WO2019058747A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2019058747A1
WO2019058747A1 PCT/JP2018/027670 JP2018027670W WO2019058747A1 WO 2019058747 A1 WO2019058747 A1 WO 2019058747A1 JP 2018027670 W JP2018027670 W JP 2018027670W WO 2019058747 A1 WO2019058747 A1 WO 2019058747A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
peripheral
liquid film
organic solvent
unit
Prior art date
Application number
PCT/JP2018/027670
Other languages
French (fr)
Japanese (ja)
Inventor
博史 阿部
学 奥谷
喬 太田
直彦 吉原
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019058747A1 publication Critical patent/WO2019058747A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate with a processing liquid.
  • Substrates to be processed include, for example, substrates for FPD (Flat Panel Display) such as semiconductor wafers, liquid crystal displays and organic EL (Electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks. , Photomask substrates, ceramic substrates, solar cell substrates, and the like.
  • a single wafer processing type substrate processing apparatus which processes substrates one by one supplies a processing solution to a surface of a spin chuck which rotates a substrate while holding the substrate substantially horizontally, and a surface of the substrate which is rotated by the spin chuck. And a nozzle for
  • a chemical solution is supplied to a substrate held by a spin chuck. Thereafter, the rinse liquid is supplied to the substrate, whereby the chemical solution on the substrate is replaced with the rinse liquid. Thereafter, a spin dry process is performed to remove the rinse solution on the substrate. In the spin dry process, the substrate is rotated at a high speed, and the rinse solution adhering to the substrate is shaken off and removed (dried). A common rinse solution is deionized water.
  • Patent Document 2 and Patent Document 3 disclose a technique for favorably removing a liquid film on a substrate. Specifically, an organic solvent is supplied to the upper surface of the substrate held horizontally to form a liquid film of the organic solvent covering the entire upper surface of the substrate. Then, the substrate is heated to evaporate the organic solvent in contact with the upper surface of the substrate, thereby forming a gas phase layer between the upper surface of the substrate and the organic solvent liquid film. After the gas phase layer is formed, the liquid film on the substrate is sprayed with an inert gas at a low flow rate to puncture the liquid film. Then, by heating the substrate, the holes of the liquid film are expanded toward the outer periphery of the substrate. Furthermore, the liquid film is moved on the gas phase layer by blowing a large flow of inert gas to the area in the hole of the liquid film. Thereafter, the substrate is rotated at a low speed to shake off the liquid film at the peripheral portion.
  • the central portion of the substrate from which the liquid film has been removed by spraying the gas has a smaller heat capacity than the peripheral portion where the liquid film remains, so the temperature rises relatively.
  • the peripheral portion where the liquid film remains is difficult to raise in temperature above the boiling point of the liquid film because the liquid film remains.
  • the substrate may be warped.
  • the substrate may be warped in a concave shape. In such a case, the temperature of the peripheral portion is lowered, which may make it difficult to completely remove the organic solvent on the substrate.
  • an object of this invention is to provide the technique which suppresses the curvature of a board
  • a processing liquid is supplied to a plurality of chuck members which are displaced between a gripping state in which the peripheral edge of the substrate is gripped and a releasing state in which gripping is released, and the upper surface of the substrate gripped by the plurality of chuck members.
  • a processing liquid supply unit a heating unit disposed below the substrate held by the plurality of chuck members and heating the substrate, and a contact / separation unit that brings the heating unit into and out of contact with the lower surface of the substrate
  • a liquid film removing unit for removing the liquid film formed on the upper surface of the substrate with the plurality of chuck units released and the heating unit being in contact with the lower surface from the center to the periphery of the substrate;
  • a peripheral contact portion that is in contact with the peripheral edge of the substrate from which the liquid film has been removed by the film removal unit.
  • a 2nd aspect is a substrate processing apparatus of a 1st aspect, Comprising:
  • the said periphery contact part contains the contact part which contacts the upper surface of the peripheral part of the said board
  • a third aspect is the substrate processing apparatus according to the second aspect, further comprising an elastic member connected to the contact portion and elastically deformable in the vertical direction.
  • a fourth aspect is the substrate processing apparatus according to the second or third aspect, wherein the lower portion of the contact portion in contact with the substrate is formed of an elastic material.
  • a fifth aspect is the substrate processing apparatus according to any one of the first aspect to the fourth aspect, wherein the peripheral edge contact portion is in contact with a peripheral edge portion of the substrate, and the peripheral portion of the substrate And a circumferential abutment drive unit for moving between the first position and the second position.
  • a sixth aspect is the substrate processing apparatus according to any one of the first aspect to the fifth aspect, wherein the peripheral edge contact portion further includes a peripheral end surface contact portion contacting the peripheral end surface of the substrate.
  • a seventh aspect is the substrate processing apparatus according to any one of the first aspect to the sixth aspect, wherein the contact / separation unit holds the substrate on the chuck member by moving the heating unit upward. Move to the upper position above the position where
  • the eighth aspect is a substrate processing apparatus, comprising: a heating unit for heating the substrate while being in contact with the lower surface of the substrate having the liquid film of the processing liquid formed on the upper surface; and the upper surface of the substrate heated by the heating unit And a warpage suppressing portion suppressing warpage of the substrate from which the liquid film has been removed by the liquid film removing portion.
  • a ninth aspect is a substrate processing method for processing a substrate, comprising: (a) heating while bringing a heating unit into contact with the lower surface of the substrate having the liquid film of the processing liquid formed on the upper surface; Removing the liquid film formed on the upper surface of the substrate heated by the heating unit from the center to the periphery of the substrate, and (c) suppressing the warp of the substrate from which the liquid film is removed in the step (b) And the step of
  • the substrate processing apparatus of the first aspect when the liquid film is removed from the center to the periphery of the substrate, the substrate contact is caused to contact the periphery of the substrate. It can be suppressed by touching. Thereby, since the temperature fall of the periphery of a board
  • substrate can be suppressed, the process liquid on a substrate can be removed suitably.
  • the contact portion is in contact with the upper surface of the substrate, the warpage of the peripheral portion of the substrate to the upper side can be suppressed.
  • the contact portion can be flexibly brought into contact with the upper surface of the peripheral portion of the substrate. For this reason, the impact given to the peripheral part of a board
  • the substrate processing apparatus of the fourth aspect since the lower portion of the contact portion in contact with the peripheral portion of the substrate is formed of an elastic material, the impact applied to the peripheral portion of the substrate can be reduced. This can suppress breakage of the peripheral portion.
  • the peripheral contact portion is prevented from interfering with the substrate when the substrate is carried in or out from the substrate holding portion by retracting the peripheral contact portion to the separated position. it can.
  • vertical contact of the peripheral edge portion of the substrate can be suppressed by the peripheral edge contact portion contacting the peripheral end surface of the substrate.
  • the substrate can be efficiently heated since the heating unit supports the substrate while heating.
  • the warpage suppressing portion when the liquid film is removed from the center to the periphery of the substrate, the warpage of the substrate caused by the temperature difference between the center and the periphery can be suppressed. Thereby, since the temperature fall of the periphery of a board
  • the substrate processing method of the ninth aspect when the liquid film is removed from the center to the periphery of the substrate, the warpage of the substrate caused by the temperature difference between the center and the periphery is suppressed. Thereby, since the temperature fall of the periphery of a board
  • FIG. 3 is a schematic cross-sectional view for explaining a configuration example of a processing unit 2.
  • FIG. 6 is a plan view of a spin chuck 5 and a heater unit 6;
  • FIG. 5 is a perspective view for describing a structural example of a chuck pin 20.
  • 5 is a plan view of a chuck pin 20.
  • FIG. 10 is a schematic plan view of the peripheral edge abutting portion 65.
  • FIG. FIG. 16 is a schematic side view of the peripheral edge abutting portion 65.
  • FIG. FIG. 5 is a schematic vertical cross-sectional view for describing a configuration example of a first moving nozzle 11;
  • FIG. 1 is a schematic vertical cross-sectional view for describing a configuration example of a first moving nozzle 11;
  • FIG. 2 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus 1; 5 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1; It is a time chart for explaining the details of organic solvent processing (Step S4 of Drawing 10). It is a schematic sectional drawing for demonstrating the mode of each step of an organic solvent process. It is a schematic sectional drawing for demonstrating the mode of each step of an organic solvent process. It is a schematic sectional drawing for demonstrating the mode of each step of an organic solvent process. It is a schematic sectional drawing for demonstrating the mode of each step of an organic solvent process. It is an illustration sectional drawing for demonstrating the mode of a drying process (FIG.10 S5).
  • FIG. 7 is a diagram for explaining the movement of the organic solvent liquid film 90 due to the temperature difference of the substrate W. It is a schematic plan view of the peripheral edge contact part 65a of 2nd Embodiment. It is an illustration side view of peripheral contact part 65a.
  • FIG. 1 is a schematic plan view for explaining the layout inside the substrate processing apparatus 1 according to the first embodiment.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes a substrate W such as a silicon wafer one by one.
  • the substrate W is formed in a disk shape.
  • the substrate processing apparatus 1 includes a plurality of processing units 2, a load port LP, a transfer robot IR, a transfer robot CR, and a control unit 3.
  • the processing unit 2 processes the substrate W with the processing liquid.
  • the plurality of processing units 2 have, for example, the same configuration.
  • a carrier C for accommodating a plurality of substrates W processed by the processing unit 2 is placed.
  • the transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR.
  • the transport robot CR transports the substrate W between the transport robot IR and the processing unit 2.
  • the control unit 3 controls the operation of each element of the substrate processing apparatus 1.
  • FIG. 2 is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
  • the processing unit 2 includes a spin chuck 5, a heater unit 6, an elevation unit 7, a cup 8, a lower surface nozzle 9, a DIW nozzle 10, a first moving nozzle 11, a second moving nozzle 12, and a chamber 13 (see FIG. 1). ing.
  • the spin chuck 5 rotates the substrate W around a vertical rotation axis A1 passing through the central portion of the substrate W while holding a single substrate W in a horizontal posture.
  • the heater unit 6 heats the substrate W from the lower surface side.
  • the lifting unit 7 moves the heater unit 6 up and down below the substrate W.
  • the cup 8 is formed in a cylindrical shape that can surround the spin chuck 5.
  • the lower surface nozzle 9 supplies the processing fluid to the lower surface of the substrate W.
  • the DIW nozzle 10 supplies deionized water (DIW) as a rinse liquid to the upper surface of the substrate W.
  • the first movable nozzle 11 and the second movable nozzle 12 are configured to be movable above the substrate W.
  • the chamber 13 is configured to be able to accommodate the cup 8.
  • the chamber 13 is provided with a loading / unloading port for loading / unloading the substrate W, and is provided with a shutter unit that opens / closes the loading / unloading port.
  • the spin chuck 5 includes a chuck pin 20 (chuck member), a spin base 21, a rotating shaft 22 coupled to the center of the lower surface of the spin base 21, and an electric motor 23 for applying a rotating force to the rotating shaft 22.
  • the rotation axis 22 extends vertically along the rotation axis A1, and in this embodiment is a hollow axis.
  • the spin base 21 is coupled to the upper end of the rotation shaft 22.
  • the spin base 21 has a disk shape along the horizontal direction.
  • a plurality of chuck pins 20 are arranged at intervals in the circumferential direction on the peripheral edge portion of the top surface of the spin base 21.
  • the plurality of chuck pins 20 can be opened and closed between a closed state in which the substrate W is held in contact with the peripheral end of the substrate W and gripped the substrate W and an open state retracted from the peripheral end of the substrate W. Further, in the open state, the plurality of chuck pins 20 contact the lower surface of the peripheral portion of the substrate W to support the substrate W from below.
  • the chuck pin drive unit 25 drives the chuck pin 20 to open and close.
  • the chuck pin drive unit 25 includes, for example, a link mechanism 26 incorporated in the spin base 21 and a drive source 27 disposed outside the spin base 21.
  • the drive source 27 includes, for example, a ball screw mechanism and an electric motor that applies a driving force thereto.
  • the heater unit 6 is disposed above the spin base 21.
  • An elevation shaft 30 extending in the vertical direction along the rotation axis A1 is coupled to the lower surface of the heater unit 6.
  • the elevating shaft 30 passes through the through hole 24 formed in the central portion of the spin base 21 and the hollow rotary shaft 22.
  • the lower end of the elevating shaft 30 extends further downward than the lower end of the rotating shaft 22.
  • the lifting unit 7 is coupled to the lower end of the lifting shaft 30. By operating the elevating unit 7, the heater unit 6 moves up and down from the lower position close to the upper surface of the spin base 21 to the upper position supporting the lower surface of the substrate W and lifting it from the chuck pin 20.
  • Lifting unit 7 includes, for example, a ball screw mechanism and an electric motor that applies a driving force thereto. Thereby, the lifting unit 7 arranges the heater unit 6 at any intermediate position between the lower position and the upper position.
  • the substrate W can be heated by radiant heat from the heating surface 6 a in a state where the heating surface 6 a which is the upper surface of the heater unit 6 is disposed at a separated position spaced apart from the lower surface of the substrate W by a predetermined distance.
  • the substrate W can be heated by a larger amount of heat by the thermal conduction from the heating surface 6a in the contact state where the heating surface 6a is in contact with the lower surface of the substrate W.
  • the elevating unit 7 is an example of a contacting / separating unit that brings the heater unit 6 (heating unit) into contact with or separated from the lower surface of the substrate W.
  • the first moving nozzle 11 is moved in the horizontal direction and the vertical direction by the first nozzle moving unit 15.
  • the first moving nozzle 11 moves between the processing position facing the center of rotation of the upper surface of the substrate W and the home position (retracting position) not facing the upper surface of the substrate W by moving in the horizontal direction.
  • “the rotation center of the upper surface of the substrate W” is a position at which the upper surface of the substrate W intersects with the rotation axis A1.
  • the “home position not facing the upper surface of the substrate W” may be an outer position of the spin base 21 in a plan view, specifically, an outer position of the cup 8.
  • the first movable nozzle 11 approaches the upper surface of the substrate W or retracts upward from the upper surface of the substrate W by movement in the vertical direction.
  • the first nozzle moving unit 15 includes, for example, a pivoting axis along the vertical direction, an arm that is coupled to the pivoting axis and extends horizontally, and an arm drive mechanism that drives the arm.
  • the arm drive mechanism pivots the arm by pivoting the pivoting axis around a vertical pivoting axis, and vertically moves the arm by vertically elevating the pivoting axis.
  • the first moving nozzle 11 can be fixed to this arm.
  • the first movable nozzle 11 moves in the horizontal direction and the vertical direction according to the swinging and raising and lowering of the arm.
  • the second moving nozzle 12 is moved horizontally and vertically by the second nozzle moving unit 16.
  • the second moving nozzle 12 moves between a position facing the center of rotation of the upper surface of the substrate W and a home position (retracting position) not facing the upper surface of the substrate W by moving in the horizontal direction.
  • the “home position” may be an outer position of the spin base 21 in a plan view, specifically, an outer position of the cup 8.
  • the second moving nozzle 12 approaches the upper surface of the substrate W or retracts upward from the upper surface of the substrate W by movement in the vertical direction.
  • the second nozzle moving unit 16 includes, for example, a rotation axis along the vertical direction, an arm that is coupled to the rotation axis and extends horizontally, and an arm drive mechanism that drives the arm.
  • the arm drive mechanism pivots the arm by pivoting the pivoting axis around a vertical pivoting axis, and vertically moves the arm by vertically elevating the pivoting axis.
  • the second moving nozzle 12 may be fixed to the arm.
  • the second movable nozzle 12 moves in the horizontal direction and the vertical direction in response to the swinging and raising and lowering of the arm.
  • the first moving nozzle 11 has a function as an organic solvent nozzle that discharges an organic solvent, and a function as a gas nozzle that discharges an inert gas such as nitrogen gas.
  • An organic solvent supply pipe 35 and an inert gas supply pipe 36 are connected to the first moving nozzle 11.
  • An organic solvent valve 37 for opening and closing the flow path is interposed in the organic solvent supply pipe 35.
  • An inert gas valve 38 for opening and closing the flow path is interposed in the inert gas supply pipe 36.
  • An organic solvent such as isopropyl alcohol (IPA) is supplied to the organic solvent supply pipe 35 from an organic solvent supply source.
  • An inert gas such as nitrogen gas (N 2 ) is supplied to the inert gas supply pipe 36 from an inert gas supply source.
  • the second moving nozzle 12 has a function as a chemical liquid nozzle that supplies a chemical liquid such as acid and alkali, and a function as a gas nozzle that discharges an inert gas such as nitrogen gas. More specifically, the second moving nozzle 12 may have the form of a two-fluid nozzle capable of mixing and discharging a liquid and a gas.
  • the two-fluid nozzle can be used as a liquid nozzle by stopping the supply of gas and discharging the liquid, and can be used as a gas nozzle by stopping the supply of liquid and discharging the gas.
  • the chemical liquid supply pipe 41 and the inert gas supply pipe 42 are connected to the second moving nozzle 12.
  • a chemical solution valve 43 for opening and closing the flow path is interposed in the chemical solution supply pipe 41.
  • An inert gas valve 44 for opening and closing the flow path and a flow rate variable valve 45 for changing the flow rate of the inert gas are interposed in the inert gas supply pipe 42.
  • a chemical solution such as an acid or an alkali is supplied to the chemical solution supply pipe 41 from a chemical solution supply source.
  • An inert gas such as nitrogen gas (N 2 ) is supplied to the inert gas supply pipe 42 from an inert gas supply source.
  • the chemical solution is an etching solution and a cleaning solution. More specifically, the chemical solution includes hydrofluoric acid, SC1 (ammonia-hydrogen peroxide mixed solution), SC2 (hydrochloric acid-hydrogen peroxide mixed solution), buffered hydrofluoric acid (a mixed solution of hydrofluoric acid and ammonium fluoride) Or the like.
  • the DIW nozzle 10 is a nozzle fixed at a position where the DIW can be discharged toward the rotation center of the upper surface of the substrate W.
  • DIW is supplied to the DIW nozzle 10 from a DIW supply source via a DIW supply pipe 46.
  • the DIW supply pipe 46 is provided with a DIW valve 47 for opening and closing the flow path.
  • the DIW nozzle 10 does not have to be a fixed nozzle, and may be, for example, a movable nozzle that can move in the horizontal direction.
  • the lower surface nozzle 9 passes through the hollow lift shaft 30 and further penetrates the heater unit 6.
  • the lower surface nozzle 9 has a discharge port 9 a facing the center of the lower surface of the substrate W at the upper end.
  • the lower surface nozzle 9 is supplied with a processing fluid from a fluid supply source via a fluid supply pipe 48.
  • the processing fluid to be supplied may be liquid or gas.
  • the fluid supply pipe 48 is provided with a fluid valve 49 for opening and closing the flow path.
  • FIG. 3 is a plan view of the spin chuck 5 and the heater unit 6.
  • the spin base 21 of the spin chuck 5 is circular around the rotation axis A1 in plan view, and its diameter is larger than the diameter of the substrate W.
  • a plurality of (three in this embodiment) chuck pins 20 are disposed at the periphery of the spin base 21 at an interval.
  • the heater unit 6 has the form of a disk-shaped hot plate, and includes a plate body 60, a support pin 61, and a heater 62.
  • the plate main body 60 has a substantially same shape and size as the outer shape of the substrate W in a plan view, and is formed in a circle centered on the rotation axis A1. More precisely, the plate body 60 has a circular planar shape with a diameter slightly smaller than the diameter of the substrate W.
  • the diameter of the substrate W may be 300 mm
  • the diameter of the plate body 60 (in particular, the diameter of the heating surface 6a) may be 294 mm, which is smaller than that by 6 mm.
  • the radius of the plate body 60 is smaller than the radius of the substrate W by 3 mm.
  • the upper surface of the plate body 60 is a flat surface along the horizontal plane.
  • a plurality of support pins 61 are projected on the upper surface of the plate body 60.
  • the support pins 61 are each hemispherical, for example, and project from the upper surface of the plate body 60 by a minute height (for example, 0.1 mm). Therefore, when the substrate W is supported in contact with the plurality of support pins 61, the lower surface of the substrate W faces the upper surface of the plate main body 60 with a minute gap of, for example, 0.1 mm.
  • the plurality of support pins 61 is not essential.
  • the substrate W can be brought into contact with the upper surface of the plate body 60.
  • the heating surface 6 a of the heater unit 6 includes the upper surface of the plate body 60 and the surface of the support pin 61 when having the support pin 61.
  • the upper surface of the plate main body 60 corresponds to the heating surface 6a.
  • the state in which the support pins 61 are in contact with the lower surface of the substrate W may be referred to as the lower surface of the substrate W in contact with the heating surface 6 a.
  • the heater 62 may be a resistor incorporated in the plate body 60.
  • FIG. 3 shows the heater 62 divided into a plurality of regions.
  • the heating surface 6a is heated to a temperature higher than room temperature (for example, 20 to 30 ° C., for example 25 ° C.).
  • the heating surface 6 a can be heated to a temperature higher than the boiling point of the organic solvent supplied from the first moving nozzle 11 by energizing the heater 62.
  • the feed line 63 to the heater 62 is passed through the elevation shaft 30.
  • a heater energization unit 64 for supplying electric power to the heater 62 is connected to the feed line 63.
  • the heater energization unit 64 may be energized at all times during the operation of the substrate processing apparatus 1.
  • the support pins 61 are arranged substantially equally on the upper surface of the plate body 60.
  • the chuck pin 20 is disposed outward of the outer peripheral end of the plate body 60. It is not necessary for the entire chuck pin 20 to be disposed further outward than the outer peripheral end of the plate main body 60, and a portion facing the vertical movement range of the heater unit 6 is located outward than the outer peripheral end of the plate main body 60. It should just be.
  • FIG. 4 is a perspective view for explaining a structural example of the chuck pin 20.
  • FIG. 5 is a plan view of the chuck pin 20.
  • the chuck pin 20 includes a base portion 50, a shaft portion 53 extending in the vertical direction, a base portion 50 provided on the upper end of the shaft portion 53, and a rotation support portion 54 provided on the lower end of the shaft portion 53.
  • the base unit 50 includes a gripping unit 51 and a support unit 52.
  • the rotation support portion 54 is coupled to the spin base 21 so as to be rotatable about a chuck rotation axis 55 along the vertical direction.
  • the shaft portion 53 is offset to a position away from the chuck rotation axis 55 and coupled to the rotation support portion 54. More specifically, the shaft portion 53 is disposed at a position farther from the rotation axis A1 than the chuck rotation axis 55.
  • the pivot support 54 is coupled to a link mechanism 26 (see FIG. 2) provided inside the spin base 21.
  • the rotation support portion 54 reciprocates in the predetermined angle range around the chuck rotation axis 55.
  • the peripheral end surface of the substrate W is the outer peripheral surface of the substrate W, and is a surface facing outward in the radial direction excluding the main surface (surface with the largest area) of the surface of the substrate W.
  • the base portion 50 is formed in a wedge shape in plan view. On the upper surface of the base portion 50, a support surface 52a which abuts the lower surface of the peripheral portion of the substrate W in the open state of the chuck pin 20 and supports the substrate W from below is provided. In other words, the base portion 50 has the support portion 52 whose upper surface is the support surface 52a.
  • the gripping portion 51 protrudes upward at a position different from the support portion 52 on the upper surface of the base portion 50.
  • the gripping portion 51 has a holding groove 51 a opened in a V shape so as to face the peripheral end surface of the substrate W.
  • the grip portion 51 approaches the circumferential end surface of the substrate W, and the support portion 52 Away from the rotation center of the substrate W. Further, when the rotation support portion 54 is rotated in the counterclockwise direction around the chuck rotation axis 55 from the closed state shown in FIG. 5A, the gripping portion 51 separates from the circumferential end surface of the substrate W and supports it. The portion 52 approaches the rotation center of the substrate W.
  • the peripheral end face of the substrate W enters the holding groove 51a.
  • the lower surface of the substrate W is located at a height spaced upward from the support surface 52 a by a minute distance.
  • the peripheral end face of the substrate W is detached from the holding groove 51a, and the holding portion 51 is positioned outward from the peripheral end face of the substrate W in plan view.
  • at least a portion of the support surface 52a is located below the lower surface of the peripheral portion of the substrate W.
  • the chuck pin 20 When the chuck pin 20 is in the open state, the chuck pin 20 supports the substrate W by the support portion 52.
  • the peripheral end face of the substrate W is guided into the holding groove 51a while being guided and lifted by the holding groove 51a having a V-shaped cross section.
  • the substrate W is held by the inclined surface.
  • the peripheral end surface of the substrate W slides down while being guided by the lower inclined surface of the holding groove 51a, and the lower surface of the peripheral portion of the substrate W abuts on the support surface 52a.
  • the edge facing the plate main body 60 of the heater unit 6 conforms to the peripheral shape of the plate main body 60 in plan view. That is, the support part 52 has the side surface 52b located outward with respect to the rotation center rather than the plate main body 60 in planar view. Therefore, the plate body 60 having a circular heating surface 6 a slightly smaller than the substrate W does not interfere with the chuck pins 20 when the heater unit 6 moves up and down. This non-interference positional relationship is maintained when the chuck pin 20 is in both the closed state and the open state.
  • the side surface 52 b of the support portion 52 is spaced outward from the heating surface 6 a of the heater unit 6 in plan view. Thereby, the heater unit 6 can move up and down while passing the heating surface 6a inside the side surface 52b regardless of whether the chuck pin 20 is in the closed state or the open state.
  • the diameter of the substrate W is, for example, 300 mm, and the diameter of the upper surface of the plate body 60 is, for example, 294 mm. Therefore, the heating surface 6a is opposed substantially over the entire area including the central area and the peripheral area of the lower surface of the substrate W.
  • the support portion 52 is disposed in a state in which an interval of a predetermined minute interval (for example, 2 mm) or more is secured outside the outer peripheral edge of the heating surface 6a.
  • the gripping portion 51 is configured such that the inner edge thereof is positioned outside the outer peripheral edge of the plate main body 60 with a predetermined minute gap (for example, 2 mm) or more. There is. Therefore, the heater unit 6 can raise and lower the heating surface 6a up and down inside the grip portion 51 in contact with the lower surface of the substrate W in any of the closed state and the open state of the chuck pin 20.
  • a predetermined minute gap for example, 2 mm
  • the chuck rotation axis 55 is located on a circle whose radius is smaller than the radius of the heating surface 6 a about the rotation axis A1 (see FIGS. 2 and 3) in plan view.
  • the chuck pins 20 and the peripheral contact portions 65 are alternately arranged along the peripheral portion of the spin base 21.
  • each of the peripheral edge contact portions 65 is disposed outward of the outer peripheral end of the plate main body 60.
  • the portion (here, the shaft portion 66) of the peripheral edge contact portion 65 facing the outer peripheral surface of the vertically moving plate main body 60 may be located outward from the outer peripheral end of the plate main body 60.
  • FIG. 6 is a schematic plan view of the peripheral edge abutting portion 65.
  • FIG. FIG. 6 (a) shows the open state
  • FIG. 6 (b) shows the closed state.
  • FIG. 7 is a schematic side view of the peripheral abutment 65.
  • the peripheral contact portion 65 includes a shaft portion 66 extending in the vertical direction and a contact portion 67 extending in the horizontal direction.
  • the shaft portion 66 includes a base portion 660, a cylindrical portion 662, a spring portion 664 (elastic member) and a connecting portion 666.
  • the base portion 660 is a member formed in a cylindrical shape, and is coupled to the spin base 21 so as to be rotatable around a peripheral contact portion rotation axis 66Z along the vertical direction.
  • the cylindrical portion 662 is attached to the upper end portion of the base portion 660.
  • the cylindrical portion 662 is formed in a cylindrical shape.
  • the external shape of the base part 660 and the cylindrical part 662 is made into the circular shape of the same radius, this is not essential.
  • the spring portion 664 and the connecting portion 666 are accommodated in the cylindrical portion 662.
  • the lower end portion of the spring portion 664 is fixed to the base portion 660, and the upper end portion is fixed to the connecting portion 666.
  • the connecting portion 666 is inserted inside the cylindrical portion 662 so as to be movable up and down. At the upper end portion of the connecting portion 666, a portion near one end of the contact portion 67 is attached.
  • the base portion 660 may extend upward in the vertical direction, and the contact portion 67 may be attached to the tip thereof.
  • the base portion 660 of each of the peripheral contact portions 65 is connected to the peripheral contact portion drive unit 68.
  • the peripheral contact portion drive unit 68 includes, for example, a link mechanism provided inside the spin base 21 and a drive source disposed outside the spin base 21.
  • the drive source includes, for example, a ball screw mechanism and an electric motor that applies a driving force to the ball screw mechanism.
  • the contact portion 67 is rotated about the peripheral contact portion rotation axis 66Z.
  • FIG. 6A when the peripheral edge contact portion 65 is in the open state, the entire contact portion 67 is disposed at a position (separation position) outside the substrate W.
  • FIG. 6B when the peripheral edge contact portion 65 is in the closed state, the distal end portion of the contact portion 67 is disposed at a position (peripheral contact position) vertically overlapping the peripheral portion of the substrate W. It will be in the By retracting the peripheral edge contact portion 65 to the separated position, interference of the contact portion 67 of the peripheral edge contact portion 65 with the substrate W can be suppressed when carrying the substrate W into or out of the chuck pin 20.
  • the contact portion 67 may have an elastically deformable structure.
  • the entire contact portion 67 or only the lower portion in contact with the substrate W may be made of an elastic material.
  • the elastic material may be, for example, a fluorine resin having heat resistance and chemical resistance, such as PTFE (polytetrafluoroethylene).
  • the contact portion 67 can be flexibly brought into contact with the peripheral portion of the substrate W by configuring the contact portion 67 so as to be elastically deformable. Thereby, since the impact given to the peripheral part of substrate W can be reduced, it can control effectively that the peripheral part of substrate W is damaged.
  • the plate main body 60 of the heater unit 6 is lifted by the lift unit 7 to position the substrate W when held by the chuck pins 20 (holding position: see FIG. 2). Move to an upper position (upper position).
  • Each of the peripheral edge contact portions 65 presses the upper surface of the peripheral edge portion of the substrate W disposed at the upper position downward.
  • the spring portion 664 has a natural length, the height of the lower surface of the contact portion 67 is lower than the upper surface of the substrate W supported by the heater unit 6 and disposed at the upper position. Therefore, when the contact portion 67 abuts on the peripheral portion of the substrate W disposed at the upper position, the contact portion 67 is flexibly brought into contact with the peripheral portion of the substrate W by elastic deformation in which the spring portion 664 extends in the vertical direction. Can. Thereby, the impact given to the peripheral part of substrate W can be reduced.
  • the contact portion 67 While the contact portion 67 is in contact with the peripheral portion of the substrate W, the contact portion 67 receives an upward force from the peripheral portion of the substrate W, whereby the spring portion 664 is expanded, and the contact portion 67 and the connection portion 666 Is placed above the normal time. At this time, due to the elastic force stored in the spring portion 664, the contact portion 67 presses the peripheral portion of the substrate W downward with an appropriate force. For this reason, it is possible to suppress the concave warp (warp to the upper side) of the substrate W without damaging the peripheral portion of the substrate W.
  • FIG. 8 is a schematic vertical cross-sectional view for explaining a configuration example of the first moving nozzle 11.
  • the first moving nozzle 11 includes an organic solvent nozzle 71.
  • the organic solvent nozzle 71 is constituted by a straight pipe along the vertical direction.
  • An organic solvent supply pipe 35 is connected to the organic solvent nozzle 71.
  • a gas nozzle 72 for covering the upper side of the substrate W with an inert gas atmosphere is coupled to the organic solvent nozzle 71.
  • the gas nozzle 72 has a cylindrical nozzle body 74 having a flange 73 at its lower end.
  • An upper gas discharge port 75 and a lower gas discharge port 76 respectively open annularly outward on an outer peripheral surface which is a side surface of the flange portion 73.
  • the upper gas discharge port 75 and the lower gas discharge port 76 are vertically spaced apart.
  • a central gas discharge port 77 is disposed on the lower surface of the nozzle body 74.
  • gas inlets 78 and 79 to which an inert gas is supplied from the inert gas supply pipe 36 are formed. Separate inert gas supply pipes may be coupled to the gas inlets 78 and 79, respectively.
  • a cylindrical gas flow path 81 connecting the gas introduction port 78, the upper gas discharge port 75, and the lower gas discharge port 76 is formed.
  • a cylindrical gas flow channel 82 communicating with the gas introduction port 79 is formed around the organic solvent nozzle 71.
  • a buffer space 83 communicates with the lower side of the gas flow path 82.
  • the buffer space 83 further communicates with the space 85 therebelow through the punching plate 84.
  • the space 85 is open to the central gas discharge port 77.
  • the inert gas introduced from the gas introduction port 78 is supplied to the upper gas discharge port 75 and the lower gas discharge port 76 through the gas flow path 81, and radially discharged from the gas discharge ports 75 and 76. .
  • the inert gas introduced from the gas introduction port 79 is stored in the buffer space 83 through the gas flow path 82 and is further diffused through the punching plate 84, and then the central gas discharge port through the space 85. It is discharged downward from the top surface of the substrate W toward the top surface of the substrate W.
  • the inert gas collides with the upper surface of the substrate W to change its direction, and forms a radial inert gas flow above the substrate W.
  • the radial air flow of the three layers is the substrate W by combining the radial air flow formed by the inert gas discharged from the central gas discharge port 77 and the two layers of radial air flow discharged from the gas discharge ports 75 and 76. Will be formed above the The upper surface of the substrate W is protected by the three layers of radial air flow. In particular, as described later, when the substrate W is rotated at high speed, the upper surface of the substrate W is protected by the three layers of radial air flow, so that it is possible to avoid that droplets or mist adhere to the surface of the substrate W.
  • the organic solvent nozzle 71 extends vertically through the gas flow path 82, the buffer space 83 and the punching plate 84.
  • the discharge port 71a at the lower end of the organic solvent nozzle 71 is located below the punching plate 84, and discharges the organic solvent toward the upper surface of the substrate W from above vertically.
  • FIG. 9 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
  • the control unit 3 includes a microcomputer and controls a control target provided in the substrate processing apparatus 1 according to a predetermined control program.
  • the control unit 3 lifts and lowers the transport robots IR and CR, the electric motor 23 for rotationally driving the spin chuck 5, the first nozzle moving unit 15, the second nozzle moving unit 16, the heater energizing unit 64, and the heater unit 6.
  • the operation of the unit 7, the chuck pin drive unit 25, the peripheral contact portion drive unit 68, the valves 37, 38, 43, 44, 45, 47, 49, etc. is controlled.
  • FIG. 10 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1.
  • the unprocessed substrate W is transferred from the carrier C to the processing unit 2 by the transfer robots IR and CR, and passed to the spin chuck 5 (step S1).
  • the control unit 3 controls the lifting and lowering unit 7 so that the heater unit 6 is disposed at the lower position.
  • the control unit 3 controls the chuck pin drive unit 25 so that the chuck pin 20 is in the open state.
  • the control unit 3 keeps the peripheral edge contact portion 65 in the open state.
  • the transfer robot CR delivers the substrate W to the spin chuck 5.
  • the substrate W is placed on the support portion 52 (support surface 52 a) of the chuck pin 20 in the open state.
  • the control unit 3 controls the chuck pin drive unit 25 to close the chuck pin 20.
  • the substrate W is gripped by the gripping portions 51 of the plurality of chuck pins 20.
  • the chemical solution processing is executed (step S2). Specifically, the control unit 3 drives the electric motor 23 to rotate the spin base 21 at a predetermined chemical solution rotational speed. On the other hand, the control unit 3 controls the second nozzle moving unit 16 to place the second moving nozzle 12 at the chemical processing position above the substrate W.
  • the chemical liquid processing position may be a position where the chemical liquid discharged from the second moving nozzle 12 is deposited on the rotation center of the upper surface of the substrate W. Then, the control unit 3 opens the chemical solution valve 43. Thus, the chemical solution is supplied from the second moving nozzle 12 toward the upper surface of the substrate W in a rotating state. The supplied chemical solution spreads over the entire surface of the substrate W by centrifugal force.
  • the DIW rinse process for removing the chemical solution from above the substrate W is executed by replacing the chemical solution on the substrate W with DIW (step S3).
  • the control unit 3 closes the chemical solution valve 43, and instead opens the DIW valve 47.
  • DIW is supplied from the DIW nozzle 10 toward the upper surface of the substrate W in a rotating state.
  • the supplied DIW spreads over the entire surface of the substrate W by centrifugal force.
  • the chemical solution on the substrate W is washed away by the DIW.
  • the control unit 3 controls the second nozzle moving unit 16 to retract the second moving nozzle 12 from above the substrate W to the side of the cup 8.
  • an organic solvent process is performed in which DIW on the substrate W is replaced with an organic solvent which is a process liquid having a lower surface tension (a low surface tension liquid) (step S4).
  • the control unit 3 controls the first nozzle moving unit 15 to move the first moving nozzle 11 to the organic solvent rinse position above the substrate W.
  • the organic solvent rinse position is a position at which the organic solvent (for example, IPA) discharged from the organic solvent nozzle 71 (see FIG. 6) provided in the first movable nozzle 11 contacts the rotation center of the upper surface of the substrate W It is also good.
  • the control unit 3 closes the DIW valve 47 and opens the organic solvent valve 37.
  • the organic solvent (liquid) is supplied from the first moving nozzle 11 (organic solvent nozzle 71) toward the upper surface of the substrate W in a rotating state.
  • the supplied organic solvent spreads over the entire surface of the substrate W by the centrifugal force and displaces DIW on the substrate W.
  • the control unit 3 controls the lift unit 7 to lift the heater unit 6 toward the substrate W, thereby heating the substrate W. Further, the control unit 3 decelerates the rotation of the spin chuck 5 to stop the rotation of the substrate W, and closes the organic solvent valve 37 to stop the supply of the organic solvent. As a result, the organic solvent liquid film is supported on the substrate W in the stationary state, and the paddle state is obtained. By heating the substrate W, a part of the organic solvent in contact with the upper surface of the substrate W is evaporated, thereby forming a gas phase layer between the organic solvent liquid film and the upper surface of the substrate W. The organic solvent liquid film supported by the gas phase layer is eliminated.
  • the control unit 3 controls the first nozzle moving unit 15 to retract the first moving nozzle 11 from above the substrate W to the side of the cup 8. Then, the control unit 3 controls the second nozzle moving unit 16 to arrange the second moving nozzle 12 at the gas discharge position above the substrate W.
  • the gas discharge position may be a position where the inert gas flow discharged from the second movable nozzle 12 is directed to the rotation center of the upper surface of the substrate W. Then, the control unit 3 opens the inert gas valve 44 and discharges the inert gas toward the organic solvent liquid film on the substrate W.
  • the organic solvent liquid film is removed by the inert gas at the position to which the inert gas is discharged, that is, at the center of the substrate W, and a hole for exposing the surface of the substrate W is opened at the center of the organic solvent liquid film. Be By expanding this hole, the organic solvent on the substrate W is discharged out of the substrate W.
  • control unit 3 closes the inert gas valve 44 and retracts the second moving nozzle 12 and then controls the electric motor 23 to rotate the substrate W at a high speed at the drying rotation speed.
  • a drying process is performed to shake off the liquid component on the substrate W by centrifugal force (step S5: spin dry).
  • control unit 3 controls the electric motor 23 to stop the rotation of the spin chuck 5. Further, the lift unit 7 is controlled to control the heater unit 6 to the lower position. Furthermore, the control unit 3 controls the chuck pin drive unit 25 to control the chuck pin 20 to the open position. As a result, the substrate W is placed on the support 52 from the state where the substrate W is gripped by the grip 51 of the chuck pin 20. Thereafter, the transport robot CR enters the processing unit 2 and skimms the processed substrate W from the spin chuck 5 and carries it out of the processing unit 2 (S6). The substrate W is transferred from the transfer robot CR to the transfer robot IR, and is stored in the carrier C by the transfer robot IR.
  • FIG. 11 is a time chart for explaining the details of the organic solvent treatment (step S4 in FIG. 10).
  • 12 to 15 are schematic cross-sectional views for explaining the state of each step of the organic solvent treatment.
  • FIG. 16 is a schematic sectional view for explaining the state of the drying process (step S5 in FIG. 10).
  • the organic solvent treatment includes, in order, an organic solvent rinse step T1, an organic solvent paddle step T2, a lift paddle step T3, a nozzle replacement step T4, a drilling step T5, a hole spreading step T6, and an outer peripheral liquid dropping step T7. And.
  • the organic solvent rinse step T1 is a step of supplying the organic solvent to the upper surface of the substrate W while rotating the substrate W (processing liquid supply step, organic solvent supply step).
  • the organic solvent is supplied from the organic solvent nozzle 71 to the upper surface of the substrate W.
  • the supplied organic solvent receives centrifugal force and travels outward from the center of the upper surface of the substrate W to form a liquid film 90 covering the upper surface of the substrate W.
  • the liquid film 90 covers the entire top surface of the substrate W, whereby all DIW (another processing liquid) supplied to the top surface of the substrate W in the DIW rinse processing (step S3 in FIG. 10) is replaced with the organic solvent.
  • the substrate W is rotated by the spin chuck 5 at an organic solvent rinse processing speed (liquid supply speed, for example, about 300 rpm) (liquid supply speed rotation process).
  • the first moving nozzle 11 (organic solvent nozzle 71) is disposed above the rotation center of the substrate W.
  • the organic solvent valve 37 is opened, so that the organic solvent (for example, isopropyl alcohol (IPA)) discharged from the organic solvent nozzle 71 is supplied from above toward the rotation center of the upper surface of the substrate W.
  • the chuck pin 20 is closed, and the substrate W is held by the holding unit 51 and rotates together with the spin chuck 5.
  • IPA isopropyl alcohol
  • the heater unit 6 is position-controlled above the lower position, and the heating surface 6a is disposed at a separated position spaced downward from the lower surface of the substrate W by a predetermined distance (for example, 2 mm).
  • a predetermined distance for example, 2 mm.
  • the temperature of the heating surface of the heater unit 6 is, for example, about 150 ° C., and is uniform in the surface.
  • the second moving nozzle 12 is retracted to the side home position of the cup 8.
  • the chemical solution valve 43 and the inert gas valves 38 and 44 are controlled to be closed. Therefore, the second moving nozzle 12 does not discharge the inert gas (for example, nitrogen gas).
  • the rotation of the substrate W is decelerated and stopped, and a thick liquid film 90 of the organic solvent is formed on the surface of the substrate W and held.
  • the rotation of the substrate W is decelerated stepwise from the organic solvent rinse processing speed (deceleration step, gradual deceleration step, stepwise deceleration step). More specifically, the rotational speed of the substrate W is reduced from 300 rpm to 50 rpm and maintained for a predetermined time (for example, 10 seconds), and thereafter reduced to 10 rpm and maintained for a predetermined time (for example, 10 seconds). It is decelerated to 0 rpm (stop) and maintained for a predetermined time (for example, 10 seconds).
  • the organic solvent nozzle 71 is held on the rotation axis A1, and subsequently discharges the organic solvent toward the rotation center of the upper surface of the substrate W.
  • Discharge of the organic solvent from the organic solvent nozzle 71 is continued for the entire period of the organic solvent paddle step T2. That is, even if the substrate W is stopped, the discharge of the organic solvent is continued.
  • the supply of the organic solvent is continued in the entire period from the deceleration to the stop of the rotation of the substrate W, so that the processing liquid is not lost all over the upper surface of the substrate W.
  • the thick liquid film 90 can be formed on the upper surface of the substrate W by continuing the supply of the organic solvent even after the rotation of the substrate W is stopped.
  • the position of the heater unit 6 is the same position as in the organic solvent rinse step, and is a separated position where the heating surface 6a is separated downward from the lower surface of the substrate W by a predetermined distance (for example, 2 mm).
  • the substrate W is preheated by radiant heat from the heating surface 6a (substrate preheating step).
  • the chuck pin 20 switches from the closed state to the open state while the stopped state is maintained.
  • the lower surface of the peripheral edge of the substrate W is supported from below by the support portion 52 of the chuck pin 20, and the gripping portion 51 is separated from the upper surface peripheral edge of the substrate W, so the entire upper surface of the substrate W is released.
  • the second moving nozzle 12 remains at the home position.
  • control unit 3 switches the peripheral contact portion 65 from the open state to the closed state at the timing when the chuck pin 20 is switched from the closed state to the open state.
  • the switching timing of the peripheral edge contact portion 65 may be arbitrarily changed within a period from the completion of the substrate loading process (step S1 in FIG. 10) to the time when the lifting paddle step T3 is started.
  • the substrate W is heated in a state where the substrate W is lifted by the heater unit 6, that is, in a state where the heating surface 6a is in contact with the lower surface of the substrate W. While holding the organic solvent liquid film 90 on the upper surface of the substrate W.
  • the heater unit 6 is raised from the separated position to the upper position and held for a predetermined time (for example, 10 seconds).
  • a predetermined time for example, 10 seconds.
  • the substrate W is transferred from the support portion 52 of the chuck pin 20 to the heating surface 6a, and the substrate is moved by the heating surface 6a (more specifically, the support pins 61; see FIG. 2).
  • W is supported (heater unit approaching step, heater unit contacting step).
  • FIG. 13 when the substrate W is disposed at a predetermined upper position (see FIG. 8) by raising the heater unit 6 to the upper position, the peripheral edge contact portions 65 in the closed state are substrates Contact the peripheral edge of W (peripheral edge contacting step T30).
  • Discharge of the organic solvent from the first moving nozzle 11 is continued halfway through the lifting paddle step T3. Therefore, when the heating surface 6a of the heater unit 6 contacts the lower surface of the substrate W, rapid heating of the substrate W by heat conduction from the heating surface 6a is started, and the amount of heat given to the substrate W increases (amount of heat increase step) , Supply of organic solvents is continuing. Thereby, the liquid film 90 of the organic solvent is prevented from being bored at a nonspecific position due to the evaporation of the organic solvent accompanying the rapid temperature rise of the substrate W.
  • the supply of the organic solvent is stopped after a lapse of a predetermined time after the heating surface 6a of the heater unit 6 comes in contact with the lower surface of the substrate W (after the heat amount increasing step) (supply stop step). That is, the control unit 3 closes the organic solvent valve 37 to stop the discharge of the organic solvent from the organic solvent nozzle 71.
  • the rotation of the spin chuck 5 is stopped, the second moving nozzle 12 is at the home position, and the inert gas valve 44 is closed.
  • the first moving nozzle 11 (organic solvent nozzle 71) is located above the rotation center of the substrate W.
  • the heater unit 6 After the supply of the organic solvent is stopped, the heater unit 6 is held at the upper position until a predetermined time passes.
  • the organic solvent supplied to the substrate W is pushed to the outer peripheral side by a new organic solvent supplied to the center, and in the process, it is heated by heat from the upper surface of the substrate W heated by the heater unit 6 and rises. Warm up.
  • the temperature of the organic solvent in the central region of the substrate W is relatively low. Therefore, after stopping the supply of the organic solvent, the organic solvent in the central region of the substrate W can be heated by maintaining the contact state of the heater unit 6 for a predetermined short time. Thereby, the temperature of the liquid film 90 of the organic solvent supported on the upper surface of the substrate W can be made uniform.
  • the organic solvent liquid film 90 which has received heat from the upper surface of the substrate W, evaporation occurs at the interface with the upper surface of the substrate W. Thereby, a gas phase layer made of the organic solvent gas is generated between the upper surface of the substrate W and the organic solvent liquid film 90. Therefore, the organic solvent liquid film 90 is supported on the gas phase layer over the entire upper surface of the substrate W (gas phase layer forming step).
  • the first movable nozzle 11 is retracted from the rotation axis A1, and instead, the second movable nozzle 12 is disposed on the rotation center.
  • the first moving nozzle 11 is retracted to the home position set to the side of the cup 8.
  • the second movable nozzle 12 is moved from the home position to the central position on the rotation axis A1.
  • the heater unit 6 is lowered slightly from the upper position.
  • the substrate W is transferred from the heater unit 6 to the support portion 52 of the chuck pin 20, and the heating surface 6a is on the lower surface of the substrate W in a noncontact state spaced from the lower surface of the substrate W by a predetermined minute distance. opposite.
  • the heating of the substrate W is switched to the heating by the radiant heat from the heating surface 6a, and the amount of heat given to the substrate W is reduced (the amount of heat reduction step). This prevents the substrate W from being overheated while replacing the nozzles, and prevents the organic solvent liquid film 90 from forming a crack (in particular, a crack in the outer peripheral region of the substrate W) due to evaporation.
  • the inert gas for example, nitrogen gas
  • first flow rate eg 3 liters / minute
  • second moving nozzle 12 the second moving nozzle 12 toward the center of the substrate W at a small flow rate (first flow rate, eg 3 liters / minute).
  • first flow rate eg 3 liters / minute
  • second flow rate eg 3 liters / minute
  • a small hole 91 is made in the central portion of the organic solvent liquid film 90 to expose the central portion of the upper surface of the substrate W (piercing step).
  • the rotation of the substrate W remains stationary, so a drilling step is performed on the liquid film 90 on the substrate W in the stationary state.
  • the heater unit 6 lifts the substrate W by moving to the upper position, and heats while contacting the substrate W.
  • each of the closed peripheral contact portions 65 is in contact with the peripheral portion of the substrate W.
  • the control unit 3 causes the second moving nozzle 12 to discharge the inert gas at a small flow rate by opening the inert gas valve 44 and controlling the opening degree of the flow rate variable valve 45.
  • the temperature of the substrate W becomes faster because the heat capacity is smaller than in the region around the liquid film 90. To rise. Further, the temperature of the portion of the substrate W where the liquid film 90 remains is difficult to raise above the boiling point of the liquid film 90. Therefore, a large temperature gradient occurs in the substrate W at the periphery of the hole 91. That is, the inside of the periphery of the hole 91 is high temperature, and the outside is low temperature. By this temperature gradient, as shown in FIG. 14C, the organic solvent liquid film 90 supported on the vapor phase layer starts to move toward the low temperature side, that is, outward, thereby the organic solvent liquid The central hole 91 of the membrane 90 expands.
  • the organic solvent liquid film 90 on the substrate W is removed out of the substrate W by utilizing the temperature gradient generated by the heating of the substrate W (heating exclusion process, liquid film moving process). More specifically, on the top surface of the substrate W, the liquid film 90 in the area where the pattern is formed is eliminated by the movement of the organic solvent due to the temperature gradient.
  • the heater unit 6 If the heater unit 6 is brought into contact with the substrate W after a long period of time after forming the hole 91 at the rotation center of the substrate W by spraying the inert gas, the expansion of the hole 91 is stopped during that time. At this time, the inner peripheral edge of the liquid film 90 is in an equilibrium state in which it moves inward and outward. At this time, the liquid surface of the organic solvent enters into the pattern formed on the surface of the substrate W, which may cause the pattern collapse due to surface tension. Therefore, in this embodiment, the heater unit 6 is brought into contact with the lower surface of the substrate W almost simultaneously with the drilling by the inert gas, and the amount of heat given to the substrate W is instantaneously increased.
  • the flow rate of the inert gas discharged from the second moving nozzle 12 is increased, and the large flow rate (second flow rate, for example, 30 liters / minute) of inertness
  • the gas is blown to the center of the substrate W and the hole 91 in the center of the organic solvent liquid film 90 is further spread by the inert gas (gas removing step, liquid film moving step). That is, the control unit 3 controls the flow rate variable valve 45 to increase the flow rate of the inert gas supplied to the second moving nozzle 12.
  • the liquid film 90 moved to the outer peripheral region of the upper surface of the substrate W is further pushed out of the substrate W.
  • the rotation of the substrate W is held in a stopped state.
  • the flow rate of the inert gas is further increased to prevent the movement of the liquid film 90 from being stopped, and the outside of the substrate W of the liquid film 90 is avoided. It is possible to continue moving towards the other.
  • the movement of the liquid film 90 may stop in the peripheral region of the upper surface of the substrate W only by the movement of the organic solvent liquid film 90 using the temperature gradient. Therefore, the movement of the liquid film 90 can be assisted by increasing the flow rate of the inert gas, whereby the organic solvent liquid film 90 can be removed from the entire upper surface of the substrate W.
  • the second movable nozzle 12 for discharging the inert gas and the control unit 3 for controlling the discharge amount are formed on the upper surface of the substrate W with the heater plate 6 in contact with the lower surface with the chuck unit 20 released.
  • the peripheral contact portions 65 in the closed state each contact the peripheral portion of the substrate W supported by the heater unit 6. (See FIG. 14 (b) and FIG. 15 (a)). For this reason, warpage of the peripheral portion of the substrate W that may occur due to the temperature gradient is suppressed by each of the peripheral contact portions 65. That is, the peripheral edge contact portion 65 is an example of the warpage suppressing portion.
  • the peripheral portion of the substrate W can be suppressed from being separated from the heater unit 6, so that the temperature decrease of the peripheral portion can be suppressed. Thereby, drying failure of IPA in the peripheral portion can be suppressed.
  • the heater unit 6 is lowered, and the substrate W is passed from the heating surface 6a to the support portion 52 of the chuck pin 20. Thereafter, by the time the inert gas discharge at a large flow rate is completed, the chuck pin 20 is closed, and the substrate W is gripped by the gripping portion 51.
  • the heater unit 6 is held for a short time at the noncontact heating position facing the lower surface of the substrate W with a minute distance. Thereafter, the substrate W is further lowered to be disposed at a separated position facing the lower surface of the substrate W at a predetermined distance.
  • the organic solvent liquid film remaining on the outer peripheral portion of the substrate W is shaken off by rotating the substrate W.
  • the supply of the inert gas to the second moving nozzle 12 is stopped, and the second moving nozzle 12 retracts to the home position.
  • the spin chuck 5 is rotated at a low peripheral swing speed.
  • the substrate W is rotated together with the spin chuck 5 at, for example, 30 to 100 rpm.
  • the organic solvent remaining on the outer peripheral portion (particularly, the peripheral end surface) of the substrate W is shaken off without being completely eliminated even by the supply of the inert gas with a large flow rate.
  • the liquid film 90 After the liquid film 90 has moved to the outer peripheral portion due to the temperature difference and the large flow of the inert gas spray, and the rotation is at the low outer peripheral shaking speed, the liquid film 90 is minutely moved by the centrifugal force. It does not break up into droplets and is shaken off from the substrate W in the form of a liquid mass. In addition, since an effective pattern for use in a product is not formed on the outer peripheral portion of the substrate W in most cases, even if the liquid film 90 is somewhat broken, this is not a serious problem.
  • a spin dry step T8 (drying processing; step S5 in FIG. 10) is performed.
  • the control unit 3 moves the first movable nozzle 11 from the home position onto the rotation axis A1. Furthermore, the control unit 3 arranges the first movable nozzle 11 at a lower position close to the upper surface of the substrate W. Then, the control unit 3 opens the inert gas valve 38. Thereby, the first moving nozzle 11 (gas nozzle 72) forms three layers of radial inert gas flows above the substrate W. In that state, the control unit 3 accelerates the rotation of the spin chuck 5 to a high drying rotation speed (for example, 800 rpm).
  • a high drying rotation speed for example, 800 rpm
  • the liquid component on the surface of the substrate W can be completely shaken off by the centrifugal force. Since the upper surface of the substrate W is covered by the radial inert gas flow, it is possible to prevent the droplets and splashes that splash around and the surrounding mist from adhering to the upper surface of the substrate W.
  • the rotation of the spin chuck 5 is stopped, and the heater unit 6 is lowered to the lower position. Further, the inert gas valve 38 is closed, and the discharge of the inert gas from the gas nozzle 72 is stopped. Then, the first movable nozzle 11 is moved to the home position. Thereafter, the control unit 3 opens the chuck pins 20 and causes the transport robot CR to unload the processed substrate W from the processing unit 2.
  • the control unit 3 switches the peripheral contact portion 65 from the closed state to the open state at the timing when the chuck pin 20 is switched to the closed state in the hole expansion step T6.
  • the transport robot CR after completion of the spin dry step T8 is a chuck pin for the switching timing of the peripheral contact portion 65. It may be arbitrarily changed within a period from 20 to before unloading the substrate W.
  • FIG. 17 is a diagram for explaining the movement of the organic solvent liquid film 90 due to the temperature difference of the substrate W.
  • the organic solvent in the organic solvent liquid film 90 has the property of moving to a lower temperature.
  • the temperature of the region in the hole 91 formed in the central portion of the entire surface of the substrate W. Is relatively higher than the temperature of the area outside the hole 91. Accordingly, the temperature of the organic solvent liquid film 90 is higher in the vicinity of the hole 91 than in the surrounding area.
  • a temperature difference occurs in the organic solvent liquid film 90, so the organic solvent at the peripheral portion of the hole 91 radially moves outward of the substrate W.
  • FIG. 17B a flow 94 toward the peripheral edge of the substrate W is generated on the vapor phase layer 92, and the hole 91 in the central portion of the organic solvent liquid film 90 concentrically spreads.
  • the hole expansion step T6 is performed due to the increase in the flow rate of the inert gas, so that the holes 91 do not stop halfway and outside the substrate W It extends to the periphery.
  • the liquid film 90 can be removed out of the substrate W without causing stagnation on the way.
  • the peripheral side of the substrate W tends to warp upward.
  • the substrate W is warped, it may be difficult to remove the organic solvent liquid film 90 on the substrate W satisfactorily.
  • the upper surfaces of the peripheral portion of the substrate W are in contact with the peripheral contact portions 65 during the drilling step T5.
  • FIG. 18 is a schematic plan view of the peripheral edge abutting portion 65 a of the second embodiment.
  • FIG. 18 (a) shows the open state
  • FIG. 18 (b) shows the closed state.
  • FIG. 19 is a schematic side view of the peripheral edge abutting portion 65a.
  • a plurality of peripheral contact portions 65 a are provided in the peripheral portion of the spin base 21 instead of the plurality of peripheral contact portions 65.
  • the peripheral edge contact portion 65a has a shaft portion 66a extending in the vertical direction, and a peripheral end surface contact portion 67a having a non-circular shape (here, substantially an oval shape in a plan view).
  • the circumferential end contact portion 67a is attached to the upper portion of the shaft portion 66a.
  • the shaft portion 66a and the peripheral end surface contact portion 67a are rotated by the peripheral edge contact portion drive unit 68 around the peripheral edge contact portion rotation axis 66Z extending in the vertical direction. By this rotation, the peripheral edge abutting portion 65 is switched between the open state and the closed state as shown in FIG.
  • peripheral edge contact portion 65a when the peripheral edge contact portion 65a is in the open state, the peripheral end surface contact portion 67a is more outward than the substrate W supported by the heater unit 6 and the heater unit 6 or the chuck pin 20. Will be distributed.
  • a side surface portion relatively close to the peripheral edge contact portion rotation axis 66Z in the peripheral end surface contact portion 67a of each peripheral edge contact portion 65a is directed to the rotation axis A1.
  • the peripheral edge contact portion 65 a when the peripheral edge contact portion 65 a is in the closed state, the peripheral end surface contact portion 67 a is supported by the heater unit 6 on the peripheral end surface of the substrate W disposed at the upper position. Abut.
  • the peripheral edge abutting portion drive unit 68 rotates the shaft portion 66 by a predetermined angle (here, 90 degrees).
  • a predetermined angle here, 90 degrees
  • the side surface portion of the circumferential end surface contact portion 67a of each circumferential edge contact portion 65a that is relatively away from the circumferential edge contact portion rotation axis 66Z is directed to the rotation axis A1, and the circumferential edge surface of the substrate W Be touched.
  • the peripheral end contact portion 67a contacts the substrate W, the peripheral portion of the substrate W hardly moves up and down. Accordingly, floating of the substrate W from the heating surface 6 a of the heater unit 6 can be suppressed.
  • the peripheral end contact portion 67a may have a structure that can be elastically deformed.
  • the entire peripheral surface contact portion 67a or only the side surface portion (portion facing the rotation axis A1 in the closed state) to be brought into contact with the substrate W may be formed of an elastic material.
  • the peripheral end contact portion 67 a can flexibly contact the peripheral end surface of the substrate W. For this reason, generation
  • the portion of the peripheral end surface of the substrate W in contact with the peripheral end surface contact portion 67a of the peripheral edge contact portion 65a is suppressed from moving in the vertical direction. Therefore, even when a temperature difference or the like between the central portion and the peripheral portion occurs in the substrate W, the peripheral portion of the substrate W can be suppressed from being warped by the peripheral edge abutting portion 65a. In particular, in the case of the peripheral edge contact portion 65a, it is possible to suppress that the circumferential end surface of the substrate W is not only upwardly bent but also downwardly warped.
  • the peripheral edge contact portion 65a it does not contact the pattern formation surface (upper surface or lower surface) of the substrate W. For this reason, the pattern formation surface of the substrate W can be kept clean.
  • the organic solvent liquid film 90 formed on the substrate W may flow outward from the contact portion with the peripheral contact portion 65 a in the peripheral portion of the substrate W, the degree is similar to that of the peripheral contact portion 65. Smaller than in the case of Therefore, the influence of the peripheral edge contact portion 65 a on the removal process of the organic solvent liquid film 90 can be reduced compared to the peripheral edge contact portion 65, and therefore the organic solvent liquid film 90 can be removed from the substrate W better.
  • Examples of usable organic solvents include methanol, ethanol, acetone and HEF (hydric fluoroether) in addition to IPA. These are all organic solvents having surface tension smaller than that of water (DIW).
  • DIW water
  • the present invention is also applicable to processing solutions other than organic solvents.
  • the present invention may be applied to remove a rinse solution such as water out of the substrate.
  • the rinse solution in addition to water, carbonated water, electric field ion water, ozone water, hydrochloric acid water of diluted concentration (for example, about 10 to 100 ppm), reduced water (hydrogen water), etc. can be exemplified.
  • clean air or other inert gas can be employed as the gas usable for the drilling process.
  • the first moving nozzle 11 is provided with the organic solvent nozzle 71, the supply of the inert gas for drilling and the like is performed from the second moving nozzle 12.
  • the first moving nozzle 11 is provided with a gas nozzle capable of discharging an inert gas toward the rotational center of the substrate W together with the organic solvent nozzle 71, and the inert gas is supplied from the gas nozzle for drilling. Good. Since the central gas discharge port 77 of the gas nozzle 72 described above discharges the gas flow diffused by the punching plate 84, it is not necessarily suitable for the execution of the drilling step. It is preferable to use a nozzle capable of discharging gas toward a narrower area, specifically, a tube nozzle such as a straight tubular nozzle or a two-fluid nozzle, for performing the drilling step.
  • the nozzle replacement step may be omitted. However, even in this case, it is preferable that the heater unit 6 be separated from the lower surface of the substrate W at the moment when the inert gas discharged from the gas nozzle for the drilling step reaches the liquid film 90.
  • An inert gas at a temperature higher than room temperature may be used in the drilling step.
  • room temperature eg 25 ° C.
  • the temperature difference between the upper and lower surfaces of the substrate W when the inert gas reaches the substrate W can be reduced. Therefore, high temperature inert gas may be discharged for the hole forming step while the heater unit 6 is in contact with the lower surface of the substrate W.
  • the temperature of the inert gas is preferably closer to the temperature of the substrate W.
  • the gradual deceleration of the rotation of the substrate W in the organic solvent paddle step T2 is performed stepwise, but the rotation may be decelerated continuously. For example, if the rotational speed is reduced continuously (for example, linearly) from 300 rpm to 0 rpm in 10 seconds or more, it is possible to maintain the liquid film 90 covering the entire upper surface of the substrate W.
  • the flow rate of the organic solvent discharged from the first moving nozzle 11 may be increased (a flow increase decelerating step).
  • the deceleration of the rotation of the substrate W may be performed stepwise or may be performed gradually as in the above-described embodiment.
  • the distance between the heater unit 6 and the substrate W is changed in order to increase or decrease the amount of heat given from the heater unit 6 to the substrate W.
  • the amount of heat given to the substrate W may be increased or decreased by changing the output of the heater unit 6.
  • the heater unit 6 is in contact with the lower surface of the substrate W when the gas phase layer 92 is formed.
  • the gas phase layer 92 can be formed by the radiant heat from the heater unit 6, the substrate heating for forming the gas phase layer 92 may be performed while keeping the heater unit 6 away from the lower surface of the substrate W .
  • the heating surface 6a of the heater unit 6 is in contact with the substrate W, the influence of disturbances such as a change in the ambient temperature can be suppressed, so the in-plane uniformity of heating can be improved.
  • the substrate to be processed does not have to be circular, and may be a rectangular substrate.
  • the rotation of the substrate W is completely stopped from the middle of the organic solvent paddle step T2 to be in the stationary state.
  • the substrate W is kept stationary through the lifting paddle step T3 following the organic solvent paddle step T2, the nozzle replacing step T4, and the drilling step T5.
  • the substrate is not made stationary during all or part of the period from the organic solvent paddle step T2 to the drilling step T5.
  • it may be rotated at a low speed (for example, about 10 rpm) that can be identified with the stationary state.
  • the substrate W may be rotated at such a speed in the drilling step T5.
  • the substrate W with which the plurality of peripheral edge contact portions 65 and 65a are in contact is supported by the heater unit 6 at the upper position.
  • the substrate W may be supported by a rod-like pin member protruding / embedded on the upper surface of the spin base 21.
  • peripheral contact parts 65 and 65a are attached to spin base 21, this is not essential.
  • a plurality of peripheral contact portions 65 and 65 a may be provided on the plate main body 60 of the heater unit 6.
  • the peripheral edge contact portion provided on the plate main body 60 may be brought into contact with the peripheral edge portion of the substrate W in a state of being supported at the upper position by the heater unit 6.
  • a plurality of peripheral contact portions 65 and 65 a may be provided on members different from the spin base 21 and the plate main body 60.
  • the position of the substrate W when the peripheral edge contact portions 65 and 65a abut on the substrate W is limited to the upper position above the gripped position when the heater unit 6 grips the chuck pin 20. I will not.
  • the peripheral contact portion may be provided at the same height as the held position, or at a position to be in contact with the substrate W at a lower position.
  • the lower end of the contact portion 67 may be provided at the same height as or below the gripping portion 51 of the chuck pin 20. Then, the heater unit 6 ascends and supports the substrate W in a released state where gripping by the chuck pin 20 has been released, to the gripped position (or a position lower than that), and the peripheral contact portion drive unit 68 May rotate the contact portion 67 to abut on the periphery of the substrate W.
  • the chuck pin 20 may be omitted, and the grip portion 51 of the chuck pin 20 may be provided on the shaft portion 66 a of the peripheral edge abutting portion 65 a.
  • the gripping portion 51 may be provided on the lower side (spin base 21 side) of the circumferential end surface contacting portion 67a of the shaft portion 66a.
  • the peripheral edge contact portion drive unit 68 contacts the peripheral end surface contact portion 67 with the peripheral end surface of the substrate W supported by the heater unit 6 by rotating the shaft 66a.
  • the substrate W located below the upper position may be switched between being held by the holding unit 51.
  • the grip 51 may be provided at the same height as the peripheral end contact portion 67a.
  • the substrate W is supported at the height position (held position) when the substrate W is held by the holding portion 51, and the peripheral edge contact portion drive unit 68 rotates the peripheral end surface contact portion 67a.
  • the substrate W may be in contact with the peripheral end face of the substrate W.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Provided is a technique whereby substrate warping is suppressed and a processing solution on the substrate is eliminated favorably. In this invention: chuck pins 20 hold the substrate horizontally; a first moving nozzle 11 supplies IPA to the upper surface of the substrate W held by the chuck pins 20; a raising-lowering unit 7 moves the substrate W to an upper position that is upward relative to the position at which the substrate W is held by the chuck pins 20; a heater unit 6 heats the substrate W disposed at the upper position; a peripheral edge abutting section 65 abuts the upper surface of the peripheral edge section of the substrate W disposed at the upper position; and a second moving nozzle 12 blows a nitrogen gas toward the upper surface of the substrate W disposed at the upper position.

Description

基板処理装置および基板処理方法Substrate processing apparatus and substrate processing method
 この発明は、基板を処理液で処理する基板処理方法および基板処理装置に関する。処理の対象となる基板には、たとえば、半導体ウエハ、液晶表示装置や有機EL(Electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate with a processing liquid. Substrates to be processed include, for example, substrates for FPD (Flat Panel Display) such as semiconductor wafers, liquid crystal displays and organic EL (Electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks. , Photomask substrates, ceramic substrates, solar cell substrates, and the like.
 半導体装置の製造工程では、半導体ウエハ等の基板の表面が処理液で処理される。基板を一枚ずつ処理する枚葉式の基板処理装置は、基板をほぼ水平に保持しつつ、その基板を回転させるスピンチャックと、このスピンチャックによって回転される基板の表面に処理液を供給するためのノズルとを備えている。 In the manufacturing process of a semiconductor device, the surface of a substrate such as a semiconductor wafer is treated with a treatment liquid. A single wafer processing type substrate processing apparatus which processes substrates one by one supplies a processing solution to a surface of a spin chuck which rotates a substrate while holding the substrate substantially horizontally, and a surface of the substrate which is rotated by the spin chuck. And a nozzle for
 典型的な基板処理工程では、スピンチャックに保持された基板に対して薬液が供給される。その後、リンス液が基板に供給され、それによって、基板上の薬液がリンス液に置換される。その後、基板上のリンス液を排除するためのスピンドライ工程が行われる。スピンドライ工程では、基板が高速回転されることにより、基板に付着しているリンス液が振り切られて除去(乾燥)される。一般的なリンス液は脱イオン水である。 In a typical substrate processing process, a chemical solution is supplied to a substrate held by a spin chuck. Thereafter, the rinse liquid is supplied to the substrate, whereby the chemical solution on the substrate is replaced with the rinse liquid. Thereafter, a spin dry process is performed to remove the rinse solution on the substrate. In the spin dry process, the substrate is rotated at a high speed, and the rinse solution adhering to the substrate is shaken off and removed (dried). A common rinse solution is deionized water.
 基板の表面に微細なパターンが形成されている場合に、スピンドライ工程では、パターンの内部に入り込んだリンス液を除去できないおそれがあり、それによって、乾燥不良が生じるおそれがある。そこで、特許文献1に記載されているように、リンス液による処理後の基板の表面に、イソプロピルアルコール(Isopropyl Alcohol: IPA)液等の有機溶剤の液体を供給して、パターンの内部に入り込んだリンス液を有機溶剤の液体に置換することによって基板の表面を乾燥させる手法が提案されている。 In the case where a fine pattern is formed on the surface of the substrate, in the spin-drying process, there is a possibility that the rinse solution that has entered the inside of the pattern can not be removed, which may cause drying failure. Therefore, as described in Patent Document 1, a liquid of an organic solvent such as isopropyl alcohol (IPA) liquid is supplied to the surface of the substrate after the treatment with the rinse liquid to enter the inside of the pattern. A method has been proposed in which the surface of the substrate is dried by replacing the rinse liquid with a liquid of an organic solvent.
 また、特許文献2および特許文献3には、基板上の液膜を良好に排除する技術が開示されている。具体的には、水平に保持された基板の上面に有機溶剤を供給して、基板上面全域を覆う有機溶剤の液膜が形成される。そして、基板を加熱して基板の上面に接する有機溶剤を蒸発させて、基板の上面と有機溶剤液膜との間に気相層が形成される。気相層が形成された後に、基板上の液膜に小流量で不活性ガスを吹き付けることによって、液膜に穴が開けられる。そして、基板を加熱することにより、液膜の穴が基板の外周に向かって広げられる。さらに、液膜の穴内の領域に大流量の不活性ガスが吹き付けられることによって、気相層上で液膜が移動させられる。その後、基板が低速で回転させられることによって、周縁部の液膜が振り落とされる。 Further, Patent Document 2 and Patent Document 3 disclose a technique for favorably removing a liquid film on a substrate. Specifically, an organic solvent is supplied to the upper surface of the substrate held horizontally to form a liquid film of the organic solvent covering the entire upper surface of the substrate. Then, the substrate is heated to evaporate the organic solvent in contact with the upper surface of the substrate, thereby forming a gas phase layer between the upper surface of the substrate and the organic solvent liquid film. After the gas phase layer is formed, the liquid film on the substrate is sprayed with an inert gas at a low flow rate to puncture the liquid film. Then, by heating the substrate, the holes of the liquid film are expanded toward the outer periphery of the substrate. Furthermore, the liquid film is moved on the gas phase layer by blowing a large flow of inert gas to the area in the hole of the liquid film. Thereafter, the substrate is rotated at a low speed to shake off the liquid film at the peripheral portion.
特開平9-38595号公報Unexamined-Japanese-Patent No. 9-38595 gazette 特開2016-136599号公報JP, 2016-136599, A 特開2014-112652号公報JP 2014-112652 A
 しかしながら、特許文献2に記載の乾燥処理では、気体が吹き付けられることで液膜が除かれた基板の中央部は、液膜が残存する周縁部よりも熱容量が小さいため、相対的に昇温しやすい。また、液膜が残存する周縁部は、液膜が残存するために液膜の沸点以上に昇温し難くなっている。このため、基板の中央部と周縁部との間に温度差が発生することにより、基板に反りが発生するおそれがあった。このように、基板上の中央側と周縁側との間で温度差が生じると、基板が凹状に反ってしまうおそれがある。このような場合、周縁部の温度が低下することによって、基板上の有機溶剤を完全に除去することが困難となるおそれがあった。 However, in the drying process described in Patent Document 2, the central portion of the substrate from which the liquid film has been removed by spraying the gas has a smaller heat capacity than the peripheral portion where the liquid film remains, so the temperature rises relatively. Cheap. Further, the peripheral portion where the liquid film remains is difficult to raise in temperature above the boiling point of the liquid film because the liquid film remains. For this reason, when a temperature difference occurs between the central portion and the peripheral portion of the substrate, the substrate may be warped. Thus, when a temperature difference occurs between the center side and the peripheral side on the substrate, the substrate may be warped in a concave shape. In such a case, the temperature of the peripheral portion is lowered, which may make it difficult to completely remove the organic solvent on the substrate.
 そこで、本発明は、基板の反りを抑制して基板上の処理液を良好に排除する技術を提供することを目的とする。 Then, an object of this invention is to provide the technique which suppresses the curvature of a board | substrate and excludes the process liquid on a board | substrate favorably.
 第1態様は、基板の周縁を把持する把持状態と把持を解除する解除状態との間で変位する複数のチャック部材と、前記複数のチャック部材に把持されている基板の上面に処理液を供給する処理液供給部と、前記複数のチャック部材に把持されている基板の下方に配置され、基板を加熱する加熱部と、前記基板の下面に対して前記加熱部を接離させる接離部と、前記複数のチャック部を解除状態とし、前記加熱部が下面に当接している前記基板の上面に形成された液膜を基板の中央から周縁に向けて排除する液膜排除部と、前記液膜排除部により液膜が排除されている基板の周縁に当接する周縁当接部とを備える。 According to a first aspect, a processing liquid is supplied to a plurality of chuck members which are displaced between a gripping state in which the peripheral edge of the substrate is gripped and a releasing state in which gripping is released, and the upper surface of the substrate gripped by the plurality of chuck members. A processing liquid supply unit, a heating unit disposed below the substrate held by the plurality of chuck members and heating the substrate, and a contact / separation unit that brings the heating unit into and out of contact with the lower surface of the substrate A liquid film removing unit for removing the liquid film formed on the upper surface of the substrate with the plurality of chuck units released and the heating unit being in contact with the lower surface from the center to the periphery of the substrate; And a peripheral contact portion that is in contact with the peripheral edge of the substrate from which the liquid film has been removed by the film removal unit.
 第2態様は、第1態様の基板処理装置であって、前記周縁当接部が、前記基板の周縁部の上面に接触する接触部を含む。 A 2nd aspect is a substrate processing apparatus of a 1st aspect, Comprising: The said periphery contact part contains the contact part which contacts the upper surface of the peripheral part of the said board | substrate.
 第3態様は、第2態様の基板処理装置であって、前記接触部に接続され、前記鉛直方向に弾性変形可能な弾性部材をさらに備える。 A third aspect is the substrate processing apparatus according to the second aspect, further comprising an elastic member connected to the contact portion and elastically deformable in the vertical direction.
 第4態様は、第2態様または第3態様の基板処理装置であって、前記接触部の前記基板に接触する下部が、弾性材料によって形成されている。 A fourth aspect is the substrate processing apparatus according to the second or third aspect, wherein the lower portion of the contact portion in contact with the substrate is formed of an elastic material.
 第5態様は、第1態様から第4態様のいずれか1つの基板処理装置であって、前記周縁当接部を、前記基板の周縁部に当接する周縁当接位置と、前記基板の周縁部から離間する離間位置との間で移動させる周縁当接部駆動ユニット、をさらに備える。 A fifth aspect is the substrate processing apparatus according to any one of the first aspect to the fourth aspect, wherein the peripheral edge contact portion is in contact with a peripheral edge portion of the substrate, and the peripheral portion of the substrate And a circumferential abutment drive unit for moving between the first position and the second position.
 第6態様は、第1態様から第5態様のいずれか1つの基板処理装置であって、前記周縁当接部は、前記基板の周端面に接触する周端面接触部、をさらに備える。 A sixth aspect is the substrate processing apparatus according to any one of the first aspect to the fifth aspect, wherein the peripheral edge contact portion further includes a peripheral end surface contact portion contacting the peripheral end surface of the substrate.
 第7態様は、第1態様から第6態様のいずれか1つの基板処理装置であって、前記接離部は、前記加熱部を上方へ移動させることにより、前記基板を前記チャック部材に保持されるときの位置よりも上側の上位置に移動させる。 A seventh aspect is the substrate processing apparatus according to any one of the first aspect to the sixth aspect, wherein the contact / separation unit holds the substrate on the chuck member by moving the heating unit upward. Move to the upper position above the position where
 第8態様は、基板処理装置であって、その上面に処理液の液膜が形成された基板の下面に当接しつつ基板を加熱する加熱部と、加熱部により加熱される基板の上面に形成された液膜を基板の中央から周縁に向けて排除する液膜排除部と、液膜排除部により液膜が排除されている基板の反りを抑制する反り抑制部とを備える。 The eighth aspect is a substrate processing apparatus, comprising: a heating unit for heating the substrate while being in contact with the lower surface of the substrate having the liquid film of the processing liquid formed on the upper surface; and the upper surface of the substrate heated by the heating unit And a warpage suppressing portion suppressing warpage of the substrate from which the liquid film has been removed by the liquid film removing portion.
 第9態様は、基板を処理する基板処理方法であって、(a)上面に処理液の液膜が形成された基板の下面に加熱部を当接させつつ加熱する工程と、(b)前記加熱部により加熱される基板の上面に形成された液膜を基板の中央から周縁に向けて排除する工程と、(c)前記工程(b)により液膜が排除されている基板の反りを抑制する工程とを備える。 A ninth aspect is a substrate processing method for processing a substrate, comprising: (a) heating while bringing a heating unit into contact with the lower surface of the substrate having the liquid film of the processing liquid formed on the upper surface; Removing the liquid film formed on the upper surface of the substrate heated by the heating unit from the center to the periphery of the substrate, and (c) suppressing the warp of the substrate from which the liquid film is removed in the step (b) And the step of
 第1態様の基板処理装置によると、液膜を基板の中央から周縁に向けて排除した際に、中央と周縁の温度差によって生じる基板の反りを、周縁当接部が基板の周縁部に当接することによって抑制できる。これにより、基板の周縁の温度低下を抑制できるため、基板上の処理液を好適に除去し得る。 According to the substrate processing apparatus of the first aspect, when the liquid film is removed from the center to the periphery of the substrate, the substrate contact is caused to contact the periphery of the substrate. It can be suppressed by touching. Thereby, since the temperature fall of the periphery of a board | substrate can be suppressed, the process liquid on a substrate can be removed suitably.
 第2態様の基板処理装置によると、接触部が基板の上面に当接するため、基板の周縁部の上側への反りを抑制し得る。 According to the substrate processing apparatus of the second aspect, since the contact portion is in contact with the upper surface of the substrate, the warpage of the peripheral portion of the substrate to the upper side can be suppressed.
 第3態様の基板処理装置によると、弾性部材が鉛直方向に弾性変形可能であるため、基板の周縁部の上面に対して接触部を柔軟に接触させることができる。このため、基板の周縁部に与えられる衝撃を軽減できる。また、基板の周縁部が接触部に接触するとき、あるいは、接触している間に、弾性部材に蓄えられた弾性力により、接触部が適度な力で周縁部を下方に押圧する。このため、周縁部の破損を抑制しつつ、基板の周縁部の上側への反りを抑制し得る。 According to the substrate processing apparatus of the third aspect, since the elastic member is elastically deformable in the vertical direction, the contact portion can be flexibly brought into contact with the upper surface of the peripheral portion of the substrate. For this reason, the impact given to the peripheral part of a board | substrate can be reduced. Further, when the peripheral edge of the substrate contacts or is in contact with the contact portion, the contact portion presses the peripheral edge downward with an appropriate force by the elastic force stored in the elastic member. For this reason, the curvature to the upper side of the peripheral part of a board | substrate can be suppressed, suppressing the failure | damage of a peripheral part.
 第4態様の基板処理装置によると、接触部における基板の周縁部に接触する下部を弾性材料によって形成するため、基板の周縁部に与えられる衝撃を軽減できる。これによって、周縁部の破損を抑制し得る。 According to the substrate processing apparatus of the fourth aspect, since the lower portion of the contact portion in contact with the peripheral portion of the substrate is formed of an elastic material, the impact applied to the peripheral portion of the substrate can be reduced. This can suppress breakage of the peripheral portion.
 第5態様の基板処理装置によると、周縁当接部を離間位置に待避させることによって、基板を基板保持部に対して搬入または搬出する際に、周縁当接部が基板に干渉することを抑制できる。 According to the substrate processing apparatus of the fifth aspect, the peripheral contact portion is prevented from interfering with the substrate when the substrate is carried in or out from the substrate holding portion by retracting the peripheral contact portion to the separated position. it can.
 第6態様の基板処理装置によると、周縁当接部が基板の周端面に接触することによって、基板の周縁部の上下方向の反りを抑制し得る。 According to the substrate processing apparatus of the sixth aspect, vertical contact of the peripheral edge portion of the substrate can be suppressed by the peripheral edge contact portion contacting the peripheral end surface of the substrate.
 第7態様の基板処理装置によると、加熱部が基板を支持した状態で加熱するため、基板を効率よく加熱し得る。 According to the substrate processing apparatus of the seventh aspect, the substrate can be efficiently heated since the heating unit supports the substrate while heating.
 第8態様の基板処理装置によると、反り抑制部を設けることにより、液膜を基板の中央から周縁に向けて排除した際に、中央と周縁の温度差によって生じる基板の反りを抑制できる。これにより、基板の周縁の温度低下を抑制できるため、基板上の処理液を好適に除去し得る。 According to the substrate processing apparatus of the eighth aspect, by providing the warpage suppressing portion, when the liquid film is removed from the center to the periphery of the substrate, the warpage of the substrate caused by the temperature difference between the center and the periphery can be suppressed. Thereby, since the temperature fall of the periphery of a board | substrate can be suppressed, the process liquid on a board | substrate can be removed suitably.
 第9態様の基板処理方法によると、液膜を基板の中央から周縁に向けて排除した際に、中央と周縁の温度差によって生じる基板の反りが抑制される。これにより、基板の周縁の温度低下を抑制できるため、基板上の処理液を好適に除去し得る。 According to the substrate processing method of the ninth aspect, when the liquid film is removed from the center to the periphery of the substrate, the warpage of the substrate caused by the temperature difference between the center and the periphery is suppressed. Thereby, since the temperature fall of the periphery of a board | substrate can be suppressed, the process liquid on a board | substrate can be removed suitably.
第1実施形態に係る基板処理装置1の内部のレイアウトを説明するための図解的な平面図である。It is a schematic plan view for demonstrating the layout inside the substrate processing apparatus 1 which concerns on 1st Embodiment. 処理ユニット2の構成例を説明するための図解的な断面図である。FIG. 3 is a schematic cross-sectional view for explaining a configuration example of a processing unit 2. スピンチャック5およびヒータユニット6の平面図である。FIG. 6 is a plan view of a spin chuck 5 and a heater unit 6; チャックピン20の構造例を説明するための斜視図である。FIG. 5 is a perspective view for describing a structural example of a chuck pin 20. チャックピン20の平面図である。5 is a plan view of a chuck pin 20. FIG. 周縁当接部65の概略平面図である。FIG. 10 is a schematic plan view of the peripheral edge abutting portion 65. FIG. 周縁当接部65の図解的な側面図である。FIG. 16 is a schematic side view of the peripheral edge abutting portion 65. FIG. 第1移動ノズル11の構成例を説明するための模式的な縦断面図である。FIG. 5 is a schematic vertical cross-sectional view for describing a configuration example of a first moving nozzle 11; 基板処理装置1の主要部の電気的構成を説明するためのブロック図である。FIG. 2 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus 1; 基板処理装置1による基板処理の一例を説明するための流れ図である。5 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1; 有機溶剤処理(図10のステップS4)の詳細を説明するためのタイムチャートである。It is a time chart for explaining the details of organic solvent processing (Step S4 of Drawing 10). 有機溶剤処理の各ステップの様子を説明するための図解的な断面図である。It is a schematic sectional drawing for demonstrating the mode of each step of an organic solvent process. 有機溶剤処理の各ステップの様子を説明するための図解的な断面図である。It is a schematic sectional drawing for demonstrating the mode of each step of an organic solvent process. 有機溶剤処理の各ステップの様子を説明するための図解的な断面図である。It is a schematic sectional drawing for demonstrating the mode of each step of an organic solvent process. 有機溶剤処理の各ステップの様子を説明するための図解的な断面図である。It is a schematic sectional drawing for demonstrating the mode of each step of an organic solvent process. 乾燥処理(図10のステップS5)の様子を説明するための図解的な断面図である。It is an illustration sectional drawing for demonstrating the mode of a drying process (FIG.10 S5). 基板Wの温度差による有機溶剤液膜90の移動を説明するための図である。FIG. 7 is a diagram for explaining the movement of the organic solvent liquid film 90 due to the temperature difference of the substrate W. 第2実施形態の周縁当接部65aの概略平面図である。It is a schematic plan view of the peripheral edge contact part 65a of 2nd Embodiment. 周縁当接部65aの図解的な側面図である。It is an illustration side view of peripheral contact part 65a.
 以下、添付の図面を参照しながら、本発明の実施形態について説明する。なお、この実施形態に記載されている構成要素はあくまでも例示であり、本発明の範囲をそれらのみに限定する趣旨のものではない。図面においては、理解容易のため、必要に応じて各部の寸法や数が誇張または簡略化して図示されている場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The constituent elements described in this embodiment are merely examples, and the scope of the present invention is not limited to them. In the drawings, for the sake of easy understanding, the dimensions and the numbers of the respective parts may be exaggerated or simplified as necessary.
 <1. 第1実施形態>
 図1は、第1実施形態に係る基板処理装置1の内部のレイアウトを説明するための図解的な平面図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状に形成されている。
<1. First embodiment>
FIG. 1 is a schematic plan view for explaining the layout inside the substrate processing apparatus 1 according to the first embodiment. The substrate processing apparatus 1 is a single wafer processing apparatus that processes a substrate W such as a silicon wafer one by one. In this embodiment, the substrate W is formed in a disk shape.
 基板処理装置1は、複数の処理ユニット2、ロードポートLP、搬送ロボットIR、搬送ロボットCRおよび制御ユニット3を含む。処理ユニット2は、処理液で基板Wを処理する。複数の処理ユニット2は、たとえば、同様の構成を有している。ロードポートLPは、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置される。搬送ロボットIRは、キャリヤCと搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。制御ユニット3は、基板処理装置1の各要素の動作を制御する。 The substrate processing apparatus 1 includes a plurality of processing units 2, a load port LP, a transfer robot IR, a transfer robot CR, and a control unit 3. The processing unit 2 processes the substrate W with the processing liquid. The plurality of processing units 2 have, for example, the same configuration. In the load port LP, a carrier C for accommodating a plurality of substrates W processed by the processing unit 2 is placed. The transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR. The transport robot CR transports the substrate W between the transport robot IR and the processing unit 2. The control unit 3 controls the operation of each element of the substrate processing apparatus 1.
 図2は、処理ユニット2の構成例を説明するための図解的な断面図である。処理ユニット2は、スピンチャック5、ヒータユニット6、昇降ユニット7、カップ8と、下面ノズル9、DIWノズル10、第1移動ノズル11、第2移動ノズル12およびチャンバ13(図1参照)を備えている。 FIG. 2 is a schematic cross-sectional view for explaining a configuration example of the processing unit 2. The processing unit 2 includes a spin chuck 5, a heater unit 6, an elevation unit 7, a cup 8, a lower surface nozzle 9, a DIW nozzle 10, a first moving nozzle 11, a second moving nozzle 12, and a chamber 13 (see FIG. 1). ing.
 スピンチャック5は、一枚の基板Wを水平な姿勢で保持しながら、基板Wの中央部を通る鉛直な回転軸線A1まわりに基板Wを回転させる。ヒータユニット6は、基板Wを下面側から加熱する。昇降ユニット7は、ヒータユニット6を基板Wの下方で上下動させる。カップ8は、スピンチャック5を取り囲み可能な筒状に形成されている。下面ノズル9は、基板Wの下面に処理流体を供給する。DIWノズル10は、基板Wの上面にリンス液としての脱イオン水(DIW)を供給する。第1移動ノズル11および第2移動ノズル12は、基板Wの上方で移動可能に構成されている。チャンバ13は、カップ8を収容可能に構成されている。チャンバ13には、基板Wを搬入/搬出するための搬入/搬出口が形成されており、この搬入/搬出口を開閉するシャッタユニットが備えられている。 The spin chuck 5 rotates the substrate W around a vertical rotation axis A1 passing through the central portion of the substrate W while holding a single substrate W in a horizontal posture. The heater unit 6 heats the substrate W from the lower surface side. The lifting unit 7 moves the heater unit 6 up and down below the substrate W. The cup 8 is formed in a cylindrical shape that can surround the spin chuck 5. The lower surface nozzle 9 supplies the processing fluid to the lower surface of the substrate W. The DIW nozzle 10 supplies deionized water (DIW) as a rinse liquid to the upper surface of the substrate W. The first movable nozzle 11 and the second movable nozzle 12 are configured to be movable above the substrate W. The chamber 13 is configured to be able to accommodate the cup 8. The chamber 13 is provided with a loading / unloading port for loading / unloading the substrate W, and is provided with a shutter unit that opens / closes the loading / unloading port.
 スピンチャック5は、チャックピン20(チャック部材)と、スピンベース21と、スピンベース21の下面中央に結合された回転軸22と、回転軸22に回転力を与える電動モータ23とを含む。回転軸22は回転軸線A1に沿って鉛直方向に延びており、この実施形態では中空軸である。回転軸22の上端に、スピンベース21が結合されている。スピンベース21は、水平方向に沿う円盤形状を有している。スピンベース21の上面の周縁部には、複数のチャックピン20が周方向に間隔を空けて配置されている。 The spin chuck 5 includes a chuck pin 20 (chuck member), a spin base 21, a rotating shaft 22 coupled to the center of the lower surface of the spin base 21, and an electric motor 23 for applying a rotating force to the rotating shaft 22. The rotation axis 22 extends vertically along the rotation axis A1, and in this embodiment is a hollow axis. The spin base 21 is coupled to the upper end of the rotation shaft 22. The spin base 21 has a disk shape along the horizontal direction. A plurality of chuck pins 20 are arranged at intervals in the circumferential direction on the peripheral edge portion of the top surface of the spin base 21.
 複数のチャックピン20は、基板Wの周端に接触して基板Wを把持する閉状態と、基板Wの周端から退避した開状態との間で開閉可能である。また、複数のチャックピン20は、開状態において、基板Wの周縁部の下面に接触して、基板Wを下方から支持する。 The plurality of chuck pins 20 can be opened and closed between a closed state in which the substrate W is held in contact with the peripheral end of the substrate W and gripped the substrate W and an open state retracted from the peripheral end of the substrate W. Further, in the open state, the plurality of chuck pins 20 contact the lower surface of the peripheral portion of the substrate W to support the substrate W from below.
 チャックピン駆動ユニット25は、チャックピン20を開閉駆動する。チャックピン駆動ユニット25は、たとえば、スピンベース21に内蔵されたリンク機構26と、スピンベース21外に配置された駆動源27とを含む。駆動源27は、たとえば、ボールねじ機構と、それに駆動力を与える電動モータとを含む。 The chuck pin drive unit 25 drives the chuck pin 20 to open and close. The chuck pin drive unit 25 includes, for example, a link mechanism 26 incorporated in the spin base 21 and a drive source 27 disposed outside the spin base 21. The drive source 27 includes, for example, a ball screw mechanism and an electric motor that applies a driving force thereto.
 ヒータユニット6は、スピンベース21の上方に配置されている。ヒータユニット6の下面には、回転軸線A1に沿って鉛直方向に延びる昇降軸30が結合されている。昇降軸30は、スピンベース21の中央部に形成された貫通孔24と、中空の回転軸22とを挿通している。昇降軸30の下端は、回転軸22の下端よりもさらに下方にまで延びている。この昇降軸30の下端に、昇降ユニット7が結合されている。昇降ユニット7を作動させることにより、ヒータユニット6は、スピンベース21の上面に近い下位置から、基板Wの下面を支持してチャックピン20から持ち上げる上位置までの間で上下動する。 The heater unit 6 is disposed above the spin base 21. An elevation shaft 30 extending in the vertical direction along the rotation axis A1 is coupled to the lower surface of the heater unit 6. The elevating shaft 30 passes through the through hole 24 formed in the central portion of the spin base 21 and the hollow rotary shaft 22. The lower end of the elevating shaft 30 extends further downward than the lower end of the rotating shaft 22. The lifting unit 7 is coupled to the lower end of the lifting shaft 30. By operating the elevating unit 7, the heater unit 6 moves up and down from the lower position close to the upper surface of the spin base 21 to the upper position supporting the lower surface of the substrate W and lifting it from the chuck pin 20.
 昇降ユニット7は、たとえば、ボールねじ機構と、それに駆動力を与える電動モータとを含む。これにより、昇降ユニット7は、下位置および上位置の間の任意の中間位置にヒータユニット6を配置する。たとえば、ヒータユニット6の上面である加熱面6aを基板Wの下面との間に所定の間隔を開けた離隔位置に配置した状態で、加熱面6aからの輻射熱によって基板Wを加熱できる。また、ヒータユニット6で基板Wを持ち上げれば、加熱面6aを基板Wの下面に接触させた接触状態で、加熱面6aからの熱伝導により、基板Wをより大きな熱量で加熱できる。このように、昇降ユニット7は、基板Wの下面に対してヒータユニット6(加熱部)を接離させる接離部の一例である。 Lifting unit 7 includes, for example, a ball screw mechanism and an electric motor that applies a driving force thereto. Thereby, the lifting unit 7 arranges the heater unit 6 at any intermediate position between the lower position and the upper position. For example, the substrate W can be heated by radiant heat from the heating surface 6 a in a state where the heating surface 6 a which is the upper surface of the heater unit 6 is disposed at a separated position spaced apart from the lower surface of the substrate W by a predetermined distance. In addition, if the substrate W is lifted by the heater unit 6, the substrate W can be heated by a larger amount of heat by the thermal conduction from the heating surface 6a in the contact state where the heating surface 6a is in contact with the lower surface of the substrate W. As described above, the elevating unit 7 is an example of a contacting / separating unit that brings the heater unit 6 (heating unit) into contact with or separated from the lower surface of the substrate W.
 第1移動ノズル11は、第1ノズル移動ユニット15によって、水平方向および鉛直方向に移動する。第1移動ノズル11は、水平方向への移動によって、基板Wの上面の回転中心に対向する処理位置と、基板Wの上面に対向しないホーム位置(退避位置)との間で移動する。ここで、「基板Wの上面の回転中心」とは、基板Wの上面における回転軸線A1との交差位置である。「基板Wの上面に対向しないホーム位置」とは、平面視において、スピンベース21の外方の位置であり、具体的には、カップ8の外方の位置であってもよい。 The first moving nozzle 11 is moved in the horizontal direction and the vertical direction by the first nozzle moving unit 15. The first moving nozzle 11 moves between the processing position facing the center of rotation of the upper surface of the substrate W and the home position (retracting position) not facing the upper surface of the substrate W by moving in the horizontal direction. Here, “the rotation center of the upper surface of the substrate W” is a position at which the upper surface of the substrate W intersects with the rotation axis A1. The “home position not facing the upper surface of the substrate W” may be an outer position of the spin base 21 in a plan view, specifically, an outer position of the cup 8.
 第1移動ノズル11は、鉛直方向への移動によって、基板Wの上面に接近したり、基板Wの上面から上方に退避したりする。第1ノズル移動ユニット15は、たとえば、鉛直方向に沿う回動軸と、回動軸に結合されて水平に延びるアームと、アームを駆動するアーム駆動機構とを含む。アーム駆動機構は、回動軸を鉛直な回動軸線まわりに回動させることによってアームを揺動させ、回動軸を鉛直方向に沿って昇降させることによって、アームを上下動させる。第1移動ノズル11はこのアームに固定され得る。アームの揺動および昇降に応じて、第1移動ノズル11が水平方向および垂直方向に移動する。 The first movable nozzle 11 approaches the upper surface of the substrate W or retracts upward from the upper surface of the substrate W by movement in the vertical direction. The first nozzle moving unit 15 includes, for example, a pivoting axis along the vertical direction, an arm that is coupled to the pivoting axis and extends horizontally, and an arm drive mechanism that drives the arm. The arm drive mechanism pivots the arm by pivoting the pivoting axis around a vertical pivoting axis, and vertically moves the arm by vertically elevating the pivoting axis. The first moving nozzle 11 can be fixed to this arm. The first movable nozzle 11 moves in the horizontal direction and the vertical direction according to the swinging and raising and lowering of the arm.
 第2移動ノズル12は、第2ノズル移動ユニット16によって、水平方向および垂直方向に移動する。第2移動ノズル12は、水平方向への移動によって、基板Wの上面の回転中心に対向する位置と、基板Wの上面に対向しないホーム位置(退避位置)との間で移動する。ここで、「ホーム位置」は、平面視において、スピンベース21の外方の位置であり、具体的には、カップ8の外方の位置であってもよい。 The second moving nozzle 12 is moved horizontally and vertically by the second nozzle moving unit 16. The second moving nozzle 12 moves between a position facing the center of rotation of the upper surface of the substrate W and a home position (retracting position) not facing the upper surface of the substrate W by moving in the horizontal direction. Here, the “home position” may be an outer position of the spin base 21 in a plan view, specifically, an outer position of the cup 8.
 第2移動ノズル12は、鉛直方向への移動によって、基板Wの上面に接近したり、基板Wの上面から上方に退避したりする。第2ノズル移動ユニット16は、たとえば、鉛直方向に沿う回動軸と、回動軸に結合されて水平に延びるアームと、アームを駆動するアーム駆動機構とを含む。アーム駆動機構は、回動軸を鉛直な回動軸線まわりに回動させることによってアームを揺動させ、回動軸を鉛直方向に沿って昇降させることによって、アームを上下動させる。第2移動ノズル12はアームに固定され得る。アームの揺動および昇降に応じて、第2移動ノズル12が水平方向および垂直方向に移動する。 The second moving nozzle 12 approaches the upper surface of the substrate W or retracts upward from the upper surface of the substrate W by movement in the vertical direction. The second nozzle moving unit 16 includes, for example, a rotation axis along the vertical direction, an arm that is coupled to the rotation axis and extends horizontally, and an arm drive mechanism that drives the arm. The arm drive mechanism pivots the arm by pivoting the pivoting axis around a vertical pivoting axis, and vertically moves the arm by vertically elevating the pivoting axis. The second moving nozzle 12 may be fixed to the arm. The second movable nozzle 12 moves in the horizontal direction and the vertical direction in response to the swinging and raising and lowering of the arm.
 第1移動ノズル11は、この実施形態では、有機溶剤を吐出する有機溶剤ノズルとしての機能と、窒素ガス等の不活性ガスを吐出するガスノズルとしての機能とを有する。第1移動ノズル11には、有機溶剤供給管35および不活性ガス供給管36が連結している。有機溶剤供給管35には、その流路を開閉する有機溶剤バルブ37が介装されている。不活性ガス供給管36には、その流路を開閉する不活性ガスバルブ38が介装されている。有機溶剤供給管35には、有機溶剤供給源から、イソプロピルアルコール(IPA)等の有機溶剤が供給される。不活性ガス供給管36には、不活性ガス供給源から、窒素ガス(N)等の不活性ガスが供給される。 In this embodiment, the first moving nozzle 11 has a function as an organic solvent nozzle that discharges an organic solvent, and a function as a gas nozzle that discharges an inert gas such as nitrogen gas. An organic solvent supply pipe 35 and an inert gas supply pipe 36 are connected to the first moving nozzle 11. An organic solvent valve 37 for opening and closing the flow path is interposed in the organic solvent supply pipe 35. An inert gas valve 38 for opening and closing the flow path is interposed in the inert gas supply pipe 36. An organic solvent such as isopropyl alcohol (IPA) is supplied to the organic solvent supply pipe 35 from an organic solvent supply source. An inert gas such as nitrogen gas (N 2 ) is supplied to the inert gas supply pipe 36 from an inert gas supply source.
 第2移動ノズル12は、この実施形態では、酸、アルカリ等の薬液を供給する薬液ノズルとしての機能と、窒素ガス等の不活性ガスを吐出するガスノズルとしての機能とを有している。より具体的には、第2移動ノズル12は、液体と気体とを混合して吐出することができる二流体ノズルの形態を有していてもよい。二流体ノズルは、気体の供給を停止して液体を吐出すれば液体ノズルとして使用でき、液体の供給を停止して気体を吐出すればガスノズルとして使用できる。 In this embodiment, the second moving nozzle 12 has a function as a chemical liquid nozzle that supplies a chemical liquid such as acid and alkali, and a function as a gas nozzle that discharges an inert gas such as nitrogen gas. More specifically, the second moving nozzle 12 may have the form of a two-fluid nozzle capable of mixing and discharging a liquid and a gas. The two-fluid nozzle can be used as a liquid nozzle by stopping the supply of gas and discharging the liquid, and can be used as a gas nozzle by stopping the supply of liquid and discharging the gas.
 第2移動ノズル12には、薬液供給管41および不活性ガス供給管42が結合されている。薬液供給管41には、その流路を開閉する薬液バルブ43が介装されている。不活性ガス供給管42には、その流路を開閉する不活性ガスバルブ44と、不活性ガスの流量を可変する流量可変バルブ45とが介装されている。薬液供給管41には、薬液供給源から、酸、アルカリ等の薬液が供給されている。不活性ガス供給管42には、不活性ガス供給源から、窒素ガス(N)等の不活性ガスが供給されている。 The chemical liquid supply pipe 41 and the inert gas supply pipe 42 are connected to the second moving nozzle 12. A chemical solution valve 43 for opening and closing the flow path is interposed in the chemical solution supply pipe 41. An inert gas valve 44 for opening and closing the flow path and a flow rate variable valve 45 for changing the flow rate of the inert gas are interposed in the inert gas supply pipe 42. A chemical solution such as an acid or an alkali is supplied to the chemical solution supply pipe 41 from a chemical solution supply source. An inert gas such as nitrogen gas (N 2 ) is supplied to the inert gas supply pipe 42 from an inert gas supply source.
 薬液の具体例は、エッチング液および洗浄液である。さらに具体的には、薬液は、フッ酸、SC1(アンモニア過酸化水素水混合液)、SC2(塩酸過酸化水素水混合液)、バッファードフッ酸(フッ酸とフッ化アンモニウムとの混合液)などであってもよい。 Specific examples of the chemical solution are an etching solution and a cleaning solution. More specifically, the chemical solution includes hydrofluoric acid, SC1 (ammonia-hydrogen peroxide mixed solution), SC2 (hydrochloric acid-hydrogen peroxide mixed solution), buffered hydrofluoric acid (a mixed solution of hydrofluoric acid and ammonium fluoride) Or the like.
 DIWノズル10は、この実施形態では、基板Wの上面の回転中心に向けてDIWを吐出可能な位置に固定されたノズルである。DIWノズル10には、DIW供給源から、DIW供給管46を介して、DIWが供給される。DIW供給管46には、その流路を開閉するためのDIWバルブ47が介装されている。DIWノズル10は固定ノズルである必要はなく、たとえば、水平方向に移動可能な移動ノズルであってもよい。 In this embodiment, the DIW nozzle 10 is a nozzle fixed at a position where the DIW can be discharged toward the rotation center of the upper surface of the substrate W. DIW is supplied to the DIW nozzle 10 from a DIW supply source via a DIW supply pipe 46. The DIW supply pipe 46 is provided with a DIW valve 47 for opening and closing the flow path. The DIW nozzle 10 does not have to be a fixed nozzle, and may be, for example, a movable nozzle that can move in the horizontal direction.
 下面ノズル9は、中空の昇降軸30を挿通し、さらに、ヒータユニット6を貫通している。下面ノズル9は、基板Wの下面中央に臨む吐出口9aを上端に有している。下面ノズル9には、流体供給源から流体供給管48を介して処理流体が供給されている。供給される処理流体は、液体であってもよいし、気体であってもよい。流体供給管48には、その流路を開閉するための流体バルブ49が介装されている。 The lower surface nozzle 9 passes through the hollow lift shaft 30 and further penetrates the heater unit 6. The lower surface nozzle 9 has a discharge port 9 a facing the center of the lower surface of the substrate W at the upper end. The lower surface nozzle 9 is supplied with a processing fluid from a fluid supply source via a fluid supply pipe 48. The processing fluid to be supplied may be liquid or gas. The fluid supply pipe 48 is provided with a fluid valve 49 for opening and closing the flow path.
 図3は、スピンチャック5およびヒータユニット6の平面図である。スピンチャック5のスピンベース21は、平面視において、回転軸線A1を中心とする円形であり、その直径は基板Wの直径よりも大きい。スピンベース21の周縁部には、間隔を空けて複数個(この実施形態では3個)のチャックピン20が配置されている。 FIG. 3 is a plan view of the spin chuck 5 and the heater unit 6. The spin base 21 of the spin chuck 5 is circular around the rotation axis A1 in plan view, and its diameter is larger than the diameter of the substrate W. A plurality of (three in this embodiment) chuck pins 20 are disposed at the periphery of the spin base 21 at an interval.
 ヒータユニット6は、円板状のホットプレートの形態を有しており、プレート本体60と、支持ピン61と、ヒータ62とを含む。プレート本体60は、平面視において、基板Wの外形とほぼ同形同大で、回転軸線A1を中心とする円形に構成されている。より正確には、プレート本体60は、基板Wの直径よりも僅かに小さい直径の円形の平面形状を有している。たとえば、基板Wの直径が300mmであり、プレート本体60の直径(とくに加熱面6aの直径)がそれよりも6mmだけ小さい294mmであってもよい。この場合、プレート本体60の半径は基板Wの半径よりも3mm小さい。 The heater unit 6 has the form of a disk-shaped hot plate, and includes a plate body 60, a support pin 61, and a heater 62. The plate main body 60 has a substantially same shape and size as the outer shape of the substrate W in a plan view, and is formed in a circle centered on the rotation axis A1. More precisely, the plate body 60 has a circular planar shape with a diameter slightly smaller than the diameter of the substrate W. For example, the diameter of the substrate W may be 300 mm, and the diameter of the plate body 60 (in particular, the diameter of the heating surface 6a) may be 294 mm, which is smaller than that by 6 mm. In this case, the radius of the plate body 60 is smaller than the radius of the substrate W by 3 mm.
 プレート本体60の上面は、水平面に沿う平面である。プレート本体60の上面に複数の支持ピン61(図2を併せて参照)が突出している。支持ピン61は、たとえば、それぞれ半球状であり、プレート本体60の上面から微小高さ(たとえば0.1mm)だけ突出している。したがって、基板Wが複数の支持ピン61に接触して支持されるとき、基板Wの下面はたとえば0.1mmの微小間隔を開けてプレート本体60の上面に対向する。このように基板Wをプレート本体60に近接した位置にて点で支持することにより、基板Wを効率的かつ均一に加熱し得る。 The upper surface of the plate body 60 is a flat surface along the horizontal plane. A plurality of support pins 61 (see also FIG. 2) are projected on the upper surface of the plate body 60. The support pins 61 are each hemispherical, for example, and project from the upper surface of the plate body 60 by a minute height (for example, 0.1 mm). Therefore, when the substrate W is supported in contact with the plurality of support pins 61, the lower surface of the substrate W faces the upper surface of the plate main body 60 with a minute gap of, for example, 0.1 mm. By supporting the substrate W at a point close to the plate body 60 in this manner, the substrate W can be heated efficiently and uniformly.
 なお、複数の支持ピン61は必須ではない。支持ピン61を有していない場合には、基板Wをプレート本体60の上面に接触させることができる。ヒータユニット6の加熱面6aは、支持ピン61を有している場合には、プレート本体60の上面および支持ピン61の表面を含む。また、支持ピン61が備えられていない場合には、プレート本体60の上面が加熱面6aに相当する。以下では、支持ピン61が基板Wの下面に接している状態を、加熱面6aに基板Wの下面が接しているなどという場合がある。 The plurality of support pins 61 is not essential. When the support pin 61 is not provided, the substrate W can be brought into contact with the upper surface of the plate body 60. The heating surface 6 a of the heater unit 6 includes the upper surface of the plate body 60 and the surface of the support pin 61 when having the support pin 61. Moreover, when the support pin 61 is not provided, the upper surface of the plate main body 60 corresponds to the heating surface 6a. Hereinafter, the state in which the support pins 61 are in contact with the lower surface of the substrate W may be referred to as the lower surface of the substrate W in contact with the heating surface 6 a.
 ヒータ62は、プレート本体60に内蔵されている抵抗体であってもよい。図3には、複数の領域に分割されたヒータ62を示している。ヒータ62に通電することによって、加熱面6aが室温(たとえば20~30℃。たとえば25℃)よりも高温に加熱される。具体的には、ヒータ62への通電によって、第1移動ノズル11から供給される有機溶剤の沸点よりも高温に加熱面6aを加熱することができる。図2に示すように、ヒータ62への給電線63は、昇降軸30内に通されている。そして、給電線63には、ヒータ62に電力を供給するヒータ通電ユニット64が接続されている。ヒータ通電ユニット64は、基板処理装置1の動作中、常時、通電されてもよい。 The heater 62 may be a resistor incorporated in the plate body 60. FIG. 3 shows the heater 62 divided into a plurality of regions. By energizing the heater 62, the heating surface 6a is heated to a temperature higher than room temperature (for example, 20 to 30 ° C., for example 25 ° C.). Specifically, the heating surface 6 a can be heated to a temperature higher than the boiling point of the organic solvent supplied from the first moving nozzle 11 by energizing the heater 62. As shown in FIG. 2, the feed line 63 to the heater 62 is passed through the elevation shaft 30. A heater energization unit 64 for supplying electric power to the heater 62 is connected to the feed line 63. The heater energization unit 64 may be energized at all times during the operation of the substrate processing apparatus 1.
 支持ピン61は、プレート本体60の上面にほぼ均等に配置されている。プレート本体60の外周端よりも外方に、チャックピン20が配置されている。チャックピン20の全体がプレート本体60の外周端よりも外方に配置されている必要はなく、ヒータユニット6の上下動範囲に対向する部分がプレート本体60の外周端よりも外方に位置していればよい。 The support pins 61 are arranged substantially equally on the upper surface of the plate body 60. The chuck pin 20 is disposed outward of the outer peripheral end of the plate body 60. It is not necessary for the entire chuck pin 20 to be disposed further outward than the outer peripheral end of the plate main body 60, and a portion facing the vertical movement range of the heater unit 6 is located outward than the outer peripheral end of the plate main body 60. It should just be.
 図4は、チャックピン20の構造例を説明するための斜視図である。また、図5は、チャックピン20の平面図である。図5中、(a)は閉状態を示しており、(b)は開状態を示している。 FIG. 4 is a perspective view for explaining a structural example of the chuck pin 20. As shown in FIG. 5 is a plan view of the chuck pin 20. FIG. In FIG. 5, (a) shows a closed state, and (b) shows an open state.
 チャックピン20は、ベース部50と、鉛直方向に延びたシャフト部53と、シャフト部53の上端に設けられたベース部50と、シャフト部53の下端に設けられた回動支持部54とを含む。ベース部50は、把持部51と、支持部52とを含む。回動支持部54は、鉛直方向に沿うチャック回動軸線55まわりに回動可能にスピンベース21に結合されている。シャフト部53は、チャック回動軸線55から離れた位置にオフセットされて、回動支持部54に結合されている。より具体的には、シャフト部53はチャック回動軸線55よりも、回転軸線A1から離れた位置に配置されている。したがって、チャックピン20がチャック回動軸線55まわりに回動されると、ベース部50は、その全体が基板Wの周端面に沿って移動しながら、チャック回動軸線55まわりに回動する。回動支持部54は、スピンベース21の内部に設けられたリンク機構26(図2参照)に結合されている。このリンク機構26からの駆動力によって、回動支持部54は、チャック回動軸線55まわりに所定角度範囲で往復回動する。なお、基板Wの周端面とは、基板Wの外周面であり、基板Wの表面のうち主面(最も面積が大きい面)を除いた径方向外方を向く面である。 The chuck pin 20 includes a base portion 50, a shaft portion 53 extending in the vertical direction, a base portion 50 provided on the upper end of the shaft portion 53, and a rotation support portion 54 provided on the lower end of the shaft portion 53. Including. The base unit 50 includes a gripping unit 51 and a support unit 52. The rotation support portion 54 is coupled to the spin base 21 so as to be rotatable about a chuck rotation axis 55 along the vertical direction. The shaft portion 53 is offset to a position away from the chuck rotation axis 55 and coupled to the rotation support portion 54. More specifically, the shaft portion 53 is disposed at a position farther from the rotation axis A1 than the chuck rotation axis 55. Therefore, when the chuck pin 20 is pivoted around the chuck pivot axis 55, the entire base portion 50 pivots around the chuck pivot axis 55 while moving along the circumferential end surface of the substrate W. The pivot support 54 is coupled to a link mechanism 26 (see FIG. 2) provided inside the spin base 21. By the driving force from the link mechanism 26, the rotation support portion 54 reciprocates in the predetermined angle range around the chuck rotation axis 55. The peripheral end surface of the substrate W is the outer peripheral surface of the substrate W, and is a surface facing outward in the radial direction excluding the main surface (surface with the largest area) of the surface of the substrate W.
 ベース部50は、平面視において、くさび形に形成されている。ベース部50の上面には、チャックピン20の開状態で基板Wの周縁部下面に当接して基板Wを下方から支持する支持面52aが設けられている。換言すれば、ベース部50は支持面52aを上面とする支持部52を有している。把持部51は、ベース部50の上面において、支持部52とは別の位置で上方に突出している。把持部51は、基板Wの周端面に対向するようにV字状に開いた保持溝51aを有している。 The base portion 50 is formed in a wedge shape in plan view. On the upper surface of the base portion 50, a support surface 52a which abuts the lower surface of the peripheral portion of the substrate W in the open state of the chuck pin 20 and supports the substrate W from below is provided. In other words, the base portion 50 has the support portion 52 whose upper surface is the support surface 52a. The gripping portion 51 protrudes upward at a position different from the support portion 52 on the upper surface of the base portion 50. The gripping portion 51 has a holding groove 51 a opened in a V shape so as to face the peripheral end surface of the substrate W.
 回動支持部54が図5(b)に示す開状態からチャック回動軸線55まわりに時計まわり方向に回動されるとき、把持部51は基板Wの周端面に接近し、支持部52は基板Wの回転中心から離反する。また、回動支持部54が図5(a)に示す閉状態からチャック回動軸線55まわりに反時計まわり方向に回動されるとき、把持部51は基板Wの周端面から離反し、支持部52は基板Wの回転中心に接近する。 When the pivot support portion 54 is pivoted clockwise around the chuck pivot axis 55 from the open state shown in FIG. 5B, the grip portion 51 approaches the circumferential end surface of the substrate W, and the support portion 52 Away from the rotation center of the substrate W. Further, when the rotation support portion 54 is rotated in the counterclockwise direction around the chuck rotation axis 55 from the closed state shown in FIG. 5A, the gripping portion 51 separates from the circumferential end surface of the substrate W and supports it. The portion 52 approaches the rotation center of the substrate W.
 図5(a)に示すチャックピン20の閉状態では、保持溝51aに基板Wの周端面が入り込む。このとき、基板Wの下面は、支持面52aから微小距離だけ上方に離間した高さに位置する。図5Bに示すチャックピン20の開状態では、保持溝51aから基板Wの周端面が脱していて、平面視において、把持部51は基板Wの周端面よりも外方に位置する。チャックピン20の開状態および閉状態のいずれにおいても、支持面52aは、少なくとも一部が基板Wの周縁部下面の下方に位置している。 In the closed state of the chuck pin 20 shown in FIG. 5A, the peripheral end face of the substrate W enters the holding groove 51a. At this time, the lower surface of the substrate W is located at a height spaced upward from the support surface 52 a by a minute distance. In the open state of the chuck pin 20 shown in FIG. 5B, the peripheral end face of the substrate W is detached from the holding groove 51a, and the holding portion 51 is positioned outward from the peripheral end face of the substrate W in plan view. In any of the open state and the closed state of the chuck pin 20, at least a portion of the support surface 52a is located below the lower surface of the peripheral portion of the substrate W.
 チャックピン20が開状態のとき、チャックピン20は基板Wを支持部52で支持する。その開状態からチャックピン20を閉状態に切り換えると、断面V字状の保持溝51aに案内されてせり上がりながら基板Wの周端面が保持溝51a内へと案内され、保持溝51aの上下の傾斜面によって基板Wが挟持された状態に至る。その状態からチャックピン20を開状態に切り換えると、基板Wの周端面が保持溝51aの下側傾斜面に案内されながら滑り降り、基板Wの周縁部下面が支持面52aに当接する。 When the chuck pin 20 is in the open state, the chuck pin 20 supports the substrate W by the support portion 52. When the chuck pin 20 is switched from the open state to the closed state, the peripheral end face of the substrate W is guided into the holding groove 51a while being guided and lifted by the holding groove 51a having a V-shaped cross section. The substrate W is held by the inclined surface. When the chuck pin 20 is switched to the open state from that state, the peripheral end surface of the substrate W slides down while being guided by the lower inclined surface of the holding groove 51a, and the lower surface of the peripheral portion of the substrate W abuts on the support surface 52a.
 図5に示すように、ベース部50は、平面視において、ヒータユニット6のプレート本体60に対向する縁部が、プレート本体60の周縁形状に倣っている。すなわち、支持部52は、平面視において、プレート本体60よりも回転中心に対して外方に位置する側面52bを有している。このため、基板Wよりも若干小さい円形の加熱面6aを有するプレート本体60は、ヒータユニット6が上下動するときに、チャックピン20と干渉しない。この非干渉位置関係は、チャックピン20が閉状態および開状態のいずれにおいても保たれる。すなわち、チャックピン20が閉状態のときも開状態のときも、支持部52の側面52bは、平面視において、ヒータユニット6の加熱面6aから外方に離隔している。それによって、ヒータユニット6は、チャックピン20が閉状態か開状態かを問わず、加熱面6aを側面52bの内側を通過させながら、昇降できる。 As shown in FIG. 5, in the base portion 50, the edge facing the plate main body 60 of the heater unit 6 conforms to the peripheral shape of the plate main body 60 in plan view. That is, the support part 52 has the side surface 52b located outward with respect to the rotation center rather than the plate main body 60 in planar view. Therefore, the plate body 60 having a circular heating surface 6 a slightly smaller than the substrate W does not interfere with the chuck pins 20 when the heater unit 6 moves up and down. This non-interference positional relationship is maintained when the chuck pin 20 is in both the closed state and the open state. That is, when the chuck pin 20 is in the closed state or in the open state, the side surface 52 b of the support portion 52 is spaced outward from the heating surface 6 a of the heater unit 6 in plan view. Thereby, the heater unit 6 can move up and down while passing the heating surface 6a inside the side surface 52b regardless of whether the chuck pin 20 is in the closed state or the open state.
 基板Wの直径は、たとえば300mmであり、プレート本体60の上面の直径はたとえば294mmである。したがって、加熱面6aは、基板Wの下面の中央領域および周縁領域を含むほぼ全域に対向している。チャックピン20の閉状態および開状態のいずれにおいても、加熱面6aの外周縁の外側に所定の微小間隔(たとえば2mm)以上の間隔を確保した状態で、支持部52が配置される。 The diameter of the substrate W is, for example, 300 mm, and the diameter of the upper surface of the plate body 60 is, for example, 294 mm. Therefore, the heating surface 6a is opposed substantially over the entire area including the central area and the peripheral area of the lower surface of the substrate W. In any of the closed state and the open state of the chuck pin 20, the support portion 52 is disposed in a state in which an interval of a predetermined minute interval (for example, 2 mm) or more is secured outside the outer peripheral edge of the heating surface 6a.
 把持部51は、チャックピン20の閉状態において、その内側縁が、プレート本体60の外周縁の外側に所定の微小間隔(たとえば2mm)以上の間隔を確保した状態で位置するように構成されている。したがって、ヒータユニット6は、チャックピン20の閉状態および開状態のいずれにおいても、加熱面6aを把持部51の内側で上下させて、基板Wの下面に接触するまで上昇させることができる。 In the closed state of the chuck pin 20, the gripping portion 51 is configured such that the inner edge thereof is positioned outside the outer peripheral edge of the plate main body 60 with a predetermined minute gap (for example, 2 mm) or more. There is. Therefore, the heater unit 6 can raise and lower the heating surface 6a up and down inside the grip portion 51 in contact with the lower surface of the substrate W in any of the closed state and the open state of the chuck pin 20.
 チャック回動軸線55は、平面視において、回転軸線A1(図2および図3参照)を中心とし、加熱面6aの半径よりも小さな半径の円周上に位置している。 The chuck rotation axis 55 is located on a circle whose radius is smaller than the radius of the heating surface 6 a about the rotation axis A1 (see FIGS. 2 and 3) in plan view.
 <周縁当接部65>
 スピンベース21の周縁部には、その周縁に沿って等間隔を空けて複数個(ここでは、3個)の周縁当接部65が配置されている。ここでは、チャックピン20と周縁当接部65とが、スピンベース21の周縁部に沿って交互に配置されている。また、周縁当接部65各々は、プレート本体60の外周端よりも外方に配置されている。ただし、周縁当接部65の全体がプレート本体60よりも外方に配置されている必要はない。周縁当接部65のうち、上下動するプレート本体60の外周面に対向する部分(ここでは、シャフト部66)が、プレート本体60の外周端よりも外方に位置していればよい。
<Peripheral contact portion 65>
At the periphery of the spin base 21, a plurality of (three in this case) peripheral abutment portions 65 are arranged at equal intervals along the periphery of the spin base 21. Here, the chuck pins 20 and the peripheral contact portions 65 are alternately arranged along the peripheral portion of the spin base 21. In addition, each of the peripheral edge contact portions 65 is disposed outward of the outer peripheral end of the plate main body 60. However, it is not necessary for the entire peripheral contact portion 65 to be disposed outward of the plate body 60. The portion (here, the shaft portion 66) of the peripheral edge contact portion 65 facing the outer peripheral surface of the vertically moving plate main body 60 may be located outward from the outer peripheral end of the plate main body 60.
 図6は、周縁当接部65の概略平面図である。図6(a)は開状態を示しており、図6(b)は閉状態を示している。図7は、周縁当接部65の図解的な側面図である。 FIG. 6 is a schematic plan view of the peripheral edge abutting portion 65. FIG. FIG. 6 (a) shows the open state, and FIG. 6 (b) shows the closed state. FIG. 7 is a schematic side view of the peripheral abutment 65.
 周縁当接部65は、鉛直方向に延びたシャフト部66と、水平方向に延びた接触部67とを備えている。シャフト部66は、ベース部660、筒状部662、ばね部664(弾性部材)および連結部666を備えている。ベース部660は、円柱状に形成された部材であり、鉛直方向に沿う周縁当接部回動軸線66Zまわりに回動可能にスピンベース21に結合されている。筒状部662は、ベース部660の上端部に取り付けられている。筒状部662は、円筒状に形成されている。ここでは、ベース部660および筒状部662の外形を同一半径の円形状としているが、これは必須ではない。 The peripheral contact portion 65 includes a shaft portion 66 extending in the vertical direction and a contact portion 67 extending in the horizontal direction. The shaft portion 66 includes a base portion 660, a cylindrical portion 662, a spring portion 664 (elastic member) and a connecting portion 666. The base portion 660 is a member formed in a cylindrical shape, and is coupled to the spin base 21 so as to be rotatable around a peripheral contact portion rotation axis 66Z along the vertical direction. The cylindrical portion 662 is attached to the upper end portion of the base portion 660. The cylindrical portion 662 is formed in a cylindrical shape. Here, although the external shape of the base part 660 and the cylindrical part 662 is made into the circular shape of the same radius, this is not essential.
 筒状部662の内部に、ばね部664および連結部666が収容されている。ばね部664は、下端部がベース部660に固定されており、上端部が連結部666に固定されている。連結部666は、筒状部662の内側に、上下移動可能に挿通されている。連結部666上端部には、接触部67の一端寄りの部分が取り付けられている。 The spring portion 664 and the connecting portion 666 are accommodated in the cylindrical portion 662. The lower end portion of the spring portion 664 is fixed to the base portion 660, and the upper end portion is fixed to the connecting portion 666. The connecting portion 666 is inserted inside the cylindrical portion 662 so as to be movable up and down. At the upper end portion of the connecting portion 666, a portion near one end of the contact portion 67 is attached.
 なお、筒状部662、ばね部664および連結部666を備えていることは必須ではない。たとえば、ベース部660を鉛直方向上方に延ばし、その先端に接触部67が取り付けられていてもよい。 The provision of the cylindrical portion 662, the spring portion 664, and the connecting portion 666 is not essential. For example, the base portion 660 may extend upward in the vertical direction, and the contact portion 67 may be attached to the tip thereof.
 周縁当接部65各々のベース部660は、周縁当接部駆動ユニット68に連結されている。この周縁当接部駆動ユニット68の駆動力によって、ベース部660が周縁当接部回動軸線66Zまわりに所定の回転角度範囲で往復回動する。周縁当接部駆動ユニット68は、たとえば、スピンベース21の内部に設けられたリンク機構と、スピンベース21の外側に配置された駆動源とを含む。駆動源は、たとえば、ボールねじ機構と、そのボールネジ機構に駆動力を与える電動モータとを含む。 The base portion 660 of each of the peripheral contact portions 65 is connected to the peripheral contact portion drive unit 68. By the driving force of the peripheral contact portion drive unit 68, the base portion 660 reciprocates in the predetermined rotational angle range around the peripheral contact portion rotation axis 66Z. The peripheral contact portion drive unit 68 includes, for example, a link mechanism provided inside the spin base 21 and a drive source disposed outside the spin base 21. The drive source includes, for example, a ball screw mechanism and an electric motor that applies a driving force to the ball screw mechanism.
 周縁当接部駆動ユニット68により、周縁当接部65を回動駆動すると、接触部67が周縁当接部回動軸線66Zまわりに回動する。図6(a)に示すように、周縁当接部65が開状態のときには、接触部67全体が基板Wよりも外方の位置(離間位置)に配された状態となる。そして、図6(b)に示すように、周縁当接部65が閉状態のときには、接触部67の先端部が基板Wの周縁部に対して鉛直方向に重なる位置(周縁接触位置)に配された状態となる。周縁当接部65を離間位置に待避させることにより、チャックピン20に対して基板Wを搬入または搬出する際に、周縁当接部65の接触部67が基板Wに干渉することを抑制できる。 When the peripheral contact portion 65 is rotationally driven by the peripheral contact portion drive unit 68, the contact portion 67 is rotated about the peripheral contact portion rotation axis 66Z. As shown in FIG. 6A, when the peripheral edge contact portion 65 is in the open state, the entire contact portion 67 is disposed at a position (separation position) outside the substrate W. Then, as shown in FIG. 6B, when the peripheral edge contact portion 65 is in the closed state, the distal end portion of the contact portion 67 is disposed at a position (peripheral contact position) vertically overlapping the peripheral portion of the substrate W. It will be in the By retracting the peripheral edge contact portion 65 to the separated position, interference of the contact portion 67 of the peripheral edge contact portion 65 with the substrate W can be suppressed when carrying the substrate W into or out of the chuck pin 20.
 接触部67は、弾性変形可能な構造を有していてもよい。たとえば、接触部67の全部または基板Wに当接する下部のみを弾性材料により形成するとよい。弾性材料は耐熱性および耐薬性を有する例えばPTFE(polytetrafluoroethylene)などのフッ素樹脂が考えられる。このように接触部67を弾性変形可能に構成することによって、接触部67を基板Wの周縁部に柔軟に接触させることができる。これにより、基板Wの周縁部に与えられる衝撃を軽減できるため、基板Wの周縁部が破損することを有効に抑制できる。 The contact portion 67 may have an elastically deformable structure. For example, the entire contact portion 67 or only the lower portion in contact with the substrate W may be made of an elastic material. The elastic material may be, for example, a fluorine resin having heat resistance and chemical resistance, such as PTFE (polytetrafluoroethylene). The contact portion 67 can be flexibly brought into contact with the peripheral portion of the substrate W by configuring the contact portion 67 so as to be elastically deformable. Thereby, since the impact given to the peripheral part of substrate W can be reduced, it can control effectively that the peripheral part of substrate W is damaged.
 図7に示すように、この実施形態では、昇降ユニット7によりヒータユニット6のプレート本体60が上昇することで、基板Wがチャックピン20によって保持されるときの位置(保持位置:図2参照)よりも上側の位置(上位置)に移動する。周縁当接部65各々は、この上位置に配された基板Wの周縁部の上面を下方に押圧する。 As shown in FIG. 7, in this embodiment, the plate main body 60 of the heater unit 6 is lifted by the lift unit 7 to position the substrate W when held by the chuck pins 20 (holding position: see FIG. 2). Move to an upper position (upper position). Each of the peripheral edge contact portions 65 presses the upper surface of the peripheral edge portion of the substrate W disposed at the upper position downward.
 バネ部664が自然長のとき、接触部67の下面の高さは、ヒータユニット6に支持されて上位置に配される基板Wの上面よりも低い位置とされる。このため、接触部67が上位置に配された基板Wの周縁部に当接する際、ばね部664が鉛直方向に伸びる弾性変形によって、接触部67を基板Wの周縁部に柔軟に接触させることができる。これにより、基板Wの周縁部に与えられる衝撃を軽減できる。また、接触部67が基板Wの周縁部に当接している間、接触部67が基板Wの周縁部から上向きの力を受けることにより、バネ部664が伸張し、接触部67および連結部666が通常時よりも上側に配置される。このとき、バネ部664に蓄えられた弾性力によって、接触部67が適度な力で基板Wの周縁部を下方に押圧する。このため、基板Wの周縁部を破損させずに、基板Wの凹状の反り(上側への反り)を抑制できる。 When the spring portion 664 has a natural length, the height of the lower surface of the contact portion 67 is lower than the upper surface of the substrate W supported by the heater unit 6 and disposed at the upper position. Therefore, when the contact portion 67 abuts on the peripheral portion of the substrate W disposed at the upper position, the contact portion 67 is flexibly brought into contact with the peripheral portion of the substrate W by elastic deformation in which the spring portion 664 extends in the vertical direction. Can. Thereby, the impact given to the peripheral part of substrate W can be reduced. Also, while the contact portion 67 is in contact with the peripheral portion of the substrate W, the contact portion 67 receives an upward force from the peripheral portion of the substrate W, whereby the spring portion 664 is expanded, and the contact portion 67 and the connection portion 666 Is placed above the normal time. At this time, due to the elastic force stored in the spring portion 664, the contact portion 67 presses the peripheral portion of the substrate W downward with an appropriate force. For this reason, it is possible to suppress the concave warp (warp to the upper side) of the substrate W without damaging the peripheral portion of the substrate W.
 図8は、第1移動ノズル11の構成例を説明するための模式的な縦断面図である。第1移動ノズル11は、有機溶剤ノズル71を備えている。有機溶剤ノズル71は、鉛直方向に沿った直管で構成されている。有機溶剤ノズル71に、有機溶剤供給管35が結合されている。 FIG. 8 is a schematic vertical cross-sectional view for explaining a configuration example of the first moving nozzle 11. The first moving nozzle 11 includes an organic solvent nozzle 71. The organic solvent nozzle 71 is constituted by a straight pipe along the vertical direction. An organic solvent supply pipe 35 is connected to the organic solvent nozzle 71.
 有機溶剤ノズル71に、基板Wの上方を不活性ガス雰囲気で覆うためのガスノズル72が結合されている。ガスノズル72は、下端にフランジ部73を有する円筒状のノズル本体74を有している。フランジ部73の側面である外周面には、上側気体吐出口75および下側気体吐出口76が、それぞれ環状に外方に向けて開口している。上側気体吐出口75および下側気体吐出口76は、上下に間隔を空けて配置されている。ノズル本体74の下面には、中心気体吐出口77が配置されている。 A gas nozzle 72 for covering the upper side of the substrate W with an inert gas atmosphere is coupled to the organic solvent nozzle 71. The gas nozzle 72 has a cylindrical nozzle body 74 having a flange 73 at its lower end. An upper gas discharge port 75 and a lower gas discharge port 76 respectively open annularly outward on an outer peripheral surface which is a side surface of the flange portion 73. The upper gas discharge port 75 and the lower gas discharge port 76 are vertically spaced apart. A central gas discharge port 77 is disposed on the lower surface of the nozzle body 74.
 ノズル本体74には、不活性ガス供給管36から不活性ガスが供給される気体導入口78,79が形成されている。気体導入口78,79に対して、個別の不活性ガス供給管が結合されてもよい。ノズル本体74内には、気体導入口78と上側気体吐出口75および下側気体吐出口76とを接続する筒状の気体流路81が形成されている。また、ノズル本体74内には、気体導入口79に連通する筒状の気体流路82が有機溶剤ノズル71のまわりに形成されている。気体流路82の下方にはバッファ空間83が連通している。バッファ空間83は、さらに、パンチングプレート84を介して、その下方の空間85に連通している。この空間85が中心気体吐出口77に開放している。 In the nozzle body 74, gas inlets 78 and 79 to which an inert gas is supplied from the inert gas supply pipe 36 are formed. Separate inert gas supply pipes may be coupled to the gas inlets 78 and 79, respectively. In the nozzle body 74, a cylindrical gas flow path 81 connecting the gas introduction port 78, the upper gas discharge port 75, and the lower gas discharge port 76 is formed. Further, in the nozzle main body 74, a cylindrical gas flow channel 82 communicating with the gas introduction port 79 is formed around the organic solvent nozzle 71. A buffer space 83 communicates with the lower side of the gas flow path 82. The buffer space 83 further communicates with the space 85 therebelow through the punching plate 84. The space 85 is open to the central gas discharge port 77.
 気体導入口78から導入された不活性ガスは、気体流路81を介して上側気体吐出口75および下側気体吐出口76に供給され、これらの気体吐出口75,76から放射状に吐出される。これにより、上下方向に重なる2つの放射状気流が基板Wの上方に形成される。一方、気体導入口79から導入された不活性ガスは、気体流路82を介してバッファ空間83に蓄えられ、さらにパンチングプレート84を通って拡散された後に、空間85を通って中心気体吐出口77から基板Wの上面に向けて下方に吐出される。この不活性ガスは、基板Wの上面にぶつかって方向を変え、放射方向の不活性ガス流を基板Wの上方に形成する。 The inert gas introduced from the gas introduction port 78 is supplied to the upper gas discharge port 75 and the lower gas discharge port 76 through the gas flow path 81, and radially discharged from the gas discharge ports 75 and 76. . As a result, two radial air currents overlapping in the vertical direction are formed above the substrate W. On the other hand, the inert gas introduced from the gas introduction port 79 is stored in the buffer space 83 through the gas flow path 82 and is further diffused through the punching plate 84, and then the central gas discharge port through the space 85. It is discharged downward from the top surface of the substrate W toward the top surface of the substrate W. The inert gas collides with the upper surface of the substrate W to change its direction, and forms a radial inert gas flow above the substrate W.
 したがって、中心気体吐出口77から吐出される不活性ガスが形成する放射状気流と、気体吐出口75,76からの吐出される二層の放射状気流とを合わせて、三層の放射状気流が基板Wの上方に形成されることになる。この三層の放射状気流によって、基板Wの上面が保護される。とくに、後述するとおり、基板Wを高速回転するときに、三層の放射状気流によって基板Wの上面が保護されることにより、液滴やミストが基板Wの表面に付着することを回避できる。 Therefore, the radial air flow of the three layers is the substrate W by combining the radial air flow formed by the inert gas discharged from the central gas discharge port 77 and the two layers of radial air flow discharged from the gas discharge ports 75 and 76. Will be formed above the The upper surface of the substrate W is protected by the three layers of radial air flow. In particular, as described later, when the substrate W is rotated at high speed, the upper surface of the substrate W is protected by the three layers of radial air flow, so that it is possible to avoid that droplets or mist adhere to the surface of the substrate W.
 有機溶剤ノズル71は、気体流路82、バッファ空間83およびパンチングプレート84を貫通して上下方向に延びている。有機溶剤ノズル71の下端の吐出口71aは、パンチングプレート84の下方に位置しており、基板Wの上面に向けて鉛直上方から有機溶剤を吐出する。 The organic solvent nozzle 71 extends vertically through the gas flow path 82, the buffer space 83 and the punching plate 84. The discharge port 71a at the lower end of the organic solvent nozzle 71 is located below the punching plate 84, and discharges the organic solvent toward the upper surface of the substrate W from above vertically.
 図9は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。制御ユニット3は、マイクロコンピュータを備えており、所定の制御プログラムに従って、基板処理装置1に備えられた制御対象を制御する。特に、制御ユニット3は、搬送ロボットIR,CR、スピンチャック5を回転駆動する電動モータ23、第1ノズル移動ユニット15、第2ノズル移動ユニット16、ヒータ通電ユニット64、ヒータユニット6を昇降する昇降ユニット7、チャックピン駆動ユニット25、周縁当接部駆動ユニット68、バルブ類37,38,43,44,45,47,49などの動作を制御する。 FIG. 9 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1. The control unit 3 includes a microcomputer and controls a control target provided in the substrate processing apparatus 1 according to a predetermined control program. In particular, the control unit 3 lifts and lowers the transport robots IR and CR, the electric motor 23 for rotationally driving the spin chuck 5, the first nozzle moving unit 15, the second nozzle moving unit 16, the heater energizing unit 64, and the heater unit 6. The operation of the unit 7, the chuck pin drive unit 25, the peripheral contact portion drive unit 68, the valves 37, 38, 43, 44, 45, 47, 49, etc. is controlled.
 図10は、基板処理装置1による基板処理の一例を説明するための流れ図である。未処理の基板Wは、搬送ロボットIR,CRによってキャリヤCから処理ユニット2に搬入され、スピンチャック5に渡される(ステップS1)。このとき、制御ユニット3は、ヒータユニット6を下位置に配置するように昇降ユニット7を制御する。また、制御ユニット3は、チャックピン20が開状態になるようにチャックピン駆動ユニット25を制御する。また、制御ユニット3は、周縁当接部65を開状態としておく。その状態で、搬送ロボットCRは、基板Wをスピンチャック5に渡す。基板Wは、開状態のチャックピン20の支持部52(支持面52a)に載置される。その後、制御ユニット3は、チャックピン駆動ユニット25を制御して、チャックピン20を閉状態とする。それにより、複数のチャックピン20の把持部51によって基板Wが把持される。 FIG. 10 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1. The unprocessed substrate W is transferred from the carrier C to the processing unit 2 by the transfer robots IR and CR, and passed to the spin chuck 5 (step S1). At this time, the control unit 3 controls the lifting and lowering unit 7 so that the heater unit 6 is disposed at the lower position. Further, the control unit 3 controls the chuck pin drive unit 25 so that the chuck pin 20 is in the open state. In addition, the control unit 3 keeps the peripheral edge contact portion 65 in the open state. In that state, the transfer robot CR delivers the substrate W to the spin chuck 5. The substrate W is placed on the support portion 52 (support surface 52 a) of the chuck pin 20 in the open state. Thereafter, the control unit 3 controls the chuck pin drive unit 25 to close the chuck pin 20. Thus, the substrate W is gripped by the gripping portions 51 of the plurality of chuck pins 20.
 搬送ロボットCRが処理ユニット2外に退避した後、薬液処理が実行される(ステップS2)。詳細には、制御ユニット3は、電動モータ23を駆動してスピンベース21を所定の薬液回転速度で回転させる。その一方で、制御ユニット3は、第2ノズル移動ユニット16を制御して、第2移動ノズル12を基板Wの上方の薬液処理位置に配置する。薬液処理位置は、第2移動ノズル12から吐出される薬液が基板Wの上面の回転中心に着液する位置であってもよい。そして、制御ユニット3は、薬液バルブ43を開く。それにより、回転状態の基板Wの上面に向けて、第2移動ノズル12から薬液が供給される。供給された薬液は遠心力によって基板Wの全面に行き渡る。 After the transport robot CR retracts out of the processing unit 2, the chemical solution processing is executed (step S2). Specifically, the control unit 3 drives the electric motor 23 to rotate the spin base 21 at a predetermined chemical solution rotational speed. On the other hand, the control unit 3 controls the second nozzle moving unit 16 to place the second moving nozzle 12 at the chemical processing position above the substrate W. The chemical liquid processing position may be a position where the chemical liquid discharged from the second moving nozzle 12 is deposited on the rotation center of the upper surface of the substrate W. Then, the control unit 3 opens the chemical solution valve 43. Thus, the chemical solution is supplied from the second moving nozzle 12 toward the upper surface of the substrate W in a rotating state. The supplied chemical solution spreads over the entire surface of the substrate W by centrifugal force.
 一定時間の薬液処理の後、基板W上の薬液をDIWに置換することにより、基板W上から薬液を排除するためのDIWリンス処理が実行される(ステップS3)。具体的には、制御ユニット3は、薬液バルブ43を閉じ、代わって、DIWバルブ47を開く。それにより、回転状態の基板Wの上面に向けてDIWノズル10からDIWが供給される。供給されたDIWは遠心力によって基板Wの全面に行き渡る。このDIWによって基板W上の薬液が洗い流される。この間に、制御ユニット3は、第2ノズル移動ユニット16を制御して、第2移動ノズル12を基板Wの上方からカップ8の側方へと退避させる。 After the chemical solution process for a certain period of time, the DIW rinse process for removing the chemical solution from above the substrate W is executed by replacing the chemical solution on the substrate W with DIW (step S3). Specifically, the control unit 3 closes the chemical solution valve 43, and instead opens the DIW valve 47. Thereby, DIW is supplied from the DIW nozzle 10 toward the upper surface of the substrate W in a rotating state. The supplied DIW spreads over the entire surface of the substrate W by centrifugal force. The chemical solution on the substrate W is washed away by the DIW. During this time, the control unit 3 controls the second nozzle moving unit 16 to retract the second moving nozzle 12 from above the substrate W to the side of the cup 8.
 一定時間のDIWリンス処理の後、基板W上のDIWを、より表面張力の低い処理液(低表面張力液)である有機溶剤に置換する有機溶剤処理が実行される(ステップS4)。詳細には、制御ユニット3は、第1ノズル移動ユニット15を制御して、第1移動ノズル11を基板Wの上方の有機溶剤リンス位置に移動させる。有機溶剤リンス位置は、第1移動ノズル11に備えられた有機溶剤ノズル71(図6参照)から吐出される有機溶剤(たとえばIPA)が基板Wの上面の回転中心に着液する位置であってもよい。そして、制御ユニット3は、DIWバルブ47を閉じて、有機溶剤バルブ37を開く。それにより、回転状態の基板Wの上面に向けて、第1移動ノズル11(有機溶剤ノズル71)から有機溶剤(液体)が供給される。供給された有機溶剤は遠心力によって基板Wの全面に行き渡り、基板W上のDIWを置換する。 After the DIW rinse process for a predetermined time, an organic solvent process is performed in which DIW on the substrate W is replaced with an organic solvent which is a process liquid having a lower surface tension (a low surface tension liquid) (step S4). Specifically, the control unit 3 controls the first nozzle moving unit 15 to move the first moving nozzle 11 to the organic solvent rinse position above the substrate W. The organic solvent rinse position is a position at which the organic solvent (for example, IPA) discharged from the organic solvent nozzle 71 (see FIG. 6) provided in the first movable nozzle 11 contacts the rotation center of the upper surface of the substrate W It is also good. Then, the control unit 3 closes the DIW valve 47 and opens the organic solvent valve 37. Thus, the organic solvent (liquid) is supplied from the first moving nozzle 11 (organic solvent nozzle 71) toward the upper surface of the substrate W in a rotating state. The supplied organic solvent spreads over the entire surface of the substrate W by the centrifugal force and displaces DIW on the substrate W.
 有機溶剤処理において、制御ユニット3は、昇降ユニット7を制御して、ヒータユニット6を基板Wに向けて上昇させ、それによって、基板Wを加熱する。また、制御ユニット3は、スピンチャック5の回転を減速して基板Wの回転を停止し、かつ有機溶剤バルブ37を閉じて有機溶剤の供給を停止する。それにより、静止状態の基板W上に有機溶剤液膜が支持されたパドル状態とされる。基板Wの加熱によって、基板Wの上面に接している有機溶剤の一部が蒸発し、それによって、有機溶剤液膜と基板Wの上面との間に気相層が形成される。その気相層に支持された状態の有機溶剤液膜が排除される。 In the organic solvent processing, the control unit 3 controls the lift unit 7 to lift the heater unit 6 toward the substrate W, thereby heating the substrate W. Further, the control unit 3 decelerates the rotation of the spin chuck 5 to stop the rotation of the substrate W, and closes the organic solvent valve 37 to stop the supply of the organic solvent. As a result, the organic solvent liquid film is supported on the substrate W in the stationary state, and the paddle state is obtained. By heating the substrate W, a part of the organic solvent in contact with the upper surface of the substrate W is evaporated, thereby forming a gas phase layer between the organic solvent liquid film and the upper surface of the substrate W. The organic solvent liquid film supported by the gas phase layer is eliminated.
 有機溶剤液膜の排除に際して、制御ユニット3は、第1ノズル移動ユニット15を制御して、第1移動ノズル11を基板Wの上方からカップ8の側方へと退避させる。そして、制御ユニット3は、第2ノズル移動ユニット16を制御して、第2移動ノズル12を基板Wの上方の気体吐出位置に配置する。気体吐出位置は、第2移動ノズル12から吐出される不活性ガス流が基板Wの上面の回転中心に向けられる位置であってもよい。そして、制御ユニット3は、不活性ガスバルブ44を開いて、基板W上の有機溶剤液膜に向けて不活性ガスを吐出する。これにより、不活性ガスの吐出を受ける位置、すなわち、基板Wの中央において、有機溶剤液膜が不活性ガスによって排除され、有機溶剤液膜の中央に、基板Wの表面を露出させる穴が空けられる。この穴を広げることによって、基板W上の有機溶剤が基板W外へと排出される。 When removing the organic solvent liquid film, the control unit 3 controls the first nozzle moving unit 15 to retract the first moving nozzle 11 from above the substrate W to the side of the cup 8. Then, the control unit 3 controls the second nozzle moving unit 16 to arrange the second moving nozzle 12 at the gas discharge position above the substrate W. The gas discharge position may be a position where the inert gas flow discharged from the second movable nozzle 12 is directed to the rotation center of the upper surface of the substrate W. Then, the control unit 3 opens the inert gas valve 44 and discharges the inert gas toward the organic solvent liquid film on the substrate W. Thereby, the organic solvent liquid film is removed by the inert gas at the position to which the inert gas is discharged, that is, at the center of the substrate W, and a hole for exposing the surface of the substrate W is opened at the center of the organic solvent liquid film. Be By expanding this hole, the organic solvent on the substrate W is discharged out of the substrate W.
 こうして、有機溶剤処理を終えた後、制御ユニット3は、不活性ガスバルブ44を閉じ、第2移動ノズル12を退避させた後、電動モータ23を制御して、基板Wを乾燥回転速度で高速回転させる。それにより、基板W上の液成分を遠心力によって振り切るための乾燥処理が行われる(ステップS5:スピンドライ)。 Thus, after finishing the organic solvent processing, the control unit 3 closes the inert gas valve 44 and retracts the second moving nozzle 12 and then controls the electric motor 23 to rotate the substrate W at a high speed at the drying rotation speed. Let Thereby, a drying process is performed to shake off the liquid component on the substrate W by centrifugal force (step S5: spin dry).
 その後、制御ユニット3は、電動モータ23を制御してスピンチャック5の回転を停止させる。また、昇降ユニット7を制御して、ヒータユニット6を下位置に制御する。さらに、制御ユニット3は、チャックピン駆動ユニット25を制御して、チャックピン20を開位置に制御する。これにより、基板Wは、チャックピン20の把持部51に把持された状態から、支持部52に載置された状態となる。その後、搬送ロボットCRが、処理ユニット2に進入して、スピンチャック5から処理済みの基板Wをすくい取って、処理ユニット2外へと搬出する(S6)。その基板Wは、搬送ロボットCRから搬送ロボットIRへと渡され、搬送ロボットIRによって、キャリヤCに収納される。 Thereafter, the control unit 3 controls the electric motor 23 to stop the rotation of the spin chuck 5. Further, the lift unit 7 is controlled to control the heater unit 6 to the lower position. Furthermore, the control unit 3 controls the chuck pin drive unit 25 to control the chuck pin 20 to the open position. As a result, the substrate W is placed on the support 52 from the state where the substrate W is gripped by the grip 51 of the chuck pin 20. Thereafter, the transport robot CR enters the processing unit 2 and skimms the processed substrate W from the spin chuck 5 and carries it out of the processing unit 2 (S6). The substrate W is transferred from the transfer robot CR to the transfer robot IR, and is stored in the carrier C by the transfer robot IR.
 図11は、有機溶剤処理(図10のステップS4)の詳細を説明するためのタイムチャートである。また、図12~図15は、有機溶剤処理の各ステップの様子を説明するための図解的な断面図である。図16は、乾燥処理(図10のステップS5)の様子を説明するための図解的な断面図である。 FIG. 11 is a time chart for explaining the details of the organic solvent treatment (step S4 in FIG. 10). 12 to 15 are schematic cross-sectional views for explaining the state of each step of the organic solvent treatment. FIG. 16 is a schematic sectional view for explaining the state of the drying process (step S5 in FIG. 10).
 有機溶剤処理は、順に、有機溶剤リンスステップT1と、有機溶剤パドルステップT2と、持ち上げパドルステップT3と、ノズル入れ替えステップT4と、穴開けステップT5と、穴広げステップT6と、外周液落としステップT7とを含む。 The organic solvent treatment includes, in order, an organic solvent rinse step T1, an organic solvent paddle step T2, a lift paddle step T3, a nozzle replacement step T4, a drilling step T5, a hole spreading step T6, and an outer peripheral liquid dropping step T7. And.
 有機溶剤リンスステップT1は、基板Wを回転しながら、基板Wの上面に有機溶剤を供給するステップ(処理液供給工程、有機溶剤供給工程)である。たとえば、図12(a)に示すように、基板Wの上面に有機溶剤ノズル71から有機溶剤が供給される。供給された有機溶剤は、遠心力を受けて基板Wの上面の中心から外方へと向かい、基板Wの上面を覆う液膜90を形成する。液膜90が基板Wの上面全域を覆うことにより、DIWリンス処理(図10のステップS3)で基板Wの上面に供給されたDIW(別の処理液)が全て有機溶剤に置換される。 The organic solvent rinse step T1 is a step of supplying the organic solvent to the upper surface of the substrate W while rotating the substrate W (processing liquid supply step, organic solvent supply step). For example, as shown in FIG. 12A, the organic solvent is supplied from the organic solvent nozzle 71 to the upper surface of the substrate W. The supplied organic solvent receives centrifugal force and travels outward from the center of the upper surface of the substrate W to form a liquid film 90 covering the upper surface of the substrate W. The liquid film 90 covers the entire top surface of the substrate W, whereby all DIW (another processing liquid) supplied to the top surface of the substrate W in the DIW rinse processing (step S3 in FIG. 10) is replaced with the organic solvent.
 有機溶剤リンスステップT1の期間中、基板Wは、スピンチャック5によって、有機溶剤リンス処理速度(液供給速度。たとえば300rpm程度)で回転させられる(液供給速度回転工程)。第1移動ノズル11(有機溶剤ノズル71)は、基板Wの回転中心の上方に配置される。有機溶剤バルブ37は開状態とされ、したがって、有機溶剤ノズル71から吐出される有機溶剤(たとえば、イソプロピルアルコール(IPA))が基板Wの上面の回転中心に向けて上方から供給される。チャックピン20は閉状態とされ、基板Wは把持部51によって把持され、スピンチャック5とともに回転する。ヒータユニット6は、下位置よりも上方に位置制御され、基板Wの下面から所定距離(たとえば2mm)だけ下方に離隔した離隔位置にその加熱面6aが配置される。これにより、基板Wは、加熱面6aからの輻射熱によって予熱される(基板予熱工程)。ヒータユニット6の加熱面の温度は、たとえば150℃程度であり、面内で均一である。第2移動ノズル12は、カップ8の側方のホーム位置に退避している。薬液バルブ43および不活性ガスバルブ38,44は閉状態に制御される。したがって、第2移動ノズル12は、不活性ガス(たとえば窒素ガス)を吐出しない。 During the organic solvent rinse step T1, the substrate W is rotated by the spin chuck 5 at an organic solvent rinse processing speed (liquid supply speed, for example, about 300 rpm) (liquid supply speed rotation process). The first moving nozzle 11 (organic solvent nozzle 71) is disposed above the rotation center of the substrate W. The organic solvent valve 37 is opened, so that the organic solvent (for example, isopropyl alcohol (IPA)) discharged from the organic solvent nozzle 71 is supplied from above toward the rotation center of the upper surface of the substrate W. The chuck pin 20 is closed, and the substrate W is held by the holding unit 51 and rotates together with the spin chuck 5. The heater unit 6 is position-controlled above the lower position, and the heating surface 6a is disposed at a separated position spaced downward from the lower surface of the substrate W by a predetermined distance (for example, 2 mm). Thus, the substrate W is preheated by radiant heat from the heating surface 6a (substrate preheating step). The temperature of the heating surface of the heater unit 6 is, for example, about 150 ° C., and is uniform in the surface. The second moving nozzle 12 is retracted to the side home position of the cup 8. The chemical solution valve 43 and the inert gas valves 38 and 44 are controlled to be closed. Therefore, the second moving nozzle 12 does not discharge the inert gas (for example, nitrogen gas).
 有機溶剤パドルステップT2は、図12(b)に示すように、基板Wの回転を減速して停止させ、基板Wの表面に有機溶剤の厚い液膜90を形成して保持するステップである。 In the organic solvent paddle step T2, as shown in FIG. 12B, the rotation of the substrate W is decelerated and stopped, and a thick liquid film 90 of the organic solvent is formed on the surface of the substrate W and held.
 基板Wの回転は、この例では、有機溶剤リンス処理速度から段階的に減速される(減速工程、漸次減速工程、段階的減速工程)。より具体的には、基板Wの回転速度は、300rpmから、50rpmに減速されて所定時間(たとえば10秒)維持され、その後、10rpmに減速されて所定時間(たとえば10秒)維持され、その後、0rpm(停止)に減速されて所定時間(たとえば10秒)維持される。一方、有機溶剤ノズル71は、回転軸線A1上に保持され、引き続き、基板Wの上面の回転中心に向けて有機溶剤を吐出する。有機溶剤ノズル71からの有機溶剤の吐出は、有機溶剤パドルステップT2の全期間において継続される。すなわち、基板Wが停止しても、有機溶剤の吐出が継続される。このように、基板Wの回転の減速から停止に至る全期間において有機溶剤の供給が継続されることにより、基板Wの上面の至るところで処理液が失われることがない。また、基板Wの回転が停止した後も有機溶剤の供給が継続されることにより、基板Wの上面に厚い液膜90を形成できる。 In this example, the rotation of the substrate W is decelerated stepwise from the organic solvent rinse processing speed (deceleration step, gradual deceleration step, stepwise deceleration step). More specifically, the rotational speed of the substrate W is reduced from 300 rpm to 50 rpm and maintained for a predetermined time (for example, 10 seconds), and thereafter reduced to 10 rpm and maintained for a predetermined time (for example, 10 seconds). It is decelerated to 0 rpm (stop) and maintained for a predetermined time (for example, 10 seconds). On the other hand, the organic solvent nozzle 71 is held on the rotation axis A1, and subsequently discharges the organic solvent toward the rotation center of the upper surface of the substrate W. Discharge of the organic solvent from the organic solvent nozzle 71 is continued for the entire period of the organic solvent paddle step T2. That is, even if the substrate W is stopped, the discharge of the organic solvent is continued. As described above, the supply of the organic solvent is continued in the entire period from the deceleration to the stop of the rotation of the substrate W, so that the processing liquid is not lost all over the upper surface of the substrate W. Moreover, the thick liquid film 90 can be formed on the upper surface of the substrate W by continuing the supply of the organic solvent even after the rotation of the substrate W is stopped.
 ヒータユニット6の位置は、有機溶剤リンスステップのときと同じ位置であり、加熱面6aが基板Wの下面から所定距離(たとえば2mm)だけ下方に離隔した離隔位置である。これにより、基板Wは、加熱面6aからの輻射熱によって予熱される(基板予熱工程)。チャックピン20は、基板Wの回転が停止した後、その停止状態が保持されている間に、閉状態から開状態へと切り換わる。それにより、基板Wの周縁部下面がチャックピン20の支持部52によって下方から支持された状態となり、把持部51が基板Wの上面周縁部から離れるので、基板Wの上面全域が開放される。第2移動ノズル12は、ホーム位置のままである。 The position of the heater unit 6 is the same position as in the organic solvent rinse step, and is a separated position where the heating surface 6a is separated downward from the lower surface of the substrate W by a predetermined distance (for example, 2 mm). Thus, the substrate W is preheated by radiant heat from the heating surface 6a (substrate preheating step). After the rotation of the substrate W is stopped, the chuck pin 20 switches from the closed state to the open state while the stopped state is maintained. As a result, the lower surface of the peripheral edge of the substrate W is supported from below by the support portion 52 of the chuck pin 20, and the gripping portion 51 is separated from the upper surface peripheral edge of the substrate W, so the entire upper surface of the substrate W is released. The second moving nozzle 12 remains at the home position.
 また、制御ユニット3は、チャックピン20を閉状態から開状態へと切り換えるタイミングで、周縁当接部65を開状態から閉状態へ切り換える。ただし、この周縁当接部65の切り換えのタイミングは、基板搬入処理(図10のステップS1)が完了した後から、持ち上げパドルステップT3が開始される前までの期間内で任意に変更され得る。 Further, the control unit 3 switches the peripheral contact portion 65 from the open state to the closed state at the timing when the chuck pin 20 is switched from the closed state to the open state. However, the switching timing of the peripheral edge contact portion 65 may be arbitrarily changed within a period from the completion of the substrate loading process (step S1 in FIG. 10) to the time when the lifting paddle step T3 is started.
 持ち上げパドルステップT3は、図12(c)に示すように、ヒータユニット6で基板Wを持ち上げた状態で、すなわち、加熱面6aを基板Wの下面に接触させた状態で、基板Wを加熱しながら、基板Wの上面に有機溶剤液膜90を保持するステップである。 In the lifting paddle step T3, as shown in FIG. 12C, the substrate W is heated in a state where the substrate W is lifted by the heater unit 6, that is, in a state where the heating surface 6a is in contact with the lower surface of the substrate W. While holding the organic solvent liquid film 90 on the upper surface of the substrate W.
 ヒータユニット6が離隔位置から上位置まで上昇させられて、所定時間(たとえば10秒間)保持される。ヒータユニット6が上位置まで上昇させられる過程で、チャックピン20の支持部52から加熱面6aに基板Wが渡され、加熱面6a(より具体的には支持ピン61。図2参照)によって基板Wが支持される(ヒータユニット接近工程、ヒータユニット接触工程)。そして、図13に示すように、ヒータユニット6が上位置まで上昇することで、基板Wが所定の上位置(図8参照)に配されると、閉状態の周縁当接部65各々が基板Wの周縁部に接触する(周縁部接触工程T30)。 The heater unit 6 is raised from the separated position to the upper position and held for a predetermined time (for example, 10 seconds). In the process of raising the heater unit 6 to the upper position, the substrate W is transferred from the support portion 52 of the chuck pin 20 to the heating surface 6a, and the substrate is moved by the heating surface 6a (more specifically, the support pins 61; see FIG. 2). W is supported (heater unit approaching step, heater unit contacting step). Then, as shown in FIG. 13, when the substrate W is disposed at a predetermined upper position (see FIG. 8) by raising the heater unit 6 to the upper position, the peripheral edge contact portions 65 in the closed state are substrates Contact the peripheral edge of W (peripheral edge contacting step T30).
 第1移動ノズル11(有機溶剤ノズル71)からの有機溶剤の吐出は、持ち上げパドルステップT3の途中まで継続される。したがって、ヒータユニット6の加熱面6aが基板Wの下面に接触し、加熱面6aからの熱伝導による基板Wの急加熱が開始され、基板Wに与えられる熱量が増加(熱量増加工程)するときには、有機溶剤の供給は継続している。それにより、基板Wの急激な昇温に伴う有機溶剤の蒸発によって有機溶剤の液膜90に不特定の位置で穴があくことを回避している。有機溶剤の供給は、ヒータユニット6の加熱面6aが基板Wの下面に接触した後(熱量増加工程の後)、所定時間の経過の後に停止される(供給停止工程)。すなわち、制御ユニット3は、有機溶剤バルブ37を閉じて、有機溶剤ノズル71からの有機溶剤の吐出を停止させる。 Discharge of the organic solvent from the first moving nozzle 11 (organic solvent nozzle 71) is continued halfway through the lifting paddle step T3. Therefore, when the heating surface 6a of the heater unit 6 contacts the lower surface of the substrate W, rapid heating of the substrate W by heat conduction from the heating surface 6a is started, and the amount of heat given to the substrate W increases (amount of heat increase step) , Supply of organic solvents is continuing. Thereby, the liquid film 90 of the organic solvent is prevented from being bored at a nonspecific position due to the evaporation of the organic solvent accompanying the rapid temperature rise of the substrate W. The supply of the organic solvent is stopped after a lapse of a predetermined time after the heating surface 6a of the heater unit 6 comes in contact with the lower surface of the substrate W (after the heat amount increasing step) (supply stop step). That is, the control unit 3 closes the organic solvent valve 37 to stop the discharge of the organic solvent from the organic solvent nozzle 71.
 スピンチャック5の回転は停止状態であり、第2移動ノズル12はホーム位置にあり、不活性ガスバルブ44は閉状態である。第1移動ノズル11(有機溶剤ノズル71)は基板Wの回転中心の上方に位置している。 The rotation of the spin chuck 5 is stopped, the second moving nozzle 12 is at the home position, and the inert gas valve 44 is closed. The first moving nozzle 11 (organic solvent nozzle 71) is located above the rotation center of the substrate W.
 有機溶剤の供給が停止された後、所定時間が経過するまで、ヒータユニット6は上位置に保持される。基板Wに供給された有機溶剤は、中心に供給される新たな有機溶剤によって外周側へと押しやられ、その過程で、ヒータユニット6によって加熱された基板Wの上面からの熱で加熱されて昇温していく。有機溶剤の供給を継続している期間には、基板Wの中央領域の有機溶剤の温度は比較的低い。そこで、有機溶剤の供給を停止した後、所定の短時間だけヒータユニット6の接触状態を保持することによって、基板Wの中央領域における有機溶剤を昇温できる。それにより、基板Wの上面に支持された有機溶剤の液膜90の温度を均一化できる。 After the supply of the organic solvent is stopped, the heater unit 6 is held at the upper position until a predetermined time passes. The organic solvent supplied to the substrate W is pushed to the outer peripheral side by a new organic solvent supplied to the center, and in the process, it is heated by heat from the upper surface of the substrate W heated by the heater unit 6 and rises. Warm up. During the supply of the organic solvent, the temperature of the organic solvent in the central region of the substrate W is relatively low. Therefore, after stopping the supply of the organic solvent, the organic solvent in the central region of the substrate W can be heated by maintaining the contact state of the heater unit 6 for a predetermined short time. Thereby, the temperature of the liquid film 90 of the organic solvent supported on the upper surface of the substrate W can be made uniform.
 基板Wの上面からの熱を受けた有機溶剤液膜90では、基板Wの上面との界面において蒸発が生じる。それによって、基板Wの上面と有機溶剤液膜90との間に、有機溶剤の気体からなる気相層が生じる。したがって、有機溶剤液膜90は、基板Wの上面の全域において、気相層上に支持された状態となる(気相層形成工程)。 In the organic solvent liquid film 90 which has received heat from the upper surface of the substrate W, evaporation occurs at the interface with the upper surface of the substrate W. Thereby, a gas phase layer made of the organic solvent gas is generated between the upper surface of the substrate W and the organic solvent liquid film 90. Therefore, the organic solvent liquid film 90 is supported on the gas phase layer over the entire upper surface of the substrate W (gas phase layer forming step).
 ノズル入れ替えステップT4は、図14(a)に示すように、第1移動ノズル11を回転軸線A1上から退避させ、代わって、第2移動ノズル12を回転中心上に配置するステップである。 In the nozzle replacing step T4, as shown in FIG. 14A, the first movable nozzle 11 is retracted from the rotation axis A1, and instead, the second movable nozzle 12 is disposed on the rotation center.
 具体的には、有機溶剤の供給を停止した後に、第1移動ノズル11は、カップ8の側方に設定したホーム位置に退避させられる。その後、第2移動ノズル12が、ホーム位置から回転軸線A1上の中心位置に移動させられる。ノズル入れ替えステップT4の期間中、ヒータユニット6は上位置から若干下に下降させられる。それにより、基板Wは、ヒータユニット6からチャックピン20の支持部52に渡され、加熱面6aは、基板Wの下面から所定の微小距離だけ間隔を空けた非接触状態で基板Wの下面に対向する。これにより、基板Wの加熱は加熱面6aからの輻射熱による加熱に切り換わり、基板Wに与えられる熱量が減少する(熱量減少工程)。これによって、ノズルを入れ替えている間に基板Wが過熱することを回避し、蒸発によって有機溶剤液膜90に亀裂(とくに基板Wの外周領域での亀裂)が生じることを回避している。 Specifically, after stopping the supply of the organic solvent, the first moving nozzle 11 is retracted to the home position set to the side of the cup 8. Thereafter, the second movable nozzle 12 is moved from the home position to the central position on the rotation axis A1. During the nozzle replacing step T4, the heater unit 6 is lowered slightly from the upper position. Thereby, the substrate W is transferred from the heater unit 6 to the support portion 52 of the chuck pin 20, and the heating surface 6a is on the lower surface of the substrate W in a noncontact state spaced from the lower surface of the substrate W by a predetermined minute distance. opposite. Thereby, the heating of the substrate W is switched to the heating by the radiant heat from the heating surface 6a, and the amount of heat given to the substrate W is reduced (the amount of heat reduction step). This prevents the substrate W from being overheated while replacing the nozzles, and prevents the organic solvent liquid film 90 from forming a crack (in particular, a crack in the outer peripheral region of the substrate W) due to evaporation.
 穴開けステップT5は、図14(b)に示すように、第2移動ノズル12から基板Wの中心に向けて小流量(第1流量。たとえば3リットル/分)で不活性ガス(たとえば窒素ガス)を吹き付け、有機溶剤液膜90の中央部に小さな穴91を開けて基板Wの上面の中央部を露出させるステップである(穴開け工程)。基板Wの回転は停止状態のままであり、したがって、静止状態の基板W上の液膜90に対して穴開けステップが行われる。 In the drilling step T5, as shown in FIG. 14 (b), the inert gas (for example, nitrogen gas) is directed from the second moving nozzle 12 toward the center of the substrate W at a small flow rate (first flow rate, eg 3 liters / minute). And a small hole 91 is made in the central portion of the organic solvent liquid film 90 to expose the central portion of the upper surface of the substrate W (piercing step). The rotation of the substrate W remains stationary, so a drilling step is performed on the liquid film 90 on the substrate W in the stationary state.
 穴開けステップT5の期間中、ヒータユニット6は、上位置に移動することによって基板Wを持ち上げ、基板Wに接触しながら加熱する。穴開けステップT5の間、閉状態の周縁当接部65各々が基板Wの周縁部に接触した状態となる。 During the drilling step T5, the heater unit 6 lifts the substrate W by moving to the upper position, and heats while contacting the substrate W. During the drilling step T5, each of the closed peripheral contact portions 65 is in contact with the peripheral portion of the substrate W.
 制御ユニット3は、不活性ガスバルブ44を開き、かつ流量可変バルブ45の開度を制御することによって、第2移動ノズル12から小流量で不活性ガスを吐出させる。 The control unit 3 causes the second moving nozzle 12 to discharge the inert gas at a small flow rate by opening the inert gas valve 44 and controlling the opening degree of the flow rate variable valve 45.
 有機溶剤液膜90の穴開けの直後から(すなわち、ほぼ同時に)、基板Wの急加熱が始まる(再熱量増加工程)。それにより、不活性ガスによる穴開けによって液膜90の外方への移動が始まると、基板Wの加熱が速やかに(ほぼ同時に)開始され、それによって、液膜90は止まることなく基板Wの外方へと移動していく。 Immediately after (that is, almost at the same time) drilling of the organic solvent liquid film 90, rapid heating of the substrate W starts (reheat amount increasing step). Thereby, when the outward movement of the liquid film 90 is started by the drilling by the inert gas, the heating of the substrate W is promptly (almost simultaneously) started, whereby the liquid film 90 is not stopped. Move outwards.
 より具体的には、穴開けされて液膜90がなくなった中央領域では、液膜90が存在しているその周囲の領域に比較して、熱容量が小さくなるために基板Wの温度が速やかに上昇する。また、基板Wにおける液膜90が残存する部分は、液膜90の沸点以上に昇温し難い。このため、穴91の周縁において基板W内に大きな温度勾配が生じる。すなわち、穴91の周縁の内側が高温で、その外側が低温になる。この温度勾配によって、図14(c)に示すように、気相層上に支持されている有機溶剤液膜90が低温側、すなわち、外方に向かって移動を始め、それによって、有機溶剤液膜90の中央の穴91が拡大していく。 More specifically, in the central region where the liquid film 90 disappears in the central region, the temperature of the substrate W becomes faster because the heat capacity is smaller than in the region around the liquid film 90. To rise. Further, the temperature of the portion of the substrate W where the liquid film 90 remains is difficult to raise above the boiling point of the liquid film 90. Therefore, a large temperature gradient occurs in the substrate W at the periphery of the hole 91. That is, the inside of the periphery of the hole 91 is high temperature, and the outside is low temperature. By this temperature gradient, as shown in FIG. 14C, the organic solvent liquid film 90 supported on the vapor phase layer starts to move toward the low temperature side, that is, outward, thereby the organic solvent liquid The central hole 91 of the membrane 90 expands.
 こうして、基板Wの加熱により生じる温度勾配を利用して、基板W上の有機溶剤液膜90が基板W外へと排除される(加熱排除工程、液膜移動工程)。より具体的には、基板Wの上面において、パターンが形成された領域内の液膜90は、温度勾配による有機溶剤の移動によって排除される。 Thus, the organic solvent liquid film 90 on the substrate W is removed out of the substrate W by utilizing the temperature gradient generated by the heating of the substrate W (heating exclusion process, liquid film moving process). More specifically, on the top surface of the substrate W, the liquid film 90 in the area where the pattern is formed is eliminated by the movement of the organic solvent due to the temperature gradient.
 仮に、不活性ガスの吹き付けによって基板Wの回転中心に穴91を形成した後に、長い時間を空けてヒータユニット6を基板Wに接触させた場合、その間に、穴91の拡大が停止する。このとき、液膜90の内周縁は、内方に向かったり外方に向かったりする平衡状態となる。このとき、基板Wの表面に形成されたパターン内に有機溶剤の液面が入り込み、表面張力によるパターン倒壊の原因となるおそれがある。そこで、この実施形態では、不活性ガスによる穴開けとほぼ同時にヒータユニット6を基板Wの下面に接触させて、基板Wに与える熱量を瞬時に増加させている。 If the heater unit 6 is brought into contact with the substrate W after a long period of time after forming the hole 91 at the rotation center of the substrate W by spraying the inert gas, the expansion of the hole 91 is stopped during that time. At this time, the inner peripheral edge of the liquid film 90 is in an equilibrium state in which it moves inward and outward. At this time, the liquid surface of the organic solvent enters into the pattern formed on the surface of the substrate W, which may cause the pattern collapse due to surface tension. Therefore, in this embodiment, the heater unit 6 is brought into contact with the lower surface of the substrate W almost simultaneously with the drilling by the inert gas, and the amount of heat given to the substrate W is instantaneously increased.
 穴広げステップT6は、図15(a)に示すように、第2移動ノズル12から吐出される不活性ガスの流量を増量し、大流量(第2流量。たとえば30リットル/分)の不活性ガスを基板Wの中心に吹き付けて、有機溶剤液膜90の中央の穴91を不活性ガスによってさらに広げるステップである(気体排除工程、液膜移動工程)。すなわち、制御ユニット3は、流量可変バルブ45を制御して、第2移動ノズル12に供給される不活性ガスの流量を増加させる。それにより、基板Wの上面の外周領域まで移動した液膜90がさらに基板W外へと押しやられる。基板Wの回転は停止状態に保持される。 In the hole widening step T6, as shown in FIG. 15A, the flow rate of the inert gas discharged from the second moving nozzle 12 is increased, and the large flow rate (second flow rate, for example, 30 liters / minute) of inertness In this step, the gas is blown to the center of the substrate W and the hole 91 in the center of the organic solvent liquid film 90 is further spread by the inert gas (gas removing step, liquid film moving step). That is, the control unit 3 controls the flow rate variable valve 45 to increase the flow rate of the inert gas supplied to the second moving nozzle 12. Thus, the liquid film 90 moved to the outer peripheral region of the upper surface of the substrate W is further pushed out of the substrate W. The rotation of the substrate W is held in a stopped state.
 具体的には、温度勾配によって穴91が広がっていく過程で、さらに不活性ガスの流量を増加させることで、液膜90の移動が停止することを回避して、液膜90の基板W外方に向かう移動を継続させることができる。温度勾配を利用する有機溶剤液膜90の移動だけでは、基板Wの上面の周縁領域で液膜90の移動が止まってしまうおそれがある。そこで、不活性ガスの流量を増加させることで、液膜90の移動をアシストでき、それによって、基板Wの上面の全域から有機溶剤液膜90を排除できる。不活性ガスを吐出する第2移動ノズル12、および、吐出量を制御する制御ユニット3は、チャックユニット20を解除状態とし、ヒータプレート6が下面に当接している基板Wの上面に形成された液膜90を基板Wの中央から周縁に向けて排除する液膜排除部の一例である。 Specifically, in the process of expanding the holes 91 due to the temperature gradient, the flow rate of the inert gas is further increased to prevent the movement of the liquid film 90 from being stopped, and the outside of the substrate W of the liquid film 90 is avoided. It is possible to continue moving towards the other. The movement of the liquid film 90 may stop in the peripheral region of the upper surface of the substrate W only by the movement of the organic solvent liquid film 90 using the temperature gradient. Therefore, the movement of the liquid film 90 can be assisted by increasing the flow rate of the inert gas, whereby the organic solvent liquid film 90 can be removed from the entire upper surface of the substrate W. The second movable nozzle 12 for discharging the inert gas and the control unit 3 for controlling the discharge amount are formed on the upper surface of the substrate W with the heater plate 6 in contact with the lower surface with the chuck unit 20 released. This is an example of a liquid film removal unit that removes the liquid film 90 from the center to the periphery of the substrate W.
 なお、穴開けステップT5および孔広げステップT6は、上記基板W上の温度勾配により、基板Wの周縁部が中央部に対して反り上がることで、基板Wの上側が窪むように反るおそれがある。これに対して、穴開けステップT5および孔広げステップT6の不活性ガスの流量増加直後の間、閉状態の周縁当接部65各々がヒータユニット6に支持された基板Wの周縁部に接触している(図14(b)および図15(a)参照)。このため、温度勾配によって生じうる基板Wの周縁部の反りが、周縁当接部65各々に抑制される。つまり、周縁当接部65は、反り抑制部の一例である。基板Wの反りが抑制されることにより、基板Wの周縁部がヒータユニット6から離れることを抑制できるため、その周縁部の温度低下を抑制できる。これにより、周縁部におけるIPAの乾燥不良を抑制することができる。 In the hole-opening step T5 and the hole-opening step T6, there is a possibility that the upper side of the substrate W may be warped as the peripheral portion of the substrate W warps relative to the central portion due to the temperature gradient on the substrate W. . On the other hand, immediately after the flow rate increase of the inert gas in the drilling step T5 and the hole spreading step T6, the peripheral contact portions 65 in the closed state each contact the peripheral portion of the substrate W supported by the heater unit 6. (See FIG. 14 (b) and FIG. 15 (a)). For this reason, warpage of the peripheral portion of the substrate W that may occur due to the temperature gradient is suppressed by each of the peripheral contact portions 65. That is, the peripheral edge contact portion 65 is an example of the warpage suppressing portion. By suppressing the warpage of the substrate W, the peripheral portion of the substrate W can be suppressed from being separated from the heater unit 6, so that the temperature decrease of the peripheral portion can be suppressed. Thereby, drying failure of IPA in the peripheral portion can be suppressed.
 孔広げステップT6では、不活性ガスの流量を増加させた後に、ヒータユニット6が下降させられ、加熱面6aからチャックピン20の支持部52に基板Wが渡される。その後、大流量での不活性ガス吐出が終了するまでに、チャックピン20が閉状態とされ、その把持部51によって基板Wが把持される。図11に示したタイムチャートの例では、ヒータユニット6は、チャックピン20に基板Wが渡された後、基板Wの下面に微小距離を隔てて対向する非接触加熱位置に短時間保持され、その後、さらに下降されて、基板Wの下面に所定距離だけ隔てて対向する離隔位置に配置される。 In the hole spreading step T6, after the flow rate of the inert gas is increased, the heater unit 6 is lowered, and the substrate W is passed from the heating surface 6a to the support portion 52 of the chuck pin 20. Thereafter, by the time the inert gas discharge at a large flow rate is completed, the chuck pin 20 is closed, and the substrate W is gripped by the gripping portion 51. In the example of the time chart shown in FIG. 11, after the substrate W is delivered to the chuck pins 20, the heater unit 6 is held for a short time at the noncontact heating position facing the lower surface of the substrate W with a minute distance. Thereafter, the substrate W is further lowered to be disposed at a separated position facing the lower surface of the substrate W at a predetermined distance.
 外周液落としステップT7は、図15(b)に示すように、基板Wを回転させることによって、基板Wの外周部に残る有機溶剤液膜を振り落とすステップである。詳細には、チャックピン20で基板Wが把持された後、第2移動ノズル12への不活性ガスの供給が停止され、第2移動ノズル12がホーム位置へと退避する。それとともに、スピンチャック5が低速の外周振り落とし速度で回転させられる。具体的には、たとえば30~100rpmでスピンチャック5とともに基板Wが回転させられる。それにより、大流量の不活性ガスの供給によっても排除しきれずに基板Wの外周部(とくに周端面)に残る有機溶剤が振り落とされる。 In the peripheral liquid dropping step T7, as shown in FIG. 15B, the organic solvent liquid film remaining on the outer peripheral portion of the substrate W is shaken off by rotating the substrate W. In detail, after the substrate W is gripped by the chuck pins 20, the supply of the inert gas to the second moving nozzle 12 is stopped, and the second moving nozzle 12 retracts to the home position. At the same time, the spin chuck 5 is rotated at a low peripheral swing speed. Specifically, the substrate W is rotated together with the spin chuck 5 at, for example, 30 to 100 rpm. As a result, the organic solvent remaining on the outer peripheral portion (particularly, the peripheral end surface) of the substrate W is shaken off without being completely eliminated even by the supply of the inert gas with a large flow rate.
 温度差および大流量の不活性ガスの吹き付けによって、液膜90が外周部にまで移動した後であり、しかも、低速の外周振り落とし速度での回転であるので、遠心力によって液膜90が微小液滴に***することがなく、液塊の状態で基板Wから振り落とされる。また、基板Wの外周部には、製品に使用するための有効なパターンが形成されていない場合がほとんどであるので、たとえ液膜90の多少の***が生じても大きな問題ではない。 After the liquid film 90 has moved to the outer peripheral portion due to the temperature difference and the large flow of the inert gas spray, and the rotation is at the low outer peripheral shaking speed, the liquid film 90 is minutely moved by the centrifugal force. It does not break up into droplets and is shaken off from the substrate W in the form of a liquid mass. In addition, since an effective pattern for use in a product is not formed on the outer peripheral portion of the substrate W in most cases, even if the liquid film 90 is somewhat broken, this is not a serious problem.
 外周液落としステップT7に続けて、図16に示すように、スピンドライステップT8(乾燥処理。図10のステップS5)が実行される。具体的には、制御ユニット3は、第1移動ノズル11を、ホーム位置から回転軸線A1上に移動させる。さらに、制御ユニット3は、第1移動ノズル11を、基板Wの上面に接近した下位置に配置する。そして、制御ユニット3は、不活性ガスバルブ38を開く。それにより、第1移動ノズル11(ガスノズル72)は、三層の放射状不活性ガス流を基板Wの上方に形成する。その状態で、制御ユニット3は、スピンチャック5の回転を高速な乾燥回転速度(たとえば800rpm)まで加速される。これにより、遠心力によって、基板Wの表面の液成分を完全に振り切ることができる。基板Wの上面は放射状の不活性ガス流によって覆われているので、周囲に飛び散って跳ね返った液滴や周囲のミストが基板Wの上面に付着することを回避できる。 Following the peripheral liquid removal step T7, as shown in FIG. 16, a spin dry step T8 (drying processing; step S5 in FIG. 10) is performed. Specifically, the control unit 3 moves the first movable nozzle 11 from the home position onto the rotation axis A1. Furthermore, the control unit 3 arranges the first movable nozzle 11 at a lower position close to the upper surface of the substrate W. Then, the control unit 3 opens the inert gas valve 38. Thereby, the first moving nozzle 11 (gas nozzle 72) forms three layers of radial inert gas flows above the substrate W. In that state, the control unit 3 accelerates the rotation of the spin chuck 5 to a high drying rotation speed (for example, 800 rpm). Thereby, the liquid component on the surface of the substrate W can be completely shaken off by the centrifugal force. Since the upper surface of the substrate W is covered by the radial inert gas flow, it is possible to prevent the droplets and splashes that splash around and the surrounding mist from adhering to the upper surface of the substrate W.
 スピンドライステップT8の後は、スピンチャック5の回転が停止され、ヒータユニット6が下位置に下降させられる。また、不活性ガスバルブ38が閉じられて、ガスノズル72からの不活性ガスの吐出が停止される。そして、第1移動ノズル11は、ホーム位置に移動される。その後は、制御ユニット3は、チャックピン20を開状態とし、搬送ロボットCRに、処理済みの基板Wを処理ユニット2から搬出させる。 After the spin dry step T8, the rotation of the spin chuck 5 is stopped, and the heater unit 6 is lowered to the lower position. Further, the inert gas valve 38 is closed, and the discharge of the inert gas from the gas nozzle 72 is stopped. Then, the first movable nozzle 11 is moved to the home position. Thereafter, the control unit 3 opens the chuck pins 20 and causes the transport robot CR to unload the processed substrate W from the processing unit 2.
 図11に示すように、この実施形態では、制御ユニット3は、穴広げステップT6におけるチャックピン20を閉状態に切り換えるタイミングで、周縁当接部65を閉状態から開状態へ切り換える。ただし、周縁当接部65の切り換えのタイミングは、穴広げステップT6にてヒータユニット6が下降することにより基板Wが下降し始めた後から、スピンドライステップT8完了後の搬送ロボットCRがチャックピン20から基板Wを搬出するよりも前までの期間内で、任意に変更され得る。 As shown in FIG. 11, in this embodiment, the control unit 3 switches the peripheral contact portion 65 from the closed state to the open state at the timing when the chuck pin 20 is switched to the closed state in the hole expansion step T6. However, after the substrate W starts to be lowered by the lowering of the heater unit 6 in the hole widening step T6, the transport robot CR after completion of the spin dry step T8 is a chuck pin for the switching timing of the peripheral contact portion 65. It may be arbitrarily changed within a period from 20 to before unloading the substrate W.
 図17は、基板Wの温度差による有機溶剤液膜90の移動を説明するための図である。有機溶剤液膜90中の有機溶剤は、より低温の方に移動する性質を持つ。穴開けステップT5で有機溶剤液膜の中央に穴91が形成されることにより、図17(a)に示すように、基板W全面のうち、中央部に形成される穴91内の領域の温度が、穴91外の領域の温度よりも相対的に高くなる。それに応じて、穴91の近傍では有機溶剤液膜90の温度がその周囲よりも高くなる。これにより、有機溶剤液膜90中に温度差が生じるので、穴91の周縁部の有機溶剤が、基板Wの外方に向かって放射状に移動する。すると、図17(b)に示すように、気相層92上で、基板Wの周縁に向かう流れ94が生じ、有機溶剤液膜90の中央部の穴91が同心円状に広がる。 FIG. 17 is a diagram for explaining the movement of the organic solvent liquid film 90 due to the temperature difference of the substrate W. The organic solvent in the organic solvent liquid film 90 has the property of moving to a lower temperature. By forming the hole 91 at the center of the organic solvent liquid film in the hole making step T5, as shown in FIG. 17A, the temperature of the region in the hole 91 formed in the central portion of the entire surface of the substrate W. Is relatively higher than the temperature of the area outside the hole 91. Accordingly, the temperature of the organic solvent liquid film 90 is higher in the vicinity of the hole 91 than in the surrounding area. As a result, a temperature difference occurs in the organic solvent liquid film 90, so the organic solvent at the peripheral portion of the hole 91 radially moves outward of the substrate W. Then, as shown in FIG. 17B, a flow 94 toward the peripheral edge of the substrate W is generated on the vapor phase layer 92, and the hole 91 in the central portion of the organic solvent liquid film 90 concentrically spreads.
 この温度差による有機溶剤の流れ94を利用した穴広げと並行して、不活性ガスの流量増大による穴広げステップT6が実行されるので、穴91は、途中で止まることなく、基板Wの外周縁まで広がる。それにより、途中で滞留を生じさせることなく、液膜90を基板W外に排除できる。 In parallel with the hole expansion using the organic solvent flow 94 due to this temperature difference, the hole expansion step T6 is performed due to the increase in the flow rate of the inert gas, so that the holes 91 do not stop halfway and outside the substrate W It extends to the periphery. Thus, the liquid film 90 can be removed out of the substrate W without causing stagnation on the way.
 また、穴開けステップT5において、基板Wにおける中央側の部分と周縁側の部分とで温度差が発生すると、基板Wの周縁側が上側に反りやすくなる。基板Wに反りが発生すると、基板W上の有機溶剤液膜90を良好に除去することが困難となるおそれがある。これに対して、この実施形態では、穴開けステップT5の間、基板Wの周縁部における複数箇所の上面が、周縁当接部65各々に接触する。これにより、基板Wの周縁部の上側への反りが抑制されるため、基板Wの周縁部の温度低下を抑制できる。これにより、基板Wを均一に加熱できるため、有機溶剤液膜90の除去を良好に実施できる。 In addition, if a temperature difference occurs between the central portion and the peripheral portion of the substrate W in the drilling step T5, the peripheral side of the substrate W tends to warp upward. When the substrate W is warped, it may be difficult to remove the organic solvent liquid film 90 on the substrate W satisfactorily. On the other hand, in the present embodiment, the upper surfaces of the peripheral portion of the substrate W are in contact with the peripheral contact portions 65 during the drilling step T5. Thereby, since the curvature to the upper side of the peripheral part of the board | substrate W is suppressed, the temperature fall of the peripheral part of the board | substrate W can be suppressed. Thereby, since the substrate W can be uniformly heated, the organic solvent liquid film 90 can be removed satisfactorily.
 <2. 第2実施形態>
 次に、第2実施形態について説明する。なお、以降の説明において、既に説明した要素と同様の機能を有する要素については、同じ符号またはアルファベット文字を追加した符号を付して、詳細な説明を省略する場合がある。
<2. Second embodiment>
Next, a second embodiment will be described. In the following description, elements having the same functions as the elements already described may be denoted by the same reference numerals or reference numerals with alphabetical characters added, and detailed description may be omitted.
 図18は、第2実施形態の周縁当接部65aの概略平面図である。図18(a)は開状態を示しており、図18(b)は閉状態を示している。また、図19は、周縁当接部65aの図解的な側面図である。 FIG. 18 is a schematic plan view of the peripheral edge abutting portion 65 a of the second embodiment. FIG. 18 (a) shows the open state, and FIG. 18 (b) shows the closed state. FIG. 19 is a schematic side view of the peripheral edge abutting portion 65a.
 この実施形態では、スピンベース21の周縁部に、複数の周縁当接部65に代えて複数の周縁当接部65aが設けられている。周縁当接部65aは、鉛直方向に延びたシャフト部66aと、平面視において非円形状(ここでは、略卵型)の周端面接触部67aとを有している。周端面接触部67aは、シャフト部66aの上部に取り付けられている。シャフト部66aおよび周端面接触部67aは、周縁当接部駆動ユニット68により、鉛直方向に延びる周縁当接部回動軸線66Zまわりに回転する。この回転により、図18に示すように周縁当接部65が開状態と閉状態との間で切り換えられる。 In this embodiment, a plurality of peripheral contact portions 65 a are provided in the peripheral portion of the spin base 21 instead of the plurality of peripheral contact portions 65. The peripheral edge contact portion 65a has a shaft portion 66a extending in the vertical direction, and a peripheral end surface contact portion 67a having a non-circular shape (here, substantially an oval shape in a plan view). The circumferential end contact portion 67a is attached to the upper portion of the shaft portion 66a. The shaft portion 66a and the peripheral end surface contact portion 67a are rotated by the peripheral edge contact portion drive unit 68 around the peripheral edge contact portion rotation axis 66Z extending in the vertical direction. By this rotation, the peripheral edge abutting portion 65 is switched between the open state and the closed state as shown in FIG.
 図18(a)に示すように、周縁当接部65aが開状態のとき、周端面接触部67aはヒータユニット6およびヒータユニット6またはチャックピン20に支持されている基板Wよりも外方に配される。この状態では、各周縁当接部65aの周端面接触部67aのうち周縁当接部回動軸線66Zに相対的に近い側面部分が回転軸線A1に向けられている。 As shown in FIG. 18A, when the peripheral edge contact portion 65a is in the open state, the peripheral end surface contact portion 67a is more outward than the substrate W supported by the heater unit 6 and the heater unit 6 or the chuck pin 20. Will be distributed. In this state, a side surface portion relatively close to the peripheral edge contact portion rotation axis 66Z in the peripheral end surface contact portion 67a of each peripheral edge contact portion 65a is directed to the rotation axis A1.
 図18(b)および図19に示すように、周縁当接部65aが閉状態のとき、周端面接触部67aが、ヒータユニット6に支持されて上位置に配された基板Wの周端面に当接する。詳細には、基板Wがヒータユニット6に支持されて上位置まで移動させられた後に、周縁当接部駆動ユニット68がシャフト部66を所定角度(ここでは90度)だけ回転させる。これにより、各周縁当接部65aの周端面接触部67aのうち周縁当接部回動軸線66Zから相対的に離れた側面部分が、回転軸線A1に向けられるとともに、基板Wの周端面に当接させられる。周端面接触部67aが基板Wに接触する際、基板Wの周縁部は殆ど上下動しない。これにより、基板Wがヒータユニット6の加熱面6aから浮くことを抑制できる。 As shown in FIGS. 18B and 19, when the peripheral edge contact portion 65 a is in the closed state, the peripheral end surface contact portion 67 a is supported by the heater unit 6 on the peripheral end surface of the substrate W disposed at the upper position. Abut. In detail, after the substrate W is supported by the heater unit 6 and moved to the upper position, the peripheral edge abutting portion drive unit 68 rotates the shaft portion 66 by a predetermined angle (here, 90 degrees). As a result, the side surface portion of the circumferential end surface contact portion 67a of each circumferential edge contact portion 65a that is relatively away from the circumferential edge contact portion rotation axis 66Z is directed to the rotation axis A1, and the circumferential edge surface of the substrate W Be touched. When the peripheral end contact portion 67a contacts the substrate W, the peripheral portion of the substrate W hardly moves up and down. Accordingly, floating of the substrate W from the heating surface 6 a of the heater unit 6 can be suppressed.
 周端面接触部67aは、弾性変形可能な構造を有していてもよい。たとえば、周端面接触部67aの全体、あるいは、基板Wに当接させられる側面部分(閉状態で回転軸線A1側を向く部分)のみを弾性材料により形成してもよい。周端面接触部67aが弾性変形することによって、周端面接触部67aが基板Wの周端面に対して柔軟に接触できる。このため、基板Wの周縁部が破損することを抑制しつつ、基板Wの周縁部における反りの発生を抑制できる。 The peripheral end contact portion 67a may have a structure that can be elastically deformed. For example, the entire peripheral surface contact portion 67a or only the side surface portion (portion facing the rotation axis A1 in the closed state) to be brought into contact with the substrate W may be formed of an elastic material. By elastically deforming the peripheral end contact portion 67 a, the peripheral end contact portion 67 a can flexibly contact the peripheral end surface of the substrate W. For this reason, generation | occurrence | production of the curvature in the peripheral part of the board | substrate W can be suppressed, suppressing that the peripheral part of the board | substrate W is damaged.
 基板Wの周端面のうち、周縁当接部65aの周端面接触部67aに接触されている部分については、上下方向に移動することが抑制される。このため、基板Wにおいて、中央部と周縁部との温度差等が生じた場合にも、周縁当接部65aにより基板Wの周縁部が反ることを抑制できる。特に、周縁当接部65aの場合、基板Wの周端面が上方向だけでなく下方向に反ることも抑制できる。 The portion of the peripheral end surface of the substrate W in contact with the peripheral end surface contact portion 67a of the peripheral edge contact portion 65a is suppressed from moving in the vertical direction. Therefore, even when a temperature difference or the like between the central portion and the peripheral portion occurs in the substrate W, the peripheral portion of the substrate W can be suppressed from being warped by the peripheral edge abutting portion 65a. In particular, in the case of the peripheral edge contact portion 65a, it is possible to suppress that the circumferential end surface of the substrate W is not only upwardly bent but also downwardly warped.
 さらに、周縁当接部65aの場合、基板Wのパターン形成面(上面または下面)に接触することがない。このため、基板Wのパターン形成面を清浄に保つことができる。また、基板Wに形成された有機溶剤液膜90が、基板Wの周縁部における周縁当接部65aとの接触部分から外方に流れ落ちる可能性はあるものの、その程度は、周縁当接部65の場合に比べて小さい。したがって、周縁当接部65に比べて、周縁当接部65aが有機溶剤液膜90の除去処理に与える影響を小さくできるため、より良好に基板Wから有機溶剤液膜90を除去し得る。 Furthermore, in the case of the peripheral edge contact portion 65a, it does not contact the pattern formation surface (upper surface or lower surface) of the substrate W. For this reason, the pattern formation surface of the substrate W can be kept clean. Although the organic solvent liquid film 90 formed on the substrate W may flow outward from the contact portion with the peripheral contact portion 65 a in the peripheral portion of the substrate W, the degree is similar to that of the peripheral contact portion 65. Smaller than in the case of Therefore, the influence of the peripheral edge contact portion 65 a on the removal process of the organic solvent liquid film 90 can be reduced compared to the peripheral edge contact portion 65, and therefore the organic solvent liquid film 90 can be removed from the substrate W better.
 <3. 変形例>
 以上、この発明の一実施形態について説明してきたが、この発明は、さらに他の形態で実施することもできる。この発明の範囲に含まれるいくつかの形態を以下に例示的に列挙する。
<3. Modified example>
Although one embodiment of the present invention has been described above, the present invention can also be implemented in other forms. Some forms included in the scope of the present invention are listed below by way of example.
 1.使用可能な有機溶剤は、IPAのほかにも、メタノール、エタノール、アセトン、HEF(ハイドルフルオロエーテル)を例示できる。これらは、いずれも水(DIW)よりも表面張力が小さい有機溶剤である。この発明は、有機溶剤以外の処理液にも適用可能である。たとえば、水などのリンス液を基板外に排除するためにこの発明を適用してもよい。リンス液としては、水のほかにも、炭酸水、電界イオン水、オゾン水、希釈濃度(たとえば、10~100ppm程度)の塩酸水、還元水(水素水)などを例示できる。 1. Examples of usable organic solvents include methanol, ethanol, acetone and HEF (hydric fluoroether) in addition to IPA. These are all organic solvents having surface tension smaller than that of water (DIW). The present invention is also applicable to processing solutions other than organic solvents. For example, the present invention may be applied to remove a rinse solution such as water out of the substrate. As the rinse solution, in addition to water, carbonated water, electric field ion water, ozone water, hydrochloric acid water of diluted concentration (for example, about 10 to 100 ppm), reduced water (hydrogen water), etc. can be exemplified.
 2.穴開け工程に使用可能な気体としては、窒素ガスのほかにも、清浄空気その他の不活性ガスを採用できる。 2. In addition to nitrogen gas, clean air or other inert gas can be employed as the gas usable for the drilling process.
 3.前述の実施形態では、第1移動ノズル11に有機溶剤ノズル71が備えられる一方で、穴開け等のための不活性ガスの供給は第2移動ノズル12から行われている。しかし、たとえば、第1移動ノズル11に有機溶剤ノズル71とともに、基板Wの回転中心に向けて不活性ガスを吐出できるガスノズルを備え、このガスノズルから穴開けのための不活性ガス供給を行ってもよい。なお、前述のガスノズル72の中心気体吐出口77は、パンチングプレート84によって拡散された気体流を吐出するので、穴開けステップの実行には必ずしも適さない。より狭い領域に向けて気体を吐出できる形態のノズル、具体的には直管状ノズルや二流体ノズルなどのようなチューブノズルを穴開けステップの実行のために用いることが好ましい。 3. In the above-described embodiment, while the first moving nozzle 11 is provided with the organic solvent nozzle 71, the supply of the inert gas for drilling and the like is performed from the second moving nozzle 12. However, for example, the first moving nozzle 11 is provided with a gas nozzle capable of discharging an inert gas toward the rotational center of the substrate W together with the organic solvent nozzle 71, and the inert gas is supplied from the gas nozzle for drilling. Good. Since the central gas discharge port 77 of the gas nozzle 72 described above discharges the gas flow diffused by the punching plate 84, it is not necessarily suitable for the execution of the drilling step. It is preferable to use a nozzle capable of discharging gas toward a narrower area, specifically, a tube nozzle such as a straight tubular nozzle or a two-fluid nozzle, for performing the drilling step.
 4.第1移動ノズル11に有機溶剤ノズル71とともに穴開けステップのためのガスノズルが備えられる場合には、ノズル入れ替えステップは省かれてもよい。ただし、この場合でも、穴開けステップのためにガスノズルから吐出された不活性ガスが液膜90に到達する瞬間には、ヒータユニット6は基板Wの下面から離隔させておくことが好ましい。 4. If the first moving nozzle 11 is provided with the organic solvent nozzle 71 and the gas nozzle for the drilling step, the nozzle replacement step may be omitted. However, even in this case, it is preferable that the heater unit 6 be separated from the lower surface of the substrate W at the moment when the inert gas discharged from the gas nozzle for the drilling step reaches the liquid film 90.
 5.穴開けステップにおいて、室温(たとえば25℃)よりも高温の不活性ガスを用いてもよい。この場合には、不活性ガスが基板Wに到達したときの基板Wの上下面間の温度差を少なくできる。したがって、ヒータユニット6を基板Wの下面に接触させたままで、穴開けステップのための高温不活性ガス吐出を行ってもよい。不活性ガスの温度は、基板Wの温度に近いほど好ましい。 5. An inert gas at a temperature higher than room temperature (eg 25 ° C.) may be used in the drilling step. In this case, the temperature difference between the upper and lower surfaces of the substrate W when the inert gas reaches the substrate W can be reduced. Therefore, high temperature inert gas may be discharged for the hole forming step while the heater unit 6 is in contact with the lower surface of the substrate W. The temperature of the inert gas is preferably closer to the temperature of the substrate W.
 6.前述の実施形態では、有機溶剤パドルステップT2における基板Wの回転の漸次的減速が段階的に行われているが、連続的に回転を減速してもよい。たとえば、10秒以上かけて300rpmから0rpmまで回転速度を連続的(たとえば直線的)に減速すれば、液膜90が基板Wの上面全域を覆う状態を保持できる。 6. In the above embodiment, the gradual deceleration of the rotation of the substrate W in the organic solvent paddle step T2 is performed stepwise, but the rotation may be decelerated continuously. For example, if the rotational speed is reduced continuously (for example, linearly) from 300 rpm to 0 rpm in 10 seconds or more, it is possible to maintain the liquid film 90 covering the entire upper surface of the substrate W.
 7.有機溶剤パドルステップT2において基板Wの回転を減速するときに、第1移動ノズル11から吐出される有機溶剤の流量を増加させてもよい(増流量減速工程)。この場合に、基板Wの回転の減速はステップ的に行われてもよいし、前述の実施形態のように、漸次的に行われてもよい。有機溶剤の供給流量を増加させることによって、基板Wの上面の外周領域における液切れが生じ難くなるので、基板Wの回転を速やかに減速して停止させることができる。これにより、短時間で基板Wの回転を停止できるので、生産性を向上できる。 7. When the rotation of the substrate W is decelerated in the organic solvent paddle step T2, the flow rate of the organic solvent discharged from the first moving nozzle 11 may be increased (a flow increase decelerating step). In this case, the deceleration of the rotation of the substrate W may be performed stepwise or may be performed gradually as in the above-described embodiment. By increasing the supply flow rate of the organic solvent, it becomes difficult to cause liquid breakage in the outer peripheral region of the upper surface of the substrate W, so that the rotation of the substrate W can be rapidly decelerated and stopped. Thus, the rotation of the substrate W can be stopped in a short time, so that the productivity can be improved.
 8.前述の実施形態では、ヒータユニット6から基板Wに与えられる熱量を増減するために、ヒータユニット6と基板Wとの距離を変更している。しかし、ヒータユニット6と基板Wとの間の位置関係の変更に代えて、またはそれとともに、ヒータユニット6の出力を変化させることにより、基板Wに与える熱量を増減してもよい。 8. In the above embodiment, the distance between the heater unit 6 and the substrate W is changed in order to increase or decrease the amount of heat given from the heater unit 6 to the substrate W. However, instead of, or in addition to, changing the positional relationship between the heater unit 6 and the substrate W, the amount of heat given to the substrate W may be increased or decreased by changing the output of the heater unit 6.
 9.前述の実施形態では、気相層92を形成するときに、ヒータユニット6を基板Wの下面に接触させている。しかし、ヒータユニット6からの輻射熱によって気相層92を形成できるのであれば、ヒータユニット6を基板Wの下面から離隔させたままで、気相層92の形成のための基板加熱を行ってもよい。ただし、ヒータユニット6の加熱面6aを基板Wに接触させる方が、雰囲気温度の変化等の外乱の影響を抑制できるので、加熱の面内均一性を高めることができる。また、基板Wに対しては、有機溶剤の蒸発によって奪われる気化熱を補って気相層92を形成および保持できる熱量を与える必要がある。したがって、加熱面6aを基板Wに接触させることにより、基板Wを効率的、安定的かつ速やかに加熱できる。 9. In the embodiment described above, the heater unit 6 is in contact with the lower surface of the substrate W when the gas phase layer 92 is formed. However, if the gas phase layer 92 can be formed by the radiant heat from the heater unit 6, the substrate heating for forming the gas phase layer 92 may be performed while keeping the heater unit 6 away from the lower surface of the substrate W . However, when the heating surface 6a of the heater unit 6 is in contact with the substrate W, the influence of disturbances such as a change in the ambient temperature can be suppressed, so the in-plane uniformity of heating can be improved. In addition, it is necessary to provide the substrate W with a heat amount that can compensate for the heat of vaporization taken away by the evaporation of the organic solvent to form and maintain the gas phase layer 92. Therefore, by bringing the heating surface 6a into contact with the substrate W, the substrate W can be heated efficiently, stably and quickly.
 10.処理対象の基板は、円形である必要はなく、矩形の基板であってもよい。 10. The substrate to be processed does not have to be circular, and may be a rectangular substrate.
 11.前述の実施形態では、有機溶剤パドルステップT2の途中から基板Wの回転を完全に停止して静止状態にしている。また、有機溶剤パドルステップT2に続く持ち上げパドルステップT3、ノズル入れ替えステップT4、および穴開けステップT5を通して、基板Wの静止状態を維持している。しかし、基板Wの上に有機溶剤の液膜を保持し続けることができるのであれば、有機溶剤パドルステップT2から穴開けステップT5までの期間の全部または一部の期間において基板を静止状態とせず、静止状態と同一視できる程度の低速(たとえば10rpm程度)で回転させるようにしてもよい。たとえば、穴開けステップT5において基板Wをこのような速度で回転させてもよい。 11. In the embodiment described above, the rotation of the substrate W is completely stopped from the middle of the organic solvent paddle step T2 to be in the stationary state. In addition, the substrate W is kept stationary through the lifting paddle step T3 following the organic solvent paddle step T2, the nozzle replacing step T4, and the drilling step T5. However, if it is possible to keep holding the liquid film of the organic solvent on the substrate W, the substrate is not made stationary during all or part of the period from the organic solvent paddle step T2 to the drilling step T5. Alternatively, it may be rotated at a low speed (for example, about 10 rpm) that can be identified with the stationary state. For example, the substrate W may be rotated at such a speed in the drilling step T5.
 12.回転軸線A1周りにヒータユニット6を回転させるための電動モータ等からなる回転ユニットをさらに備えてもよい。この場合、ヒータユニット6を基板Wの回転に同期して回転させることができる。 12. You may further provide the rotation unit which consists of an electric motor etc. for rotating the heater unit 6 around rotation-axis A1. In this case, the heater unit 6 can be rotated in synchronization with the rotation of the substrate W.
 13.上記実施形態では、複数の周縁当接部65,65aが接触する基板Wは、ヒータユニット6によって上位置に支持されている。ヒータユニット6で基板Wを支持する代わりに、スピンベース21の上面に対して突出/埋没する棒状のピン部材により基板Wを支持してもよい。 13. In the above embodiment, the substrate W with which the plurality of peripheral edge contact portions 65 and 65a are in contact is supported by the heater unit 6 at the upper position. Instead of supporting the substrate W by the heater unit 6, the substrate W may be supported by a rod-like pin member protruding / embedded on the upper surface of the spin base 21.
 14.上記実施形態では、複数の周縁当接部65,65aがスピンベース21に取り付けられているが、これは必須ではない。たとえば、複数の周縁当接部65,65aがヒータユニット6のプレート本体60に設けてもよい。この場合、ヒータユニット6によって上位置に支持された状態の基板Wの周縁部に、プレート本体60に設けた周縁当接部を当接させるとよい。また、複数の周縁当接部65,65aがスピンベース21およびプレート本体60とは異なる部材に設けられてもよい。 14. In the above-mentioned embodiment, although a plurality of peripheral contact parts 65 and 65a are attached to spin base 21, this is not essential. For example, a plurality of peripheral contact portions 65 and 65 a may be provided on the plate main body 60 of the heater unit 6. In this case, the peripheral edge contact portion provided on the plate main body 60 may be brought into contact with the peripheral edge portion of the substrate W in a state of being supported at the upper position by the heater unit 6. Also, a plurality of peripheral contact portions 65 and 65 a may be provided on members different from the spin base 21 and the plate main body 60.
 15.上記実施形態では、周縁当接部65,65aが基板Wに当接するときの基板Wの位置は、ヒータユニット6によってチャックピン20で把持されるときの被把持位置よりも上側の上位置に限定されない。たとえば、周縁当接部が、この被把持位置と同じ高さ、もしくは、それよりも下側の位置の基板Wに当接する位置に設けられてもよい。 15. In the above embodiment, the position of the substrate W when the peripheral edge contact portions 65 and 65a abut on the substrate W is limited to the upper position above the gripped position when the heater unit 6 grips the chuck pin 20. I will not. For example, the peripheral contact portion may be provided at the same height as the held position, or at a position to be in contact with the substrate W at a lower position.
 この変形例の場合、たとえば、接触部67の下端を、チャックピン20の把持部51と同じ高さかそれよりも下側に設けるとよい。そして、チャックピン20による把持が解除された解除状態の基板Wを、ヒータユニット6が上昇して被把持位置(またはそれよりも下側の位置)に支持するとともに、周縁当接部駆動ユニット68が接触部67を回転させて、この基板Wの周縁部に当接させるとよい。 In the case of this modification, for example, the lower end of the contact portion 67 may be provided at the same height as or below the gripping portion 51 of the chuck pin 20. Then, the heater unit 6 ascends and supports the substrate W in a released state where gripping by the chuck pin 20 has been released, to the gripped position (or a position lower than that), and the peripheral contact portion drive unit 68 May rotate the contact portion 67 to abut on the periphery of the substrate W.
 16.第2実施形態の変形例として、チャックピン20を省略するとともに、チャックピン20の把持部51を、周縁当接部65aにおけるシャフト部66aに設けてもよい。この場合、シャフト部66aにおける周端面当接部67aよりも下側(スピンベース21側)の部分に、把持部51を設けるとよい。この場合、周縁当接部駆動ユニット68が、シャフト部66aを回転させることにより、ヒータユニット6に支持されて上位置にある基板Wの周端面に周端面接触部67を当接させる状態と、上位置よりも下側にある基板Wを把持部51で把持する状態との間で切り換えるとよい。 16. As a modification of the second embodiment, the chuck pin 20 may be omitted, and the grip portion 51 of the chuck pin 20 may be provided on the shaft portion 66 a of the peripheral edge abutting portion 65 a. In this case, the gripping portion 51 may be provided on the lower side (spin base 21 side) of the circumferential end surface contacting portion 67a of the shaft portion 66a. In this case, the peripheral edge contact portion drive unit 68 contacts the peripheral end surface contact portion 67 with the peripheral end surface of the substrate W supported by the heater unit 6 by rotating the shaft 66a. The substrate W located below the upper position may be switched between being held by the holding unit 51.
 また、この変形例に関して、周端面当接部67aと同じ高さに把持部51を設けてもよい。この場合、ヒータユニット6が基板Wを把持部51に把持されるときの高さ位置(被把持位置)に支持しておき、周縁当接部駆動ユニット68が周端面当接部67aを回転させてこの基板Wの周端面に当接させるとよい。 In addition, in this modification, the grip 51 may be provided at the same height as the peripheral end contact portion 67a. In this case, the substrate W is supported at the height position (held position) when the substrate W is held by the holding portion 51, and the peripheral edge contact portion drive unit 68 rotates the peripheral end surface contact portion 67a. The substrate W may be in contact with the peripheral end face of the substrate W.
 この発明は詳細に説明されたが、上記の説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。上記各実施形態および各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 Although the present invention has been described in detail, the above description is an exemplification in all aspects, and the present invention is not limited thereto. It is understood that countless variations not illustrated are conceivable without departing from the scope of the present invention. The configurations described in the above-described embodiments and the modifications can be appropriately combined or omitted as long as no contradiction arises.
 1 基板処理装置
 3 制御ユニット
 5 スピンチャック
 6 ヒータユニット(加熱部)
 6a 加熱面
 7 昇降ユニット(接離部)
 11 第1移動ノズル(処理液供給部)
 12 第2移動ノズル(気体供給部)
 20 チャックピン(チャック部材)
 21 スピンベース
 30 昇降軸
 60 プレート本体
 62 ヒータ
 65,65a 周縁当接部(反り抑制部)
 66,66a シャフト部
 660 ベース部
 662 筒状部
 664 ばね部(弾性部材)
 666 連結部
 66Z 周縁当接部回動軸線
 67 当接部
 67a 周端面接触部
 68 周縁当接部駆動ユニット
 90 有機溶剤液膜(処理液の液膜)
 W 基板
1 substrate processing apparatus 3 control unit 5 spin chuck 6 heater unit (heating unit)
6a Heating surface 7 Lifting unit (contacting part)
11 1st moving nozzle (treatment liquid supply unit)
12 2nd moving nozzle (gas supply part)
20 Chuck pin (chuck member)
21 Spin base 30 Lifting shaft 60 Plate body 62 Heater 65, 65a Peripheral contact portion (warpage suppressing portion)
66, 66a shaft portion 660 base portion 662 cylindrical portion 664 spring portion (elastic member)
666 Connecting part 66Z Peripheral contact part rotation axis 67 Contact part 67a Peripheral end contact part 68 Peripheral contact part drive unit 90 Organic solvent liquid film (liquid film of treatment liquid)
W substrate

Claims (9)

  1.  基板の周縁を把持する把持状態と把持を解除する解除状態との間で変位する複数のチャック部材と、
     前記複数のチャック部材に把持されている基板の上面に処理液を供給する処理液供給部と、
     前記複数のチャック部材に把持されている基板の下方に配置され、基板を加熱する加熱部と、
     前記基板の下面に対して前記加熱部を接離させる接離部と、
     前記複数のチャック部を解除状態とし、前記加熱部が下面に当接している前記基板の上面に形成された液膜を基板の中央から周縁に向けて排除する液膜排除部と、
     前記液膜排除部により液膜が排除されている基板の周縁に当接する周縁当接部と、
    を備える、基板処理装置。
    A plurality of chuck members which are displaced between a gripping state in which the peripheral edge of the substrate is gripped and a releasing state in which the gripping is released;
    A processing liquid supply unit that supplies a processing liquid to the upper surface of the substrate held by the plurality of chuck members;
    A heating unit disposed below the substrate held by the plurality of chuck members and heating the substrate;
    A contacting / separating unit that brings the heating unit into contact with or separates from the lower surface of the substrate;
    A liquid film removing unit configured to release the liquid film formed on the upper surface of the substrate with the plurality of chuck units released and the heating unit being in contact with the lower surface from the center to the periphery of the substrate;
    A peripheral contact portion that contacts the peripheral edge of the substrate from which the liquid film is removed by the liquid film removal unit;
    A substrate processing apparatus comprising:
  2.  請求項1の基板処理装置であって、
     前記周縁当接部が、前記基板の周縁部の上面に接触する接触部を含む、基板処理装置。
    The substrate processing apparatus according to claim 1, wherein
    The substrate processing apparatus, wherein the peripheral contact portion includes a contact portion that contacts an upper surface of a peripheral portion of the substrate.
  3.  請求項2の基板処理装置であって、
     前記接触部に接続され、前記鉛直方向に弾性変形可能な弾性部材、
    をさらに備える、基板処理装置。
    The substrate processing apparatus according to claim 2, wherein
    An elastic member connected to the contact portion and elastically deformable in the vertical direction;
    And a substrate processing apparatus.
  4.  請求項2または請求項3の基板処理装置であって、
     前記接触部の前記基板に接触する下部が、弾性材料によって形成されている、基板処理装置。
    The substrate processing apparatus according to claim 2 or 3, wherein
    The substrate processing apparatus, wherein a lower portion of the contact portion in contact with the substrate is formed of an elastic material.
  5.  請求項1から請求項4のいずれか1項の基板処理装置であって、
     前記周縁当接部を、前記基板の周縁部に当接する周縁当接位置と、前記基板の周縁部から離間する離間位置との間で移動させる周縁当接部駆動ユニット、
    をさらに備える、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 4, wherein
    A peripheral contact portion drive unit for moving the peripheral contact portion between a peripheral contact position where the peripheral contact portion contacts the peripheral edge of the substrate and a separation position where the peripheral contact portion is apart from the peripheral edge of the substrate;
    And a substrate processing apparatus.
  6.  請求項1から請求項5のいずれか1項の基板処理装置であって、
     前記周縁当接部は、
     前記基板の周端面に接触する周端面接触部、
    をさらに備える、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 5, wherein
    The peripheral contact portion is
    A circumferential end contact portion contacting the circumferential end surface of the substrate;
    And a substrate processing apparatus.
  7.  請求項1から請求項6のいずれか1項の基板処理装置であって、
     前記加熱部は、前記基板の下面側から支持可能であるとともに、
     前記接離部は、前記加熱部を上方へ移動させることにより、前記基板を前記チャック部材に保持されるときの位置よりも上側の上位置に移動させる、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 6, wherein
    The heating unit can be supported from the lower surface side of the substrate, and
    The substrate processing apparatus, wherein the contacting and moving unit moves the heating unit upward to move the substrate to an upper position above a position at which the substrate is held by the chuck member.
  8.  その上面に処理液の液膜が形成された基板の下面に当接しつつ基板を加熱する加熱部と、
     加熱部により加熱される基板の上面に形成された液膜を基板の中央から周縁に向けて排除する液膜排除部と、
     液膜排除部により液膜が排除されている基板の反りを抑制する反り抑制部と、
    を備える基板処理装置。
    A heating unit which heats the substrate while being in contact with the lower surface of the substrate having the liquid film of the processing liquid formed on the upper surface thereof;
    A liquid film exclusion unit for excluding a liquid film formed on the upper surface of the substrate heated by the heating unit from the center to the periphery of the substrate;
    A warpage suppressing portion that suppresses warpage of the substrate from which the liquid film is removed by the liquid film removing portion;
    Substrate processing apparatus comprising:
  9.  基板を処理する基板処理方法であって、
    (a)上面に処理液の液膜が形成された基板の下面に加熱部を当接させつつ加熱する工程と、
    (b)前記加熱部により加熱される基板の上面に形成された液膜を基板の中央
    から周縁に向けて排除する工程と、
    (c)前記工程(b)により液膜が排除されている基板の反りを抑制する工程と、
    を備える、基板処理方法。
    A substrate processing method for processing a substrate, comprising
    (A) heating while bringing the heating unit into contact with the lower surface of the substrate having the liquid film of the processing liquid formed on the upper surface;
    (B) removing the liquid film formed on the upper surface of the substrate heated by the heating unit from the center to the periphery of the substrate;
    (C) suppressing warpage of the substrate from which the liquid film has been removed in the step (b);
    A substrate processing method comprising:
PCT/JP2018/027670 2017-09-21 2018-07-24 Substrate processing device and substrate processing method WO2019058747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-181365 2017-09-21
JP2017181365A JP7064302B2 (en) 2017-09-21 2017-09-21 Board processing equipment and board processing method

Publications (1)

Publication Number Publication Date
WO2019058747A1 true WO2019058747A1 (en) 2019-03-28

Family

ID=65811265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027670 WO2019058747A1 (en) 2017-09-21 2018-07-24 Substrate processing device and substrate processing method

Country Status (3)

Country Link
JP (1) JP7064302B2 (en)
TW (1) TW201921579A (en)
WO (1) WO2019058747A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185803A (en) * 2014-03-26 2015-10-22 株式会社Screenホールディングス substrate processing apparatus
JP2016136599A (en) * 2015-01-23 2016-07-28 株式会社Screenホールディングス Substrate processing method and substrate processing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185803A (en) * 2014-03-26 2015-10-22 株式会社Screenホールディングス substrate processing apparatus
JP2016136599A (en) * 2015-01-23 2016-07-28 株式会社Screenホールディングス Substrate processing method and substrate processing device

Also Published As

Publication number Publication date
JP7064302B2 (en) 2022-05-10
TW201921579A (en) 2019-06-01
JP2019057628A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6461621B2 (en) Substrate processing method and substrate processing apparatus
KR101877112B1 (en) Substrate processing method, substrate processing apparatus, and fluid nozzle
JP6588819B2 (en) Substrate processing apparatus and substrate processing method
JP6728009B2 (en) Substrate processing method and substrate processing apparatus
KR102010720B1 (en) Substrate processing apparatus and substrate processing method
US10900127B2 (en) Substrate processing method and substrate processing apparatus
US10695792B2 (en) Substrate processing method and substrate processing apparatus
US11465167B2 (en) Substrate treatment apparatus
JP6566414B2 (en) Substrate processing method, substrate processing apparatus, and fluid nozzle
WO2017029862A1 (en) Substrate treatment method and substrate treatment device
JP6642868B2 (en) Substrate processing method and substrate processing apparatus
JP6300314B2 (en) Substrate processing equipment
JP6668448B2 (en) Substrate processing method and substrate processing apparatus
WO2019058747A1 (en) Substrate processing device and substrate processing method
TWI667076B (en) Substrate processing method and substrate processing apparatus
JP6967922B2 (en) Board processing method and board processing equipment
JP6960489B2 (en) Substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857457

Country of ref document: EP

Kind code of ref document: A1