WO2019056410A1 - 一种既有路基、边坡稳定性的监测结构及其施工方法 - Google Patents

一种既有路基、边坡稳定性的监测结构及其施工方法 Download PDF

Info

Publication number
WO2019056410A1
WO2019056410A1 PCT/CN2017/104484 CN2017104484W WO2019056410A1 WO 2019056410 A1 WO2019056410 A1 WO 2019056410A1 CN 2017104484 W CN2017104484 W CN 2017104484W WO 2019056410 A1 WO2019056410 A1 WO 2019056410A1
Authority
WO
WIPO (PCT)
Prior art keywords
slope
roadbed
geogrid
sensitive
long strip
Prior art date
Application number
PCT/CN2017/104484
Other languages
English (en)
French (fr)
Inventor
崔新壮
曹卫东
张磊
苏俊伟
王艺霖
李骏
崔社强
王忠啸
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US16/074,647 priority Critical patent/US10684112B2/en
Publication of WO2019056410A1 publication Critical patent/WO2019056410A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/202Securing of slopes or inclines with flexible securing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the invention belongs to the field of civil engineering, and particularly relates to a stability monitoring structure and a construction method for an existing roadbed and a slope based on a smart geosynthetic material.
  • an object of the present invention is to provide a monitoring structure having a roadbed and slope stability and a construction method thereof.
  • the sensitivity of the sensitive geosynthetic material is utilized, and the utility model can be applied to the existing roadbed, slope and retaining wall, and the stability can be monitored to solve the stability of the existing roadbed and slope. Sexuality cannot be monitored with sensitive geosynthetics.
  • the technical solution of the present invention is:
  • a monitoring structure having both roadbed and slope stability, including a roadbed or slope to be monitored and a plurality of long strips of sensitive geosynthetic composite devices;
  • Multiple vertical bores are drilled along the width of the subgrade or slope, or multiple transverse bores are drilled along its vertical direction, and a long strip is embedded in each vertical or lateral borehole.
  • a smart geocomposite composite device, and a long strip of malleable geosynthetic composite device is embedded deep into the predicted slip surface of the subgrade or slope; the long strip of sensitive geosynthetic composite device and the inner wall of the borehole The gap between the gaps is dense, so that the stress environment of the long strip-shaped sensitive composite material composite device is close to the internal environment of the roadbed or slope;
  • the long strip type sensitive synthetic composite material device comprises a geogrid, a wire and a heat shrinkable tube, the geogrid is elongated, the wires are arranged along the length direction of the geogrid, and the wire and geotechnical are set at every distance.
  • the grids are fixedly connected, each fixed point forming a measuring point, the heat shrinkable tube is wrapped outside the geogrid, and the free end of the wire is led out of the heat shrinkable tube.
  • Geogrid The grid is a two-dimensional grid or a certain height of a three-dimensional grid screen that is thermoformed or molded with a polymer such as polypropylene or polyvinyl chloride. When used as a civil engineering project. Become a geogrid.
  • Heat shrinkable tube is a polyolefin heat shrinkable sleeve with high temperature shrinkage, soft flame retardant and insulation corrosion resistance.
  • Conductive adhesive is an adhesive that has certain electrical conductivity after curing or drying.
  • the long strip-shaped intelligent composite material composite device When the drilling direction is set in the horizontal direction (horizontal direction) or the vertical direction (vertical direction), the long strip-shaped intelligent composite material composite device is perpendicular to the direction of the force, and is more likely to be deformed, thereby generating a signal.
  • Wrapping the heat-shrinkable tube on the outside of the geogrid can effectively prevent the sensitive geosynthetic material from being affected by water in the soil.
  • the wire By pulling out the free end of the wire, the wire can be connected to the data acquisition instrument.
  • the data acquisition instrument can monitor the resistance value of each measurement point to facilitate subsequent data analysis.
  • the wires at each measuring point are bonded to the geogrid by a conductive adhesive and fixed by tape.
  • the distance between adjacent measuring points is 0.5-1 m.
  • each measuring point is fixed in the middle of the geogrid.
  • the fixing to the middle position is to make each measuring point on the same force section, and the error of the measured data can be minimized.
  • the wires between adjacent measuring points are straight.
  • the geogrid is deformed by force, and the wire is deformed accordingly, which can provide better detection sensitivity.
  • the strip-shaped smart geocomposite composite device has a width of 5-10 cm, and the length is determined according to requirements.
  • the heat-shrinkable tube is a heat-shrinkable tube containing a double-layer structure
  • the outer layer material is a polyolefin alloy material
  • the inner layer material is a hot melt adhesive
  • a hot melt is a plasticity binder whose physical state changes with temperature over a range of temperatures.
  • Polyolefin alloy materials have the advantages of softness, low temperature shrinkage, insulation, corrosion resistance and wear resistance.
  • the inner layer has the advantages of low melting point, good adhesion, good waterproof sealing performance and the like.
  • the heat-containing tube is wrapped on the outside of the geogrid and the wire, and after heating to 84 ° C - 120 ° C, the heat-containing tube is heated and shrunk, and the inner layer of hot-melt glue is melted, so that the geogrid and the wire are tightly wrapped.
  • the distance between adjacent boreholes is 1-2 m.
  • each bore has a diameter of 8-15 cm.
  • a monitoring system with roadbed and slope stability includes the above-mentioned existing roadbed, slope stability monitoring structure and data acquisition instrument, and the wires of the monitoring structure are connected with the data acquisition instrument.
  • the above construction method of the monitoring structure of the existing roadbed and slope stability includes the following steps:
  • a transverse drilling hole is made every 1-2 m along its vertical direction;
  • step 3 different soil slopes or roadbeds are filled with different materials to fill the gap.
  • the cement soil is used for filling, the soil is bentonite, the mass percentage of the cement is 10%-15%, and the water cement ratio of the cement slurry is 1.
  • the material itself when subjected to an external force, the material itself is deformed, and the resistivity of two adjacent measuring points at the deformation of the soil changes significantly.
  • the real-time data to find the two measurement points with the most obvious change in resistivity, analyze and judge the position and orientation of the slip surface of the soil, and monitor the evolution process of the slip surface.
  • Figure 1 is a schematic view showing the arrangement of the wires of the smart geosynthetic material
  • FIG. 2 is a schematic cross-sectional view of a smart geosynthetic material
  • Figure 3 is a cross-sectional view of the lateral arrangement of the smart geosynthetic material
  • FIG. 4 is a schematic structural view of a laterally arranged smart synthetic material
  • Figure 5 is a cross-sectional view of the vertically arranged smart synthetic material
  • Figure 6 is a schematic view showing the vertical arrangement of the malleable geosynthetic material.
  • a monitoring structure having both roadbed and slope stability including a roadbed or slope 9 to be monitored and a plurality of long strips of sensitive geosynthetic composite device 7;
  • each bore has a diameter of 8-15 cm, preferably 8 -10 cm, further preferably 10 cm.
  • a long strip of malleable geosynthetic composite device 7 is embedded in each of the vertical or lateral boreholes, and the depth of the long strip of the malleable geosynthetic composite device 7 is predicted to pass through the subgrade or slope.
  • the long strip-shaped intelligent composite material composite device 7 comprises a geogrid 4, a wire 3 and a heat shrinkable tube 5, and the geogrid 4 is elongated, and the wire is along the geogrid.
  • 4 is arranged in the longitudinal direction, and is fixedly connected between the wire 3 and the geogrid 4 every set distance, and each fixed point forms a measuring point, and the distance between adjacent measuring points is 0.5-1 m, preferably 0.7- 1 m, further preferably 1 m, between each of the wires 2 at the measuring point 2 and the geogrid 4 is bonded by a conductive paste 1 and fixed with a tape, and each measuring point 2 is fixed at an intermediate position of the geogrid 4.
  • the wire 3 Before fixing the wire 3, the wire 3 should be straightened. When the wire 3 is straightened, the geogrid 4 is deformed by force, and the wire 3 is deformed accordingly, which has better detection sensitivity.
  • the heat shrinkable tube 5 is wrapped around the outside of the geogrid 4, and the free end of the wire 3 is taken out of the heat shrinkable tube 5.
  • the heat-shrinkable tube 5 is a heat-shrinkable tube containing a double-layer structure, the outer layer material is a polyolefin alloy material, and the inner layer material is a hot melt adhesive. After the wire 3 is fixed on the geogrid 4, the heat-containing tube is wrapped on the outside of the geogrid 4 and the wire 3. After heating to 84 ° C - 120 ° C, the heat-containing tube is heated and shrunk, and the inner layer of hot-melt glue is melted. It is convenient to tightly wrap the geogrid 4 and the wire 3.
  • Horizontal embedding suitable for high roadbed and high slope.
  • the cement mortar fills the gap; for the soft soil slope, the crack is filled with bentonite mud, and the bentonite mud contains water, bentonite, alkali, and cellulose.
  • the cement is used to fill the gap, the soil is selected from bentonite, the cement is P ⁇ C32.5, the cement blending ratio is 10% to 15%, and the cement slurry has a water-cement ratio of 1.
  • the hole is sealed with mortar outside the hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种既有路基、边坡稳定性的监测结构及其施工方法,利用机敏性土工合成材料的拉敏特性,将其运用在既有路基、边坡及挡土墙等工程中,可以对其稳定性进行监测,以解决既有路基、边坡的稳定性无法采用机敏性土工合成材料进行监测的问题。

Description

一种既有路基、边坡稳定性的监测结构及其施工方法 技术领域
本发明属于土木工程领域,具体涉及一种基于机敏土工合成材料对既有路基、边坡的稳定性监测结构及其施工方法。
背景技术
近年来,随着基础设施的大规模兴建,产生了一些高填方的路基边坡以及高大的路堑边坡,这些边坡即有岩质边坡,又有土质边坡。自然滑坡,泥石流以及人类工程活动等引起的边坡灾害对我国经济建设和人民生命财产带来了巨大损失,因此边坡的稳定性分析对边坡工程防护安全具有重要的意义。目前,对于其稳定性的监测方法有很多,比如位移监测、GPS监测方法、地音量测法和水文监测方法等,但这些方法有的手段比较单一,精度较低,有的耗费较高,不经济。现在机敏性土工合成材料逐渐被运用到道路工程中,它具有精度高,造价低等优点,对于新建的路基和/或边坡,可以通过分层铺设和分层碾压方式将机敏性土工合成材料埋设到路基和/或边坡中,并对路基和/或边坡的稳定性进行监测,而对于既有的路基和/或边坡,则无法采用该种方法进行监测。
发明内容
针对上述现有技术中存在的技术问题,本发明的目的是提供一种既有路基、边坡稳定性的监测结构及其施工方法。本发明中利用机敏性土工合成材料的拉敏特性,将其运用在既有路基、边坡及挡土墙等工程中,可以对其稳定性进行监测,以解决既有路基、边坡的稳定性无法采用机敏性土工合成材料进行监测的问题。
为了解决以上技术问题,本发明的技术方案为:
一种既有路基、边坡稳定性的监测结构,包括待监测路基或边坡和多个长条状机敏性土工合成材料复合装置;
沿路基或边坡的宽度方向上钻有多个竖向钻孔,或沿其竖直方向上钻有多个横向钻孔,每个竖向钻孔或横向钻孔中埋设有一个长条状机敏性土工合成材料复合装置,且长条状机敏性土工合成材料复合装置埋入的深度穿过路基或边坡的预测滑裂面;长条状机敏性土工合成材料复合装置与钻孔内壁之间的缝隙填充密实,使得长条状机敏性土工合成材料复合装置的受力环境与路基或边坡的内部环境接近;
所述长条状机敏性土工合成材料复合装置包括土工格栅、导线和热缩管,土工格栅为长条状,导线沿土工格栅的长度方向布置,且每隔设定距离导线与土工格栅之间固定连接,每个固定点形成一个测点,所述热缩管包裹在土工格栅的外部,且将导线的自由端引出热缩管。
此处的“既有”是指已经存在的意思,即已经存在、已经建成的路基、边坡。
土工格栅:格栅是用聚丙烯、聚氯乙烯等高分子聚合物经热塑或模压而成的二维网格状或具有一定高度的三维立体网格屏栅,当作为土木工程使用时,成为土工格栅。
热缩管,是一种聚烯烃材质热收缩套管,具有高温收缩、柔软阻燃、绝缘防蚀功能。
导电胶,是一种固化或干燥后具有一定导电性能的胶黏剂。
根据不同的情况可以选择在路基或边坡的宽度方向或竖直方向上钻孔,将长条状机敏性土工合成材料复合装置***钻孔中,且穿过预测滑裂面,当路基或边坡发生滑移或产生滑移的趋势时,长条状机敏性土工合成材料复合装置发生形变,进而产生相应信号。该监测结构的结构简单,监测的准确度和灵敏度较好。
钻孔方向为横向(水平方向)或竖向(垂直方向)设置时,长条状机敏性土工合成材料复合装置与其受力方向垂直,更容易发生形变,进而产生信号。
将热缩管包裹在土工格栅的外部,可以有效防止机敏性土工合成材料在土中受到水的影响。
将导线的自由端引出,可以将导线与数据采集仪连接,数据采集仪通过监测每个测点上的电阻值,便于后续的数据分析。
进一步的,每个测点处导线与土工格栅之间通过导电胶粘结,并用胶带固定。
通过监测土工格栅在荷载下导致电阻值的变化分析土体形变,为了能更加精确的测出电阻值,我们用导电胶裹敷土工格栅。
进一步的,相邻测点之间的距离为0.5-1m。
更进一步的,每个测点固定在土工格栅的中间位置。固定到中间位置是为了让每个测点都处在同一个受力截面上,可以尽可能减小所测数据的误差。
更进一步的,相邻测点之间的导线是绷直的。当导线是绷直的时,土工格栅受力发生形变,导线也会相应受力产生形变,可以提供更好的检测灵敏度。
进一步的,长条状机敏性土工合成材料复合装置的宽为5-10cm,长度根据所需确定。
进一步的,所述热缩管为含胶热缩管,为双层结构,外层的材料为聚烯烃合金材料,内层的材料为热熔胶。
热溶胶是一种可塑性的粘合剂,在一定温度范围内,其物理状态随温度改变而改变。
聚烯烃合金材料具有柔软、低温收缩、绝缘、防腐、耐磨的优点,内层具有低熔点、粘附力好、防水密封性能好等优点。将含胶热管包裹在土工格栅和导线的外部,加热到84℃-120℃后,含胶热管受热收缩,内层热熔胶熔化,便于将土工格栅和导线紧紧裹住。
进一步的,相邻钻孔之间的距离为1-2m。
进一步的,每个钻孔的直径为8-15cm。
一种既有路基、边坡稳定性的监测***,包括上述既有路基、边坡稳定性的监测结构和数据采集仪,所述监测结构的导线与数据采集仪连接。
上述既有路基、边坡稳定性的监测结构的施工方法,包括如下步骤:
1)沿路基或边坡的宽度方向上打多个竖向钻孔,或沿其竖直方向上打多个横向钻孔;
2)将长条状机敏性土工合成材料复合装置套入塑料管中,送入钻孔中,使其在钻孔中送入的距离穿过路基或边坡的预测滑裂面;
3)将钻孔与长条状机敏性土工合成材料复合装置之间的缝隙进行填充,填充时,将塑料管缓慢取出,每填充1.5-2.5m的距离就将塑料管往外取出相应的距离,直到填充结束,填充过程中保证塑料管底部浸没在填充物里;
4)将长条状机敏性土工合成材料复合装置的导线引出,并将导线与数据采集仪连接,测出每个测点上的电阻值,找到电阻值变化最大的两个测点,进而判断土体滑裂面的位置、方位,监测滑裂面的演变过程。
进一步的,当路基或边坡为高路基、高边坡时;沿其竖直方向每隔1-2m打一个横向钻孔;
或,当路基或边坡为宽路基、宽边坡时,沿其宽度方向每隔1-2m打一个竖向钻孔。
高边坡指土质边坡高度大于20m、小于100m或者岩质边坡高度大于30m、小于100m。当土质边坡高度小于20m或岩质边坡小于30m时,视其为宽边坡。路基亦然。
进一步的,步骤3)中,不同土质的边坡或路基选用不同材料填充缝隙。
更进一步的,对于软岩石或风化岩边坡或路基,采用水泥砂浆比为1:1的M20水泥砂浆进行填充;
对于硬岩石边坡或路基,采用水泥砂浆比为1:1的M30水泥砂浆进行填充;
对于软土边坡或路基,采用膨润土泥浆进行填充,膨润土泥浆中水、膨润土、碱和纤维素的质量比为1000:60-100:2-5:2-5;
对于硬土边坡,采用水泥土进行填充,土为膨润土,水泥掺入质量百分数为10%-15%,水泥浆的水灰比为1。
原理
机敏性土工合成材料属于导电复合材料,导电复合材料的导电行为一般呈现典型的渗滤现象,机敏材料具有感知和驱动功能,经过特殊设计后表现出一些特殊效应,如拉敏效应,拉敏效应是指在外部拉力作用下导电性发生转变的过程。拉敏效应的出现是由于当复合材料变形超过某临界值时,导电通路被部分破坏而呈高阻态。
本发明中的长条状机敏性土工合成材料复合装置,当受到外力作用时,材料本身发生形变,土体变形处相邻的两个测点的电阻率发生显著变化,此时,通过对采集到的实时数据找到电阻率发生最明显变化的两个测点,分析判断土体滑裂面的位置、方位,监测滑裂面演化过程。
本发明的有益效果为:
1、采用本发明的监测结构可以对已经存在的路基和边坡的稳定性进行监测,并且能监测滑移面的位置、方向和演变过程,提供更好的监测准确度和灵敏度。
2、根据不同的应用场景选择不同的埋入方式,更有利于提高监测的灵敏度。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为机敏性土工合成材料导线布置示意图;
图2为机敏性土工合成材料截面示意图;
图3为机敏性土工合成材料横向布置时的截面图;
图4为机敏性土工合成材料横向布置时结构示意图;
图5为机敏性土工合成材料竖向布置时截面图;
图6为机敏性土工合成材料竖向布置的结构示意图。
其中,1、导电胶,2、测点,3、导线,4、土工格栅,5、热缩管,6、数据采集仪,7、长条状机敏性土工合成材料复合装置,8、砂浆或泥浆填缝,9、路基或边坡,10、预测滑动面。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
如图4和图6所示,一种既有路基、边坡稳定性的监测结构,包括待监测路基或边坡9和多个长条状机敏性土工合成材料复合装置7;
沿路基或边坡9的宽度方向上钻有多个竖向钻孔,或沿其竖直方向上钻有多个横向钻 孔,相邻钻孔之间的距离为1-2m,优选为1-1.5m,进一步优选为1m;如图3和图5所示,每个钻孔的直径为8-15cm,优选为8-10cm,进一步优选为10cm。每个竖向钻孔或横向钻孔中埋设有一个长条状机敏性土工合成材料复合装置7,且长条状机敏性土工合成材料复合装置7埋入的深度穿过路基或边坡的预测滑裂面10;长条状机敏性土工合成材料复合装置7与钻孔内壁之间的缝隙填充密实,使得长条状机敏性土工合成材料复合装置7的受力环境与路基或边坡9的内部环境接近;
如图1和图2所示,所述长条状机敏性土工合成材料复合装置7包括土工格栅4、导线3和热缩管5,土工格栅4为长条状,导线沿土工格栅4的长度方向布置,且每隔设定距离导线3与土工格栅4之间固定连接,每个固定点形成一个测点,相邻测点之间的距离为0.5-1m,优选为0.7-1m,进一步优选为1m,每个测点2处导线3与土工格栅4之间通过导电胶1粘结,并用胶带固定,且每个测点2固定在土工格栅4的中间位置。在固定导线3之前,应将导线3绷直,当导线3绷直时,土工格栅4受力发生变形,导线3也会相应产生变形,具有更好的检测灵敏度。热缩管5包裹在土工格栅4的外部,且将导线3的自由端引出热缩管5。热缩管5为含胶热缩管,为双层结构,外层的材料为聚烯烃合金材料,内层的材料为热熔胶。将导线3固定在土工格栅4上以后,将含胶热管包裹在土工格栅4和导线3的外部,加热到84℃-120℃后,含胶热管受热收缩,内层热熔胶熔化,便于将土工格栅4和导线3紧紧裹住。
具体施工过程如下:
横向埋置:适用于高路基、高边坡。
1.用钻探在路基或边坡上横向打直径为10cm左右的钻孔,宽度要超过路基或边坡的预测的滑裂面,竖直方向每隔1m~2m的距离打一个钻孔。
2.将机敏性土工合成材料套入塑料管,送入到钻孔中,直至到达孔底。由于机敏性土工合成材料是长条形状,横向放入钻孔时,应保证长条与受力方向呈垂直状态。
3.将钻孔中的缝隙填充。进行填缝时,将塑料管缓慢地取出,每填充2m左右的深度就将塑料管往外取出2m左右的距离,直到填缝结束,在这个过程中要保证塑料管底部浸没在填充物里。为了使土工合成材料周围的受力环境和原始环境接近,对不同土质边坡选用不同材料填充缝隙。对于软岩石或风化岩边坡,采用压浆机用水泥砂浆比为1:1的M20水泥砂浆将其中缝隙填充;对于硬岩石边坡,采用压浆机用水泥砂浆比为1:1的M30水泥砂浆将其中缝隙填充;对于软土边坡,选用膨润土泥浆将其中缝隙填充,膨润土泥浆:含有水、膨润土、碱、纤维素。配比关系为水:膨润土:碱:纤维素=1000:60-100:2-5:2-5(质量比),优选为:水:膨润土:碱:纤维素=1000:80-100:3-5:3-5(质量比),进一步优选为:水:膨润土:碱:纤维素=1000:80-90:3-4:3-4(质量比),最优选的:水:膨 润土:碱:纤维素=1000:85:4:4(质量比)。对于硬土边坡,选用水泥土将其中缝隙填充,土选用膨润土,水泥为P·C32.5,水泥掺入比为10%~15%,水泥浆水灰比为1。钻孔外面用砂浆密封孔口。
4.将机敏性土工合成材料中的导线引出,使导线与数据采集仪连接,测出每个测点上的电阻值,找到电阻值变化最大的相邻的两个测点,可以判断土体滑裂面的位置、方位,监测滑裂面演化过程
竖向埋置:适用于宽路基及宽边坡。
1.用钻探在路基或边坡上竖向打直径为10cm的钻孔,深度要穿过路基或边坡的预测的滑裂面,在路基或边坡宽度方向上每隔1m~2m的距离打一个钻孔。
2.将机敏性土工合成材料套入塑料管,送入到钻孔中,直至到达孔底。由于机敏性土工合成材料是长条形状,竖向放入钻孔时,应保证长条与受力方向呈垂直状态。
3.将钻孔中的缝隙填充。进行填缝时,将塑料管缓慢地取出,每填充2m左右的深度就将塑料管往外取出2m左右的距离,直到填缝结束,在这个过程中要保证塑料管底部浸没在填充物里。为了使土工合成材料周围的受力环境和原始环境接近,对不同土质边坡选用不同材料填充缝隙。对于软岩石或风化岩边坡,采用压浆机用水泥砂浆比为1:1的M20水泥砂浆将其中缝隙填充;对于硬岩石边坡,采用压浆机用水泥砂浆比为1:1的M30水泥砂浆将其中缝隙填充;对于软土边坡,选用膨润土泥浆将其中缝隙填充,膨润土泥浆:含有水、膨润土、碱、纤维素。配比关系为水:膨润土:碱:纤维素=1000:60-100:2-5:2-5(质量比),优选为:水:膨润土:碱:纤维素=1000:80-100:3-5:3-5(质量比),进一步优选为:水:膨润土:碱:纤维素=1000:80-90:3-4:3-4(质量比),最优选的:水:膨润土:碱:纤维素=1000:85:4:4(质量比)。对于硬土边坡,选用水泥土将其中缝隙填充,土选用膨润土,水泥为P·C32.5,水泥掺入比为10%~15%(质量百分数),优选的,水泥掺入比为10%~13%(质量百分数),进一步优选的,水泥掺入比为13%(质量百分数),泥浆中的水和膨润土的质量比为1:1,钻孔外面用砂浆密封孔口。
4.将机敏性土工合成材料中的导线引出,使导线与数据采集仪连接,测出每个测点上的电阻值,找到电阻值变化最大的相邻的两个测点,可以判断土体滑裂面的位置、方位,监测滑裂面演化过程。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种既有路基、边坡稳定性的监测结构,其特征在于:包括待监测路基或边坡和多个长条状机敏性土工合成材料复合装置;
    沿路基或边坡的宽度方向上钻有多个竖向钻孔,或沿其竖直方向上钻有多个横向钻孔,每个竖向钻孔或横向钻孔中埋设有一个长条状机敏性土工合成材料复合装置,且长条状机敏性土工合成材料复合装置埋入的深度穿过路基或边坡的预测滑裂面;长条状机敏性土工合成材料复合装置与钻孔内壁之间的缝隙填充密实,使得长条状机敏性土工合成材料复合装置的受力环境与路基或边坡的内部环境接近;
    所述长条状机敏性土工合成材料复合装置包括土工格栅、导线和热缩管,土工格栅为长条状,导线沿土工格栅的长度方向布置,且每隔设定距离导线与土工格栅之间固定连接,每个固定点形成一个测点,所述热缩管包裹在土工格栅的外部,且将导线的自由端引出热缩管。
  2. 根据权利要求1所述的监测结构,其特征在于:每个测点处导线与土工格栅之间通过导电胶粘结,并用胶带固定。
  3. 根据权利要求2所述的监测结构,其特征在于:相邻测点之间的距离为0.5-1m。
  4. 根据权利要求1所述的监测结构,其特征在于:每个测点固定在土工格栅的中间位置;
    优选的,相邻测点之间的导线是绷直的。
  5. 根据权利要求1所述的监测结构,其特征在于:所述热缩管为含胶热缩管,为双层结构,外层的材料为聚烯烃合金材料,内层的材料为热熔胶。
  6. 根据权利要求1所述的监测结构,其特征在于:相邻钻孔之间的距离为1-2m;每个钻孔的直径为8-15cm。
  7. 一种既有路基、边坡稳定性的监测***,其特征在于:包括上述既有路基、边坡稳定性的监测结构和数据采集仪,所述监测结构的导线与数据采集仪连接。
  8. 权利要求1-6任一所述既有路基、边坡稳定性的监测结构的施工方法,其特征在于:包括如下步骤:
    1)沿路基或边坡的宽度方向上打多个竖向钻孔,或沿其竖直方向上打多个横向钻孔;
    2)将长条状机敏性土工合成材料复合装置套入塑料管中,送入钻孔中,使其在钻孔中送入的距离穿过路基或边坡的预测滑裂面;
    3)将钻孔与长条状机敏性土工合成材料复合装置之间的缝隙进行填充,填充时,将塑料管缓慢取出,每填充1.5-2.5m的距离就将塑料管往外取出相应的距离,直到填充结束,填充过程中保证塑料管底部浸没在填充物里;
    4)将长条状机敏性土工合成材料复合装置的导线引出,并将导线与数据采集仪连接,测出每个测点上的电阻值,找到电阻值变化最大的两个测点,进而判断土体滑裂面的位置、方位,监测滑裂面的演变过程。
  9. 根据权利要求8所述的施工方法,其特征在于:当路基或边坡为高路基、高边坡时;沿其竖直方向每隔1-2m打一个横向钻孔;
    或,当路基或边坡为宽路基、宽边坡时,沿其宽度方向每隔1-2m打一个竖向钻孔。
  10. 根据权利要求8所述的施工方法,其特征在于:步骤3)中,不同土质的边坡或路基选用不同材料填充缝隙;
    优选的,对于软岩石或风化岩边坡或路基,采用水泥砂浆比为1:1的M20水泥砂浆进行填充;
    对于硬岩石边坡或路基,采用水泥砂浆比为1:1的M30水泥砂浆进行填充;
    对于软土边坡或路基,采用膨润土泥浆进行填充,膨润土泥浆中水、膨润土、碱和纤维素的质量比为1000:60-100:2-5:2-5;
    对于硬土边坡,采用水泥土进行填充,土为膨润土,水泥掺入质量百分数为10%-15%,水泥浆的水灰比为1。
PCT/CN2017/104484 2017-09-22 2017-09-29 一种既有路基、边坡稳定性的监测结构及其施工方法 WO2019056410A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/074,647 US10684112B2 (en) 2017-09-22 2017-09-29 Structure for monitoring stability of existing subgrade/slope and construction method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710864496.0 2017-09-22
CN201710864496.0A CN107607030B (zh) 2017-09-22 2017-09-22 一种既有路基、边坡稳定性的监测结构及其施工方法

Publications (1)

Publication Number Publication Date
WO2019056410A1 true WO2019056410A1 (zh) 2019-03-28

Family

ID=61061830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104484 WO2019056410A1 (zh) 2017-09-22 2017-09-29 一种既有路基、边坡稳定性的监测结构及其施工方法

Country Status (3)

Country Link
US (1) US10684112B2 (zh)
CN (1) CN107607030B (zh)
WO (1) WO2019056410A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505297A (zh) * 2020-11-23 2021-03-16 中建八局第一建设有限公司 一种路基环境监测平台制作方法及环境监测平台
CN113155086A (zh) * 2021-02-26 2021-07-23 广西北投交通养护科技集团有限公司 一种公路改扩建填方路基剖面沉降监测装置及方法
WO2022267135A1 (zh) * 2021-06-23 2022-12-29 中国地质大学(武汉) 一种岩质边坡锁固段裂缝变形监测装置及布设方法
CN115792180A (zh) * 2022-11-29 2023-03-14 长江大学 一种冻融诱发边坡滑坡的模拟装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108317948A (zh) * 2018-01-30 2018-07-24 山东大学 阻值机敏格栅地基位移测试***及方法
CN108166547A (zh) * 2018-01-30 2018-06-15 山东大学 阻值机敏格栅地基沉降测试***及方法
CN109870484A (zh) * 2019-02-27 2019-06-11 东北大学 一种含水边坡失稳预警***及方法
CN110846965A (zh) * 2019-10-15 2020-02-28 中国科学院武汉岩土力学研究所 基于导电聚合物的土工格室加固拓宽路基方法
CN111521108A (zh) * 2020-06-18 2020-08-11 潍坊润宜科新材料有限公司 用于岩土工程安全检测的智能机敏带的制备方法
CN112160305B (zh) * 2020-09-22 2021-08-31 温州大学 一种对轨道路基内部变形和细颗粒流失监测装置
CN113295113B (zh) * 2021-04-29 2022-03-18 中国科学院武汉岩土力学研究所 一种基于边坡稳定状态分析的北斗gnss监测***布设方法
CN113981762A (zh) * 2021-11-10 2022-01-28 安徽东方风景建设有限公司 一种小弧度异形花岗岩施工方法
CN114382096B (zh) * 2022-01-26 2024-01-30 山东省国土空间生态修复中心 一种矿区土壤回填***及土壤裂缝检测修复方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204085568U (zh) * 2014-09-12 2015-01-07 甘肃岩之韵工程勘察设计有限公司 一种自动监测边坡土体应力应变装置
CN105115387A (zh) * 2015-09-28 2015-12-02 华中科技大学 一种模型试验中土工格栅应变量测装置及量测方法
CN204944376U (zh) * 2015-09-28 2016-01-06 华中科技大学 一种模型试验中土工格栅应变量测装置
CN105953737A (zh) * 2016-05-10 2016-09-21 贵州省质安交通工程监控检测中心有限责任公司 一种桥梁结构变形自动测量方法
KR101668788B1 (ko) * 2016-03-15 2016-10-25 연세대학교 산학협력단 강체링크를 고려한 구조물 안전성 평가방법 및 그 평가 시스템
CN106960548A (zh) * 2017-05-31 2017-07-18 中南大学 一种边坡地质灾害监测预警方法及***
CN207335617U (zh) * 2017-09-22 2018-05-08 山东大学 一种既有路基、边坡稳定性的监测结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI79597C (fi) * 1985-11-07 1990-01-10 Tampella Oy Ab Foerfarande och apparat foer matning av betong i ett borrhaol vid betongbultning av berg.
US5823709A (en) * 1996-07-09 1998-10-20 The Tensar Corporation Interconnected block system
US5911539A (en) * 1996-07-09 1999-06-15 The Tensar Corporation Interconnected block system
US5975810A (en) * 1998-04-01 1999-11-02 Taylor; Thomas P. Geo-grid anchor
US7083364B2 (en) * 1999-04-08 2006-08-01 Beon Top Enterprises, Ltd. Retaining wall system with interlocked wall-building units
AU2002221171A1 (en) * 2000-12-12 2002-06-24 Gong, Hak-Bong Geogrid
US6595726B1 (en) * 2002-01-14 2003-07-22 Atlantech International, Inc. Retaining wall system and method of making retaining wall
CN2718515Y (zh) * 2004-07-26 2005-08-17 岳祖润 铁路路基面真位移测试桩
CA2529517A1 (en) * 2004-12-08 2006-06-08 James I. Mathis Pressure sensitive cable device for monitoring rock and soil displacement
US20090214821A1 (en) * 2008-02-15 2009-08-27 Walsh Anthony T Multi-axial grid or mesh structures with high aspect ratio ribs
CN103363890B (zh) * 2013-07-22 2016-06-08 山东大学 基于导电聚合物拉敏效应的路面开裂监测方法
CN103334462B (zh) * 2013-07-22 2016-01-20 山东大学 基于导电聚合物的土体变形监测***及方法
CN104139541B (zh) * 2014-06-25 2016-02-10 山东大学 一种传感型塑料土工格栅的制备方法
CN204514375U (zh) * 2015-03-26 2015-07-29 长沙理工大学 一种锚固边坡变形智能监测***
US9556579B2 (en) * 2015-04-22 2017-01-31 BlackRock Engineers, Inc. In situ treatment system and method for dewatering and stabilization of waste material deposits in waste impoundments
CN205934898U (zh) * 2016-08-12 2017-02-08 山东瑞恩生态环境科技有限公司 一种基于机敏塑料传感器的土工格栅
CN206353020U (zh) * 2016-12-28 2017-07-25 岳阳市公路桥梁基建总公司 一种用于路基沉降自动观测的参照感应带

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204085568U (zh) * 2014-09-12 2015-01-07 甘肃岩之韵工程勘察设计有限公司 一种自动监测边坡土体应力应变装置
CN105115387A (zh) * 2015-09-28 2015-12-02 华中科技大学 一种模型试验中土工格栅应变量测装置及量测方法
CN204944376U (zh) * 2015-09-28 2016-01-06 华中科技大学 一种模型试验中土工格栅应变量测装置
KR101668788B1 (ko) * 2016-03-15 2016-10-25 연세대학교 산학협력단 강체링크를 고려한 구조물 안전성 평가방법 및 그 평가 시스템
CN105953737A (zh) * 2016-05-10 2016-09-21 贵州省质安交通工程监控检测中心有限责任公司 一种桥梁结构变形自动测量方法
CN106960548A (zh) * 2017-05-31 2017-07-18 中南大学 一种边坡地质灾害监测预警方法及***
CN207335617U (zh) * 2017-09-22 2018-05-08 山东大学 一种既有路基、边坡稳定性的监测结构

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505297A (zh) * 2020-11-23 2021-03-16 中建八局第一建设有限公司 一种路基环境监测平台制作方法及环境监测平台
CN113155086A (zh) * 2021-02-26 2021-07-23 广西北投交通养护科技集团有限公司 一种公路改扩建填方路基剖面沉降监测装置及方法
WO2022267135A1 (zh) * 2021-06-23 2022-12-29 中国地质大学(武汉) 一种岩质边坡锁固段裂缝变形监测装置及布设方法
CN115792180A (zh) * 2022-11-29 2023-03-14 长江大学 一种冻融诱发边坡滑坡的模拟装置
CN115792180B (zh) * 2022-11-29 2023-10-27 长江大学 一种冻融诱发边坡滑坡的模拟装置

Also Published As

Publication number Publication date
CN107607030B (zh) 2024-01-23
US10684112B2 (en) 2020-06-16
US20190178623A1 (en) 2019-06-13
CN107607030A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2019056410A1 (zh) 一种既有路基、边坡稳定性的监测结构及其施工方法
CN104482913B (zh) 用于测试三维应变状态的测试装置及其测试方法
CN106767476B (zh) 一种基于全光纤传感网络的边坡稳定性监测和滑坡预警预报方法
CN104989411B (zh) 盾构施工引起的管片周围饱和砂土液化判别装置及方法
CN102221332A (zh) 松散地层的光纤光栅多点传感装置及监测***与监测方法
CN103438820A (zh) 一种钻孔剖面岩土体分层变形光纤测量方法
CN104820022B (zh) 一种钢管混凝土拱架耦合性能检测及评价方法与检测结构
CN203097917U (zh) 一种测力锚杆
CN106896211A (zh) 滑坡监测装置及方法
CN103471647B (zh) 一种盾构隧道远程自动化监测方法
CN104614242A (zh) 复杂条件下岩土体硐室开挖与围岩应力、应变监测模型试验装置及其方法
CN109029832A (zh) 一种基于一体式光纤传感器监测采动含水层水压的方法
CN103471648A (zh) 一种顶管隧道的扰动施工监测方法
CN103410136B (zh) 一种土壤水分计的钻孔埋设方法
CN207335617U (zh) 一种既有路基、边坡稳定性的监测结构
CN202548085U (zh) 堤坝防渗墙埋深的检测装置
CN103114561B (zh) 一种在粘土心墙内埋设光纤传感器的方法
CN103290827B (zh) 一种多点位移计安装埋设注浆方法
Tang et al. Application of a FBG‐Based Instrumented Rock Bolt in a TBM‐Excavated Coal Mine Roadway
CN103323156A (zh) 危岩滑坡体应力采集传感器及其安设方法
CN103195046B (zh) 一种一孔多孔隙水压力计埋设方法
CN105257318A (zh) 一种衬砌局部渗漏引起隧道结构变形的安全保护方法
CN102677645B (zh) 一种用于水平冻结冻土多场耦合实时感知方法
CN204556387U (zh) 复杂条件下岩土体硐室开挖与围岩应力、应变监测模型试验装置
CN103195045B (zh) 一种一孔多孔隙水压力计埋设装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926062

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03-12-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17926062

Country of ref document: EP

Kind code of ref document: A1