイミド層であることが好ましい。ポリイミド層は、耐熱性や柔軟性などに比較的優れているため、薄膜電子デバイスに好適に使用できる。さらに、ポリイミド層は、ガスバリア性にも比較的優れているため、ガスバリア層として好適に使用できる。パラキシレン系ポリマー層も、耐熱性、ガスバリア性、柔軟性、等に比較的優れているため、薄膜電子デバイスのガスバリア層として好適に使用できる。さらに、パラキシレン系ポリマー層は、凹凸追随性にも比較的優れているため、凹凸がある表面に均一に形成しやすい。ガスバリア層の適切な厚さは用途によって異なるが、フレキシブル、ウエアラブルあるいはウオッシャブルな用途においては、好ましくは10μm以下、より好ましくは5μm以下、最も好ましくは1μm以下である。撥液層は、フッ素樹脂層(フッ素樹脂からなる層)であることが好ましく、非晶質性のフッ素樹脂層であることが特に好ましい。フッ素樹脂層も、耐熱性や柔軟性などに比較的優れているため、薄膜電子デバイスに好適に使用できる。さらに、フッ素樹脂層は、撥液性にも比較的優れているため、撥液層として好適に使用できる。 The substrate is preferably a polyimide layer (a layer made of polyimide). In the case of a structure in which light is taken in and out from the substrate side, it is desirable that the transparency be high in the corresponding wavelength band. The total light transmittance in the corresponding wavelength band is preferably 70% or more, more preferably 80% or more. The appropriate thickness of the substrate (substrate) varies depending on the application, but is preferably 30 μm or less, more preferably 10 μm or less, and most preferably 5 μm or less for flexible, wearable or washable applications. The gas barrier layer is preferably a paraxylene polymer layer (a layer comprising a paraxylene polymer) or a polyimide layer. Since the polyimide layer is relatively excellent in heat resistance, flexibility, etc., it can be suitably used for thin film electronic devices. Furthermore, since the polyimide layer is also relatively excellent in gas barrier properties, it can be suitably used as a gas barrier layer. The paraxylene-based polymer layer is also relatively excellent in heat resistance, gas barrier property, flexibility, and the like, and thus can be suitably used as a gas barrier layer of a thin film electronic device. Furthermore, since the paraxylene-based polymer layer is relatively excellent in unevenness followability, it is easy to form uniformly on the uneven surface. The appropriate thickness of the gas barrier layer varies depending on the application, but in flexible, wearable or washable applications, it is preferably 10 μm or less, more preferably 5 μm or less, and most preferably 1 μm or less. The liquid repellent layer is preferably a fluorocarbon resin layer (a layer made of fluorocarbon resin), and particularly preferably an amorphous fluorocarbon resin layer. The fluorine resin layer is also relatively excellent in heat resistance, flexibility and the like, and thus can be suitably used for thin film electronic devices. Furthermore, since the fluorine resin layer is relatively excellent in liquid repellency, it can be suitably used as a liquid repellent layer.
 ガスバリア層の水蒸気透過率は3g・mm/m2・dayよりも低いことが好ましく、0.6g・mm/m2・dayよりも低いことがより好ましく、0.1g・mm/m2・dayよりも低いことが最も好ましい。撥液層の水接触角は100°よりも大きいことが好ましく、110°よりも大きいことがより好ましい。撥液層の表面自由エネルギーは20mN/mよりも小さいことが好ましく、10mN/mよりも小さいことがより好ましい。これらの条件の組み合わせの少なくともいずれかを満たすことにより、耐久性をより向上できる。 The water vapor transmission rate of the gas barrier layer is preferably lower than 3 g · mm / m 2 · day, more preferably lower than 0.6 g · mm / m 2 · day, 0.1 g · mm / m 2 · day It is most preferred that it be lower. The water contact angle of the liquid repellent layer is preferably greater than 100 °, and more preferably greater than 110 °. The surface free energy of the liquid repellent layer is preferably less than 20 mN / m, more preferably less than 10 mN / m. By satisfying at least one of the combinations of these conditions, the durability can be further improved.
 本発明の電子デバイスの製造方法は、非大気(水蒸気を含まない乾燥雰囲気)下で電子デバイス層の表面に撥液層を塗布する塗布ステップと、撥液層の表面にガスバリア層を形成する形成ステップと、を有することを特徴とする。 The method for manufacturing an electronic device according to the present invention comprises the steps of applying a liquid repellent layer on the surface of the electronic device layer in a non-air atmosphere (drying atmosphere not containing water vapor) and forming a gas barrier layer on the surface of the liquid repellent layer. And providing a step.
 本発明の製造方法では、非大気下で電子デバイス層の表面に撥液層が塗布された後、撥液層の表面にガスバリア層が形成される。これにより、機能を損なわずに製品としての実用性、耐久性、さらに製造し易さがより向上した電子デバイスを提供(製造)できる。従来の電子デバイスの製造方法では、ガスバリア層を形成する際に、電子デバイス層が一時的に大気にさらされる。発明者らは、電子デバイス層が大気にさらされることにより水分子が電子デバイス層の表面に吸着し、電子デバイス層とガスバリア層の界面に水分子が残り、残った水分子によって電子デバイス層の劣化速度が増すと考えている。そして、発明者らは、非大気下で電子デバイス層の表面に撥液層を塗布することにより、前述した水分子の吸着を抑制でき、電子デバイス層の劣化速度を低減できると考えている。 In the manufacturing method of the present invention, after the liquid repellent layer is applied to the surface of the electronic device layer under non-air atmosphere, the gas barrier layer is formed on the surface of the liquid repellent layer. As a result, it is possible to provide (manufacture) an electronic device in which the practicability as a product, the durability, and the ease of manufacture are further improved without losing the function. In the conventional method of manufacturing an electronic device, when forming the gas barrier layer, the electronic device layer is temporarily exposed to the atmosphere. The inventors of the present invention found that water molecules are adsorbed on the surface of the electronic device layer by exposing the electronic device layer to the atmosphere, water molecules remain at the interface between the electronic device layer and the gas barrier layer, and the remaining water molecules We believe that the rate of deterioration will increase. Then, the inventors believe that the application of the liquid repellent layer to the surface of the electronic device layer under non-atmosphere can suppress the adsorption of water molecules described above and reduce the deterioration rate of the electronic device layer.
 塗布ステップでは、スピンコート法により撥液層が塗布されることが好ましい。発明者らは、スピンコート法の溶媒が上記吸着した水分子を洗い流すことで、電子デバイス層の劣化速度をより低減できると考えている。あるいは水分子を洗浄直後にダイコーティングなどにより撥液層を連続塗布するプロセスを組むことが好ましい In the coating step, the liquid repellent layer is preferably coated by spin coating. The inventors believe that the degradation rate of the electronic device layer can be further reduced by the solvent of the spin coating method washing out the adsorbed water molecules. Alternatively, it is preferable to set up a process of continuously applying a liquid repellent layer by die coating or the like immediately after washing water molecules.
 本発明によれば、機能を損なわずに製品としての実用性、耐久性、さらに製造し易さがより向上した電子デバイスを提供できる。 According to the present invention, it is possible to provide an electronic device in which the practicability as a product, the durability, and the ease of manufacturing are further improved without losing the function.
図1は、本実施形態に係る有機薄膜太陽電池の製造方法の一例を示すフローチャートである。FIG. 1 is a flowchart showing an example of a method of manufacturing an organic thin film solar cell according to the present embodiment. 図2は、本実施形態に係る有機薄膜太陽電池の構成の一例を示す模式図である。FIG. 2: is a schematic diagram which shows an example of a structure of the organic thin-film solar cell concerning this embodiment. 図3(A)は、本実施形態に係る有機薄膜太陽電池の短絡電流密度Jsc、開放電圧Voc、及び、曲線因子FFの変化の一例を示すグラフである。図3(B)は、比較対象の有機薄膜太陽電池の短絡電流密度Jsc、開放電圧Voc、及び、曲線因子FFの変化の一例を示すグラフである。図3(C)は、本実施形態に係る有機薄膜太陽電池と比較対象の有機薄膜太陽電池とのエネルギー変換効率PCEの変化の一例を示すグラフである。FIG. 3A is a graph showing an example of changes in the short circuit current density Jsc, the open circuit voltage Voc, and the curvilinear factor FF of the organic thin film solar cell according to the present embodiment. FIG. 3B is a graph showing an example of changes in the short circuit current density Jsc, the open circuit voltage Voc, and the fill factor FF of the organic thin film solar cell to be compared. FIG.3 (C) is a graph which shows an example of a change of energy conversion efficiency PCE of the organic thin film solar cell which concerns on this embodiment, and the organic thin film solar cell of comparison object. 図4は、本実施形態に係る有機薄膜太陽電池と比較対象の有機薄膜太陽電池とのエネルギー変換効率PCEの変化の一例を示すグラフである。FIG. 4 is a graph showing an example of changes in the energy conversion efficiency PCE of the organic thin film solar cell according to the present embodiment and the organic thin film solar cell to be compared. 図5は、本実施形態に係る有機薄膜太陽電池と比較対象の有機薄膜太陽電池とのエネルギー変換効率PCEの変化の一例を示すグラフである。FIG. 5 is a graph showing an example of changes in the energy conversion efficiency PCE of the organic thin film solar cell according to the present embodiment and the organic thin film solar cell to be compared. 図6は、本実施形態に係る有機薄膜太陽電池の短絡電流密度Jsc、開放電圧Voc、及び、曲線因子FFの変化の一例を示すグラフである。FIG. 6 is a graph showing an example of changes in the short circuit current density Jsc, the open circuit voltage Voc, and the curvilinear factor FF of the organic thin film solar cell according to the present embodiment. 図7は、本実施形態に係る有機薄膜太陽電池と比較対象の有機薄膜太陽電池とのエネルギー変換効率PCEの変化の一例を示すグラフである。FIG. 7 is a graph showing an example of changes in the energy conversion efficiency PCE of the organic thin film solar cell according to the present embodiment and the organic thin film solar cell to be compared. 図8は、本実施形態に係る水蒸気透過率と酸素透過率の一例を示すテーブルである。FIG. 8 is a table showing an example of water vapor permeability and oxygen permeability according to the present embodiment. 図9(A)~9(C)は、本実施形態に係る有機薄膜太陽電池の構成の一例を示す模式図である。FIGS. 9A to 9C are schematic views showing an example of the configuration of the organic thin film solar cell according to the present embodiment. 図10は、本実施形態に係る水接触角と表面自由エネルギーの一例を示すテーブルである。FIG. 10 is a table showing an example of the water contact angle and surface free energy according to the present embodiment.
 以下、本発明の実施形態について説明する。発明者らは、様々な有機薄膜太陽電池を製造(作製)し、高い柔軟性などの機能が損なわれずに製品としての実用性、耐久性、さらに製造し易さがより向上された有機薄膜太陽電池の製造に成功した。 Hereinafter, embodiments of the present invention will be described. Inventors manufacture (produce) various organic thin-film solar cells, and organic thin-film solar whose practicability as a product, durability, and ease of manufacture are further improved without losing functions such as high flexibility I succeeded in manufacturing a battery.
 <製造方法>
 本実施形態に係る有機薄膜太陽電池の製造方法について、図1,2を用いて説明する。
<Manufacturing method>
The manufacturing method of the organic thin-film solar cell which concerns on this embodiment is demonstrated using FIG.
 まず、発明者らは、電子デバイス層20をグローブボックス内に用意した(ステップS101)。具体的には、発明者らは、基板10上に電子デバイス層20が設けられた生成物をグローブボックス内に用意した。 First, the inventors prepared the electronic device layer 20 in the glove box (step S101). Specifically, the inventors prepared the product in which the electronic device layer 20 was provided on the substrate 10 in a glove box.
 発明者らは、ポリイミドからなるポリイミド層を基板10として使用した。ポリイミド層は、耐熱性や柔軟性などに比較的優れているため、有機薄膜太陽電池などの薄膜電子デバイスに好適に使用できる。さらに、ポリイミド層は、ガスバリア性にも比較的優れているため、ガスバリア層として好適に使用できる。例えば、三井化学株式会社製のVICT-BnpやVICT-Cなどの透明ポリイミドは、光透過性(光の透過率)に比較的優れているため、高い光透過性が要求される太陽電池などに好適に使用できる。、発明者らは、厚さ1μmのポリイミド層(透明ポリイミド層)を基板10として使用したが、本発明の要件を満たす限り、材料はこれらに絞られるものでは無い。 The inventors used a polyimide layer made of polyimide as the substrate 10. The polyimide layer is relatively excellent in heat resistance, flexibility and the like, and thus can be suitably used for thin film electronic devices such as organic thin film solar cells. Furthermore, since the polyimide layer is also relatively excellent in gas barrier properties, it can be suitably used as a gas barrier layer. For example, transparent polyimides such as VICT-Bnp and VICT-C manufactured by Mitsui Chemical Co., Ltd. are relatively excellent in light transmittance (transmittance of light), and therefore, for solar cells etc. where high light transmittance is required It can be used suitably. The inventors used a polyimide layer (transparent polyimide layer) having a thickness of 1 μm as the substrate 10, but the material is not limited to these as long as the requirements of the present invention are satisfied.
 また、発明者らは、電子デバイス層20として、活性層(光電変換を行う光電変換層)23と、上下方向において活性層23を挟む上部電極(第1電極)25および下部電極(第2電極)21とを有する層を使用した。具体的には、発明者らは、下部電極21、電子輸送層22、活性層23、ホール輸送層24、及び、上部電極25がその順番で積層された電子デバイス層20を使用した。発明者らは、酸化亜鉛(ZnO)からなる厚さ30nmの層を電子輸送層22として使用し、PEDOT:PSSからなる厚さ10nmの層をホール輸送層24として使用し、酸化インジウムスズ(ITO)からなる厚さ90nmの層(透明電極)を下部電極21として使用し、銀(Ag)からなる厚さ100nmの層を上部電極25として使用した。そして、発明者らは、理化学研究所製のPNTz4T、PTzNTz、PTB7-Th、等のポリマー系有機物からなる厚さ130nmの層を活性層23として使用した。 Moreover, the inventors set an active layer (photoelectric conversion layer for performing photoelectric conversion) 23 as an electronic device layer 20, and an upper electrode (first electrode) 25 and a lower electrode (second electrode) sandwiching the active layer 23 in the vertical direction. And 21) were used. Specifically, the inventors used the electronic device layer 20 in which the lower electrode 21, the electron transport layer 22, the active layer 23, the hole transport layer 24, and the upper electrode 25 were stacked in that order. The inventors use a 30 nm thick layer of zinc oxide (ZnO) as the electron transport layer 22 and a 10 nm thick layer of PEDOT: PSS as the hole transport layer 24, using indium tin oxide (ITO A layer of 90 nm in thickness (transparent electrode) is used as the lower electrode 21, and a layer of 100 nm in thickness of silver (Ag) is used as the upper electrode 25. Then, the inventors used, as the active layer 23, a layer having a thickness of 130 nm made of a polymer based organic substance such as PNTz4T, PTzNTz, PTB7-Th manufactured by RIKEN.
 次に、発明者らは、グローブボックス内の非大気下で、電子デバイス層20(上部電極25)の表面に、撥液性(撥水性)に比較的優れた撥液層30を塗布した(ステップS102)。完全フッ素化樹脂、部分フッ素化樹脂、フッ素化樹脂共重合体、等のフッ素樹脂からなるフッ素樹脂層は、耐熱性や柔軟性などに比較的優れているため、薄膜電子デバイスに好適に使用できる。さらに、フッ素樹脂層は、撥液性にも比較的優れているため、撥液層として好適に使用できる。そして、非晶質性のフッ素樹脂は、光透過性に比較的優れているため、高い光透過性が要求される太陽電池などに好適に使用できる。そのため、発明者らは、三井・デュポンフロロケミカル株式会社製のテフロン AF1600(非晶質性のフッ素樹脂)からなる厚さ360nmの層を、撥液層30として形成した。具体的には、発明者らは、以下の条件でのスピンコート法により、AF1600からなる撥液層30を形成した。なお、非晶質性のフッ素樹脂は、通常ガラス転移点Tgよりも低い温度で使用できる。非晶質性のフッ素樹脂を加熱した場合において、非晶質性のフッ素樹脂の流動性は、ガラス転移点Tg以上で急激に増加する。そのため、耐熱性の向上の観点から、ガラス転移点Tgが高いことが好ましい。AF1600のガラス転移点Tgは160℃であるため、AF1600からなる撥液層30は160℃以下の温度での使用に耐えうる。
 ・窒素環境下
 ・回転数:1000rpm
 ・溶媒:スリーエムジャパン株式会社製のフロリナート FC-43(フッ素系不活性液体)
 ・溶質:AF1600
 ・濃度:3wt%
Next, the inventors applied the liquid repellent layer 30 relatively excellent in liquid repellency (water repellency) on the surface of the electronic device layer 20 (upper electrode 25) under non-air atmosphere in the glove box ( Step S102). A fluorine resin layer composed of a fluorine resin such as a fully fluorinated resin, a partially fluorinated resin, a fluorinated resin copolymer, etc. can be suitably used for thin film electronic devices since it is relatively excellent in heat resistance, flexibility, etc. . Furthermore, since the fluorine resin layer is relatively excellent in liquid repellency, it can be suitably used as a liquid repellent layer. And since an amorphous fluorocarbon resin is relatively excellent in light transmittance, it can be used suitably for a solar cell etc. in which high light transmittance is required. Therefore, the inventors formed, as the liquid repellent layer 30, a layer having a thickness of 360 nm made of Teflon AF1600 (amorphous fluorine resin) manufactured by Mitsui-Dupont Fluorochemicals Co., Ltd. Specifically, the inventors formed a liquid repellent layer 30 made of AF 1600 by a spin coating method under the following conditions. The amorphous fluorocarbon resin can usually be used at a temperature lower than the glass transition temperature Tg. When the amorphous fluorocarbon resin is heated, the fluidity of the amorphous fluorocarbon resin rapidly increases above the glass transition temperature Tg. Therefore, it is preferable that glass transition point Tg is high from a viewpoint of a heat resistant improvement. Since the glass transition point Tg of AF1600 is 160 ° C., the liquid repellent layer 30 made of AF 1600 can withstand use at a temperature of 160 ° C. or less.
-Under nitrogen environment-Rotation speed: 1000 rpm
Solvent: Florinert FC-43 (fluorinated inert liquid) manufactured by 3M Japan Co., Ltd.
・ Solute: AF1600
Concentration: 3 wt%
 そして、発明者らは、ステップS102で得られた生成物を、グローブボックス内で加熱した(ステップS103)。具体的には、発明者らは、ホットプレートを用いて、100℃の温度で30分間、上記生成物を加熱した。これにより、撥液層30は乾燥し電子デバイス層20に固定される。なお、加熱しなくても撥液層30は自然乾燥によって固定されるため、ステップS103の工程は省略されてもよい。 Then, the inventors heated the product obtained in step S102 in the glove box (step S103). Specifically, the inventors heated the product at a temperature of 100 ° C. for 30 minutes using a hot plate. Thereby, the liquid repellent layer 30 is dried and fixed to the electronic device layer 20. Since the liquid repellent layer 30 is fixed by natural drying without heating, the process of step S103 may be omitted.
 最後に、発明者らは、ステップS103で得られた生成物をグローブボックスから取り出し、当該生成物における撥液層の表面に、ガスバリア性に比較的優れたガスバリア層40を形成した(ステップS104)。KISCO株式会社製のパリレンなどのパラキシレン系ポリマー(芳香族炭化水素系樹脂)からなるパラキシレン系ポリマー層は、耐熱性、ガスバリア性、柔軟性、等に比較的優れているため、薄膜電子デバイスのガスバリア層として好適に使用できる。さらに、パラキシレン系ポリマー層は、凹凸追随性にも比較的優れているため、凹凸がある表面に均一に形成しやすい。そのため、発明者らは、KISCO株式会社製のパリレンからなる厚さ1μmの層を、ガスバリア層40として形成した。KISCO株式会社製のパリレンには、dix-C、dix-D、dix-N、dix-HR、dix-SR、dix-NR、dix-SF、dix-CF、等がある。発明者らは、dix-SRからなるガスバリア層40を、化学気相成長法(CVD:Chemical Vapor Deposition)により形成した。化学気相成長法では、ステップS103で得られた生成物を加熱せずに、dix-SRを加熱して気化した。dix-SRの気化温度は135℃であり分解温度は690℃であるため、135~690℃でdix-SRを気化した。 Finally, the inventors took out the product obtained in step S103 from the glove box, and formed a gas barrier layer 40 relatively excellent in gas barrier property on the surface of the liquid repellent layer in the product (step S104). . A paraxylene polymer layer composed of a paraxylene polymer (aromatic hydrocarbon resin) such as parylene manufactured by KISCO Co., Ltd. is relatively excellent in heat resistance, gas barrier property, flexibility, etc. Can be suitably used as a gas barrier layer of Furthermore, since the paraxylene-based polymer layer is relatively excellent in unevenness followability, it is easy to form uniformly on the uneven surface. Therefore, the inventors formed a 1 μm thick layer made of parylene manufactured by KISCO Corporation as the gas barrier layer 40. Parylene manufactured by KISCO Corporation includes dix-C, dix-D, dix-N, dix-HR, dix-SR, dix-NR, dix-SF, dix-CF, and the like. The inventors formed a gas barrier layer 40 made of dix-SR by chemical vapor deposition (CVD). In the chemical vapor deposition, the product obtained in step S103 was vaporized by heating dix-SR without heating. Since the vaporization temperature of dix-SR is 135 ° C. and the decomposition temperature is 690 ° C., dix-SR was vaporized at 135 to 690 ° C.
 以上の工程により、図2に示す有機薄膜太陽電池100が製造された。有機薄膜太陽電池100では、基板10、電子デバイス層20、撥液層30、及び、ガスバリア層40がその順番で積層されている。 The organic thin film solar cell 100 shown in FIG. 2 was manufactured by the above steps. In the organic thin film solar cell 100, the substrate 10, the electronic device layer 20, the liquid repellent layer 30, and the gas barrier layer 40 are stacked in that order.
 <長期保管安定性の評価>
 発明者らは、有機薄膜太陽電池100の1つ目の耐久性の評価として、長期間安定して機能(発電)を実現できる耐久性(長期保管安定性)の評価を行った。具体的には、発明者らは、有機薄膜太陽電池P1,C1を同時に製造し、室温(約23℃)、室湿度(約30%)、大気中、及び、遮光という条件下で、有機薄膜太陽電池P1,C1のエネルギー変換効率PCEの時間変化を測定した。有機薄膜太陽電池P1は、本実施形態に係る上記製造方法で製造された有機薄膜太陽電池であり、有機薄膜太陽電池100と同様の構成を有する。有機薄膜太陽電池C1は、ステップS102を除く製造方法で製造された、比較対象の有機薄膜太陽電池である。有機薄膜太陽電池C1では、基板10、電子デバイス層20、及び、ガスバリア層40がその順番で積層されており、撥液層30は設けられていない。
<Evaluation of long-term storage stability>
Inventors evaluated the durability (long-term storage stability) which can implement | achieve a function (electric power generation) stably for a long period as evaluation of the 1st durability of the organic thin-film solar cell 100. As shown in FIG. Specifically, the inventors simultaneously manufacture organic thin film solar cells P1 and C1, and under the conditions of room temperature (about 23 ° C.), room humidity (about 30%), in the air, and under light shielding conditions, The time change of the energy conversion efficiency PCE of the solar cells P1 and C1 was measured. The organic thin film solar cell P1 is an organic thin film solar cell manufactured by the manufacturing method according to the present embodiment, and has the same configuration as the organic thin film solar cell 100. The organic thin film solar cell C1 is an organic thin film solar cell to be compared, which is manufactured by the manufacturing method excluding step S102. In the organic thin film solar cell C1, the substrate 10, the electronic device layer 20, and the gas barrier layer 40 are stacked in that order, and the liquid repellent layer 30 is not provided.
 図3(A)~3(C)は測定結果を示す。図3(A)は、有機薄膜太陽電池P1の測定結果を示し、図3(B)は、有機薄膜太陽電池C1の測定結果を示す。図3(A),3(B)の縦軸は、有機薄膜太陽電池の短絡電流密度Jsc、開放電圧Voc、及び、曲線因子FFを示し、図3(A),3(B)の横軸は、時間を示す。図3(A),3(B)の縦軸の値は、初期値が1となるように正規化されている。図3(A),3(B)から、有機薄膜太陽電池C1の曲線因子FFが時間の経過によって大きく低下するのに対し、有機薄膜太陽電池P1の曲線因子FFが非常に安定していることがわかる。 3 (A) to 3 (C) show the measurement results. FIG. 3 (A) shows the measurement result of the organic thin film solar cell P1, and FIG. 3 (B) shows the measurement result of the organic thin film solar cell C1. The vertical axes in FIGS. 3 (A) and 3 (B) indicate the short circuit current density Jsc, the open circuit voltage Voc, and the fill factor FF of the organic thin film solar cell, and the horizontal axes in FIGS. 3 (A) and 3 (B). Indicates the time. The values on the vertical axis in FIGS. 3A and 3B are normalized so that the initial value is 1. From FIGS. 3 (A) and 3 (B), the curve factor FF of the organic thin film solar cell C1 is greatly reduced with the passage of time, while the curve factor FF of the organic thin film solar cell P1 is very stable. I understand.
 エネルギー変換効率PCEは、短絡電流密度Jsc、開放電圧Voc、及び、曲線因子FFの乗算によって算出される。図3(C)は、有機薄膜太陽電池P1,C1のエネルギー変換効率PCEの時間変化を示す。図3(C)の縦軸は、図3(A),3(B)に示す短絡電流密度Jsc、開放電圧Voc、及び、曲線因子FFから得られたエネルギー変換効率PCEを示し、図3(C)の横軸は、時間を示す。図3(C)の縦軸の値は、初期値が1となるように正規化されている。図3(C)から、有機薄膜太陽電池C1のエネルギー変換効率PCEが時間の経過によって1から約0.6と大きく低下するのに対し、有機薄膜太陽電池P1のエネルギー変換効率PCEは、時間の経過によって1から約0.8しか低下しておらず、非常に安定していることがわかる。すなわち、有機薄膜太陽電池P1が有機薄膜太陽電池C1に比べ非常に優れた長期保管安定性を有することがわかる。なお、有機薄膜太陽電池P1のエネルギー変換効率PCEの1から約0.8への時間変化(低下)は初期劣化の範疇であるため、有機薄膜太陽電池P1で初期劣化以外の劣化が生じていないとも言える。 The energy conversion efficiency PCE is calculated by multiplication of the short circuit current density Jsc, the open circuit voltage Voc, and the fill factor FF. FIG.3 (C) shows the time change of energy conversion efficiency PCE of organic thin-film solar cell P1, C1. The vertical axis of FIG. 3C indicates the short circuit current density Jsc, the open circuit voltage Voc, and the energy conversion efficiency PCE obtained from the curvilinear factor FF shown in FIGS. 3A and 3B. The horizontal axis of C) shows time. The values on the vertical axis in FIG. 3C are normalized so that the initial value is 1. It can be seen from FIG. 3C that the energy conversion efficiency PCE of the organic thin film solar cell C1 significantly decreases from 1 to about 0.6 with the passage of time, whereas the energy conversion efficiency PCE of the organic thin film solar cell P1 is It has been found that over time it has fallen by only about 0.8 and is very stable. That is, it can be seen that the organic thin film solar cell P1 has very excellent long-term storage stability as compared to the organic thin film solar cell C1. In addition, since the time change (fall) of the energy conversion efficiency PCE of the organic thin film solar cell P1 from 1 to about 0.8 is a category of initial deterioration, no deterioration other than the initial deterioration occurs in the organic thin film solar cell P1. It can be said that.
 また、発明者らは、有機薄膜太陽電池P2,C2を同時に製造し、室温(約23℃)、室湿度(約30%)、大気中、及び、遮光という条件下で、有機薄膜太陽電池P2,C2のエネルギー変換効率PCEの時間変化を測定した。有機薄膜太陽電池P2は、本実施形態に係る上記製造方法で製造された有機薄膜太陽電池であり、有機薄膜太陽電池100と同様の構成を有する。有機薄膜太陽電池C2は、ステップS102,S104を除く製造方法で製造された、比較対象の有機薄膜太陽電池である。有機薄膜太陽電池C2では、基板10上に電子デバイス層20が積層されており、撥液層30とガスバリア層40は設けられていない。 In addition, the inventors simultaneously manufacture the organic thin film solar cells P2 and C2, and under the conditions of room temperature (about 23 ° C.), room humidity (about 30%), in the air, and light shielding, the organic thin film solar cells P2 , C2 energy conversion efficiency PCE was measured with time. The organic thin film solar cell P2 is an organic thin film solar cell manufactured by the manufacturing method according to the present embodiment, and has the same configuration as the organic thin film solar cell 100. The organic thin film solar cell C2 is an organic thin film solar cell to be compared, which is manufactured by the manufacturing method excluding steps S102 and S104. In the organic thin film solar cell C2, the electronic device layer 20 is stacked on the substrate 10, and the liquid repellent layer 30 and the gas barrier layer 40 are not provided.
 図4は測定結果を示す。具体的には、図4は、有機薄膜太陽電池P2,C2のエネルギー変換効率PCEの時間変化を示す。図4の縦軸は、エネルギー変換効率PCEを示し、図4の横軸は、時間を示す。図4の縦軸の値は、初期値が1となるように正規化されている。図4から、有機薄膜太陽電池C2のエネルギー変換効率PCEが時間の経過によって1から約0.5と大きく低下するのに対し、有機薄膜太陽電池P2のエネルギー変換効率PCEは、時間の経過によって1から約0.8しか低下しておらず、非常に安定していることがわかる。すなわち、有機薄膜太陽電池P2が有機薄膜太陽電池C2に比べ非常に優れた長期保管安定性を有することがわかる。そして、図3(C),4から、本実施形態に係る上記製造方法によって非常に優れた長期保管安定性を有する有機薄膜太陽電池を高確率に製造できることがわかる。 FIG. 4 shows the measurement results. Specifically, FIG. 4 shows a time change of the energy conversion efficiency PCE of the organic thin film solar cells P2, C2. The vertical axis in FIG. 4 indicates the energy conversion efficiency PCE, and the horizontal axis in FIG. 4 indicates the time. The values on the vertical axis in FIG. 4 are normalized so that the initial value is 1. It can be seen from FIG. 4 that the energy conversion efficiency PCE of the organic thin film solar cell C2 greatly decreases from 1 to about 0.5 with the passage of time, while the energy conversion efficiency PCE of the organic thin film solar cell P2 is with the passage of time 1 It is understood that the value is reduced by only about 0.8 and is very stable. That is, it can be seen that the organic thin film solar cell P2 has very excellent long-term storage stability as compared to the organic thin film solar cell C2. And FIG. 3 (C) and 4 show that the organic thin film solar cell which has the very outstanding long-term storage stability by the said manufacturing method which concerns on this embodiment can be manufactured with high probability.
 <温度安定性の評価>
 発明者らは、有機薄膜太陽電池100の2つ目の耐久性の評価として、外部温度(加熱)に対して安定して機能(発電)を実現できる耐久性(温度安定性)の評価を行った。具体的には、発明者らは、加熱温度(90℃)、室湿度(約30%)、大気中、及び、遮光という条件下で有機薄膜太陽電池P2,C2を加熱しながら、有機薄膜太陽電池P2,C2のエネルギー変換効率PCEを測定した。
<Evaluation of temperature stability>
Inventors evaluated the durability (temperature stability) which can implement | achieve a function (electric power generation) stably with respect to external temperature (heating) as evaluation of the 2nd durability of the organic thin-film solar cell 100. The Specifically, the inventors heated the organic thin-film solar cells P2 and C2 under the conditions of heating temperature (90 ° C.), room humidity (about 30%), in the air, and light shielding, while using the organic thin-film solar The energy conversion efficiency PCE of the batteries P2 and C2 was measured.
 図5は測定結果を示す。図5の縦軸は、エネルギー変換効率PCEを示し、図5の横軸は、加熱時間を示す。図5の縦軸の値は、初期値が1となるように正規化されている。図5から、有機薄膜太陽電池C2のエネルギー変換効率PCEが加熱時間の増加によって1から約0.8と大きく低下するのに対し、有機薄膜太陽電池P2のエネルギー変換効率PCEは、加熱時間が増加しても略1に保たれており、非常に安定していることがわかる。すなわち、有機薄膜太陽電池P2が有機薄膜太陽電池C2に比べ非常に優れた温度安定性を有することがわかる。 FIG. 5 shows the measurement results. The vertical axis in FIG. 5 indicates the energy conversion efficiency PCE, and the horizontal axis in FIG. 5 indicates the heating time. The values on the vertical axis in FIG. 5 are normalized so that the initial value is 1. From FIG. 5, while the energy conversion efficiency PCE of the organic thin film solar cell C2 is greatly reduced from 1 to about 0.8 by the increase of the heating time, the energy conversion efficiency PCE of the organic thin film solar cell P2 has the increased heating time However, it can be seen that it is maintained at approximately 1 and is very stable. That is, it can be seen that the organic thin film solar cell P2 has very excellent temperature stability as compared to the organic thin film solar cell C2.
 そして、発明者らは、有機薄膜太陽電池P2のエネルギー変換効率PCEがどの程度維持されるのかを確認するために、加熱時間をさらに増やしてエネルギー変換効率PCE(短絡電流密度Jsc、開放電圧Voc、及び、曲線因子FF)を測定した。図6は測定結果を示す。図6の縦軸は、有機薄膜太陽電池P2の短絡電流密度Jsc、開放電圧Voc、及び、曲線因子FFを示し、図6の横軸は、加熱時間を示す。図6の縦軸の値は、初期値が1となるように正規化されている。なお、図面(グラフ)の見易さのため、図6では、図5の一部のプロットに対応するプロットは省略されており、横軸として対数軸が使用されている。図6から、約50時間という非常に長い時間で有機薄膜太陽電池P2を加熱しても、有機薄膜太陽電池P2の短絡電流密度Jsc、開放電圧Voc、及び、曲線因子FFが略1に保たれることがわかる。すなわち、有機薄膜太陽電池P2が非常に優れた温度安定性(非常に長い時間の加熱に対してエネルギー変換効率PCEを略1に保つことができる)を有することがわかる。 Then, the inventors further increase the heating time to confirm how much the energy conversion efficiency PCE of the organic thin film solar cell P2 is maintained, and the energy conversion efficiency PCE (short circuit current density Jsc, open voltage Voc, And, the fill factor FF) was measured. FIG. 6 shows the measurement results. The vertical axis of FIG. 6 indicates the short circuit current density Jsc, the open circuit voltage Voc, and the fill factor FF of the organic thin film solar cell P2, and the horizontal axis of FIG. 6 indicates the heating time. The values on the vertical axis in FIG. 6 are normalized so that the initial value is 1. In addition, in FIG. 6, the plot corresponding to a part of plot of FIG. 5 is abbreviate | omitted in FIG. 6 for the legibility of drawing (graph), and the logarithmic axis is used as a horizontal axis. From FIG. 6, even if the organic thin film solar cell P2 is heated for a very long time of about 50 hours, the short circuit current density Jsc, the open circuit voltage Voc, and the curvilinear factor FF of the organic thin film solar cell P2 are maintained at about 1. It is understood that That is, it can be seen that the organic thin film solar cell P2 has very excellent temperature stability (the energy conversion efficiency PCE can be maintained at approximately 1 for heating for a very long time).
 また、発明者らは、加熱時間(5分)、室湿度(約30%)、大気中、及び、遮光という条件下で有機薄膜太陽電池P1,C1を加熱しながら、有機薄膜太陽電池P1,C1のエネルギー変換効率PCEを測定した。図7は測定結果を示す。図7の縦軸は、エネルギー変換効率PCEを示し、図7の横軸は、加熱温度を示す。図7の縦軸の値は、初期値が1となるように正規化されている。図7から、有機薄膜太陽電池P1において、加熱温度の増加によるエネルギー変換効率PCEの低下が、有機薄膜太陽電池C1のそれよりも小さいことがわかる。すなわち、有機薄膜太陽電池P1が有機薄膜太陽電池C1に比べ優れた温度安定性を有することがわかる。 Moreover, the inventors heated the organic thin-film solar cells P1 and C1 under the conditions of heating time (5 minutes), room humidity (about 30%), air, and light shielding while the organic thin-film solar cells P1 and P1 were The energy conversion efficiency PCE of C1 was measured. FIG. 7 shows the measurement results. The vertical axis in FIG. 7 indicates the energy conversion efficiency PCE, and the horizontal axis in FIG. 7 indicates the heating temperature. The values on the vertical axis in FIG. 7 are normalized so that the initial value is 1. It is understood from FIG. 7 that in the organic thin film solar cell P1, the decrease in energy conversion efficiency PCE due to the increase in heating temperature is smaller than that of the organic thin film solar cell C1. That is, it can be seen that the organic thin film solar cell P1 has excellent temperature stability as compared to the organic thin film solar cell C1.
 <まとめと考察>
 以上述べたように、本実施形態によれば、ガスバリア層40の他に非常に薄い撥液層30をさらに設けるという簡易な方法で、高い柔軟性などの機能を損なわずに製品としての実用性や耐久性がより向上した有機薄膜太陽電池100を提供できる。簡易な方法であるため、このような有機薄膜太陽電池100は製造し易い。
<Summary and Discussion>
As described above, according to the present embodiment, the practicality as a product without impairing functions such as high flexibility by a simple method of further providing a very thin liquid repellent layer 30 in addition to the gas barrier layer 40 It is possible to provide the organic thin film solar cell 100 having further improved durability. Since it is a simple method, such an organic thin film solar cell 100 is easy to manufacture.
 電子デバイス層20(特に活性層23)は、水蒸気や酸素ガスなどのガスによって劣化しやすく、特に水蒸気(水)によって劣化しやすい。しかしながら、撥液層30に使用されたAF1600のような非晶質性のフッ素樹脂は、環状ユニット(環状構造)を含んだ構造を有しており、そのガス透過率は非常に高い。例えば、図8に示すように、AF1600の水蒸気透過率は、75907g・mm/m2・dayと非常に高い。そのため、撥液層30を設けることで耐久性が向上する上記効果は、予測の範囲を超える極めて優れた効果である。 The electronic device layer 20 (in particular, the active layer 23) is easily degraded by a gas such as water vapor or oxygen gas, and particularly easily degraded by water vapor (water). However, an amorphous fluororesin such as AF1600 used for the liquid repellent layer 30 has a structure including an annular unit (annular structure), and its gas permeability is very high. For example, as shown in FIG. 8, the water vapor transmission rate of AF1600 is very high at 75907 g · mm / m 2 · day. Therefore, the effect of improving the durability by providing the liquid repellent layer 30 is a very excellent effect exceeding the range of prediction.
 なお、ガスバリア層40の水蒸気透過率は低いため、厚さ360nmの撥液層30を設ける代わりにガスバリア層40の厚さを1μmから1.36μmに増やしても、ガスバリア層40の水蒸気透過率はほとんど変わらない。そのため、厚さ1μmのガスバリア層40のみを有する有機薄膜太陽電池C1の耐久性と同等の耐久性しか得られない。 Since the water vapor transmission rate of the gas barrier layer 40 is low, even if the thickness of the gas barrier layer 40 is increased from 1 μm to 1.36 μm instead of providing the liquid repellent layer 30 having a thickness of 360 nm, the water vapor transmission rate of the gas barrier layer 40 is It hardly changes. Therefore, only durability equivalent to the durability of the organic thin film solar cell C1 having only the gas barrier layer 40 with a thickness of 1 μm can be obtained.
 撥液層30を設けることで耐久性が向上する理由については調査中であるが、発明者らは、各部材(各材料)の特性などから、以下の理由1~4の少なくともいずれかにより耐久性が向上すると考えている。
 ・理由1:撥液層30の高い撥液性により、撥液層30と他の部材(ガスバリア層40および電子デバイス層20)との界面に(クラスタレベルの)液溜が作られにくい。
 ・理由2:撥液層30と他の部材との界面で水蒸気の濃度勾配が生じにくい。
 ・理由3:非大気下で撥液層30を塗布することにより、その後の大気下で電子デバイス層20の表面に水分子が吸着し難くなる。
 ・理由4:撥液層30を塗布する際に使用した溶媒によって、電子デバイス層20の表面に吸着した水分子が洗い流される。
The reason why the durability is improved by providing the liquid repellent layer 30 is under investigation, but the inventors have made the durability by at least one of the following reasons 1 to 4 from the characteristics of each member (each material), etc. I think that the sex improves.
Reason 1: The high liquid repellency of the liquid repellent layer 30 makes it difficult to form a reservoir (at the cluster level) at the interface between the liquid repellent layer 30 and other members (the gas barrier layer 40 and the electronic device layer 20).
Reason 2: A concentration gradient of water vapor does not easily occur at the interface between the liquid repellent layer 30 and other members.
Reason 3: By applying the liquid repellent layer 30 in a non-air atmosphere, it becomes difficult for water molecules to be adsorbed on the surface of the electronic device layer 20 in the subsequent atmosphere.
Reason 4: The water molecules adsorbed on the surface of the electronic device layer 20 are washed away by the solvent used when the liquid repellent layer 30 is applied.
 <変形例>
 上記考察によれば、各種部材の厚さ、材料、形状、形成方法、等が有機薄膜太陽電池100のそれらと異なる電子デバイスにおいても、撥液層を設けることにより、機能を損なわずに製品としての実用性、耐久性、さらに製造し易さがより向上した電子デバイスを提供できる。なお、AF1600などからなる撥液層30の水蒸気透過率は高いため、撥液層30を設けるだけでは不十分であり、水蒸気透過率の低いガスバリア層40は必要である。
<Modification>
According to the above consideration, even in an electronic device in which the thickness, material, shape, forming method, and the like of various members are different from those of the organic thin film solar cell 100, by providing the liquid repellent layer, as a product without losing the function. It is possible to provide an electronic device with further improved practicality, durability, and ease of manufacture. In addition, since the water vapor transmission rate of the liquid repellent layer 30 made of AF1600 or the like is high, only providing the liquid repellent layer 30 is insufficient, and the gas barrier layer 40 having a low water vapor transmission rate is necessary.
 例えば、本発明は、有機薄膜太陽電池以外の薄膜電子デバイスにも適用可能であるし、薄膜電子デバイス以外の電子デバイスにも適用可能である。例えば、或る程度の厚みをもった太陽電池、電力の供給に応じて発光する有機EL(Electro-Luminescence)パネル、光の照射に応じて電気信号を出力することで当該光を検出するフォトディテクタ、トランジスタ、等に本発明を適用することができる。なお、薄膜電子デバイスの柔軟性などの機能を維持するために、薄膜電子デバイスの厚さは数μm(例えば5μm)以下であることが好ましい。 For example, the present invention is applicable to thin film electronic devices other than organic thin film solar cells, and is also applicable to electronic devices other than thin film electronic devices. For example, a solar cell having a certain thickness, an organic EL (Electro-Luminescence) panel that emits light in response to power supply, a photodetector that detects the light by outputting an electric signal in response to light irradiation, The present invention can be applied to transistors and the like. In addition, in order to maintain functions such as flexibility of the thin film electronic device, the thickness of the thin film electronic device is preferably several μm (eg, 5 μm or less).
 電子デバイス層20の光電変換層(活性層23)は、電力の供給に応じて発光する層であってもよい。電子デバイス層20は、光電変換層などを有していなくてもよい。電子デバイス層20は、電子的機能を有する層であればよい。例えば、電子デバイス層20は、無機物からなる層であってもよいし、半導体(無機化合物半導体や有機化合物半導体)などからなる半導体デバイス層であってもよい。半導体デバイス層は水蒸気などによって劣化しやすく、光電変換層は水蒸気などによって特に劣化しやすい。そのため、これらの層が使用される場合には、電子デバイスの耐久性を大幅に向上できる。 The photoelectric conversion layer (active layer 23) of the electronic device layer 20 may be a layer that emits light in response to the supply of power. The electronic device layer 20 may not have a photoelectric conversion layer or the like. The electronic device layer 20 may be a layer having an electronic function. For example, the electronic device layer 20 may be a layer formed of an inorganic substance, or may be a semiconductor device layer formed of a semiconductor (inorganic compound semiconductor or organic compound semiconductor) or the like. The semiconductor device layer is easily degraded by water vapor and the like, and the photoelectric conversion layer is particularly easily degraded by water vapor and the like. Therefore, when these layers are used, the durability of the electronic device can be greatly improved.
 図9(A)に示すように、撥液層30は、ガスバリア層40の下に設けられてもよい。図9(B)に示すように、基板10の下に他の撥液層50がさらに設けられてもよい。図9(C)に示すように、基板10と電子デバイス層20の間に撥液層50がさらに設けられてもよい。図9(B),9(C)の構成によれば、電子デバイスの上部に設けられたバリア層(撥液層30とガスバリア層40を有する層)と同等の層が電子デバイスの下部にも設けられるため、耐久性のさらなる向上が期待できる。 As shown in FIG. 9A, the liquid repellent layer 30 may be provided below the gas barrier layer 40. As shown in FIG. 9B, another liquid repellent layer 50 may be further provided below the substrate 10. As shown in FIG. 9C, a liquid repellent layer 50 may be further provided between the substrate 10 and the electronic device layer 20. According to the configurations shown in FIGS. 9B and 9C, a layer equivalent to the barrier layer (layer having the liquid repellent layer 30 and the gas barrier layer 40) provided on the upper part of the electronic device is also provided on the lower part of the electronic device. As it is provided, further improvement of the durability can be expected.
 基板10は設けられなくてもよい。基板10がガスバリア性を有する例を説明したが、基板10はガスバリア層を有していなくてもよい。但し、基板10がガスバリア性を有することにより、耐久性をより向上できる。 The substrate 10 may not be provided. Although the example in which the substrate 10 has the gas barrier property has been described, the substrate 10 may not have the gas barrier layer. However, durability can be further improved by the substrate 10 having gas barrier properties.
 ガスバリア層40は、ポリイミド層(VICT-BnpやVICT-Cなど)や他のパラキシレン系ポリマー層(dix-C、dix-D、dix-N、dix-HR、dix-NR、dix-SF、dix-CF、等)であってもよい。ガスバリア層40は、ガスバリア性に比較的優れた層であればよい。 The gas barrier layer 40 may be a polyimide layer (such as VICT-Bnp or VICT-C) or another paraxylene polymer layer (such as dix-C, dix-D, dix-N, dix-HR, dix-NR, dix-SF, dix-CF, etc.). The gas barrier layer 40 may be a layer relatively excellent in gas barrier properties.
 図8に示すように、VICT-Bnpの水蒸気透過率は2.5≒3g・mm/m2・dayであり、VICT-Cの水蒸気透過率は0.375≒0.4g・mm/m2・dayであり、dix-Cの水蒸気透過率は0.09≒0.1g・mm/m2・dayであり、dix-Dの水蒸気透過率は0.05g・mm/m2・dayであり、dix-Nの水蒸気透過率は0.63≒0.7g・mm/m2・dayであり、dix-HRの水蒸気透過率は0.07g・mm/m2・dayであり、dix-SRの水蒸気透過率は0.09≒0.1g・mm/m2・dayであり、dix-NRの水蒸気透過率は0.62g・mm/m2・dayであり、dix-SFの水蒸気透過率は0.23g・mm/m2・dayであり、dix-CFの水蒸気透過率は0.28≒0.3g・mm/m2・dayである。そのため、ガスバリア層40の水蒸気透過率は、3g・mm/m2・dayよりも低いことが好ましく、低いほどよい。この条件を満たすことにより、非常に高い耐久性を実現できる。 As shown in FIG. 8, the water vapor transmission rate of VICT-Bnp is 2.5 ≒ 3 g · mm / m 2 · day, and the water vapor transmission rate of VICT-C is 0.375750.4 g · mm / m 2 · day, still water vapor permeability of the dix-C is 0.09 ≒ 0.1g · mm / m 2 · day, the water vapor transmission rate of the dix-D is an 0.05g · mm / m 2 · day The water vapor transmission rate of dix-N is 0.6330.7 g · mm / m 2 · day, and the water vapor transmission rate of dix-HR is 0.07 g · mm / m 2 · day, and dix-SR Water vapor transmission rate is 0.09 0.1 g · mm / m 2 · day, water vapor transmission rate of dix-NR is 0.62 g · mm / m 2 · day, water vapor transmission rate of dix-SF is 0.23g · mm / m 2 · day , the water vapor transmission rate of the dix-CF 0.28 is ≒ 0.3g · mm / m 2 · day. Therefore, the water vapor transmission rate of the gas barrier layer 40 is preferably lower than 3 g · mm / m 2 · day, and the lower, the better. By satisfying this condition, very high durability can be realized.
 また、図8に示すように、VICT-Bnpの酸素透過率は25≒30cc・mm/m2・day・atmであり、VICT-Cの酸素透過率は0.25cc・mm/m2・day・atmであり、dix-Cの酸素透過率は2.1cc・mm/m2・day・atmであり、dix-Dの酸素透過率は1.0cc・mm/m2・day・atmであり、dix-Nの酸素透過率は81.1≒100cc・mm/m2・day・atmであり、dix-HRの酸素透過率は1.9cc・mm/m2・day・atmであり、dix-SRの酸素透過率は2.0cc・mm/m2・day・atmであり、dix-NRの酸素透過率は15cc・mm/m2・day・atmであり、dix-SFの酸素透過率は38.1cc・mm/m2・day・atmであり、dix-CFの酸素透過率は38.9≒40cc・mm/m2・day・atmである。そのため、ガスバリア層40の酸素透過率は、100cc・mm/m2・day・atmよりも低いことが好ましく、低いほどよい。この条件を満たすことにより、非常に高い耐久性を実現できる。 Further, as shown in FIG. 8, the oxygen permeability of VICT-Bnp is 252530 cc · mm / m 2 · day · atm, and the oxygen permeability of VICT-C is 0.25 cc · mm / m 2 · day · Atm, oxygen permeability of dix-C is 2.1 cc · mm / m 2 · day · atm, oxygen permeability of dix-D is 1.0 cc · mm / m 2 · day · atm The oxygen permeability of dix-N is 81.1 ≒ 100 cc · mm / m 2 · day · atm, and the oxygen permeability of dix-HR is 1.9 cc · mm / m 2 · day · atm The oxygen transmission rate of -SR is 2.0 cc · mm / m 2 · day · atm, the oxygen transmission rate of dix-NR is 15 cc · mm / m 2 · day · atm, and the oxygen transmission rate of dix-SF the 38.1cc · mm / m 2 · day · a tm, the oxygen permeability of the dix-CF is 38.9 ≒ 40cc · mm / m 2 · day · atm. Therefore, the oxygen permeability of the gas barrier layer 40 is preferably lower than 100 cc · mm / m 2 · day · atm, and the lower, the better. By satisfying this condition, very high durability can be realized.
 撥液層30は、非晶質系のフッ素樹脂層に限られない。撥液層30は、結晶性のフッ素樹脂層(結晶性のフッ素樹脂からなる層)であってもよい。撥液層30の材料は、美浜株式会社製のサイトップ、スリーエムジャパン株式会社製のノベック(ノベック1700やノベック2702)等のフッ素樹脂であってもよい。撥液層30は、フッ素樹脂層でなくてもよく、必要な撥液性を担保出来れば、シリコン樹脂であっても良い。撥液層30は、撥液性に比較的優れた層であればよい。 The liquid repellent layer 30 is not limited to the amorphous fluorocarbon resin layer. The liquid repellent layer 30 may be a crystalline fluorocarbon resin layer (a layer made of crystalline fluorocarbon resin). The material of the liquid repellent layer 30 may be fluoroplastics such as Cytop made by Mihama Co., Ltd., Nobek (Novec 1700 or Nobec 2702) made by 3M Japan Co., Ltd. The liquid repellent layer 30 may not be a fluorine resin layer, and may be a silicon resin as long as the necessary liquid repellency can be ensured. The liquid repellent layer 30 may be a layer relatively excellent in liquid repellency.
 図10に示すように、AF1600の水接触角は120°であり、サイトップの水接触角は110°であり、ノベック1700の水接触角は105≒100°であり、ノベック2702の水接触角は105≒100°であり、ポリテトラフルオロエチレン(PTFE)の水接触角は114°である。そのため、撥液層30の水接触角は、100°よりも大きいことが好ましく、大きいほどよい。この条件を満たすことにより、非常に高い耐久性を実現できる。 As shown in FIG. 10, the water contact angle of AF 1600 is 120 °, the water contact angle of Cytop is 110 °, the water contact angle of Novec 1700 is 105100100 °, and the water contact angle of Nobec 2702 Is 105 ≒ 100 °, and the water contact angle of polytetrafluoroethylene (PTFE) is 114 °. Therefore, the water contact angle of the liquid repellent layer 30 is preferably larger than 100 °, and the larger, the better. By satisfying this condition, very high durability can be realized.
 また、図10に示すように、AF1600の表面自由エネルギーは10mN/mであり、サイトップの表面自由エネルギーは19≒20mN/mであり、ノベック1700の表面自由エネルギーは10~11mN/mであり、ノベック2702の表面自由エネルギーは10~11mN/mであり、PTFEの表面自由エネルギーは18mN/mである。そのため、撥液層30の表面自由エネルギーは、20mN/mよりも小さいことが好ましく、小さいほどよい。この条件を満たすことにより、非常に高い耐久性を実現できる。 Further, as shown in FIG. 10, the surface free energy of AF 1600 is 10 mN / m, the surface free energy of Cytop is 191920 mN / m, and the surface free energy of Novec 1700 is 10 to 11 mN / m. The surface free energy of Novec 2702 is 10 to 11 mN / m, and the surface free energy of PTFE is 18 mN / m. Therefore, the surface free energy of the liquid repellent layer 30 is preferably smaller than 20 mN / m, and the smaller, the better. By satisfying this condition, very high durability can be realized.
 撥液層30の形成方法はスピンコート法に限られない。例えば、非大気下で行われる他の塗布方法により、撥液層30が塗布されてもよい。撥液層30は大気下で塗布されてもよい。 The method of forming the liquid repellent layer 30 is not limited to the spin coating method. For example, the liquid repellent layer 30 may be applied by another application method performed under non-atmosphere. The liquid repellent layer 30 may be applied under the atmosphere.
 バリア層は、撥液層30とガスバリア層40からなる2重膜(2重層)でなくてもよい。バリア層は、3つ以上の層を有していてもよい(3重膜、4重膜、等)。バリア層を構成する層の数を増やすことにより、耐久性のさらなる向上が期待できる。 The barrier layer may not be a double film (double layer) composed of the liquid repellent layer 30 and the gas barrier layer 40. The barrier layer may have three or more layers (trilayer, quadruple, etc.). By increasing the number of layers constituting the barrier layer, further improvement in durability can be expected.
 10:基板 20:電子デバイス層 21:下部電極 22:電子輸送層
 23:活性層 24:ホール輸送層 25:上部電極 30:撥液層
 40:ガスバリア層 50:撥液層 100:有機薄膜太陽電池
10: substrate 20: electronic device layer 21: lower electrode 22: electron transport layer 24: active layer 24: hole transport layer 25: upper electrode 30: liquid repellent layer 40: gas barrier layer 50: liquid repellent layer 100: organic thin film solar cell

Claims (14)

  1.  電子デバイス層と、
     前記電子デバイス層の上に設けられたバリア層と、
    を有し、
     前記バリア層は、ガスバリア層と、前記ガスバリア層の上または下に設けられた撥液層とを有する
    ことを特徴とする電子デバイス。
    An electronic device layer,
    A barrier layer provided on the electronic device layer;
    Have
    The electronic device characterized in that the barrier layer has a gas barrier layer and a liquid repellent layer provided on or under the gas barrier layer.
  2.  前記電子デバイス層は半導体デバイス層である
    ことを特徴とする請求項1に記載の電子デバイス。
    The electronic device according to claim 1, wherein the electronic device layer is a semiconductor device layer.
  3.  前記電子デバイス層は、光電変換層と、上下方向において前記光電変換層を挟む第1電極および第2電極とを有する
    ことを特徴とする請求項1または2に記載の電子デバイス。
    The electronic device according to claim 1, wherein the electronic device layer includes a photoelectric conversion layer, and a first electrode and a second electrode sandwiching the photoelectric conversion layer in the vertical direction.
  4.  前記電子デバイス層の下に設けられた基板と、
     前記基板の下、または、前記電子デバイス層と前記基板の間に設けられた他の撥液層と、をさらに有する
    ことを特徴とする請求項1~3のいずれか1項に記載の電子デバイス。
    A substrate provided below the electronic device layer,
    The electronic device according to any one of claims 1 to 3, further comprising another liquid repellent layer provided under the substrate or between the electronic device layer and the substrate. .
  5.  前記基板はガスバリア性を有する
    ことを特徴とする請求項4に記載の電子デバイス。
    The electronic device according to claim 4, wherein the substrate has a gas barrier property.
  6.  前記基板はポリイミド層である
    ことを特徴とする請求項4または5に記載の電子デバイス。
    The electronic device according to claim 4, wherein the substrate is a polyimide layer.
  7.  前記ガスバリア層はパラキシレン系ポリマー層またはポリイミド層である
    ことを特徴とする請求項1~6のいずれか1項に記載の電子デバイス。
    The electronic device according to any one of claims 1 to 6, wherein the gas barrier layer is a paraxylene polymer layer or a polyimide layer.
  8.  前記撥液層はフッ素樹脂層である
    ことを特徴とする請求項1~7のいずれか1項に記載の電子デバイス。
    The electronic device according to any one of claims 1 to 7, wherein the liquid repellent layer is a fluorocarbon resin layer.
  9.  前記撥液層は非晶質性のフッ素樹脂層である
    ことを特徴とする請求項1~8のいずれか1項に記載の電子デバイス。
    The electronic device according to any one of claims 1 to 8, wherein the liquid repellent layer is an amorphous fluorocarbon resin layer.
  10.  前記ガスバリア層の水蒸気透過率は3g・mm/m2・dayよりも低い
    ことを特徴とする請求項1~9のいずれか1項に記載の電子デバイス。
    The electronic device according to any one of claims 1 to 9, wherein a water vapor transmission rate of the gas barrier layer is lower than 3 g · mm / m 2 · day.
  11.  前記撥液層の水接触角は100°よりも大きい
    ことを特徴とする請求項1~10のいずれか1項に記載の電子デバイス。
    The electronic device according to any one of claims 1 to 10, wherein a water contact angle of the liquid repellent layer is larger than 100 属.
  12.  前記撥液層の表面自由エネルギーは20mN/mよりも小さい
    ことを特徴とする請求項1~11のいずれか1項に記載の電子デバイス。
    The electronic device according to any one of claims 1 to 11, wherein the surface free energy of the liquid repellent layer is smaller than 20 mN / m.
  13.  非大気下で電子デバイス層の表面に撥液層を塗布する塗布ステップと、
     前記撥液層の表面にガスバリア層を形成する形成ステップと、
    を有することを特徴とする電子デバイスの製造方法。
    Applying a liquid repellent layer to the surface of the electronic device layer under non-atmospheric conditions;
    Forming a gas barrier layer on the surface of the liquid repellent layer;
    A method of manufacturing an electronic device, comprising:
  14.  前記塗布ステップでは、スピンコート法により前記撥液層が塗布される
    ことを特徴とする請求項13に記載の電子デバイスの製造方法。
    The method for manufacturing an electronic device according to claim 13, wherein the liquid repellent layer is applied by a spin coating method in the applying step.
PCT/JP2018/033378 2017-09-19 2018-09-10 Electronic device and manufacturing method therefor WO2019059016A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019543555A JPWO2019059016A1 (en) 2017-09-19 2018-09-10 Electronic device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017179452 2017-09-19
JP2017-179452 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019059016A1 true WO2019059016A1 (en) 2019-03-28

Family

ID=65809681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033378 WO2019059016A1 (en) 2017-09-19 2018-09-10 Electronic device and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2019059016A1 (en)
WO (1) WO2019059016A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260088A (en) * 1988-08-24 1990-02-28 Hitachi Ltd Thin film el panel
JPH10106746A (en) * 1996-09-27 1998-04-24 Pioneer Electron Corp Electroluminescent element and manufacture of electroluminescent element
JP2000068047A (en) * 1998-08-20 2000-03-03 Hokuriku Electric Ind Co Ltd Organic el element and its manufacture
JP2004039448A (en) * 2002-07-03 2004-02-05 Sony Corp Display device, electronic appliance, and method of manufacturing display device
JP2005100815A (en) * 2003-09-25 2005-04-14 Kyocera Corp Organic electroluminescent element
JP2010056508A (en) * 2008-07-31 2010-03-11 Rohm Co Ltd Semiconductor device
JP2012076295A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Moist heat-resistant gas barrier film laminate, and packaging bag
US20140042399A1 (en) * 2012-08-07 2014-02-13 Samsung Display Co., Ltd. Flexible organic light-emitting display device and method of manufacturing the same
WO2014073534A1 (en) * 2012-11-12 2014-05-15 シャープ株式会社 Organic electroluminescent display device and production method for same
US20140291658A1 (en) * 2011-09-14 2014-10-02 Osram Opto Semiconductors Gmbh Optoelectronic component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030989A (en) * 2002-06-21 2004-01-29 Dainippon Printing Co Ltd Electroluminescent element and its manufacturing method
JP4346459B2 (en) * 2004-01-20 2009-10-21 三洋電機株式会社 Light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260088A (en) * 1988-08-24 1990-02-28 Hitachi Ltd Thin film el panel
JPH10106746A (en) * 1996-09-27 1998-04-24 Pioneer Electron Corp Electroluminescent element and manufacture of electroluminescent element
JP2000068047A (en) * 1998-08-20 2000-03-03 Hokuriku Electric Ind Co Ltd Organic el element and its manufacture
JP2004039448A (en) * 2002-07-03 2004-02-05 Sony Corp Display device, electronic appliance, and method of manufacturing display device
JP2005100815A (en) * 2003-09-25 2005-04-14 Kyocera Corp Organic electroluminescent element
JP2010056508A (en) * 2008-07-31 2010-03-11 Rohm Co Ltd Semiconductor device
JP2012076295A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Moist heat-resistant gas barrier film laminate, and packaging bag
US20140291658A1 (en) * 2011-09-14 2014-10-02 Osram Opto Semiconductors Gmbh Optoelectronic component
US20140042399A1 (en) * 2012-08-07 2014-02-13 Samsung Display Co., Ltd. Flexible organic light-emitting display device and method of manufacturing the same
WO2014073534A1 (en) * 2012-11-12 2014-05-15 シャープ株式会社 Organic electroluminescent display device and production method for same

Also Published As

Publication number Publication date
JPWO2019059016A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
Park et al. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells
Heo et al. Recent advancements in and perspectives on flexible hybrid perovskite solar cells
Kim et al. Ultrathin organic solar cells with graphene doped by ferroelectric polarization
Kimura et al. High operation stability of ultraflexible organic solar cells with ultraviolet‐filtering substrates
JP6709411B2 (en) Organic charge transport layer, organic EL device, organic semiconductor device and organic optoelectronic device
US11764001B2 (en) Perovskite solar cell configurations
US20190115487A1 (en) Perovskite solar cell module and fabrication method thereof
US20150008401A1 (en) Electronic device and method of fabricating the same
Turak On the role of LiF in organic optoelectronics
Han et al. Optical effect of surface morphology of Ag on multilayer electrode applications for OLEDs
KR20160111850A (en) Method for Manufacturing Transparent Electrode of Surface Energy Controlling of Metal Mesh, and Organic Photovoltaic Cell Having The Transparent Electrode Manufactured by The Same
KR20120001684A (en) Transparent conducting film, preparing method for the same, and transparent electrode and devices using the same
WO2011158874A1 (en) Organic thin film solar cell
KR20190045274A (en) Protection of electronic devices
WO2019059016A1 (en) Electronic device and manufacturing method therefor
KR101584222B1 (en) Method for transfering graphene films and device using the same
WO2022190336A1 (en) Transparent electrode, method for producing same and electronic device using transparent electrode
KR20170132567A (en) Method of manufacturing the optical absorber layer for organic-inorganic complex solar cell, and method of manufacturing organic-inorganic complex solar cell using thereof
Cho et al. ITO/AZO double-layered transparent conducting oxide films for organic photovoltaic cells
JP7406597B2 (en) Transparent electrode and its production method, and electronic device using transparent electrode
KR101161582B1 (en) Transparent optical multilayer and transparent photovoltaic cell having the same
WO2024009411A1 (en) Transparent electrode, manufacturing method therefor, and electronic device employing transparent electrode
KR102616389B1 (en) Organic-inorganic complex solar cell
TW201911616A (en) Flexible perovskite solar cell and manufacturing method thereof
JP7482362B2 (en) Photoelectric conversion element and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859804

Country of ref document: EP

Kind code of ref document: A1