WO2019058932A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2019058932A1
WO2019058932A1 PCT/JP2018/032371 JP2018032371W WO2019058932A1 WO 2019058932 A1 WO2019058932 A1 WO 2019058932A1 JP 2018032371 W JP2018032371 W JP 2018032371W WO 2019058932 A1 WO2019058932 A1 WO 2019058932A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
dielectric layer
slot
antenna device
viewed
Prior art date
Application number
PCT/JP2018/032371
Other languages
French (fr)
Japanese (ja)
Inventor
シャレンドラ カウシャル
官 寧
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2019058932A1 publication Critical patent/WO2019058932A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Definitions

  • the present invention relates to an antenna device.
  • Priority is claimed on Japanese Patent Application No. 2017-181338, filed September 21, 2017, the content of which is incorporated herein by reference.
  • an antenna apparatus provided with a planar antenna of an electromagnetic coupling feed system is known.
  • the present invention has been made in view of the above problems, and provides an antenna device capable of reducing reflection loss even when using a planar antenna of an electromagnetic coupling feed system.
  • an antenna device comprising: a first dielectric layer; and a flat plate disposed on a first surface of the first dielectric layer and including an electrode portion for electromagnetic coupling.
  • a patch antenna, and a nonconductor portion disposed on a second surface opposite to the first surface in the first dielectric layer, and extending in a first direction at a position facing the electrode portion
  • a ground conductor plate in which a slot is formed a second dielectric layer fixed to the ground conductor plate so as to face the first dielectric layer with the ground conductor plate interposed therebetween, and the second dielectric layer A second direction formed on the second dielectric layer so as to face the ground conductor plate with a body layer interposed therebetween, and having a tip intersecting with the first direction when viewed in the normal direction of the patch antenna
  • a linear feed conductor disposed in a positional relationship that intersects the slot when viewed in the normal direction.
  • the slot is connected in communication with a first opening having a constant first width in the
  • the second opening may be polygonal as viewed from the normal direction.
  • the second opening may be circular as viewed from the normal direction.
  • the power feeding conductor is the first portion of the first opening when viewed from the normal direction.
  • the tip of the feeding conductor is equal to the length of the first opening in the first direction from the center of the first opening in the second direction. It may be formed at a position.
  • the second direction is orthogonal to the first direction
  • the power feeding conductor The tip may be arranged to be orthogonal to the slot when viewed in the normal direction.
  • FIG. 1 is a schematic exploded perspective view showing an example of the antenna device of the present embodiment.
  • FIG. 2 is a schematic longitudinal sectional view showing an example of the configuration of the main part of the antenna device of the present embodiment.
  • FIG. 3 is a schematic plan view showing an example of a patch antenna of the antenna device of the present embodiment.
  • FIG. 4 is a schematic plan view showing the positional relationship between the feed conductor and the slot in the antenna device of the present embodiment.
  • FIG. 5 is a schematic plan view showing an example of the opening shape of the slot used in the antenna device of the present embodiment.
  • Each drawing is a schematic view, and dimensions and shapes are exaggerated or simplified (the same applies to the other drawings below).
  • the antenna device 20 of the present embodiment shown in FIG. 1 includes a planar antenna of an electromagnetic coupling feed system.
  • the antenna device 20 can be used as an antenna device in communication in the IoT (Internet of Things) field or in high-speed wireless communication such as WiGig (Wireless Gigabit).
  • IoT Internet of Things
  • WiGig Wireless Gigabit
  • the patch antenna 1, the first dielectric layer 2, the ground conductor plate 4, the second dielectric layer 5, and the feeding conductor 6 are stacked in this order. ing.
  • the stacking direction is referred to as the Z-axis direction
  • biaxial directions orthogonal to the Z-axis direction and orthogonal to each other will be referred to as an X-axis direction (second direction) and a Y-axis direction (first direction).
  • the coordinate system here is right-handed.
  • each patch antenna 1 is patterned on a first surface 2a (first surface) of a first dielectric layer 2 described later based on a predetermined arrangement pattern.
  • the normal direction of the patch antenna 1 and the first surface 2a is the Z-axis direction.
  • the patch antenna 1 is a flat antenna electromagnetically coupled and fed from a feed conductor 6 described later.
  • the shape of each patch antenna 1 is not particularly limited.
  • a plurality of patch antennas 1 are, for example, arranged in the form of a square grid arranged in the X-axis direction and the Y-axis direction. Specifically, 64 patch antennas 1 are arranged in a square grid of 8 ⁇ 8.
  • each patch antenna 1 includes, as an example, four radiating elements 1 a and a divided circuit pattern 1 d which is a divider for arraying the respective radiating elements 1 a.
  • Each of the radiation elements 1a is formed in a rectangular shape having sides extending in the X-axis direction and the Y-axis direction.
  • the respective radiation elements 1a are arranged in a rectangular grid shape which is a substantially square grid arranged in the X-axis direction and the Y-axis direction.
  • the divided circuit pattern 1 d includes an electrode portion 1 b for electromagnetic coupling, and four wiring portions 1 c that electrically connect the electrode portion 1 b and the radiation elements 1 a to each other.
  • the electrode portion 1b is formed in a rectangular shape extending in the X-axis direction centering on an intersection of diagonals connecting centers of arrangement positions of the radiation elements 1a.
  • the feeding point in the electrode portion 1b is formed at the center of the electrode portion 1b.
  • Each wiring portion 1c extends from the side portion in the Y-axis direction at the four corner portions of the electrode portion 1b toward the radiation element 1a connected thereto. Specifically, each wiring portion 1c extends in the Y-axis direction toward the radiation element 1a to which each wiring portion 1c is connected, and then a position facing the central portion of the side portion in the X-axis direction of the radiation element 1a to which each is connected In the direction of the X axis. Therefore, the path lengths of the wiring portions 1c are equal to one another.
  • each patch antenna 1 having such a configuration is disposed at a corner of a rectangular area having a width W X in the X-axis direction and a width W Y in the Y-axis direction.
  • W x and W y may be 4.4 mm and 4.52 mm, respectively.
  • the width W aX in the X-axis direction of the radiating elements 1a, the width in the Y-axis direction W aY, respectively, 1.15 mm may be 1.15 mm.
  • the width W bX in the X-axis direction of the electrode portion 1 b and the width W bY in the Y-axis direction may be 0.8 mm or 0.4 mm, respectively.
  • the line width of each wiring portion 1c may be 0.13 mm.
  • the quarter effective length (hereinafter simply referred to as the effective length) of such a patch antenna 1 is 1.15 mm.
  • the patch antenna 1 is formed of, for example, a metal material such as copper.
  • the first dielectric layer 2 is a flat member having a dielectric constant and a layer thickness defined in accordance with the required radiation characteristics.
  • the first dielectric layer 2 may be a single layer dielectric, or a plurality of dielectrics may be bonded. Whether to use a single layer or multiple layers may be determined in consideration of, for example, the material cost.
  • the example shown in FIG. 2 shows an example in which the dielectric 2A having a certain thickness is bonded by the resin adhesive layer 2B which is a dielectric.
  • a second surface 2b (second surface) which is a surface opposite to the first surface 2a in the first dielectric layer 2, is formed of a resin adhesive layer 2B.
  • the resin adhesive layer 2B constituting the second surface 2b joins a ground conductor plate 4 described later.
  • the ground conductor plate 4 is a plate member of a conductor in which slots 7 are formed at positions facing the patch antennas 1.
  • the ground conductor plate 4 is grounded.
  • the ground conductor plate 4 is fixed to the first dielectric layer 2 via the resin adhesive layer 2B constituting the second surface 2b.
  • the slot 7 is a nonconductor in the ground conductor plate 4. As shown in FIGS. 3 and 4, the slot 7 extends in the Y-axis direction which is the first direction.
  • the opening shape of the slot 7 is a shape capable of achieving impedance matching between the impedance of the patch antenna 1 and the feeding conductor 6 described later.
  • the slot 7 in this embodiment is H-shaped as viewed from the Z-axis direction, as shown in FIG. Specifically, the slot 7 has a rectangular first opening 7a and second openings 7b formed at both ends in the longitudinal direction (first direction) of the first opening 7a, Equipped with As shown in FIG.
  • the center (centre) of the slot 7 is disposed so as to overlap with the center (centre) of the electrode portion 1 b of the patch antenna 1. Therefore, when viewed from the Z-axis direction, the slot 7 is orthogonal to the centers of the electrode portion 1b and the electrode portion 1b, and traverses the electrode portion 1b in the Y-axis direction.
  • the first opening 7a constitutes a passing signal portion through which a signal passes.
  • Each second opening 7 b is an opening that increases the impedance at both ends of the passing signal portion. More preferably, the length d3 of the slot 7 in the longitudinal direction (first direction) is adjusted to the effective length of the patch antenna 1.
  • the width W2 in the short direction of the first opening 7a is more preferably 0.75 mm, for example, in order to set the coupling impedance to 112 ⁇ .
  • W2 is more preferably 0.2 mm.
  • Each second opening 7b is provided in a shape that widens from the width W2 in the short direction of the first opening 7a in order to form an impedance larger than the coupling impedance by the first opening 7a.
  • each second opening 7b is a rectangle having a length d2 in the Y-axis direction and a width W3 in the X-axis direction (where W3> W2).
  • d2 and W3 may be 0.2 mm and 0.4 mm, respectively.
  • the coupling impedance of the electromagnetic coupling feeding portion is 112 ⁇ at the central portion of the electrode portion 1 b.
  • the second dielectric layer 5 is fixed to the ground conductor plate 4 and the feeding conductor 6 to be described later so that the patch antenna 1 can be electromagnetically fed from the feeding conductor 6 to be described later through the slot 7. It is provided to be separated by the insulation distance of. For this reason, the ground conductor plate 4 is disposed on the first surface 5 a of the second dielectric layer 5, and the feeding conductor 6 described later is disposed on the second surface 5 b of the second dielectric layer 5. It is done.
  • the relative permittivity ⁇ r of the second dielectric layer 5 is preferably as small as possible.
  • the relative dielectric constant ⁇ r of the second dielectric layer 5 is more preferably 1 or more and 2.5 or less.
  • the layer thickness of the second dielectric layer 5 is more preferably 130 ⁇ m.
  • the feeding conductor 6 is patterned on the second surface 5 b of the second dielectric layer 5.
  • the feed conductor 6 can be electrically connected to an external circuit (not shown) via a connection path having a predetermined impedance.
  • a plurality of tip lines 6e formed on the tip of the feed conductor 6 so as to overlap with the slots 7 and the electrode portions 1b of the patch antennas 1 as viewed from the Z-axis direction The tip portion is formed.
  • Each tip line 6 e is a linear conductor that constitutes the open end of the feed conductor 6.
  • each tip end line 6 e extends in the X axis direction, passing through the longitudinal center of the first opening 7 a of each slot 7 when viewed from the Z axis direction. . Therefore, when viewed from the Z-axis direction, the tip end line 6e crosses the first opening 7a so as to be orthogonal to the first opening 7a.
  • the line width W1 of the tip line 6e is such that a very wide line width leads to more losses and radiation, and a very thin line width makes it difficult to manufacture, thus minimizing production and back radiation It has been decided as such.
  • the line width W1 of the tip end line 6e may be 0.1 mm.
  • the length (stub length) from the central axis O of the first opening 7a to the end 6f of the end track 6e is ds.
  • the stub length ds is made equal to the length d1 of the first opening 7a.
  • the stub length ds is 0.75 mm.
  • each of the tip lines 6e two tip lines 6e adjacent in the Y-axis direction are connected to each other by a first line 6d extending in the Y-axis direction at an end opposite to the tip 6f. ing.
  • the line width of each first line 6d is equal to the line width W1 of the tip line 6e.
  • the two first lines 6d adjacent to each other in the X-axis direction are connected to each other by a second line 6c extending in the X-axis direction at a position where each of the lengths in the longitudinal direction is equally divided into two.
  • the line width of each second line 6c is equal to the line width W1 of the tip end line 6e except for both ends in the longitudinal direction.
  • a widened portion 6b in the vicinity of a connection portion with the first line 6d, a widened portion 6b whose line width is widened stepwise from W1 is formed.
  • the widening portion 6 b in the present embodiment is provided to optimize the impedance of the power supply conductor 6.
  • the line width of the widened portion 6b is widened in three steps such as W11, W12, and W13 (where W11 ⁇ W12 ⁇ W13) from the middle portion to the end portion of the second line 6c.
  • the length of each portion of the line widths W11, W12, and W13 is L11, L12, and L13.
  • the line widths W11, W12, and W13 may be 0.12 mm, 0.22 mm, and 0.3 mm, respectively.
  • the lengths L11, L12, and L13 may all be 0.5 mm.
  • the third line 6a having a line width W1 is connected to a position at which the length in the longitudinal direction of the second line 6c is divided into two equally.
  • the third line 6a connects a group of four tip lines 6e adjacent to each other in the X-axis direction and the Y-axis direction to a group of four tip lines 6e (not shown) adjacent similarly to the Y-axis direction. doing.
  • the feed conductors 6 are formed to connect the respective tip lines 6e in a tree shape by repeating the symmetrical conductor patterns. For this reason, the impedance of the feed conductor 6 from the connection portion with the external circuit to each tip line 6e is equal.
  • Such an antenna device 20 is manufactured, for example, as follows. First, conductor films are formed on the first surface 5a and the second surface 5b of the second dielectric layer 5, respectively, and then the ground conductor plate 4 and the feeding conductor 6 are respectively patterned by etching or the like. Furthermore, the first dielectric layer 2 to which the dielectric 2A is bonded is bonded onto the ground conductor plate 4. Thereafter, a conductor film is formed on the first surface 2 a of the first dielectric layer 2, and the patch antenna 1 is patterned by, for example, etching or the like. After the patch antenna 1 is patterned on the first dielectric layer 2, the first dielectric layer 2 and the ground conductor plate 4 may be bonded.
  • FIG. 6 is a schematic plan view showing an example of the opening shape of the slot used in the antenna device of the comparative example.
  • the antenna device 120 of the comparative example includes a ground conductor plate 104 instead of the ground conductor plate 4 of the antenna device 20 of the above embodiment.
  • the ground conductor plate 104 is provided with a slot 107 instead of the slot 7 of the ground conductor plate 4.
  • the slot 107 is formed at the same position as the slot 7.
  • the slot 107 is a rectangular opening having a length d3 in the Y-axis direction and a width W2 in the X-axis direction. For this reason, in the slot 107, each second opening 7b of the above embodiment is deleted, and the length of the first opening 7a is extended to d3.
  • the antenna device in order to perform efficient transmission and reception, it is necessary to perform impedance matching with the impedance of the connection path with the external circuit.
  • the antenna device 20 in order to match the impedance of the feed conductor 6, the impedance is optimized by the wiring pattern, the line width, and the like as described above.
  • the antenna device 120 of the comparative example provided with the similar feed conductor 6 is also similar in this point.
  • the coupling impedance in the electromagnetic coupling feeding portion from the tip line 6e to the electrode portion 1b of the patch antenna 1 is necessary to match the coupling impedance in the electromagnetic coupling feeding portion from the tip line 6e to the electrode portion 1b of the patch antenna 1 as well.
  • the arrangement and shape of the first opening 7a of the slot 7 in the ground conductor plate 4 are optimized, the second opening 7b is provided in the slot 7, and the tip end line 6e
  • the coupling impedance is matched by optimizing the stub length ds.
  • the expanded second openings 7b at both ends of the first opening 7a high impedance regions are formed outside the both ends of the first opening 7a. Therefore, in the first opening 7a, the signal passes efficiently, so that the reflection loss as a whole is reduced.
  • the slot 107 of the antenna device 120 of the comparative example does not have high impedance regions at both ends in the longitudinal direction. Therefore, the impedance is 200 ⁇ at both ends in the longitudinal direction of the slot 107.
  • the impedance at both ends of the slot 7 is higher than 200 ⁇ by the second opening 7 b. As a result, the reflection loss of the antenna device 120 of the comparative example is larger than that of the antenna device 20 of the present embodiment.
  • FIG. 7 is a graph showing the total gain in the antenna device of the present embodiment.
  • FIG. 8 is a graph showing the reflection loss (S11) in the antenna device of the present embodiment.
  • FIG. 9 is a graph showing the average gain XZ (E plane) in the antenna device of the present embodiment.
  • FIG. 10 is a graph showing the average gain YZ (H plane) in the antenna device of the present embodiment.
  • FIG. 11 is a three-dimensional graph showing the gain of the antenna device of the present embodiment.
  • FIG. 12 is a graph showing the total gain of the antenna device of the present embodiment.
  • FIG. 13 is a graph showing S11 of the slot portion of the antenna device of the present embodiment and S11 of the slot portion of the comparative example.
  • FIG. 7 shows simulation results of all gains in the XZ plane and the YZ plane.
  • the horizontal axis is the elevation angle ⁇ (degrees), and the vertical axis is the gain (dBi).
  • a curve 200 (broken line) represents the total gain in the XZ plane
  • a curve 201 (solid line) represents the total gain in the YZ plane.
  • the XZ plane is an electric plane (E plane)
  • the YZ plane is a magnetic plane (H plane).
  • good overall gain is obtained in both the XZ plane and the YZ plane in the range of the elevation angle of 0 ° to ⁇ 4 °.
  • FIG. 8 shows the frequency characteristics of the reflection loss (S11).
  • the horizontal axis is frequency (GHz) and the vertical axis is reflection loss (dB).
  • the reflection loss is ⁇ 10 dB or less in the range of about 56 GHz to about 64 GHz. For this reason, the antenna device 20 has a good return loss characteristic in a 60 GHz band wireless communication application.
  • FIGS. 9 and 10 show simulation results of the average gain.
  • FIG. 9 shows the average gain of the XZ plane
  • FIG. 9 shows the average gain of the YZ plane.
  • the horizontal axis is the elevation angle ⁇ (degrees)
  • the vertical axis is the gain (dBi).
  • curves 204 and 206 indicated by solid lines represent gains of co-polarization components
  • curves 205 and 207 indicated by broken lines represent gains of cross-polarization components. According to FIGS. 9 and 10, almost the same average gain characteristics are obtained in both the XZ plane and the YZ plane. Therefore, there is no change in bidirectional gain.
  • FIG. 11 shows a three-dimensional graph of the simulation result of the gain which is the basis of each of the graphs described above. Furthermore, FIG. 12 shows the total gain (dBi) in the frequency domain corresponding to FIG. According to a curve 208 in FIG. 12, a stable gain of about 25 dBi is obtained between about 58 GHz and about 64 GHz.
  • FIG. 13 shows simulation results of the reflection loss S11 of the respective slot portions in the antenna device 20 of the embodiment and the antenna device 120 of the comparative example.
  • the horizontal axis is frequency (GHz) and the vertical axis is reflection loss S11 (dB).
  • a curve 209 (solid line) represents S11 of the slot portion of the antenna device 20
  • a curve 210 (dashed line) represents S11 of the slot portion of the antenna device 120.
  • the range in which S11 is ⁇ 10 dB or less is 58.8 GHz to 63.5 GHz in the curve 209, while it is 60 GHz to 62.5 GHz in the curve 210.
  • the frequency band in which S11 is good is about twice in this embodiment as compared with the comparative example.
  • the cause of this is that, in the antenna device 20 of the present embodiment, the slot 7 has an H-shaped opening shape including the second opening 7 b, while in the antenna device 120 of the comparative example, the slot 107 is rectangular. It is thought that there is.
  • the reflection loss can be reduced even in the case of using the planar antenna of the electromagnetic coupling feeding system.
  • FIG. 14 is a schematic view showing the configuration of the slot portion of the antenna device of the first modified example of the present embodiment.
  • the antenna device 30 of the present modification includes a ground conductor plate 34 instead of the ground conductor plate 4 in the above embodiment.
  • the ground conductor plate 34 is provided with slots 37 instead of the slots 7 in the above embodiment.
  • the slot 37 has a substantially triangular (strictly trapezoidal) second opening 37b as viewed in the Z-axis direction, instead of the second opening 7b of the above embodiment.
  • the width of the opening in the X-axis direction gradually widens from each end of the first opening 7a in the Y-axis direction as the distance from the center of the first opening 7a increases.
  • the width in the X-axis direction of each second opening 37b is expanded from W2 to W33 (where W33> W2).
  • the tip in the Y-axis direction in each of the second openings 37 b has a linear shape orthogonal to the central axis O.
  • the shape of each second opening 37 b may be asymmetrical with respect to the central axis O, but in the present variation, as an example, the shape is axisymmetrical with respect to the central axis O.
  • the second embodiment is substantially triangular as viewed from the Z-axis direction in the second opening 37b, and is not rectangular as in the second opening 7b of the slot 7 in the above embodiment. It is different from However, since the second opening 37b is wider in the X-axis direction than the width of the first opening 7a, like the second opening 7b, the second opening 37b has a higher impedance than the first opening 7a. It is an opening. For this reason, the antenna device 30 can optimize the coupling impedance of the electromagnetic coupling feeding portion as in the above embodiment, and can reduce the reflection loss even when using the planar antenna of the electromagnetic coupling feeding system.
  • FIG. 15 is a schematic view showing the configuration of the slot portion of the antenna device of the second modified example of the present embodiment.
  • the antenna device 40 of the present modification includes a ground conductor plate 44 in place of the ground conductor plate 4 in the above embodiment. As shown in FIG. 15, the ground conductor plate 44 is provided with slots 47 instead of the slots 7 in the above embodiment.
  • the ground conductor plate 44 is provided with slots 47 instead of the slots 7 in the above embodiment.
  • the slot 47 includes a second opening 47b substantially circular (strictly speaking, an arc shape having a central angle larger than 180 °) as viewed from the Z-axis direction, instead of the second opening 7b of the above embodiment.
  • the inner diameter of the second opening 47b is W43 (where W43> W2). Therefore, in the second opening 47b, the opening width in the X-axis direction becomes W43 as the distance from each end of the first opening 7a in the Y-axis direction to the center of the first opening 7a increases. The width gradually increases until it becomes smaller, and from there, the width gradually narrows as it goes away from the center of the first opening 7a.
  • the antenna device 40 is different in that the second opening 47 b is substantially circular when viewed from the Z-axis direction, and is not rectangular as the second opening 7 b of the slot 7 in the above embodiment.
  • the impedance of the second opening 47b is higher than that of the first opening 7a as in the second opening 7b. It is an opening.
  • the antenna device 40 can optimize the coupling impedance of the electromagnetic coupling feeding portion as in the above embodiment, and can reduce the reflection loss even when using the planar antenna of the electromagnetic coupling feeding system.
  • the second opening may have another shape as long as it is formed to be wider than the first opening from the connection with the first opening.
  • the opening shape of the second opening may be a pentagon or more polygon, an oval, or the like.
  • the opening shape of the second opening may be an opening shape in which the sides of an appropriate polygon are replaced with a concave or convex curve.
  • the opening shape of the second opening is an opening shape including a widening portion widening from the first opening and a narrowing portion narrowing from the widening portion by a combination of various straight lines or curves. It is also good.
  • the four radiating elements 1a are arranged in a rectangular grid having a substantially square grid to form the patch antenna 1, and the patch antenna 1 is further arranged in the square grid.
  • the four radiation elements 1a may be arranged in a rectangular grid shape in which the arrangement pitch in the first direction and the second direction is largely different.
  • the patch antenna 1 is not limited to the square lattice arrangement, and may be arranged in a rectangular lattice arrangement.
  • the tip of the feeding conductor and the slot are orthogonal to each other as viewed in the normal direction, but the tip of the feeding conductor and the slot are in the normal direction.
  • the crossing angles are not limited to right angles as long as they cross each other as seen from the figure.
  • SYMBOLS 1 patch antenna, 1a ... radiation

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An antenna device comprising: a first dielectric layer; a planar patch antenna arranged on a first surface of the first dielectric layer and comprising an electrode section for electromagnetic coupling; a ground conductor plate arranged on a second surface on the opposite side to the first surface in the first dielectric layer and having a slot formed therein that constitutes a nonconductive section extending in a first direction and is at a position facing the electrode section; a second dielectric layer fixed to the ground conductor plate so as to face the first dielectric layer having the ground conductor plate interposed therebetween; and a linear power supply conductor formed in the second dielectric layer so as to face the ground conductor plate having the second dielectric layer interposed therebetween, having the tip thereof extending in a second direction intersecting the first direction when viewed from the normal direction of the patch antenna, and being arranged in a positional relationship so as to intersect the slot when viewed from the normal direction. The slot comprises: a first opening having a constant first width in the second direction; and a second opening connected to both ends of the first opening in the first direction and being widened more than the first width, in the vicinity of a section connecting to the first opening.

Description

アンテナ装置Antenna device
 本発明は、アンテナ装置に関する。
 本願は、2017年9月21日に、日本に出願された特願2017-181338号に基づき優先権を主張し、これらの内容をここに援用する。
The present invention relates to an antenna device.
Priority is claimed on Japanese Patent Application No. 2017-181338, filed September 21, 2017, the content of which is incorporated herein by reference.
 高速無線通信の分野において、電磁結合給電方式の平面アンテナを備えるアンテナ装置が知られている。
 例えば、特許文献1には、接地層である給電用スロット層に矩形の給電用スロットが形成され、分配合成器が給電用スロット層を介して放射素子と電磁的に結合されているフェーズドアレーアンテナ装置が記載されている。
In the field of high-speed wireless communication, an antenna apparatus provided with a planar antenna of an electromagnetic coupling feed system is known.
For example, in Patent Document 1, a phased array antenna in which a rectangular feed slot is formed in a feed slot layer which is a ground layer, and a distributor / combiner is electromagnetically coupled to a radiating element through the feed slot layer. The device is described.
日本国特開平11-74717号公報Japanese Patent Application Laid-Open No. 11-74717
 しかしながら、特許文献1に記載の技術では、電磁結合の結合効率が良好にならないため、反射損失が大きくなる場合がある。
 インピーダンス整合をとるためには、給電用スロットの短手方向の開口幅を一定に保つ必要がある。しかし、矩形の給電用スロットの場合、長手方向の両端部における形状によって電磁結合の結合効率が低下する。
However, in the technique described in Patent Document 1, since the coupling efficiency of the electromagnetic coupling is not good, the reflection loss may be large.
In order to achieve impedance matching, it is necessary to keep the widthwise opening width of the feeding slot constant. However, in the case of a rectangular feeding slot, the coupling efficiency of the electromagnetic coupling is reduced by the shapes at both longitudinal ends.
 本発明は、上記のような問題に鑑みてなされたものであり、電磁結合給電方式の平面アンテナを用いる場合でも反射損失を低減できるアンテナ装置を提供する。 The present invention has been made in view of the above problems, and provides an antenna device capable of reducing reflection loss even when using a planar antenna of an electromagnetic coupling feed system.
 本発明の第1の態様は、アンテナ装置であって、第1の誘電体層と、前記第1の誘電体層の第1の表面に配置され、電磁結合用の電極部を備える平板形のパッチアンテナと、前記第1の誘電体層において前記第1の表面と反対側の第2の表面に配置され、前記電極部と対向する位置に、第1の方向に延びる無導体部を構成するスロットが形成された地導体板と、前記地導体板を挟んで前記第1の誘電体層と対向するように前記地導体板に固定された第2の誘電体層と、前記第2の誘電体層を挟んで前記地導体板と対向するように前記第2の誘電体層に形成され、先端部が前記パッチアンテナの法線方向に見て前記第1の方向と交差する第2の方向に延び、前記法線方向に見て前記スロットと交差する位置関係に配置された線状の給電用導体と、を備え、前記スロットは、前記第2の方向において一定の第1の幅を有する第1の開口部と、前記第1の開口部の前記第1の方向の両端部に連通して接続され、前記第1の開口部との接続部近傍で前記第1の幅よりも拡幅された第2の開口部と、を備える。 According to a first aspect of the present invention, there is provided an antenna device comprising: a first dielectric layer; and a flat plate disposed on a first surface of the first dielectric layer and including an electrode portion for electromagnetic coupling. A patch antenna, and a nonconductor portion disposed on a second surface opposite to the first surface in the first dielectric layer, and extending in a first direction at a position facing the electrode portion A ground conductor plate in which a slot is formed, a second dielectric layer fixed to the ground conductor plate so as to face the first dielectric layer with the ground conductor plate interposed therebetween, and the second dielectric layer A second direction formed on the second dielectric layer so as to face the ground conductor plate with a body layer interposed therebetween, and having a tip intersecting with the first direction when viewed in the normal direction of the patch antenna And a linear feed conductor disposed in a positional relationship that intersects the slot when viewed in the normal direction. , And the slot is connected in communication with a first opening having a constant first width in the second direction, and both ends of the first opening in the first direction. And a second opening that is wider than the first width in the vicinity of the connection with the first opening.
 本発明の第2態様は、上記第1態様に係るアンテナ装置において、前記第2の開口部は、前記法線方向から見て、多角形であってもよい。 According to a second aspect of the present invention, in the antenna device according to the first aspect, the second opening may be polygonal as viewed from the normal direction.
 本発明の第3態様は、上記第1態様に係るアンテナ装置において、前記第2の開口部は、前記法線方向から見て、円形であってもよい。 According to a third aspect of the present invention, in the antenna device according to the first aspect, the second opening may be circular as viewed from the normal direction.
 本発明の第4態様は、上記第1~第3態様のいずれか一態様に係るアンテナ装置において、前記給電用導体は、前記法線方向から見て、前記第1の開口部の前記第1の方向における中心を横断しており、前記給電用導体の先端は、前記第1の開口部の前記第2の方向における中心から前記第1の開口部の前記第1の方向の長さに等しい位置に形成されていてもよい。 According to a fourth aspect of the present invention, in the antenna device according to any one of the first to third aspects, the power feeding conductor is the first portion of the first opening when viewed from the normal direction. And the tip of the feeding conductor is equal to the length of the first opening in the first direction from the center of the first opening in the second direction. It may be formed at a position.
 本発明の第5態様は、上記第1~第4態様のいずれか一態様に係るアンテナ装置において、前記第2の方向は、前記第1の方向と直交しており、前記給電用導体の前記先端部は、前記法線方向に見て前記スロットと直交するように配置されてもよい。 According to a fifth aspect of the present invention, in the antenna device according to any one of the first to fourth aspects, the second direction is orthogonal to the first direction, and the power feeding conductor The tip may be arranged to be orthogonal to the slot when viewed in the normal direction.
 上記本発明に係る態様のアンテナ装置によれば、電磁結合給電方式の平面アンテナを用いる場合でも反射損失を低減できる。 According to the antenna apparatus of the aspect which concerns on the said invention, even when using the planar antenna of an electromagnetic coupling feed system, reflective loss can be reduced.
本実施形態のアンテナ装置の一例を示す模式的な分解斜視図である。It is a typical disassembled perspective view showing an example of the antenna device of this embodiment. 本実施形態のアンテナ装置の主要部の構成の一例を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows an example of a structure of the principal part of the antenna apparatus of this embodiment. 本実施形態のアンテナ装置のパッチアンテナの一例を示す模式的な平面図である。It is a schematic plan view which shows an example of the patch antenna of the antenna apparatus of this embodiment. 本実施形態のアンテナ装置における給電用導体とスロットの位置関係を示す模式的な平面図である。It is a schematic plan view which shows the positional relationship of the conductor for electric power feeding in the antenna apparatus of this embodiment, and a slot. 本実施形態のアンテナ装置に用いるスロットの開口形状の一例を示す模式的な平面図である。It is a schematic plan view which shows an example of the opening shape of the slot used for the antenna apparatus of this embodiment. 比較例のアンテナ装置に用いるスロットの開口形状の一例を示す模式的な平面図である。It is a schematic plan view which shows an example of the opening shape of the slot used for the antenna apparatus of a comparative example. 本実施形態のアンテナ装置における全ゲインを示すグラフである。It is a graph which shows the total gain in the antenna apparatus of this embodiment. 本実施形態のアンテナ装置における反射損失(S11)を示すグラフである。It is a graph which shows the reflective loss (S11) in the antenna apparatus of this embodiment. 本実施形態のアンテナ装置におけるアベレージゲインXZ(E面)を示すグラフである。It is a graph which shows the average gain XZ (E surface) in the antenna apparatus of this embodiment. 本実施形態のアンテナ装置におけるアベレージゲインYZ(H面)を示すグラフである。It is a graph which shows the average gain YZ (H surface) in the antenna apparatus of this embodiment. 本実施形態のアンテナ装置のゲインを示す立体グラフである。It is a three-dimensional graph which shows the gain of the antenna apparatus of this embodiment. 本実施形態のアンテナ装置の全ゲインを示すグラフである。It is a graph which shows the total gain of the antenna apparatus of this embodiment. 本実施形態のアンテナ装置のスロット部のS11と比較例のスロット部のS11とを示すグラフである。It is a graph which shows S11 of the slot part of the antenna apparatus of this embodiment, and S11 of the slot part of a comparative example. 本実施形態の第1変形例のアンテナ装置のスロット部の構成を示す模式図である。It is a schematic diagram which shows the structure of the slot part of the antenna apparatus of the 1st modification of this embodiment. 本実施形態の第2変形例のアンテナ装置のスロット部の構成を示す模式図である。It is a schematic diagram which shows the structure of the slot part of the antenna apparatus of the 2nd modification of this embodiment.
 以下では、本発明の実施形態のアンテナ装置について図面を参照して説明する。
 図1は、本実施形態のアンテナ装置の一例を示す模式的な分解斜視図である。図2は、本実施形態のアンテナ装置の主要部の構成の一例を示す模式的な縦断面図である。図3は、本実施形態のアンテナ装置のパッチアンテナの一例を示す模式的な平面図である。図4は、本実施形態のアンテナ装置における給電用導体とスロットの位置関係を示す模式的な平面図である。図5は、本実施形態のアンテナ装置に用いるスロットの開口形状の一例を示す模式的な平面図である。
 各図面は模式図のため、寸法や形状は誇張または簡略化されている(以下の他の図面も同様)。
Hereinafter, an antenna device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic exploded perspective view showing an example of the antenna device of the present embodiment. FIG. 2 is a schematic longitudinal sectional view showing an example of the configuration of the main part of the antenna device of the present embodiment. FIG. 3 is a schematic plan view showing an example of a patch antenna of the antenna device of the present embodiment. FIG. 4 is a schematic plan view showing the positional relationship between the feed conductor and the slot in the antenna device of the present embodiment. FIG. 5 is a schematic plan view showing an example of the opening shape of the slot used in the antenna device of the present embodiment.
Each drawing is a schematic view, and dimensions and shapes are exaggerated or simplified (the same applies to the other drawings below).
 図1に示す本実施形態のアンテナ装置20は、電磁結合給電方式の平面アンテナを備える。例えば、アンテナ装置20は、IoT(Internet of Things)分野における通信、あるいはWiGig(Wireless Gigabit)などの高速無線通信などにおけるアンテナ装置として用いることが可能である。
 図1、2に示すように、アンテナ装置20は、パッチアンテナ1、第1の誘電体層2、地導体板4、第2の誘電体層5、および給電用導体6が、この順に積層されている。
 以下では、積層方向をZ軸方向とし、Z軸方向に直交しかつ互いに直交する2軸方向をX軸方向(第2の方向)、Y軸方向(第1の方向)と称する。ここでの座標系は右手系である。
The antenna device 20 of the present embodiment shown in FIG. 1 includes a planar antenna of an electromagnetic coupling feed system. For example, the antenna device 20 can be used as an antenna device in communication in the IoT (Internet of Things) field or in high-speed wireless communication such as WiGig (Wireless Gigabit).
As shown in FIGS. 1 and 2, in the antenna device 20, the patch antenna 1, the first dielectric layer 2, the ground conductor plate 4, the second dielectric layer 5, and the feeding conductor 6 are stacked in this order. ing.
Hereinafter, the stacking direction is referred to as the Z-axis direction, and biaxial directions orthogonal to the Z-axis direction and orthogonal to each other will be referred to as an X-axis direction (second direction) and a Y-axis direction (first direction). The coordinate system here is right-handed.
 図1に示すように、パッチアンテナ1は、後述する第1の誘電体層2の第1面2a(第1の表面)上に、予め決められた配列パターンに基づいてパターニングされている。パッチアンテナ1および第1面2aの法線方向はZ軸方向である。
 パッチアンテナ1は、後述する給電用導体6から電磁結合給電される平面アンテナである。各パッチアンテナ1の形状は特に限定されない。
 本実施形態では、パッチアンテナ1は、一例として、X軸方向およびY軸方向に並ぶ正方格子状に複数配列されている。具体的には、パッチアンテナ1は8×8の正方格子状に64個配列されている。
 図3に示すように、本実施形態では、各パッチアンテナ1は、一例として、4個の放射素子1aと、各放射素子1aをアレー化するデバイダーである分割回路パターン1dと、を備える。
As shown in FIG. 1, the patch antenna 1 is patterned on a first surface 2a (first surface) of a first dielectric layer 2 described later based on a predetermined arrangement pattern. The normal direction of the patch antenna 1 and the first surface 2a is the Z-axis direction.
The patch antenna 1 is a flat antenna electromagnetically coupled and fed from a feed conductor 6 described later. The shape of each patch antenna 1 is not particularly limited.
In the present embodiment, a plurality of patch antennas 1 are, for example, arranged in the form of a square grid arranged in the X-axis direction and the Y-axis direction. Specifically, 64 patch antennas 1 are arranged in a square grid of 8 × 8.
As shown in FIG. 3, in the present embodiment, each patch antenna 1 includes, as an example, four radiating elements 1 a and a divided circuit pattern 1 d which is a divider for arraying the respective radiating elements 1 a.
 各放射素子1aは、X軸方向およびY軸方向にそれぞれ延びる辺を有する方形に形成されている。各放射素子1aは、X軸方向およびY軸方向に並ぶ略正方格子状である矩形格子状に配列されている。
 分割回路パターン1dは、電磁結合用の電極部1bと、電極部1bと各放射素子1aとを互いに電気的に接続する4本の配線部1cと、を備える。
 電極部1bは、各放射素子1aの配置位置の中心を結ぶ対角線の交点を中心としてX軸方向に延びる矩形に形成されている。電極部1bにおける給電点は、電極部1bの中心部に形成される。
 各配線部1cは、電極部1bの4つの角部におけるY軸方向の側部からそれぞれが接続する放射素子1aに向かって延びている。具体的には、各配線部1cは、それぞれが接続する放射素子1aに向かってY軸方向に延びてから、それぞれが接続する放射素子1aのX軸方向の側部の中央部に対向する位置でX軸方向に向かうように屈曲している。
 このため、各配線部1cの経路長は互いに等しい。
Each of the radiation elements 1a is formed in a rectangular shape having sides extending in the X-axis direction and the Y-axis direction. The respective radiation elements 1a are arranged in a rectangular grid shape which is a substantially square grid arranged in the X-axis direction and the Y-axis direction.
The divided circuit pattern 1 d includes an electrode portion 1 b for electromagnetic coupling, and four wiring portions 1 c that electrically connect the electrode portion 1 b and the radiation elements 1 a to each other.
The electrode portion 1b is formed in a rectangular shape extending in the X-axis direction centering on an intersection of diagonals connecting centers of arrangement positions of the radiation elements 1a. The feeding point in the electrode portion 1b is formed at the center of the electrode portion 1b.
Each wiring portion 1c extends from the side portion in the Y-axis direction at the four corner portions of the electrode portion 1b toward the radiation element 1a connected thereto. Specifically, each wiring portion 1c extends in the Y-axis direction toward the radiation element 1a to which each wiring portion 1c is connected, and then a position facing the central portion of the side portion in the X-axis direction of the radiation element 1a to which each is connected In the direction of the X axis.
Therefore, the path lengths of the wiring portions 1c are equal to one another.
 図3に示すように、このような構成の各パッチアンテナ1は、X軸方向における幅がW、Y軸方向における幅がWの矩形領域の角部に配置されている。
 例えば、60GHz帯の無線通信用途では、W、Wは、それぞれ、4.4mm、4.52mmであってもよい。
 この場合、各放射素子1aのX軸方向における幅WaX、Y軸方向における幅WaYは、それぞれ、1.15mm、1.15mmであってもよい。電極部1bのX軸方向における幅WbX、Y軸方向における幅WbYは、それぞれ、0.8mm、0.4mmであってもよい。各配線部1cの線幅は、0.13mmであってもよい。
 例えば、このようなパッチアンテナ1の4分の1実効長(以下、単に実効長)は、1.15mmになる。
 パッチアンテナ1は、例えば、銅などの金属材料によって形成される。
As shown in FIG. 3, each patch antenna 1 having such a configuration is disposed at a corner of a rectangular area having a width W X in the X-axis direction and a width W Y in the Y-axis direction.
For example, in a 60 GHz band wireless communication application, W x and W y may be 4.4 mm and 4.52 mm, respectively.
In this case, the width W aX in the X-axis direction of the radiating elements 1a, the width in the Y-axis direction W aY, respectively, 1.15 mm, may be 1.15 mm. The width W bX in the X-axis direction of the electrode portion 1 b and the width W bY in the Y-axis direction may be 0.8 mm or 0.4 mm, respectively. The line width of each wiring portion 1c may be 0.13 mm.
For example, the quarter effective length (hereinafter simply referred to as the effective length) of such a patch antenna 1 is 1.15 mm.
The patch antenna 1 is formed of, for example, a metal material such as copper.
 図1、2に示すように、第1の誘電体層2は、必要な放射特性に応じて誘電率、層厚が規定された平板状部材である。第1の誘電体層2は、単層の誘電体であってもよいし、複数の誘電体が貼り合わされていてもよい。単層とするか、複数層とするかは、例えば、材料コストなどを考慮して決められてもよい。
 図2に示す例では、一定の厚さを有する誘電体2Aが、誘電体である樹脂接着層2Bによって接合された場合の例が示されている。第1の誘電体層2における第1面2aと反対側の表面である第2面2b(第2の表面)は、樹脂接着層2Bで構成されている。第2面2bを構成する樹脂接着層2Bは、後述する地導体板4を接合する。
As shown in FIGS. 1 and 2, the first dielectric layer 2 is a flat member having a dielectric constant and a layer thickness defined in accordance with the required radiation characteristics. The first dielectric layer 2 may be a single layer dielectric, or a plurality of dielectrics may be bonded. Whether to use a single layer or multiple layers may be determined in consideration of, for example, the material cost.
The example shown in FIG. 2 shows an example in which the dielectric 2A having a certain thickness is bonded by the resin adhesive layer 2B which is a dielectric. A second surface 2b (second surface), which is a surface opposite to the first surface 2a in the first dielectric layer 2, is formed of a resin adhesive layer 2B. The resin adhesive layer 2B constituting the second surface 2b joins a ground conductor plate 4 described later.
 図1、2に示すように、地導体板4は、各パッチアンテナ1と対向する位置にスロット7が形成された導体の板状部材である。地導体板4は接地されている。
 地導体板4は、第2面2bを構成する樹脂接着層2Bを介して、第1の誘電体層2に固定されている。
As shown in FIGS. 1 and 2, the ground conductor plate 4 is a plate member of a conductor in which slots 7 are formed at positions facing the patch antennas 1. The ground conductor plate 4 is grounded.
The ground conductor plate 4 is fixed to the first dielectric layer 2 via the resin adhesive layer 2B constituting the second surface 2b.
 スロット7は、地導体板4における無導体部である。図3、4に示すように、スロット7は、第1の方向であるY軸方向に延びている。スロット7の開口形状は、パッチアンテナ1のインピーダンスと後述する給電用導体6とのインピーダンス整合をとることが可能な形状である。
 本実施形態におけるスロット7は、図5に示すように、Z軸方向から見て、H字形である。具体的には、スロット7は、矩形の第1の開口部7aと、第1の開口部7aの長手方向(第1の方向)の両端部にそれぞれ形成された第2の開口部7bと、を備える。
 図3に示すように、スロット7の中心(図心)は、パッチアンテナ1における電極部1bの中心(図心)と重なるように配置されている。このため、Z軸方向から見ると、スロット7は、電極部1bと電極部1bの中心で直交し、電極部1bをY軸方向に横断する。
 第1の開口部7aは、信号が通過する通過信号部を構成する。各第2の開口部7bは、通過信号部の両端部におけるインピーダンスを増大させる開口部である。
 スロット7の長手方向(第1の方向)の長さd3は、パッチアンテナ1の実効長に合わせることがより好ましい。
The slot 7 is a nonconductor in the ground conductor plate 4. As shown in FIGS. 3 and 4, the slot 7 extends in the Y-axis direction which is the first direction. The opening shape of the slot 7 is a shape capable of achieving impedance matching between the impedance of the patch antenna 1 and the feeding conductor 6 described later.
The slot 7 in this embodiment is H-shaped as viewed from the Z-axis direction, as shown in FIG. Specifically, the slot 7 has a rectangular first opening 7a and second openings 7b formed at both ends in the longitudinal direction (first direction) of the first opening 7a, Equipped with
As shown in FIG. 3, the center (centre) of the slot 7 is disposed so as to overlap with the center (centre) of the electrode portion 1 b of the patch antenna 1. Therefore, when viewed from the Z-axis direction, the slot 7 is orthogonal to the centers of the electrode portion 1b and the electrode portion 1b, and traverses the electrode portion 1b in the Y-axis direction.
The first opening 7a constitutes a passing signal portion through which a signal passes. Each second opening 7 b is an opening that increases the impedance at both ends of the passing signal portion.
More preferably, the length d3 of the slot 7 in the longitudinal direction (first direction) is adjusted to the effective length of the patch antenna 1.
 第1の開口部7aは、短手方向(第2の方向)であるX軸方向の幅(第1の幅)がW2、長手方向であるY軸方向(第1の方向)の長さがd1(ただし、d1>W2)の矩形に開口している。
 第1の開口部7aの短手方向の幅W2は、例えば、結合インピーダンスを112Ωにするため、0.75mmであることがより好ましい。例えば、パッチアンテナ1のインピーダンスが220Ωの場合、W2は、0.2mmであることがより好ましい。
In the first opening 7a, the width (first width) in the X-axis direction, which is the short side (the second direction), is W2, and the length in the Y-axis direction (the first direction), which is the longitudinal direction, is It is opened in a rectangle of d1 (where d1> W2).
The width W2 in the short direction of the first opening 7a is more preferably 0.75 mm, for example, in order to set the coupling impedance to 112Ω. For example, when the impedance of the patch antenna 1 is 220Ω, W2 is more preferably 0.2 mm.
 各第2の開口部7bは、第1の開口部7aによる結合インピーダンスより大きなインピーダンスを形成するため、第1の開口部7aの短手方向の幅W2から拡幅する形状に設けられる。
 図5に示す例では、各第2の開口部7bは、Y軸方向の長さがd2、X軸方向の幅がW3(ただし、W3>W2)の矩形に開口している。
 例えば、第2の開口部7bにおいて、d2、W3は、それぞれ、0.2mm、0.4mmであってもよい。この場合、第1の開口部7aの長さd1は、0.75mm(=1.15mm-2×0.2mm)である。
Each second opening 7b is provided in a shape that widens from the width W2 in the short direction of the first opening 7a in order to form an impedance larger than the coupling impedance by the first opening 7a.
In the example shown in FIG. 5, each second opening 7b is a rectangle having a length d2 in the Y-axis direction and a width W3 in the X-axis direction (where W3> W2).
For example, in the second opening 7b, d2 and W3 may be 0.2 mm and 0.4 mm, respectively. In this case, the length d1 of the first opening 7a is 0.75 mm (= 1.15 mm-2 × 0.2 mm).
 以上説明したスロット7のより好ましい数値例によれば、電磁結合給電部の結合インピーダンスは、電極部1bの中心部において112Ωである。 According to the more preferable numerical example of the slot 7 described above, the coupling impedance of the electromagnetic coupling feeding portion is 112 Ω at the central portion of the electrode portion 1 b.
 図2に示すように、第2の誘電体層5は、後述する給電用導体6からスロット7を通してパッチアンテナ1に電磁給電できるように、地導体板4と後述する給電用導体6とを一定の絶縁距離だけ離すように設けられている。
 このため、第2の誘電体層5の第1面5aには地導体板4が配置されており、第2の誘電体層5の第2面5bには、後述する給電用導体6が配置されている。
 給電効率を向上するため、第2の誘電体層5の比誘電率εはできるだけ小さいことが好ましい。例えば、第2の誘電体層5の比誘電率εは、1以上2.5以下であることがより好ましい。
 例えば、第2の誘電体層5の比誘電率εが2.2の場合、第2の誘電体層5の層厚は、130μmであることがより好ましい。
As shown in FIG. 2, the second dielectric layer 5 is fixed to the ground conductor plate 4 and the feeding conductor 6 to be described later so that the patch antenna 1 can be electromagnetically fed from the feeding conductor 6 to be described later through the slot 7. It is provided to be separated by the insulation distance of.
For this reason, the ground conductor plate 4 is disposed on the first surface 5 a of the second dielectric layer 5, and the feeding conductor 6 described later is disposed on the second surface 5 b of the second dielectric layer 5. It is done.
In order to improve the feeding efficiency, the relative permittivity 比r of the second dielectric layer 5 is preferably as small as possible. For example, the relative dielectric constant ε r of the second dielectric layer 5 is more preferably 1 or more and 2.5 or less.
For example, when the relative dielectric constant ε r of the second dielectric layer 5 is 2.2, the layer thickness of the second dielectric layer 5 is more preferably 130 μm.
 図2に示すように、給電用導体6は、第2の誘電体層5の第2面5b上にパターニングされている。給電用導体6は、図示略の外部回路と所定のインピーダンスを有する接続路を介して電気的に接続可能である。
 図4に示すように、給電用導体6の先端部には、Z軸方向から見て、各スロット7および各パッチアンテナ1の電極部1bとそれぞれ重なるように形成された複数の先端線路6e(先端部)が形成されている。
 各先端線路6eは、給電用導体6の開放端を構成する線状の導体である。本実施形態では、各先端線路6eは、図5に示すように、Z軸方向から見て、各スロット7の第1の開口部7aの長手方向の中心を通り、X軸方向に延びている。このため、Z軸方向から見て、先端線路6eは、第1の開口部7aと直交するように、第1の開口部7aを横断している。
 先端線路6eの線幅W1は、非常に幅の広い線幅はより多くのロスおよび放射をもたらし、非常に細い線幅は製造が困難であるため、製造および後方放射の最小化が可能になるように決定されている。例えば、先端線路6eの線幅W1は、0.1mmであってもよい。
 第1の開口部7aの中心軸線Oから先端線路6eの先端6fまでの長さ(スタブ長)は、dsである。本実施形態では、リアクタンス成分を合わせるため、スタブ長dsは、第1の開口部7aの長さd1に一致されている。上述のスロット7の数値例の場合、スタブ長dsは、0.75mmである。
As shown in FIG. 2, the feeding conductor 6 is patterned on the second surface 5 b of the second dielectric layer 5. The feed conductor 6 can be electrically connected to an external circuit (not shown) via a connection path having a predetermined impedance.
As shown in FIG. 4, a plurality of tip lines 6e formed on the tip of the feed conductor 6 so as to overlap with the slots 7 and the electrode portions 1b of the patch antennas 1 as viewed from the Z-axis direction The tip portion is formed.
Each tip line 6 e is a linear conductor that constitutes the open end of the feed conductor 6. In the present embodiment, as shown in FIG. 5, each tip end line 6 e extends in the X axis direction, passing through the longitudinal center of the first opening 7 a of each slot 7 when viewed from the Z axis direction. . Therefore, when viewed from the Z-axis direction, the tip end line 6e crosses the first opening 7a so as to be orthogonal to the first opening 7a.
The line width W1 of the tip line 6e is such that a very wide line width leads to more losses and radiation, and a very thin line width makes it difficult to manufacture, thus minimizing production and back radiation It has been decided as such. For example, the line width W1 of the tip end line 6e may be 0.1 mm.
The length (stub length) from the central axis O of the first opening 7a to the end 6f of the end track 6e is ds. In the present embodiment, in order to match the reactance components, the stub length ds is made equal to the length d1 of the first opening 7a. In the case of the numerical example of the above-mentioned slot 7, the stub length ds is 0.75 mm.
 図4に示すように、各先端線路6eは、Y軸方向において隣り合う2本の先端線路6eが、先端6fと反対側の端部において、Y軸方向に延びる第1線路6dによって互いに接続されている。各第1線路6dの線幅は、先端線路6eの線幅W1に等しい。
 X軸方向において隣り合う2本の第1線路6dは、それぞれの長手方向の長さを2等分する位置において、X軸方向に延びる第2線路6cによって互いに接続されている。各第2線路6cの線幅は、長手方向の両端部を除いては、先端線路6eの線幅W1に等しい。
 各第2線路6cにおいて、第1線路6dとの接続部の近傍には、線幅が、W1から段階的に拡幅する拡幅部6bが形成されている。
As shown in FIG. 4, in each of the tip lines 6e, two tip lines 6e adjacent in the Y-axis direction are connected to each other by a first line 6d extending in the Y-axis direction at an end opposite to the tip 6f. ing. The line width of each first line 6d is equal to the line width W1 of the tip line 6e.
The two first lines 6d adjacent to each other in the X-axis direction are connected to each other by a second line 6c extending in the X-axis direction at a position where each of the lengths in the longitudinal direction is equally divided into two. The line width of each second line 6c is equal to the line width W1 of the tip end line 6e except for both ends in the longitudinal direction.
In each of the second lines 6c, in the vicinity of a connection portion with the first line 6d, a widened portion 6b whose line width is widened stepwise from W1 is formed.
 本実施形態における拡幅部6bは、給電用導体6におけるインピーダンスを適正化するように設けられている。例えば、拡幅部6bは、第2線路6cの中間部から端部に向かって、線幅が、W11、W12、W13(ただし、W11<W12<W13)のように3段階に拡幅している。線幅W11、W12、W13のそれぞれの部分の長さは、L11、L12、L13である。
 拡幅部6bの具体的な数値例としては、例えば、線幅W11、W12、W13は、それぞれ、0.12mm、0.22mm、0.3mmであってもよい。例えば、長さL11、L12、L13は、いずれも、0.5mmであってもよい。
The widening portion 6 b in the present embodiment is provided to optimize the impedance of the power supply conductor 6. For example, the line width of the widened portion 6b is widened in three steps such as W11, W12, and W13 (where W11 <W12 <W13) from the middle portion to the end portion of the second line 6c. The length of each portion of the line widths W11, W12, and W13 is L11, L12, and L13.
As a specific numerical example of the widened part 6b, for example, the line widths W11, W12, and W13 may be 0.12 mm, 0.22 mm, and 0.3 mm, respectively. For example, the lengths L11, L12, and L13 may all be 0.5 mm.
 第2線路6cの長手方向の長さを2等分する位置には、拡幅部6bを介して線幅W1の第3線路6aが接続されている。第3線路6aは、X軸方向およびY軸方向に互いに隣り合う4つの先端線路6eの群を、同様にして配線されたY軸方向において隣り合う図示略の4つの先端線路6eの群と接続している。
 このようにして、給電用導体6は、各先端線路6eを対称的な導体パターンの繰り返しによって、ツリー形に接続するように形成されている。
 このため、外部回路との接続部から各先端線路6eに到るまでの給電用導体6のインピーダンスは均等である。
The third line 6a having a line width W1 is connected to a position at which the length in the longitudinal direction of the second line 6c is divided into two equally. The third line 6a connects a group of four tip lines 6e adjacent to each other in the X-axis direction and the Y-axis direction to a group of four tip lines 6e (not shown) adjacent similarly to the Y-axis direction. doing.
In this manner, the feed conductors 6 are formed to connect the respective tip lines 6e in a tree shape by repeating the symmetrical conductor patterns.
For this reason, the impedance of the feed conductor 6 from the connection portion with the external circuit to each tip line 6e is equal.
 このようなアンテナ装置20は、例えば、以下のようにして製造される。
 まず、第2の誘電体層5の第1面5a、第2面5bにそれぞれ導体膜が形成された後、例えば、エッチングなどによって、それぞれ地導体板4、給電用導体6がパターニングされる。さらに、地導体板4上に、誘電体2Aが貼り合わされた第1の誘電体層2が貼り合わせられる。この後、第1の誘電体層2の第1面2aに、導体膜が成膜され、例えば、エッチングなどによって、パッチアンテナ1がパターニングされる。
 第1の誘電体層2にパッチアンテナ1がパターニングされてから、第1の誘電体層2と地導体板4が貼り合わせられてもよい。
Such an antenna device 20 is manufactured, for example, as follows.
First, conductor films are formed on the first surface 5a and the second surface 5b of the second dielectric layer 5, respectively, and then the ground conductor plate 4 and the feeding conductor 6 are respectively patterned by etching or the like. Furthermore, the first dielectric layer 2 to which the dielectric 2A is bonded is bonded onto the ground conductor plate 4. Thereafter, a conductor film is formed on the first surface 2 a of the first dielectric layer 2, and the patch antenna 1 is patterned by, for example, etching or the like.
After the patch antenna 1 is patterned on the first dielectric layer 2, the first dielectric layer 2 and the ground conductor plate 4 may be bonded.
 次に、本実施形態のアンテナ装置20の作用について説明する。
 図6は、比較例のアンテナ装置に用いるスロットの開口形状の一例を示す模式的な平面図である。
Next, the operation of the antenna device 20 of the present embodiment will be described.
FIG. 6 is a schematic plan view showing an example of the opening shape of the slot used in the antenna device of the comparative example.
 アンテナ装置20と対比して説明するための比較例のアンテナ装置120について説明する。
 図6に示すように、比較例のアンテナ装置120は、上記実施形態のアンテナ装置20の地導体板4に代えて、地導体板104を備える。
 地導体板104は、地導体板4のスロット7に代えて、スロット107を備える。
 スロット107は、スロット7と同様な位置に形成されている。ただし、スロット107は、Y軸方向の長さがd3、X軸方向の幅がW2の矩形の開口である。このため、スロット107では、上記実施形態の各第2の開口部7bが削除され、第1の開口部7aの長さがd3に延長された場合と同様の形状である。
An antenna device 120 of a comparative example to be described in comparison with the antenna device 20 will be described.
As shown in FIG. 6, the antenna device 120 of the comparative example includes a ground conductor plate 104 instead of the ground conductor plate 4 of the antenna device 20 of the above embodiment.
The ground conductor plate 104 is provided with a slot 107 instead of the slot 7 of the ground conductor plate 4.
The slot 107 is formed at the same position as the slot 7. However, the slot 107 is a rectangular opening having a length d3 in the Y-axis direction and a width W2 in the X-axis direction. For this reason, in the slot 107, each second opening 7b of the above embodiment is deleted, and the length of the first opening 7a is extended to d3.
 アンテナ装置においては、効率的な送受信を行うため、外部回路との接続路のインピーダンスとインピーダンス整合をとる必要がある。
 アンテナ装置20において、給電用導体6は、インピーダンスを整合させるため、配線パターン、線幅などが上述のような構成であることによって、インピーダンスが適正化されている。同様な給電用導体6を備える比較例のアンテナ装置120もこの点は同様である。
In the antenna device, in order to perform efficient transmission and reception, it is necessary to perform impedance matching with the impedance of the connection path with the external circuit.
In the antenna device 20, in order to match the impedance of the feed conductor 6, the impedance is optimized by the wiring pattern, the line width, and the like as described above. The antenna device 120 of the comparative example provided with the similar feed conductor 6 is also similar in this point.
 さらに、先端線路6eからパッチアンテナ1の電極部1bまでの電磁結合給電部における結合インピーダンスも整合がとられる必要がある。
 本実施形態では、地導体板4におけるスロット7の第1の開口部7aの配置および開口形状が適正化されることと、スロット7に第2の開口部7bが設けられることと、先端線路6eのスタブ長であるdsが適正化されること、とによって、結合インピーダンスの整合がとられている。
 特に、第1の開口部7aの両端部において拡幅された第2の開口部7bが設けられることによって、第1の開口部7aの両端部の外側に、高インピーダンスの領域が形成される。このため、第1の開口部7aにおいて、効率的に信号が通過するため、全体として反射損失が低減される。
Furthermore, it is necessary to match the coupling impedance in the electromagnetic coupling feeding portion from the tip line 6e to the electrode portion 1b of the patch antenna 1 as well.
In the present embodiment, the arrangement and shape of the first opening 7a of the slot 7 in the ground conductor plate 4 are optimized, the second opening 7b is provided in the slot 7, and the tip end line 6e The coupling impedance is matched by optimizing the stub length ds.
In particular, by providing the expanded second openings 7b at both ends of the first opening 7a, high impedance regions are formed outside the both ends of the first opening 7a. Therefore, in the first opening 7a, the signal passes efficiently, so that the reflection loss as a whole is reduced.
 これに対して、比較例のアンテナ装置120のスロット107は、長手方向の両端部に高インピーダンスの領域を備えていない。このため、スロット107の長手方向の両端部では、インピーダンスが200Ωである。これに対して本実施形態では、第2開口部7bによってスロット7の両端部のインピーダンスが200Ωよりも高い。
 この結果、比較例のアンテナ装置120の反射損失は、本実施形態のアンテナ装置20に比べると大きくなる。
On the other hand, the slot 107 of the antenna device 120 of the comparative example does not have high impedance regions at both ends in the longitudinal direction. Therefore, the impedance is 200Ω at both ends in the longitudinal direction of the slot 107. On the other hand, in the present embodiment, the impedance at both ends of the slot 7 is higher than 200 Ω by the second opening 7 b.
As a result, the reflection loss of the antenna device 120 of the comparative example is larger than that of the antenna device 20 of the present embodiment.
 次に、数値シミュレーションによって検討したアンテナ装置20の特性について説明する。
 図7は、本実施形態のアンテナ装置における全ゲインを示すグラフである。図8は、本実施形態のアンテナ装置における反射損失(S11)を示すグラフである。図9は、本実施形態のアンテナ装置におけるアベレージゲインXZ(E面)を示すグラフである。図10は、本実施形態のアンテナ装置におけるアベレージゲインYZ(H面)を示すグラフである。図11は、本実施形態のアンテナ装置のゲインを示す立体グラフである。図12は、本実施形態のアンテナ装置の全ゲインを示すグラフである。図13は、本実施形態のアンテナ装置のスロット部のS11と比較例のスロット部のS11とを示すグラフである。
Next, the characteristics of the antenna device 20 examined by numerical simulation will be described.
FIG. 7 is a graph showing the total gain in the antenna device of the present embodiment. FIG. 8 is a graph showing the reflection loss (S11) in the antenna device of the present embodiment. FIG. 9 is a graph showing the average gain XZ (E plane) in the antenna device of the present embodiment. FIG. 10 is a graph showing the average gain YZ (H plane) in the antenna device of the present embodiment. FIG. 11 is a three-dimensional graph showing the gain of the antenna device of the present embodiment. FIG. 12 is a graph showing the total gain of the antenna device of the present embodiment. FIG. 13 is a graph showing S11 of the slot portion of the antenna device of the present embodiment and S11 of the slot portion of the comparative example.
 以下の数値シミュレーションにおける具体的な数値は、上記実施形態において、例示された数値が用いられている。
 図7には、XZ面およびYZ面の全ゲインのシミュレーション結果が示されている。図7において、横軸は仰角θ(度)、縦軸はゲイン(dBi)である。図7において、曲線200(破線)はXZ面における全ゲインを、曲線201(実線)はYZ面における全ゲインを表す。XZ面は電気面(E面)であり、YZ面は磁気面(H面)である。
 図7における曲線200,201に示されたように、アンテナ装置20では、仰角0度~±4度の範囲において、XZ面およびYZ面とも良好な全ゲインが得られている。
The specific numerical values in the following numerical simulation use the numerical values exemplified in the above embodiment.
FIG. 7 shows simulation results of all gains in the XZ plane and the YZ plane. In FIG. 7, the horizontal axis is the elevation angle θ (degrees), and the vertical axis is the gain (dBi). In FIG. 7, a curve 200 (broken line) represents the total gain in the XZ plane, and a curve 201 (solid line) represents the total gain in the YZ plane. The XZ plane is an electric plane (E plane), and the YZ plane is a magnetic plane (H plane).
As shown by the curves 200 and 201 in FIG. 7, in the antenna device 20, good overall gain is obtained in both the XZ plane and the YZ plane in the range of the elevation angle of 0 ° to ± 4 °.
 図8には、反射損失(S11)の周波数特性が示されている。図8において、横軸は周波数(GHz)、縦軸は反射損失(dB)である。
 図8において曲線203に示されるように、約56GHzから約64GHzまでの範囲において、反射損失が-10dB以下である。このため、アンテナ装置20は、60GHz帯の無線通信用途において良好な反射損失特性を有する。
FIG. 8 shows the frequency characteristics of the reflection loss (S11). In FIG. 8, the horizontal axis is frequency (GHz) and the vertical axis is reflection loss (dB).
As shown by the curve 203 in FIG. 8, the reflection loss is −10 dB or less in the range of about 56 GHz to about 64 GHz. For this reason, the antenna device 20 has a good return loss characteristic in a 60 GHz band wireless communication application.
 図9,10にはアベレージゲインのシミュレーション結果が示されている。図9にはXZ面のアベレージゲインが、図9にはYZ面のアベレージゲインがそれぞれ示されている。図9,10において、横軸は仰角θ(度)、縦軸はゲイン(dBi)である。
 図9,10において、実線で示す曲線204、206は共偏波成分のゲインを、破線で示す曲線205、207は交差偏波成分のゲインを表す。
 図9,10によれば、XZ面においても、YZ面においても、ほぼ同様なアベレージゲイン特性を有する。このため、双方向利得の変化がない。
9 and 10 show simulation results of the average gain. FIG. 9 shows the average gain of the XZ plane, and FIG. 9 shows the average gain of the YZ plane. 9 and 10, the horizontal axis is the elevation angle θ (degrees), and the vertical axis is the gain (dBi).
In FIGS. 9 and 10, curves 204 and 206 indicated by solid lines represent gains of co-polarization components, and curves 205 and 207 indicated by broken lines represent gains of cross-polarization components.
According to FIGS. 9 and 10, almost the same average gain characteristics are obtained in both the XZ plane and the YZ plane. Therefore, there is no change in bidirectional gain.
 図11には上述の各グラフの元となったゲインのシミュレーション結果の立体グラフが示されている。
 さらに、図12には、図8に対応する周波数領域における全ゲイン(dBi)が示されている。図12における曲線208によれば、約58GHzから約64GHzの間で、約25dBiの安定したゲインが得られている。
FIG. 11 shows a three-dimensional graph of the simulation result of the gain which is the basis of each of the graphs described above.
Furthermore, FIG. 12 shows the total gain (dBi) in the frequency domain corresponding to FIG. According to a curve 208 in FIG. 12, a stable gain of about 25 dBi is obtained between about 58 GHz and about 64 GHz.
 図13には、実施形態のアンテナ装置20と、比較例のアンテナ装置120とにおける、それぞれのスロット部の反射損失S11のシミュレーション結果が示されている。図13において、横軸は周波数(GHz)、縦軸は反射損失S11(dB)である。曲線209(実線)はアンテナ装置20のスロット部のS11を表し、曲線210(破線)はアンテナ装置120のスロット部のS11を表す。
 図13に示すように、S11が-10dB以下の範囲は、曲線209では、58.8GHzから63.5GHzであるのに対して、曲線210では、60GHzから62.5GHzである。このため、S11が良好となる周波数帯域は、比較例に比べて本実施形態では約2倍である。
 この原因は、本実施形態のアンテナ装置20では、スロット7が、第2の開口部7bを備えるH字の開口形状を有するのに対して、比較例のアンテナ装置120では、スロット107が矩形であるためと考えられる。
FIG. 13 shows simulation results of the reflection loss S11 of the respective slot portions in the antenna device 20 of the embodiment and the antenna device 120 of the comparative example. In FIG. 13, the horizontal axis is frequency (GHz) and the vertical axis is reflection loss S11 (dB). A curve 209 (solid line) represents S11 of the slot portion of the antenna device 20, and a curve 210 (dashed line) represents S11 of the slot portion of the antenna device 120.
As shown in FIG. 13, the range in which S11 is −10 dB or less is 58.8 GHz to 63.5 GHz in the curve 209, while it is 60 GHz to 62.5 GHz in the curve 210. For this reason, the frequency band in which S11 is good is about twice in this embodiment as compared with the comparative example.
The cause of this is that, in the antenna device 20 of the present embodiment, the slot 7 has an H-shaped opening shape including the second opening 7 b, while in the antenna device 120 of the comparative example, the slot 107 is rectangular. It is thought that there is.
 以上説明したように、本実施形態のアンテナ装置20によれば、電磁結合給電方式の平面アンテナを用いる場合でも反射損失を低減できる。 As described above, according to the antenna device 20 of the present embodiment, the reflection loss can be reduced even in the case of using the planar antenna of the electromagnetic coupling feeding system.
(第1変形例)
 本実施形態のアンテナ装置20の第1変形例について説明する。
 図14は、本実施形態の第1変形例のアンテナ装置のスロット部の構成を示す模式図である。
(First modification)
A first modified example of the antenna device 20 of the present embodiment will be described.
FIG. 14 is a schematic view showing the configuration of the slot portion of the antenna device of the first modified example of the present embodiment.
 図1に示すように、本変形例のアンテナ装置30は、上記実施形態における地導体板4に代えて、地導体板34を備える。図14に示すように、地導体板34は、上記実施形態におけるスロット7に代えてスロット37を備える。
 以下、上記実施形態と異なる点を中心に説明する。
As shown in FIG. 1, the antenna device 30 of the present modification includes a ground conductor plate 34 instead of the ground conductor plate 4 in the above embodiment. As shown in FIG. 14, the ground conductor plate 34 is provided with slots 37 instead of the slots 7 in the above embodiment.
Hereinafter, differences from the above embodiment will be mainly described.
 スロット37は、上記実施形態の第2の開口部7bに代えて、Z軸方向から見てほぼ三角形(厳密には台形)の第2の開口部37bを備える。
 各第2の開口部37bでは、X軸方向における開口幅が、第1の開口部7aのY軸方向における各端部から、第1の開口部7aの中心から遠ざかるにしたがって漸次拡幅している。各第2の開口部37bのX軸方向における幅は、W2からW33(ただし、W33>W2)まで拡がっている。各第2の開口部37bにおけるY軸方向の先端は、中心軸線Oに直交する直線状である。
 各第2の開口部37bの形状は、中心軸線Oに関して非対称でもよいが、本変形例では、一例として、中心軸線Oに関して線対称である。
The slot 37 has a substantially triangular (strictly trapezoidal) second opening 37b as viewed in the Z-axis direction, instead of the second opening 7b of the above embodiment.
In each second opening 37b, the width of the opening in the X-axis direction gradually widens from each end of the first opening 7a in the Y-axis direction as the distance from the center of the first opening 7a increases. . The width in the X-axis direction of each second opening 37b is expanded from W2 to W33 (where W33> W2). The tip in the Y-axis direction in each of the second openings 37 b has a linear shape orthogonal to the central axis O.
The shape of each second opening 37 b may be asymmetrical with respect to the central axis O, but in the present variation, as an example, the shape is axisymmetrical with respect to the central axis O.
 上記のようにアンテナ装置30は、第2の開口部37bがZ軸方向から見てほぼ三角形であり、上記実施形態におけるスロット7の第2の開口部7bのように矩形でない点が上記実施形態とは異なる。しかし、第2の開口部37bは、第1の開口部7aの幅よりもX軸方向に拡幅されているため、第2の開口部7bと同様、第1の開口部7aよりも高インピーダンスの開口部である。
 このため、アンテナ装置30は、上記実施形態と同様に、電磁結合給電部の結合インピーダンスを適正化でき、電磁結合給電方式の平面アンテナを用いる場合でも反射損失を低減できる。
As described above, in the antenna device 30, the second embodiment is substantially triangular as viewed from the Z-axis direction in the second opening 37b, and is not rectangular as in the second opening 7b of the slot 7 in the above embodiment. It is different from However, since the second opening 37b is wider in the X-axis direction than the width of the first opening 7a, like the second opening 7b, the second opening 37b has a higher impedance than the first opening 7a. It is an opening.
For this reason, the antenna device 30 can optimize the coupling impedance of the electromagnetic coupling feeding portion as in the above embodiment, and can reduce the reflection loss even when using the planar antenna of the electromagnetic coupling feeding system.
(第2変形例)
 本実施形態のアンテナ装置20の第2変形例について説明する。
 図15は、本実施形態の第2変形例のアンテナ装置のスロット部の構成を示す模式図である。
(2nd modification)
A second modified example of the antenna device 20 of the present embodiment will be described.
FIG. 15 is a schematic view showing the configuration of the slot portion of the antenna device of the second modified example of the present embodiment.
 図1に示すように、本変形例のアンテナ装置40は、上記実施形態における地導体板4に代えて、地導体板44を備える。図15に示すように、地導体板44は、上記実施形態におけるスロット7に代えてスロット47を備える。
 以下、上記実施形態と異なる点を中心に説明する。
As shown in FIG. 1, the antenna device 40 of the present modification includes a ground conductor plate 44 in place of the ground conductor plate 4 in the above embodiment. As shown in FIG. 15, the ground conductor plate 44 is provided with slots 47 instead of the slots 7 in the above embodiment.
Hereinafter, differences from the above embodiment will be mainly described.
 スロット47は、上記実施形態の第2の開口部7bに代えて、Z軸方向から見てほぼ円形(厳密には中心角が180°より大きい円弧状)の第2の開口部47bを備える。
 第2の開口部47bの内径は、W43(ただし、W43>W2)である。このため、第2の開口部47bでは、X軸方向における開口幅が、第1の開口部7aのY軸方向における各端部から第1の開口部7aの中心から遠ざかるにしたがって幅がW43になるまで漸次拡幅し、そこからは、第1の開口部7aの中心から遠ざかるにしたがって漸次縮幅している。
The slot 47 includes a second opening 47b substantially circular (strictly speaking, an arc shape having a central angle larger than 180 °) as viewed from the Z-axis direction, instead of the second opening 7b of the above embodiment.
The inner diameter of the second opening 47b is W43 (where W43> W2). Therefore, in the second opening 47b, the opening width in the X-axis direction becomes W43 as the distance from each end of the first opening 7a in the Y-axis direction to the center of the first opening 7a increases. The width gradually increases until it becomes smaller, and from there, the width gradually narrows as it goes away from the center of the first opening 7a.
 上記のようにアンテナ装置40は、第2の開口部47bがZ軸方向から見てほぼ円形であり、上記実施形態におけるスロット7の第2の開口部7bのように矩形でない点が異なる。しかし、第2の開口部47bは、第1の開口部7aの幅よりもX軸方向に拡幅されているため、第2の開口部7bと同様、第1の開口部7aよりも高インピーダンスの開口部である。
 このため、アンテナ装置40は、上記実施形態と同様に、電磁結合給電部の結合インピーダンスを適正化でき、電磁結合給電方式の平面アンテナを用いる場合でも反射損失を低減できる。
As described above, the antenna device 40 is different in that the second opening 47 b is substantially circular when viewed from the Z-axis direction, and is not rectangular as the second opening 7 b of the slot 7 in the above embodiment. However, since the second opening 47b is wider in the X-axis direction than the width of the first opening 7a, the impedance of the second opening 47b is higher than that of the first opening 7a as in the second opening 7b. It is an opening.
For this reason, the antenna device 40 can optimize the coupling impedance of the electromagnetic coupling feeding portion as in the above embodiment, and can reduce the reflection loss even when using the planar antenna of the electromagnetic coupling feeding system.
 上記実施形態および各変形例の説明では、Z軸方向から見た第2の開口部の開口形状が、それぞれ四角形、三角形、円形の場合の例で説明した。しかし、第2の開口部は、第1の開口部との接続部から第1の開口部よりも拡幅するように形成されていれば、他の形状であってもよい。例えば、第2の開口部の開口形状としては、五角形以上の多角形、楕円形などであってもよい。例えば、第2の開口部の開口形状としては、適宜の多角形の辺が、凹または凸の曲線に置換された開口形状であってもよい。例えば、第2の開口部の開口形状としては、種々の直線または曲線の組み合わせによって、第1の開口部から拡幅する拡幅部と拡幅部から縮幅する縮幅部とを備える開口形状であってもよい。 In the description of the above embodiment and each modification, the example of the case where the opening shape of the second opening viewed from the Z-axis direction is a quadrangle, a triangle, or a circle has been described. However, the second opening may have another shape as long as it is formed to be wider than the first opening from the connection with the first opening. For example, the opening shape of the second opening may be a pentagon or more polygon, an oval, or the like. For example, the opening shape of the second opening may be an opening shape in which the sides of an appropriate polygon are replaced with a concave or convex curve. For example, the opening shape of the second opening is an opening shape including a widening portion widening from the first opening and a narrowing portion narrowing from the widening portion by a combination of various straight lines or curves. It is also good.
 上記実施形態の説明では、4つの放射素子1aが略正方格子状の矩形格子状に配列されてパッチアンテナ1が形成され、さらにパッチアンテナ1が正方格子状に配列される場合の例で説明した。
 しかし、4つの放射素子1aは第1の方向と第2の方向とにおける配列ピッチがより大きく異なる矩形格子状に配列されていてもよい。同様に、パッチアンテナ1も正方格子状の配列には限定されず、矩形格子状に配列されていてもよい。
In the description of the above embodiment, the four radiating elements 1a are arranged in a rectangular grid having a substantially square grid to form the patch antenna 1, and the patch antenna 1 is further arranged in the square grid. .
However, the four radiation elements 1a may be arranged in a rectangular grid shape in which the arrangement pitch in the first direction and the second direction is largely different. Similarly, the patch antenna 1 is not limited to the square lattice arrangement, and may be arranged in a rectangular lattice arrangement.
 上記実施形態および各変形例の説明では、給電用導体の先端部とスロットとが法線方向から見て直交する場合の例で説明したが、給電用導体の先端部とスロットとは法線方向から見て互いに交差していれば、交差角度は直角には限定されない。 In the above embodiment and each modification, the tip of the feeding conductor and the slot are orthogonal to each other as viewed in the normal direction, but the tip of the feeding conductor and the slot are in the normal direction. The crossing angles are not limited to right angles as long as they cross each other as seen from the figure.
 以上、本発明の好ましい実施形態を説明したが、本発明はこの実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 また、本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this embodiment. Additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the spirit of the present invention.
Further, the present invention is not limited by the above description, and is limited only by the appended claims.
1…パッチアンテナ,1a…放射素子,1b…電極部,2…第1の誘電体層,2a…第1面(第1の表面),2b…第2面(第2の表面),4、34、44…地導体板,5…第2の誘電体層,6…給電用導体,6b…拡幅部,6e…先端線路(先端部),6f…先端,7、37、47…スロット,7a…第1の開口部,7b、37b、47b…第2の開口部,20、30、40…アンテナ装置 DESCRIPTION OF SYMBOLS 1 ... patch antenna, 1a ... radiation | emission element, 1b ... electrode part, 2 ... 1st dielectric material layer, 2a ... 1st surface (1st surface), 2b ... 2nd surface (2nd surface), 4, 34, 44: Ground conductor plate, 5: Second dielectric layer, 6: Feeding conductor, 6b: Widening portion, 6e: Tip line (tip portion), 6f: Tip, 7, 37, 47: Slot, 7a ... First opening, 7b, 37b, 47b ... Second opening, 20, 30, 40 ... Antenna device

Claims (5)

  1.  第1の誘電体層と、
     前記第1の誘電体層の第1の表面に配置され、電磁結合用の電極部を備える平板形のパッチアンテナと、
     前記第1の誘電体層において前記第1の表面と反対側の第2の表面に配置され、前記電極部と対向する位置に、第1の方向に延びる無導体部を構成するスロットが形成された地導体板と、
     前記地導体板を挟んで前記第1の誘電体層と対向するように前記地導体板に固定された第2の誘電体層と、
     前記第2の誘電体層を挟んで前記地導体板と対向するように前記第2の誘電体層に形成され、先端部が前記パッチアンテナの法線方向に見て前記第1の方向と交差する第2の方向に延び、前記法線方向に見て前記スロットと交差する位置関係に配置された線状の給電用導体と、
    を備え、
     前記スロットは、
     前記第2の方向において一定の第1の幅を有する第1の開口部と、
     前記第1の開口部の前記第1の方向の両端部に連通して接続され、前記第1の開口部との接続部近傍で前記第1の幅よりも拡幅された第2の開口部と、を備える、アンテナ装置。
    A first dielectric layer,
    A flat patch antenna disposed on a first surface of the first dielectric layer and including an electrode portion for electromagnetic coupling;
    A slot is formed which is disposed on the second surface opposite to the first surface in the first dielectric layer and which constitutes a nonconductor extending in the first direction at a position facing the electrode portion. Ground conductor plate,
    A second dielectric layer fixed to the ground conductor plate so as to face the first dielectric layer with the ground conductor plate interposed therebetween;
    The second dielectric layer is formed on the second dielectric layer so as to face the ground conductor plate with the second dielectric layer interposed therebetween, and the tip portion intersects the first direction when viewed in the normal direction of the patch antenna A linear feed conductor disposed in a positional relationship which extends in a second direction and intersects the slot when viewed in the normal direction;
    Equipped with
    The slot is
    A first opening having a constant first width in the second direction;
    A second opening which is connected in communication with both ends of the first opening in the first direction and which is wider than the first width in the vicinity of a connection with the first opening; And an antenna device.
  2.  前記第2の開口部は、前記法線方向から見て、多角形である、
    請求項1に記載のアンテナ装置。
    The second opening is a polygon when viewed from the normal direction.
    The antenna device according to claim 1.
  3.  前記第2の開口部は、前記法線方向から見て、円形である、
    請求項1に記載のアンテナ装置。
    The second opening is circular when viewed from the normal direction.
    The antenna device according to claim 1.
  4.  前記給電用導体は、前記法線方向から見て、前記第1の開口部の前記第1の方向における中心を横断しており、
     前記給電用導体の先端は、前記第1の開口部の前記第2の方向における中心から前記第1の開口部の前記第1の方向の長さに等しい位置に形成されている、
    請求項1~3のいずれか1項に記載のアンテナ装置。
    The feed conductor crosses the center of the first opening in the first direction when viewed from the normal direction,
    The tip of the power supply conductor is formed at a position equal to the length of the first opening in the first direction from the center of the first opening in the second direction.
    The antenna device according to any one of claims 1 to 3.
  5.  前記第2の方向は、前記第1の方向と直交しており、
     前記給電用導体の前記先端部は、前記法線方向に見て前記スロットと直交するように配置されている、
    請求項1~4のいずれか1項に記載のアンテナ装置。
    The second direction is orthogonal to the first direction,
    The tip end of the feeding conductor is disposed to be orthogonal to the slot when viewed in the normal direction.
    The antenna device according to any one of claims 1 to 4.
PCT/JP2018/032371 2017-09-21 2018-08-31 Antenna device WO2019058932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-181338 2017-09-21
JP2017181338A JP2019057831A (en) 2017-09-21 2017-09-21 Antenna device

Publications (1)

Publication Number Publication Date
WO2019058932A1 true WO2019058932A1 (en) 2019-03-28

Family

ID=65810228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032371 WO2019058932A1 (en) 2017-09-21 2018-08-31 Antenna device

Country Status (2)

Country Link
JP (1) JP2019057831A (en)
WO (1) WO2019058932A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262384A1 (en) * 2019-06-25 2020-12-30 京セラ株式会社 Antenna, wireless communication module, and wireless communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232626A (en) * 1993-02-02 1994-08-19 A T R Koudenpa Tsushin Kenkyusho:Kk Slot coupling type microstrip antenna
JP2002033617A (en) * 2001-06-01 2002-01-31 Mitsubishi Electric Corp Feeder system
JP2008048090A (en) * 2006-08-14 2008-02-28 Ntt Docomo Inc Patch antenna
JP2008306552A (en) * 2007-06-08 2008-12-18 Fujikura Ltd Transparent antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232626A (en) * 1993-02-02 1994-08-19 A T R Koudenpa Tsushin Kenkyusho:Kk Slot coupling type microstrip antenna
JP2002033617A (en) * 2001-06-01 2002-01-31 Mitsubishi Electric Corp Feeder system
JP2008048090A (en) * 2006-08-14 2008-02-28 Ntt Docomo Inc Patch antenna
JP2008306552A (en) * 2007-06-08 2008-12-18 Fujikura Ltd Transparent antenna

Also Published As

Publication number Publication date
JP2019057831A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6129857B2 (en) Dual-polarized antenna
US9698487B2 (en) Array antenna
WO2017150054A1 (en) Array antenna
US7106256B2 (en) Antenna device
JP4891698B2 (en) Patch antenna
US20120062437A1 (en) Antenna system with planar dipole antennas and electronic apparatus having the same
JPH07307612A (en) Plane antenna
US6091366A (en) Microstrip type antenna device
WO2016047779A1 (en) Antenna array, wireless communication apparatus, and method for making antenna array
JP2009188895A (en) Antenna device
JP5523992B2 (en) Omnidirectional antenna device and array antenna device
JP5139919B2 (en) Cross dipole antenna
WO2019058932A1 (en) Antenna device
US11108166B2 (en) Antenna device
US11223132B2 (en) Antenna device
KR101554911B1 (en) 1/4 wavelength slot antenna
JP3764289B2 (en) Microstrip antenna
KR20130087144A (en) Slot antenna apparatus and providing method thereof
TW202131551A (en) Antenna structure
JP7485452B2 (en) Wideband Omnidirectional Antenna
JP6398653B2 (en) Patch antenna
JP6201651B2 (en) Antenna device and array antenna device
US20230361474A1 (en) Microstrip Antenna
WO2022059445A1 (en) Antenna device
JP7209152B2 (en) Antenna array that suppresses lateral radiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858393

Country of ref document: EP

Kind code of ref document: A1