WO2019057215A1 - Lamp - Google Patents

Lamp Download PDF

Info

Publication number
WO2019057215A1
WO2019057215A1 PCT/CN2018/107411 CN2018107411W WO2019057215A1 WO 2019057215 A1 WO2019057215 A1 WO 2019057215A1 CN 2018107411 W CN2018107411 W CN 2018107411W WO 2019057215 A1 WO2019057215 A1 WO 2019057215A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
optical
light source
casing structure
lens module
Prior art date
Application number
PCT/CN2018/107411
Other languages
French (fr)
Inventor
Hao Wu
Guozhong Zhang
Jinxiang Shen
Original Assignee
Zhejiang Shenghui Lighting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shenghui Lighting Co., Ltd. filed Critical Zhejiang Shenghui Lighting Co., Ltd.
Publication of WO2019057215A1 publication Critical patent/WO2019057215A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/101Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening permanently, e.g. welding, gluing or riveting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/049Patterns or structured surfaces for diffusing light, e.g. frosted surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/061Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/062Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • F21V31/005Sealing arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/048Refractors for light sources of lens shape the lens being a simple lens adapted to cooperate with a point-like source for emitting mainly in one direction and having an axis coincident with the main light transmission direction, e.g. convergent or divergent lenses, plano-concave or plano-convex lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to the lighting technology and, in particular, to a lamp.
  • a parabolic aluminum reflector (PAR) lamp when a light-emitting diode (LED) is used as a light source, is called an LED PAR lamp.
  • the LED PAR lamp is widely used in indoor lighting because the LED PAR lap has no ultraviolet and no infrared radiation, consumes low energy, exhibits high brightness, is safe to use and ease to install.
  • a light intensity at the center of light emitted by the LED PAR lamp cannot be improved by improving a power of the LED of the LED PAR lamp.
  • the conventional LED PAR lamp usually has a relatively poor light-emitting effect.
  • the lamp includes a casing structure, a driving power supply, a light source assembly, a lens module, and one or more optical lamp cover.
  • the light source assembly includes a plurality of light sources.
  • the lens module includes a plurality of optical cavities.
  • the driving power supply, the light source assembly, and the lens module are disposed inside the casing structure.
  • An output terminal of the driving power supply is connected to an input terminal of the light source assembly.
  • the light source assembly and the lens module are connected.
  • the lens module is located above the light source assembly.
  • Each of the plurality of light sources corresponds to one of the plurality of optical cavities in the corresponding optical cavity of the lens module.
  • Each optical lamp cover is fixedly coupled to an upper end of the casing structure.
  • the lamp includes a hollow funnel-shaped power base.
  • the casing structure is sleeved outside the power base.
  • the power base extends downward with respect to the casing structure and includes an extended portion that extends outside the casing structure.
  • An outer diameter of an upper end of the power base is larger than an inner diameter of an lower end of the casing structure.
  • the driving power supply is disposed inside the power base.
  • the lamp includes a lamp head.
  • the lamp head is threadedly coupled to the extended portion of the power base. When the lamp head is threadedly coupled to the extended portion, the lamp head abuts against the casing structure.
  • an upper edge of the power base includes an annular groove, and a first sealing ring is disposed inside the annular groove.
  • the second sealing ring is disposed between the casing structure and the power base.
  • the lamp further includes a heat sink.
  • the heat sink includes a bottom wall and a peripheral side wall. An outer surface of the peripheral side wall of the heat sink is in an engaging contact with an inner side wall of the casing structure.
  • the light source assembly is fixedly disposed on an inner surface of the bottom wall of the heat sink. An outer surface of the bottom wall of the heat sink is in contact with the first sealing ring.
  • the heat sink is threadedly coupled to the power base.
  • the inner side wall of the casing structure includes a second step-surface configured to support the bottom wall of the heat sink, and the bottom wall of the heat sink is disposed on the second step-surface.
  • the inner side wall of the upper end of the casing structure includes a first step-surface.
  • Each of the at least one optical lamp cover includes a connection element disposed at the first step-surface. A space between the connection element of each of the at least one optical lamp cover and a portion of the heat sink that is above the first step-surface is filled with sealant.
  • the at least one optical lamp cover includes a first optical lamp cover and a second optical lamp cover.
  • the second optical lamp cover is located outside the first optical lamp cover.
  • a space between the connection element of the first optical lamp cover and a portion of the heat sink that is above the first step-surface is filled with sealant.
  • the first optical lamp cover is made of plastic.
  • the second optical lamp cover is made of glass.
  • the lens module includes a plurality of lenses, and each of the plurality of lenses is a collimating lens.
  • the light source assembly comprises an light-emitting diode (LED) module or a surface-mounted device (SMD) LED.
  • LED light-emitting diode
  • SMD surface-mounted device
  • each of the plurality of light sources is an LED light source
  • the lamp is an LED parabolic aluminum reflector (PAR) lamp.
  • the driving power supply is housed on a circuit board.
  • a shape of the circuit board of the driving power supply is one of: a circular shape, an elliptical shape, and a rectangular shape.
  • the lens module includes the plurality of optical cavities, each of the optical cavities corresponds to each of the light sources.
  • the light angle of the light emitted by each of the light sources can be adjusted by the corresponding optical cavity.
  • the light emitted by plurality of light sources can be respectively adjusted by corresponding optical cavity to form an integral, round, uniform surface-light source.
  • the light angle of the light emitted by the plurality of the light sources can be better adjusted by the corresponding optical cavity of the lens module, so as to improve the final light-emitting effect.
  • each of the light sources has a corresponding optical cavity, such that more light can transmit, and less light can be reflected, compared to the case that the light angle of the light emitted by the plurality of the light sources is adjusted by only one lens. Therefore, using the lamp consistent with the present disclosure, a loss of the light intensity during the optical design of the lens module is relatively small, and when the power for the light source increases, the light intensity at the center of the light emitted by the lamp can also increase.
  • FIG. 1 is a structural diagram of a lamp according to some embodiments of the present disclosure
  • FIG. 2A is a cross-sectional diagram of the lamp along a A-A direction shown in FIG. 1;
  • FIG. 2B is a zoomed-in view of a section B shown in FIG. 2A;
  • FIG. 3A is an exploded perspective view of a lamp according to some embodiments of the present disclosure.
  • FIG. 3B is an exploded front view of the lamp shown in FIG. 3A.
  • FIG. 1 is a structural diagram of a lamp according to some embodiments of the present disclosure.
  • FIG. 2A is a cross-sectional diagram of the lamp along a A-A direction shown in FIG. 1.
  • FIG. 2B is a zoomed-in view of a section B shown in FIG. 2A.
  • FIG. 3A is an exploded perspective view of a lamp according to some embodiments of the present disclosure.
  • FIG. 3B is an exploded front view of the lamp shown in FIG. 3A.
  • the lamp includes a casing structure 11, a driving power supply 12, a light source assembly 13, a lens module 14, and one or more optical lamp cover 15.
  • the light source assembly 13 includes a plurality of light sources 131.
  • the lens module 14 includes a plurality of optical cavities 141. The lens module 14 is configured to modify the light emitted by the light source assembly 13, such as concentrating the light, dispersing the light, and/or changing a light angle.
  • the driving power supply 12, the light source assembly 13 and the lens module 14 are all disposed inside the casing structure 11.
  • An output terminal of the driving power supply 12 is connected to an input terminal of the light source assembly 13.
  • the light source assembly 13 is connected to the lens module 14, and the lens module 14 is located above the light source assembly 13.
  • Each light source 131 corresponds to one of the optical cavities 141 of the lens module 14.
  • each light source 131 is covered by a corresponding optical cavity 141 such that the light emitted by the light source 131 can pass through the optical cavity 141 and be adjusted by the lens module 14.
  • Each optical lamp cover 15 can be fixedly mounted to an upper end of the casing structure 11.
  • the lamp consistent with the present embodiment may be an LED PAR lamp, and correspondingly, the light source assembly 13 can be an LED module or a surface-mounted device (SMD) LED, and the light sources 131 of the light source assembly 13 can be LED light sources.
  • the light source assembly 13 can be an LED module or a surface-mounted device (SMD) LED, and the light sources 131 of the light source assembly 13 can be LED light sources.
  • SMD surface-mounted device
  • the lamp includes the casing structure 11, the driving power supply 12, the light source assembly 13, the lens module 14, and one or more optical lamp cover 15.
  • the light source assembly 13 includes the plurality of light sources 131.
  • the driving power supply 12, the light source assembly 13 and the lens module 14 are all disposed inside the casing structure 11.
  • the output terminal of the driving power supply 12 is connected to the input terminal of the light source assembly 13.
  • the light source assembly 13 is connected to the lens module 14, and the lens module 14 is located above the light source assembly 13.
  • Each light source 131 corresponds to one of the plurality of optical cavities 141 of the lens module 14.
  • Each optical lamp cover 15 can be fixedly mounted to the upper end of the casing structure 11.
  • each light source 131 corresponds to one of the plurality of optical cavities 141 of the lens module 14.
  • One of the plurality of optical cavities 141 of the lens module 14 can adjust optical path of a light emitted by the corresponding light source 131.
  • the lens module 14 can be configured to converge the light emitted by the each light source 131 and adjust an light angle of the light emitted by the light source 131 through the setting of individual optical cavities 141.
  • the lens module may include a plurality of lenses.
  • the optical design can be to converge the light emitted by the corresponding light source and adjust an light angle of the light emitted by the corresponding light source 131.
  • each light source 131 can be aligned with one lens in the corresponding optical cavity 141 of the lens module 14.
  • the lens module 14 may be an integral cover including a plurality of optical cavities 141, and each of the plurality of optical cavities 141 corresponds to and covers one of the light sources 131.
  • the lens module 14 may be configured to adjust the direction of the light emitted by the light sources 131, which achieves optical adjustment functions as a plurality of lenses.
  • the structure of the lens module 14 that forms optical cavities e.g., the top portion of the optical cavities
  • the material of the casing structure 11 may be one or more of various materials, such as non-conductive materials like glass and plastic.
  • the material of the casing structure 11 may be glass, and the casing structure 11 can be a glass casing structure.
  • the glass casing has a good high-temperature resistance and can be applied to a wide range of light sources. That is, the glass casing structure is suitable for a light source that can generate a large amount of heat, and for a light source that can generate a small amount of heat. In addition, the glass casing also has a long service lifetime and a good water resistance and is not easy to deform. Moreover, the glass casing can meet a need of a user for traditional casing materials.
  • the material of the casing structure 11 may be plastic, and the casing structure 11 can be a plastic casing structure.
  • the plastic casing structure can be made of a high-temperature resistant plastic material, such as, reinforced modified polyvinyl chloride, polycarbonate, polymethyl methacrylate, polyvinyl chloride, polystyrene, polyethylene, etc.
  • the plastic casing structure is suitable for a light source with low heat generation, high efficacy, and long lifetime, such as a cold cathode light source, an LED light source, a plasma cold light source, etc.
  • the plastic casing structure also has the advantages of being not easily broken, easy to form, easy to color, resistant to aging, light in weight, and low in price.
  • the driving power supply 12, the light source assembly 13, and the lens module 14 are all disposed inside the casing structure 11.
  • the light sources 131 of the light source assembly 13 may be one or more types of light sources. In some embodiments, the light sources 131 of the light source assembly 13 may be LED light sources.
  • the LED light source has the following advantages.
  • the LED light source can consume low energy and is environmentally friendly.
  • the LED light source can be driven by direct current and have an electro-optical power conversion close to 100%.
  • the LED light source consumes 80%or higher less energy than a conventional light source.
  • the LED light source can have a relatively long lifetime.
  • the lifetime of the LED light source can be 60, 000 to 100, 100 hours, which is more than 10 times longer than the lifetime of the conventional light source.
  • the LED light source is a solid cold light source and can be sealed by epoxy resin. As such, there is no loose part in the LED light source, and it is less likely to have filament burning during emitting light, thermal deposition, and light decay, etc.
  • the output terminal of the driving power supply 12 is connected to the input terminal of the light source assembly 13. In some embodiments, the output terminal of the driving power supply 12 is connected to the input terminal of the light source assembly 13 by a cable.
  • the driving power supply 12 can be configured to supply power to each light source 131.
  • the driving power supply 12 can be configured to convert an alternating current (AC) voltage to a DC voltage and supply the DC voltage to each LED light source.
  • AC alternating current
  • the lens module 14 is connected to the light source assembly 13, and the lens module 14 is located above the light source assembly 13.
  • the light source assembly 13 can be connected to the lens module 14 by a buckle connection.
  • the lens module 14 may include protrusions, and the light source assembly 13 may include slots having matching shapes with the protrusions of the lens module 14.
  • the lens module 14 may include slots, and the light source assembly 13 may include protrusions having matching shapes with the slots of the lens module 14.
  • the light source assembly 13 can be connected to the lens module 14 by respectively inserting the protrusions into the slots. Shapes and numbers of the protrusions or slots are not limited by the present disclosure.
  • the light source assembly 13 may be connected to the les module 14 by other mechanisms, which is not limited by the present disclosure.
  • the lens module 14 includes the plurality of optical cavities 141.
  • there is one optical cavity 141 can match with the light source 131. That is each of the light sources 131 has a corresponding optical cavity 141.
  • a number of optical cavities 141 of the lens module 14 may be larger or equal to a number of the light sources 131 of the light source assembly 13.
  • the lens module 14 includes the plurality of optical cavities 141, and each of the light sources 131 has a corresponding optical cavity 141. As such, the light angle of the light emitted by each of the light sources 131 can be adjusted by the corresponding optical cavity 141. The light emitted by plurality of light sources 131 can be respectively adjusted by corresponding optical cavities 141 to form an integral, round, uniform surface-light source.
  • the lens module 14 includes the plurality of optical cavities 141, and each of the light sources 131 has a corresponding optical cavity 141. As such, the light angle of the light emitted by each of the light sources 131 can be adjusted by the corresponding optical cavity 141. Compared to the light angle of the light emitted by the plurality of the light sources being adjusted by only one lens, the light angle of the light emitted by the plurality of the light sources can be better adjusted by the corresponding optical cavities 141 of the lens module 14, so as to improve the final light-emitting effect.
  • each of the light sources 131 has a corresponding optical cavity 141, such that more light can transmit, and less light can be reflected, compared to the case that the light angle of the light emitted by the plurality of the light sources is adjusted by only one lens. Therefore, using the lamp consistent with the present disclosure, a loss of the light intensity during the optical design of the lens module 14 is relatively small, and when the power for the light source increases, the light intensity at the center of the light emitted by the lamp can also increase.
  • the optical properties of the lens module 14 can determine the optical properties of the light emitted by the plurality of light sources 131 after passing through the lens module 14, such as the light intensity and light angle.
  • the optical properties of the lens module 14 can be determined according to actual conditions, such as the application environment of the lamp is used and the nature of the light sources 131.
  • the lens module 14 may include a plurality of lenses. Each of lenses of the lens module 14 may be a collimating lens.
  • one or more optical lamp cover 15 is disposed above the casing structure 11, and each optical cover 15 is fixedly connected to the upper end of the casing structure.
  • the number of the optical lamp cover 15 is not limited by the present disclosure and can be determined according to actual conditions.
  • the disclosed lamp may include more than one optical lamp covers 15, and the optical lamp covers may have the same shape with or different shapes from each other and may be made by the same material with or different materials from each other.
  • the more than one optical lamp covers may have compatible shapes and may be assembled on to the casing structure 11. As shown in FIGs. 2A, 2B and 3, two optical lamp covers 15 are connected to the upper end of the casing structure 11. Referring to FIG. 2A and FIG.
  • a cross-section of an upper one of the two optical lamp covers 15 has an overall curved structure, while the lower one of the two optical lamp covers 15 has an overall flat structure.
  • an lower surface of the upper optical lamp cover 15 and a upper surface of the lower optical lamp cover 15 are uneven surfaces having a larger number of recesses and protrusions.
  • the optical lamp cover 15 can have a compound eye structure, through which the light can be mixed better, thereby forming a better light-emitting spot and having a better visual effect.
  • the optical lamp cover 15 can be a cover commonly used optical lamp and is not limited by the present disclosure.
  • the optical lamp cover 15 and the casing structure 11 may be connected in the following manner.
  • An inner side wall of the upper end of the casing structure 11 includes a first step-surface 111, each lamp cover is connected to the first step-surface 111.
  • the inner side wall of the upper end of the casing structure 11 includes a first step-surface 111, and each optical lamp cover 15 includes a connection element 151.
  • the connection element 151 is adhesively connected to the first step-surface 111.
  • the connection element 151 of each optical lamp cover 15 can be adhesively connected to the first step-surface 111 by back gum.
  • the optical lamp cover 15 has an uneven inner surface, which can facilitate diffuse reflection and multiple scattering of light.
  • the optical lamp cover 15 can scatter the light emitted from the lens module 14 (i.e., a second optical design of the light emitted from each of the light sources 131) .
  • the light emitted by plurality of light sources 131 can be respectively adjusted by corresponding optical cavities 141 to form an integral, round, uniform surface-light source. Further, the integral, round, uniform surface-light source can be scattered by the optical lamp cover 15 to form output a uniform illumination.
  • the number of the optical lamp covers 15 can be one, and the optical lamp cover 15 can be made of plastic.
  • the plastic optical lamp cover can be a polymethyl methacrylate optical lamp cover or a polycarbonate optical lamp cover.
  • the plastic optical lamp cover is not fragile, has a high processing efficiency and a high light transmittance, etc., and can well protect various structures inside the casing structure 11.
  • the number of the optical lamp covers 15 can be one, and the optical lamp cover can be made of glass.
  • the glass optical lamp cover has a high light transmittance and a high temperature resistance.
  • the light transmittance and temperature resistance of the glass optical lamp cover are higher than those of the plastic optical lamp cover.
  • the glass optical lamp cover meets the demand of the user for traditional lamp cover materials.
  • the number of the optical lamp cover 15 can be two, the material of a first optical lamp cover can be plastic, the material of a second optical lamp cover can be glass, and the second optical lamp cover is located outside the first optical lamp cover.
  • the lamp includes two optical lamp covers 15, the external optical lamp cover 15 is made of glass, the inner optical lamp cover 15 is made of plastic.
  • the inner plastic optical lamp cover can continue to protect the internal structure of the casing structure 11. satisfies the need of the user for the traditional lamp cover material.
  • each light source 131 of the light source assembly 13 can be adjusted by two optically designs (firstly by the lens module 14 and secondly the optical lamp cover 15) , and finally the light emitted is relatively uniform.
  • the lamp can have a good light-emitting effect.
  • the lamp in order to dissipate the heat generated by the lamp during operation, the lamp further includes: a heat sink 16.
  • the heat sink 16 may be made of aluminum.
  • the heat sink 16 may have a cup-shaped structure including a bottom wall and a peripheral side wall. An outer surface of the peripheral side wall of the heat sink 16 is in an engaging/close contact with an inner surface of the peripheral side wall of the casing structure 11.
  • the light source assembly 13 is disposed on an inner/top surface of the bottom wall of the heat sink 16. When the lamp is in operation, the heat generated by the light sources 131 of the light source assembly 13 can be transferred to the casing structure 11 through the heat sink 16, and the casing structure 11 can dissipate the heat to an external environment.
  • the heat sink 16 is connected to the power base 17 by screwing.
  • the connection is simple and easy to implement, and the connection between the heat sink 16 and the power base 17 can be relatively firm, effectively avoiding a positional displacement of the heat sink 16.
  • the inner side wall of the casing structure 11 includes a second step-surface configured to the bottom wall of the heat sink 16, and the bottom wall of the heat sink 16 can be disposed on the second step-surface.
  • the bottom wall of the heat sink 16 is disposed on the second step-surface of the inner side wall of the casing structure 11, there is no need to have a hole for mechanical connection between the heat sink 16 and the casing structure 11, so as to ensure the integrity of heat sink 16 and the casing structure 11.
  • an upper edge of the heat sink 16 of the lamp may be higher than the first step-surface.
  • a space between the connection element 151 of the optical lamp cover 15 and a portion of the heat sink 16 that is above the first step-surface 111 may be filled with sealant. As such, the seal between the optical lamp cover 15 and the heat sink 16 can be achieved, the external water can be prevented from entering the interior of the heat sink 16, and the light source assembly 13 can be protected.
  • the lamp includes two optical lamp covers 15, the first optical lamp cover and the second optical lamp cover.
  • the second optical lamp cover is located outside the first optical lamp cover.
  • the space between the connection element 151 of the first optical lamp cover 15 and a portion of the heat sink 16 that is above the first step-surface 111 may be filled with sealant.
  • the lamp further includes: a power base 17.
  • the driving power supply 12 is disposed inside the power base 17.
  • An upper edge of the power base 17 includes an annular groove, and a first sealing ring 18 is disposed in the annular recess.
  • the casing structure 11 can be sleeved outside the power base 17.
  • the power base 17 extends downward with respect to the casing structure 11, and an external diameter of the upper end of the power base 17 is larger than an inner diameter of an lower end of the casing structure 11.
  • the material of the power base 17 can be plastic, and the shape of the power base 17 can be a hollow funnel-shaped.
  • the shape of a circuit board that houses the driving power supply 12 can have one of the following: circular shape, elliptical shape or rectangular shape.
  • the driving power supply 12 can be placed into the hollow funnel-shaped power base 17 from the upper end of the hollow funnel-shaped power base 17. If the driving power supply 12 have a circular or elliptical shape, the driving power supply 12 can move downward till and stay at a position where an outer diameter of the circuit board is equal to an inner diameter of the power base 17. If the driving power supply 12 have a rectangular shape, the driving power supply 12 can move downward till and stay at a position where a diagonal length of the circuit board is equal to an inner diameter of the power base 17. In addition, the driving power supply 12 can also be removed from the power base 17 along an opposite direction (e.g., upward) with respect to the assembling direction (e.g., downward) .
  • the power base 17 extends downward with respect to the casing structure 11, and an external diameter of the upper end of the power base 17 is larger than an inner diameter of an lower end of the casing structure 11” in detail.
  • the power supply base 17 can be placed from the upper end of the casing structure 11 into the inside of the casing structure 11.
  • the power supply base 17 stays at a position where the outer diameter thereof is larger than the inner diameter of the casing structure 11.
  • the outer diameter of the lower end of the power supply base 17 is smaller than the inner diameter of the lower end of the casing structure 11, therefore, the hollow funnel-shaped power base 17 extends downward with respect to the casing structure 11.
  • a part of the lower end of the hollow funnel-shaped power base 17 is outside the casing structure 11.
  • the part pf the hollow funnel-shaped power base 17 outside the casing structure 11 is an extended portion 171 of the hollow funnel-shaped power base 17.
  • a second sealing ring 181 is disposed between the power base 17 and the casing structure 11.
  • the lamp head 19 of the lamp is threadedly coupled to the extended portion 171 and the lamp head 19 abuts against the casing structure 11.
  • the lamp head 19 and the extended portion 171 of the power base 17 can be assembled with compatible threaded connection.
  • the lamp head 19 can be connected to a standard lamp socket. After the lamp head 19 is connected to the standard lamp socket, the lamp can be connected to the external power source.
  • the base 19 abuts against the casing structure 11, such that the power base 17 is not visible outside the lamp, and no part of the power base 17 is exposed outside the lamp.
  • the power base 17 is not visible outside the lamp, thus the overall appearance of the lamp is relatively beautiful, and the power base 17 can be protected from damage. If a part of the power base 17 is exposed outside the lamp, when the power base 17 is damaged, the external water may enter the interior of the lamp through the damaged part of the power base 17, which may further damage the driving power supply 12 and the lamp head 19.
  • the heat sink 16 is disposed above the power supply base 17, and an outer surface of the bottom wall of the heat sink 16 is in contact with the first sealing ring 18 in the upper annular groove of the power supply base 17.
  • the first sealing ring 18 can prevent the external water from entering the interior of the power base 17, thereby protecting the driving power supply 12.
  • the lamp consistent with the present disclosure includes: a casing structure, a driving power supply, a light source assembly, a lens module and one or more optical lamp cover.
  • the light source assembly includes a plurality of light sources.
  • the lens module includes a plurality of optical cavities.
  • the driving power supply, the light source assembly, and the lens module are all disposed inside the casing structure.
  • the output terminal of the driving power supply is connected to the input terminal of the light source assembly.
  • the light source assembly is connected to the lens module, and the lens module is located above the light source assembly.
  • Each light source corresponds to an optical cavity of the lens module.
  • Each optical lamp cover is fixedly connected to the upper end of the casing structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

A lamp includes a casing structure (11), a driving power suppy (12), a light source assembly (13), a lens module (14), and one or more optical lamp cover (15). The light source assembly (13) includes a plurality of light sources (131). The lens module (14) includes a plurality of optical cavities. The driving power supply (12), the light source assembly (13), and the lens module (14) are disposed inside the casing structure (11). An output terminal of the driving power supply (12) is connected to an input terminal of the light source assembly (13). The light source assembly (13) is connected to the lens module (14). The lens module (14) is located above the light source assembly (13). Each light source (131) corresponds to one of the plurality of optical cavities. Each optical lamp cover (15) is fixedly coupled to an upper end of the casing structure (11).

Description

LAMP
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to Chinese Patent Application No. 201710872286.6, filed on September 25, 2017, the entire contents of which are incorporated herein by reference.
TECHNICAL FIELD
The present disclosure relates to the lighting technology and, in particular, to a lamp.
BACKGROUND
A parabolic aluminum reflector (PAR) lamp, when a light-emitting diode (LED) is used as a light source, is called an LED PAR lamp. The LED PAR lamp is widely used in indoor lighting because the LED PAR lap has no ultraviolet and no infrared radiation, consumes low energy, exhibits high brightness, is safe to use and ease to install.
In a conventional LED PAR lamp, a light intensity at the center of light emitted by the LED PAR lamp cannot be improved by improving a power of the LED of the LED PAR lamp. In addition, the conventional LED PAR lamp usually has a relatively poor light-emitting effect.
SUMMARY
One Aspect of the present disclosure provides a lamp. The lamp includes a casing structure, a driving power supply, a light source assembly, a lens module, and one or more optical lamp cover. The light source assembly includes a plurality of light sources. The lens module includes a plurality of optical cavities. The driving power supply, the light source assembly, and the lens module are disposed inside the casing structure. An output terminal of the driving power supply is connected to an input terminal of the light source assembly. The light source assembly and the lens module are connected. The lens module is located above the light source assembly. Each of the plurality of light sources corresponds to one of the plurality of optical cavities in the corresponding optical cavity of the lens module. Each optical lamp cover is fixedly coupled to an upper end of the casing structure.
In some embodiments, the lamp includes a hollow funnel-shaped power base. The casing structure is sleeved outside the power base. The power base extends downward with respect to the casing structure and includes an extended portion that extends outside the casing structure. An outer diameter of an upper end of the power base is larger than an inner diameter of an lower end of the casing structure. The driving power supply is disposed inside the power base.
In some embodiments, the lamp includes a lamp head. The lamp head is threadedly coupled to the extended portion of the power base. When the lamp head is threadedly coupled to the extended portion, the lamp head abuts against the casing structure.
In some embodiments, an upper edge of the power base includes an annular groove, and a first sealing ring is disposed inside the annular groove. The second sealing ring is disposed between the casing structure and the power base.
In some embodiments, the lamp further includes a heat sink. The heat sink includes a bottom wall and a peripheral side wall. An outer surface of the peripheral side wall of the heat sink is in an engaging contact with an inner side wall of the casing structure. The light source assembly is fixedly disposed on an inner surface of the bottom wall of the heat sink. An outer surface of the bottom wall of the heat sink is in contact with the first sealing ring.
In some embodiments, the heat sink is threadedly coupled to the power base. The inner side wall of the casing structure includes a second step-surface configured to support the bottom wall of the heat sink, and the bottom wall of the heat sink is disposed on the second step-surface.
In some embodiments, the inner side wall of the upper end of the casing structure includes a first step-surface. Each of the at least one optical lamp cover includes a connection element disposed at the first step-surface. A space between the connection element of each of the at least one optical lamp cover and a portion of the heat sink that is above the first step-surface is filled with sealant.
In some embodiments, the at least one optical lamp cover includes a first optical lamp cover and a second optical lamp cover. The second optical lamp cover is located outside the first optical lamp cover. A space between the connection element of the first optical lamp cover and a portion of the heat sink that is above the first step-surface is filled with sealant.
In some embodiments, the first optical lamp cover is made of plastic. The second optical lamp cover is made of glass.
In some embodiments, the lens module includes a plurality of lenses, and each of the plurality of lenses is a collimating lens.
In some embodiments, the light source assembly comprises an light-emitting diode (LED) module or a surface-mounted device (SMD) LED.
In some embodiments, each of the plurality of light sources is an LED light source, and the lamp is an LED parabolic aluminum reflector (PAR) lamp.
In some embodiments, the driving power supply is housed on a circuit board. A shape of the circuit board of the driving power supply is one of: a circular shape, an elliptical shape, and a rectangular shape.
In the present disclosure, the lens module includes the plurality of optical cavities, each of the optical cavities corresponds to each of the light sources. As such, the light angle of the light emitted by each of the light sources can be adjusted by the corresponding optical cavity. The light emitted by plurality of light sources can be respectively adjusted by corresponding optical cavity to form an integral, round, uniform surface-light source. Compared to the light angle of the light emitted by the plurality of the light sources being adjusted by only one lens, the light angle of the light emitted by the plurality of the light sources can be better adjusted by the corresponding optical cavity of the lens module, so as to improve the final light-emitting effect. In addition, each of the light sources has a corresponding optical cavity, such that more light can transmit, and less light can be reflected, compared to the case that the light angle of the light emitted by the plurality of the light sources is adjusted by only one lens. Therefore, using the lamp consistent with the present disclosure, a loss of the light intensity during the optical design of the lens module is relatively small, and when the power for the light source increases, the light intensity at the center of the light emitted by the lamp can also increase.
DESCRIPTION OF THE DRAWINGS
To more clearly explain the embodiments of the present disclosure or the technical solutions in a conventional technology, the drawings used in the description of the embodiments or the conventional technology are briefly described below. Obviously, the drawings described below illustrate only some embodiments of the present disclosure. For those skilled in the art, other drawings may also be obtained based on these drawings without creative efforts.
FIG. 1 is a structural diagram of a lamp according to some embodiments of the present disclosure;
FIG. 2A is a cross-sectional diagram of the lamp along a A-A direction shown in FIG. 1;
FIG. 2B is a zoomed-in view of a section B shown in FIG. 2A;
FIG. 3A is an exploded perspective view of a lamp according to some embodiments of the present disclosure; and
FIG. 3B is an exploded front view of the lamp shown in FIG. 3A.
Reference numerals in the drawings: 11-casing structure; 111-first step-surface; 12-driving power supply; 13-light source assembly; 131-light source; 14-lens module; 141-optical cavity; 15-optical lamp cover; 151-connection element; 16-heat sink; 17-power base; 171-extended portion; 18-first sealing ring; 181-second sealing ring; and 19-lamp head.
DETAILED DESCRIPTION
The following clearly describes the technical solutions according to embodiments of the present disclosure with reference to the accompanying drawings. Apparently, described embodiments are merely some but not all of the embodiments of the present disclosure. All other embodiments obtained by those skilled in the art based on the embodiments of the present disclosure without creative efforts shall fall within the scope of the present disclosure.
Some terms “first” “second” “third” “fourth” and the like, if any, in the specification and claims of the present disclosure and in the above drawings are used to distinguish similar objects and are not necessarily for describing a specific order or sequence. It should be understood that these terms may be interchanged where appropriate, so that the embodiments of the disclosure described herein can be implemented, for example, in other sequences than those illustrated or described herein. In addition, terms “include” and “have” and any variations thereof are intended to cover non-exclusive inclusions. For example, a process, method, system, product, or apparatus that includes a series of steps or units is not limited to some steps or units that are clearly listed but may include other steps or units that are not explicitly listed or inherent to the process, method, system, product, or apparatus.
In the description in the present disclosure, it is to be understood that some terms such as “upper” , “lower” , “inner” , “outer” , “top” , “bottom” , etc., to describe orientations or spatial relationships, are based on the accompany drawings. The orientations or positional relationships  are merely for the convenience of the description of the present disclosure and the simplification of the descriptions and are not intended to indicate or imply that: the device or component referred must have a specific orientation or a specific structure, or must be operated in a specific orientation.
FIG. 1 is a structural diagram of a lamp according to some embodiments of the present disclosure. FIG. 2A is a cross-sectional diagram of the lamp along a A-A direction shown in FIG. 1. FIG. 2B is a zoomed-in view of a section B shown in FIG. 2A. FIG. 3A is an exploded perspective view of a lamp according to some embodiments of the present disclosure. FIG. 3B is an exploded front view of the lamp shown in FIG. 3A.
Referring to FIG. 1 to FIG. 3, in some embodiments, the lamp includes a casing structure 11, a driving power supply 12, a light source assembly 13, a lens module 14, and one or more optical lamp cover 15. The light source assembly 13 includes a plurality of light sources 131. The lens module 14 includes a plurality of optical cavities 141. The lens module 14 is configured to modify the light emitted by the light source assembly 13, such as concentrating the light, dispersing the light, and/or changing a light angle.
The driving power supply 12, the light source assembly 13 and the lens module 14 are all disposed inside the casing structure 11. An output terminal of the driving power supply 12 is connected to an input terminal of the light source assembly 13. The light source assembly 13 is connected to the lens module 14, and the lens module 14 is located above the light source assembly 13.
Each light source 131 corresponds to one of the optical cavities 141 of the lens module 14. For example, each light source 131 is covered by a corresponding optical cavity 141 such that the light emitted by the light source 131 can pass through the optical cavity 141 and be adjusted by the lens module 14.
Each optical lamp cover 15 can be fixedly mounted to an upper end of the casing structure 11.
In some embodiments, the lamp consistent with the present embodiment may be an LED PAR lamp, and correspondingly, the light source assembly 13 can be an LED module or a surface-mounted device (SMD) LED, and the light sources 131 of the light source assembly 13 can be LED light sources.
The structure of the lamp consistent with the present disclosure is described below in detail.
In some embodiments, the lamp includes the casing structure 11, the driving power supply 12, the light source assembly 13, the lens module 14, and one or more optical lamp cover 15. The light source assembly 13 includes the plurality of light sources 131. The driving power supply 12, the light source assembly 13 and the lens module 14 are all disposed inside the casing structure 11. The output terminal of the driving power supply 12 is connected to the input terminal of the light source assembly 13. The light source assembly 13 is connected to the lens module 14, and the lens module 14 is located above the light source assembly 13. Each light source 131 corresponds to one of the plurality of optical cavities 141 of the lens module 14. Each optical lamp cover 15 can be fixedly mounted to the upper end of the casing structure 11.
In some embodiments, each light source 131 corresponds to one of the plurality of optical cavities 141 of the lens module 14. One of the plurality of optical cavities 141 of the lens module 14 can adjust optical path of a light emitted by the corresponding light source 131. For example, the lens module 14 can be configured to converge the light emitted by the each light source 131 and adjust an light angle of the light emitted by the light source 131 through the setting of individual optical cavities 141.
In some embodiments, the lens module may include a plurality of lenses. When one of the lenses is a collimating lens, the optical design can be to converge the light emitted by the corresponding light source and adjust an light angle of the light emitted by the corresponding light source 131. In some embodiments, each light source 131 can be aligned with one lens in the corresponding optical cavity 141 of the lens module 14.
In some embodiments, the lens module 14 may be an integral cover including a plurality of optical cavities 141, and each of the plurality of optical cavities 141 corresponds to and covers one of the light sources 131. The lens module 14 may be configured to adjust the direction of the light emitted by the light sources 131, which achieves optical adjustment functions as a plurality of lenses. For example, the structure of the lens module 14 that forms optical cavities (e.g., the top portion of the optical cavities) can achieve the function of the plurality of lenses.
The material of the casing structure 11 may be one or more of various materials, such as non-conductive materials like glass and plastic. In some embodiments, the material of the casing structure 11 may be glass, and the casing structure 11 can be a glass casing structure.
The glass casing has a good high-temperature resistance and can be applied to a wide range of light sources. That is, the glass casing structure is suitable for a light source that can generate  a large amount of heat, and for a light source that can generate a small amount of heat. In addition, the glass casing also has a long service lifetime and a good water resistance and is not easy to deform. Moreover, the glass casing can meet a need of a user for traditional casing materials.
In some embodiments, the material of the casing structure 11 may be plastic, and the casing structure 11 can be a plastic casing structure.
The plastic casing structure can be made of a high-temperature resistant plastic material, such as, reinforced modified polyvinyl chloride, polycarbonate, polymethyl methacrylate, polyvinyl chloride, polystyrene, polyethylene, etc. The plastic casing structure is suitable for a light source with low heat generation, high efficacy, and long lifetime, such as a cold cathode light source, an LED light source, a plasma cold light source, etc. In addition, the plastic casing structure also has the advantages of being not easily broken, easy to form, easy to color, resistant to aging, light in weight, and low in price.
The driving power supply 12, the light source assembly 13, and the lens module 14 are all disposed inside the casing structure 11.
The light sources 131 of the light source assembly 13 may be one or more types of light sources. In some embodiments, the light sources 131 of the light source assembly 13 may be LED light sources.
The LED light source has the following advantages. The LED light source can consume low energy and is environmentally friendly. For example, the LED light source can be driven by direct current and have an electro-optical power conversion close to 100%. To provide a same lighting effect, the LED light source consumes 80%or higher less energy than a conventional light source. The LED light source can have a relatively long lifetime. For example, the lifetime of the LED light source can be 60, 000 to 100, 100 hours, which is more than 10 times longer than the lifetime of the conventional light source. In addition, the LED light source is a solid cold light source and can be sealed by epoxy resin. As such, there is no loose part in the LED light source, and it is less likely to have filament burning during emitting light, thermal deposition, and light decay, etc.
For the driving power supply 12, the output terminal of the driving power supply 12 is connected to the input terminal of the light source assembly 13. In some embodiments, the output terminal of the driving power supply 12 is connected to the input terminal of the light  source assembly 13 by a cable. The driving power supply 12 can be configured to supply power to each light source 131. When the light sources 131 are LED light sources, the driving power supply 12 can be configured to convert an alternating current (AC) voltage to a DC voltage and supply the DC voltage to each LED light source.
For the lens module 14, the lens module 14 is connected to the light source assembly 13, and the lens module 14 is located above the light source assembly 13. In some embodiments, the light source assembly 13 can be connected to the lens module 14 by a buckle connection. For example, the lens module 14 may include protrusions, and the light source assembly 13 may include slots having matching shapes with the protrusions of the lens module 14. Optionally, the lens module 14 may include slots, and the light source assembly 13 may include protrusions having matching shapes with the slots of the lens module 14. The light source assembly 13 can be connected to the lens module 14 by respectively inserting the protrusions into the slots. Shapes and numbers of the protrusions or slots are not limited by the present disclosure. The light source assembly 13 may be connected to the les module 14 by other mechanisms, which is not limited by the present disclosure.
In some embodiments, the lens module 14 includes the plurality of optical cavities 141. For one of the light sources 131, there is one optical cavity 141 can match with the light source 131. That is each of the light sources 131 has a corresponding optical cavity 141. A number of optical cavities 141 of the lens module 14 may be larger or equal to a number of the light sources 131 of the light source assembly 13.
The lens module 14 includes the plurality of optical cavities 141, and each of the light sources 131 has a corresponding optical cavity 141. As such, the light angle of the light emitted by each of the light sources 131 can be adjusted by the corresponding optical cavity 141. The light emitted by plurality of light sources 131 can be respectively adjusted by corresponding optical cavities 141 to form an integral, round, uniform surface-light source.
The lens module 14 includes the plurality of optical cavities 141, and each of the light sources 131 has a corresponding optical cavity 141. As such, the light angle of the light emitted by each of the light sources 131 can be adjusted by the corresponding optical cavity 141. Compared to the light angle of the light emitted by the plurality of the light sources being adjusted by only one lens, the light angle of the light emitted by the plurality of the light sources can be better adjusted by the corresponding optical cavities 141 of the lens module 14, so as to  improve the final light-emitting effect. In addition, each of the light sources 131 has a corresponding optical cavity 141, such that more light can transmit, and less light can be reflected, compared to the case that the light angle of the light emitted by the plurality of the light sources is adjusted by only one lens. Therefore, using the lamp consistent with the present disclosure, a loss of the light intensity during the optical design of the lens module 14 is relatively small, and when the power for the light source increases, the light intensity at the center of the light emitted by the lamp can also increase.
It can be understood by those skilled in the art that the optical properties of the lens module 14 can determine the optical properties of the light emitted by the plurality of light sources 131 after passing through the lens module 14, such as the light intensity and light angle. The optical properties of the lens module 14 can be determined according to actual conditions, such as the application environment of the lamp is used and the nature of the light sources 131.
In some embodiments, the lens module 14 may include a plurality of lenses. Each of lenses of the lens module 14 may be a collimating lens.
In some embodiments, one or more optical lamp cover 15 is disposed above the casing structure 11, and each optical cover 15 is fixedly connected to the upper end of the casing structure. The number of the optical lamp cover 15 is not limited by the present disclosure and can be determined according to actual conditions. In some embodiments, the disclosed lamp may include more than one optical lamp covers 15, and the optical lamp covers may have the same shape with or different shapes from each other and may be made by the same material with or different materials from each other. The more than one optical lamp covers may have compatible shapes and may be assembled on to the casing structure 11. As shown in FIGs. 2A, 2B and 3, two optical lamp covers 15 are connected to the upper end of the casing structure 11. Referring to FIG. 2A and FIG. 2B, a cross-section of an upper one of the two optical lamp covers 15 has an overall curved structure, while the lower one of the two optical lamp covers 15 has an overall flat structure. In some embodiments, an lower surface of the upper optical lamp cover 15 and a upper surface of the lower optical lamp cover 15 are uneven surfaces having a larger number of recesses and protrusions. The optical lamp cover 15 can have a compound eye structure, through which the light can be mixed better, thereby forming a better light-emitting spot and having a better visual effect.
The optical lamp cover 15 can be a cover commonly used optical lamp and is not limited by the present disclosure.
In some embodiments, the optical lamp cover 15 and the casing structure 11 may be connected in the following manner. An inner side wall of the upper end of the casing structure 11 includes a first step-surface 111, each lamp cover is connected to the first step-surface 111. In some embodiments, the inner side wall of the upper end of the casing structure 11 includes a first step-surface 111, and each optical lamp cover 15 includes a connection element 151. The connection element 151 is adhesively connected to the first step-surface 111. For example, the connection element 151 of each optical lamp cover 15 can be adhesively connected to the first step-surface 111 by back gum.
After the light emitted by each light source 131 of the light source unit 13 is adjusted by the lens module 14 (i.e., a first optical design of the light emitted from each of the light sources 131) , the light emitted from the lens module 14 incidents on the optical lamp cover 15. In some embodiments, referring to FIGs. 2A and 2B, the optical lamp cover 15 has an uneven inner surface, which can facilitate diffuse reflection and multiple scattering of light. The optical lamp cover 15 can scatter the light emitted from the lens module 14 (i.e., a second optical design of the light emitted from each of the light sources 131) . The light emitted by plurality of light sources 131 can be respectively adjusted by corresponding optical cavities 141 to form an integral, round, uniform surface-light source. Further, the integral, round, uniform surface-light source can be scattered by the optical lamp cover 15 to form output a uniform illumination.
In some embodiments, the number of the optical lamp covers 15 can be one, and the optical lamp cover 15 can be made of plastic.
The plastic optical lamp cover can be a polymethyl methacrylate optical lamp cover or a polycarbonate optical lamp cover. The plastic optical lamp cover is not fragile, has a high processing efficiency and a high light transmittance, etc., and can well protect various structures inside the casing structure 11.
In some embodiments, the number of the optical lamp covers 15 can be one, and the optical lamp cover can be made of glass.
The glass optical lamp cover has a high light transmittance and a high temperature resistance. The light transmittance and temperature resistance of the glass optical lamp cover are  higher than those of the plastic optical lamp cover. In addition, the glass optical lamp cover meets the demand of the user for traditional lamp cover materials.
In some embodiments, referring to FIGs. 2A and 2B, the number of the optical lamp cover 15 can be two, the material of a first optical lamp cover can be plastic, the material of a second optical lamp cover can be glass, and the second optical lamp cover is located outside the first optical lamp cover.
In the above embodiments, the lamp includes two optical lamp covers 15, the external optical lamp cover 15 is made of glass, the inner optical lamp cover 15 is made of plastic. When the external glass optical lamp cover is damaged, the inner plastic optical lamp cover can continue to protect the internal structure of the casing structure 11. satisfies the need of the user for the traditional lamp cover material.
The light emitted by each light source 131 of the light source assembly 13 can be adjusted by two optically designs (firstly by the lens module 14 and secondly the optical lamp cover 15) , and finally the light emitted is relatively uniform. Thus, the lamp can have a good light-emitting effect.
Further, referring in FIGs. 2A, 2B, 3A, and 3B, in some embodiments, in order to dissipate the heat generated by the lamp during operation, the lamp further includes: a heat sink 16. In some embodiments, the heat sink 16 may be made of aluminum.
Referring to FIG. 2B, in some embodiments, the heat sink 16 may have a cup-shaped structure including a bottom wall and a peripheral side wall. An outer surface of the peripheral side wall of the heat sink 16 is in an engaging/close contact with an inner surface of the peripheral side wall of the casing structure 11. The light source assembly 13 is disposed on an inner/top surface of the bottom wall of the heat sink 16. When the lamp is in operation, the heat generated by the light sources 131 of the light source assembly 13 can be transferred to the casing structure 11 through the heat sink 16, and the casing structure 11 can dissipate the heat to an external environment.
Below describe two arrangement examples of the heat sink 16.
In one example, the heat sink 16 is connected to the power base 17 by screwing. When the heat sink 16 and the power base 17 are connected by screws, the connection is simple and easy to implement, and the connection between the heat sink 16 and the power base 17 can be relatively firm, effectively avoiding a positional displacement of the heat sink 16.
In another example, the inner side wall of the casing structure 11 includes a second step-surface configured to the bottom wall of the heat sink 16, and the bottom wall of the heat sink 16 can be disposed on the second step-surface. When bottom wall of the heat sink 16 is disposed on the second step-surface of the inner side wall of the casing structure 11, there is no need to have a hole for mechanical connection between the heat sink 16 and the casing structure 11, so as to ensure the integrity of heat sink 16 and the casing structure 11.
In order to prevent the external water from entering the interior of the heat sink 16, an upper edge of the heat sink 16 of the lamp may be higher than the first step-surface. In addition, a space between the connection element 151 of the optical lamp cover 15 and a portion of the heat sink 16 that is above the first step-surface 111 may be filled with sealant. As such, the seal between the optical lamp cover 15 and the heat sink 16 can be achieved, the external water can be prevented from entering the interior of the heat sink 16, and the light source assembly 13 can be protected.
In some embodiments, the lamp includes two optical lamp covers 15, the first optical lamp cover and the second optical lamp cover. The second optical lamp cover is located outside the first optical lamp cover. The space between the connection element 151 of the first optical lamp cover 15 and a portion of the heat sink 16 that is above the first step-surface 111 may be filled with sealant.
Further, in some embodiments, to protect the driving power supply 12 of the lamp, the lamp further includes: a power base 17. The driving power supply 12 is disposed inside the power base 17. An upper edge of the power base 17 includes an annular groove, and a first sealing ring 18 is disposed in the annular recess. The casing structure 11 can be sleeved outside the power base 17. The power base 17 extends downward with respect to the casing structure 11, and an external diameter of the upper end of the power base 17 is larger than an inner diameter of an lower end of the casing structure 11.
In some embodiments, the material of the power base 17 can be plastic, and the shape of the power base 17 can be a hollow funnel-shaped.
Specifically, the shape of a circuit board that houses the driving power supply 12 can have one of the following: circular shape, elliptical shape or rectangular shape. In a process of assembling the lamp, the driving power supply 12 can be placed into the hollow funnel-shaped power base 17 from the upper end of the hollow funnel-shaped power base 17. If the driving  power supply 12 have a circular or elliptical shape, the driving power supply 12 can move downward till and stay at a position where an outer diameter of the circuit board is equal to an inner diameter of the power base 17. If the driving power supply 12 have a rectangular shape, the driving power supply 12 can move downward till and stay at a position where a diagonal length of the circuit board is equal to an inner diameter of the power base 17. In addition, the driving power supply 12 can also be removed from the power base 17 along an opposite direction (e.g., upward) with respect to the assembling direction (e.g., downward) .
In the following, in conjunction with the assembly process of the lamp, below describes “the power base 17 extends downward with respect to the casing structure 11, and an external diameter of the upper end of the power base 17 is larger than an inner diameter of an lower end of the casing structure 11” in detail.
In the assembly process of the lamp, the power supply base 17 can be placed from the upper end of the casing structure 11 into the inside of the casing structure 11. The power supply base 17 stays at a position where the outer diameter thereof is larger than the inner diameter of the casing structure 11. The outer diameter of the lower end of the power supply base 17 is smaller than the inner diameter of the lower end of the casing structure 11, therefore, the hollow funnel-shaped power base 17 extends downward with respect to the casing structure 11. A part of the lower end of the hollow funnel-shaped power base 17 is outside the casing structure 11. The part pf the hollow funnel-shaped power base 17 outside the casing structure 11 is an extended portion 171 of the hollow funnel-shaped power base 17. As shown in FIG. 3B, a second sealing ring 181 is disposed between the power base 17 and the casing structure 11.
The lamp head 19 of the lamp is threadedly coupled to the extended portion 171 and the lamp head 19 abuts against the casing structure 11. In other words, the lamp head 19 and the extended portion 171 of the power base 17 can be assembled with compatible threaded connection.
The lamp head 19 can be connected to a standard lamp socket. After the lamp head 19 is connected to the standard lamp socket, the lamp can be connected to the external power source.
Specifically, the base 19 abuts against the casing structure 11, such that the power base 17 is not visible outside the lamp, and no part of the power base 17 is exposed outside the lamp. The power base 17 is not visible outside the lamp, thus the overall appearance of the lamp is relatively beautiful, and the power base 17 can be protected from damage. If a part of the power  base 17 is exposed outside the lamp, when the power base 17 is damaged, the external water may enter the interior of the lamp through the damaged part of the power base 17, which may further damage the driving power supply 12 and the lamp head 19.
Further, the heat sink 16 is disposed above the power supply base 17, and an outer surface of the bottom wall of the heat sink 16 is in contact with the first sealing ring 18 in the upper annular groove of the power supply base 17.
The first sealing ring 18 can prevent the external water from entering the interior of the power base 17, thereby protecting the driving power supply 12.
In a conventional LED PAR lamp, a light intensity at the center of light emitted by the LED PAR lamp cannot be improved by improving a power of the LED of the LED PAR lamp. In addition, the conventional LED PAR lamp usually has a relatively poor light-emitting effect. To solve the above problem, is the present disclosure provides a lamp. The lamp consistent with the present disclosure includes: a casing structure, a driving power supply, a light source assembly, a lens module and one or more optical lamp cover. The light source assembly includes a plurality of light sources. The lens module includes a plurality of optical cavities. The driving power supply, the light source assembly, and the lens module are all disposed inside the casing structure. The output terminal of the driving power supply is connected to the input terminal of the light source assembly. The light source assembly is connected to the lens module, and the lens module is located above the light source assembly. Each light source corresponds to an optical cavity of the lens module. Each optical lamp cover is fixedly connected to the upper end of the casing structure. For the lamp consistent with the present disclosure, when the power for the light source increases, the light intensity at the center of the light emitted by the lamp can also increase, and the light-emitting effect while improving the power of the light source can be improved.
Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present disclosure, rather than limiting the present disclosure. Although the present disclosure has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that: it is possible to modify the technical solutions described in the foregoing embodiments or equivalently replace some or all the technical features; however, these modifications or replacements do not deviate the scope of the present disclosure.

Claims (13)

  1. A lamp, comprising:
    a casing structure;
    a driving power supply;
    a light source assembly including a plurality of light sources;
    a lens module including a plurality of optical cavities; and
    at least one optical lamp cover,
    wherein:
    the driving power supply, the light source assembly, and the lens module are disposed inside the casing structure;
    an output terminal of the driving power supply is connected to an input terminal of the light source assembly;
    the light source assembly and the lens module are connected;
    the lens module is located above the light source assembly;
    each of the plurality of light sources corresponds to one of the plurality of optical cavities of the lens module; and
    each optical lamp cover is fixedly coupled to an upper end of the casing structure.
  2. The lamp of claim 1, comprising a hollow funnel-shaped power base, wherein:
    the casing structure is sleeved outside the power base;
    the power base extends downward with respect to the casing structure and comprises an extended portion that extends outside the casing structure;
    an outer diameter of an upper end of the power base is larger than an inner diameter of an lower end of the casing structure; and
    the driving power supply is disposed inside the power base.
  3. The lamp of claim 2, comprising a lamp head, wherein:
    the lamp head is threadedly coupled to the extended portion of the power base; and
    when the lamp head is threadedly coupled to the extended portion, the lamp head abuts against the casing structure.
  4. The lamp of claim 2, wherein:
    an upper edge of the power base includes an annular groove, and a first sealing ring is disposed inside the annular groove; and
    a second sealing ring is disposed between the casing structure and the power base.
  5. The lamp of claim 4, further comprising a heat sink, wherein:
    the heat sink includes a bottom wall and a peripheral side wall;
    an outer surface of the peripheral side wall of the heat sink is in an engaging contact with an inner side wall of the casing structure;
    the light source assembly is fixedly disposed on an inner surface of the bottom wall of the heat sink, and
    an outer surface of the bottom wall of the heat sink is in contact with the first sealing ring.
  6. The lamp of claim 5, wherein:
    the heat sink is threadedly coupled to the power base; or
    the inner side wall of the casing structure includes a second step-surface configured to support the bottom wall of the heat sink, and the bottom wall of the heat sink is disposed on the second step-surface.
  7. The lamp of claim 5, wherein:
    the inner side wall of the upper end of the casing structure includes a first step-surface;
    each of the at least one optical lamp cover includes a connection element disposed at the first step-surface;
    a space between the connection element of each of the at least one optical lamp cover and a portion of the heat sink that is above the first step-surface is filled with sealant.
  8. The lamp of claim 7, wherein:
    the at least one optical lamp cover includes a first optical lamp cover and a second optical lamp cover;
    the second optical lamp cover is located outside the first optical lamp cover;
    a space between the connection element of the first optical lamp cover and a portion of the heat sink that is above the first step-surface is filled with sealant.
  9. The lamp of claim 8, wherein:
    the first optical lamp cover is made of plastic; and
    the second optical lamp cover is made of glass.
  10. The lamp of claim 1, wherein the lens module includes a plurality of lenses and each of the plurality of lenses is a collimating lens.
  11. The lamp of claim 1, wherein the light source assembly comprises a light-emitting diode (LED) module or a surface-mounted device (SMD) LED.
  12. The lamp of claim 1, wherein each of the plurality of light sources is an LED light source, and the lamp is an LED parabolic aluminum reflector (PAR) lamp.
  13. The lamp of claim 1, wherein:
    the driving power supply is housed on a circuit board;
    a shape of the circuit board of the driving power supply is one of: a circular shape, an elliptical shape, and a rectangular shape.
PCT/CN2018/107411 2017-09-25 2018-09-25 Lamp WO2019057215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710872286.6A CN107524936A (en) 2017-09-25 2017-09-25 Light fixture
CN201710872286.6 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019057215A1 true WO2019057215A1 (en) 2019-03-28

Family

ID=60737263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107411 WO2019057215A1 (en) 2017-09-25 2018-09-25 Lamp

Country Status (2)

Country Link
CN (1) CN107524936A (en)
WO (1) WO2019057215A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107524936A (en) * 2017-09-25 2017-12-29 浙江生辉照明有限公司 Light fixture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040042208A1 (en) * 2002-09-04 2004-03-04 Wu Chen H. Light emitting diode retrofit module for traffic signal lights
CN201892089U (en) * 2010-12-07 2011-07-06 深圳市众明半导体照明有限公司 LED (light-emitting diode) lighting device produced through optical processing of combination of reflection cup and lens and lamp
CN203190101U (en) * 2013-02-08 2013-09-11 深圳市宝泰光电科技有限公司 LED lamp
CN203349157U (en) * 2013-05-15 2013-12-18 谢庆生 Combined-type lens of LED lamp
CN206130679U (en) * 2016-08-04 2017-04-26 深圳市艾格斯特科技有限公司 High -power floodlight
CN107524936A (en) * 2017-09-25 2017-12-29 浙江生辉照明有限公司 Light fixture
CN207584411U (en) * 2017-09-25 2018-07-06 浙江生辉照明有限公司 Lamps and lanterns

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202188328U (en) * 2011-06-27 2012-04-11 南京汉德森科技股份有限公司 Light-emitting diode (LED) lamp with high-efficiency radiating power supply assembly
CN104344237B (en) * 2013-07-29 2016-12-28 深圳市宝泰光电科技有限公司 The LED lamp that a kind of luminous efficiency is high
CN205592684U (en) * 2016-04-18 2016-09-21 厦门海莱照明有限公司 Light emitting diode (LED) parabolic aluminized reflector (PAR) lamp
CN106931327A (en) * 2017-04-25 2017-07-07 佛山电器照明股份有限公司 A kind of PAR lamp

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040042208A1 (en) * 2002-09-04 2004-03-04 Wu Chen H. Light emitting diode retrofit module for traffic signal lights
CN201892089U (en) * 2010-12-07 2011-07-06 深圳市众明半导体照明有限公司 LED (light-emitting diode) lighting device produced through optical processing of combination of reflection cup and lens and lamp
CN203190101U (en) * 2013-02-08 2013-09-11 深圳市宝泰光电科技有限公司 LED lamp
CN203349157U (en) * 2013-05-15 2013-12-18 谢庆生 Combined-type lens of LED lamp
CN206130679U (en) * 2016-08-04 2017-04-26 深圳市艾格斯特科技有限公司 High -power floodlight
CN107524936A (en) * 2017-09-25 2017-12-29 浙江生辉照明有限公司 Light fixture
CN207584411U (en) * 2017-09-25 2018-07-06 浙江生辉照明有限公司 Lamps and lanterns

Also Published As

Publication number Publication date
CN107524936A (en) 2017-12-29

Similar Documents

Publication Publication Date Title
US9429296B2 (en) Modular optic for changing light emitting surface
US8220955B2 (en) Lighting device
EP2417386B1 (en) Reflector system for lighting device
US8496349B2 (en) Uniform light emitting lamp structure
US8696156B2 (en) LED light bulb with light scattering optics structure
US9995471B2 (en) LED lighting device having a structural design that effectively increases the surface area of the circuit board for circuit layout
KR101278258B1 (en) Lamp with appearance differentiated from its main illumination
US9441819B2 (en) Modular optic for changing light emitting surface
JP6217972B2 (en) lighting equipment
US20180149320A1 (en) Light-emitting diode type lighting device
TW201418621A (en) Light emitting diode bulb
JP6238200B2 (en) lighting equipment
CN207584411U (en) Lamps and lanterns
WO2019057215A1 (en) Lamp
US20140369037A1 (en) Omnidirectional Lamp
WO2015061093A1 (en) Solid state area light and spotlight with light guide and integrated thermal guide
KR101870013B1 (en) Light fixture with reflective optics
JP2014232646A (en) Lamp
KR200468298Y1 (en) Rembrandt Light and LED lights with reflective light
CN217684483U (en) LED (light-emitting diode) lighting device with adjustable color temperature
CN102155727A (en) LED (light emitting diode) pluggable pipe
JP2016134260A (en) Lens unit and lighting device with the same
TWI620891B (en) A light engine device
KR20100078372A (en) A lamp using a light emitting diode module
TW201802395A (en) A light engine device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859633

Country of ref document: EP

Kind code of ref document: A1