WO2019058935A1 - Aluminum alloy plate for bottle-shaped can body and manufacturing method thereof - Google Patents

Aluminum alloy plate for bottle-shaped can body and manufacturing method thereof Download PDF

Info

Publication number
WO2019058935A1
WO2019058935A1 PCT/JP2018/032450 JP2018032450W WO2019058935A1 WO 2019058935 A1 WO2019058935 A1 WO 2019058935A1 JP 2018032450 W JP2018032450 W JP 2018032450W WO 2019058935 A1 WO2019058935 A1 WO 2019058935A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottle
aluminum alloy
mass
less
rolling
Prior art date
Application number
PCT/JP2018/032450
Other languages
French (fr)
Japanese (ja)
Inventor
亮平 小林
幸司 一谷
田中 宏樹
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to CN201880061110.5A priority Critical patent/CN111108223B/en
Priority to KR1020197033056A priority patent/KR102087567B1/en
Publication of WO2019058935A1 publication Critical patent/WO2019058935A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/24Making hollow objects characterised by the use of the objects high-pressure containers, e.g. boilers, bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2615Edge treatment of cans or tins
    • B21D51/2638Necking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present disclosure relates to an aluminum alloy sheet for a bottle can body and a method of manufacturing the same.
  • a bottle can which is a type of aluminum can, is known.
  • the bottle can has a neck portion thinner than the body portion.
  • the neck portion is formed by necking.
  • the bottle has a screw near the tip of the neck.
  • the threaded portion is a portion formed with a screw for attaching the cap.
  • the bottle can has a curled portion at the tip of the neck portion.
  • the curled portion is a curled portion so as to be bent toward the outer peripheral side (Patent Documents 1 to 5).
  • the axial strength is the strength to withstand an axial load.
  • an aluminum alloy sheet for a bottle can and barrel that can realize a bottle can that has high axial strength and is less susceptible to curl cracking, and a method for manufacturing the same.
  • One aspect of the present disclosure is an aluminum alloy sheet for a bottle can body, comprising 0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, and 0.05 to 0. Containing 25% by mass of Cu, 0.80 to 1.50% by mass of Mn, 0.80 to 1.50% by mass of Mg, Al, and unavoidable impurities, and having a blank diameter of 57 mm,
  • the 45 ° ear ratio is 2.5% or less in the forming cup narrowed under the condition that the drawing ratio is 1.73, and the average value of 0-180 ° ear height is less than the average value of 45 ° ear height
  • the resistance is 180 MPa or more and 230 MPa or less, and the value obtained by subtracting the resistance from tensile strength is 10.0 MPa or more and 28.0 MPa or less, and the direction orthogonal to the rolling direction on the surface of the aluminum alloy sheet for bottle can and barrel Crystal grain width is 10 ⁇ m to 60 ⁇ m It is an aluminum alloy plate for a bottle
  • Another aspect of the present disclosure is 0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, 0.05 to 0.25% by mass of Cu, and 0.80.
  • An ingot of an aluminum alloy containing 1 to 1.50% by mass of Mn, 0.80 to 1.50% by mass of Mg, Al, and unavoidable impurities is homogenized and hot-rolled. Cold rolling without intermediate annealing, in the hot rolling, the start temperature of the hot finish rolling is 400 ° C. or more and 520 ° C.
  • the aluminum alloy sheet for bottle can and barrel can be manufactured by the method for manufacturing an aluminum alloy sheet for bottle can and barrel, which is another aspect of the present disclosure.
  • the bottle can manufactured using the aluminum alloy plate for the bottle can body has high axial force strength, and curl cracking is unlikely to occur.
  • Aluminum alloy plate for bottle can body of the present disclosure contains 0.05 to 0.60% by mass of Si.
  • Si causes phase transformation to the Al—Mn—Fe system crystallized product to form a harder Al—Mn—Fe—Si system compound.
  • Al-Mn-Fe-Si based compounds have a solid lubricating action. The formation of the Al-Mn-Fe-Si compound improves the ironing formability of the aluminum alloy sheet for a bottle can and barrel.
  • the reason why the ear rate can be reduced is as follows.
  • the content of Si is 0.60 mass% or less, precipitation of a fine ⁇ -AlMnFeSi phase during hot rolling can be suppressed.
  • the ⁇ -AlMnFeSi phase has an action of inhibiting recrystallization after the end of hot rolling. By suppressing the precipitation of the ⁇ -AlMnFeSi phase, it is possible to promote recrystallization after the end of hot rolling and reduce the ear coverage.
  • the aluminum alloy sheet for bottle can body of the present disclosure contains 0.05 to 0.80% by mass of Fe.
  • the ironing formability of the aluminum alloy sheet for bottle can and barrel can be improved.
  • the reason that the ironability is improved by containing 0.05% by mass or more of Fe is because compounds such as Al-Mn-Fe and Al-Mn-Fe-Si are precipitated, and those compounds are in solid lubrication It is for having an effect.
  • the recrystallized grain size at the end of the hot rolling is refined.
  • the reason why the recrystallized grain size is refined is as follows. Compounds such as Al-Mn-Fe and Al-Mn-Fe-Si have a strain higher than that of the matrix during hot rolling, and form a region with a large dislocation density around it, and hot rolling It becomes a recrystallization nucleus at the end.
  • the content of Fe is 0.05% by mass or more, the amount of the compound to be a recrystallization nucleus is increased, and the recrystallized grain size is refined.
  • the content of Fe when the content of Fe is 0.05% by mass or more, it is not necessary to excessively increase the purity of the aluminum metal, and cost reduction can be realized.
  • the content of Fe is 0.80% by mass or less, it is possible to suppress the formation of a huge Al-Mn-Fe-based primary crystal compound by combining Fe and Mn at the time of melt casting. If a huge Al-Mn-Fe primary crystal compound remains even after rolling, cracking or pinholes may occur during DI molding.
  • the aluminum alloy sheet for bottle can body of the present disclosure contains 0.05 to 0.25% by mass of Cu.
  • the strength of the aluminum alloy sheet for a bottle can body is improved. If the strength of the aluminum alloy sheet for a bottle can body is improved, sufficient axial strength can be obtained in DI molding.
  • the aluminum alloy sheet for bottle can body of the present disclosure contains 0.80 to 1.50% by mass of Mn.
  • Mn 0.80 mass% or more
  • an Al—Mn—Fe—Si compound is easily formed.
  • strength of the aluminum alloy plate for bottle can body improves by content of Mn being 0.80 mass% or more. If the strength of the aluminum alloy sheet for a bottle can body is improved, sufficient axial strength can be obtained in DI molding.
  • the aluminum alloy sheet for bottle can body of the present disclosure contains 0.80 to 1.50% by mass of Mg.
  • Mg 0.80% by mass or more
  • the strength of the aluminum alloy sheet for a bottle can body is improved. If the strength of the aluminum alloy sheet for a bottle can body is improved, sufficient axial strength can be obtained in DI molding.
  • the aluminum alloy sheet for a bottle can body becomes hard to be work hardened. Therefore, it can suppress that DI can side wall becomes hard too much. As a result, it is possible to suppress the occurrence of wrinkles at the time of neck formation and the deterioration of curl formability.
  • the aluminum alloy sheet for bottle can body of this indication contains Al.
  • Al is a main component of an aluminum alloy plate for a bottle can body.
  • Al is, for example, the balance other than Si, Fe, Cu, Mn, Mg, and unavoidable impurities in an aluminum alloy plate.
  • the content of unavoidable impurities is preferably 0.5% by mass or less.
  • the 45 ° ear ratio in the forming cup narrowed under the conditions of a blank diameter of 57 mm and a reduction ratio of 1.73 is 2.5% or less, 0-180 ° ear height
  • the average value of height is less than the average value of 45 ° ear height.
  • the 45 ° ear ratio is a value calculated by the following equation (1).
  • 45 ° ear ratio (%) ((average of 45 ° ear height-average height) / average height) ⁇ 100
  • 45 ° ear height means a cup ear height appearing at a position at an angle of 45 ° from the rolling direction in the Erichsen cup ear.
  • Average value of 45 ° ear height means an average value of “45 ° ear height” measured at “a position forming an angle of 45 ° from the rolling direction” present in four places in one cup.
  • the four “positions forming an angle of 45 ° from the rolling direction” are in a symmetrical positional relationship.
  • the "average height” in equation (1) is the following value.
  • the cup height at 360 points is obtained by measuring the height of the Erichsen cup in 1 ° increments from the rolling direction.
  • the average cup height at the 360 points is the “average height”.
  • the “average value of 0-180 ° ear height” in the equation (1) means a cup ear height appearing at a position forming an angle of 0 ° from the rolling direction and a cup appearing at a position forming an angle of 180 ° from the rolling direction It means the average value with the ear height.
  • Neck crease is a crease that occurs in the neck during neck molding.
  • the 45 ° ear ratio is preferably 1.0% or more.
  • the 45 ° ear ratio is 1.0% or more, it can be suppressed that the 45 ° ear height is lower than the 0-180 ° ear height.
  • the average value of 0-180 ° ear height is less than or equal to the average value of 45 ° ear height, the average value of 0-180 ° ear height is suppressed.
  • the thickness of the side wall thickness of the neck portion at a position of 0 to 180 ° from the rolling direction becomes thin during neck forming of the DI can.
  • proof stress is 180 or more MPa and 230 or less MPa.
  • the axial strength is the buckling strength in the can axis direction.
  • the proof stress is 230 MPa or less, it is possible to suppress that the can side wall becomes too hard. As a result, it is possible to suppress the occurrence of neck wrinkles and to improve curl formability.
  • a value obtained by subtracting the proof stress from the tensile strength (hereinafter referred to as a difference value) is 10.0 MPa or more and 28.0 MPa or less.
  • a difference value is 10.0 MPa or more and 28.0 MPa or less.
  • the difference value is 10.0 MPa or more, it is not always necessary to add heat treatment during cold rolling. Therefore, the productivity of the aluminum alloy sheet for bottle can body can be improved, the manufacturing cost can be reduced, the energy loss can be reduced, and the CO 2 emission amount can be suppressed.
  • the width of crystal grains in the direction perpendicular to the rolling direction (hereinafter referred to as the crystal grain width) on the surface is 10 ⁇ m to 60 ⁇ m.
  • the crystal grain width is 10 ⁇ m or more, it is not always necessary to add heat treatment during cold rolling. Therefore, the productivity of the aluminum alloy sheet for bottle can body can be improved, the manufacturing cost can be reduced, the energy loss can be reduced, and the CO 2 emission amount can be suppressed.
  • the crystal grain width By setting the crystal grain width to 60 ⁇ m or less, it is possible to suppress rough surface defects during cup drawing and neck drawing in the manufacturing process of can barrels, and to obtain excellent curl formability.
  • a method of reducing the crystal grain width there is, for example, a method of adding Fe as an alloy element and crystallizing an Al-Fe-Mn-Si compound which becomes a recrystallization nucleus after the end of hot rolling.
  • the start temperature of hot finishing rolling is lowered to increase the accumulated strain amount during hot rolling, and the recrystallization driving force after hot rolling is increased.
  • There is a method to refine the recrystallized grain The method of measuring the crystal grain width is the method described in the examples described later.
  • An ingot of aluminum alloy contains 0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, and 0.05 to 0.25 It contains Cu by mass%, 0.80 to 1.50 mass% of Mn, 0.80 to 1.50 mass% of Mg, Al, and unavoidable impurities.
  • Al is a main component of an aluminum alloy ingot.
  • Al is, for example, the balance other than Si, Fe, Cu, Mn, Mg, and unavoidable impurities in an aluminum alloy ingot.
  • the content of unavoidable impurities is preferably 0.5% by mass or less.
  • the ingot of the aluminum alloy can be obtained by melting and casting in a conventional manner.
  • the temperature in the homogenization treatment is preferably 580 ° C. or more and not more than the melting point of the ingot.
  • transformation of Al 6 (Fe, Mn) to an ⁇ phase compound (Al-Mn-Fe-Si system) can be promoted.
  • the ⁇ phase compound (Al-Mn-Fe-Si system) exhibits an anti-seizure effect at the time of ironing.
  • the temperature of the homogenization treatment is equal to or lower than the melting point of the ingot, eutectic melting can be caused in part of the ingot to suppress deterioration of the quality of the plate surface.
  • the homogenization time is preferably 1 hour or more and 20 hours or less. When it is 1 hour or more, transformation of Al 6 (Fe, Mn) to an ⁇ phase compound can be further promoted. When it is 20 hours or less, the economic efficiency in the production of an aluminum alloy sheet for a bottle can body is improved.
  • Hot Rolling Hot rolling includes, for example, hot rough rolling and hot finish rolling.
  • hot rough rolling the ingot after the homogenization treatment is rolled according to the thickness of the sheet to be rolled.
  • Hot rough rolling can be performed, for example, using a reversing mill.
  • the plate thickness after hot rough rolling is, for example, 50 mm or less.
  • hot finish rolling for example, rolling is performed to a thickness of 5 mm or less.
  • Hot finish rolling can be performed using, for example, a tandem mill.
  • the start temperature of hot finish rolling is preferably 400 ° C. or more and 520 ° C. or less.
  • start temperature of the hot finish rolling is 400 ° C. or more, edge cracking of the sheet hardly occurs during the hot rolling.
  • start temperature of the hot finish rolling is 520 ° C. or less, the accumulated strain amount during the hot rolling is increased, and the driving force for recrystallization is increased. As a result, the recrystallized grain size is refined, and the grain width on the final cold rolled sheet surface is refined.
  • the start temperature of hot finish rolling is more preferably 420 ° C. or more and 500 ° C. or less.
  • the grain width can be made more appropriate.
  • finish temperature of hot finishing rolling is 300 to 400 degreeC.
  • the finish temperature of the hot finish rolling is 300 ° C. or higher, recrystallization after the end of the hot rolling can be sufficiently advanced, and the 45 ° ear ratio can be lowered.
  • the finish temperature of the hot finish rolling is 400 ° C. or less, the surface of the hot-rolled sheet is not easily oxidized, and the surface quality of the hot-rolled sheet is not easily deteriorated. As a result, it is difficult for streak defects to occur on the outer surface of the can side wall after DI molding.
  • Streak defects are defects called flow marks. Streak defects may be visible on the outside surface of the can sidewall after DI molding.
  • the total rolling reduction in cold rolling is preferably 80.0% or more and 90.0% or less. When the total rolling reduction is 80.0% or more, the material strength of the aluminum alloy sheet for bottle can and barrel is further improved.
  • the total rolling reduction in cold rolling is more preferably 85.0% to 90.0%. When the total rolling reduction in cold rolling is within this range, the strength of the aluminum alloy sheet for a bottle can body is further improved, and the ear ratio becomes more appropriate.
  • the rolling completion temperature of the previous pass of the final pass be 130 ° C. or more and 190 ° C. or less.
  • the rolling completion temperature before the final pass is 130 ° C. or higher, fine precipitation of Mg-Si, Al-Mg-Cu, and Al-Mg-Cu-Si compounds occurs between cold rolling passes, The material strength of the aluminum alloy sheet for a bottle can body is improved.
  • the rolling end temperature of the previous pass of the final pass is 130 ° C. or more, the amount of solid solution of Cu, Mg and Si in the matrix decreases, whereby the work hardenability of the cold rolled sheet is suppressed. As a result, work hardening in DI molding and neck molding is suppressed, and screw formability and curl formability are improved.
  • inter-pass time The time from the end of the previous pass of the final pass of cold rolling to the start of final pass rolling (hereinafter referred to as inter-pass time) is preferably 1 hour or more and less than 48 hours.
  • time between passes is 1 hour or more, fine precipitation of Mg-Si, Al-Mg-Cu and Al-Mg-Cu-Si compounds occurs between cold rolling passes, aluminum alloy for bottle can and barrel The material strength of the plate is improved.
  • the time between passes is 1 hour or more, the work hardenability of a cold-rolled sheet is suppressed because the amount of solid solution of Cu of a mother phase, Mg, and Si reduces. As a result, work hardening in DI molding and neck molding is suppressed, and screw formability and curl formability are improved.
  • the time between passes is less than 48 hours, the economics in the production of aluminum alloy sheets for bottle can and barrel can be improved.
  • Final annealing may or may not be performed.
  • the material strength of the aluminum alloy sheet for bottle can and barrel can be adjusted.
  • the temperature is preferably 80 ° C. or more and 250 ° C. or less, and the time is preferably 0.1 hour or more and 24 hours or less.
  • the final annealing temperature is 80 ° C. or more or the final annealing time is 0.1 hours or more, the dislocation introduced by cold rolling recovers and the material strength of the aluminum alloy sheet for bottle can and barrel decreases Do.
  • the temperature of the final annealing is 250 ° C.
  • the final annealing time is preferably 0.1 hour or more. Even if the final annealing time is longer than 24 hours, the material strength of the aluminum alloy sheet for bottle can and barrel is hardly different from the case of the final annealing time of 24 hours. It is not preferable that the final annealing time is longer than 24 hours because it is economically disadvantageous.
  • a bottle can can be manufactured using the aluminum alloy sheet for a bottle can body of the present disclosure.
  • the first bottle can is a bottle can having a relatively large mouth compared to a second bottle can described later.
  • S1 an aluminum alloy plate 1 for a bottle can body is prepared.
  • S2 a blanking process is performed.
  • S3 a cupping process is performed to form the cup 7.
  • S4 a DI molding process is performed.
  • S5 a trimming process is performed.
  • S6 a necking process is performed.
  • the neck portion 3 is formed.
  • a screw forming process is performed.
  • the threaded portion 5 is formed in the neck portion 3.
  • the end of the neck portion 3 is curled.
  • the second bottle can is a bottle can whose mouth has the same size as a plastic bottle.
  • S11 to S15 are the same as S1 to S5.
  • S16 the neck portion 9 is formed on the bottom side of the cup 7, and the end portion 11 is opened.
  • S17 a flanging process is performed on the side of the opening 13 in the cup 7.
  • S18 the bottom 15 is tightened and a screw forming process is performed. At this time, the screw portion 17 is formed in the neck portion 9. Further, curling is performed on the tip of the neck portion 9.
  • the aluminum alloy sheet for bottle can body is manufactured by the following method. That is, first, an aluminum alloy ingot is formed by semi-continuous casting. Next, after the surface of the ingot is chamfered, a homogenization treatment of holding at a temperature of 595 ° C. for 2 hours is performed.
  • hot rough rolling is performed using a reversing mill.
  • hot finish rolling is performed by a three-stand tandem mill to obtain a hot-rolled sheet.
  • cold rolling is performed to a thickness of 0.44 mm.
  • final annealing is performed at 220 ° C. for 2 hours to obtain an aluminum alloy sheet for a bottle can body. The time from the end of the previous pass rolling of the final pass of cold rolling to the start of the final pass rolling is at least one hour.
  • J1 to J8 the composition of the ingot of aluminum alloy, the start temperature in hot finish rolling, the total rolling reduction in cold rolling, and the end temperature of rolling before the final pass in cold rolling; Is shown in Table 1 above.
  • Cup ear characteristics It cut out from the aluminum alloy plate for bottle can body, and prepared the sample of blank diameter 57 mm. The sample was deep drawn using an Erichsen tester. The diameter of the punch was 33 mm, and the radius R of the punch's shoulder was 2.5 mm. The wrinkle pressure was 300 kgf. The cup height was measured every 1 ° with respect to the rolling direction. Values of 45 ° ear ratio, (average value of 0-180 ° ear height), and (average value of 45 ° ear height) were obtained. The measurement results are shown in Table 2.
  • the tensile test was performed on the test pieces in accordance with JIS-Z-2241 to measure the tensile strength and the 0.2% proof stress.
  • the yield strength and the value (difference value) obtained by subtracting the yield strength from the tensile strength are shown in Table 2 above.
  • the “yield strength YS” in Table 2 means the yield strength.
  • “Tensile strength TS-proof stress YS difference” in Table 2 means a difference value.
  • (iii) Crystal grain width According to the cutting method of JIS H0501, the crystal grain width of the aluminum alloy plate for bottle can body was measured.
  • the specific measurement method is as follows.
  • the grain structure photograph 101 shown in FIG. 3 is acquired for each of the five fields of view on the surface of the aluminum alloy plate for a bottle can body.
  • the size of the field of view of the grain structure photograph 101 is 0.7 mm ⁇ 0.9 mm.
  • the grain structure photograph 101 is an enlargement of 100 times.
  • the left and right direction in FIG. 3 is the rolling direction.
  • a plurality of crystal grains C appear.
  • Each line segment 103 extends in a direction perpendicular to the rolling direction.
  • a line segment 103 extends from one end of the grain structure photograph 101 to the other end.
  • the length of the line segment 103 is 0.7 mm. Since the grain structure photograph 101 is magnified by 100 times, the length of the line segment 103 corresponds to a length of 700 ⁇ m.
  • the number of crystal grains C that the line segment 103 completely cuts is N.
  • To completely cut the crystal grain C means that the line segment 103 passes through the crystal grain C and reaches from one end of the crystal grain C to the other end.
  • the number N of crystal grains C completely cut by the leftmost line segment 103 is seven.
  • the value obtained by dividing 700 ⁇ m by N is taken as the crystal grain width in the line segment 103.
  • the crystal grain width in one line segment 103 is determined in the same manner.
  • the crystal grain width in one line segment 103 is averaged by 15 line segments 103, and it is set as the crystal grain width of the aluminum alloy plate for bottle can body.
  • the measured grain widths are shown in Table 4 above.
  • The axial force strength is at least 1800N.
  • X Axial force strength is less than 1800N.
  • the evaluation results of the axial force strength are shown in Table 2 above.
  • 1800 N is a desirable axial strength when winding the content of high internal pressure.
  • each of the above embodiments may be shared by a plurality of components, or the function of a plurality of components may be exhibited by one component.
  • part of the configuration of each of the above embodiments may be omitted.
  • at least a part of the configuration of each of the above-described embodiments may be added to or replaced with the configuration of the other above-described embodiments.
  • all the aspects contained in the technical thought specified from the wording as described in a claim are an embodiment of this indication.
  • the present disclosure can also be realized in various forms such as a bottle can having the aluminum alloy plate for a bottle can body, a method of manufacturing the bottle can, and the like in addition to the aluminum can plate for a bottle can body described above. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

The aluminum alloy plate for a bottle-shaped can body contains 0.05-0.60 mass% of Si, 0.05-0.80 mass% of Fe, 0.05-0.25 mass% of Cu, 0.80-1.50 mass% of Mn, 0.80-1.50 mass% of Mg, Al, and incidental impurities. A deep-drawn cup obtained using a blank with a diameter of 57 mm and a drawing ratio of 1.73 has a 45˚ earing ratio of 2.5% or less. The average height value of 0-180˚ earing is smaller than the average height value of 45˚ earing. The yield strength is between 180MPa and 230MPa. A value obtained by subtracting the yield strength from the tensile strength is between 10.0MPa and 28.0MPa. On the surface of the aluminum alloy plate for the bottle-shaped can body, crystal grains arranged orthogonally to the drawing direction have a width of between 10µm and 60µm.

Description

ボトル缶胴用アルミニウム合金板及びその製造方法Aluminum alloy sheet for bottle can and barrel and method for manufacturing the same 関連出願の相互参照Cross-reference to related applications
 本国際出願は、2017年9月20日に日本国特許庁に出願された日本国特許出願第2017-180280号に基づく優先権を主張するものであり、日本国特許出願第2017-180280号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2017-180280 filed with the Japanese Patent Office on September 20, 2017, and the Japanese Patent Application No. 2017-180280 The entire contents are incorporated by reference into this international application.
 本開示はボトル缶胴用アルミニウム合金板及びその製造方法に関する。 The present disclosure relates to an aluminum alloy sheet for a bottle can body and a method of manufacturing the same.
 近年、アルミ缶の一種であるボトル缶が知られている。ボトル缶は、胴部に比べて細いネック部を備える。ネック部は、ネッキング加工により形成される。ボトル缶は、ネック部の先端付近にネジ部を備える。ネジ部は、キャップを取り付けるためのネジが形成された部分である。ボトル缶は、ネック部の先端にカール部を備える。カール部は、外周側に屈曲するように、カール成形された部分である(特許文献1~5)。 In recent years, a bottle can, which is a type of aluminum can, is known. The bottle can has a neck portion thinner than the body portion. The neck portion is formed by necking. The bottle can has a screw near the tip of the neck. The threaded portion is a portion formed with a screw for attaching the cap. The bottle can has a curled portion at the tip of the neck portion. The curled portion is a curled portion so as to be bent toward the outer peripheral side (Patent Documents 1 to 5).
特開2001-114245号公報JP 2001-114245 A 特開2001-158436号公報JP 2001-158436 A 特開2001-162344号公報JP 2001-162344 A 特開2000-191006号公報Japanese Patent Laid-Open No. 2000-191006 特開2004-250790号公報JP 2004-250790 A
 ボトル缶内に内容物を充填し、キャップを巻き締めするとき、軸方向の荷重がボトル缶に負荷される。この荷重が負荷されても変形しないために、ボトル缶は高い軸力強度を有する必要がある。軸力強度とは、軸方向の荷重に耐える強度である。 When the contents are filled in the bottle can and the cap is tightened, an axial load is applied to the bottle can. In order not to deform even when this load is applied, the bottle can needs to have high axial strength. The axial strength is the strength to withstand an axial load.
 軸力強度を向上させるためには、ボトル缶を構成するアルミニウム合金板の強度を上げることが考えられる。しかしながら、強度が高いアルミニウム合金板を使用した場合、一般的に、ネッキング加工、ネジ成形、カール成形において成形性が低下し、ネック部及びネジ部にシワ、亀裂等が発生しやすくなる。さらに、シワ、亀裂等に起因してカール部に割れが発生する現象(以下ではカール割れとする)が発生し易くなってしまう。 In order to improve the axial strength, it is conceivable to increase the strength of the aluminum alloy plate constituting the bottle can. However, when an aluminum alloy sheet having high strength is used, the formability generally decreases in necking, thread forming, and curl forming, and wrinkles, cracks, and the like easily occur in the neck portion and the thread portion. Furthermore, a phenomenon (hereinafter referred to as curl crack) in which a crack is generated in the curled portion due to a wrinkle, a crack or the like is easily generated.
 本開示の一局面では、軸力強度が高く、カール割れが発生し難いボトル缶を実現することができるボトル缶胴用アルミニウム合金板及びその製造方法を提供することが好ましい。 In one aspect of the present disclosure, it is preferable to provide an aluminum alloy sheet for a bottle can and barrel that can realize a bottle can that has high axial strength and is less susceptible to curl cracking, and a method for manufacturing the same.
 本開示の一局面は、ボトル缶胴用アルミニウム合金板であって、0.05~0.60質量%のSiと、0.05~0.80質量%のFeと、0.05~0.25質量%のCuと、0.80~1.50質量%のMnと、0.80~1.50質量%のMgと、Alと、不可避的不純物と、を含有し、ブランク径が57mm、絞り比が1.73という条件で絞った成形カップにおける45°耳率が2.5%以下であり、0-180°耳高さの平均値が、45°耳高さの平均値以下であり、耐力が180MPa以上、230MPa以下であり、引張強さから耐力を差し引いた値が10.0MPa以上、28.0MPa以下であり、前記ボトル缶胴用アルミニウム合金板の表面において圧延方向に直交する方向の結晶粒の幅が10μm以上60μm以下であるボトル缶胴用アルミニウム合金板である。 One aspect of the present disclosure is an aluminum alloy sheet for a bottle can body, comprising 0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, and 0.05 to 0. Containing 25% by mass of Cu, 0.80 to 1.50% by mass of Mn, 0.80 to 1.50% by mass of Mg, Al, and unavoidable impurities, and having a blank diameter of 57 mm, The 45 ° ear ratio is 2.5% or less in the forming cup narrowed under the condition that the drawing ratio is 1.73, and the average value of 0-180 ° ear height is less than the average value of 45 ° ear height The resistance is 180 MPa or more and 230 MPa or less, and the value obtained by subtracting the resistance from tensile strength is 10.0 MPa or more and 28.0 MPa or less, and the direction orthogonal to the rolling direction on the surface of the aluminum alloy sheet for bottle can and barrel Crystal grain width is 10 μm to 60 μm It is an aluminum alloy plate for a bottle can barrel.
 本開示の一局面であるボトル缶胴用アルミニウム合金板を用いて製造したボトル缶は、軸力強度が高く、カール割れが発生し難い。
 本開示の別の局面は、0.05~0.60質量%のSiと、0.05~0.80質量%のFeと、0.05~0.25質量%のCuと、0.80~1.50質量%のMnと、0.80~1.50質量%のMgと、Alと、不可避的不純物と、を含有するアルミニウム合金の鋳塊を均質化処理し、熱間圧延を行い、中間焼鈍を行うことなく冷間圧延を行い、前記熱間圧延において、熱間仕上圧延の開始温度が400℃以上520℃以下であり、前記冷間圧延において、最終パスの前パスの圧延終了温度が130℃以上190℃以下であり、前記冷間圧延において、総圧下率が80.0%以上、90.0%以下であるボトル缶胴用アルミニウム合金板の製造方法である。
The bottle can manufactured using the aluminum alloy plate for bottle can bodies which is one aspect of this indication has high axial force strength, and a curl crack does not generate | occur | produce easily.
Another aspect of the present disclosure is 0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, 0.05 to 0.25% by mass of Cu, and 0.80. An ingot of an aluminum alloy containing 1 to 1.50% by mass of Mn, 0.80 to 1.50% by mass of Mg, Al, and unavoidable impurities is homogenized and hot-rolled. Cold rolling without intermediate annealing, in the hot rolling, the start temperature of the hot finish rolling is 400 ° C. or more and 520 ° C. or less, and in the cold rolling, the end of the rolling before the final pass is finished It is a manufacturing method of the aluminum alloy plate for bottle can body which temperature is 130 to 190 degreeC and whose total rolling reduction is 80.0% or more and 90.0% or less in the said cold rolling.
 本開示の別の局面であるボトル缶胴用アルミニウム合金板の製造方法により、ボトル缶胴用アルミニウム合金板を製造できる。そのボトル缶胴用アルミニウム合金板を用いて製造したボトル缶は、軸力強度が高く、カール割れが発生し難い。 The aluminum alloy sheet for bottle can and barrel can be manufactured by the method for manufacturing an aluminum alloy sheet for bottle can and barrel, which is another aspect of the present disclosure. The bottle can manufactured using the aluminum alloy plate for the bottle can body has high axial force strength, and curl cracking is unlikely to occur.
第1のボトル缶を製造する方法を表す説明図である。It is explanatory drawing showing the method to manufacture a 1st bottle can. 第2のボトル缶を製造する方法を表す説明図である。It is explanatory drawing showing the method to manufacture a 2nd bottle can. 結晶粒幅を測定する方法を表す説明図である。It is explanatory drawing showing the method to measure a crystal grain width.
1…ボトル缶胴用アルミニウム合金板、3、9…ネック部、5、17…ネジ部、7…カップ、11…エンド部、13…開口部、15…底部、101…結晶粒組織写真、C…結晶粒、103…線分 DESCRIPTION OF SYMBOLS 1 aluminum alloy plate for bottle can- barrel 3, 9 neck part 5 17 screw part 7 cup 11 end part 13 opening part 15 bottom part 101 crystal grain structure photograph C ... Grains, 103 ... Line segments
 本開示の例示的な実施形態について図面を参照しながら説明する。
 1.ボトル缶胴用アルミニウム合金板の構成
 本開示のボトル缶胴用アルミニウム合金板は、0.05~0.60質量%のSiを含有する。Siは、Al-Mn-Fe系晶出物に相変態を起こさせ、より硬度の高いAl-Mn-Fe-Si系化合物を形成する。Al-Mn-Fe-Si系化合物は固体潤滑作用を有する。Al-Mn-Fe-Si系化合物が形成されることにより、ボトル缶胴用アルミニウム合金板のしごき成形性が向上する。
Exemplary embodiments of the present disclosure will be described with reference to the drawings.
1. Configuration of Aluminum Alloy Plate for Bottle Can Body Aluminum alloy plate for bottle can body of the present disclosure contains 0.05 to 0.60% by mass of Si. Si causes phase transformation to the Al—Mn—Fe system crystallized product to form a harder Al—Mn—Fe—Si system compound. Al-Mn-Fe-Si based compounds have a solid lubricating action. The formation of the Al-Mn-Fe-Si compound improves the ironing formability of the aluminum alloy sheet for a bottle can and barrel.
 Siの含有量が0.05質量%以上であることにより、DI成形を行う場合、合金型と金型との凝着によるビルドアップを抑制することができる。Siの含有量が0.60質量%以下であることにより、ボトル缶胴用アルミニウム合金板の耳率を低減することができる。 When DI molding is performed because the content of Si is 0.05% by mass or more, buildup due to adhesion between the alloy mold and the mold can be suppressed. When the content of Si is 0.60 mass% or less, the ear ratio of the aluminum alloy sheet for bottle can and barrel can be reduced.
 耳率を低減できる理由は以下のとおりである。Siの含有量が0.60質量%以下である場合、熱間圧延中における微細なα-AlMnFeSi相の析出を抑制することができる。α-AlMnFeSi相は、熱間圧延終了後の再結晶を阻害する作用を有する。α-AlMnFeSi相の析出を抑制することにより、熱間圧延終了後の再結晶を促進し、耳率を低減できる。 The reason why the ear rate can be reduced is as follows. When the content of Si is 0.60 mass% or less, precipitation of a fine α-AlMnFeSi phase during hot rolling can be suppressed. The α-AlMnFeSi phase has an action of inhibiting recrystallization after the end of hot rolling. By suppressing the precipitation of the α-AlMnFeSi phase, it is possible to promote recrystallization after the end of hot rolling and reduce the ear coverage.
 本開示のボトル缶胴用アルミニウム合金板は、0.05~0.80質量%のFeを含有する。0.05質量%以上のFeを含有することにより、ボトル缶胴用アルミニウム合金板のしごき成形性が向上する。0.05質量%以上のFeを含有することでしごき成形性が向上する理由は、Al-Mn-Fe系、Al-Mn-Fe-Si系等の化合物が析出し、それらの化合物が固体潤滑作用を有するためである。 The aluminum alloy sheet for bottle can body of the present disclosure contains 0.05 to 0.80% by mass of Fe. By containing 0.05% by mass or more of Fe, the ironing formability of the aluminum alloy sheet for bottle can and barrel can be improved. The reason that the ironability is improved by containing 0.05% by mass or more of Fe is because compounds such as Al-Mn-Fe and Al-Mn-Fe-Si are precipitated, and those compounds are in solid lubrication It is for having an effect.
 また、Feの含有量が0.05質量%以上であることにより、熱間圧延終了時の再結晶粒径が微細化する。再結晶粒径が微細化する理由は以下のとおりである。Al-Mn-Fe系、Al-Mn-Fe-Si系等の化合物は、熱間圧延中に、母相よりも高ひずみであり、転位密度が大きい領域をその周囲に形成し、熱間圧延終了時に再結晶核となる。Feの含有量が0.05質量%以上であると、再結晶核となる前記化合物の量が増加し、再結晶粒径が微細化する。 Moreover, when the content of Fe is 0.05% by mass or more, the recrystallized grain size at the end of the hot rolling is refined. The reason why the recrystallized grain size is refined is as follows. Compounds such as Al-Mn-Fe and Al-Mn-Fe-Si have a strain higher than that of the matrix during hot rolling, and form a region with a large dislocation density around it, and hot rolling It becomes a recrystallization nucleus at the end. When the content of Fe is 0.05% by mass or more, the amount of the compound to be a recrystallization nucleus is increased, and the recrystallized grain size is refined.
 また、Feの含有量が0.05質量%以上であることにより、アルミニウム地金の純度を過度に高める必要がなく、コストダウンを実現できる。
 Feの含有量が0.80質量%以下であることにより、溶解鋳造時にFeとMnとが結合して巨大なAl-Mn-Fe系初晶化合物が発生してしまうことを抑制できる。巨大なAl-Mn-Fe系初晶化合物が圧延後も残存するとDI成形時に割れやピンホールを発生させてしまう。
Further, when the content of Fe is 0.05% by mass or more, it is not necessary to excessively increase the purity of the aluminum metal, and cost reduction can be realized.
When the content of Fe is 0.80% by mass or less, it is possible to suppress the formation of a huge Al-Mn-Fe-based primary crystal compound by combining Fe and Mn at the time of melt casting. If a huge Al-Mn-Fe primary crystal compound remains even after rolling, cracking or pinholes may occur during DI molding.
 本開示のボトル缶胴用アルミニウム合金板は、0.05~0.25質量%のCuを含有する。Cuの含有量が0.05質量%以上であることにより、ボトル缶胴用アルミニウム合金板の強度が向上する。ボトル缶胴用アルミニウム合金板の強度が向上すれば、DI成形において十分な軸力強度を得ることができる。 The aluminum alloy sheet for bottle can body of the present disclosure contains 0.05 to 0.25% by mass of Cu. When the content of Cu is 0.05% by mass or more, the strength of the aluminum alloy sheet for a bottle can body is improved. If the strength of the aluminum alloy sheet for a bottle can body is improved, sufficient axial strength can be obtained in DI molding.
 Cuの含有量が0.25質量%以下であることにより、ボトル缶胴用アルミニウム合金板の強度が過度に高くなることを抑制できる。そのため、DI缶側壁が過度に硬くなることを抑制できる。その結果、ネック成形時にしわが発生してカール成形性が悪化することを抑制できる。 When the content of Cu is 0.25% by mass or less, it can be suppressed that the strength of the aluminum alloy sheet for bottle can and barrel is excessively high. Therefore, it can suppress that DI can side wall becomes hard too much. As a result, it is possible to suppress the occurrence of wrinkles at the time of neck formation and the deterioration of curl formability.
 本開示のボトル缶胴用アルミニウム合金板は、0.80~1.50質量%のMnを含有する。Mnの含有量が0.80質量%以上であることにより、Al-Mn-Fe-Si系化合物が形成され易くなる。その結果、ボトル缶胴用アルミニウム合金板のしごき成形性が向上する。また、Mnの含有量が0.80質量%以上であることにより、ボトル缶胴用アルミニウム合金板の強度が向上する。ボトル缶胴用アルミニウム合金板の強度が向上すれば、DI成形において十分な軸力強度を得ることができる。 The aluminum alloy sheet for bottle can body of the present disclosure contains 0.80 to 1.50% by mass of Mn. When the content of Mn is 0.80 mass% or more, an Al—Mn—Fe—Si compound is easily formed. As a result, the ironing formability of the aluminum alloy sheet for a bottle can body is improved. Moreover, the intensity | strength of the aluminum alloy plate for bottle can body improves by content of Mn being 0.80 mass% or more. If the strength of the aluminum alloy sheet for a bottle can body is improved, sufficient axial strength can be obtained in DI molding.
 Mnの含有量が1.50質量%以下であることにより、溶解鋳造時にFeとMnとが結合して巨大なAl-Mn-Fe系初晶化合物が発生してしまうことを抑制できる。巨大なAl-Mn-Fe系初晶化合物が圧延後も残存するとDI成形時に割れやピンホールを発生させてしまう。 When the content of Mn is 1.50% by mass or less, it is possible to suppress the formation of a huge Al-Mn-Fe-based primary crystal compound by combining Fe and Mn at the time of melt casting. If a huge Al-Mn-Fe primary crystal compound remains even after rolling, cracking or pinholes may occur during DI molding.
 本開示のボトル缶胴用アルミニウム合金板は、0.80~1.50質量%のMgを含有する。Mgの含有量が0.80質量%以上であることにより、ボトル缶胴用アルミニウム合金板の強度が向上する。ボトル缶胴用アルミニウム合金板の強度が向上すれば、DI成形において十分な軸力強度を得ることができる。 The aluminum alloy sheet for bottle can body of the present disclosure contains 0.80 to 1.50% by mass of Mg. When the content of Mg is 0.80% by mass or more, the strength of the aluminum alloy sheet for a bottle can body is improved. If the strength of the aluminum alloy sheet for a bottle can body is improved, sufficient axial strength can be obtained in DI molding.
 Mgの含有量が1.50質量%以下であることにより、ボトル缶胴用アルミニウム合金板が加工硬化し難くなる。そのため、DI缶側壁が過度に硬くなることを抑制できる。その結果、ネック成形時にしわが発生してカール成形性が悪化することを抑制できる。 When the content of Mg is 1.50% by mass or less, the aluminum alloy sheet for a bottle can body becomes hard to be work hardened. Therefore, it can suppress that DI can side wall becomes hard too much. As a result, it is possible to suppress the occurrence of wrinkles at the time of neck formation and the deterioration of curl formability.
 本開示のボトル缶胴用アルミニウム合金板はAlを含有する。Alはボトル缶胴用アルミニウム合金板の主成分である。Alは、例えば、アルミニウム合金板において、Si、Fe、Cu、Mn、Mg、及び不可避的不純物以外の残部である。不可避的不純物の含有量は、0.5質量%以下であることが好ましい。 The aluminum alloy sheet for bottle can body of this indication contains Al. Al is a main component of an aluminum alloy plate for a bottle can body. Al is, for example, the balance other than Si, Fe, Cu, Mn, Mg, and unavoidable impurities in an aluminum alloy plate. The content of unavoidable impurities is preferably 0.5% by mass or less.
 本開示のボトル缶胴用アルミニウム合金板では、ブランク径が57mm、絞り比が1.73という条件で絞った成形カップにおける45°耳率が2.5%以下であり、0-180°耳高さの平均値が、45°耳高さの平均値以下である。 In the aluminum alloy sheet for bottle cans and barrels of the present disclosure, the 45 ° ear ratio in the forming cup narrowed under the conditions of a blank diameter of 57 mm and a reduction ratio of 1.73 is 2.5% or less, 0-180 ° ear height The average value of height is less than the average value of 45 ° ear height.
 45°耳率は、以下の式(1)により算出される値である。
 式(1) 45°耳率(%)=((45°耳高さの平均値―平均高さ)/平均高さ)×100
 式(1)において、「45°耳高さ」とは、エリクセンカップ耳のうち、圧延方向から45°の角度をなす位置に現れるカップ耳高さを意味する。「45°耳高さの平均値」は、1つのカップに4箇所存在する「圧延方向から45°の角度をなす位置」でそれぞれ測定した「45°耳高さ」の平均値を意味する。4箇所の「圧延方向から45°の角度をなす位置」は、対称の位置関係にある。
The 45 ° ear ratio is a value calculated by the following equation (1).
Formula (1) 45 ° ear ratio (%) = ((average of 45 ° ear height-average height) / average height) × 100
In the equation (1), “45 ° ear height” means a cup ear height appearing at a position at an angle of 45 ° from the rolling direction in the Erichsen cup ear. “Average value of 45 ° ear height” means an average value of “45 ° ear height” measured at “a position forming an angle of 45 ° from the rolling direction” present in four places in one cup. The four “positions forming an angle of 45 ° from the rolling direction” are in a symmetrical positional relationship.
 式(1)における「平均高さ」とは、以下の値である。エリクセンカップの高さを、圧延方向から1°刻みで測定することで、360点でのカップ高さを取得する。その360点でのカップ高さの平均値が、「平均高さ」である。 The "average height" in equation (1) is the following value. The cup height at 360 points is obtained by measuring the height of the Erichsen cup in 1 ° increments from the rolling direction. The average cup height at the 360 points is the “average height”.
 式(1)における「0-180°耳高さの平均値」とは、圧延方向から0°の角度をなす位置に現れるカップ耳高さと、圧延方向から180°の角度をなす位置に現れるカップ耳高さとの平均値を意味する。 The “average value of 0-180 ° ear height” in the equation (1) means a cup ear height appearing at a position forming an angle of 0 ° from the rolling direction and a cup appearing at a position forming an angle of 180 ° from the rolling direction It means the average value with the ear height.
 45 ° 耳率が2.5%以下であることで、DI缶のネック成形中に圧延方向から45°の位置のネック部側壁板厚が薄くなることを抑制できる。そのことにより、ネックしわの発生を抑制することができ、カール成形性が向上する。ネックしわとは、ネック成形中にネック部に生じるしわである。 When the 45 ° ear ratio is 2.5% or less, it is possible to suppress the reduction in thickness of the neck portion side wall thickness at a position 45 ° from the rolling direction during neck forming of the DI can. As a result, it is possible to suppress the occurrence of neck wrinkles and to improve curl formability. Neck crease is a crease that occurs in the neck during neck molding.
 45 ° 耳率は1.0%以上であることが好ましい。45 ° 耳率が1.0%以上である場合、45°耳高さが0-180°耳高さより低くなることを抑制できる。
 0-180°耳高さの平均値が、45°耳高さの平均値以下であることにより、0-180°耳高さの平均値が抑制される。そのことにより、DI缶のネック成形中に圧延方向から0-180°の位置のネック部側壁板厚が薄くなることを抑制できる。その結果、ネックしわの発生を抑制することができ、カール成形性が向上する。
The 45 ° ear ratio is preferably 1.0% or more. When the 45 ° ear ratio is 1.0% or more, it can be suppressed that the 45 ° ear height is lower than the 0-180 ° ear height.
When the average value of 0-180 ° ear height is less than or equal to the average value of 45 ° ear height, the average value of 0-180 ° ear height is suppressed. As a result, it can be suppressed that the thickness of the side wall thickness of the neck portion at a position of 0 to 180 ° from the rolling direction becomes thin during neck forming of the DI can. As a result, it is possible to suppress the occurrence of neck wrinkles and to improve curl formability.
 0-180°耳高さの平均値が、45°耳高さの平均値以下であるという関係を満たす範囲で、45°耳率は、低いほど好ましい。
 本開示のボトル缶胴用アルミニウム合金板では、耐力が180MPa以上、230MPa以下である。耐力が180MPa以上であることにより、成形後の缶体における軸力強度を高くすることができる。軸力強度とは、缶軸方向の座屈強度である。耐力が230MPa以下であることにより、缶側壁が硬くなり過ぎることを抑制できる。そのことにより、ネックしわの発生を抑制することができ、カール成形性が向上する。
In the range satisfying the relationship that the average value of 0-180 ° ear height is equal to or less than the average value of 45 ° ear height, the lower the 45 ° ear rate, the better.
In the aluminum alloy sheet for bottle can body of this indication, proof stress is 180 or more MPa and 230 or less MPa. When the proof stress is 180 MPa or more, the axial strength of the can after forming can be increased. The axial strength is the buckling strength in the can axis direction. When the proof stress is 230 MPa or less, it is possible to suppress that the can side wall becomes too hard. As a result, it is possible to suppress the occurrence of neck wrinkles and to improve curl formability.
 本開示のボトル缶胴用アルミニウム合金板では、引張強さから耐力を差し引いた値(以下では差分値とする)が10.0MPa以上、28.0MPa以下である。一般的に、差分値を10.0MPa未満にするためには、冷間圧延途中に熱処理を追加する必要がある。本開示のボトル缶胴用アルミニウム合金板では、差分値が10.0MPa以上であることにより、必ずしも、冷間圧延途中に熱処理を追加する必要がない。そのため、ボトル缶胴用アルミニウム合金板の生産性を高め、製造コストを低減し、エネルギーロスを低減し、CO排出量を抑制することができる。 In the aluminum alloy sheet for a bottle can body according to the present disclosure, a value obtained by subtracting the proof stress from the tensile strength (hereinafter referred to as a difference value) is 10.0 MPa or more and 28.0 MPa or less. Generally, in order to make the difference value less than 10.0 MPa, it is necessary to add a heat treatment during cold rolling. In the aluminum alloy sheet for bottle can body of the present disclosure, when the difference value is 10.0 MPa or more, it is not always necessary to add heat treatment during cold rolling. Therefore, the productivity of the aluminum alloy sheet for bottle can body can be improved, the manufacturing cost can be reduced, the energy loss can be reduced, and the CO 2 emission amount can be suppressed.
 差分値が28.0MPa以下であることにより、DI成形・ネック成形における加工硬化が抑制され、カール成形性が向上する。
 本開示のボトル缶胴用アルミニウム合金板では、その表面において圧延方向に直交する方向の結晶粒の幅(以下では結晶粒幅とする)が10μm以上60μm以下である。一般的に、結晶粒幅を10μm未満にするためには、冷間圧延途中に熱処理を追加する必要がある。本開示のボトル缶胴用アルミニウム合金板では、結晶粒幅が10μm以上であることにより、必ずしも、冷間圧延途中に熱処理を追加する必要がない。そのため、ボトル缶胴用アルミニウム合金板の生産性を高め、製造コストを低減し、エネルギーロスを低減し、CO排出量を抑制することができる。
When the difference value is 28.0 MPa or less, work hardening in DI molding and neck molding is suppressed, and curl formability is improved.
In the aluminum alloy sheet for bottle can body of the present disclosure, the width of crystal grains in the direction perpendicular to the rolling direction (hereinafter referred to as the crystal grain width) on the surface is 10 μm to 60 μm. Generally, in order to make the grain width less than 10 μm, it is necessary to add heat treatment during cold rolling. In the aluminum alloy plate for a bottle can body of the present disclosure, since the crystal grain width is 10 μm or more, it is not always necessary to add heat treatment during cold rolling. Therefore, the productivity of the aluminum alloy sheet for bottle can body can be improved, the manufacturing cost can be reduced, the energy loss can be reduced, and the CO 2 emission amount can be suppressed.
 結晶粒幅が60μm以下であることにより、缶胴の製造過程におけるカップ絞り、及びネック絞り成形での肌荒れ不良を抑制し、良好なカール成形性を得ることができる。
 結晶粒幅を小さくする方法として、例えば、合金元素としてFeを添加して、熱間圧延終了後の再結晶核となるAl-Fe-Mn-Si化合物を晶出させる方法がある。また、結晶粒幅を小さくする方法として、例えば、熱間仕上圧延の開始温度を低くして熱間圧延中の蓄積ひずみ量を増加させ、熱間圧延終了後の再結晶駆動力を高めることで、再結晶粒を微細化する方法がある。結晶粒幅の測定方法は、後述する実施例で説明する方法である。
By setting the crystal grain width to 60 μm or less, it is possible to suppress rough surface defects during cup drawing and neck drawing in the manufacturing process of can barrels, and to obtain excellent curl formability.
As a method of reducing the crystal grain width, there is, for example, a method of adding Fe as an alloy element and crystallizing an Al-Fe-Mn-Si compound which becomes a recrystallization nucleus after the end of hot rolling. As a method of reducing the grain width, for example, the start temperature of hot finishing rolling is lowered to increase the accumulated strain amount during hot rolling, and the recrystallization driving force after hot rolling is increased. , There is a method to refine the recrystallized grain. The method of measuring the crystal grain width is the method described in the examples described later.
 2.ボトル缶胴用アルミニウム合金板の製造方法
 本開示のボトル缶胴用アルミニウム合金板は、例えば、アルミニウム合金の鋳塊を均質化処理し、熱間圧延を行い、中間焼鈍を行うことなく冷間圧延を行うことで製造できる。必要に応じて、冷間圧延の後に最終焼鈍を行ってもよい。以下では、工程ごとに説明する。
2. Method for Producing Aluminum Alloy Sheet for Bottle Can Body For aluminum alloy sheet for bottle can body of the present disclosure, for example, ingot of aluminum alloy is subjected to homogenization treatment, hot rolling is performed, and cold rolling is performed without intermediate annealing. Can be manufactured by If necessary, final annealing may be performed after cold rolling. Each step will be described below.
 (2-1)鋳造、均質化処理
 アルミニウム合金の鋳塊は、0.05~0.60質量%のSiと、0.05~0.80質量%のFeと、0.05~0.25質量%のCuと、0.80~1.50質量%のMnと、0.80~1.50質量%のMgと、Alと、不可避的不純物と、を含有する。
(2-1) Casting, homogenization treatment An ingot of aluminum alloy contains 0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, and 0.05 to 0.25 It contains Cu by mass%, 0.80 to 1.50 mass% of Mn, 0.80 to 1.50 mass% of Mg, Al, and unavoidable impurities.
 Alはアルミニウム合金の鋳塊の主成分である。Alは、例えば、アルミニウム合金の鋳塊において、Si、Fe、Cu、Mn、Mg、及び不可避的不純物以外の残部である。不可避的不純物の含有量は、0.5質量%以下であることが好ましい。アルミニウム合金の鋳塊は、通常の方法で溶解、鋳造して得ることができる。 Al is a main component of an aluminum alloy ingot. Al is, for example, the balance other than Si, Fe, Cu, Mn, Mg, and unavoidable impurities in an aluminum alloy ingot. The content of unavoidable impurities is preferably 0.5% by mass or less. The ingot of the aluminum alloy can be obtained by melting and casting in a conventional manner.
 均質化処理における温度は、580℃ 以上、鋳塊の融点以下であることが好ましい。580℃以上である場合、Al(Fe、Mn)から、α 相化合物 (Al-Mn-Fe-Si系)への変態を促進することができる。α 相化合物 (Al-Mn-Fe-Si系)は、しごき成形時に焼き付き防止効果を奏する。均質化処理の温度が鋳塊の融点以下である場合、鋳塊の一部に共晶融解を生じて板表面の品質が悪化することを抑制できる。 The temperature in the homogenization treatment is preferably 580 ° C. or more and not more than the melting point of the ingot. When the temperature is 580 ° C. or more, transformation of Al 6 (Fe, Mn) to an α phase compound (Al-Mn-Fe-Si system) can be promoted. The α phase compound (Al-Mn-Fe-Si system) exhibits an anti-seizure effect at the time of ironing. When the temperature of the homogenization treatment is equal to or lower than the melting point of the ingot, eutectic melting can be caused in part of the ingot to suppress deterioration of the quality of the plate surface.
 均質化処理の時間は、1時間以上、20時間以下であることが好ましい。1時間以上である場合、Al(Fe、Mn)からα 相化合物への変態を一層促進することができる。20時間以下である場合、ボトル缶胴用アルミニウム合金板の製造における経済性が向上する。 The homogenization time is preferably 1 hour or more and 20 hours or less. When it is 1 hour or more, transformation of Al 6 (Fe, Mn) to an α phase compound can be further promoted. When it is 20 hours or less, the economic efficiency in the production of an aluminum alloy sheet for a bottle can body is improved.
 (2-2)熱間圧延
 熱間圧延は、例えば、熱間粗圧延と、熱間仕上圧延とから構成される。熱間粗圧延では、圧延する板厚に応じて、均質化処理後の鋳塊を圧延する。熱間粗圧延は、例えば、リバーシングミルを用いて行うことができる。熱間粗圧延後の板厚は、例えば、50mm以下である。熱間仕上圧延では、例えば、5mm以下の板厚まで圧延する。熱間仕上圧延は、例えば、タンデムミルを用いて行うことができる。
(2-2) Hot Rolling Hot rolling includes, for example, hot rough rolling and hot finish rolling. In hot rough rolling, the ingot after the homogenization treatment is rolled according to the thickness of the sheet to be rolled. Hot rough rolling can be performed, for example, using a reversing mill. The plate thickness after hot rough rolling is, for example, 50 mm or less. In hot finish rolling, for example, rolling is performed to a thickness of 5 mm or less. Hot finish rolling can be performed using, for example, a tandem mill.
 熱間仕上圧延の開始温度は、400℃以上520℃以下であることが好ましい。熱間仕上圧延の開始温度が400℃以上である場合、熱間圧延中に板のエッジ割れが生じにくい。熱間仕上圧延の開始温度が520℃以下である場合、熱間圧延中の蓄積ひずみ量が増し、再結晶するための駆動力が高まる。そのことにより、再結晶粒径が微細化され、最終冷延板表面における結晶粒幅が微細化する。 The start temperature of hot finish rolling is preferably 400 ° C. or more and 520 ° C. or less. When the start temperature of the hot finish rolling is 400 ° C. or more, edge cracking of the sheet hardly occurs during the hot rolling. When the start temperature of the hot finish rolling is 520 ° C. or less, the accumulated strain amount during the hot rolling is increased, and the driving force for recrystallization is increased. As a result, the recrystallized grain size is refined, and the grain width on the final cold rolled sheet surface is refined.
 熱間仕上圧延の開始温度は、420℃以上500℃以下であることが一層好ましい。熱間仕上圧延の開始温度が420℃以上500℃以下である場合、結晶粒幅を一層適正な範囲とすることができる。 The start temperature of hot finish rolling is more preferably 420 ° C. or more and 500 ° C. or less. When the start temperature of the hot finish rolling is 420 ° C. or more and 500 ° C. or less, the grain width can be made more appropriate.
 熱間仕上圧延の終了温度は、300℃以上400℃以下であることが好ましい。熱間仕上圧延の終了温度が300℃以上である場合、熱間圧延終了後の再結晶を十分に進行させ、45°耳率を低くすることができる。熱間仕上圧延の終了温度が400℃以下である場合、熱間圧延板の表面が酸化し難く、熱間圧延板の表面品質が劣化し難い。その結果、DI成形後に缶側壁の外側表面に筋模様欠陥が生じ難い。筋模様欠陥は、フローマークと呼称される欠陥である。筋模様欠陥は、DI成形後に缶側壁の外側表面に視認されることがある。 It is preferable that the completion | finish temperature of hot finishing rolling is 300 to 400 degreeC. When the finish temperature of the hot finish rolling is 300 ° C. or higher, recrystallization after the end of the hot rolling can be sufficiently advanced, and the 45 ° ear ratio can be lowered. When the finish temperature of the hot finish rolling is 400 ° C. or less, the surface of the hot-rolled sheet is not easily oxidized, and the surface quality of the hot-rolled sheet is not easily deteriorated. As a result, it is difficult for streak defects to occur on the outer surface of the can side wall after DI molding. Streak defects are defects called flow marks. Streak defects may be visible on the outside surface of the can sidewall after DI molding.
 (2-3)冷間圧延前、又は冷間圧延の途中の中間焼鈍
 冷間圧延前、又は冷間圧延の途中に中間焼鈍すると、溶質元素の固溶度が上がり、ネック成形性が低下する。また、中間焼鈍すると、製造コストが上昇し、エネルギーロスが生じる。中間焼鈍を行うことなく冷間圧延を行うことで、上記の弊害を抑制できる。
(2-3) Intermediate annealing before cold rolling or during cold rolling When intermediate annealing before cold rolling or during cold rolling, the solid solution degree of the solute element increases and the neck formability decreases . In addition, intermediate annealing raises the manufacturing cost and causes energy loss. By performing cold rolling without performing intermediate annealing, the above-mentioned adverse effect can be suppressed.
 (2-4)冷間圧延
 冷間圧延を行うことにより、ボトル缶胴用アルミニウム合金板の材料強度が向上する。冷間圧延における総圧下率は、80.0%以上、90.0%以下が好ましい。総圧下率が80.0%以上である場合、ボトル缶胴用アルミニウム合金板の材料強度が一層向上する。
(2-4) Cold rolling By cold rolling, the material strength of the aluminum alloy sheet for a bottle can body is improved. The total rolling reduction in cold rolling is preferably 80.0% or more and 90.0% or less. When the total rolling reduction is 80.0% or more, the material strength of the aluminum alloy sheet for bottle can and barrel is further improved.
 総圧下率が90.0%以下である場合、圧延集合組織が過度に発達することを抑制できる。そのことにより、45°耳が高くなりすぎることを抑制できる。また、DI成形時の絞りのとき、再絞りカップのとき、ボトル型の缶に特有のネック部を成形するとき等に、缶側壁板厚のばらつきを抑制することができる。缶側壁板厚のばらつきを抑制することにより、しわが発生し難くなる。冷間圧延の総圧下率は、85.0%以上90.0%以下であることが一層好ましい。冷間圧延の総圧下率がこの範囲内である場合、ボトル缶胴用アルミニウム合金板の強度が一層向上し、耳率が一層適正になる。 When the total rolling reduction is 90.0% or less, excessive development of the rolling texture can be suppressed. As a result, it can be suppressed that the 45 ° ear becomes too high. Further, in the case of drawing at the time of DI molding, in the case of a re-drawing cup, when forming a neck portion specific to a bottle-shaped can, etc., it is possible to suppress variations in can side wall thickness. By suppressing the variation in can side wall thickness, it becomes difficult to generate wrinkles. The total rolling reduction in cold rolling is more preferably 85.0% to 90.0%. When the total rolling reduction in cold rolling is within this range, the strength of the aluminum alloy sheet for a bottle can body is further improved, and the ear ratio becomes more appropriate.
 冷間圧延において、最終パスの前パスの圧延終了温度が130℃以上190℃以下であることが好ましい。最終パスの前パスの圧延終了温度が130℃以上である場合、冷間圧延パス間でMg-Si系、Al-Mg-Cu系、Al-Mg-Cu-Si系化合物の微細析出が起き、ボトル缶胴用アルミニウム合金板の材料強度が向上する。また、最終パスの前パスの圧延終了温度が130℃以上である場合、母相のCu、Mg、Siの固溶量が減少することで、冷延板の加工硬化性が抑えられる。そのことにより、DI成形・ネック成形における加工硬化が抑制され、ネジ成形性、カール成形性が向上する。 In cold rolling, it is preferable that the rolling completion temperature of the previous pass of the final pass be 130 ° C. or more and 190 ° C. or less. When the rolling completion temperature before the final pass is 130 ° C. or higher, fine precipitation of Mg-Si, Al-Mg-Cu, and Al-Mg-Cu-Si compounds occurs between cold rolling passes, The material strength of the aluminum alloy sheet for a bottle can body is improved. In addition, when the rolling end temperature of the previous pass of the final pass is 130 ° C. or more, the amount of solid solution of Cu, Mg and Si in the matrix decreases, whereby the work hardenability of the cold rolled sheet is suppressed. As a result, work hardening in DI molding and neck molding is suppressed, and screw formability and curl formability are improved.
 最終パスの前パスの圧延終了温度が190℃以下である場合、Mg-Si系、Al-Mg-Cu系、Al-Mg-Cu-Si系化合物の微細析出による時効硬化が過度に起こることを抑制できる。そのことにより、ボトル缶胴用アルミニウム合金板の材料強度が過度に高くなり難い。その結果、DI成形性、ネック成形性が向上する。 When the rolling completion temperature before the final pass is 190 ° C or less, excessive age hardening occurs due to fine precipitation of Mg-Si, Al-Mg-Cu, and Al-Mg-Cu-Si compounds. It can be suppressed. As a result, the material strength of the aluminum alloy sheet for a bottle can body is unlikely to be excessively high. As a result, DI formability and neck formability are improved.
 冷間圧延の最終パスの前パス終了から最終パス圧延開始までの時間(以下ではパス間時間とする)は、1時間以上48時間未満であることが好ましい。パス間時間が1時間以上である場合、冷間圧延パス間でMg-Si系、Al-Mg-Cu系、Al-Mg-Cu-Si系化合物の微細析出が起き、ボトル缶胴用アルミニウム合金板の材料強度が向上する。また、パス間時間が1時間以上である場合、母相のCu、Mg、Siの固溶量が減少することで、冷延板の加工硬化性が抑えられる。そのことにより、DI成形・ネック成形における加工硬化が抑制され、ネジ成形性、カール成形性が向上する。パス間時間が48時間未満である場合、ボトル缶胴用アルミニウム合金板の製造における経済性が向上する。 The time from the end of the previous pass of the final pass of cold rolling to the start of final pass rolling (hereinafter referred to as inter-pass time) is preferably 1 hour or more and less than 48 hours. When the time between passes is 1 hour or more, fine precipitation of Mg-Si, Al-Mg-Cu and Al-Mg-Cu-Si compounds occurs between cold rolling passes, aluminum alloy for bottle can and barrel The material strength of the plate is improved. Moreover, when the time between passes is 1 hour or more, the work hardenability of a cold-rolled sheet is suppressed because the amount of solid solution of Cu of a mother phase, Mg, and Si reduces. As a result, work hardening in DI molding and neck molding is suppressed, and screw formability and curl formability are improved. If the time between passes is less than 48 hours, the economics in the production of aluminum alloy sheets for bottle can and barrel can be improved.
 (2-5)最終焼鈍
 最終焼鈍は、行ってもよいし、行わなくてもよい。最終焼鈍を行うことにより、ボトル缶胴用アルミニウム合金板の材料強度を調整することができる。最終焼鈍を行う場合、温度は80℃以上、250℃以下であることが好ましく、時間は0.1時間以上、24時間以下であることが好ましい。最終焼鈍の温度が80℃以上であるか、最終焼鈍の時間が0.1時間以上である場合、冷間圧延で導入される転位が回復し、ボトル缶胴用アルミニウム合金板の材料強度が減少する。最終焼鈍の温度が250℃以下である場合、冷間圧延で導入される転位の回復が過度に進行し難く、材料強度が過度に減少し難い。最終焼鈍の時間は0.1時間以上であることが好ましい。最終焼鈍の時間を24時間より長くしても、ボトル缶胴用アルミニウム合金板の材料強度は、最終焼鈍の時間が24時間の場合と変わり難い。最終焼鈍の時間が24時間より長いことは、経済性において不利なため好ましくない。
(2-5) Final annealing Final annealing may or may not be performed. By performing the final annealing, the material strength of the aluminum alloy sheet for bottle can and barrel can be adjusted. When final annealing is performed, the temperature is preferably 80 ° C. or more and 250 ° C. or less, and the time is preferably 0.1 hour or more and 24 hours or less. When the final annealing temperature is 80 ° C. or more or the final annealing time is 0.1 hours or more, the dislocation introduced by cold rolling recovers and the material strength of the aluminum alloy sheet for bottle can and barrel decreases Do. When the temperature of the final annealing is 250 ° C. or less, recovery of dislocations introduced by cold rolling is difficult to progress excessively, and material strength does not decrease excessively. The final annealing time is preferably 0.1 hour or more. Even if the final annealing time is longer than 24 hours, the material strength of the aluminum alloy sheet for bottle can and barrel is hardly different from the case of the final annealing time of 24 hours. It is not preferable that the final annealing time is longer than 24 hours because it is economically disadvantageous.
 3.ボトル缶の製造方法
 本開示のボトル缶胴用アルミニウム合金板を用いて、ボトル缶を製造することができる。
3. Method of Manufacturing Bottle Can A bottle can can be manufactured using the aluminum alloy sheet for a bottle can body of the present disclosure.
 (3-1)第1のボトル缶の製造方法
 図1に基づき、第1のボトル缶の製造方法を説明する。第1のボトル缶は、後述する第2のボトル缶に比べて口部が比較的大きいボトル缶である。S1では、ボトル缶胴用アルミニウム合金板1を用意する。S2では、ブランキング工程を行う。S3では、カッピング工程を行い、カップ7を形成する。S4では、DI成形工程を行う。S5では、トリミング工程を行う。S6では、ネッキング工程を行う。このとき、ネック部3が形成される。S7では、ネジ成形工程を行う。このとき、ネック部3にネジ部5が形成される。また、ネック部3の先端にカール成形がなされる。
(3-1) Method of Manufacturing First Bottle Can A method of manufacturing the first bottle can will be described based on FIG. The first bottle can is a bottle can having a relatively large mouth compared to a second bottle can described later. In S1, an aluminum alloy plate 1 for a bottle can body is prepared. In S2, a blanking process is performed. In S3, a cupping process is performed to form the cup 7. In S4, a DI molding process is performed. At S5, a trimming process is performed. In S6, a necking process is performed. At this time, the neck portion 3 is formed. In S7, a screw forming process is performed. At this time, the threaded portion 5 is formed in the neck portion 3. In addition, the end of the neck portion 3 is curled.
 (3-2)第2のボトル缶の製造方法
 図2に基づき、第2のボトル缶の製造方法を説明する。第2のボトル缶は、口部がペットボトルと同サイズのボトル缶である。S11~S15は、前記S1~S5と同様である。S16では、カップ7の底部側にネック部9を形成し、エンド部11を開口させる。S17では、カップ7における開口部13の側にフランジング工程を行う。S18では、底部15の巻き締めと、ネジ成形工程とを行う。このとき、ネック部9にネジ部17が形成される。また、ネック部9の先端にカール成形を行う。
(3-2) Method of Manufacturing Second Bottle Can A method of manufacturing the second bottle can will be described based on FIG. The second bottle can is a bottle can whose mouth has the same size as a plastic bottle. S11 to S15 are the same as S1 to S5. In S16, the neck portion 9 is formed on the bottom side of the cup 7, and the end portion 11 is opened. In S17, a flanging process is performed on the side of the opening 13 in the cup 7. In S18, the bottom 15 is tightened and a screw forming process is performed. At this time, the screw portion 17 is formed in the neck portion 9. Further, curling is performed on the tip of the neck portion 9.
 4.実施例
 (4-1)ボトル缶胴用アルミニウム合金板の製造
 表1に示すJ1~J8の製造条件で、それぞれ、ボトル缶胴用アルミニウム合金板を製造した。
4. Example (4-1) Production of Aluminum Alloy Plate for Bottle Can Body Under the production conditions of J1 to J8 shown in Table 1, aluminum alloy sheets for bottle can and body were produced.
Figure JPOXMLDOC01-appb-T000001
 
 J1~J8のいずれにおいても、以下の方法でボトル缶胴用アルミニウム合金板を製造する点では共通する。すなわち、まず、アルミニウム合金の鋳塊を半連続鋳造にて造塊する。次に、鋳塊の表面を面削した後、595℃の温度にて2時間保持する均質化処理を行う。
Figure JPOXMLDOC01-appb-T000001

In any of J1 to J8, it is common in the point that the aluminum alloy sheet for bottle can body is manufactured by the following method. That is, first, an aluminum alloy ingot is formed by semi-continuous casting. Next, after the surface of the ingot is chamfered, a homogenization treatment of holding at a temperature of 595 ° C. for 2 hours is performed.
 次に、リバーシングミルを用いて熱間粗圧延を行う。次に、3スタンドのタンデムミルにより熱間仕上圧延を行い、熱間圧延板を得る。次に、得られた熱間圧延板が常温になってから、0.44mm厚まで冷間圧延を行う。次に、220℃にて2時間保持する最終焼鈍を施して、ボトル缶胴用アルミニウム合金板を得る。冷間圧延の最終パスの前パス圧延終了から最終パス圧延開始までの時間は1時間以上とする。 Next, hot rough rolling is performed using a reversing mill. Next, hot finish rolling is performed by a three-stand tandem mill to obtain a hot-rolled sheet. Next, after the obtained hot-rolled sheet reaches room temperature, cold rolling is performed to a thickness of 0.44 mm. Next, final annealing is performed at 220 ° C. for 2 hours to obtain an aluminum alloy sheet for a bottle can body. The time from the end of the previous pass rolling of the final pass of cold rolling to the start of the final pass rolling is at least one hour.
 J1~J8における、アルミニウム合金の鋳塊の組成と、熱間仕上圧延での開始温度と、冷間圧延での総圧下率と、冷間圧延での最終パスの前パスの圧延終了温度と、を上記表1に示す。 In J1 to J8, the composition of the ingot of aluminum alloy, the start temperature in hot finish rolling, the total rolling reduction in cold rolling, and the end temperature of rolling before the final pass in cold rolling; Is shown in Table 1 above.
 (4-2)ボトル缶胴用アルミニウム合金板の評価
 J1~J8のそれぞれについて、ボトル缶胴用アルミニウム合金板を以下のように評価した。
(4-2) Evaluation of Aluminum Alloy Plate for Bottle Can and Body For each of J1 to J8, the aluminum alloy plate for bottle can and body was evaluated as follows.
  (i)カップ耳特性
 ボトル缶胴用アルミニウム合金板から切り出して、ブランク径57mmの試料を作成した。この試料をエリクセン試験機で深絞り成形した。ポンチの直径は33mmであり、ポンチの肩のRは2.5mmであった。しわ押さえ力は300kgfとした。圧延方向に対し1°おきにカップの高さを測定した。45°耳率の値と、(0-180°耳高さの平均値)の値と、(45°耳高さの平均値)の値を求めた。測定結果を表2に示す。
(i) Cup ear characteristics It cut out from the aluminum alloy plate for bottle can body, and prepared the sample of blank diameter 57 mm. The sample was deep drawn using an Erichsen tester. The diameter of the punch was 33 mm, and the radius R of the punch's shoulder was 2.5 mm. The wrinkle pressure was 300 kgf. The cup height was measured every 1 ° with respect to the rolling direction. Values of 45 ° ear ratio, (average value of 0-180 ° ear height), and (average value of 45 ° ear height) were obtained. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
 (ii)引張特性
 ボトル缶胴用アルミニウム合金板から切り出して、JIS-Z-2201で規定する5号試験片を作成した。この試験片は、圧延方向に対して0°の角度をなす方向に延びる。
Figure JPOXMLDOC01-appb-T000002

(ii) Tensile Properties A No. 5 test piece specified in JIS-Z-2201 was prepared by cutting out from an aluminum alloy plate for a bottle can body. The test piece extends in a direction at an angle of 0 ° to the rolling direction.
 試験片について、JIS-Z-2241に準拠して引張試験を行い、引張強さ及び0.2%耐力を測定した。耐力と、引張強さから耐力を差し引いた値(差分値)とをそれぞれ上記表2に示す。表2における「耐力YS」は耐力を意味する。表2における「引張強さTS-耐力YS差」は差分値を意味する。 The tensile test was performed on the test pieces in accordance with JIS-Z-2241 to measure the tensile strength and the 0.2% proof stress. The yield strength and the value (difference value) obtained by subtracting the yield strength from the tensile strength are shown in Table 2 above. The “yield strength YS” in Table 2 means the yield strength. "Tensile strength TS-proof stress YS difference" in Table 2 means a difference value.
 (iii)結晶粒幅
 JIS H0501の切断法に準じて、ボトル缶胴用アルミニウム合金板の結晶粒幅を測定した。具体的な測定方法は以下のとおりである。ボトル缶胴用アルミニウム合金板の表面における5視野について、それぞれ、図3に示す結晶粒組織写真101を取得する。この結晶粒組織写真101の視野の大きさは、0.7mm×0.9mmである。結晶粒組織写真101は100倍に拡大したものである。図3における左右方向が圧延方向である。結晶粒組織写真101には、複数の結晶粒Cが現れている。
(iii) Crystal grain width According to the cutting method of JIS H0501, the crystal grain width of the aluminum alloy plate for bottle can body was measured. The specific measurement method is as follows. The grain structure photograph 101 shown in FIG. 3 is acquired for each of the five fields of view on the surface of the aluminum alloy plate for a bottle can body. The size of the field of view of the grain structure photograph 101 is 0.7 mm × 0.9 mm. The grain structure photograph 101 is an enlargement of 100 times. The left and right direction in FIG. 3 is the rolling direction. In the grain structure photograph 101, a plurality of crystal grains C appear.
 それぞれの結晶粒組織写真101において、3本の線分103を引いた。そのため、5視野の結晶粒組織写真101には、合計15本の線分103が存在する。それぞれの線分103は、圧延方向に直交する方向に延びる。線分103は、結晶粒組織写真101の一端から他端まで達している。線分103の長さは0.7mmである。結晶粒組織写真101は100倍に拡大されているので、線分103の長さは700μmの長さに対応する。 Three line segments 103 were drawn in each grain structure photograph 101. Therefore, a total of 15 line segments 103 exist in the grain structure photograph 101 of five views. Each line segment 103 extends in a direction perpendicular to the rolling direction. A line segment 103 extends from one end of the grain structure photograph 101 to the other end. The length of the line segment 103 is 0.7 mm. Since the grain structure photograph 101 is magnified by 100 times, the length of the line segment 103 corresponds to a length of 700 μm.
 まず、1本の線分103に着目する。その線分103が完全に切断する結晶粒Cの数をNとする。結晶粒Cを完全に切断するとは、線分103が結晶粒Cを通り、結晶粒Cの一端から他端まで達していることを意味する。図3に示す例では、最も左に位置する線分103が完全に切断する結晶粒Cの数Nは7個である。 First, focus on one line segment 103. The number of crystal grains C that the line segment 103 completely cuts is N. To completely cut the crystal grain C means that the line segment 103 passes through the crystal grain C and reaches from one end of the crystal grain C to the other end. In the example shown in FIG. 3, the number N of crystal grains C completely cut by the leftmost line segment 103 is seven.
 700μmをNで除した値を、その線分103における結晶粒幅とする。15本の線分103のそれぞれにおいて、同様の方法で、1本の線分103における結晶粒幅を求める。最後に、1本の線分103における結晶粒幅を、15本の線分103で平均して、ボトル缶胴用アルミニウム合金板の結晶粒幅とする。測定した結晶粒幅を上記表4に示す。 The value obtained by dividing 700 μm by N is taken as the crystal grain width in the line segment 103. In each of the fifteen line segments 103, the crystal grain width in one line segment 103 is determined in the same manner. Finally, the crystal grain width in one line segment 103 is averaged by 15 line segments 103, and it is set as the crystal grain width of the aluminum alloy plate for bottle can body. The measured grain widths are shown in Table 4 above.
 (iv)カール成形性
 ボトル缶胴用アルミニウム合金板から、ブランク径179mmの円板を切り出した。この円板を、内径58mmとなるようにDI成形した。次に、トリミング、洗浄、及びベーキングを順次行った。ベーキングにおける最高保持温度は210℃である。次に、口部の直径が26mmとなるまでダイネック方式によりネッキングを施した。次に、ネジ・カール成形を施してボトル缶を作製した。この方法で100缶のボトル缶を作成し、それぞれのボトル缶におけるカール割れの発生状況を確認した。そして、以下の基準により、カール成形性を評価した。
(iv) Curl formability A disc having a blank diameter of 179 mm was cut out from the aluminum alloy plate for a bottle can body. This disc was DI molded so as to have an inner diameter of 58 mm. Next, trimming, washing and baking were sequentially performed. The maximum holding temperature in baking is 210.degree. Next, necking was applied by a die neck method until the diameter of the mouth was 26 mm. Next, screw / curl forming was performed to prepare a bottle can. In this way, 100 cans of bottle cans were made, and the occurrence of curl cracking in each bottle can was confirmed. Then, the curl formability was evaluated according to the following criteria.
 ○:カール割れ発生率が5%未満。
 ×:カール割れ発生率が5%以上。
 カール成形性の評価結果を上記表2に示す。
○: Curl cracking incidence less than 5%.
X: Curl cracking rate of 5% or more.
The evaluation results of curl formability are shown in Table 2 above.
 (v)軸力強度
 前記(iv)で製造したボトル缶に上部から荷重を加えて、ボトル缶が塑性変形したときのピーク荷重を測定した。この測定を5缶のボトル缶についてそれぞれ行い、5缶におけるピーク荷重の平均値を軸力強度とした。そして、以下の基準により、軸力強度を評価した。
(v) Axial Force Strength A load was applied from the top to the bottle can produced in (iv) above, and the peak load when the bottle can was plastically deformed was measured. This measurement was performed for each of the five cans, and the average value of the peak load in the five cans was taken as the axial strength. Then, the axial force strength was evaluated according to the following criteria.
 ○:軸力強度が1800N以上である。
 ×:軸力強度が1800N未満である。
 軸力強度の評価結果を上記表2に示す。なお、1800Nは、高内圧の内容物を巻締めする場合に望ましい軸力強度である。
○: The axial force strength is at least 1800N.
X: Axial force strength is less than 1800N.
The evaluation results of the axial force strength are shown in Table 2 above. In addition, 1800 N is a desirable axial strength when winding the content of high internal pressure.
 (vi)評価結果について
 J1、J2では、カップ耳特性、引張特性、結晶粒幅、カール成形性、及び軸力強度の全てが良好であった。
(Vi) Evaluation results In J1 and J2, all of the cup ear properties, tensile properties, grain width, curl formability, and axial strength were good.
 J3では、カール成形性が不良であった。その理由は、熱間仕上圧延の開始温度が高すぎ、結晶粒幅が過度に大きいためであると推測される。
 J4では、熱間圧延時に板エッジ割れが発生した。その理由は、熱間仕上圧延の開始温度が低すぎたためであると推測される。
In J3, the curl formability was poor. The reason is presumed to be that the start temperature of the hot finish rolling is too high and the grain width is excessively large.
In J4, plate edge cracking occurred during hot rolling. The reason is presumed to be that the start temperature of the hot finish rolling was too low.
 J5では、カール成形性が不良であった。その理由は、冷間圧延の総圧下率が高すぎて、45°耳率が過度に高くなったためであると推測される。
 J6では、軸力強度とカール成形性とが不良であった。その理由は、冷間圧延の総圧下率が低すぎて、(0-180°耳高さの平均値)が(45°耳高さの平均値)以上となり、また、耐力が小さくなったためであると推測される。
In J5, the curl formability was poor. It is presumed that the reason is that the total rolling reduction of cold rolling is too high and the 45 ° ear ratio is excessively high.
In J6, the axial strength and the curl formability were poor. The reason is that the total rolling reduction of cold rolling is too low, (average value of 0-180 ° ear height) becomes (average value of 45 ° ear height) or more, and proof stress is reduced. It is guessed that there is.
 J7では、カール成形性が不良であった。その理由は、冷間圧延の最終パスの前パス圧延終了温度が低くなりすぎ、引張強さと耐力の差が大きくなったためであると推測される。 In J7, the curl formability was poor. The reason is presumed to be that the front pass end temperature of the final pass of the cold rolling was too low, and the difference between the tensile strength and the yield strength became large.
 J8では、カール成形性が不良であった。その理由は、冷間圧延の最終パスの前パス圧延終了温度が高くなりすぎ、耐力が過度に大きくなったためであると推測される。
 5.他の実施形態
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
In J8, the curl formability was poor. The reason is presumed to be that the front pass rolling completion temperature of the final pass of cold rolling became too high and the yield strength became excessively large.
5. Other Embodiments Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and can be variously modified and implemented.
 (1)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (1) The function of one component in each of the above embodiments may be shared by a plurality of components, or the function of a plurality of components may be exhibited by one component. In addition, part of the configuration of each of the above embodiments may be omitted. In addition, at least a part of the configuration of each of the above-described embodiments may be added to or replaced with the configuration of the other above-described embodiments. In addition, all the aspects contained in the technical thought specified from the wording as described in a claim are an embodiment of this indication.
 (2)上述したボトル缶胴用アルミニウム合金板の他、当該ボトル缶胴用アルミニウム合金板を構成要素とするボトル缶、ボトル缶の製造方法等、種々の形態で本開示を実現することもできる。 (2) The present disclosure can also be realized in various forms such as a bottle can having the aluminum alloy plate for a bottle can body, a method of manufacturing the bottle can, and the like in addition to the aluminum can plate for a bottle can body described above. .

Claims (3)

  1.  ボトル缶胴用アルミニウム合金板であって、
     0.05~0.60質量%のSiと、0.05~0.80質量%のFeと、0.05~0.25質量%のCuと、0.80~1.50質量%のMnと、0.80~1.50質量%のMgと、Alと、不可避的不純物と、を含有し、
     ブランク径が57mm、絞り比が1.73という条件で絞った成形カップにおける45°耳率が2.5%以下であり、
     0-180°耳高さの平均値が、45°耳高さの平均値以下であり、
     耐力が180MPa以上、230MPa以下であり、
     引張強さから耐力を差し引いた値が10.0MPa以上、28.0MPa以下であり、
     前記ボトル缶胴用アルミニウム合金板の表面において圧延方向に直交する方向の結晶粒の幅が10μm以上60μm以下であるボトル缶胴用アルミニウム合金板。
    Aluminum alloy sheet for bottle can body,
    0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, 0.05 to 0.25% by mass of Cu, and 0.80 to 1.50% by mass of Mn And 0.80 to 1.50% by mass of Mg, Al, and unavoidable impurities
    The 45 ° ear ratio is 2.5% or less in the forming cup narrowed under the condition that the blank diameter is 57 mm and the drawing ratio is 1.73,
    The mean value of 0-180 ° ear height is less than the mean value of 45 ° ear height,
    The proof stress is 180 MPa or more and 230 MPa or less,
    The value obtained by subtracting the yield strength from the tensile strength is 10.0 MPa or more and 28.0 MPa or less,
    The aluminum alloy sheet for bottle cans and bodies whose width of the crystal grain of the direction orthogonal to a rolling direction is 10 micrometers or more and 60 micrometers or less in the surface of the aluminum alloy sheet for said bottle cans and cylinders.
  2.  0.05~0.60質量%のSiと、0.05~0.80質量%のFeと、0.05~0.25質量%のCuと、0.80~1.50質量%のMnと、0.80~1.50質量%のMgと、Alと、不可避的不純物と、を含有するアルミニウム合金の鋳塊を均質化処理し、熱間圧延を行い、中間焼鈍を行うことなく冷間圧延を行い、
     前記熱間圧延において、熱間仕上圧延の開始温度が400℃以上520℃以下であり、
     前記冷間圧延において、最終パスの前パスの圧延終了温度が130℃以上190℃以下であり、
     前記冷間圧延において、総圧下率が80.0%以上、90.0%以下であるボトル缶胴用アルミニウム合金板の製造方法。
    0.05 to 0.60% by mass of Si, 0.05 to 0.80% by mass of Fe, 0.05 to 0.25% by mass of Cu, and 0.80 to 1.50% by mass of Mn An ingot of an aluminum alloy containing 0.80 to 1.50% by mass of Mg, Al, and unavoidable impurities is homogenized, subjected to hot rolling, and cooled without intermediate annealing. Perform rolling,
    In the hot rolling, the start temperature of the hot finish rolling is 400 ° C. or more and 520 ° C. or less,
    In the cold rolling, the rolling end temperature of the previous pass of the final pass is 130 ° C. or more and 190 ° C. or less,
    In the said cold rolling, the manufacturing method of the aluminum alloy plate for bottle can body which is 80.0% or more and 90.0% or less in a total rolling reduction.
  3.  請求項2に記載のボトル缶胴用アルミニウム合金板の製造方法であって、
     製造したボトル缶胴用アルミニウム合金板は、
      ブランク径が57mm、絞り比が1.73という条件で絞った成形カップにおける45°耳率が2.5%以下であり、
      0-180°耳高さの平均値が、45°耳高さの平均値以下であり、
      耐力が180MPa以上、230MPa以下であり、
      引張強さから耐力を差し引いた値が10.0MPa以上、28.0MPa以下であり、
      前記ボトル缶胴用アルミニウム合金板の表面において圧延方向に直交する方向の結晶粒の幅が10μm以上60μm以下であるボトル缶胴用アルミニウム合金板の製造方法。
     
    A method of manufacturing an aluminum alloy sheet for a bottle can and barrel according to claim 2, wherein
    The manufactured aluminum alloy sheet for bottle can body is
    The 45 ° ear ratio is 2.5% or less in the forming cup narrowed under the condition that the blank diameter is 57 mm and the drawing ratio is 1.73,
    The mean value of 0-180 ° ear height is less than the mean value of 45 ° ear height,
    The proof stress is 180 MPa or more and 230 MPa or less,
    The value obtained by subtracting the yield strength from the tensile strength is 10.0 MPa or more and 28.0 MPa or less,
    The manufacturing method of the aluminum alloy plate for bottle can body which is 10 micrometers-60 micrometers in width | variety of the crystal grain of the direction orthogonal to a rolling direction in the surface of the aluminum alloy plate for said bottle can bodies.
PCT/JP2018/032450 2017-09-20 2018-08-31 Aluminum alloy plate for bottle-shaped can body and manufacturing method thereof WO2019058935A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880061110.5A CN111108223B (en) 2017-09-20 2018-08-31 Aluminum alloy plate for bottle and can and method for producing same
KR1020197033056A KR102087567B1 (en) 2017-09-20 2018-08-31 Aluminum alloy plate for bottle can body and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-180280 2017-09-20
JP2017180280A JP6405014B1 (en) 2017-09-20 2017-09-20 Aluminum alloy plate for bottle can body and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2019058935A1 true WO2019058935A1 (en) 2019-03-28

Family

ID=63855091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032450 WO2019058935A1 (en) 2017-09-20 2018-08-31 Aluminum alloy plate for bottle-shaped can body and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP6405014B1 (en)
KR (1) KR102087567B1 (en)
CN (1) CN111108223B (en)
WO (1) WO2019058935A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020312A (en) * 2019-12-20 2020-04-17 山东南山铝业股份有限公司 Aluminum alloy strip for small-caliber unscrewing bottle and tank and production method thereof
WO2021050746A1 (en) 2019-09-10 2021-03-18 Anheuser-Busch, Llc Reducing material usage and plastic-deformation steps in the manufacture of aluminum containers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023160496A (en) * 2022-04-22 2023-11-02 株式会社Uacj Cold-rolled aluminum alloy sheet and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183035A (en) * 2002-12-02 2004-07-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for aluminum can barrel with screw
JP2004250790A (en) * 2003-01-31 2004-09-09 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2004300537A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Aluminum alloy sheet for packaging container and its producing method
JP2006077310A (en) * 2004-09-13 2006-03-23 Furukawa Sky Kk Aluminum alloy sheet superior in formability for bottle type can, and manufacturing method therefor
JP2006089828A (en) * 2004-09-27 2006-04-06 Furukawa Sky Kk Aluminum alloy sheet for bottle type can, and manufacturing method therefor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191006A (en) 1998-12-28 2000-07-11 Takeuchi Press Ind Co Ltd Screwed can, manufacture thereof and capped container employing screwed can
JP4646164B2 (en) 1999-09-30 2011-03-09 大和製罐株式会社 Manufacturing method for bottle-shaped cans
JP4416222B2 (en) 1999-10-13 2010-02-17 大和製罐株式会社 Manufacturing method for printed bottle-shaped cans
JP4236070B2 (en) 1999-12-01 2009-03-11 大和製罐株式会社 Printed bottle-shaped can
JP3868839B2 (en) * 2002-03-29 2007-01-17 三菱アルミニウム株式会社 Method for producing aluminum alloy plate for bottle-type beverage can
JP4004330B2 (en) * 2002-05-16 2007-11-07 住友軽金属工業株式会社 Al-Mg aluminum alloy plate for cap
JP4599057B2 (en) * 2003-12-22 2010-12-15 住友軽金属工業株式会社 Aluminum alloy hard plate for can end having excellent cold rollability and anisotropy and method for producing the same
CN101664792A (en) * 2009-10-16 2010-03-10 湖南晟通科技集团有限公司 Engineering process for producing low-iron low-silicon 3004 alloy by directly cast-rolling electrolytic aluminium liquid
JP2012092431A (en) * 2010-09-30 2012-05-17 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
CN105008566B (en) * 2013-02-25 2017-07-25 株式会社Uacj Tank body aluminium alloy plate and its manufacture method
WO2015107982A1 (en) * 2014-01-16 2015-07-23 株式会社Uacj Aluminum alloy material, method for producing same, aluminum alloy clad material, and method for producing same
JP5841646B1 (en) * 2014-09-10 2016-01-13 株式会社神戸製鋼所 Aluminum alloy plate for can body
JP6678431B2 (en) * 2015-11-09 2020-04-08 三菱アルミニウム株式会社 Aluminum alloy plate for cap and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183035A (en) * 2002-12-02 2004-07-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for aluminum can barrel with screw
JP2004250790A (en) * 2003-01-31 2004-09-09 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2004300537A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Aluminum alloy sheet for packaging container and its producing method
JP2006077310A (en) * 2004-09-13 2006-03-23 Furukawa Sky Kk Aluminum alloy sheet superior in formability for bottle type can, and manufacturing method therefor
JP2006089828A (en) * 2004-09-27 2006-04-06 Furukawa Sky Kk Aluminum alloy sheet for bottle type can, and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"50th commemorative project executive committee-commemorative publication division", ALUMINUM PRODUCTS AND MANUFACTURING TECHNOLOGY, 31 October 2001 (2001-10-31), pages 408 - 411 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021050746A1 (en) 2019-09-10 2021-03-18 Anheuser-Busch, Llc Reducing material usage and plastic-deformation steps in the manufacture of aluminum containers
EP4017661A4 (en) * 2019-09-10 2023-09-20 Anheuser-Busch, LLC Reducing material usage and plastic-deformation steps in the manufacture of aluminum containers
CN111020312A (en) * 2019-12-20 2020-04-17 山东南山铝业股份有限公司 Aluminum alloy strip for small-caliber unscrewing bottle and tank and production method thereof

Also Published As

Publication number Publication date
CN111108223A (en) 2020-05-05
CN111108223B (en) 2021-01-29
JP2019056134A (en) 2019-04-11
KR20190135524A (en) 2019-12-06
KR102087567B1 (en) 2020-03-10
JP6405014B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP3913260B1 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent neck formability
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
WO2012043582A1 (en) Cold-rolled aluminum alloy sheet for bottle can
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
AU2017261184B2 (en) Aluminum alloys with enhanced formability and associated methods
WO2019058935A1 (en) Aluminum alloy plate for bottle-shaped can body and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP7138396B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP4460406B2 (en) Aluminum alloy plate for bottle can and manufacturing method thereof
JP2006299330A (en) Aluminum alloy sheet for bottle can body
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP7426243B2 (en) Aluminum alloy plate for bottle body
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP7235634B2 (en) Aluminum alloy plate for can body
JP5091415B2 (en) Manufacturing method of aluminum alloy plate for bottle can
JP2011208283A (en) Aluminum alloy sheet for bottle can

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197033056

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857954

Country of ref document: EP

Kind code of ref document: A1