WO2019054822A1 - Active substance-hexapeptide complex and cosmetic composition containing same - Google Patents

Active substance-hexapeptide complex and cosmetic composition containing same Download PDF

Info

Publication number
WO2019054822A1
WO2019054822A1 PCT/KR2018/010914 KR2018010914W WO2019054822A1 WO 2019054822 A1 WO2019054822 A1 WO 2019054822A1 KR 2018010914 W KR2018010914 W KR 2018010914W WO 2019054822 A1 WO2019054822 A1 WO 2019054822A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
eemqrr
hexapeptide
complex
active substance
Prior art date
Application number
PCT/KR2018/010914
Other languages
French (fr)
Korean (ko)
Inventor
강성진
박문영
김다은
정아름
김재일
Original Assignee
애니젠 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애니젠 주식회사 filed Critical 애니젠 주식회사
Priority to CN201880060597.5A priority Critical patent/CN111278420B/en
Priority to JP2020537121A priority patent/JP7100390B2/en
Publication of WO2019054822A1 publication Critical patent/WO2019054822A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/362Polycarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/63Steroids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Definitions

  • the present invention relates to an active substance-hexapeptide complex and a cosmetic composition containing the same.
  • Skin aging can be divided into endogenous aging and extrinsic aging.
  • Endogenous aging means natural aging in which the amount of synthesis of extracellular matrix proteins such as collagen fibers and elastic fibers decreases over time and elasticity is decreased and the structure of the stratum corneum changes and the water content in skin cells decreases.
  • Exogenous aging is aging caused by external stimuli such as ultraviolet rays, air pollution, tobacco smoke, stress, etc., and photoaging is a typical exogenous aging.
  • Photoactivation is induced by reactive oxygen species when the skin is exposed to ultraviolet light, resulting in the inflammatory reaction induced by the activation of AP-1 (activatorprotetin-1) and NF-kB (nuclear factor-kB) , Nucleic acid, enzymes, etc. are damaged and aging occurs.
  • AP-1 activatorprotetin-1
  • NF-kB nuclear factor-kB
  • the inventors of the present invention have developed an organic acid-hexapeptide complex comprising an organic acid and a hexapeptide, which is a functional peptide in nature, in order to develop a cosmetic composition using an active substance.
  • the present inventors developed a mutant hexapeptide complex by binding a steroid effective against dermatitis or atopic patients to a hexapeptide as a functional peptide.
  • the present inventors completed the present invention by confirming that the organic acid-hexapeptide complex and the mutated hexapeptide complex exhibit antioxidative and skin regenerating effects.
  • One aspect of the present invention provides a hexapeptide having an amino acid sequence of EEMQRR (SEQ ID NO: 1) and an active substance-hexapeptide complex to which an active substance is bound.
  • Another aspect of the present invention provides a cosmetic composition comprising the active substance-hexapeptide complex as an active ingredient.
  • Another aspect of the present invention provides a pharmaceutical composition for treating skin wounds comprising the active substance-hexapeptide complex as an active ingredient.
  • Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for skin condition improvement.
  • Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for preparing a cosmetic composition for skin condition improvement.
  • Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for treating skin wounds.
  • Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for the manufacture of a medicament for treating skin wounds.
  • Another aspect of the present invention provides a method for improving skin condition comprising treating the skin of an individual with the active substance-hexapeptide complex of the present invention.
  • Another aspect of the present invention provides a method of treating skin wounds comprising treating the skin of an individual with an active substance-hexapeptide complex of the present invention.
  • the active substance-hexapeptide complex of the present invention exhibits superior antioxidative and skin regenerating effects than conventional organic acids, steroids or hexapeptides by binding an organic acid or a steroid to a hexapeptide. Therefore, the active substance-hexapeptide complex of the present invention and the cosmetic composition containing the same can be effectively used for antioxidation and prevention of skin aging.
  • Figure 1 shows the analytical results of a purified formic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • Figure 2 shows the results of the analysis of the purified glucuronic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • Figure 3 shows the results of the analysis of the purified lactic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • Figure 4 shows the results of the analysis of purified mevalonate-EEMQRR-NH 2 complexes through high performance liquid chromatography.
  • FIG. 5 is a graph showing the results of analysis of the purified propionic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • Figure 6 shows the results of the analysis of the purified pyruvic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • Figure 7 shows the results of the analysis of the purified quinic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • FIG. 8 is a diagram showing the results of analysis of the shikisan-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 9 is a graph showing the results of an analysis of purified abietic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • FIG. 10 is a diagram showing the results of analysis of the asialic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • Figure 11 shows the results of the analysis of the purified cholic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • Figure 12 shows the results of the analysis of the ursodeoxycholic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 13 is a diagram showing an analysis result of a uric acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 14 is a diagram showing the results of analysis of the azelaic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 15 is a diagram showing the results of analysis of the purified dipicolinic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 16 is a diagram showing the analysis result of the purified fumaric acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 17 is a diagram showing the results of analysis of the itaconic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 18 is a diagram showing the results of analysis of a purified malic-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 19 is a diagram showing the results of analysis of the oxalic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • 20 is a diagram showing the results of analysis of a succinic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • 21 is a diagram showing the analysis result of the purified tartaric acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 22 is a diagram showing the analysis result of alpha-keto glutaric acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 23 is a diagram showing an analysis result of a purified citrate-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 24 is a diagram showing the results of analysis of the purified lipoic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 25 is a diagram showing the analysis results of the purified formic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 26 is a diagram showing an analysis result of a sorbic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 27 is a diagram showing the results of analysis of biotin-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 28 is a view showing an analysis result of a purified trethionin-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 29 is a diagram showing the results of analysis of the purified caffeic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • FIG. 30 is a diagram showing the results of analysis of cinnamic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 31 is a diagram showing the analysis result of the ferulic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 32 is a diagram showing the results of analysis of the purified rosmarinic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 33 is a diagram showing the results of analysis of the nicotinic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • 34 is a diagram showing the results of analysis of a purified Silesin-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 35 is a view showing a synthesis process of binding an organic acid to the C-terminal of hexapeptide.
  • 36 is a view showing a synthesis process of binding an organic acid to the N-terminal of a hexapeptide.
  • FIG. 37 is a view showing a synthesis process of binding an organic acid to a side chain of a hexapeptide.
  • Figure 38a is rojeumarinsan -EEMQRR-NH 2, Cafe acid -EEMQRR-NH 2, ferulic acid -EEMQRR-NH 2, tartaric -EEMQRR-NH 2, malic -EEMQRR-NH 2, azelaic acid -EEMQRR-NH 2, abietic
  • the skin regeneration effect of the acid-EEMQRR-NH 2 , pyruvic acid-EEMQRR-NH 2 and succinic acid-EEMQRR-NH 2 complexes was confirmed by a wound recovery experiment.
  • Figure 38b is a lactic acid Asia -EEMQRR-NH 2, biotin -EEMQRR-NH 2, cholic acid -EEMQRR-NH 2, cinnamic acid -EEMQRR-NH 2, citric acid -EEMQRR-NH 2, Diffie choline acid -EEMQRR-NH 2, formic acid - EEMQRR-NH 2, fumaric -EEMQRR-NH 2, jeran acid -EEMQRR-NH 2, glucuronic acid -EEMQRR-NH 2, itaconic acid -EEMQRR-NH 2, lipoic -EEMQRR-NH 2, lactic acid -EEMQRR-NH 2 , mevalonic acid -EEMQRR-NH 2, nicotinic acid -EEMQRR-NH 2, oxalate -EEMQRR-NH 2, acid -EEMQRR-NH 2, kwinsan -EEMQRR-NH 2, to Mishan -EEMQRR
  • Figure 38c is a EEMQRR-NH 2, Acetyl-EEMQRR -NH 2 (Acetyl hexapeptide-8), rojeumarinsan, ferulic acid, rojeumarinsan -EEMQRR-NH 2 and the skin regeneration of ferulic acid -EEMQRR-NH 2 complex hexapeptide of the present invention The effect is shown by the wound recovery experiment.
  • FIG. 39 is a graph showing the skin regeneration effect of zeolanic acid-EEMQRR-NH 2, COOH-EEMQRR-geranic acid, and COOH-EE (geranic acid) MQRR-NH 2 complex through wound recovery experiments.
  • 40 is a graph showing a result of WST-1 analyzes performed to determine the cytotoxicity of jeran acid -EEMQRR-NH 2, COOH-EEMQRR- jeran acids and COOH-EE (jeran acid) MQRR-NH 2 complex.
  • 41 is a view showing a process for synthesizing a Betamethasone-EEMQRR-NH 2 complex using glutaric anhydride as a linker.
  • Betamethasone-EEMQRR-NH 2 complex using malonic acid as a linker.
  • Figure 43 shows the results of the analysis of the Betamethasone-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • Figure 44 shows the results of the analysis of the dexamethasone-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • 45 is a diagram showing the results of analysis of the hydrocortisone-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • FIG. 46 shows the results of analysis of the purified Friedrich-EEMQRR-NH 2 complex through high performance liquid chromatography.
  • 47 is a diagram showing the results of analysis of the methylprednisone-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
  • Figure 48 is a diagram showing the analysis results of the purified estriol-EEMQRR-NH 2 complex by high performance liquid chromatography.
  • Figure 50 is betamethasone valerate -EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, Mo
  • the skin regeneration effect of the metaphosphate-EEMQRR-NH 2 and methylprednisolone sulfonate-EEMQRR-NH 2 complexes was confirmed by a wound recovery experiment.
  • betamethasone valerate -Glutaric-EEMQRR-NH 2 betamethasone valerate -Succinic-EEMQRR-NH 2
  • betamethasone valerate -Maleic-EEMQRR-NH 2 betamethasone valerate -Malonic-EEMQRR-NH 2
  • betamethasone valerate EemQRR-NH 2 betamethasone valerate-Fumaric-EEMQRR-NH 2
  • Betamethasone valerate-Isophthalic-EEMQRR-NH 2 Betamethasone valerate-Terephthalic-EEMQRR- NH 2
  • Betamethasone valerate-2,6-Naphthalenedicarboxylic - EEMQRR-NH 2 complex of the present invention was confirmed through wound recovery experiments.
  • Figure 52 is betamethasone valerate -EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, Mo 2 is a graph showing the results of WST-1 analysis performed to examine the cytotoxicity of methasone furoate-EEMQRR-NH 2 and methylprednisolone acetonate-EEMQRR-NH 2 complexes.
  • betamethasone valerate -Glutaric-EEMQRR-NH 2 betamethasone valerate -Succinic-EEMQRR-NH 2
  • betamethasone valerate -Maleic-EEMQRR-NH 2 betamethasone valerate -Malonic-EEMQRR-NH 2
  • betamethasone valerate EemQRR-NH 2 Betamethasone valerate-Fumaric-EEMQRR-NH 2
  • Betamethasone valerate-Isophthalic-EEMQRR-NH 2 Betamethasone valerate-Terephthalic-EEMQRR- NH 2
  • One aspect of the present invention provides a hexapeptide having an amino acid sequence of EEMQRR (SEQ ID NO: 1) and an active substance-hexapeptide complex to which an active substance is bound.
  • the active material may be an organic acid.
  • the organic acid may be any one selected from the group consisting of mono-acid, di-oxide, tri-acid, fatty acid, cinnamic acid, and aromatic acid.
  • the organic acid may have at least one carboxyl group.
  • the mono-acid may be selected from the group consisting of formic acid, glucuronic acid, lactic acid, mevalonic acid, propionic acid, pyruvic acid, quinic acid, And any one selected from the group consisting of Shikimic acid, Abietic acid, Asiatic acid, Cholic acid, Ursodeoxycholic acid and Ursolic acid. Lt; / RTI >
  • formic acid used in the present invention means organic acids contained in plants such as nettle, in addition to ants, also called formic acid or methaconic acid.
  • the structure of the formic acid is shown in the following formula (1).
  • glucuronic acid as used in the present invention is a constituent component of structural polysaccharides such as straw and wood, and is an essential component of mucopolysaccharides of higher animals in animal species and contained in hyaluronic acid, heparin, chondroitin sulfate and the like ≪ / RTI >
  • the structure of the glucuronic acid is represented by the following general formula (2).
  • lactic acid used in the present invention is also referred to as lactic acid, and means an organic acid generated from a sugar by lactic acid bacteria.
  • the lactic acid is widely distributed in the natural world, and most of the lactic acid exists in the free state in the plant, and is produced in the fermentation of the fruit of the plant.
  • the structure of the lactic acid is represented by the following general formula (3).
  • mevalonic acid used in the present invention is also referred to as hiochic acid and means an organic acid contained in sake or beer.
  • the mevalonic acid is necessary for the growth of Lactobacillus heterohiochii , which is a genuine osteoblus that reproduces and decays in Cheongju.
  • the structure of mevalonic acid is shown in the following chemical formula 4.
  • propionic acid used in the present invention means a product of fermentation of alcohol or propionic acid, and means an organic acid contained in chyle and sweat.
  • the structure of the propionic acid is represented by the following general formula (5).
  • pyruvic acid used in the present invention means an organic acid produced by the Emden-Meyerhof pathway or the Entner-Doudor off pathway in bacteria and yeast fermentation .
  • the structure of the pyruvic acid is represented by the following general formula (6).
  • quinic acid used in the present invention means an organic acid having a ring structure peculiar to higher plants, which is contained in fruit such as quince tree bark, coffee seed, apple, peach and the like.
  • the structure of the above quinic acid is represented by the following general formula (7).
  • shikisimo acid used in the present invention means an unsaturated derivative of quinic acid, which is an organic acid of tetrahydrotrihydroxybenzoic acid, which is contained in the fruit of the pteridophyte.
  • the structure of the above shikisan is represented by the following general formula (8).
  • abietic acid used in the present invention means an organic acid of ditertepen, which is the main component of the pine root.
  • the structure of the abietic acid is shown in the following formula (9).
  • asialic acid used in the present invention means an organic acid of dermal acid contained in centella asiatica.
  • the structure of the above-mentioned asialic acid is shown in the following chemical formula (10).
  • cholic acid refers to an organic acid present in the bile of an animal that secretes bile, such as mammals, birds, reptiles, amphibians and the like.
  • the structure of the cholic acid is represented by the following general formula (11).
  • ursodeoxycholic acid as used in the present invention means bile acid known as the main component of urethane.
  • the structure of the above-mentioned ursodeoxycholic acid is shown in the following general formula (12).
  • uric acid used in the present invention means a coating material in a waxy state such as apple, cherry, or the like, and is an organic acid of? -Amyrin type triterpene.
  • the structure of the above uronic acid is shown in the following chemical formula (13).
  • the die acid may be selected from the group consisting of azelaic acid, dipicolinic acid, fumaric acid, itaconic acid, malic acid, oxalic acid, succinic acid, Tartaric acid, and alpha -Ketoglutaric acid.
  • azelaic acid used in the present invention means an organic acid of saturated dicarboxylic acid contained in grains such as wheat, rye and barley.
  • Azelaic acid is an antimicrobial agent that reduces bacteria in hair follicles and pores, and is known to have antioxidant and anti-inflammatory properties.
  • skin cells or hair follicles when abnormally proliferated or transformed into acne, they regenerate to normal, and cystic acne, acne pigmentation and redness are alleviated.
  • the structure of the azelaic acid is shown in Formula 14 below.
  • dipicolinic acid as used in the present invention means an organic acid of pyridine-dicarboxylic acid contained in the spores of many Bacillus species including Bacillus subtilis.
  • the dipicolinic acid acts as an antioxidant of ascorbic acid in food.
  • the structure of the dipicolinic acid is shown in the following formula (15).
  • fumaric acid used in the present invention means an organic acid of unsaturated dicarboxylic acid contained in mosses, fungi and the like of Icelandic acid.
  • the structure of the fumaric acid is shown in the following chemical formula (16).
  • itaconic acid used in the present invention is also referred to as methylenesuccinic acid, and refers to an organic acid of dicarboxylic acid produced by a fungus of plum on the basis of saccharides. In addition, itaconic acid also accumulates in a small amount of medium.
  • the structure of itaconic acid is shown in the following chemical formula (17).
  • malic acid used in the present invention means an organic acid corresponding to hydroxysuccinic acid, which is also called malic acid or malic acid and is contained in fruits such as apple and grape.
  • the structure of the malic acid is represented by the following general formula (18).
  • oxalic acid used in the present invention means an organic acid which is widely distributed in plants in the form of a potassium salt or a calcium salt.
  • the oxalic acid is the simplest dicarboxylic acid with two carboxy groups attached.
  • the structure of the oxalic acid is shown in the following chemical formula 19.
  • succinic acid used in the present invention refers to organic acids such as amber, turpentine, tribe, lichen, fungi and the like, also called succinic acid.
  • the succinic acid is dicarboxylic acid.
  • the structure of the succinic acid is shown in Chemical Formula 20 below.
  • tartaric acid as used in the present invention means also an organic acid of dioxysuccinic acid, which is also called tartaric acid and present in grapes and wines. Tartaric acid can be obtained by adding calcium carbonate to tin and treating the resulting precipitate with sulfuric acid.
  • the structure of the above tartaric acid is represented by the following general formula (21).
  • alpha-ketoglutaric acid used in the present invention means an organic acid synthesized from glucose through ketogluconic acid by microbial fermentation of Pseudomonas sp.
  • the structure of the alpha-keto glutaric acid is shown in the following formula (22).
  • the triaxide may be citric acid.
  • citric acid as used in the present invention means citric acid, and refers to an organic acid mainly present in citrus fruit such as lemon and lime.
  • the citric acid is a polybasic carboxylic acid having a hydroxy group and is contained in the seed or juice of many plants as a free acid.
  • the structure of the citric acid is shown in the following chemical formula (23).
  • the fatty acid may be any one selected from the group consisting of lipoic acid, geranic acid, sorbic acid, biotin, and tretinoin.
  • lipoic acid used in the present invention is also referred to as thioxane and means an organic acid having a disulfide bond with a fatty acid.
  • the structure of the lipoic acid is shown in the following chemical formula (24).
  • geranic acid used in the present invention means an organic acid which is a perfume component contained in roses, herbs and the like.
  • the structure of the above-mentioned geranic acid is shown in the following chemical formula (25).
  • sorbic acid refers to an organic acid, also called 2,4-hexadienoic acid, contained in the immature fruit of Sorbus commixta Hedlund .
  • the sorbic acid suppresses the growth of microorganisms and is used as a preservative for processed foods.
  • the structure of the sorbic acid is shown in the following Chemical Formula 26.
  • biotin used in the present invention means a vitamin B complex, and refers to an organic acid containing a sulfur and having a valeric acid group and a tetrahydrothiophene ring bonded to a ureido ring.
  • the structure of the biotin is shown in the following chemical formula (27).
  • tretinoin refers to the all-trans isomer of retinoic acid, a derivative of vitamin A.
  • the structure of the tretinoin is shown in the following formula (28).
  • the cinnamic acid may be any one selected from the group consisting of caffeic acid, cinnamic acid, ferulic acid and rosmarinic acid.
  • caffeic acid used in the present invention is a kind of phenolic acid compound present in various crops such as coffee beans, potatoes, grains and vegetables, and includes 3- (3,4-dihydroxyphenyl) -2- Means an organic acid represented by 3- (3,4-dihydroxyphenyl) -2-propenoic acid.
  • the structure of the caffeic acid is shown in the following formula (29).
  • cinnamic acid used in the present invention means an organic acid of unsaturated carboxylic acid contained in oil of cinnamon or balsam tree such as quercus variabilis.
  • the structure of cinnamic acid is shown in the following chemical formula (30).
  • ferulic acid used in the present invention means a precursor substance of lignin forming the cell wall of a plant.
  • the structure of the ferric acid is shown in the following formula (31).
  • rosmarinic acid as used in the present invention means an organic acid mainly contained in herbal plants such as peppermint, spearmint, and rosemary.
  • the structure of the above rosmarinic acid is shown in Formula 32 below.
  • the aromatic acid may be any one selected from the group consisting of nicotinic acid and syringic acid.
  • nicotinic acid used in the present invention is also referred to as vitamin B3 or niacin, and refers to an organic acid of pyridine-3 carboxylic acid widely present in vivo such as liver, yeast, legumes and cereals of animals.
  • the structure of the nicotinic acid is shown in the following chemical formula (33).
  • sicric acid used in the present invention means an organic acid of trihydroxybenzoic acid contained in plants such as Robinia pseudacacia L and Cascara sagrada .
  • the structure of the above Sic acid is shown in the following chemical formula (34).
  • the active substance in the active substance-hexapeptide complex of the present invention is an organic acid
  • the hexa-peptide bonded to the organic acid is referred to as an " organic acid-hexapeptide complex"
  • the present invention provides an organic acid-hexapeptide complex wherein an organic acid is bonded to a hexapeptide having an amino acid sequence of EEMQRR (SEQ ID NO: 1).
  • the organic acid may be bonded to the N-terminal, C-terminal or side chain of the hexapeptide.
  • the carboxyl group of the organic acid may be peptide-linked to the N-terminal of the hexapeptide.
  • the organic acid can be C-terminally bound to the hexapeptide through a linker.
  • the organic acid may be bonded to the C-terminal of the hexapeptide through a substituted or unsubstituted C 1-6 linker.
  • ethylene glycol was used as the linker.
  • the organic acid may be peptide-bonded to a hexapeptide in which the C-terminal of the hexapeptide is substituted with a carboxyamide amide group.
  • the organic acid may bind to the side chain of the hexapeptide.
  • the organic acid may be bonded to the carboxy group or the amide group position of the side chain of the hexapeptide.
  • the organic acid when it is bonded to the carboxy group, it can be bonded through a linker such as ethylene glycol or the like, and when the organic acid is bonded to the amide group, the peptide bond can be achieved.
  • organic acid-hexapeptide complex may be represented by the following chemical formula (35).
  • X is an organic acid and R 'and R " are each independently hydrogen or C 1-3 alkyl.
  • An embodiment of the complex in which the organic acid is bound to the N-terminus of the hexapeptide through a linker may be represented by the following chemical formula [35-1].
  • X is an organic acid
  • L is a linker
  • hexapeptide used in the present invention means a hexapeptide having the amino acid sequence of Glu-Glu-Met-Gln-Arg-Arg. Further, the hexapeptide may be one in which the carboxy group is substituted with an amide group at the C-terminal of the hexapeptide.
  • the hexapeptide may be an amino acid sequence represented by SEQ ID NO: 1.
  • the amide group may be any one of an amide group selected from the group consisting of primary, secondary and tertiary amide groups.
  • the amide group may be a primary amide group.
  • An embodiment of the hexapeptide structure is represented by the following chemical formula (36).
  • the present inventors prepared an organic acid-hexapeptide complex in which an organic acid and a hexapeptide existing in nature are combined (Fig. 1 to Fig. 34).
  • the present inventors confirmed that the above organic acid-hexapeptide complex exhibits an antioxidative activity equivalent to that of vitamin C (Table 7). Furthermore, the present inventors confirmed that the above organic acid-hexapeptide complex exhibited excellent effects on skin regeneration and wound healing (Figs. 38A to 38C). Therefore, it can be usefully used as a composition for skin regeneration and wound healing, which comprises the organic acid-hexapeptide complex of the present invention as an active ingredient.
  • the active substance may be steroid.
  • betamethasone refers to a glucocorticoid hormone that exhibits a glucocorticoid action.
  • the betamethasone exhibits excellent anti-inflammatory effect.
  • the structure of the betamethasone is shown in the following chemical formula (37).
  • dexamethasone as used in the present invention means a derivative of prednisolone which is a glucocorticoid hormone agent exhibiting glucocorticoid action.
  • the structure of dexamethasone is shown in Formula 38 below.
  • hydrocortisone used in the present invention means a corticosteroid hormone which is also called cortisone and exhibits a glucocorticoid action.
  • the structure of hydrocortisone is shown in the following formula (39).
  • prednisone means a cortisone derivative, which is a glucocorticoid hormone that exhibits a glucocorticoid action.
  • the structure of prednisone is shown in the following chemical formula (40).
  • methylprednisone used in the present invention means an adrenocorticotropic agent in which hydrogen bonded at the 6th carbon position of prednisone is substituted with an alpha methyl group.
  • the structure of the methyl prednisone is shown in the following chemical formula (41).
  • estriol used in the present invention means a kind of estrogen hormone belonging to follicular hormone.
  • the structure of the estriol is represented by the following general formula (42).
  • the structure of the betamethasone valerate is represented by the following general formula (43).
  • betamethasone dipropionate is shown in the following chemical formula (44).
  • hydrocortisone 17-butylate is shown in the following chemical formula 46.
  • the active substance in the active substance-hexapeptide complex of the present invention is a steroid
  • the hexapeptide bound to the steroid is referred to as " mutated hexapeptide complex".
  • the present invention provides mutated hexapeptide complexes in which a steroid is conjugated to a hexapeptide having the amino acid sequence of EEMQRR (SEQ ID NO: 1).
  • the steroid may bind to the N-terminal, C-terminal or side chain of the hexapeptide. Specifically, the steroid may be linked to the N-terminal, C-terminal, or side chain of the hexapeptide via a linker.
  • the steroid may be linked to the carboxyl or amide group at the N-terminus, C-terminus, or side chain of the hexapeptide through a linker.
  • the carboxyl group located in the side chain may be located on the side chain of glutamic acid.
  • the amide group on the side chain may be located on the side chain of glutamine.
  • One embodiment of the mutated hexapeptide complex may be represented by the following formula (49).
  • Y is a steroid and R 'and R " are each independently hydrogen or C 1-3 alkyl.
  • An embodiment of the complex in which the steroid is bound to the N-terminus of the hexapeptide through a linker may be represented by the following formula (49-1).
  • Y is a steroid
  • L ' is a linker.
  • the linker may be represented by the following chemical formula (50).
  • Z is C 1-10 alkylene, C 2-12 alkenylene or C 6-14 arylene.
  • alkylene refers to a branched or straight or cyclic, branched or cyclic, saturated or unsaturated, monovalent radical having two monovalent radical centers derived by removal of two hydrogen atoms from the same or different two carbon atoms of the parent alkane Quot; refers to a saturated hydrocarbon radical.
  • an alkylene group may have from 1 to 20 carbon atoms, from 1 to 10 carbon atoms, or from 1 to 6 carbon atoms.
  • Typical alkylene radicals are methylene (-CH 2 -), 1,1- ethyl (-CH (CH 3) -) , 1,2- ethyl (-CH 2 CH 2 -), 1,1- propyl (- (CH 2 CH 3 ) -), 1,2-propyl (-CH 2 CH (CH 3 ) -), 1,3-propyl (-CH 2 CH 2 CH 2 - CH 2 CH 2 CH 2 CH 2 -), and the like.
  • alkenylene refers to an unsaturated hydrocarbon radical having two monovalent radical centers derived from two identical or different two carbon atoms of the parent alkane, Quot;
  • the alkenylene group may have from 1 to 20 carbon atoms, from 1 to 10 carbon atoms, or from 1 to 6 carbon atoms.
  • aryl refers to an aromatic hydrocarbon radical derived from six carbon atoms of a parent aromatic ring system by removal of one hydrogen atom.
  • the aryl group may have 6 to 20 carbon atoms, 6 to 14 carbon atoms, or 6 to 12 carbon atoms.
  • Exemplary aryl groups include, but are not limited to, radicals derived from benzene (e.g., phenyl), substituted benzene, substituted or unsubstituted naphthalene, substituted or unsubstituted anthracene, substituted or unsubstituted biphenyl, .
  • X represents , , , , , , , And ≪ / RTI >
  • the linker is selected from the group consisting of glutaric acid, succinic acid, maleic acid, malonic acid, adipic acid, fumaric acid, isophthalic acid, Isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • hexapeptide used in the present invention means a hexapeptide having the amino acid sequence of Glu-Glu-Met-Gln-Arg-Arg. Further, the hexapeptide may be one in which the carboxy group is substituted with an amide group at the C-terminal of the hexapeptide.
  • the hexapeptide may be an amino acid sequence represented by SEQ ID NO: 1.
  • the amide group may be any one of an amide group selected from the group consisting of primary, secondary and tertiary amide groups.
  • the amide group may be a primary amide group.
  • One embodiment of the hexapeptide structure is the same as described above in the organic acid-hexapeptide complex.
  • Table 3 shows the structure of the hexapeptide complex to which betamethasone is linked through the above 8 linkers.
  • Table 4 shows the hexapeptide complex to which betamethasone valerate was bound through the above 9 kinds of linkers.
  • Betamethasone valerate-glutaroyl-EEMQRR-NH 2 Betamethasone valerate-malonoyl-EEMQRR-NH 2 3
  • Betamethasone valerate-terephthaloyl-EEMQRR-NH 2 Betamethasone valerate-succinoyl-EEMQRR-NH 2 5
  • Betamethasone valerate-adipoyl-EEMQRR-NH 2 6
  • Betamethasone valerate-2,6-naphthalenedicarboxyloyl-EEMQRR-NH 2 Betamethasone valerate-maleoyl-EEMQRR-NH 2 8
  • Betamethasone valerate-isophthaloyl-EEMQRR-NH 2 Betamethasone valerate-fumaryl-EEMQRR-NH 2
  • the present inventors produced hexapeptide complexes mutated by binding steroids effective for dermatitis or atopic skin diseases and hexapeptides having physiological activity to cosmetics (Figs. 43 to 48).
  • the present inventors confirmed that the complex using the above steroid showed antioxidative activity (Table 11). Furthermore, the present inventors confirmed that the mutated hexapeptide complex exhibited excellent effects on skin regeneration and wound healing (FIGS. 50 and 51). Therefore, it can be usefully used as a composition for skin regeneration and wound healing which comprises the mutated hexapeptide complex of the present invention as an active ingredient.
  • Another aspect of the present invention provides a cosmetic composition comprising an active substance-hexapeptide complex as an active ingredient.
  • the active substance-hexapeptide complex may be an organic acid-hexapeptide complex or a mutated hexapeptide complex.
  • the cosmetic composition can exhibit skin aging prevention and skin regeneration effect.
  • the cosmetic composition may be any one selected from the group consisting of lotion, cream, lotion, serum, essence, and sunscreen.
  • the components contained in the cosmetic composition include components commonly used in cosmetic compositions in addition to an organic acid-peptide complex or a mutated hexapeptide complex as an active ingredient. Examples thereof include antioxidants, stabilizers, solubilizers, vitamins, Such as conventional adjuvants or carriers.
  • the cosmetic composition may be prepared in any form conventionally produced in the art, and examples thereof include solutions, suspensions, emulsions, pastes, gels, creams, lotions, powders, soaps, surfactant- , Oil, powder foundation, emulsion foundation, wax foundation and spray, but is not limited thereto. More specifically, it can be manufactured into a formulation of lotion (convergent lotion, soft lotion, etc.), cream, lotion, serum, essence, nutritional gel or massage cream.
  • the formulation of the cosmetic composition is a paste, a cream or a gel, an animal oil, vegetable oil, wax, paraffin, starch, tracant, cellulose derivative, polyethylene glycol, silicone, bentonite, silica, talc or zinc oxide .
  • the carrier component may be a fatty acid ester of water, ethanol, isopropanol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butyl glycol oil, glycerol aliphatic ester, polyethylene glycol or sorbitan have.
  • a carrier such as water, a liquid diluent such as ethanol or propylene glycol, a suspension such as ethoxylated isostearyl alcohol, polyoxyethylene sorbitol ester and polyoxyethylene sorbitan ester, Crystalline cellulose, aluminum metahydroxide, bentonite, agar or tracant, etc. may be used.
  • the carrier component is selected from aliphatic alcohol sulfate, aliphatic alcohol ether sulfate, sulfosuccinic acid monoester, isethionate, imidazolinium derivative, methyltaurate, sarcosinate, fatty acid Amide ether sulfate, alkylamidobetaine, aliphatic alcohol, fatty acid glyceride, fatty acid diethanolamide, vegetable oil, lanolin derivative, or ethoxylated glycerol fatty acid ester.
  • Another aspect of the present invention provides a pharmaceutical composition for treating skin wounds comprising an active substance-hexapeptide complex as an active ingredient.
  • the active substance-hexapeptide complex may be an organic acid-hexapeptide complex or a mutated hexapeptide complex.
  • the pharmaceutical composition may comprise a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carriers are those conventionally used in the formulation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, But are not limited to, cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • the pharmaceutical composition may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components.
  • the pharmaceutical composition may be prepared in a unit dosage form by formulating it with a pharmaceutically acceptable carrier and / or an excipient according to a method which can be easily carried out by a person having ordinary skill in the art to which the present invention belongs.
  • a pharmaceutically acceptable carrier and / or an excipient Into a capacity container.
  • the formulations may be in the form of solutions, suspensions, syrups or emulsions in oils or aqueous media, or in the form of excipients, powders, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.
  • the pharmaceutical composition may be diluted in an ointment base to prepare an ointment for topical application.
  • the ointment base may be applied to lesions 1 to 5 times a day.
  • a packaged preparation for topical application diluted in a gel preparation is prepared, It can be applied to the lesion site five times.
  • Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for skin condition improvement.
  • Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for preparing a cosmetic composition for skin condition improvement.
  • Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for treating skin wounds.
  • Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for the manufacture of a medicament for treating skin wounds.
  • Another aspect of the present invention provides a method for improving skin condition comprising treating the skin of an individual with the active substance-hexapeptide complex of the present invention. Improving the skin condition may be to prevent aging of the skin or promote regeneration of the skin.
  • Another aspect of the present invention provides a method of treating skin wounds comprising treating the skin of an individual with an active substance-hexapeptide complex of the present invention.
  • Fmoc-Glu tbu
  • Fmoc-Met OH
  • Fmoc-Gln OH
  • Fmoc-Arg Pbf
  • the source of Fmoc-Glu (tbu) -OH, Fmoc-Met-OH, Fmoc-Gln (Trt) -OH and Fmoc-Arg (Pbf) -OH were purchased from GLS (GL Biochem, Shanghai).
  • the organic acids were also purchased from TCI (TCI chemicals, India) and Sigma (Sigma Aldrich, US) (Table 5).
  • DMF dimethylformamide
  • DIEA N, N-diisopropylethylamine
  • DCM dichloromethane
  • the synthesis process of the organic acid-hexapeptide complex is represented by the following process steps 1) to 6).
  • the synthetic process conditions are shown in Table 6 below.
  • Chlorotritylchloride resin (Bead Tech) was used to synthesize a peptide having a carboxy group (-COOH) at the synthetic end in a solid-phase synthesis reactor equipped with a filtration membrane.
  • a peptide synthesis terminated with a peptide bond (-CONH 2 ) at the synthetic end was carried out using Rink amide resin (GLS).
  • DCM and DMF were used to swell the resin for 30 minutes.
  • Synthesis using chlorotrityl chloride resin involves loading the first amino acid into the resin. The swollen resin was removed under reduced pressure through a filtration membrane. Two equivalents of Fmoc-Arg (Pbf) -OH in the resin were completely dissolved in DMF, added to chlorotrityl chloride resin, and DIEA in consideration of density was added in an amount corresponding to 4 equivalents of chlorotrityl chloride resin. Thereafter, the reaction was carried out at 25 ° C to 32 ° C for 5 hours or more using a reactor.
  • the synthesis procedure using the chlorotrityl chloride resin or linkamid resin involved the deprotection of Fmoc.
  • the resin Fmoc deprotection was performed by removing the solvent through a filtration membrane under reduced pressure and then washing with DMF containing 20% (v / v) piperidine for 5 minutes. Then, it was washed with DMF supplemented with 20% (v / v) piperidine for 10 minutes. The reaction solution was removed by filtration under reduced pressure, and washed with DCM or DMF six times for 2 minutes each.
  • the dried ferulic acid-EEMQRR-NH 2 composite resin was separated using a 70% (v / v) TFA / 29% (v / v) DCM / 1% (v / v) H 2 O solution for 4 h Respectively.
  • the separated solvent was extracted by recrystallizing the crude product with ethyl ether.
  • the ferulic acid-EEMQRR-NH 2 complex preparation prepared in Example 1.1 was dissolved in distilled water containing 10% (v / v) acetonitrile. Thereafter, it was purified by HPLC under gradient conditions as described below and then lyophilized to obtain a ferulic acid-EEMQRR-NH 2 complex (FIGS. 1 to 34). The above gradients are shown in Table 7 below.
  • EEMQRR-NH2 EEMQRR-NH2 , COOH-EEMQRR-geranic acid and COOH-EE (geranic acid) MQRR-NH2 in order to confirm that organic acids at N-, C- or side chain positions of the hexapeptide can bind. 2 complex was synthesized.
  • FIGS. 35 Methods for synthesizing the above-mentioned geranic acid-EEMQRR-NH 2, COOH-EEMQRR-generator acid and COOH-EE (geranic acid) MQRR-NH 2 complexes are shown in FIGS.
  • the generator acid-EEMQRR-NH 2 complex was synthesized in the same manner as in Example 1 (FIG. 35).
  • the COOH-EEMQRR-generator complex was synthesized through the following procedure. First, trityl resin was added to the reactor, washed twice with DCM / DMF, and the resin was swelled in the reactor for 30 minutes using DCM. Then, 2 eq of arginine (Arg, R) amino acid and 1 eq of DIEA were added to the resin and loaded for 4 hours. After loading, it was washed 5 times with DMF. The remaining 5 amino acids were loaded in the order of arginine, glutamine (Gln, Q), methionine (Met, M), glutamic acid (Glu, E) and glutamic acid in the same manner as the method of loading the arginine.
  • the COOH-EEMQRR-generator acid which had been reacted was washed 3 to 4 times with DMF, 3 to 4 times with DCM, and dried using a pump. After the drying process, separation was carried out using 70% TFA in the same manner as in Example 1.1 (5) for 4 hours.
  • Example 1.1 (6) In the same manner as in the recrystallization of Example 1.1 (6), a cleavage solution was taken from the reactor, transferred to a tube, air-dried, and COOH-EEMQRR- And recovered in a solid state. The recovered COOH-EEMQRR-fumaric acid was subjected to HPLC analysis and purified.
  • the COOH-EE (genetic acid) MQRR-NH 2 was synthesized with EEMQRR-NH 2 peptide in the same manner as in Experimental Example 1, followed by removing the protecting group of glutamine, adding EDC and HoAt, After the glycol linker was bound and washed three times with DMF, the geranic acid was bound using HOBt, DIC (FIG. 37). Thereafter, separation and recrystallization processes were carried out in the same manner as in (1.1) separation of Example 1.1 and (6) recrystallization. The recovered COOH-EE (geranic acid) MQRR-NH 2 was subjected to HPLC analysis and then purified.
  • the antioxidant activity of the sample was measured indirectly by measuring the degree of decrease of the radicals by a spectrophotometer using a stable free radical, DPPH (1,1-Diphenyl-2-picryhydrazyl, Sigma D9132-1G). Specifically, 0.5 ml of 0.1 mM DPPH solution and 0.4 ml of various organic acid-hexapeptide complexes (samples) prepared in Example 1 were added to 0.4 ml of ethanol, vortexed vigorously for 10 seconds, The reaction was carried out in cattle for 30 minutes.
  • DPPH 1,1-Diphenyl-2-picryhydrazyl
  • the absorbance was then measured at a wavelength of 517 nm using a spectrophotometer ELISA.
  • vitamin C ascorbic acid
  • DPPH free radical scavenging ability (%) ⁇ 1-absorbance of sample / absorbance of blank ⁇ x 100 ⁇
  • DPPH is inherently purple in ethanol. When it is reduced by antioxidants, it will lose its original purple color and turn yellow. DPPH is capable of measuring radicals through spectral analysis at a wavelength of 517 nm.
  • SC 50 of Table 8 means the sample concentration at the time of scavenging free radicals and 50% other organic acid-hexapeptide to show the DPPH free-radical scavenging activity in the complex of the 34 species of the above organic acid-hexa-peptide complexes are antioxidant cosmetic composition It can be used as a composition.
  • Wound healing assay was used to assess skin regeneration effects by stimulating cell proliferation and migration by organic acid - hexapeptide complexes.
  • DMEM Dulbecco's Modified Eagle's Medium
  • FBS fat bovine serum
  • HaCaT cells were cultured in DMEM with 10% FBS and 1% Antibiotic-Antimycotic in a 100 mm / 60.1 cm 2 culture dish in an incubator at 37 ° C, 5% CO 2 , 100% wet condition.
  • the degree of cell saturation of HaCaT cells reaches about 90%, the cells are plated at 1.5 x 10 cells / 12-well plate in a 100 mm / 60.1 cm 2 culture dish and incubated for 48 hours at 37 ° C, 5% CO 2 , 100% Lt; / RTI >
  • the cells were replaced with DMEM without FBS, and the wells were scratched with a 200 ⁇ l tip.
  • the organic acid-hexapeptide complex prepared in Example 1 was used and treated at a concentration of 100 ng / ml.
  • HEGF Sigma-Aldrich, USA
  • 1xPBS was used as a negative control.
  • Wound healing area (%) ⁇ (A-B) / A ⁇ x 100
  • Fmoc-Glu (tbu) -OH, Fmoc-Met-OH, Fmoc-Gln (Trt) -OH and Fmoc-Arg (Pbf) -OH were purchased from GLS (GL Biochem, Shanghai).
  • betamethasone valerate, betamethasone dipropionate, Mometasone furoate, dexamethasone, hydrocortisone, hydrocortisone 17-butyrate, betamethasone valerate, Prednisone, methylprednisone and estriol were purchased from Sigma (Sigma Aldrich, US).
  • glutaric anhydride was purchased from TCI chemicals.
  • Diflucortolone valerate and Methylprednisolone aceponate were purchased from Henan Tianfu Chemical.
  • DMF dimethylformamide
  • DIEA N, N-diisopropylethylamine
  • DCM diichloromethane
  • piperidine was purchased from purified gold.
  • the process for synthesizing mutated hexapeptide complexes is represented by the following process steps 1) to 8).
  • the synthetic process conditions are shown in Table 9 below.
  • Chlorotritylchloride resin (Bead Tech) was used to synthesize a peptide having a carboxy group (-COOH) at the synthetic end in a solid-phase synthesis reactor equipped with a filtration membrane.
  • a peptide synthesis terminated with a peptide bond (-CONH 2 ) at the synthetic end was carried out using Rink amide resin (GLS).
  • DCM and DMF were used to swell the resin for 30 minutes.
  • Synthesis using chlorotrityl chloride resin involves loading the first amino acid into the resin. The swollen resin was removed under reduced pressure through a filtration membrane. Two equivalents of Fmoc-Arg (Pbf) -OH in the resin were completely dissolved in DMF, added to chlorotrityl chloride resin, and DIEA in consideration of density was added in an amount corresponding to 4 equivalents of chlorotrityl chloride resin. Thereafter, the reaction was carried out at 25 ° C to 32 ° C for 5 hours or more using a reactor.
  • the synthesis procedure using the chlorotrityl chloride resin or linkamid resin involved the deprotection of Fmoc.
  • the resin Fmoc deprotection was performed by removing the solvent through a filtration membrane under reduced pressure and then washing with DMF containing 20% (v / v) piperidine for 5 minutes. Then, it was washed with DMF supplemented with 20% (v / v) piperidine for 10 minutes. The reaction solution was removed by filtration under reduced pressure, and washed with DCM or DMF six times for 2 minutes each.
  • Fmoc deprotection was performed on the resin in which the hexapeptide was synthesized, and 3 equivalents of glutaric anhydride as a linker, DIEA as a linker, and glutaric acid anhydride equivalent and amount of linkamid resin . Thereafter, synthesis was carried out at 25 ° C to 32 ° C using a reactor for 5 hours or more. When the reaction was completed, the solvent was evacuated and washed with clean DMF for 6 min each for 2 min.
  • Succinic acid or maleic anhydride was used instead of the glutaric anhydride to bind a succinic acid linker or a maleic acid linker.
  • adipic acid fumaric acid, isophthalic acid, terephthalic acid or 2,6-naphthalenedicarboxylic acid instead of malonic acid
  • Adipic acid linker fumaric acid linker, isophthalic acid linker, terephthalic acid linker or 2,6-naphthalene dicarboxylic acid linker.
  • the separated solvent was recrystallized by using ethyl ether to obtain Betamethasone-EEMQRR-NH 2 And extracted.
  • betamethasone in the same manner as -EEMQRR-NH 2 Synthesis dexamethasone -EEMQRR-NH 2, hydrocortisone -EEMQRR-NH 2, the pre-Denis hand -EEMQRR-NH 2, methyl pre Denis hand -EEMQRR-NH 2 and estriol -EEMQRR-NH 2, betamethasone valerate -EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, mometasone furoate -EEMQRR-NH 2, methylprednisolone fibroblasts carbonate -EEMQRR-NH 2, Betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2,
  • Betamethasone-EEMQRR-NH 2 complex preparation prepared in Example 2.1. was dissolved in distilled water containing 10% (v / v) acetonitrile. Thereafter, it was purified by HPLC under the following gradient conditions and then lyophilized to obtain a Betamethasone-EEMQRR-NH 2 complex (FIGS. 43-48). The above gradients are shown in Table 10 below.
  • betamethasone propionate as deep -EEMQRR-NH 2
  • di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2
  • hydrocortisone 17-butyrate -EEMQRR-NH 2 mometasone furoate -EEMQRR- NH 2, methylprednisolone fibroblasts carbonate -EEMQRR-NH 2 complex
  • the antioxidant activity of the sample was measured indirectly by measuring the degree of decrease of the radicals by a spectrophotometer using a stable free radical, DPPH (1,1-Diphenyl-2-picryhydrazyl, Sigma D9132-1G). Specifically, 0.5 ml of a 0.1 mM DPPH solution and 0.4 ml of mutated hexapeptide complexes (samples) prepared at various concentrations prepared in Example 2 were added to 0.4 ml of ethanol, vortexed vigorously for 10 seconds, The reaction was carried out in cattle for 30 minutes.
  • the absorbance was then measured at a wavelength of 517 nm using a spectrophotometer ELISA.
  • vitamin C ascorbic acid
  • DPPH free radical scavenging ability (%) ⁇ 1-absorbance of sample / absorbance of blank ⁇ x 100 ⁇
  • DPPH is inherently purple in ethanol. When it is reduced by antioxidants, it will lose its original purple color and turn yellow. DPPH is capable of measuring radicals through spectral analysis at a wavelength of 517 nm.
  • SC 50 refers to the concentration of the sample at the time of scavenging free radicals 50% that in the hexa-peptide complexes variation outside to show the DPPH free-radical scavenging 6 species hexa-peptide complexes variations of the above may be used as an antioxidant cosmetic composition Respectively.
  • Wound healing assay was used to assess skin regeneration effects by stimulating cell proliferation and migration by mutated hexapeptide complexes.
  • DMEM Dulbecco's Modified Eagle's Medium
  • FBS fat bovine serum
  • HaCaT cells were cultured in DMEM with 10% FBS and 1% Antibiotic-Antimycotic in a 100 mm / 60.1 cm 2 culture dish in an incubator at 37 ° C, 5% CO 2 , 100% wet condition.
  • the degree of cell saturation of HaCaT cells reaches about 90%, the cells are plated at 1.5 x 10 cells / 12-well plate in a 100 mm / 60.1 cm 2 culture dish and incubated for 48 hours at 37 ° C, 5% CO 2 , 100% Lt; / RTI >
  • the cells were replaced with DMEM without FBS, and the wells were scratched with a 200 ⁇ l tip.
  • the mutated hexapeptide complexes synthesized in Example 2 were used and treated at a concentration of 100 ng / ml.
  • HEGF Sigma-Aldrich, USA
  • 1xPBS was used as a negative control.
  • Wound healing area (%) ⁇ (A-B) / A ⁇ x 100
  • betamethasone valerate -EEMQRR-NH 2 betamethasone propionate as deep -EEMQRR-NH 2
  • di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, prepared in hydrocortisone 17-butyrate -
  • the skin regeneration effect was assessed by cell proliferation and migration promotion by EEMQRR-NH 2 , mometasone furoate-EEMQRR-NH 2 and methylprednisolone acetonate-EEMQRR-NH 2 complex. The experiment was carried out in the same manner as described above.
  • betamethasone valerate -EEMQRR-NH 2 betamethasone propionate as deep -EEMQRR-NH 2
  • di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2
  • Mo meta hand furoate -EEMQRR-NH 2 and methylprednisolone fibroblasts carbonate -EEMQRR-NH 2 conjugate were both about 2 times or more and recovery area (healing area), respectively as compared to the negative control group increased (Fig. 50).
  • Example 2 was betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2, betamethasone valerate -Maleic EEMQRR--binding steroid using a linker of the nine kinds of manufactured NH 2, betamethasone valerate -Malonic-EEMQRR-NH 2, betamethasone valerate -Adipic-EEMQRR-NH 2, betamethasone valerate -Fumaric-EEMQRR-NH 2, betamethasone valerate -Isophthalic-EEMQRR-NH 2, betamethasone valerate -Terephthalic-EEMQRR-NH 2 and Betamethasone valerate-2,6-Naphthalenedicarboxylic-EEMQRR-NH 2 complexes to stimulate cell proliferation and migration.
  • the experiment was carried out in the same manner as described above.
  • betamethasone valerate -Glutaric-EEMQRR-NH 2 betamethasone valerate -Succinic-EEMQRR-NH 2
  • betamethasone valerate -Maleic-EEMQRR-NH 2 betamethasone valerate -Malonic-EEMQRR-NH 2
  • betamethasone valerate EemQRR-NH 2 Betamethasone valerate-Fumaric-EEMQRR-NH 2
  • Betamethasone valerate-Isophthalic-EEMQRR-NH 2 Betamethasone valerate-Terephthalic-EEMQRR- NH 2
  • Betamethasone valerate-2,6-Naphthalenedicarboxylic all -EEMQRR-NH 2 complex were increased about 2-fold recovery area (healing area), respectively as compared to the negative control.
  • the mutated hexapeptide complexes are effective in promoting proliferation and migration of cells to
  • betamethasone valerate -EEMQRR-NH 2 betamethasone dipropionate -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, mometasone Eight -EEMQRR-NH 2, methylprednisolone fibroblasts carbonate -EEMQRR-NH 2, betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2, betamethasone valerate -Maleic-EEMQRR-NH 2, Betamethasone valerate-Malonic-EEMQRR-NH 2 , Betamethasone valerate-Adipic-EEMQRR-NH 2 , Betamethasone valerate-Fumaric-EEMQRR-NH 2 , Betamethasone valerate- Is
  • betamethasone valerate -EEMQRR-NH 2 betamethasone propionate as deep -EEMQRR-NH 2
  • di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2
  • hydrocortisone 17- butyrate -EEMQRR-NH 2 mometasone furoate -EEMQRR-NH 2, methylprednisolone fibroblasts carbonate -EEMQRR-NH 2
  • betamethasone valerate -Glutaric-EEMQRR-NH 2 betamethasone valerate -Succinic-EEMQRR-NH 2
  • betamethasone valerate -Malonic-EEMQRR-NH 2 betamethasone valerate -Adipic-EEMQRR-NH 2

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention relates to an active substance-hexapeptide complex and a cosmetic composition containing the same. The active substance-hexapeptide complex of the present invention exhibit, through the binding of organic acids or steroids with hexapeptides, antioxidant and skin regeneration effects superior to those of conventional organic acids, steroids or hexapeptides. Therefore, the active substance-hexapeptide complex and the cosmetic composition comprising the same, of the present invention, are effectively usable for anti-oxidation and skin aging prevention.

Description

활성물질-헥사펩타이드 복합체 및 이를 포함하는 화장료 조성물Active substance-hexapeptide complex and cosmetic composition containing same
본 발명은 활성물질-헥사펩타이드 복합체 및 이를 포함하는 화장료 조성물에 관한 것이다.The present invention relates to an active substance-hexapeptide complex and a cosmetic composition containing the same.
피부의 노화현상은 내인성 노화와 외인성 노화로 나눌 수 있다. 내인성 노화는 시간이 지남에 따라 교원섬유, 탄력섬유 등 세포외 기질 단백질의 합성량이 줄어들어 탄력이 감소되며, 각질층의 구조가 변화하여 피부세포 내 수분량이 감소하는 자연적 노화를 의미한다. 외인성 노화는 자외선, 공기오염, 담배연기, 스트레스 등과 같은 외부자극이 원인이 되는 노화로, 광노화가 대표적인 외인성 노화에 해당한다. 광노화는 피부에 자외선이 과하게 노출되면 활성산소종이 발생되고, 이로 인해 AP-1(activatorprotetin-1)과 NF-kB(nuclearfactor-kB)의 활성화에 의한 염증반응이 유도되어 피부를 구성하는 지질, 단백질, 핵산, 효소 등이 손상되어 노화가 일어나는 것을 의미한다. Skin aging can be divided into endogenous aging and extrinsic aging. Endogenous aging means natural aging in which the amount of synthesis of extracellular matrix proteins such as collagen fibers and elastic fibers decreases over time and elasticity is decreased and the structure of the stratum corneum changes and the water content in skin cells decreases. Exogenous aging is aging caused by external stimuli such as ultraviolet rays, air pollution, tobacco smoke, stress, etc., and photoaging is a typical exogenous aging. Photoactivation is induced by reactive oxygen species when the skin is exposed to ultraviolet light, resulting in the inflammatory reaction induced by the activation of AP-1 (activatorprotetin-1) and NF-kB (nuclear factor-kB) , Nucleic acid, enzymes, etc. are damaged and aging occurs.
또한, 자외선 노출에 의한 피부 속 활성산소종의 생성은 항산화 방어기전을 손상시켜 피부 단백질과 다른 고분자들의 산화 스트레스와 광손상을 야기한다. 이러한 자외선 노출에 의한 피부노화는 피부에 다양한 형태로 영향을 주어 깊은 주름, 잔주름, 피부 거침, 피부 건조와 같은 현상을 발생시켜 피부노화를 가속화 시킨다(Hong Jae Kee, Korean Journal of Aesthetic and Cosmetology, Vol.7 No.2: 51-62, 2009).In addition, the production of reactive oxygen species in the skin due to exposure to ultraviolet light damages the antioxidant defense mechanism, leading to oxidative stress and photodamage of skin proteins and other polymers. Skin aging caused by exposure to ultraviolet light affects the skin in various ways and accelerates skin aging by causing deep wrinkles, fine wrinkles, skin roughness and skin dryness (Hong Jae Kee, Korean Journal of Aesthetic and Cosmetology, Vol .7 No.2: 51-62, 2009).
최근, 오존층 파괴에 따른 자외선 조사량 증가, 생활공간의 건조화, 개인의 알레르기 체질, 스트레스, 유해 화학물질의 증가로 인한 피부손상이 더욱 많이 야기되면서, 이러한 피부손상의 예방 및 개선에 대한 수요가 증가하고 있다. 피부손상의 예방 및 개선에 대한 수요 증가로 인해 기능성 화장품 연구에서 기존 미백이나 주름예방과 달리 피부손상의 예방 및 개선과 이를 위한 항산화 활성과 관련된 신소재 개발은 새롭게 각광받는 분야로, 그 중요성이 더욱 증대되고 있다. In recent years, there has been an increasing demand for prevention and improvement of such skin damages as the ultraviolet ray irradiation amount due to destruction of the ozone layer, the drying of living space, the allergic constitution of individuals, the stress, and the increase of harmful chemicals are caused more and more have. Due to the increase in demand for prevention and improvement of skin damage, the development of new materials related to antioxidant activity for prevention and improvement of skin damages unlike existing whitening and wrinkle prevention in functional cosmetics research is a new field of interest, .
특히, 환경오염으로 인해 민감성 피부를 가진 소비자가 증가하면서, 화학소재에 의한 자극을 최소화하기 위하여, 여러 기능성을 가진 천연물을 이용한 화장품에 대한 수요가 지속적으로 증가하고 있다. 또한, 최근 피부염이나 아토피 질환을 치료하기 위한 스테로이드 계열의 소재들이 활발히 연구되고 있다.In particular, as consumers increasingly have sensitive skin due to environmental pollution, in order to minimize the stimulation by chemical materials, the demand for cosmetics using various functional natural products is continuously increasing. Recently, steroid-based materials for treating dermatitis and atopic diseases have been actively studied.
이러한 이유로 피부 내에서 부작용이 나타나지 않으면서 효능을 나타낼 수 있는 천연물 유래 기능성 소재 및 스테로이드 계열의 소재 개발에 관심이 주목되고 있으며, 이를 이용한 다양한 기능성 화장품의 개발과 효능 성분 개발에 관한 많은 연구들이 보고되고 있다.For this reason, attention has been drawn to the development of functional materials derived from natural materials and steroids, which can exhibit their effects without causing side effects in the skin, and many studies on the development of various functional cosmetics and the development of effective ingredients using them have been reported have.
이에 본 발명자들은 활성물질을 이용한 화장료 조성물을 개발하기 위해 연구한 결과, 자연계에 존재하는 유기산과 기능성 펩타이드인 헥사펩타이드를 결합시킨 유기산-헥사펩타이드 복합체를 개발하였다. 또한, 본 발명자들은 피부염이나 아토피 환자에게 효능이 있는 스테로이드와 기능성 펩타이드인 헥사펩타이드를 결합시켜 변이된 헥사펩타이드 복합체를 개발하였다. 상기 유기산-헥사펩타이드 복합체 및 변이된 헥사펩타이드 복합체가 항산화 및 피부재생 효과를 나타내는 것을 확인함으로써, 본 발명을 완성하였다.Accordingly, the inventors of the present invention have developed an organic acid-hexapeptide complex comprising an organic acid and a hexapeptide, which is a functional peptide in nature, in order to develop a cosmetic composition using an active substance. In addition, the present inventors developed a mutant hexapeptide complex by binding a steroid effective against dermatitis or atopic patients to a hexapeptide as a functional peptide. The present inventors completed the present invention by confirming that the organic acid-hexapeptide complex and the mutated hexapeptide complex exhibit antioxidative and skin regenerating effects.
본 발명의 일 측면은, EEMQRR(서열번호 1)의 아미노산 서열을 가지는 헥사펩타이드와 활성물질이 결합된 활성물질-헥사펩타이드 복합체를 제공한다. One aspect of the present invention provides a hexapeptide having an amino acid sequence of EEMQRR (SEQ ID NO: 1) and an active substance-hexapeptide complex to which an active substance is bound.
본 발명의 다른 측면은, 상기 활성물질-헥사펩타이드 복합체를 유효성분으로 포함하는 화장료 조성물을 제공한다. Another aspect of the present invention provides a cosmetic composition comprising the active substance-hexapeptide complex as an active ingredient.
본 발명의 또 다른 측면은, 상기 활성물질-헥사펩타이드 복합체를 유효성분으로 포함하는 피부 상처 치료용 약학 조성물을 제공한다. Another aspect of the present invention provides a pharmaceutical composition for treating skin wounds comprising the active substance-hexapeptide complex as an active ingredient.
본 발명의 또 다른 측면은, 피부상태 개선을 위한 본 발명의 활성물질-헥사펩타이드 복합체의 용도를 제공한다. Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for skin condition improvement.
본 발명의 또 다른 측면은, 피부상태 개선을 위한 화장료 조성물을 제조하기 위한 본 발명의 활성물질-헥사펩타이드 복합체의 용도를 제공한다. Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for preparing a cosmetic composition for skin condition improvement.
본 발명의 또 다른 측면은, 피부 상처를 치료하기 위한 본 발명의 활성물질-헥사펩타이드 복합체의 용도를 제공한다. Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for treating skin wounds.
본 발명의 또 다른 측면은, 피부상처를 치료하기 위한 약제를 제조하기 위한 본 발명의 활성물질-헥사펩타이드 복합체의 용도를 제공한다. Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for the manufacture of a medicament for treating skin wounds.
본 발명의 또 다른 측면은, 본 발명의 활성물질-헥사펩타이드 복합체를 개체의 피부에 처리하는 단계를 포함하는 피부상태 개선 방법을 제공한다. Another aspect of the present invention provides a method for improving skin condition comprising treating the skin of an individual with the active substance-hexapeptide complex of the present invention.
본 발명의 또 다른 측면은, 본 발명의 활성물질-헥사펩타이드 복합체를 개체의 피부에 처리하는 단계를 포함하는 피부상처를 치료하는 방법을 제공한다.Another aspect of the present invention provides a method of treating skin wounds comprising treating the skin of an individual with an active substance-hexapeptide complex of the present invention.
본 발명의 활성물질-헥사펩타이드 복합체는 유기산 또는 스테로이드를 헥사펩타이드와 결합시킴으로써, 기존의 유기산, 스테로이드 또는 헥사펩타이드보다 우수한 항산화 및 피부 재생 효과를 나타낸다. 따라서, 본 발명의 활성물질-헥사펩타이드 복합체 및 이를 포함하는 화장료 조성물은 항산화 및 피부 노화 방지에 유용하게 사용될 수 있다.The active substance-hexapeptide complex of the present invention exhibits superior antioxidative and skin regenerating effects than conventional organic acids, steroids or hexapeptides by binding an organic acid or a steroid to a hexapeptide. Therefore, the active substance-hexapeptide complex of the present invention and the cosmetic composition containing the same can be effectively used for antioxidation and prevention of skin aging.
도 1은 고성능 액체 크로마토그래피를 통해 정제된 포름산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. Figure 1 shows the analytical results of a purified formic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 2는 고성능 액체 크로마토그래피를 통해 정제된 글루쿠론산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. Figure 2 shows the results of the analysis of the purified glucuronic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 3은 고성능 액체 크로마토그래피를 통해 정제된 락트산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. Figure 3 shows the results of the analysis of the purified lactic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 4는 고성능 액체 크로마토그래피를 통해 정제된 메발론산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. Figure 4 shows the results of the analysis of purified mevalonate-EEMQRR-NH 2 complexes through high performance liquid chromatography.
도 5는 고성능 액체 크로마토그래피를 통해 정제된 프로피온산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. FIG. 5 is a graph showing the results of analysis of the purified propionic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 6은 고성능 액체 크로마토그래피를 통해 정제된 피루브산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. Figure 6 shows the results of the analysis of the purified pyruvic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 7은 고성능 액체 크로마토그래피를 통해 정제된 퀸산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. Figure 7 shows the results of the analysis of the purified quinic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 8은 고성능 액체 크로마토그래피를 통해 정제된 시키미산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 8 is a diagram showing the results of analysis of the shikisan-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 9는 고성능 액체 크로마토그래피를 통해 정제된 아비에트산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. FIG. 9 is a graph showing the results of an analysis of purified abietic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 10은 고성능 액체 크로마토그래피를 통해 정제된 아시아틱산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 10 is a diagram showing the results of analysis of the asialic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 11은 고성능 액체 크로마토그래피를 통해 정제된 콜산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. Figure 11 shows the results of the analysis of the purified cholic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 12는 고성능 액체 크로마토그래피를 통해 정제된 우르소데옥시콜산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. Figure 12 shows the results of the analysis of the ursodeoxycholic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 13은 고성능 액체 크로마토그래피를 통해 정제된 우르솔산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. FIG. 13 is a diagram showing an analysis result of a uric acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 14는 고성능 액체 크로마토그래피를 통해 정제된 아젤라산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 14 is a diagram showing the results of analysis of the azelaic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 15는 고성능 액체 크로마토그래피를 통해 정제된 디피콜린산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. FIG. 15 is a diagram showing the results of analysis of the purified dipicolinic acid-EEMQRR-NH 2 complex through high performance liquid chromatography. FIG.
도 16은 고성능 액체 크로마토그래피를 통해 정제된 푸마르산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 16 is a diagram showing the analysis result of the purified fumaric acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 17은 고성능 액체 크로마토그래피를 통해 정제된 이타콘산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 17 is a diagram showing the results of analysis of the itaconic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 18은 고성능 액체 크로마토그래피를 통해 정제된 말산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 18 is a diagram showing the results of analysis of a purified malic-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 19는 고성능 액체 크로마토그래피를 통해 정제된 옥살산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 19 is a diagram showing the results of analysis of the oxalic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 20은 고성능 액체 크로마토그래피를 통해 정제된 숙신산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 20 is a diagram showing the results of analysis of a succinic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 21은 고성능 액체 크로마토그래피를 통해 정제된 타르타르산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 21 is a diagram showing the analysis result of the purified tartaric acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 22는 고성능 액체 크로마토그래피를 통해 정제된 알파-케토글루타르산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 22 is a diagram showing the analysis result of alpha-keto glutaric acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 23은 고성능 액체 크로마토그래피를 통해 정제된 시트르산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 23 is a diagram showing an analysis result of a purified citrate-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 24는 고성능 액체 크로마토그래피를 통해 정제된 리포산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 24 is a diagram showing the results of analysis of the purified lipoic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 25는 고성능 액체 크로마토그래피를 통해 정제된 제란산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 25 is a diagram showing the analysis results of the purified formic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 26은 고성능 액체 크로마토그래피를 통해 정제된 소르빈산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 26 is a diagram showing an analysis result of a sorbic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 27은 고성능 액체 크로마토그래피를 통해 정제된 바이오틴-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. FIG. 27 is a diagram showing the results of analysis of biotin-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 28은 고성능 액체 크로마토그래피를 통해 정제된 트레티오닌-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. FIG. 28 is a view showing an analysis result of a purified trethionin-EEMQRR-NH 2 complex through high performance liquid chromatography. FIG.
도 29는 고성능 액체 크로마토그래피를 통해 정제된 카페산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 29 is a diagram showing the results of analysis of the purified caffeic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 30은 고성능 액체 크로마토그래피를 통해 정제된 계피산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 30 is a diagram showing the results of analysis of cinnamic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 31은 고성능 액체 크로마토그래피를 통해 정제된 페룰산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 31 is a diagram showing the analysis result of the ferulic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 32는 고성능 액체 크로마토그래피를 통해 정제된 로즈마린산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 32 is a diagram showing the results of analysis of the purified rosmarinic acid-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 33은 고성능 액체 크로마토그래피를 통해 정제된 니코틴산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 33 is a diagram showing the results of analysis of the nicotinic acid-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 34는 고성능 액체 크로마토그래피를 통해 정제된 시링산-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. 34 is a diagram showing the results of analysis of a purified Silesin-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 35는 헥사펩타이드의 C-말단에 유기산을 결합시키는 합성과정을 나타낸 도면이다. 35 is a view showing a synthesis process of binding an organic acid to the C-terminal of hexapeptide.
도 36은 헥사펩타이드의 N-말단에 유기산을 결합시키는 합성과정을 나타낸 도면이다. 36 is a view showing a synthesis process of binding an organic acid to the N-terminal of a hexapeptide.
도 37은 헥사펩타이드의 곁사슬에 유기산을 결합시키는 합성과정을 나타낸 도면이다. FIG. 37 is a view showing a synthesis process of binding an organic acid to a side chain of a hexapeptide. FIG.
도 38a는 로즈마린산-EEMQRR-NH2, 카페산-EEMQRR-NH2, 페룰산-EEMQRR-NH2, 타르타르산-EEMQRR-NH2, 말산-EEMQRR-NH2, 아젤라산-EEMQRR-NH2, 아비에트산-EEMQRR-NH2, 피루브산-EEMQRR-NH2 및 숙신산-EEMQRR-NH2 복합체의 피부재생 효과를 상처 회복 실험을 통해 확인한 그래프이다.Figure 38a is rojeumarinsan -EEMQRR-NH 2, Cafe acid -EEMQRR-NH 2, ferulic acid -EEMQRR-NH 2, tartaric -EEMQRR-NH 2, malic -EEMQRR-NH 2, azelaic acid -EEMQRR-NH 2, abietic The skin regeneration effect of the acid-EEMQRR-NH 2 , pyruvic acid-EEMQRR-NH 2 and succinic acid-EEMQRR-NH 2 complexes was confirmed by a wound recovery experiment.
도 38b는 아시아틱산-EEMQRR-NH2, 바이오틴-EEMQRR-NH2, 콜산-EEMQRR-NH2, 계피산-EEMQRR-NH2, 시트르산-EEMQRR-NH2, 디피콜린산-EEMQRR-NH2, 포름산-EEMQRR-NH2, 푸마르산-EEMQRR-NH2, 제란산-EEMQRR-NH2, 글루쿠론산-EEMQRR-NH2, 이타콘산-EEMQRR-NH2, 리포산-EEMQRR-NH2, 락트산-EEMQRR-NH2, 메발론산-EEMQRR-NH2, 니코틴산-EEMQRR-NH2, 옥살산-EEMQRR-NH2, 프로피온산-EEMQRR-NH2, 퀸산-EEMQRR-NH2, 시키미산-EEMQRR-NH2, 소르빈산-EEMQRR-NH2, 시링산-EEMQRR-NH2, 트레티노인-EEMQRR-NH2, 우르소디옥시콜산-EEMQRR-NH2, 우르솔산-EEMQRR-NH2 및 알파-케토글루타르산-EEMQRR-NH2 복합체의 피부재생 효과를 상처 회복 실험을 통해 확인한 그래프이다.Figure 38b is a lactic acid Asia -EEMQRR-NH 2, biotin -EEMQRR-NH 2, cholic acid -EEMQRR-NH 2, cinnamic acid -EEMQRR-NH 2, citric acid -EEMQRR-NH 2, Diffie choline acid -EEMQRR-NH 2, formic acid - EEMQRR-NH 2, fumaric -EEMQRR-NH 2, jeran acid -EEMQRR-NH 2, glucuronic acid -EEMQRR-NH 2, itaconic acid -EEMQRR-NH 2, lipoic -EEMQRR-NH 2, lactic acid -EEMQRR-NH 2 , mevalonic acid -EEMQRR-NH 2, nicotinic acid -EEMQRR-NH 2, oxalate -EEMQRR-NH 2, acid -EEMQRR-NH 2, kwinsan -EEMQRR-NH 2, to Mishan -EEMQRR-NH 2, NH-sorbate -EEMQRR 2, when ringsan -EEMQRR-NH 2, tretinoin -EEMQRR-NH 2, Ur sodi oxy cholic acid -EEMQRR-NH 2, ursolic acid -EEMQRR-NH 2 and alpha-ketoglutaric acid in the skin regeneration -EEMQRR-NH 2 complex The effect is shown by the wound recovery experiment.
도 38c는 본 발명의 헥사펩타이드인 EEMQRR-NH2, Acetyl-EEMQRR-NH2 (Acetyl hexapeptide-8), 로즈마린산, 페룰산, 로즈마린산-EEMQRR-NH2 및 페룰산-EEMQRR-NH2 복합체의 피부재생 효과를 상처 회복 실험을 통해 확인한 그래프이다.Figure 38c is a EEMQRR-NH 2, Acetyl-EEMQRR -NH 2 (Acetyl hexapeptide-8), rojeumarinsan, ferulic acid, rojeumarinsan -EEMQRR-NH 2 and the skin regeneration of ferulic acid -EEMQRR-NH 2 complex hexapeptide of the present invention The effect is shown by the wound recovery experiment.
도 39는 제란산-EEMQRR-NH2, COOH-EEMQRR-제란산 및 COOH-EE(제란산)MQRR-NH2 복합체의 피부재생 효과를 상처 회복 실험을 통해 확인한 그래프이다.FIG. 39 is a graph showing the skin regeneration effect of zeolanic acid-EEMQRR-NH 2, COOH-EEMQRR-geranic acid, and COOH-EE (geranic acid) MQRR-NH 2 complex through wound recovery experiments.
도 40은 제란산-EEMQRR-NH2, COOH-EEMQRR-제란산 및 COOH-EE(제란산)MQRR-NH2 복합체의 세포독성을 알아보기 위해 수행한 WST-1 분석결과를 나타낸 그래프이다. 40 is a graph showing a result of WST-1 analyzes performed to determine the cytotoxicity of jeran acid -EEMQRR-NH 2, COOH-EEMQRR- jeran acids and COOH-EE (jeran acid) MQRR-NH 2 complex.
도 41은 글루타르산 무수물을 링커로 하는 베타메타손-EEMQRR-NH2 복합체의 합성 공정을 나타낸 도면이다. 41 is a view showing a process for synthesizing a Betamethasone-EEMQRR-NH 2 complex using glutaric anhydride as a linker.
도 42는 말론산을 링커로 하는 베타메타손-EEMQRR-NH2 복합체의 합성 공정을 나타낸 도면이다.42 is a view showing a process for synthesizing a Betamethasone-EEMQRR-NH 2 complex using malonic acid as a linker.
도 43은 고성능 액체 크로마토그래피를 통해 정제된 베타메타손-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다. Figure 43 shows the results of the analysis of the Betamethasone-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 44는 고성능 액체 크로마토그래피를 통해 정제된 덱사메타손-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다.Figure 44 shows the results of the analysis of the dexamethasone-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 45는 고성능 액체 크로마토그래피를 통해 정제된 하이드로코르티손-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다.45 is a diagram showing the results of analysis of the hydrocortisone-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 46은 고성능 액체 크로마토그래피를 통해 정제된 프리드니손-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다.FIG. 46 shows the results of analysis of the purified Friedrich-EEMQRR-NH 2 complex through high performance liquid chromatography.
도 47은 고성능 액체 크로마토그래피를 통해 정제된 메틸프리드니손-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다.47 is a diagram showing the results of analysis of the methylprednisone-EEMQRR-NH 2 complex purified through high performance liquid chromatography.
도 48은 고성능 액체 크로마토그래피를 통해 정제된 에스트리올-EEMQRR-NH2 복합체의 분석결과를 나타낸 도면이다.Figure 48 is a diagram showing the analysis results of the purified estriol-EEMQRR-NH 2 complex by high performance liquid chromatography.
도 49는 베타메타손-EEMQRR-NH2, 덱사메타손-EEMQRR-NH2, 하이드로코르티손-EEMQRR-NH2, 프리드니손-EEMQRR-NH2, 메틸프리드니손-EEMQRR-NH2 및 에스트리올-EEMQRR-NH2 복합체의 피부재생 효과를 상처 회복 실험을 통해 확인한 그래프이다.49 is betamethasone -EEMQRR-NH 2, dexamethasone -EEMQRR-NH 2, hydrocortisone -EEMQRR-NH 2, the pre-Denis hand -EEMQRR-NH 2, methyl pre Denis hand -EEMQRR-NH 2 and estriol -EEMQRR- NH 2 complex in the wound restoration experiment.
도 50은 베타메타손 발레레이트-EEMQRR-NH2, 베타메타손 디프로피오네이트-EEMQRR-NH2, 디플루코르토론 발레레이트-Glutaroyl-EEMQRR-NH2, 하이드로코르티손 17-부틸레이트-EEMQRR-NH2, 모메타손푸로에이트-EEMQRR-NH2 및 메틸프레드니솔론 아세포네이트-EEMQRR-NH2 복합체의 피부재생 효과를 상처 회복 실험을 통해 확인한 그래프이다.Figure 50 is betamethasone valerate -EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, Mo The skin regeneration effect of the metaphosphate-EEMQRR-NH 2 and methylprednisolone sulfonate-EEMQRR-NH 2 complexes was confirmed by a wound recovery experiment.
도 51은 베타메타손 발레레이트-Glutaric-EEMQRR-NH2, 베타메타손 발레레이트-Succinic-EEMQRR-NH2, 베타메타손 발레레이트-Maleic-EEMQRR-NH2, 베타메타손 발레레이트-Malonic-EEMQRR-NH2, 베타메타손 발레레이트-Adipic-EEMQRR-NH2, 베타메타손 발레레이트-Fumaric-EEMQRR-NH2, 베타메타손 발레레이트-Isophthalic-EEMQRR-NH2, 베타메타손 발레레이트-Terephthalic-EEMQRR-NH2 및 베타메타손 발레레이트-2,6-Naphthalenedicarboxylic-EEMQRR-NH2 복합체의 피부재생 효과를 상처 회복 실험을 통해 확인한 그래프이다.51 is betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2, betamethasone valerate -Maleic-EEMQRR-NH 2, betamethasone valerate -Malonic-EEMQRR-NH 2, betamethasone valerate EemQRR-NH 2 , Betamethasone valerate-Fumaric-EEMQRR-NH 2 , Betamethasone valerate-Isophthalic-EEMQRR-NH 2 , Betamethasone valerate-Terephthalic-EEMQRR- NH 2 and Betamethasone valerate-2,6-Naphthalenedicarboxylic - EEMQRR-NH 2 complex of the present invention was confirmed through wound recovery experiments.
도 52는 베타메타손 발레레이트-EEMQRR-NH2, 베타메타손 디프로피오네이트-EEMQRR-NH2, 디플루코르토론 발레레이트-Glutaroyl-EEMQRR-NH2, 하이드로코르티손 17-부틸레이트-EEMQRR-NH2, 모메타손푸로에이트-EEMQRR-NH2 및 메틸프레드니솔론 아세포네이트-EEMQRR-NH2 복합체의 세포독성을 알아보기 위해 수행한 WST-1 분석결과를 나타낸 그래프이다.Figure 52 is betamethasone valerate -EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, Mo 2 is a graph showing the results of WST-1 analysis performed to examine the cytotoxicity of methasone furoate-EEMQRR-NH 2 and methylprednisolone acetonate-EEMQRR-NH 2 complexes.
도 53은 베타메타손 발레레이트-Glutaric-EEMQRR-NH2, 베타메타손 발레레이트-Succinic-EEMQRR-NH2, 베타메타손 발레레이트-Maleic-EEMQRR-NH2, 베타메타손 발레레이트-Malonic-EEMQRR-NH2, 베타메타손 발레레이트-Adipic-EEMQRR-NH2, 베타메타손 발레레이트-Fumaric-EEMQRR-NH2, 베타메타손 발레레이트-Isophthalic-EEMQRR-NH2, 베타메타손 발레레이트-Terephthalic-EEMQRR-NH2 및 베타메타손 발레레이트-2,6-Naphthalenedicarboxylic-EEMQRR-NH2 복합체의 세포독성을 알아보기 위해 수행한 WST-1 분석결과를 나타낸 그래프이다.53 is betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2, betamethasone valerate -Maleic-EEMQRR-NH 2, betamethasone valerate -Malonic-EEMQRR-NH 2, betamethasone valerate EemQRR-NH 2 , Betamethasone valerate-Fumaric-EEMQRR-NH 2 , Betamethasone valerate-Isophthalic-EEMQRR-NH 2 , Betamethasone valerate-Terephthalic-EEMQRR- NH 2 and Betamethasone valerate-2,6-Naphthalenedicarboxylic - EEMQRR-NH 2 complex of the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 일 측면은 EEMQRR(서열번호 1)의 아미노산 서열을 가지는 헥사펩타이드와 활성물질이 결합된 활성물질-헥사펩타이드 복합체를 제공한다. One aspect of the present invention provides a hexapeptide having an amino acid sequence of EEMQRR (SEQ ID NO: 1) and an active substance-hexapeptide complex to which an active substance is bound.
상기 활성물질은 유기산일 수 있다. 구체적으로, 상기 유기산은 모노엑시드, 다이엑시드, 트라이엑시드, 지방산, 시나믹엑시드 및 아로마틱엑시드로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. 상기 유기산은 적어도 하나의 카르복시기를 가질 수 있다.The active material may be an organic acid. Specifically, the organic acid may be any one selected from the group consisting of mono-acid, di-oxide, tri-acid, fatty acid, cinnamic acid, and aromatic acid. The organic acid may have at least one carboxyl group.
상기 모노엑시드는 포름산(Formic acid), 글루쿠론산(Glucuronic acid), 락트산(Lactic acid), 메발론산(Mevalonic acid), 프로피온산(Propionic acid), 피루브산(Pyruvic acid), 퀸산(Quinic acid), 시키미산(Shikimic acid), 아비에트산(Abietic acid), 아시아틱산(Asiatic acid), 콜산(Cholic acid), 우르소디옥시콜산(Ursodeoxycholic acid) 및 우르솔산(Ursolic acid)으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. The mono-acid may be selected from the group consisting of formic acid, glucuronic acid, lactic acid, mevalonic acid, propionic acid, pyruvic acid, quinic acid, And any one selected from the group consisting of Shikimic acid, Abietic acid, Asiatic acid, Cholic acid, Ursodeoxycholic acid and Ursolic acid. Lt; / RTI >
본 발명에서 사용하는 용어 "포름산"이란, 개미산 또는 메탄산이라고도 불리며, 개미 외에 쐐기풀 등의 식물에 함유되어 있는 유기산을 의미한다. 상기 포름산의 구조는 하기 화학식 1과 같다. The term " formic acid " used in the present invention means organic acids contained in plants such as nettle, in addition to ants, also called formic acid or methaconic acid. The structure of the formic acid is shown in the following formula (1).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018010914-appb-I000001
Figure PCTKR2018010914-appb-I000001
본 발명에서 사용하는 용어 "글루쿠론산"이란, 밀짚, 목재 등의 구조다당류의 구성성분으로서 존재하고, 동물계에는 고등동물의 뮤코다당류의 주요 구성요소로, 히알루론산, 헤파린, 콘드로이틴황산 등에 함유되어 있는 유기산을 의미한다. 상기 글루쿠론산의 구조는 하기 화학식 2와 같다. The term " glucuronic acid " as used in the present invention is a constituent component of structural polysaccharides such as straw and wood, and is an essential component of mucopolysaccharides of higher animals in animal species and contained in hyaluronic acid, heparin, chondroitin sulfate and the like ≪ / RTI > The structure of the glucuronic acid is represented by the following general formula (2).
[화학식 2] (2)
Figure PCTKR2018010914-appb-I000002
Figure PCTKR2018010914-appb-I000002
본 발명에서 사용하는 용어 "락트산"이란, 젖산이라고도 불리며, 락트산균에 의해 당으로부터 생성되는 유기산을 의미한다. 상기 락트산은 자연계에 넓게 분포되어 있으며, 대부분 식물에 유리 상태로 존재하는 외에 식물의 열매 발효시에 생성된다. 상기 락트산의 구조는 하기 화학식 3과 같다.The term " lactic acid " used in the present invention is also referred to as lactic acid, and means an organic acid generated from a sugar by lactic acid bacteria. The lactic acid is widely distributed in the natural world, and most of the lactic acid exists in the free state in the plant, and is produced in the fermentation of the fruit of the plant. The structure of the lactic acid is represented by the following general formula (3).
[화학식 3](3)
Figure PCTKR2018010914-appb-I000003
Figure PCTKR2018010914-appb-I000003
본 발명에서 사용하는 용어 "메발론산"이란, 히오치산(hiochic acid)이라고도 불리며, 청주 또는 맥주에 함유되어 있는 유기산을 의미한다. 상기 메발론산은 청주(淸酒)에 번식하여 부패시키는 진성(眞性) 히오치균인 락토바실러스 헤테르히오키이(Lactobacillus heterohiochii)의 생육에 필요하다. 상기 메발론산의 구조는 하기 화학식 4와 같다. The term " mevalonic acid " used in the present invention is also referred to as hiochic acid and means an organic acid contained in sake or beer. The mevalonic acid is necessary for the growth of Lactobacillus heterohiochii , which is a genuine osteoblus that reproduces and decays in Cheongju. The structure of mevalonic acid is shown in the following chemical formula 4.
[화학식 4][Chemical Formula 4]
Figure PCTKR2018010914-appb-I000004
Figure PCTKR2018010914-appb-I000004
본 발명에서 사용하는 용어 "프로피온산"이란, 알코올 또는 프로피온산 발효의 산물로서 유미(chyle) 및 땀 속에 함유되어 있는 유기산을 의미한다. 상기 프로피온산의 구조는 하기 화학식 5와 같다. The term " propionic acid " used in the present invention means a product of fermentation of alcohol or propionic acid, and means an organic acid contained in chyle and sweat. The structure of the propionic acid is represented by the following general formula (5).
[화학식 5][Chemical Formula 5]
Figure PCTKR2018010914-appb-I000005
Figure PCTKR2018010914-appb-I000005
본 발명에서 사용하는 용어 "피루브산"이란, 세균, 효모 발효에서 엠덴-마이어호프 경로(Embden-Meyerhof Pathway) 또는 엔트너-듀도로프 경로(Entner-Doudor off Pathway)에 의해 생성되는 유기산을 의미한다. 상기 피루브산의 구조는 하기 화학식 6과 같다. The term " pyruvic acid " used in the present invention means an organic acid produced by the Emden-Meyerhof pathway or the Entner-Doudor off pathway in bacteria and yeast fermentation . The structure of the pyruvic acid is represented by the following general formula (6).
[화학식 6] [Chemical Formula 6]
Figure PCTKR2018010914-appb-I000006
Figure PCTKR2018010914-appb-I000006
본 발명에서 사용하는 용어 "퀸산"이란, 키나나무 껍질, 커피의 종자, 사과, 복숭아 등의 과실 등에 포함되어 있는 고등식물 특유의 고리구조를 가진 유기산을 의미한다. 상기 퀸산의 구조는 하기 화학식 7과 같다.The term " quinic acid " used in the present invention means an organic acid having a ring structure peculiar to higher plants, which is contained in fruit such as quince tree bark, coffee seed, apple, peach and the like. The structure of the above quinic acid is represented by the following general formula (7).
[화학식 7](7)
Figure PCTKR2018010914-appb-I000007
Figure PCTKR2018010914-appb-I000007
본 발명에서 사용하는 용어 "시키미산"이란, 퀸산의 불포화 유도체로, 붓순나무의 열매에 포함되어 있는 테트라히드로트리히드록시벤조산 일종의 유기산을 의미한다. 상기 시키미산의 구조는 하기 화학식 8과 같다. The term " shikisimo acid " used in the present invention means an unsaturated derivative of quinic acid, which is an organic acid of tetrahydrotrihydroxybenzoic acid, which is contained in the fruit of the pteridophyte. The structure of the above shikisan is represented by the following general formula (8).
[화학식 8][Chemical Formula 8]
Figure PCTKR2018010914-appb-I000008
Figure PCTKR2018010914-appb-I000008
본 발명에서 사용하는 용어 "아비에트산"이란, 송진의 주성분인 다이테르펜 일종의 유기산을 의미한다. 상기 아비에트산의 구조는 하기 화학식 9와 같다.The term " abietic acid " used in the present invention means an organic acid of ditertepen, which is the main component of the pine root. The structure of the abietic acid is shown in the following formula (9).
[화학식 9][Chemical Formula 9]
Figure PCTKR2018010914-appb-I000009
Figure PCTKR2018010914-appb-I000009
본 발명에서 사용하는 용어 "아시아틱산"이란, 센텔라아시아티카에 함유되어 있는 다마롤산 일종의 유기산을 의미한다. 상기 아시아틱산의 구조는 하기 화학식 10과 같다. The term " asialic acid " used in the present invention means an organic acid of dermal acid contained in centella asiatica. The structure of the above-mentioned asialic acid is shown in the following chemical formula (10).
[화학식 10][Chemical formula 10]
Figure PCTKR2018010914-appb-I000010
Figure PCTKR2018010914-appb-I000010
본 발명에서 사용하는 용어 "콜산"이란, 포유류, 조류, 파충류, 양서류 등 담즙을 분비하는 동물의 담즙 속에 존재하는 유기산을 의미한다. 상기 콜산의 구조는 하기 화학식 11과 같다. As used herein, the term " cholic acid " refers to an organic acid present in the bile of an animal that secretes bile, such as mammals, birds, reptiles, amphibians and the like. The structure of the cholic acid is represented by the following general formula (11).
[화학식 11](11)
Figure PCTKR2018010914-appb-I000011
Figure PCTKR2018010914-appb-I000011
본 발명에서 사용하는 용어 "우르소데옥시콜산"이란, 웅담의 주성분으로 알려진 담즙산을 의미한다. 상기 우르소데옥시콜산의 구조는 하기 화학식 12와 같다. The term " ursodeoxycholic acid " as used in the present invention means bile acid known as the main component of urethane. The structure of the above-mentioned ursodeoxycholic acid is shown in the following general formula (12).
[화학식 12][Chemical Formula 12]
Figure PCTKR2018010914-appb-I000012
Figure PCTKR2018010914-appb-I000012
본 발명에서 사용하는 용어 "우르솔산"이란, 사과, 체리 등의 열매, 잎의 왁스 상태의 피막 물질로, α-아미린계 트리테르펜 일종의 유기산을 의미한다. 상기 우르솔산의 구조는 하기 화학식 13과 같다. The term " uric acid " used in the present invention means a coating material in a waxy state such as apple, cherry, or the like, and is an organic acid of? -Amyrin type triterpene. The structure of the above uronic acid is shown in the following chemical formula (13).
[화학식 13][Chemical Formula 13]
Figure PCTKR2018010914-appb-I000013
Figure PCTKR2018010914-appb-I000013
상기 다이엑시드는 아젤라산(Azelaic acid), 디피콜린산(Dipicolinic acid), 푸마르산(Fumaric acid), 이타콘산(Itaconic acid), 말산(Malic acid), 옥살산(Oxalic acid), 숙신산(Succinic acid), 타르타르산(Tartaric acid) 및 알파-케토글루타르산(α-Ketoglutaric acid)로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. The die acid may be selected from the group consisting of azelaic acid, dipicolinic acid, fumaric acid, itaconic acid, malic acid, oxalic acid, succinic acid, Tartaric acid, and alpha -Ketoglutaric acid. [0028] The term " a "
본 발명에서 사용하는 용어 "아젤라산"이란, 밀, 호밀 및 보리 등의 곡물에 함유되어 있는 포화 디카르복실산 일종의 유기산을 의미한다. 아젤라산은 항균제로서 모낭과 모공 속의 박테리아를 감소시키며, 항산화 및 항염증 효능이 있다고 알려져 있다. 또한, 피부세포 또는 모낭이 여드름으로 이상 증식되거나 변형되었을 경우 정상으로 회복시키며, 낭포성 여드름, 여드름으로 인한 색소침착 및 붉은기를 완화시켜준다. 아젤라산의 구조는 하기 화학식 14와 같다.The term " azelaic acid " used in the present invention means an organic acid of saturated dicarboxylic acid contained in grains such as wheat, rye and barley. Azelaic acid is an antimicrobial agent that reduces bacteria in hair follicles and pores, and is known to have antioxidant and anti-inflammatory properties. In addition, when skin cells or hair follicles are abnormally proliferated or transformed into acne, they regenerate to normal, and cystic acne, acne pigmentation and redness are alleviated. The structure of the azelaic acid is shown in Formula 14 below.
[화학식 14][Chemical Formula 14]
Figure PCTKR2018010914-appb-I000014
Figure PCTKR2018010914-appb-I000014
본 발명에서 사용하는 용어 "디피콜린산"이란, 고초균을 비롯한 많은 바실러스속 세균의 포자 내에서 포함되어 있는 피리딘-디카르복실산 일종의 유기산을 의미한다. 또한, 상기 디피콜린산은 식품 중 아스코르빈산의 항산화제로서 작용한다. 상기 디피콜린산의 구조는 하기 화학식 15와 같다. The term " dipicolinic acid " as used in the present invention means an organic acid of pyridine-dicarboxylic acid contained in the spores of many Bacillus species including Bacillus subtilis. In addition, the dipicolinic acid acts as an antioxidant of ascorbic acid in food. The structure of the dipicolinic acid is shown in the following formula (15).
[화학식 15][Chemical Formula 15]
Figure PCTKR2018010914-appb-I000015
Figure PCTKR2018010914-appb-I000015
본 발명에서 사용하는 용어 "푸마르산"이란, 아이슬란드산의 이끼나 균류 등에 포함되어 있는 불포화 디카복실산 일종의 유기산을 의미한다. 상기 푸마르산의 구조는 하기 화학식 16과 같다. The term " fumaric acid " used in the present invention means an organic acid of unsaturated dicarboxylic acid contained in mosses, fungi and the like of Icelandic acid. The structure of the fumaric acid is shown in the following chemical formula (16).
[화학식 16][Chemical Formula 16]
Figure PCTKR2018010914-appb-I000016
Figure PCTKR2018010914-appb-I000016
본 발명에서 사용하는 용어 "이타콘산"이란, 메틸렌숙신산이라도 불리며, 매실초곰팡이가 당류를 이용해 생성하는 디카르복실산 일종의 유기산을 의미한다. 또한, 매실초곰팡이 이외에 자문우 병균도 이타콘산을 소량 배지중에 축적한다. 상기 이타콘산의 구조는 하기 화학식 17과 같다. The term " itaconic acid " used in the present invention is also referred to as methylenesuccinic acid, and refers to an organic acid of dicarboxylic acid produced by a fungus of plum on the basis of saccharides. In addition, itaconic acid also accumulates in a small amount of medium. The structure of itaconic acid is shown in the following chemical formula (17).
[화학식 17][Chemical Formula 17]
Figure PCTKR2018010914-appb-I000017
Figure PCTKR2018010914-appb-I000017
본 발명에서 사용하는 용어 "말산"이란, 능금산 또는 사과산이라고도 불리며, 사과나 포도 등의 과실에 많이 함유되어 있는 히드록시숙신산에 해당하는 유기산을 의미한다. 상기 말산의 구조는 하기 화학식 18과 같다.The term " malic acid " used in the present invention means an organic acid corresponding to hydroxysuccinic acid, which is also called malic acid or malic acid and is contained in fruits such as apple and grape. The structure of the malic acid is represented by the following general formula (18).
[화학식 18][Chemical Formula 18]
Figure PCTKR2018010914-appb-I000018
Figure PCTKR2018010914-appb-I000018
본 발명에서 사용하는 용어 "옥살산"이란, 칼륨염 또는 칼슘염의 형태로 식물계에 널리 분포되어 있는 유기산을 의미한다. 상기 옥살산은 2개의 카복시기가 결합된 가장 간단한 다이카복실산이다. 상기 옥살산의 구조는 하기 화학식 19와 같다. The term " oxalic acid " used in the present invention means an organic acid which is widely distributed in plants in the form of a potassium salt or a calcium salt. The oxalic acid is the simplest dicarboxylic acid with two carboxy groups attached. The structure of the oxalic acid is shown in the following chemical formula 19.
[화학식 19][Chemical Formula 19]
Figure PCTKR2018010914-appb-I000019
Figure PCTKR2018010914-appb-I000019
본 발명에서 사용하는 용어 "숙신산"이란, 호박산이라고도 불리며, 호박(amber), 테레빈유, 부족류, 지의류, 균류 등에 있는 유기산을 의미한다. 상기 숙신산은 이양자 디카르복실산이다. 상기 숙신산의 구조는 하기 화학식 20과 같다. The term " succinic acid " used in the present invention refers to organic acids such as amber, turpentine, tribe, lichen, fungi and the like, also called succinic acid. The succinic acid is dicarboxylic acid. The structure of the succinic acid is shown in Chemical Formula 20 below.
[화학식 20][Chemical Formula 20]
Figure PCTKR2018010914-appb-I000020
Figure PCTKR2018010914-appb-I000020
본 발명에서 사용하는 용어 "타르타르산"이란, 주석산이라고도 불리며, 포도와 포도주에 존재하는 디옥시숙신산 일종의 유기산을 의미한다. 타르타르산은 주석에 탄산칼슘을 넣어 생성되는 침전물에 황산을 처리하여 얻을 수 있다. 상기 타르타르산의 구조는 하기 화학식 21과 같다. The term " tartaric acid " as used in the present invention means also an organic acid of dioxysuccinic acid, which is also called tartaric acid and present in grapes and wines. Tartaric acid can be obtained by adding calcium carbonate to tin and treating the resulting precipitate with sulfuric acid. The structure of the above tartaric acid is represented by the following general formula (21).
[화학식 21][Chemical Formula 21]
Figure PCTKR2018010914-appb-I000021
Figure PCTKR2018010914-appb-I000021
본 발명에서 사용하는 용어 "알파-케토글루타르산"이란, 슈도모나스속의 미생물 발효에 의해 글루코스로부터 케토글루콘산을 거쳐 합성되는 유기산을 의미한다. 상기 알파-케토글루타르산의 구조는 하기 화학식 22와 같다. The term " alpha-ketoglutaric acid " used in the present invention means an organic acid synthesized from glucose through ketogluconic acid by microbial fermentation of Pseudomonas sp. The structure of the alpha-keto glutaric acid is shown in the following formula (22).
[화학식 22][Chemical Formula 22]
Figure PCTKR2018010914-appb-I000022
Figure PCTKR2018010914-appb-I000022
상기 트라이엑시드는 시트르산(Citric acid)일 수 있다.The triaxide may be citric acid.
본 발명에서 사용하는 용어 "시트르산"이란, 구연산이라고도 불리며, 주로 레몬 및 라임과 같은 감귤류 과일에 존재하는 유기산을 의미한다. 상기 시트르산은 하이드록시기를 가지는 다염기 카복실산의 하나로 많은 식물의 씨나 과즙 속에 유리상태의 산으로 함유되어 있다. 상기 시트르산의 구조는 하기 화학식 23과 같다. The term " citric acid " as used in the present invention means citric acid, and refers to an organic acid mainly present in citrus fruit such as lemon and lime. The citric acid is a polybasic carboxylic acid having a hydroxy group and is contained in the seed or juice of many plants as a free acid. The structure of the citric acid is shown in the following chemical formula (23).
[화학식 23](23)
Figure PCTKR2018010914-appb-I000023
Figure PCTKR2018010914-appb-I000023
상기 지방산은 리포산(Lipoic acid), 제란산(Geranic acid), 소르빈산(Sorbic acid), 바이오틴(Biotin) 및 트레티노인(Tretinoin)으로 이루어지는 군으로부터 선택되는 어느 하나일 수 있다. The fatty acid may be any one selected from the group consisting of lipoic acid, geranic acid, sorbic acid, biotin, and tretinoin.
본 발명에서 사용하는 용어 "리포산"이란, 티옥산이라고도 불리며, 지방산과 이황화결합을 가진 유기산을 의미한다. 상기 리포산의 구조는 하기 화학식 24와 같다. The term " lipoic acid " used in the present invention is also referred to as thioxane and means an organic acid having a disulfide bond with a fatty acid. The structure of the lipoic acid is shown in the following chemical formula (24).
[화학식 24]≪ EMI ID =
Figure PCTKR2018010914-appb-I000024
Figure PCTKR2018010914-appb-I000024
본 발명에서 사용하는 용어 "제란산"이란, 장미, 허브 등에 함유된 향기성분인 유기산을 의미한다. 상기 제란산의 구조는 하기 화학식 25와 같다. The term " geranic acid " used in the present invention means an organic acid which is a perfume component contained in roses, herbs and the like. The structure of the above-mentioned geranic acid is shown in the following chemical formula (25).
[화학식 25](25)
Figure PCTKR2018010914-appb-I000025
Figure PCTKR2018010914-appb-I000025
본 발명에서 사용하는 용어 "소르빈산"이란, 2,4-헥사다이엔산이로도 불리며, 마가목(Sorbus commixta Hedlund)의 미숙 과실에 함유되어 있는 유기산을 의미한다. 상기 소르빈산은 미생물의 생육을 억제하여 가공식품의 보존료로 사용된다. 상기 소르빈산의 구조는 하기 화학식 26과 같다. As used herein, the term " sorbic acid " refers to an organic acid, also called 2,4-hexadienoic acid, contained in the immature fruit of Sorbus commixta Hedlund . The sorbic acid suppresses the growth of microorganisms and is used as a preservative for processed foods. The structure of the sorbic acid is shown in the following Chemical Formula 26.
[화학식 26](26)
Figure PCTKR2018010914-appb-I000026
Figure PCTKR2018010914-appb-I000026
본 발명에서 사용하는 용어 "바이오틴"이란, 비타민 B 복합체의 하나로, 황을 함유하며 발레르산기를 가진 테트라하이드로 티오펜고리와 우레이도 고리가 접합되어 있는 유기산을 의미한다. 상기 바이오틴의 구조는 하기 화학식 27과 같다. The term " biotin " used in the present invention means a vitamin B complex, and refers to an organic acid containing a sulfur and having a valeric acid group and a tetrahydrothiophene ring bonded to a ureido ring. The structure of the biotin is shown in the following chemical formula (27).
[화학식 27](27)
Figure PCTKR2018010914-appb-I000027
Figure PCTKR2018010914-appb-I000027
본 발명에서 사용하는 용어 "트레티노인"이란, 비타민 A의 유도체인 레티노산의 전체-트랜스(all-trans)형 이성질체를 의미한다. 상기 트레티노인의 구조는 하기 화학식 28과 같다. As used herein, the term " tretinoin " refers to the all-trans isomer of retinoic acid, a derivative of vitamin A. The structure of the tretinoin is shown in the following formula (28).
[화학식 28](28)
Figure PCTKR2018010914-appb-I000028
Figure PCTKR2018010914-appb-I000028
상기 시나믹엑시드는 카페산(Caffeic acid), 계피산(Cinnamic acid), 페룰산(Ferulic acid) 및 로즈마린산(Rosmarinic acid)으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. The cinnamic acid may be any one selected from the group consisting of caffeic acid, cinnamic acid, ferulic acid and rosmarinic acid.
본 발명에서 사용하는 용어 "카페산"이란, 커피콩, 감자, 곡물, 야채 등의 다양한 농작물에 존재하는 페놀산 화합물의 일종으로서, 3-(3,4-디히드록시페닐)-2-프로페노인산(3-(3,4-dihydroxyphenyl)-2-propenoic acid)으로 표시되는 유기산을 의미한다. 상기 카페산의 구조는 하기 화학식 29와 같다. The term " caffeic acid " used in the present invention is a kind of phenolic acid compound present in various crops such as coffee beans, potatoes, grains and vegetables, and includes 3- (3,4-dihydroxyphenyl) -2- Means an organic acid represented by 3- (3,4-dihydroxyphenyl) -2-propenoic acid. The structure of the caffeic acid is shown in the following formula (29).
[화학식 29][Chemical Formula 29]
Figure PCTKR2018010914-appb-I000029
Figure PCTKR2018010914-appb-I000029
본 발명에서 사용하는 용어 "계피산"이란, 계피의 기름이나, 때죽나무와 같은 발삼나무에 함유되어 있는 불포화 카르복실산 일종의 유기산을 의미한다. 상기 계피산의 구조는 하기 화학식 30과 같다. The term " cinnamic acid " used in the present invention means an organic acid of unsaturated carboxylic acid contained in oil of cinnamon or balsam tree such as quercus variabilis. The structure of cinnamic acid is shown in the following chemical formula (30).
[화학식 30](30)
Figure PCTKR2018010914-appb-I000030
Figure PCTKR2018010914-appb-I000030
본 발명에서 사용하는 용어 "페룰산"이란, 식물의 세포벽을 형성하는 리그닌의 전구체 물질을 의미한다. 상기 페룰산의 구조는 하기 화학식 31과 같다.The term " ferulic acid " used in the present invention means a precursor substance of lignin forming the cell wall of a plant. The structure of the ferric acid is shown in the following formula (31).
[화학식 31](31)
Figure PCTKR2018010914-appb-I000031
Figure PCTKR2018010914-appb-I000031
본 발명에서 사용하는 용어 "로즈마린산"이란, 주로 박하, 스피아민트, 로즈마리와 같은 허브식물에 함유되어 있는 유기산을 의미한다. 상기 로즈마린산의 구조는 하기 화학식 32와 같다. The term " rosmarinic acid " as used in the present invention means an organic acid mainly contained in herbal plants such as peppermint, spearmint, and rosemary. The structure of the above rosmarinic acid is shown in Formula 32 below.
[화학식 32](32)
Figure PCTKR2018010914-appb-I000032
Figure PCTKR2018010914-appb-I000032
상기 아로마틱엑시드는 니코틴산(Nicotinic acid) 및 시링산(Syringic acid)으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. The aromatic acid may be any one selected from the group consisting of nicotinic acid and syringic acid.
본 발명에서 사용하는 용어 "니코틴산"이란, 비타민 B3 또는 나이아신(niacin)이라고도 불리며, 동물의 간, 효모, 콩류, 곡식 등 생체 내에 널리 존재하는 피리딘-3 카복실산 일종의 유기산을 의미한다. 상기 니코틴산의 구조는 하기 화학식 33과 같다. The term " nicotinic acid " used in the present invention is also referred to as vitamin B3 or niacin, and refers to an organic acid of pyridine-3 carboxylic acid widely present in vivo such as liver, yeast, legumes and cereals of animals. The structure of the nicotinic acid is shown in the following chemical formula (33).
[화학식 33](33)
Figure PCTKR2018010914-appb-I000033
Figure PCTKR2018010914-appb-I000033
본 발명에서 사용하는 용어 "시링산"이란, 아카시아(Robinia pseudacacia L), 카스카라 사그라다(Cascara sagrada) 등의 식물에 함유되어 있는 트리히드록시 벤조산 일종의 유기산을 의미한다. 상기 시링산의 구조는 하기 화학식 34와 같다. The term " sicric acid " used in the present invention means an organic acid of trihydroxybenzoic acid contained in plants such as Robinia pseudacacia L and Cascara sagrada . The structure of the above Sic acid is shown in the following chemical formula (34).
[화학식 34](34)
Figure PCTKR2018010914-appb-I000034
Figure PCTKR2018010914-appb-I000034
본 발명의 활성물질-헥사펩타이드 복합체에서 활성물질이 유기산인 경우, 유기산과 결합된 헥사펩타이드를 "유기산-헥사펩타이드 복합체"로 명명하였다. When the active substance in the active substance-hexapeptide complex of the present invention is an organic acid, the hexa-peptide bonded to the organic acid is referred to as an " organic acid-hexapeptide complex ".
구체적으로, 본 발명은 EEMQRR(서열번호 1)의 아미노산 서열을 가지는 헥사펩타이드에 유기산이 결합된 유기산-헥사펩타이드 복합체를 제공한다.Specifically, the present invention provides an organic acid-hexapeptide complex wherein an organic acid is bonded to a hexapeptide having an amino acid sequence of EEMQRR (SEQ ID NO: 1).
상기 유기산은 헥사펩타이드의 N-말단, C-말단 또는 곁사슬에 결합할 수 있다. 구체적으로, 상기 유기산의 카르복시기는 헥사펩타이드의 N-말단과 펩타이드 결합을 할 수 있다. The organic acid may be bonded to the N-terminal, C-terminal or side chain of the hexapeptide. Specifically, the carboxyl group of the organic acid may be peptide-linked to the N-terminal of the hexapeptide.
상기 유기산은 링커를 통해 헥사펩타이드의 C-말단 결합할 수 있다. 이때, 유기산은 치환 또는 비치환된 C1-6 등의 링커를 통해 헥사펩타이드의 C-말단에 결합될 수 있다. 본 발명의 일실시예에서, 상기 링커로 에틸렌 글리콜을 사용하였다. 또한, 상기 유기산은 헥사펩타이드의 C-말단이 카르복시기가 아마이드기로 치환된 헥사펩타이드와 펩타이드 결합할 수 있다. The organic acid can be C-terminally bound to the hexapeptide through a linker. At this time, the organic acid may be bonded to the C-terminal of the hexapeptide through a substituted or unsubstituted C 1-6 linker. In one embodiment of the present invention, ethylene glycol was used as the linker. In addition, the organic acid may be peptide-bonded to a hexapeptide in which the C-terminal of the hexapeptide is substituted with a carboxyamide amide group.
상기 유기산은 헥사펩타이드의 곁사슬에 결합할 수 있다. 구체적으로, 상기 유기산은 헥사펩타이드의 곁사슬의 카르복시기 또는 아마이드기 위치에 결합할 수 있다. 이때, 유기산이 카르복시기 위치에 결합하는 경우, 에틸렌 글리콜 등의 링커를 통해 결합할 수 있으며, 유기산이 아마이드기 위치에 결합하는 경우 펩타이드 결합할 수 있다. The organic acid may bind to the side chain of the hexapeptide. Specifically, the organic acid may be bonded to the carboxy group or the amide group position of the side chain of the hexapeptide. In this case, when the organic acid is bonded to the carboxy group, it can be bonded through a linker such as ethylene glycol or the like, and when the organic acid is bonded to the amide group, the peptide bond can be achieved.
상기 유기산-헥사펩타이드 복합체의 일구현예는 하기 화학식 35로 표시되는 것일 수 있다.One embodiment of the organic acid-hexapeptide complex may be represented by the following chemical formula (35).
[화학식 35](35)
Figure PCTKR2018010914-appb-I000035
Figure PCTKR2018010914-appb-I000035
상기 식에서, X는 유기산이며, R'및 R"가 각각 독립적으로 수소 또는 C1-3 알킬이다.Wherein X is an organic acid and R 'and R " are each independently hydrogen or C 1-3 alkyl.
또한, 상기 유기산이 링커를 통해 헥사펩타이드의 N-말단과 결합한 복합체의 일구현예는 하기 화학식 [35-1]로 표시되는 것일 수 있다.An embodiment of the complex in which the organic acid is bound to the N-terminus of the hexapeptide through a linker may be represented by the following chemical formula [35-1].
[화학식 35-1][Formula 35-1]
Figure PCTKR2018010914-appb-I000036
Figure PCTKR2018010914-appb-I000036
상기 식에서, X는 유기산이며, L은 링커이며, R'및 R"가 각각 독립적으로 수소 또는 C1-3 알킬이다.Wherein X is an organic acid, L is a linker, and R 'and R "are each independently hydrogen or C 1-3 alkyl.
본 발명에서 사용하는 용어 '헥사펩타이드'란, Glu-Glu-Met-Gln-Arg-Arg의 아미노산 서열을 갖는 헥사펩타이드를 의미한다. 또한, 상기 헥사펩타이드는 헥사펩타이드의 C-말단에 카르복시기가 아마이드기로 치환된 것일 수 있다. 상기 헥사펩타이드는 서열번호 1로 표시되는 아미노산 서열일 수 있다.The term "hexapeptide" used in the present invention means a hexapeptide having the amino acid sequence of Glu-Glu-Met-Gln-Arg-Arg. Further, the hexapeptide may be one in which the carboxy group is substituted with an amide group at the C-terminal of the hexapeptide. The hexapeptide may be an amino acid sequence represented by SEQ ID NO: 1.
상기 아마이드기는 1차, 2차 및 3차 아마이드기로 이루어지는 군으로부터 선택되는 어느 하나의 아마이드기일 수 있다. 바람직하게는, 상기 아미이드기는 1차 아마이드기일 수 있다. 상기 헥사펩타이드 구조의 일구현예는 하기 화학식 36과 같다. The amide group may be any one of an amide group selected from the group consisting of primary, secondary and tertiary amide groups. Preferably, the amide group may be a primary amide group. An embodiment of the hexapeptide structure is represented by the following chemical formula (36).
[화학식 36](36)
Figure PCTKR2018010914-appb-I000037
Figure PCTKR2018010914-appb-I000037
상기 유기산-헥사펩타이드 복합체의 화학식은 표 1에 나타내었다. The chemical formulas of the organic acid-hexapeptide complex are shown in Table 1.
1One
Figure PCTKR2018010914-appb-I000038
Figure PCTKR2018010914-appb-I000038
22
Figure PCTKR2018010914-appb-I000039
Figure PCTKR2018010914-appb-I000039
33
Figure PCTKR2018010914-appb-I000040
Figure PCTKR2018010914-appb-I000040
44
Figure PCTKR2018010914-appb-I000041
Figure PCTKR2018010914-appb-I000041
55
Figure PCTKR2018010914-appb-I000042
Figure PCTKR2018010914-appb-I000042
66
Figure PCTKR2018010914-appb-I000043
Figure PCTKR2018010914-appb-I000043
77
Figure PCTKR2018010914-appb-I000044
Figure PCTKR2018010914-appb-I000044
88
Figure PCTKR2018010914-appb-I000045
Figure PCTKR2018010914-appb-I000045
99
Figure PCTKR2018010914-appb-I000046
Figure PCTKR2018010914-appb-I000046
1010
Figure PCTKR2018010914-appb-I000047
Figure PCTKR2018010914-appb-I000047
1111
Figure PCTKR2018010914-appb-I000048
Figure PCTKR2018010914-appb-I000048
1212
Figure PCTKR2018010914-appb-I000049
Figure PCTKR2018010914-appb-I000049
1313
Figure PCTKR2018010914-appb-I000050
Figure PCTKR2018010914-appb-I000050
1414
Figure PCTKR2018010914-appb-I000051
Figure PCTKR2018010914-appb-I000051
1515
Figure PCTKR2018010914-appb-I000052
Figure PCTKR2018010914-appb-I000052
1616
Figure PCTKR2018010914-appb-I000053
Figure PCTKR2018010914-appb-I000053
1717
Figure PCTKR2018010914-appb-I000054
Figure PCTKR2018010914-appb-I000054
1818
Figure PCTKR2018010914-appb-I000055
Figure PCTKR2018010914-appb-I000055
1919
Figure PCTKR2018010914-appb-I000056
Figure PCTKR2018010914-appb-I000056
2020
Figure PCTKR2018010914-appb-I000057
Figure PCTKR2018010914-appb-I000057
2121
Figure PCTKR2018010914-appb-I000058
Figure PCTKR2018010914-appb-I000058
2222
Figure PCTKR2018010914-appb-I000059
Figure PCTKR2018010914-appb-I000059
2323
Figure PCTKR2018010914-appb-I000060
Figure PCTKR2018010914-appb-I000060
2424
Figure PCTKR2018010914-appb-I000061
Figure PCTKR2018010914-appb-I000061
2525
Figure PCTKR2018010914-appb-I000062
Figure PCTKR2018010914-appb-I000062
2626
Figure PCTKR2018010914-appb-I000063
Figure PCTKR2018010914-appb-I000063
2727
Figure PCTKR2018010914-appb-I000064
Figure PCTKR2018010914-appb-I000064
2828
Figure PCTKR2018010914-appb-I000065
Figure PCTKR2018010914-appb-I000065
2929
Figure PCTKR2018010914-appb-I000066
Figure PCTKR2018010914-appb-I000066
3030
Figure PCTKR2018010914-appb-I000067
Figure PCTKR2018010914-appb-I000067
3131
Figure PCTKR2018010914-appb-I000068
Figure PCTKR2018010914-appb-I000068
3232
Figure PCTKR2018010914-appb-I000069
Figure PCTKR2018010914-appb-I000069
3333
Figure PCTKR2018010914-appb-I000070
Figure PCTKR2018010914-appb-I000070
3434
Figure PCTKR2018010914-appb-I000071
Figure PCTKR2018010914-appb-I000071
3535
Figure PCTKR2018010914-appb-I000072
Figure PCTKR2018010914-appb-I000072
3636
Figure PCTKR2018010914-appb-I000073
Figure PCTKR2018010914-appb-I000073
3737
Figure PCTKR2018010914-appb-I000074
Figure PCTKR2018010914-appb-I000074
본 발명자들은 천연물질을 이용한 화장료 조성물을 개발하기 위해, 자연계에 존재하는 유기산과 헥사펩타이드를 결합시킨 유기산-헥사펩타이드 복합체를 제조하였다(도 1 내지 도 34). In order to develop a cosmetic composition using a natural substance, the present inventors prepared an organic acid-hexapeptide complex in which an organic acid and a hexapeptide existing in nature are combined (Fig. 1 to Fig. 34).
또한, 본 발명자들은 상기 유기산-헥사펩타이드 복합체가 비타민 C와 동등한 정도의 우수한 항산화 활성을 나타냄을 확인하였다(표 7). 나아가, 본 발명자들은 상기 유기산-헥사펩타이드 복합체가 피부재생 및 상처 회복에 탁월한 효과를 나타내는 것을 확인하였다(도 38a 내지 도 38c). 따라서, 본 발명의 유기산-헥사펩타이드 복합체를 유효성분으로 포함하는 피부재생 및 상처 치료용 조성물로서 유용하게 사용될 수 있다. In addition, the present inventors confirmed that the above organic acid-hexapeptide complex exhibits an antioxidative activity equivalent to that of vitamin C (Table 7). Furthermore, the present inventors confirmed that the above organic acid-hexapeptide complex exhibited excellent effects on skin regeneration and wound healing (Figs. 38A to 38C). Therefore, it can be usefully used as a composition for skin regeneration and wound healing, which comprises the organic acid-hexapeptide complex of the present invention as an active ingredient.
또한, 상기 활성물질은 스테로이드일 수 있다. 구체적으로, 상기 스테로이드는 베타메타손(betamethasone), 덱사메타손(dexamethasone), 하이드로코르티손(hydrocortisone), 프리드니손(prednisone), 메틸프리드니손(methyl prednisone), 에스트리올(estriol), 베타메타손 발레레이트(Betamethasone valerate), 베타메타손 디프로피오네이트(Betamethasone dipropionate), 모메타손푸로에이트(Mometasone furoate), 하이드로코르티손 17-부틸레이트(Hydrocortisone 17-butyrate), 디플루코르토론 발레레이트(Diflucortolone valerate) 및 메틸프레드니솔론 아세포네이트(Methylprednisolone aceponate)로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. In addition, the active substance may be steroid. Specifically, the steroid may be selected from the group consisting of betamethasone, dexamethasone, hydrocortisone, prednisone, methyl prednisone, estriol, betamethasone valerate, valerate, betamethasone dipropionate, Mometasone furoate, Hydrocortisone 17-butyrate, Diflucortolone valerate and methylprednisolone < RTI ID = 0.0 > Methylprednisolone aceponate, and the like.
본 발명에서 사용하는 용어 "베타메타손"이란, 당질코르티코이드 작용을 나타내는 부신피질 호르몬제를 의미한다. 상기 베타메타손은 우수한 항염효과를 나타낸다. 상기 베타메타손의 구조는 하기 화학식 37과 같다.As used herein, the term " betamethasone " refers to a glucocorticoid hormone that exhibits a glucocorticoid action. The betamethasone exhibits excellent anti-inflammatory effect. The structure of the betamethasone is shown in the following chemical formula (37).
[화학식 37](37)
Figure PCTKR2018010914-appb-I000075
Figure PCTKR2018010914-appb-I000075
본 발명에서 사용하는 용어 "덱사메타손"이란, 프레드니솔론의 유도체로서 당질 코르티코이드 작용을 나타내는 부신피질 호르몬제를 의미한다. 상기 덱사메타손의 구조는 하기 화학식 38과 같다. The term " dexamethasone " as used in the present invention means a derivative of prednisolone which is a glucocorticoid hormone agent exhibiting glucocorticoid action. The structure of dexamethasone is shown in Formula 38 below.
[화학식 38](38)
Figure PCTKR2018010914-appb-I000076
Figure PCTKR2018010914-appb-I000076
본 발명에서 사용하는 용어 "하이드로코르티손"이란, 코르티손이라도고 불리며, 당질 코르티코이드 작용을 나타내는 부신피질 호르몬제를 의미한다. 상기 하이드로코르티손의 구조는 하기 화학식 39와 같다. The term " hydrocortisone " used in the present invention means a corticosteroid hormone which is also called cortisone and exhibits a glucocorticoid action. The structure of hydrocortisone is shown in the following formula (39).
[화학식 39][Chemical Formula 39]
Figure PCTKR2018010914-appb-I000077
Figure PCTKR2018010914-appb-I000077
본 발명에서 사용하는 용어 "프레드니손"이란, 코르티손 유도체로, 당질 코르티코이드 작용을 나타내는 부신피질 호르몬제를 의미한다. 상기 프레드니손의 구조는 하기 화학식 40과 같다. As used herein, the term " prednisone " means a cortisone derivative, which is a glucocorticoid hormone that exhibits a glucocorticoid action. The structure of prednisone is shown in the following chemical formula (40).
[화학식 40](40)
Figure PCTKR2018010914-appb-I000078
Figure PCTKR2018010914-appb-I000078
본 발명에서 사용하는 용어 "메틸프레드니손"이란, 프레드니손의 6번째 탄소위치에 결합된 수소를 알파 메틸기로 치환시킨 부신피질 호르몬제를 의미한다. 상기 메틸프레드니손의 구조는 하기 화학식 41과 같다. The term " methylprednisone " used in the present invention means an adrenocorticotropic agent in which hydrogen bonded at the 6th carbon position of prednisone is substituted with an alpha methyl group. The structure of the methyl prednisone is shown in the following chemical formula (41).
[화학식 41](41)
Figure PCTKR2018010914-appb-I000079
Figure PCTKR2018010914-appb-I000079
본 발명에서 사용하는 용어 "에스트리올"이란, 난포 호르몬에 속하는 에스트로겐 일종의 호르몬제를 의미한다. 상기 에스트리올의 구조는 하기 화학식 42와 같다. The term " estriol " used in the present invention means a kind of estrogen hormone belonging to follicular hormone. The structure of the estriol is represented by the following general formula (42).
[화학식 42](42)
Figure PCTKR2018010914-appb-I000080
Figure PCTKR2018010914-appb-I000080
상기 베타메타손 발레레이트의 구조는 하기 화학식 43과 같다. The structure of the betamethasone valerate is represented by the following general formula (43).
[화학식 43] (43)
Figure PCTKR2018010914-appb-I000081
Figure PCTKR2018010914-appb-I000081
상기 베타메타손 디프로피오네이트의 구조는 하기 화학식 44와 같다. The structure of the betamethasone dipropionate is shown in the following chemical formula (44).
[화학식 44](44)
Figure PCTKR2018010914-appb-I000082
Figure PCTKR2018010914-appb-I000082
상기 디플루코르토론 발레레이트의 구조는 하기 화학식 45와 같다. The structure of the difluorocarborol valerate is shown in the following chemical formula (45).
[화학식 45][Chemical Formula 45]
Figure PCTKR2018010914-appb-I000083
Figure PCTKR2018010914-appb-I000083
상기 하이드로코르티손 17-부틸레이트의 구조는 하기 화학식 46과 같다. The structure of hydrocortisone 17-butylate is shown in the following chemical formula 46.
[화학식 46](46)
Figure PCTKR2018010914-appb-I000084
Figure PCTKR2018010914-appb-I000084
상기 모메타손푸로에이트의 구조는 하기 화학식 47과 같다. The structure of the above-mentioned mometasone furoate is shown in the following chemical formula (47).
[화학식 47](47)
Figure PCTKR2018010914-appb-I000085
Figure PCTKR2018010914-appb-I000085
상기 메틸프레드니솔론 아세포네이트의 구조는 하기 화학식 48과 같다. The structure of the methylprednisolone sulfonate is shown in the following chemical formula (48).
[화학식 48](48)
Figure PCTKR2018010914-appb-I000086
Figure PCTKR2018010914-appb-I000086
본 발명의 활성물질-헥사펩타이드 복합체에서 활성물질이 스테로이드인 경우, 스테로이드와 결합된 헥사펩타이드를 "변이된 헥사펩타이드 복합체"로 명명하였다. When the active substance in the active substance-hexapeptide complex of the present invention is a steroid, the hexapeptide bound to the steroid is referred to as " mutated hexapeptide complex ".
구체적으로, 본 발명은 EEMQRR(서열번호 1)의 아미노산 서열을 가지는 헥사펩타이드에 스테로이드가 결합된 변이된 헥사펩타이드 복합체를 제공한다.Specifically, the present invention provides mutated hexapeptide complexes in which a steroid is conjugated to a hexapeptide having the amino acid sequence of EEMQRR (SEQ ID NO: 1).
상기 스테로이드는 헥사펩타이드의 N-말단, C-말단 또는 곁사슬에 결합할 수 있다. 구체적으로, 상기 스테로이드는 링커를 통해 헥사펩타이드의 N-말단, C-말단 또는 곁사슬에 결합할 수 있다. The steroid may bind to the N-terminal, C-terminal or side chain of the hexapeptide. Specifically, the steroid may be linked to the N-terminal, C-terminal, or side chain of the hexapeptide via a linker.
상기 스테로이드는 헥사펩타이드의 N-말단, C-말단 또는 곁사슬에 위치한 카르복시기나 아마이드기에 링커를 통해 결합할 수 있다. 상기 곁사슬에 위치한 카르복시기는 글루탐산의 곁사슬에 위치한 것일 수 있다. 또한, 상기 곁사슬에 위치한 아마이드기는 글루타민의 곁사슬에 위치한 것일 수 있다. The steroid may be linked to the carboxyl or amide group at the N-terminus, C-terminus, or side chain of the hexapeptide through a linker. The carboxyl group located in the side chain may be located on the side chain of glutamic acid. In addition, the amide group on the side chain may be located on the side chain of glutamine.
상기 변이된 헥사펩타이드 복합체의 일구현예는 하기 화학식 49로 표시되는 것일 수 있다.One embodiment of the mutated hexapeptide complex may be represented by the following formula (49).
[화학식 49](49)
Figure PCTKR2018010914-appb-I000087
Figure PCTKR2018010914-appb-I000087
상기 식에서, Y는 스테로이드이며, R'및 R"가 각각 독립적으로 수소 또는 C1-3 알킬이다.Wherein Y is a steroid and R 'and R " are each independently hydrogen or C 1-3 alkyl.
상기 스테로이드는 링커를 통해 헥사펩타이드의 N-말단과 결합한 복합체의 일구현예는 하기 화학식 49-1로 표시되는 것일 수 있다.An embodiment of the complex in which the steroid is bound to the N-terminus of the hexapeptide through a linker may be represented by the following formula (49-1).
[화학식 49-1][Formula 49-1]
Figure PCTKR2018010914-appb-I000088
Figure PCTKR2018010914-appb-I000088
Y는 스테로이드이며, L'는 링커이다. 구체적으로, 상기 링커는 하기 화학식 50으로 표시되는 것일 수 있다. Y is a steroid, and L 'is a linker. Specifically, the linker may be represented by the following chemical formula (50).
[화학식 50] (50)
Figure PCTKR2018010914-appb-I000089
Figure PCTKR2018010914-appb-I000089
이때, 상기 Z는 C1-10 알킬렌, C2-12 알케닐렌 또는 C6-14 아릴렌이다.Wherein Z is C 1-10 alkylene, C 2-12 alkenylene or C 6-14 arylene.
당분야에서 사용되는 관례에 따라, 본원의 구조식에서
Figure PCTKR2018010914-appb-I000090
은 핵 또는 골격 구조에 대한 잔기 또는 치환기의 부착 지점인 결합을 나타내기 위해 사용된다.
According to the convention used in the art,
Figure PCTKR2018010914-appb-I000090
Is used to denote a bond that is the point of attachment of a moiety or substituent to the nucleus or backbone structure.
본 발명에서 사용하는 용어 "알킬렌"이란, 모(parent) 알칸의 동일하거나 상이한 2개의 탄소원자로부터 2개의 수소 원자가 제거되어 유도되는 2개의 1가 라디칼 중심을 갖는, 분지쇄 또는 직쇄 또는 고리형인 포화 탄화수소 라디칼을 지칭한다. 예를 들면, 알킬렌 기는 1 내지 20개의 탄소원자, 1 내지 10개의 탄소원자, 또는 1 내지 6개의 탄소원자를 가질 수 있다. 전형적인 알킬렌 라디칼은, 메틸렌(-CH2-), 1,1-에틸(-CH(CH3)-), 1,2-에틸(-CH2CH2-), 1,1-프로필(-CH(CH2CH3)-), 1,2-프로필(-CH2CH(CH3)-), 1,3-프로필(-CH2CH2CH2-), 1,4-부틸(-CH2CH2CH2CH2-) 등을 포함하지만, 이에 한정되지는 않는다.As used herein, the term " alkylene " refers to a branched or straight or cyclic, branched or cyclic, saturated or unsaturated, monovalent radical having two monovalent radical centers derived by removal of two hydrogen atoms from the same or different two carbon atoms of the parent alkane Quot; refers to a saturated hydrocarbon radical. For example, an alkylene group may have from 1 to 20 carbon atoms, from 1 to 10 carbon atoms, or from 1 to 6 carbon atoms. Typical alkylene radicals are methylene (-CH 2 -), 1,1- ethyl (-CH (CH 3) -) , 1,2- ethyl (-CH 2 CH 2 -), 1,1- propyl (- (CH 2 CH 3 ) -), 1,2-propyl (-CH 2 CH (CH 3 ) -), 1,3-propyl (-CH 2 CH 2 CH 2 - CH 2 CH 2 CH 2 CH 2 -), and the like.
본 발명에서 사용하는 용어 "알케닐렌"이란, 모 알켄의 동일하거나 상이한 2개의 탄소원자로부터 2개의 수소 원자가 제거되어 유도되는 2개의 1가 라디칼 중심을 갖는, 분지쇄 또는 직쇄 또는 고리형인 불포화 탄화수소 라디칼을 지칭한다. 예를 들면, 알케닐렌 기는 1 내지 20개의 탄소원자, 1 내지 10개의 탄소원자, 또는 1 내지 6개의 탄소원자를 가질 수 있다. 전형적인 알케닐렌 기는 1,2-에틸렌(-CH=CH-)을 포함하지만, 이에 한정되지는 않는다.The term " alkenylene " as used herein refers to an unsaturated hydrocarbon radical having two monovalent radical centers derived from two identical or different two carbon atoms of the parent alkane, Quot; For example, the alkenylene group may have from 1 to 20 carbon atoms, from 1 to 10 carbon atoms, or from 1 to 6 carbon atoms. Typical alkenylene groups include, but are not limited to, 1,2-ethylene (-CH = CH-).
당업계의 숙련자라면, "알킬", "아릴", "헤테로사이클릴" 등의 잔기가 하나 이상의 치환기에 의해 치환되는 경우, 이들은 선택적으로, "알킬렌", "아릴렌", "헤테로사이클릴렌" 등의 잔기로서 지칭될 수 있음(즉, 모체인 "알킬", "아릴", "헤테로사이클릴" 잔기의 하나 이상의 수소 원자가 언급한 치환기로 치환됨을 의미한다)을 인식할 것이다. "알킬", "아릴", "헤테로사이클릴" 등와 같은 잔기가 본원에서 "치환된" 것으로 지칭되거나, 도면상 치환된 것(또는 임의로 치환된 것, 예를 들어 치환기의 개수가 0 내지 양수인 경우)으로 도시한 경우, "알킬", "아릴", "헤테로사이클릴" 등의 용어는 "알킬렌", "아릴렌", "헤테로사이클릴렌" 등과 상호교환적인 것으로 이해되어야만 한다.It will be understood by those skilled in the art that when moieties such as "alkyl", "aryl", "heterocyclyl", etc. are substituted by one or more substituents, they are optionally substituted with one or more substituents such as "alkylene", "arylene", "heterocyclylene (I. E., Means that at least one hydrogen atom of the parent " alkyl ", " aryl ", or " heterocyclyl " moiety is substituted by the substituent referred to above). The moieties such as " alkyl ", " aryl ", " heterocyclyl ", and the like are referred to herein as " substituted ", or alternatively (or optionally substituted, such as where the number of substituents is 0 to positive , It is to be understood that the terms "alkyl", "aryl", "heterocyclyl" and the like are interchangeable with "alkylene", "arylene", "heterocyclylene" and the like.
본 발명에서 사용하는 용어 "아릴"이란, 모 방향족 고리 시스템의 6개의 탄소원자로부터 1개의 수소 원자가 제거되어 유도되는 방향족 탄화수소 라디칼을 의미한다. 예를 들면, 아릴 기는 6 내지 20개의 탄소원자, 6 내지 14개의 탄소원자, 또는 6 내지 12개의 탄소원자를 가질 수 있다. 전형적인 아릴 기는, 벤젠(예를 들면, 페닐), 치환된 벤젠, 치환되거나 비치환된 나프탈렌, 치환되거나 비치환된 안트라센, 치환되거나 비치환된 바이페닐 등으로부터 유도되는 라디칼을 포함하지만, 이에 한정되지는 않는다.The term " aryl " as used herein refers to an aromatic hydrocarbon radical derived from six carbon atoms of a parent aromatic ring system by removal of one hydrogen atom. For example, the aryl group may have 6 to 20 carbon atoms, 6 to 14 carbon atoms, or 6 to 12 carbon atoms. Exemplary aryl groups include, but are not limited to, radicals derived from benzene (e.g., phenyl), substituted benzene, substituted or unsubstituted naphthalene, substituted or unsubstituted anthracene, substituted or unsubstituted biphenyl, .
구체적으로, 상기 X는
Figure PCTKR2018010914-appb-I000091
,
Figure PCTKR2018010914-appb-I000092
,
Figure PCTKR2018010914-appb-I000093
,
Figure PCTKR2018010914-appb-I000094
,
Figure PCTKR2018010914-appb-I000095
,
Figure PCTKR2018010914-appb-I000096
,
Figure PCTKR2018010914-appb-I000097
,
Figure PCTKR2018010914-appb-I000098
Figure PCTKR2018010914-appb-I000099
로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
Specifically, X represents
Figure PCTKR2018010914-appb-I000091
,
Figure PCTKR2018010914-appb-I000092
,
Figure PCTKR2018010914-appb-I000093
,
Figure PCTKR2018010914-appb-I000094
,
Figure PCTKR2018010914-appb-I000095
,
Figure PCTKR2018010914-appb-I000096
,
Figure PCTKR2018010914-appb-I000097
,
Figure PCTKR2018010914-appb-I000098
And
Figure PCTKR2018010914-appb-I000099
≪ / RTI >
구체적으로, 상기 링커는 글루타르산(Glutaric acid), 숙신산(Succinic acid), 말레산(Maleic acid), 말론산(Malonic acid), 아디프산(Adipic acid), 푸마르산(Fumaric acid), 이소프탈산(Isophthalic acid), 테레프탈산(Terephthalic acid) 및 2,6-나프탈렌디카르복시산(2,6-Naphthalenedicarboxylic acid)로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. Specifically, the linker is selected from the group consisting of glutaric acid, succinic acid, maleic acid, malonic acid, adipic acid, fumaric acid, isophthalic acid, Isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid.
본 발명에서 사용하는 용어 '헥사펩타이드'란, Glu-Glu-Met-Gln-Arg-Arg의 아미노산 서열을 갖는 헥사펩타이드를 의미한다. 또한, 상기 헥사펩타이드는 헥사펩타이드의 C-말단에 카르복시기가 아마이드기로 치환된 것일 수 있다. 상기 헥사펩타이드는 서열번호 1로 표시되는 아미노산 서열일 수 있다.The term "hexapeptide" used in the present invention means a hexapeptide having the amino acid sequence of Glu-Glu-Met-Gln-Arg-Arg. Further, the hexapeptide may be one in which the carboxy group is substituted with an amide group at the C-terminal of the hexapeptide. The hexapeptide may be an amino acid sequence represented by SEQ ID NO: 1.
상기 아마이드기는 1차, 2차 및 3차 아마이드기로 이루어지는 군으로부터 선택되는 어느 하나의 아마이드기일 수 있다. 바람직하게는, 상기 아미이드기는 1차 아마이드기일 수 있다. 상기 헥사펩타이드 구조의 일구현예는 유기산-헥사펩타이드 복합체에서 상술한 바와 동일하다. The amide group may be any one of an amide group selected from the group consisting of primary, secondary and tertiary amide groups. Preferably, the amide group may be a primary amide group. One embodiment of the hexapeptide structure is the same as described above in the organic acid-hexapeptide complex.
상기 6종의 스테로이드가 결합된 헥사펩타이드 복합체의 화학식을 표 2에 나타내었다.The formulas of the hexapeptide complex to which the above six steroids are bound are shown in Table 2.
1One
Figure PCTKR2018010914-appb-I000100
Figure PCTKR2018010914-appb-I000100
22
Figure PCTKR2018010914-appb-I000101
Figure PCTKR2018010914-appb-I000101
33
Figure PCTKR2018010914-appb-I000102
Figure PCTKR2018010914-appb-I000102
44
Figure PCTKR2018010914-appb-I000103
Figure PCTKR2018010914-appb-I000103
55
Figure PCTKR2018010914-appb-I000104
Figure PCTKR2018010914-appb-I000104
66
Figure PCTKR2018010914-appb-I000105
Figure PCTKR2018010914-appb-I000105
또한, 상기 8종의 링커를 통해 베타메타손이 결합된 헥사펩타이드 복합체의 구조를 표 3에 나타내었다.Table 3 shows the structure of the hexapeptide complex to which betamethasone is linked through the above 8 linkers.
1One
Figure PCTKR2018010914-appb-I000106
Figure PCTKR2018010914-appb-I000106
22
Figure PCTKR2018010914-appb-I000107
Figure PCTKR2018010914-appb-I000107
33
Figure PCTKR2018010914-appb-I000108
Figure PCTKR2018010914-appb-I000108
44
Figure PCTKR2018010914-appb-I000109
Figure PCTKR2018010914-appb-I000109
55
Figure PCTKR2018010914-appb-I000110
Figure PCTKR2018010914-appb-I000110
66
Figure PCTKR2018010914-appb-I000111
Figure PCTKR2018010914-appb-I000111
77
Figure PCTKR2018010914-appb-I000112
Figure PCTKR2018010914-appb-I000112
88
Figure PCTKR2018010914-appb-I000113
Figure PCTKR2018010914-appb-I000113
또한, 상기 9종의 링커를 통해 베타메타손 발레레이트가 결합된 헥사펩타이드 복합체를 표 4에 나타내었다. Table 4 shows the hexapeptide complex to which betamethasone valerate was bound through the above 9 kinds of linkers.
1One Betamethasone valerate-glutaroyl-EEMQRR-NH2 Betamethasone valerate-glutaroyl-EEMQRR-NH 2
22 Betamethasone valerate-malonoyl-EEMQRR-NH2 Betamethasone valerate-malonoyl-EEMQRR-NH 2
33 Betamethasone valerate-terephthaloyl-EEMQRR-NH2 Betamethasone valerate-terephthaloyl-EEMQRR-NH 2
44 Betamethasone valerate-succinoyl-EEMQRR-NH2 Betamethasone valerate-succinoyl-EEMQRR-NH 2
55 Betamethasone valerate-adipoyl-EEMQRR-NH2 Betamethasone valerate-adipoyl-EEMQRR-NH 2
66 Betamethasone valerate-2,6-naphthalenedicarboxyloyl-EEMQRR-NH2 Betamethasone valerate-2,6-naphthalenedicarboxyloyl-EEMQRR-NH 2
77 Betamethasone valerate-maleoyl-EEMQRR-NH2 Betamethasone valerate-maleoyl-EEMQRR-NH 2
88 Betamethasone valerate-isophthaloyl-EEMQRR-NH2 Betamethasone valerate-isophthaloyl-EEMQRR-NH 2
99 Betamethasone valerate-fumaryl-EEMQRR-NH2 Betamethasone valerate-fumaryl-EEMQRR-NH 2
본 발명자들은 헥사펩타이드를 이용한 화장료 조성물을 개발하기 위해, 피부염이나 아토피 피부 질환에 효능이 있는 스테로이드와 화장품에 대한 생리활성 기능의 헥사펩타이드를 결합시켜 변이된 헥사펩타이드 복합체를 제조하였다(도 43 내지 도 48). In order to develop a cosmetic composition using hexapeptide, the present inventors produced hexapeptide complexes mutated by binding steroids effective for dermatitis or atopic skin diseases and hexapeptides having physiological activity to cosmetics (Figs. 43 to 48).
또한, 본 발명자들은 상기 스테로이드를 이용한 복합체가 항산화 활성을 나타냄을 확인하였다(표 11). 나아가, 본 발명자들은 상기 변이된 헥사펩타이드 복합체가 피부재생 및 상처 회복에 탁월한 효과를 나타내는 것을 확인하였다(도 50 및 51). 따라서, 본 발명의 변이된 헥사펩타이드 복합체를 유효성분으로 포함하는 피부재생 및 상처 치료용 조성물로서 유용하게 사용될 수 있다. Further, the present inventors confirmed that the complex using the above steroid showed antioxidative activity (Table 11). Furthermore, the present inventors confirmed that the mutated hexapeptide complex exhibited excellent effects on skin regeneration and wound healing (FIGS. 50 and 51). Therefore, it can be usefully used as a composition for skin regeneration and wound healing which comprises the mutated hexapeptide complex of the present invention as an active ingredient.
본 발명의 또 다른 측면은, 활성물질-헥사펩타이드 복합체를 유효성분으로 포함하는 화장료 조성물을 제공한다. 상기 활성물질-헥사펩타이드 복합체는 유기산-헥사펩타이드 복합체 또는 변이된 헥사펩타이드 복합체일 수 있다. Another aspect of the present invention provides a cosmetic composition comprising an active substance-hexapeptide complex as an active ingredient. The active substance-hexapeptide complex may be an organic acid-hexapeptide complex or a mutated hexapeptide complex.
상기 화장료 조성물은 피부 노화 방지, 피부 재생 효과를 나타낼 수 있다.The cosmetic composition can exhibit skin aging prevention and skin regeneration effect.
또한, 상기 화장료 조성물은 화장수, 크림, 로션, 세럼, 에센스, 자외선 차단제로 이루어진 군으로부터 선택되는 어느 하나의 제형일 수 있다. The cosmetic composition may be any one selected from the group consisting of lotion, cream, lotion, serum, essence, and sunscreen.
상기 화장료 조성물에 포함되는 성분은 유효성분으로서의 유기산-펩타이드 복합체 또는 변이된 헥사펩타이드 복합체 이외에 화장품 조성물에 통상적으로 이용되는 성분들을 포함하며, 예컨대 항산화제, 안정화제, 용해화제, 비타민, 안료 및 향료와 같은 통상적인 보조제 또는 담체를 포함할 수 있다. The components contained in the cosmetic composition include components commonly used in cosmetic compositions in addition to an organic acid-peptide complex or a mutated hexapeptide complex as an active ingredient. Examples thereof include antioxidants, stabilizers, solubilizers, vitamins, Such as conventional adjuvants or carriers.
또한, 상기 화장료 조성물은 당업계에서 통상적으로 제조되는 어떠한 제형으로도 제조될 수 있으며, 예를들면, 용액, 현탁액, 유탁액, 페이스트, 겔, 크림, 로션, 파우더, 비누, 계면활성제-함유 클린싱, 오일, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션 및 스프레이 등으로 제형화 될 수 있으나, 이에 한정되는 것은 아니다. 보다 상세하게는, 화장수(수렴 화장수, 유연 화장수 등), 크림, 로션, 세럼, 에센스, 영양젤 또는 마사지 크림의 제형으로 제조될 수 있다.In addition, the cosmetic composition may be prepared in any form conventionally produced in the art, and examples thereof include solutions, suspensions, emulsions, pastes, gels, creams, lotions, powders, soaps, surfactant- , Oil, powder foundation, emulsion foundation, wax foundation and spray, but is not limited thereto. More specifically, it can be manufactured into a formulation of lotion (convergent lotion, soft lotion, etc.), cream, lotion, serum, essence, nutritional gel or massage cream.
상기 화장료 조성물의 제형이 페이스트, 크림 또는 겔인 경우에는 담체 성분으로서 동물성유, 식물성유, 왁스, 파라핀, 전분, 트라칸트, 셀룰로오스 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 실리카, 탈크 또는 산화아연 등이 이용될 수 있다.When the formulation of the cosmetic composition is a paste, a cream or a gel, an animal oil, vegetable oil, wax, paraffin, starch, tracant, cellulose derivative, polyethylene glycol, silicone, bentonite, silica, talc or zinc oxide .
상기 화장료 조성물의 제형이 용액 또는 유탁액인 경우에는 담체 성분으로서 용매, 용해화제 또는 유탁화제가 이용될 수 있다. 구체적으로, 담체 성분은 물, 에탄올, 이소프로판올, 에틸 카보네이트, 에틸 아세테이트, 벤질 알코올, 벤질 벤조에이트, 프로필렌 글리콜, 1,3-부틸글리콜 오일, 글리세롤 지방족 에스테르, 폴리에틸렌 글리콜 또는 소르비탄의 지방산 에스테르일 수 있다. When the formulation of the cosmetic composition is a solution or an emulsion, a solvent, a dissolving agent or an emulsifying agent may be used as a carrier component. Specifically, the carrier component may be a fatty acid ester of water, ethanol, isopropanol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butyl glycol oil, glycerol aliphatic ester, polyethylene glycol or sorbitan have.
상기 화장료 조성물의 제형이 현탁액인 경우에는 담체 성분으로서 물, 에탄올 또는 프로필렌글리콜과 같은 액상의 희석제, 에톡실화 이소스테아릴 알코올, 폴리옥시에틸렌 소르비톨 에스테르 및 폴리옥시에틸렌 소르비탄 에스테르와 같은 현탁제, 미소결정성 셀룰로오스, 알루미늄 메타히드록시드, 벤토나이트, 아가 또는 트라칸트 등이 이용될 수 있다.When the formulation of the cosmetic composition is a suspension, a carrier such as water, a liquid diluent such as ethanol or propylene glycol, a suspension such as ethoxylated isostearyl alcohol, polyoxyethylene sorbitol ester and polyoxyethylene sorbitan ester, Crystalline cellulose, aluminum metahydroxide, bentonite, agar or tracant, etc. may be used.
상기 화장료 조성물의 제형이 계면-활성제 함유 클린징인 경우에는 담체 성분으로서 지방족 알코올 설페이트, 지방족 알코올 에테르 설페이트, 설포숙신산 모노에스테르, 이세티오네이트, 이미다졸리늄 유도체, 메틸타우레이트, 사르코시네이트, 지방산 아미드 에테르 설페이트, 알킬아미도베타인, 지방족 알코올, 지방산 글리세리드, 지방산 디에탄올아미드, 식물성 유, 라놀린 유도체 또는 에톡실화 글리세롤 지방산 에스테르 등이 이용될 수 있다.When the formulation of the cosmetic composition is an interface-active agent-containing cleansing, the carrier component is selected from aliphatic alcohol sulfate, aliphatic alcohol ether sulfate, sulfosuccinic acid monoester, isethionate, imidazolinium derivative, methyltaurate, sarcosinate, fatty acid Amide ether sulfate, alkylamidobetaine, aliphatic alcohol, fatty acid glyceride, fatty acid diethanolamide, vegetable oil, lanolin derivative, or ethoxylated glycerol fatty acid ester.
본 발명의 또 다른 측면은, 활성물질-헥사펩타이드 복합체를 유효성분으로 포함하는 피부 상처 치료용 약학 조성물을 제공한다. 상기 활성물질-헥사펩타이드 복합체는 유기산-헥사펩타이드 복합체 또는 변이된 헥사펩타이드 복합체일 수 있다.Another aspect of the present invention provides a pharmaceutical composition for treating skin wounds comprising an active substance-hexapeptide complex as an active ingredient. The active substance-hexapeptide complex may be an organic acid-hexapeptide complex or a mutated hexapeptide complex.
상기 약학 조성물은 약제학적으로 허용되는 담체를 포함할 수 있다. 구체적으로, 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. The pharmaceutical composition may comprise a pharmaceutically acceptable carrier. Specifically, the pharmaceutically acceptable carriers are those conventionally used in the formulation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, But are not limited to, cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
상기 약학 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. The pharmaceutical composition may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components.
상기 약학 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical composition may be prepared in a unit dosage form by formulating it with a pharmaceutically acceptable carrier and / or an excipient according to a method which can be easily carried out by a person having ordinary skill in the art to which the present invention belongs. Into a capacity container. The formulations may be in the form of solutions, suspensions, syrups or emulsions in oils or aqueous media, or in the form of excipients, powders, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.
상기 약학 조성물은 연고기제(Ointment base)에 희석하여 국소도포제용 연고를 제조하여 하루에 1 내지 5회씩 병변 부위에 도포시킬 수 있으며, 겔제제에 희석한 국소도포제용 팩제를 제조하여 하루에 1 내지 5회씩 병변 부위에 적용할 수 있다.The pharmaceutical composition may be diluted in an ointment base to prepare an ointment for topical application. The ointment base may be applied to lesions 1 to 5 times a day. A packaged preparation for topical application diluted in a gel preparation is prepared, It can be applied to the lesion site five times.
본 발명의 또 다른 측면은, 피부상태 개선을 위한 본 발명의 활성물질-헥사펩타이드 복합체의 용도를 제공한다. Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for skin condition improvement.
본 발명의 또 다른 측면은, 피부상태 개선을 위한 화장료 조성물을 제조하기 위한 본 발명의 활성물질-헥사펩타이드 복합체의 용도를 제공한다. Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for preparing a cosmetic composition for skin condition improvement.
본 발명의 또 다른 측면은, 피부 상처를 치료하기 위한 본 발명의 활성물질-헥사펩타이드 복합체의 용도를 제공한다. Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for treating skin wounds.
본 발명의 또 다른 측면은, 피부상처를 치료하기 위한 약제를 제조하기 위한 본 발명의 활성물질-헥사펩타이드 복합체의 용도를 제공한다. Another aspect of the present invention provides the use of the active substance-hexapeptide complex of the present invention for the manufacture of a medicament for treating skin wounds.
본 발명의 또 다른 측면은, 본 발명의 활성물질-헥사펩타이드 복합체를 개체의 피부에 처리하는 단계를 포함하는 피부상태 개선 방법을 제공한다. 상기 피부상태를 개선한다는 것은 피부의 노화를 방지하거나 피부의 재생을 촉진시키는 것일 수 있다. Another aspect of the present invention provides a method for improving skin condition comprising treating the skin of an individual with the active substance-hexapeptide complex of the present invention. Improving the skin condition may be to prevent aging of the skin or promote regeneration of the skin.
본 발명의 또 다른 측면은, 본 발명의 활성물질-헥사펩타이드 복합체를 개체의 피부에 처리하는 단계를 포함하는 피부상처를 치료하는 방법을 제공한다.Another aspect of the present invention provides a method of treating skin wounds comprising treating the skin of an individual with an active substance-hexapeptide complex of the present invention.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 하기 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the invention.
실시예 1. 유기산-헥사펩타이드 복합체 제조Example 1. Preparation of an organic acid-hexapeptide complex
Fmoc-Glu(tbu)-OH, Fmoc-Met-OH, Fmoc-Gln(Trt)-OH 및 Fmoc-Arg(Pbf)-OH 원료는 GLS(GL Biochem, Shanghai)로부터 구매하였다. 또한, 유기산들은 TCI(TCI chemicals, India)와 Sigma(Sigma Aldrich, US)에서 구매하였다(표 5). 또한, DMF(dimethylformamide), DIEA(N,N-diisopropylethylamine), DCM(Dichloromethane) 및 피페리딘(piperidine)은 대정화금으로부터 구매하여 사용하였다.The source of Fmoc-Glu (tbu) -OH, Fmoc-Met-OH, Fmoc-Gln (Trt) -OH and Fmoc-Arg (Pbf) -OH were purchased from GLS (GL Biochem, Shanghai). The organic acids were also purchased from TCI (TCI chemicals, India) and Sigma (Sigma Aldrich, US) (Table 5). In addition, DMF (dimethylformamide), DIEA (N, N-diisopropylethylamine), DCM (dichloromethane) and piperidine were purchased from purified gold.
구분division 유기산Organic acid 구입처Where to buy
1One 포름산Formic acid TCI(TCI chemicals, India), F0513TCI (TCI chemicals, India), F0513
22 글루쿠론산Glucuronic acid TCI(TCI chemicals, India), G0302TCI (TCI chemicals, India), G0302
33 락트산Lactic acid Sigma(Sigma Aldrich, US), L1750Sigma (Sigma Aldrich, US), L1750
44 메발론산Mevalonic acid Santa Cruz Biotechnology, Inc. sc-484339Santa Cruz Biotechnology, Inc. sc-484339
55 프로피온산Propionic acid TCI(TCI chemicals, India), P0500TCI (TCI chemicals, India), P0500
66 피루브산Pyruvic acid TCI(TCI chemicals, India), P0579TCI (TCI chemicals, India), P0579
77 퀸산Quintan Sigma(Sigma Aldrich, US), 138622Sigma (Sigma Aldrich, US), 138622
88 시키미산Shikisan TCI(TCI chemicals, India), S0038TCI (TCI chemicals, India), S0038
99 아비에트산Abiotic acid TCI(TCI chemicals, India), A0001TCI (TCI chemicals, India), A0001
1010 아시아틱산Asian acid Sigma(Sigma Aldrich, US), 546712Sigma (Sigma Aldrich, US), 546712
1111 콜산Cholsan TCI(TCI chemicals, India), C0324TCI (TCI chemicals, India), C0324
1212 우르소데옥시콜산Ursodeoxycholic acid TCI(TCI chemicals, India), U0030TCI (TCI chemicals, India), U0030
1313 우르솔산Urosolic acid TCI(TCI chemicals, India), U0065TCI (TCI chemicals, India), U0065
1414 아젤라산Azela TCI(TCI chemicals, India)TCI (TCI chemicals, India)
1515 디피콜린산Dipicolinic acid Sigma(Sigma Aldrich, US)Sigma (Sigma Aldrich, US)
1616 푸마르산Fumaric acid TCI(TCI chemicals, India), F0067TCI (TCI chemicals, India), F0067
1717 이타콘산Itaconic acid TCI(TCI chemicals, India), M0223TCI (TCI chemicals, India), M0223
1818 말산Malian TCI(TCI chemicals, India)TCI (TCI chemicals, India)
1919 옥살산Oxalic acid Sigma(Sigma Aldrich, US), 194131Sigma (Sigma Aldrich, US), 194131
2020 숙신산Suche mountain TCI(TCI chemicals, India), S0100TCI (TCI chemicals, India), S0100
2121 타르타르산Tartaric acid Sigma(Sigma Aldrich, US)Sigma (Sigma Aldrich, US)
2222 알파-케토글루타르산Alpha-keto glutaric acid Sigma(Sigma Aldrich, US), 75890Sigma (Sigma Aldrich, US), 75890
2323 시트르산Citric acid TCI(TCI chemicals, India), C1949TCI (TCI chemicals, India), C1949
2424 리포산Liposan TCI(TCI chemicals, India), L0058TCI (TCI chemicals, India), L0058
2525 제란산Zeran Mountain Alfa Aesar, A18750Alfa Aesar, A18750
2626 소르빈산Sorbic acid TCI(TCI chemicals, India), S0856TCI (TCI chemicals, India), S0856
2727 바이오틴산Biotin acid TCI(TCI chemicals, India), B0463TCI (TCI chemicals, India), B0463
2828 트레티오닌Tretinoin Sigma(Sigma Aldrich, US), PHR1187Sigma (Sigma Aldrich, US), PHR1187
2929 카페산Cafe mountain Sigma(Sigma Aldrich, US)Sigma (Sigma Aldrich, US)
3030 계피산Cinnamic acid TCI(TCI chemicals, India), C0353TCI (TCI chemicals, India), C0353
3131 페룰산Ferulic acid Sigma(Sigma Aldrich, US),Sigma (Sigma Aldrich, US),
3232 로즈마린산Rosemarinic acid Sigma(Sigma Aldrich, US),Sigma (Sigma Aldrich, US),
3333 니코틴산Nicotinic acid TCI(TCI chemicals, India), N0082TCI (TCI chemicals, India), N0082
3434 시링산Sikhongsan TCI(TCI chemicals, India), G0014TCI (TCI chemicals, India), G0014
실시예 1.1. 유기산-헥사펩타이드 복합체 합성Example 1.1. Synthesis of organic acid-hexapeptide complex
유기산-헥사펩타이드 복합체 합성공정은 하기 1) 내지 6)의 공정과정으로 나타내었다. 또한, 합성공정 조건은 하기 표 6에 나타내었다.The synthesis process of the organic acid-hexapeptide complex is represented by the following process steps 1) to 6). The synthetic process conditions are shown in Table 6 below.
레진 치환율: - 링크 아마이드 MBHA 레진 (치환율: 0.65 mmole/g)- 클로로트리틸 클로라이드 레진(치환율: 1.25 mmol/g)- 아미노산: 3 내지 5 eq - 커플링 시약: DIC, HOBt, DMF- 커플링 시간: 5시간- 커플링 온도: 25℃ 내지 32℃- 분리: 70% TFA/29% DCM/1% H2O, 4시간- 추출: 에틸에테르 Amino acid: 3 to 5 eq - Coupling Reagent: DIC, HOBt, DMF-coupling (substitution rate: 1.25 mmol / g) Time: 5 hours - Coupling temperature: 25 ° C to 32 ° C - Isolation: 70% TFA / 29% DCM / 1% H 2 O,
1) 레진 팽윤(swelling)1) Resin swelling
여과막이 장착된 고상(solid-phase) 합성반응기에 합성말단에 카르복시기(-COOH)를 갖는 펩타이드 합성은 클로로트리틸 클로라이드 레진(2-Chlorotritylchloride resin, Bead Tech)을 이용하였다. 또한, 합성 말단에 펩타이드 결합(-CONH2)으로 끝나는 펩타이드 합성은 링크 아마이드 레진(Rink amide resin, GLS)을 이용하였다. DCM 및 DMF를 사용하여 30분 동안 레진을 팽윤시켰다.Chlorotritylchloride resin (Bead Tech) was used to synthesize a peptide having a carboxy group (-COOH) at the synthetic end in a solid-phase synthesis reactor equipped with a filtration membrane. In addition, a peptide synthesis terminated with a peptide bond (-CONH 2 ) at the synthetic end was carried out using Rink amide resin (GLS). DCM and DMF were used to swell the resin for 30 minutes.
2) 아미노산 로딩(loading)2) Amino acid loading
클로로트리틸 클로라이드 레진을 이용한 합성은 첫 아미노산을 레진에 로딩시키는 과정을 포함한다. 팽윤시킨 레진을 감압 하에서 여과막을 통해 용매를 제거하였다. 상기 레진에 2 당량의 Fmoc-Arg(Pbf)-OH를 DMF에 완전히 녹인 후 클로로트리틸 클로라이드 레진에 첨가하였고, 밀도를 고려한 DIEA를 클로로트리틸 클로라이드 레진의 4 당량에 해당하는 양을 첨가하였다. 이후 반응기를 이용하여 5시간 이상, 25℃ 내지 32℃ 온도에서 반응을 실시하였다.Synthesis using chlorotrityl chloride resin involves loading the first amino acid into the resin. The swollen resin was removed under reduced pressure through a filtration membrane. Two equivalents of Fmoc-Arg (Pbf) -OH in the resin were completely dissolved in DMF, added to chlorotrityl chloride resin, and DIEA in consideration of density was added in an amount corresponding to 4 equivalents of chlorotrityl chloride resin. Thereafter, the reaction was carried out at 25 ° C to 32 ° C for 5 hours or more using a reactor.
3) 레진 Fmoc 탈보호3) Resin Fmoc Deprotection
상기 클로로트리틸 클로라이드 레진 또는 링크 아마이드 레진을 이용한 합성과정은 Fmoc의 탈보호 반응시키는 과정이 포함되었다. 레진 Fmoc 탈보호 과정은 감압 하에서 여과막을 통하여 용매를 제거한 후, 20%(v/v) 피페리딘을 첨가한 DMF을 사용하여 5분간 세척하였다. 그 후, 다시 20%(v/v) 피페리딘을 첨가한 DMF을 사용하여 10분간 세척하였다. 감압 하에서 여과하여 반응액을 제거하고 DCM 또는 DMF를 사용하여 2분씩 6차례 이상 세척하였다.The synthesis procedure using the chlorotrityl chloride resin or linkamid resin involved the deprotection of Fmoc. The resin Fmoc deprotection was performed by removing the solvent through a filtration membrane under reduced pressure and then washing with DMF containing 20% (v / v) piperidine for 5 minutes. Then, it was washed with DMF supplemented with 20% (v / v) piperidine for 10 minutes. The reaction solution was removed by filtration under reduced pressure, and washed with DCM or DMF six times for 2 minutes each.
4) 아미노산 합성 및 유기산 결합4) Amino acid synthesis and organic acid binding
상기 링크 아마이드 레진에 3 내지 5 당량의 Fmoc-Arg(Pbf)-OH(GLS)를 DMF에 완전히 녹인 후, 용매를 제거한 링크 아마이드 레진에 넣어주었다. 커플링 시약(coupling reagent)으로 2 M HOBt/DIC(Hydroxybenzotriazole/ diisopropylcarbodiimide)를 아미노산 당량 및 링크 아마이드 레진 양에 맞게 넣어주었다. 이후, 반응기를 이용하여 5시간 이상, 25℃ 내지 32℃ 온도에서 합성을 실시하였다. 반응이 종료되면 용매를 벤트시킨 후, 깨끗한 DMF로 2분씩 6회에 걸쳐 세척하였다. 3 to 5 equivalents of Fmoc-Arg (Pbf) -OH (GLS) was completely dissolved in DMF, and then the solvent was removed from the link amide resin. 2 M HOBt / DIC (Hydroxybenzotriazole / diisopropylcarbodiimide) was added as a coupling reagent to the amino acid equivalent and amount of linkamid resin. Thereafter, synthesis was carried out at 25 ° C to 32 ° C using a reactor for 5 hours or more. When the reaction was completed, the solvent was evacuated and washed with clean DMF for 6 min each for 2 min.
세척 후, 상기 아미노산 결합 방법과 같은 방법으로 Fmoc-Arg(pbf)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Met-OH, Fmoc-Glu(tBu)-OH 및 Fmoc-Glu(tBu)-OH의 아미노산을 순서대로 커플링하였다. 그 후, 헥사펩타이드가 합성된 상태의 레진에 페룰산을 4 당량, 2 M HOBt/DIC를 아미노산 당량 및 레진 양에 맞게 넣어주었다. 이후 반응기를 이용하여 5시간 이상, 25℃ 내지 32℃ 온도에서 반응시켰다. (PBF) -OH, Fmoc-Gln (Trt) -OH, Fmoc-Met-OH, Fmoc-Glu (tBu) -OH, and Fmoc- -OH < / RTI > were sequentially coupled. Subsequently, 4 equivalents of ferulic acid and 2 M HOBt / DIC were added to the resin in the hexapeptide-synthesized state in accordance with the amino acid equivalent and resin amount. Thereafter, the reaction was carried out at 25 ° C to 32 ° C for 5 hours or more using a reactor.
5) 분리(Cleavage)5) Cleavage
반응이 종료되면 감압하에서 여과막을 통하여 용매를 제거한 후, 깨끗한 DMF로 2분씩 2회, DCM으로 2분씩 2회 걸쳐 세척하였다. 그 후, 용매를 거의 벤트시켜 제거하였다. 건조된 페룰산-EEMQRR-NH2 복합체 레진을 70%(v/v) TFA/ 29%(v/v) DCM/ 1%(v/v) H2O 용액을 이용하여 4시간 동안 분리를 실시하였다.After the reaction was completed, the solvent was removed through a filtration membrane under reduced pressure, and then washed twice with clean DMF twice for 2 minutes and then for 2 minutes with DCM. Thereafter, the solvent was removed by almost venting. The dried ferulic acid-EEMQRR-NH 2 composite resin was separated using a 70% (v / v) TFA / 29% (v / v) DCM / 1% (v / v) H 2 O solution for 4 h Respectively.
6) 재결정 (Crystallize)6) Crystallize
분리가 완료된 용매를 에틸에테르(Ethyl ether)를 이용해 조(Crude) 제품을 재결정화시켜 추출하였다. The separated solvent was extracted by recrystallizing the crude product with ethyl ether.
또한, 포름산-EEMQRR-NH2, 글루쿠론산-EEMQRR-NH2, 락트산-EEMQRR-NH2, 메발론산-EEMQRR-NH2, 프로피온산-EEMQRR-NH2, 피루브산-EEMQRR-NH2, 퀸산-EEMQRR-NH2, 시키미산-EEMQRR-NH2, 아비에트산-EEMQRR-NH2, 아시아틱산-EEMQRR-NH2, 콜산-EEMQRR-NH2, 우르소디옥시콜산-EEMQRR-NH2, 우르솔산-EEMQRR-NH2, 아젤라산-EEMQRR-NH2, 디피콜린산-EEMQRR-NH2, 푸마르산-EEMQRR-NH2, 이타콘산-EEMQRR-NH2, 말산-EEMQRR-NH2, 옥살산-EEMQRR-NH2, 숙신산-EEMQRR-NH2, 타르타르산-EEMQRR-NH2, 알파-케토글루타르산-EEMQRR-NH2, 시트르산-EEMQRR-NH2, 리포산-EEMQRR-NH2, 제란산-EEMQRR-NH2, 소르빈산-EEMQRR-NH2, 바이오틴-EEMQRR-NH2, 트레티노인-EEMQRR-NH2, 카페산-EEMQRR-NH2, 계피산-EEMQRR-NH2, 로즈마린산-EEMQRR-NH2, 니코틴산-EEMQRR-NH2 및 시링산-EEMQRR-NH2 복합체도 상기 페룰산-EEMQRR-NH2 복합체 합성공정과 동일한 방법으로 합성하였다. In addition, formic acid -EEMQRR-NH 2, glucuronic acid -EEMQRR-NH 2, lactic acid -EEMQRR-NH 2, mevalonic acid -EEMQRR-NH 2, acid -EEMQRR-NH 2, pyruvic -EEMQRR-NH 2, kwinsan -EEMQRR -NH 2, to Mishan -EEMQRR-NH 2, abietic acid -EEMQRR-NH 2, Asia lactic acid -EEMQRR-NH 2, cholic acid -EEMQRR-NH 2, Ur sodi oxy cholic acid -EEMQRR-NH 2, ursolic acid -EEMQRR -NH 2, azelaic acid -EEMQRR-NH 2, Diffie choline acid -EEMQRR-NH 2, fumaric -EEMQRR-NH 2, itaconic acid -EEMQRR-NH 2, malic -EEMQRR-NH 2, oxalate -EEMQRR-NH 2, acid -EEMQRR-NH 2, tartaric -EEMQRR-NH 2, alpha-ketoglutaric acid -EEMQRR-NH 2, citric acid -EEMQRR-NH 2, lipoic -EEMQRR-NH 2, jeran acid -EEMQRR-NH 2, sorbic acid - EEMQRR-NH 2, biotin -EEMQRR-NH 2, tretinoin -EEMQRR-NH 2, cafe acid -EEMQRR-NH 2, cinnamic acid -EEMQRR-NH 2, rojeumarinsan -EEMQRR-NH 2, nicotinic acid -EEMQRR-NH 2 and when ringsan -EEMQRR-NH 2 complex also sum into the ferrule acid -EEMQRR-NH 2 complex synthesis process in the same manner It was.
실시예 1.2. 유기산-헥사펩타이드 복합체 정제 Example 1.2. Organic acid-hexapeptide complex purification
실시예 1.1.에서 합성한 페룰산-EEMQRR-NH2 복합체 조제품을 10%(v/v) 아세토니트릴을 첨가한 증류수 용액에 녹였다. 그 후, 하기와 같은 그라디언트(gradient) 조건하에서 HPLC로 정제 후, 동결 건조하여 페룰산-EEMQRR-NH2 복합체를 수득하였다(도 1 내지 도 34). 상기 그라디언트는 하기 표 7에 나타내었다. The ferulic acid-EEMQRR-NH 2 complex preparation prepared in Example 1.1 was dissolved in distilled water containing 10% (v / v) acetonitrile. Thereafter, it was purified by HPLC under gradient conditions as described below and then lyophilized to obtain a ferulic acid-EEMQRR-NH 2 complex (FIGS. 1 to 34). The above gradients are shown in Table 7 below.
A. 기기: Shimadzu 8A (5 cm * 25 cm)/8A (prep(dia 5 cm))A. Instrument: Shimadzu 8A (5 cm * 25 cm) / 8 A (prep (dia 5 cm))
B. 용매의 조성: 버퍼 A=0.05% TFA/아세토나이트릴, 버퍼 B=0.05% TFA/H2OB. Composition of Solvent: Buffer A = 0.05% TFA / acetonitrile, buffer B = 0.05% TFA / H 2 O
C. 흐름 속도(Flow rate): 14 ㎖/분C. Flow rate: 14 ml / min
D. 컬럼: Silicagel C18 reverse phaseD. Column: Silicagel C18 reverse phase
E. 흡광도: 230 nmE. Absorbance: 230 nm
E. 그라디언트E. Gradient
Time(min)Time (min) H2O(%)H 2 O (%) Acetonitrile(%)Acetonitrile (%)
0-120-12 89→7789 → 77 11→2311 → 23
12-1312-13 77→577 → 5 23→9523 → 95
13-1813-18 5→55 → 5 95→9595 → 95
18-1918-19 5→895 → 89 95→1195 → 11
19-2719-27 89→8989 → 89 11→1111 → 11
또한, 포름산-EEMQRR-NH2, 글루쿠론산-EEMQRR-NH2, 락트산-EEMQRR-NH2, 메발론산-EEMQRR-NH2, 프로피온산-EEMQRR-NH2, 피루브산-EEMQRR-NH2, 퀸산-EEMQRR-NH2, 시키미산-EEMQRR-NH2, 아비에트산-EEMQRR-NH2, 아시아틱산-EEMQRR-NH2, 콜산-EEMQRR-NH2, 우르소디옥시콜산-EEMQRR-NH2, 우르솔산-EEMQRR-NH2, 아젤라산-EEMQRR-NH2, 디피콜린산-EEMQRR-NH2, 푸마르산-EEMQRR-NH2, 이타콘산-EEMQRR-NH2, 말산-EEMQRR-NH2, 옥살산-EEMQRR-NH2, 숙신산-EEMQRR-NH2, 타르타르산-EEMQRR-NH2, 알파-케토글루타르산-EEMQRR-NH2, 시트르산-EEMQRR-NH2, 리포산-EEMQRR-NH2, 제란산-EEMQRR-NH2, 소르빈산-EEMQRR-NH2, 바이오틴-EEMQRR-NH2, 트레티노인-EEMQRR-NH2, 카페산-EEMQRR-NH2, 계피산-EEMQRR-NH2, 로즈마린산-EEMQRR-NH2, 니코틴산-EEMQRR-NH2 및 시링산-EEMQRR-NH2 복합체도 상기 페룰산-EEMQRR-NH2 정제공정과 같은 동일한 방법을 이용하여 정제하였다. In addition, formic acid -EEMQRR-NH 2, glucuronic acid -EEMQRR-NH 2, lactic acid -EEMQRR-NH 2, mevalonic acid -EEMQRR-NH 2, acid -EEMQRR-NH 2, pyruvic -EEMQRR-NH 2, kwinsan -EEMQRR -NH 2, to Mishan -EEMQRR-NH 2, abietic acid -EEMQRR-NH 2, Asia lactic acid -EEMQRR-NH 2, cholic acid -EEMQRR-NH 2, Ur sodi oxy cholic acid -EEMQRR-NH 2, ursolic acid -EEMQRR -NH 2, azelaic acid -EEMQRR-NH 2, Diffie choline acid -EEMQRR-NH 2, fumaric -EEMQRR-NH 2, itaconic acid -EEMQRR-NH 2, malic -EEMQRR-NH 2, oxalate -EEMQRR-NH 2, acid -EEMQRR-NH 2, tartaric -EEMQRR-NH 2, alpha-ketoglutaric acid -EEMQRR-NH 2, citric acid -EEMQRR-NH 2, lipoic -EEMQRR-NH 2, jeran acid -EEMQRR-NH 2, sorbic acid - EEMQRR-NH 2, biotin -EEMQRR-NH 2, tretinoin -EEMQRR-NH 2, cafe acid -EEMQRR-NH 2, cinnamic acid -EEMQRR-NH 2, rojeumarinsan -EEMQRR-NH 2, nicotinic acid -EEMQRR-NH 2 and when ringsan -EEMQRR-NH 2 complex also take advantage of the same method, such as the ferrule acid -EEMQRR-NH 2 purification process It was purified.
실험예 1. 헥사펩타이드의 N-말단, C-말단 또는 곁사슬 위치에서의 유기산 결합 확인Experimental Example 1. Confirmation of organic acid bonding at the N-terminal, C-terminal or side chain position of hexapeptide
헥사펩타이드의 N-말단, C-말단 또는 곁사슬 위치에서의 유기산이 결합할 수 있는지 확인하기 위해, 제란산-EEMQRR-NH2, COOH-EEMQRR-제란산 및 COOH-EE(제란산)MQRR-NH2 복합체를 합성하였다. EEMQRR-NH2 , COOH-EEMQRR-geranic acid and COOH-EE (geranic acid) MQRR-NH2 in order to confirm that organic acids at N-, C- or side chain positions of the hexapeptide can bind. 2 complex was synthesized.
상기 제란산-EEMQRR-NH2, COOH-EEMQRR-제란산 및 COOH-EE(제란산)MQRR-NH2 복합체의 합성방법은 도 35 내지 37에 나타내었다. 제란산-EEMQRR-NH2 복합체는 실시예 1.과 동일한 방법으로 합성하였다(도 35).Methods for synthesizing the above-mentioned geranic acid-EEMQRR-NH 2, COOH-EEMQRR-generator acid and COOH-EE (geranic acid) MQRR-NH 2 complexes are shown in FIGS. The generator acid-EEMQRR-NH 2 complex was synthesized in the same manner as in Example 1 (FIG. 35).
상기 COOH-EEMQRR-제란산 복합체는 하기 과정을 통해 합성하였다. 먼저, 트리틸 레진(trityl resin)을 반응기에 넣고 DCM/DMF를 이용해 2회 세척한 후, DCM을 이용해 30분간 반응기에서 레진을 팽윤시켰다. 그 후, 레진에 아르기닌(Arg, R) 아미노산 2eq 및 DIEA 1eq를 넣고 4시간 동안 로딩시켰다. 로딩 후, DMF을 이용하여 5회 세척하였다. 상기 아르기닌을 로딩한 방법과 동일한 방법으로 아르기닌, 글루타민(Gln, Q), 메티오닌(Met, M), 글루탐산(Glu, E), 글루탐산 순서로 나머지 5개의 아미노산을 로딩하였다. 이 과정을 반복하여 COOH-EEMQRR를 합성한 후, 레진을 5% TFA/DCM을 이용하여 COOH-EEMQRR를 떼어내었다. 그 후, HOBt, DIC를 이용하여 제란산을 COOH-EEMQRR의 N 말단에 결합시켰다(도 36). The COOH-EEMQRR-generator complex was synthesized through the following procedure. First, trityl resin was added to the reactor, washed twice with DCM / DMF, and the resin was swelled in the reactor for 30 minutes using DCM. Then, 2 eq of arginine (Arg, R) amino acid and 1 eq of DIEA were added to the resin and loaded for 4 hours. After loading, it was washed 5 times with DMF. The remaining 5 amino acids were loaded in the order of arginine, glutamine (Gln, Q), methionine (Met, M), glutamic acid (Glu, E) and glutamic acid in the same manner as the method of loading the arginine. This procedure was repeated to synthesize COOH-EEMQRR, and the resin was then stripped of COOH-EEMQRR using 5% TFA / DCM. Thereafter, the geranic acid was bound to the N-terminus of COOH-EEMQRR using HOBt, DIC (Fig. 36).
반응이 완료된 COOH-EEMQRR-제란산을 DMF로 3 내지 4회, DCM로 3 내지 4회 세척하고, 펌프를 이용하여 건조하였다. 건조 과정이 끝난 후, 70% TFA를 이용하여 실시예 1.1의 (5) 분리 과정과 동일하게 4시간 동안 분리과정을 진행하였다. The COOH-EEMQRR-generator acid which had been reacted was washed 3 to 4 times with DMF, 3 to 4 times with DCM, and dried using a pump. After the drying process, separation was carried out using 70% TFA in the same manner as in Example 1.1 (5) for 4 hours.
실시예 1.1의 (6) 재결정 과정과 동일하게, 반응기에서 분리과정이 끝난 용액(cleavage solution)을 취해 튜브로 옮겨 공기건조 시키고, 이틸에티르를 이용하여 용액 내에 녹아있는 COOH-EEMQRR-제란산을 고체 상태로 회수하였다. 회수한 COOH-EEMQRR-제란산을 HPLC 분석 후 정제를 진행하였다. In the same manner as in the recrystallization of Example 1.1 (6), a cleavage solution was taken from the reactor, transferred to a tube, air-dried, and COOH-EEMQRR- And recovered in a solid state. The recovered COOH-EEMQRR-fumaric acid was subjected to HPLC analysis and purified.
상기 COOH-EE(제란산)MQRR-NH2는 상기 실험예 1.과 동일한 방법으로 EEMQRR-NH2를 펩타이드를 합성한 후, 글루타민의 보호기(Protecting group)을 제거한 후 EDC, HoAt를 첨가하여 에틸렌 글리콜 링커를 결합시키고 DMF로 3회 세척한 후 HOBt, DIC를 이용하여 제란산을 결합시켰다(도 37). 그 후, 실시예 1.1의 (5) 분리 및 (6) 재결정 과정과 동일하게 분리 및 재결정 과정을 진행하였다. 회수한 COOH-EE(제란산)MQRR-NH2를 HPLC 분석 후 정제를 진행하였다.The COOH-EE (genetic acid) MQRR-NH 2 was synthesized with EEMQRR-NH 2 peptide in the same manner as in Experimental Example 1, followed by removing the protecting group of glutamine, adding EDC and HoAt, After the glycol linker was bound and washed three times with DMF, the geranic acid was bound using HOBt, DIC (FIG. 37). Thereafter, separation and recrystallization processes were carried out in the same manner as in (1.1) separation of Example 1.1 and (6) recrystallization. The recovered COOH-EE (geranic acid) MQRR-NH 2 was subjected to HPLC analysis and then purified.
실험예 2. 유기산-헥사펩타이드 복합체의 항산화 효과 확인Experimental Example 2. Determination of Antioxidative Effect of Organic Acid-Hexapeptide Complex
안정한 자유 라디칼인 DPPH(1,1-Diphenyl-2-picryhydrazyl, Sigma D9132-1G)를 이용하여 라디칼이 감소하는 정도를 분광광도계(spectrophotometer)로 측정하여 간접적으로 시료의 항산화 활성을 측정하였다. 구체적으로, 에탄올 0.4 ㎖에 0.1 mM의 DPPH 용액 0.5 ㎖ 및 상기 실시예 1.에서 합성한 다양한 농도의 유기산-헥사펩타이드 복합체(시료)들을 각각 0.1 ㎖씩 첨가하고, 10초간 강하게 볼텍싱한 후 냉암소에서 30분간 반응시켰다. The antioxidant activity of the sample was measured indirectly by measuring the degree of decrease of the radicals by a spectrophotometer using a stable free radical, DPPH (1,1-Diphenyl-2-picryhydrazyl, Sigma D9132-1G). Specifically, 0.5 ml of 0.1 mM DPPH solution and 0.4 ml of various organic acid-hexapeptide complexes (samples) prepared in Example 1 were added to 0.4 ml of ethanol, vortexed vigorously for 10 seconds, The reaction was carried out in cattle for 30 minutes.
그 후, 분광광도계 ELISA를 이용하여 517 nm 파장에서 흡광도를 측정하였다. 양성 대조군으로는 비타민 C(Ascorbic acid)를 사용하였다. The absorbance was then measured at a wavelength of 517 nm using a spectrophotometer ELISA. As a positive control, vitamin C (ascorbic acid) was used.
[수학식 1][Equation 1]
DPPH 자유라디칼 소거능(%) = {1-시료의 흡광도/Blank의 흡광도)x100}DPPH free radical scavenging ability (%) = {1-absorbance of sample / absorbance of blank} x 100}
DPPH는 에탄올 내에서 고유의 보라색을 띄게 되는데 항산화 물질로 인하여 환원되면 고유의 보라색을 잃고 노란색으로 변하게 된다. DPPH는 517 nm 파장에서 분광분석을 통하여 라디칼을 측정 가능하다.DPPH is inherently purple in ethanol. When it is reduced by antioxidants, it will lose its original purple color and turn yellow. DPPH is capable of measuring radicals through spectral analysis at a wavelength of 517 nm.
그 결과, 헥사펩타이드 복합체를 농도별로 처리한 경우 DPPH의 자유라디칼 소거능이 농도 의존적으로 항산화 활성이 증가하는 것을 확인하였다. 또한, 항산화 작용이 우수한 비타민 C와 비교하였을 때 로즈마린산-EEMQRR-NH2 및 카페산-EEMQRR-NH2에서 비타민 C와 비슷한 DPPH 자유라디칼 소거능을 보였다(표 8).As a result, it was confirmed that the free radical scavenging ability of DPPH increased the concentration - dependent antioxidative activity when the hexapeptide complex was treated at various concentrations. Compared with vitamin C, which has excellent antioxidant activity, it showed DPPH free radical scavenging ability similar to vitamin C in rosemarin-EEMQRR-NH 2 and caffeic acid-EEMQRR-NH 2 (Table 8).
유기산 펩타이드 복합체Organic acid peptide complex M.W. (g/mol)M.W. (g / mol) SC50 (mM)SC 50 (mM)
1One 비타민 C (Ascorbic acid)Ascorbic acid 176.12176.12 0.03130.0313
22 로즈마린산-EEMQRR-NH2 Rojeumarinsan -EEMQRR-NH 2 1189.281189.28 0.03420.0342
33 카페산-EEMQRR-NH2 Caffeic acid-EEMQRR-NH 2 1009.121009.12 0.03980.0398
44 아시아틱산-EEMQRR-NH2 Asiatic acid-EEMQRR-NH 2 1317.671317.67 0.06540.0654
55 시트르산-EEMQRR-NH2 Citric -EEMQRR-NH 2 1021.081021.08 0.08840.0884
66 퀸산-EEMQRR-NH2 Queenane-EEMQRR-NH 2 1021.131021.13 0.09140.0914
77 시키미산-EEMQRR-NH2 Shikisan-EEMQRR-NH 2 1003.111003.11 0.10010.1001
88 페룰산-EEMQRR-NH2 Ferulic acid -EEMQRR-NH 2 1023.141023.14 0.15430.1543
99 디피콜린산-EEMQRR-NH2 Difficile choline acid -EEMQRR-NH 2 996.08996.08 0.18950.1895
1010 메발론산-EEMQRR-NH2 Mevaloyl -EEMQRR-NH 2 977.12977.12 0.98460.9846
1111 콜산-EEMQRR-NH2 Cholic acid -EEMQRR-NH 2 1237.531237.53 0.99850.9985
1212 타르타르산-EEMQRR-NH2 Tartaric -EEMQRR-NH 2 979.05979.05 1.16491.1649
1313 푸마르산-EEMQRR-NH2 Fumaric -EEMQRR-NH 2 945.03945.03 1.18491.1849
1414 말산-EEMQRR-NH2 Acid -EEMQRR-NH 2 963.05963.05 1.4441.444
1515 숙신산-EEMQRR-NH2 Acid -EEMQRR-NH 2 947.05947.05 1.56211.5621
1616 아젤라산-EEMQRR-NH2 Azelaic acid -EEMQRR-NH 2 1017.181017.18 1.87081.8708
1717 아비에트산-EEMQRR-NH2 Abietic acid -EEMQRR-NH 2 1131.421131.42 1.89711.8971
1818 피루브산-EEMQRR-NH2 Pyruvate -EEMQRR-NH 2 917.02917.02 1.99841.9984
1919 글루쿠론산-EEMQRR-NH2 Glucuronic -EEMQRR-NH 2 1023.11023.1 2.0862.086
2020 옥살산-EEMQRR-NH2 Oxalate -EEMQRR-NH 2 918.99918.99 2.08622.0862
2121 우르솔산-EEMQRR-NH2 Ursolic acid -EEMQRR-NH 2 1285.671285.67 3.15783.1578
2222 시링산-EEMQRR-NH2 When ringsan -EEMQRR-NH 2 1027.131027.13 4.68454.6845
2323 우루소데옥시콜산-EEMQRR-NH2 Wu Russo deoxycholate -EEMQRR-NH 2 1221.521221.52 4.75864.7586
2424 케토글루타르산-EEMQRR-NH2 Ketoglutaric acid -EEMQRR-NH 2 975.07975.07 5.77945.7794
2525 제란산-EEMQRR-NH2 ZERAN-EEMQRR-NH 2 997.2997.2 7.09717.0971
2626 니코틴산-EEMQRR-NH2 Acid -EEMQRR-NH 2 951.08951.08 7.09717.0971
2727 트레티노인-EEMQRR-NH2 Tretinoin -EEMQRR-NH 2 1129.41129.4 7.44567.4456
2828 비오틴-EEMQRR-NH2 Biotin -EEMQRR-NH 2 1073.271073.27 10.255310.2553
2929 락트산-EEMQRR-NH2 Acid -EEMQRR-NH 2 919.04919.04 12.324612.3246
3030 소르빈산-EEMQRR-NH2 Sorbic -EEMQRR-NH 2 941.09941.09 12.645812.6458
3131 프로피온산-EEMQRR-NH2 Acid -EEMQRR-NH 2 903.04903.04 14.553214.5532
3232 폼산-EEMQRR-NH2 Formic acid -EEMQRR-NH 2 874.99874.99 16.085616.0856
3333 계피산-EEMQRR-NH2 Cinnamic acid -EEMQRR-NH 2 977.12977.12 18.546818.5468
3434 리포산-EEMQRR-NH2 Lipoic -EEMQRR-NH 2 1035.281035.28 19.846519.8465
3535 이타콘산-EEMQRR-NH2 Itaconic acid-EEMQRR-NH 2 959.06959.06 20.542320.5423
상기 표 8의 SC50은 자유라디칼을 50% 소거할 때의 시료 농도로 의미한다.그 외 유기산-헥사펩타이드 복합체에서도 DPPH 자유라디칼 소거능을 보임으로 위의 34종의 유기산-헥사펩타이드 복합체들은 항산화 화장료 조성물로서 사용할 수 있음을 확인하였다.SC 50 of Table 8 means the sample concentration at the time of scavenging free radicals and 50% other organic acid-hexapeptide to show the DPPH free-radical scavenging activity in the complex of the 34 species of the above organic acid-hexa-peptide complexes are antioxidant cosmetic composition It can be used as a composition.
실험예 3. 유기산-헥사펩타이드 복합체의 피부재생 효과 확인Experimental Example 3. Confirmation of Skin Regeneration Effect of Organic Acid-Hexapeptide Complex
상처 회복 실험(Wound healing assay)를 통해 유기산-헥사펩타이드 복합체에 의한 세포 증식 및 이동 촉진 유무를 통해 피부재생 효과를 평가하였다. 인간 각질형성 세포주 HaCaT(human keratinocyte, AddexBio, US, Catalog No: T0020001)를 사용하였으며, 세포배양을 위한 DMEM(Dulbecco's Modified Eagle's Medium), Antibiotic-Antimycotic은 GIBCO에서 구입하였으며, FBS(fatal bovine serum)는 Capricorn에서 구입하여 사용하였다. Wound healing assay was used to assess skin regeneration effects by stimulating cell proliferation and migration by organic acid - hexapeptide complexes. DMEM (Dulbecco's Modified Eagle's Medium) for cell culture and Antibiotic-Antimycotic were purchased from GIBCO. FBS (fatal bovine serum) was purchased from GIBCO. Were purchased from Capricorn.
HaCaT 세포는 DMEM에 10% FBS, 1% Antibiotic-Antimycotic과 함께, 100 mm/60.1 cm2 배양접시에서 37℃, 5% CO2,100% 습윤 조건의 배양기에서 배양하였다. HaCaT 세포의 세포포화도가 90% 정도 될 때, 100 mm/60.1 cm2 배양접시에서 1.5x105 cells/12-웰-플레이트에 분주하여 48시간 동안 37℃, 5% CO2,100% 습윤 조건의 배양기에서 배양하였다.HaCaT cells were cultured in DMEM with 10% FBS and 1% Antibiotic-Antimycotic in a 100 mm / 60.1 cm 2 culture dish in an incubator at 37 ° C, 5% CO 2 , 100% wet condition. When the degree of cell saturation of HaCaT cells reaches about 90%, the cells are plated at 1.5 x 10 cells / 12-well plate in a 100 mm / 60.1 cm 2 culture dish and incubated for 48 hours at 37 ° C, 5% CO 2 , 100% Lt; / RTI >
그 후, FBS를 첨가하지 않는 DMEM으로 교체한 후, 각 웰에 200 ㎕ 팁을 이용해 스크레치를 냈다. 실험군으로 실시예 1.에서 제조한 유기산-헥사펩타이드 복합체를 사용하였으며, 100 ng/㎖의 농도로 처리하였다. 양성 대조군으로 hEGF(Sigma-Aldrich, USA)를 사용하였으며, 0.5 ng/㎖ 농도로 처리하였다. 음성대조군으로 1xPBS를 사용하였다. Thereafter, the cells were replaced with DMEM without FBS, and the wells were scratched with a 200 μl tip. As an experimental group, the organic acid-hexapeptide complex prepared in Example 1 was used and treated at a concentration of 100 ng / ml. HEGF (Sigma-Aldrich, USA) was used as a positive control and treated at a concentration of 0.5 ng / ml. 1xPBS was used as a negative control.
실험군 또는 대조군 처리한 후, 바로 세포 사진을 현미경으로 찍고 37℃, 5% CO2의 조건으로 배양하였다. 20시간 동안 추가배양 후, 현미경으로 세포 사진을 찍어 Image J 프로그램을 이용하여 세포 재생 정도를 계산하였다. SPSS 통계 분석 프로그램을 통하여 통계 분석을 실시하였고, 시그마플롯 프로그램을 통하여 그래프를 제시하였다. 통계적 유의성은 P 값(value)이 0.05 이하일 때 유의성 있게 평가하였다. After treatment with the experimental group or the control group, cell photographs were taken with a microscope and cultured at 37 ° C and 5% CO 2 . After further incubation for 20 hours, cell pictures were taken under a microscope and the degree of cell regeneration was calculated using the Image J program. Statistical analysis was performed using SPSS statistical analysis program, and the graph was presented through Sigma plot program. Statistical significance was significantly evaluated when P value (value) was less than 0.05.
[수학식 2]&Quot; (2) "
상처회복 면적(Wound healing area) (%) = {(A-B)/A}x100Wound healing area (%) = {(A-B) / A} x 100
A = 실험군 또는 대조군 처리 직후 0시간대, 상처 면적A = 0 time zone immediately after treatment or control group, wound area
B = 실험군 또는 대조군 처리 후 20시간대, 상처 면적B = 20 hours after treatment or control group, wound area
그 결과, 유기산-헥사펩타이드 복합체 34종 모두에서 음성대조군(PBS)보다 회복 면적이 증가하였다. 그 중에서도 페룰산-EEMQRR-NH2이 음성대조군에 비해 각각 약 2배 이상 회복 면적(healing area)이 증가하였다. 그리고 효능이 좋은 페룰산-EEMQRR-NH2와 로즈마린산-EEMQRR-NH2와 각각의 Acetyl-EEMQRR-NH2(Acetyl hexapeptide-8), EEMQRR-NH2(헥사펩타이드)및 유기산의 상처회복 면적 비교를 통해 유기산-헥사펩타이드 복합체가 각각(유기산, 헥사펩타이드)을 처리했을 때보다 회복 면적(healing area)이 증가하였다(도 38a 내지 도 38c). As a result, recovery area of all 34 organic acid - hexapeptide complexes was higher than that of negative control (PBS). Among them, the healing area of ferulic acid-EEMQRR-NH 2 was increased about twice as much as the negative control group. Comparing wound healing areas of ferulic acid-EEMQRR-NH 2 , rosemaric acid-EEMQRR-NH 2, and Acetyl-EEMQRR-NH 2 , EEMQRR-NH 2 (hexapeptide) , The healing area increased compared to when the organic acid-hexapeptide complex was treated with each (organic acid, hexapeptide) (Figs. 38A to 38C).
또한, 실험예 1.에서 제조한 제란산-EEMQRR-NH2, COOH-EEMQRR-제란산 및 COOH-EE(제란산)MQRR-NH2 복합체에 의한 세포 증식 및 이동 촉진 유무를 통해 피부재생 효과를 평가하였다. 실험방법은 상기와 동일하게 진행하였다. In addition, the skin regeneration effect was evaluated by the cell proliferation and migration promotion of the zeolanic acid-EEMQRR-NH 2, COOH-EEMQRR-geranic acid and COOH-EE (geranic acid) MQRR-NH 2 complex prepared in Experimental Example 1 Respectively. The experiment was carried out in the same manner as described above.
그 결과, 제란산-EEMQRR-NH2, COOH-EEMQRR-제란산 및 COOH-EE(제란산)MQRR-NH2 복합체 모두 음성대조군에 비해 각각 약 2배 이상 회복 면적(healing area)이 증가하였다. 이를 통해 유기산-헥사펩타이드 복합체들이 세포의 증식 및 이동을 촉진하여 회복 면적을 증가시키는데 효과적이며, 따라서 피부재생에도 효능을 가짐으로 화장료 조성물로서 사용할 수 있음을 확인하였다(도 39). As a result, healing area was increased about twice as much as that of the negative control in both of the geranic acid-EEMQRR-NH 2, COOH-EEMQRR-generator acid and COOH-EE (geranic acid) MQRR-NH 2 complexes. Thus, it was confirmed that the organic acid-hexapeptide complexes are effective in promoting proliferation and migration of cells to increase the recovery area, and thus, have an effect on skin regeneration, and thus can be used as a cosmetic composition (FIG. 39).
실험예 4. 유기산-헥사펩타이드 복합체의 세포독성 확인Experimental Example 4. Cytotoxicity of organic acid-hexapeptide complex
제란산-EEMQRR-NH2, COOH-EEMQRR-제란산 및 COOH-EE(제란산)MQRR-NH2 복합체의 세포독성을 확인하기 위해 WST-1 분석을 수행하였다. Jeran to acid -EEMQRR-NH 2, COOH-EEMQRR- to determine the cytotoxicity of jeran acids and COOH-EE (jeran acid) MQRR-NH 2 complex was performed WST-1 assay.
구체적으로, 충분히 성장한 세포를 2x104 cells/well 농도로 96-웰-플레이트에 옮겨 배양하였다. 세포가 플레이트 바닥에 모두 부착할 수 있도록 24시간 동안 배양하였고, 몇 개의 웰은 세포없이 배지만 채워주었다. 샘플은 DMEM을 이용하여 최종 부피가 100 ㎕이 되도록 제조하였다. WST-1 시약은 각 웰당 10 ㎕ 분주하였으며, 분주 후 4시간 동안 37℃ 온도에서 배양하였다. 그 후, ELISA reader를 이용하여 450nm 파장에서 흡광도를 측정하였다.Specifically, fully grown cells were transferred to a 96-well plate at a concentration of 2 x 10 cells / well and cultured. Cells were incubated for 24 hours to allow attachment to the bottom of the plate, and several wells were filled without cells but filled. Samples were prepared using DMEM to a final volume of 100 μl. The WST-1 reagent was dispensed at 10 [mu] l per well and incubated at 37 [deg.] C for 4 hours after dispensing. After that, absorbance was measured at a wavelength of 450 nm using an ELISA reader.
그 결과, 도 40에 나타난 바와 같이, 제란산-EEMQRR-NH2, COOH-EEMQRR-제란산 및 COOH-EE(제란산)MQRR-NH2 복합체 모두 세포독성이 나타나지 않는 것을 확인하였다. As a result, as shown in Fig. 40, it was confirmed that cytotoxicity was not observed in both of the geranic acid-EEMQRR-NH 2 , COOH-EEMQRR-generator acid and COOH-EE (genanic acid) MQRR-NH 2 complexes.
실시예 2. 변이된 헥사펩타이드 복합체 제조Example 2. Preparation of mutated hexapeptide complexes
Fmoc-Glu(tbu)-OH, Fmoc-Met-OH, Fmoc-Gln(Trt)-OH 및 Fmoc-Arg(Pbf)-OH 원료는 GLS(GL Biochem, Shanghai)로부터 구매하였다. 또한, 베타메타손, 베타메타손 발레레이트(Betamethasone valerate), 베타메타손 디프로피오네이트(Betamethasone dipropionate), 모메타손푸로에이트(Mometasone furoate), 덱사메타손, 하이드로코르티손, 하이드로코르티손 17-부틸레이트(Hydrocortisone 17-butyrate), 프리드니손, 메틸프리드니손 및 에스트리올은 Sigma(Sigma Aldrich, US)에서 구매하였다. 또한, 글루타르산 무수물(glutaric anhydride)은 TCI (TCI chemicals)에서 구매하였다. 또한, 디플루코르토론 발레레이트(Diflucortolone valerate) 및 메틸프레드니솔론 아세포네이트(Methylprednisolone aceponate)은 Henan Tianfu Chemical에서 구매하였다. 또한, DMF(dimethylformamide), DIEA(N,N-diisopropylethylamine), DCM(Dichloromethane) 및 피페리딘(piperidine)은 대정화금으로부터 구매하여 사용하였다.The source of Fmoc-Glu (tbu) -OH, Fmoc-Met-OH, Fmoc-Gln (Trt) -OH and Fmoc-Arg (Pbf) -OH were purchased from GLS (GL Biochem, Shanghai). In addition, it is also possible to use betamethasone valerate, betamethasone dipropionate, Mometasone furoate, dexamethasone, hydrocortisone, hydrocortisone 17-butyrate, betamethasone valerate, Prednisone, methylprednisone and estriol were purchased from Sigma (Sigma Aldrich, US). In addition, glutaric anhydride was purchased from TCI chemicals. Also, Diflucortolone valerate and Methylprednisolone aceponate were purchased from Henan Tianfu Chemical. In addition, DMF (dimethylformamide), DIEA (N, N-diisopropylethylamine), DCM (dichloromethane) and piperidine were purchased from purified gold.
실시예 2.1. 변이된 헥사펩타이드 복합체 합성Example 2.1. Synthesis of mutated hexapeptide complexes
변이된 헥사펩타이드 복합체 합성공정은 하기 1) 내지 8)의 공정과정으로 나타내었다. 또한, 합성공정 조건은 하기 표 9에 나타내었다.The process for synthesizing mutated hexapeptide complexes is represented by the following process steps 1) to 8). The synthetic process conditions are shown in Table 9 below.
레진 치환율: - 링크 아마이드 MBHA 레진 (치환율: 0.65 mmole/g)- 클로로트리틸 클로라이드 레진(치환율: 1.25 mmol/g)- 아미노산: 3 내지 5 eq - 커플링 시약: DIC, HOBt, DMF- 링커 커플링 시약: DIEA 또는 HOBT/DIC- 커플링 시간: 5시간- 커플링 온도: 25℃ 내지 32℃- 분리: 70% TFA/29% DCM/1% H2O, 4시간- 추출: 에틸에테르 Amino acid: 3 to 5 eq. Coupling Reagents: DIC, HOBt, DMF-Linker Couplers (substitution rate: 1.25 mmol / g) Coupling reagent: DIEA or HOBT / DIC- coupling time: 5 hours coupling temperature: 25 ° C to 32 ° C separation: 70% TFA / 29% DCM / 1% H 2 O,
1) 레진 팽윤(swelling)1) Resin swelling
여과막이 장착된 고상(solid-phase) 합성반응기에 합성 말단에 카르복시기(-COOH)를 갖는 펩타이드 합성은 클로로트리틸 클로라이드 레진(2-Chlorotritylchloride resin, Bead Tech)을 이용하였다. 또한, 합성 말단에 펩타이드 결합(-CONH2)으로 끝나는 펩타이드 합성은 링크 아마이드 레진(Rink amide resin, GLS)을 이용하였다. DCM 및 DMF를 사용하여 30분 동안 레진을 팽윤시켰다.Chlorotritylchloride resin (Bead Tech) was used to synthesize a peptide having a carboxy group (-COOH) at the synthetic end in a solid-phase synthesis reactor equipped with a filtration membrane. In addition, a peptide synthesis terminated with a peptide bond (-CONH 2 ) at the synthetic end was carried out using Rink amide resin (GLS). DCM and DMF were used to swell the resin for 30 minutes.
2) 아미노산 로딩(loading)2) Amino acid loading
클로로트리틸 클로라이드 레진을 이용한 합성은 첫 아미노산을 레진에 로딩시키는 과정을 포함한다. 팽윤시킨 레진을 감압 하에서 여과막을 통해 용매를 제거하였다. 상기 레진에 2 당량의 Fmoc-Arg(Pbf)-OH를 DMF에 완전히 녹인 후 클로로트리틸 클로라이드 레진에 첨가하였고, 밀도를 고려한 DIEA를 클로로트리틸 클로라이드 레진의 4 당량에 해당하는 양을 첨가하였다. 이후 반응기를 이용하여 5시간 이상, 25℃ 내지 32℃ 온도에서 반응을 실시하였다.Synthesis using chlorotrityl chloride resin involves loading the first amino acid into the resin. The swollen resin was removed under reduced pressure through a filtration membrane. Two equivalents of Fmoc-Arg (Pbf) -OH in the resin were completely dissolved in DMF, added to chlorotrityl chloride resin, and DIEA in consideration of density was added in an amount corresponding to 4 equivalents of chlorotrityl chloride resin. Thereafter, the reaction was carried out at 25 ° C to 32 ° C for 5 hours or more using a reactor.
3) 레진 Fmoc 탈보호3) Resin Fmoc Deprotection
상기 클로로트리틸 클로라이드 레진 또는 링크 아마이드 레진을 이용한 합성과정은 Fmoc의 탈보호 반응시키는 과정이 포함되었다. 레진 Fmoc 탈보호 과정은 감압 하에서 여과막을 통하여 용매를 제거한 후, 20%(v/v) 피페리딘을 첨가한 DMF을 사용하여 5분간 세척하였다. 그 후, 다시 20%(v/v) 피페리딘을 첨가한 DMF을 사용하여 10분간 세척하였다. 감압 하에서 여과하여 반응액을 제거하고 DCM 또는 DMF를 사용하여 2분씩 6차례 이상 세척하였다.The synthesis procedure using the chlorotrityl chloride resin or linkamid resin involved the deprotection of Fmoc. The resin Fmoc deprotection was performed by removing the solvent through a filtration membrane under reduced pressure and then washing with DMF containing 20% (v / v) piperidine for 5 minutes. Then, it was washed with DMF supplemented with 20% (v / v) piperidine for 10 minutes. The reaction solution was removed by filtration under reduced pressure, and washed with DCM or DMF six times for 2 minutes each.
4) 아미노산 합성 4) Amino acid synthesis
상기 링크 아마이드 레진에 3 내지 5 당량의 Fmoc-Arg(Pbf)-OH(GLS)를 DMF에 완전히 녹인 후, 용매를 제거한 링크 아마이드 레진에 넣어주었다. 커플링 시약(coupling reagent)으로 2 M HOBt/DIC(Hydroxybenzotriazole/ diisopropylcarbodiimide)를 아미노산 당량 및 링크 아마이드 레진 양에 맞게 넣어주었다. 이후, 반응기를 이용하여 5시간 이상, 25℃ 내지 32℃ 온도에서 합성을 실시하였다. 반응이 종료되면 용매를 벤트시킨 후, 깨끗한 DMF로 2분씩 6회에 걸쳐 세척하였다. 3 to 5 equivalents of Fmoc-Arg (Pbf) -OH (GLS) was completely dissolved in DMF, and then the solvent was removed from the link amide resin. 2 M HOBt / DIC (Hydroxybenzotriazole / diisopropylcarbodiimide) was added as a coupling reagent to the amino acid equivalent and amount of linkamid resin. Thereafter, synthesis was carried out at 25 ° C to 32 ° C using a reactor for 5 hours or more. When the reaction was completed, the solvent was evacuated and washed with clean DMF for 6 min each for 2 min.
세척 후, 상기 아미노산 결합 방법과 같은 방법으로 Fmoc-Arg(pbf)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Met-OH, Fmoc-Glu(tBu)-OH 및 Fmoc-Glu(tBu)-OH의 아미노산을 순서대로 커플링하였다. (PBF) -OH, Fmoc-Gln (Trt) -OH, Fmoc-Met-OH, Fmoc-Glu (tBu) -OH, and Fmoc- -OH < / RTI > were sequentially coupled.
5) 링커 결합5) Linker coupling
5-1) DIEA를 이용한 링커 결합 5-1) Linker coupling using DIEA
상기 헥사펩타이드가 합성된 상태의 레진에 Fmoc 탈보호를 진행하고 세척된 레진에 링커인 글루타르산 무수물(glutaric anhydride)을 3당량, 2 M 농도의 DIEA를 글루타르산 무수물 당량 및 링크 아마이드 레진 양에 맞게 넣어주었다. 이후, 반응기를 이용하여 5시간 이상, 25℃ 내지 32℃ 온도에서 합성을 실시하였다. 반응이 종료되면 용매를 벤트시킨 후, 깨끗한 DMF로 2분씩 6회에 걸쳐 세척하였다. Fmoc deprotection was performed on the resin in which the hexapeptide was synthesized, and 3 equivalents of glutaric anhydride as a linker, DIEA as a linker, and glutaric acid anhydride equivalent and amount of linkamid resin . Thereafter, synthesis was carried out at 25 ° C to 32 ° C using a reactor for 5 hours or more. When the reaction was completed, the solvent was evacuated and washed with clean DMF for 6 min each for 2 min.
상기 글루타르산 무수물 대신에 숙신산(Succinic acid) 또는 말레산 무수물(Maleic anhydride)을 이용하여 숙신산 링커 또는 말레산 링커를 결합시켰다. Succinic acid or maleic anhydride was used instead of the glutaric anhydride to bind a succinic acid linker or a maleic acid linker.
5-2) HOBT/DIC를 이용한 링커 결합5-2) Linker coupling using HOBT / DIC
또한, 상기 헥사펩타이드가 합성된 상태의 레진에 Fmoc 탈보호를 진행하고 세척된 레진에 링커인 말론산(Malonic acid)을 3당량, 2 M 농도의 HOBT/DIC를 말론산 당량 및 링크 아마이드 레진 양에 맞게 넣어주었다. 이후, 반응기를 이용하여 5시간 이상, 25℃ 내지 32℃ 온도에서 합성을 실시하였다. 반응이 종료되면 용매를 벤트시킨 후, 깨끗한 DMF로 2분씩 6회에 걸쳐 세척하였다.Further, Fmoc deprotection was performed on the resin in which the hexapeptide was synthesized, and 3 equivalents of a linker malonic acid was added to the washed resin. The HOBT / DIC at a concentration of 2 M was reacted with malonic acid equivalent . Thereafter, synthesis was carried out at 25 ° C to 32 ° C using a reactor for 5 hours or more. When the reaction was completed, the solvent was evacuated and washed with clean DMF for 6 min each for 2 min.
상기 말론산 대신에 아디프산(Adipic acid), 푸마르산(Fumaric acid), 이소프탈산(Isophthalic acid), 테레프탈산(Terephthalic acid) 또는 2,6-나프탈렌디카르복시산(2,6-Naphthalenedicarboxylic acid)을 이용하여 아디프산 링커, 푸마르산 링커, 이소프탈산 링커, 테레프탈산 링커 또는 2,6-나프탈렌디카르복시산 링커를 결합시켰다. It is also possible to use adipic acid, fumaric acid, isophthalic acid, terephthalic acid or 2,6-naphthalenedicarboxylic acid instead of malonic acid Adipic acid linker, fumaric acid linker, isophthalic acid linker, terephthalic acid linker or 2,6-naphthalene dicarboxylic acid linker.
6) 스테로이드 결합 6) Steroid bonding
그 후, 링커 결합된 상태의 헥사펩타이드 레진에 베타메타손을 3 당량, DMAP/2M DIC를 아미노산 당량 및 레진 양에 맞게 넣어주었다. 이후 반응기를 이용하여 5시간 이상, 25℃ 내지 32℃ 온도에서 반응시켰다. Subsequently, 3 equivalents of betamethasone was added to the hexapeptide resin in the linker bound state, and DMAP / 2M DIC was added to the amino acid equivalent and amount of resin. Thereafter, the reaction was carried out at 25 ° C to 32 ° C for 5 hours or more using a reactor.
7) 분리(Cleavage)7) Cleavage
반응이 종료되면 감압하에서 여과막을 통하여 용매를 제거한 후, 깨끗한 DMF로 2분씩 2회, DCM으로 2분씩 2회 걸쳐 세척하였다. 그 후, 용매를 거의 벤트시켜 제거하였다. 건조된 변이된 헥사펩타이드 복합체 레진을 70%(v/v) TFA/ 29%(v/v) DCM/ 1%(v/v) H2O 용액을 이용하여 4시간 동안 분리를 실시하였다(도 41 및 도 42).After the reaction was completed, the solvent was removed through a filtration membrane under reduced pressure, and then washed twice with clean DMF twice for 2 minutes and then for 2 minutes with DCM. Thereafter, the solvent was removed by almost venting. The dried mutated hexapeptide complex resin was separated for 4 hours using 70% (v / v) TFA / 29% (v / v) DCM / 1% (v / v) H2O solution 42).
8) 재결정 (Crystallize)8) Crystallize
분리가 완료된 용매를 에틸에테르(Ethyl ether)를 이용해 조(Crude) 제품을 재결정화 시켜 베타메타손-EEMQRR-NH2 추출하였다. The separated solvent was recrystallized by using ethyl ether to obtain Betamethasone-EEMQRR-NH 2 And extracted.
상기 베타메타손-EEMQRR-NH2 합성방법과 동일한 방법으로 덱사메타손-EEMQRR-NH2, 하이드로코르티손-EEMQRR-NH2, 프리드니손-EEMQRR-NH2, 메틸프리드니손-EEMQRR-NH2 및 에스트리올-EEMQRR-NH2, 베타메타손 발레레이트-EEMQRR-NH2, 베타메타손 디프로피오네이트-EEMQRR-NH2, 디플루코르토론 발레레이트-Glutaroyl-EEMQRR-NH2, 하이드로코르티손 17-부틸레이트-EEMQRR-NH2, 모메타손푸로에이트-EEMQRR-NH2, 메틸프레드니솔론 아세포네이트-EEMQRR-NH2, 베타메타손 발레레이트-Glutaric-EEMQRR-NH2, 베타메타손 발레레이트-Succinic-EEMQRR-NH2, 베타메타손 발레레이트-Maleic-EEMQRR-NH2, 베타메타손 발레레이트-Malonic-EEMQRR-NH2, 베타메타손 발레레이트-Adipic-EEMQRR-NH2, 베타메타손 발레레이트-Fumaric-EEMQRR-NH2, 베타메타손 발레레이트-Isophthalic-EEMQRR-NH2, 베타메타손 발레레이트-Terephthalic-EEMQRR-NH2 및 베타메타손 발레레이트-2,6-Naphthalenedicarboxylic-EEMQRR-NH2를 합성하였다.The betamethasone in the same manner as -EEMQRR-NH 2 Synthesis dexamethasone -EEMQRR-NH 2, hydrocortisone -EEMQRR-NH 2, the pre-Denis hand -EEMQRR-NH 2, methyl pre Denis hand -EEMQRR-NH 2 and estriol -EEMQRR-NH 2, betamethasone valerate -EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, mometasone furoate -EEMQRR-NH 2, methylprednisolone fibroblasts carbonate -EEMQRR-NH 2, Betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2, betamethasone valerate -Maleic-EEMQRR-NH 2, betamethasone valerate -Malonic-EEMQRR-NH 2, betamethasone valerate -Adipic- EEMQRR-NH 2 , Betamethasone valerate-Fumaric-EEMQRR-NH 2 , Betamethasone valerate-Isophthalic-EEMQRR-NH 2 , Betamethasone valerate-Terephthalic-EEMQRR- NH 2 and Betamethasone valerate-2,6-Naphthalenedicarboxylic- NH 2 .
실시예 2.2. 변이된 헥사펩타이드 복합체 정제 Example 2.2. Mutated hexapeptide complex tablets
실시예 2.1.에서 합성한 베타메타손-EEMQRR-NH2 복합체 조제품을 10%(v/v) 아세토니트릴을 첨가한 증류수 용액에 녹였다. 그 후, 하기 그라디언트(gradient) 조건하에서 HPLC로 정제 후, 동결 건조하여 베타메타손-EEMQRR-NH2 복합체를 수득하였다(도 43 내지 도 48). 상기 그라디언트는 하기 표 10에 나타내었다. The Betamethasone-EEMQRR-NH 2 complex preparation prepared in Example 2.1. Was dissolved in distilled water containing 10% (v / v) acetonitrile. Thereafter, it was purified by HPLC under the following gradient conditions and then lyophilized to obtain a Betamethasone-EEMQRR-NH 2 complex (FIGS. 43-48). The above gradients are shown in Table 10 below.
A. 기기: Shimadzu 8A (5 cm * 25 cm)/8A (prep(dia 5 cm))A. Instrument: Shimadzu 8A (5 cm * 25 cm) / 8 A (prep (dia 5 cm))
B. 용매의 조성: 버퍼 A=0.05% TFA/아세토나이트릴, 버퍼 B=0.05% TFA/H2OB. Composition of solvent: Buffer A = 0.05% TFA / acetonitrile, buffer B = 0.05% TFA / H2O
C. 흐름 속도(Flow rate): 14 ㎖/분C. Flow rate: 14 ml / min
D. 컬럼: Silicagel C18 reverse phaseD. Column: Silicagel C18 reverse phase
E. 흡광도: 230 nmE. Absorbance: 230 nm
E. 그라디언트 E. Gradient
Time(min)Time (min) H2O(%)H 2 O (%) Acetonitrile(%)Acetonitrile (%)
0-120-12 80→6580 → 65 20→3520 → 35
12-1312-13 65→565 → 5 35→9535 → 95
13-1813-18 5→55 → 5 95→9595 → 95
18-1918-19 5→805 → 80 95→2095 → 20
19-2719-27 80→8080 → 80 20→2020 → 20
또한, 덱사메타손-EEMQRR-NH2, 하이드로코르티손-EEMQRR-NH2, 프리드니손-EEMQRR-NH2, 메틸프리드니손-EEMQRR-NH2 및 에스트리올-EEMQRR-NH2 복합체, 베타메타손 발레레이트-EEMQRR-NH2, 베타메타손 디프로피오네이트-EEMQRR-NH2, 디플루코르토론 발레레이트-Glutaroyl-EEMQRR-NH2, 하이드로코르티손 17-부틸레이트-EEMQRR-NH2, 모메타손푸로에이트-EEMQRR-NH2, 메틸프레드니솔론 아세포네이트-EEMQRR-NH2 복합체, 베타메타손 발레레이트-Glutaric-EEMQRR-NH2, 베타메타손 발레레이트-Succinic-EEMQRR-NH2, 베타메타손 발레레이트-Maleic-EEMQRR-NH2, 베타메타손 발레레이트-Malonic-EEMQRR-NH2, 베타메타손 발레레이트-Adipic-EEMQRR-NH2, 베타메타손 발레레이트-Fumaric-EEMQRR-NH2, 베타메타손 발레레이트-Isophthalic-EEMQRR-NH2, 베타메타손 발레레이트-Terephthalic-EEMQRR-NH2 및 베타메타손 발레레이트-2,6-Naphthalenedicarboxylic-EEMQRR-NH2 복합체도 상기 베타메타손-EEMQRR-NH2 복합체 정제공정과 동일한 방법으로 정제하였다.In addition, dexamethasone -EEMQRR-NH 2, hydrocortisone -EEMQRR-NH 2, the pre-Denis hand -EEMQRR-NH 2, methyl pre Denis hand -EEMQRR-NH 2 and estriol -EEMQRR-NH 2 complex, betamethasone valerate - EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, mometasone furoate -EEMQRR- NH 2, methylprednisolone fibroblasts carbonate -EEMQRR-NH 2 complex, betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2, betamethasone valerate -Maleic-EEMQRR-NH 2, betamethasone valerate -Malonic-EEMQRR-NH 2, betamethasone valerate -Adipic-EEMQRR-NH 2, betamethasone valerate -Fumaric-EEMQRR-NH 2, betamethasone valerate -Isophthalic-EEMQRR-NH 2, betamethasone valerate -Terephthalic-EEMQRR-NH 2 and betamethasone valerate-2,6-Naphtha lenedicarboxylic-EEMQRR-NH 2 complex was also purified by the betamethasone -EEMQRR-NH 2 complex purification processes in the same manner.
실험예 4. 변이된 헥사펩타이드 복합체의 항산화 효과 확인Experimental Example 4. Confirmation of antioxidative effect of mutated hexapeptide complex
안정한 자유 라디칼인 DPPH(1,1-Diphenyl-2-picryhydrazyl, Sigma D9132-1G)를 이용하여 라디칼이 감소하는 정도를 분광광도계(spectrophotometer)로 측정하여 간접적으로 시료의 항산화 활성을 측정하였다. 구체적으로, 에탄올 0.4 ㎖에 0.1 mM의 DPPH 용액 0.5 ㎖ 및 상기 실시예 2.에서 합성한 다양한 농도의 변이된 헥사펩타이드 복합체(시료)들을 각각 0.1 ㎖씩 첨가하고, 10초간 강하게 볼텍싱한 후 냉암소에서 30분간 반응시켰다. The antioxidant activity of the sample was measured indirectly by measuring the degree of decrease of the radicals by a spectrophotometer using a stable free radical, DPPH (1,1-Diphenyl-2-picryhydrazyl, Sigma D9132-1G). Specifically, 0.5 ml of a 0.1 mM DPPH solution and 0.4 ml of mutated hexapeptide complexes (samples) prepared at various concentrations prepared in Example 2 were added to 0.4 ml of ethanol, vortexed vigorously for 10 seconds, The reaction was carried out in cattle for 30 minutes.
그 후, 분광광도계 ELISA를 이용하여 517 nm 파장에서 흡광도를 측정하였다. 양성 대조군으로는 비타민 C(Ascorbic acid)를 사용하였다.The absorbance was then measured at a wavelength of 517 nm using a spectrophotometer ELISA. As a positive control, vitamin C (ascorbic acid) was used.
[수학식 1][Equation 1]
DPPH 자유라디칼 소거능(%) = {1-시료의 흡광도/Blank의 흡광도)x100}DPPH free radical scavenging ability (%) = {1-absorbance of sample / absorbance of blank} x 100}
DPPH는 에탄올 내에서 고유의 보라색을 띄게 되는데 항산화 물질로 인하여 환원되면 고유의 보라색을 잃고 노란색으로 변하게 된다. DPPH는 517 nm 파장에서 분광분석을 통하여 라디칼을 측정 가능하다.DPPH is inherently purple in ethanol. When it is reduced by antioxidants, it will lose its original purple color and turn yellow. DPPH is capable of measuring radicals through spectral analysis at a wavelength of 517 nm.
그 결과, 변이된 헥사펩타이드 복합체를 농도별로 처리한 경우 DPPH의 자유라디칼 소거능이 농도 의존적으로 항산화 활성이 증가하는 것을 확인하였다(표 11). As a result, it was confirmed that when the mutant hexapeptide complex was treated at different concentrations, the free radical scavenging ability of DPPH increased the concentration-dependent antioxidant activity (Table 11).
번호number 변이된 헥사펩타이드 복합체Mutated hexapeptide complex M.W. (g/mol)M.W. (g / mol) SC50 (mM)SC 50 (mM)
1One 비타민 C (Ascorbic acid)Ascorbic acid 176.12176.12 0.03130.0313
22 히드로코르티손-글루타로일-EEMQRR-NH2 Hydrocortisone-gluconic Taro one -EEMQRR-NH 2 1305.51305.5 10.579610.5796
33 메틸프레드니솔론-글루타로일-EEMQRR-NH2 Methylprednisolone-gluconic Taro one -EEMQRR-NH 2 1317.511317.51 11.584911.5849
44 프리드니손-글루타로일-EEMQRR-NH2 DENIS free hand-glue one taro -EEMQRR-NH 2 1301.471301.47 14.568914.5689
55 에스트리올-글루타로일-EEMQRR-NH2 Estriol-gluconic Taro one -EEMQRR-NH 2 1233.441233.44 16.246516.2465
66 덱사메타손-글루타로일-EEMQRR-NH2 Dexamethasone-gluconic Taro one -EEMQRR-NH 2 1335.51335.5 18.957818.9578
77 베타메타손-글루타로일-EEMQRR-NH2 Betamethasone-gluconic Taro one -EEMQRR-NH 2 1335.51335.5 20.236820.2368
상기 표 11은 변이된 헥사펩타이드 복합체의 DPPH 자유라디칼 소거능을 나타낸 표이다. SC50은 자유라디칼을 50% 소거할 때의 시료 농도로 의미한다.그 외 변이된 헥사펩타이드 복합체에서도 DPPH 자유라디칼 소거능을 보임으로 위의 6종의 변이된 헥사펩타이드 복합체들은 항산화 화장료 조성물로서 사용할 수 있음을 확인하였다. Table 11 above shows DPPH free radical scavenging activity of mutated hexapeptide complexes. SC 50 refers to the concentration of the sample at the time of scavenging free radicals 50% that in the hexa-peptide complexes variation outside to show the DPPH free-radical scavenging 6 species hexa-peptide complexes variations of the above may be used as an antioxidant cosmetic composition Respectively.
실험에 5. 변이된 헥사펩타이드 복합체의 피부재생 효과 확인Experimental 5. Identification of the skin regeneration effect of the mutated hexapeptide complex
상처 회복 실험(Wound healing assay)를 통해 변이된 헥사펩타이드 복합체에 의한 세포 증식 및 이동 촉진 유무를 통해 피부재생 효과를 평가하였다. 인간 각질형성 세포주 HaCaT(human keratinocyte, AddexBio, US, Catalog No: T0020001)를 사용하였으며, 세포배양을 위한 DMEM(Dulbecco's Modified Eagle's Medium), Antibiotic-Antimycotic은 GIBCO에서 구입하였으며, FBS(fatal bovine serum)는 Capricorn에서 구입하여 사용하였다. Wound healing assay was used to assess skin regeneration effects by stimulating cell proliferation and migration by mutated hexapeptide complexes. DMEM (Dulbecco's Modified Eagle's Medium) for cell culture and Antibiotic-Antimycotic were purchased from GIBCO. FBS (fatal bovine serum) was purchased from GIBCO. Were purchased from Capricorn.
HaCaT 세포는 DMEM에 10% FBS, 1% Antibiotic-Antimycotic과 함께, 100 mm/60.1 cm2 배양접시에서 37℃, 5% CO2,100% 습윤 조건의 배양기에서 배양하였다. HaCaT 세포의 세포포화도가 90% 정도 될 때, 100 mm/60.1 cm2 배양접시에서 1.5x105 cells/12-웰-플레이트에 분주하여 48시간 동안 37℃, 5% CO2,100% 습윤 조건의 배양기에서 배양하였다.HaCaT cells were cultured in DMEM with 10% FBS and 1% Antibiotic-Antimycotic in a 100 mm / 60.1 cm 2 culture dish in an incubator at 37 ° C, 5% CO 2 , 100% wet condition. When the degree of cell saturation of HaCaT cells reaches about 90%, the cells are plated at 1.5 x 10 cells / 12-well plate in a 100 mm / 60.1 cm 2 culture dish and incubated for 48 hours at 37 ° C, 5% CO 2 , 100% Lt; / RTI >
그 후, FBS를 첨가하지 않는 DMEM으로 교체한 후, 각 웰에 200 ㎕ 팁을 이용해 스크레치를 냈다. 실험군으로 실시예 2.에서 합성한 변이된 헥사펩타이드 복합체를 사용하였으며, 100 ng/㎖의 농도로 처리하였다. 양성 대조군으로 hEGF(Sigma-Aldrich, USA)를 사용하였으며, 0.5 ng/㎖ 농도로 처리하였다. 음성대조군으로 1xPBS를 사용하였다. Thereafter, the cells were replaced with DMEM without FBS, and the wells were scratched with a 200 μl tip. As a test group, the mutated hexapeptide complexes synthesized in Example 2 were used and treated at a concentration of 100 ng / ml. HEGF (Sigma-Aldrich, USA) was used as a positive control and treated at a concentration of 0.5 ng / ml. 1xPBS was used as a negative control.
실험군 또는 대조군 처리한 후, 바로 세포 사진을 현미경으로 찍고 37℃, 5% CO2의 조건으로 배양하였다. 20시간 동안 추가배양 후, 현미경으로 세포 사진을 찍어 Image J 프로그램을 이용하여 세포 재생 정도를 계산하였다. SPSS 통계 분석 프로그램을 통하여 통계 분석을 실시하였고, 시그마플롯 프로그램을 통하여 그래프를 제시하였다. 통계적 유의성은 P value가 0.05 이하일 때 유의성 있게 평가하였다. After treatment with the experimental group or the control group, cell photographs were taken with a microscope and cultured at 37 ° C and 5% CO 2 . After further incubation for 20 hours, cell pictures were taken under a microscope and the degree of cell regeneration was calculated using the Image J program. Statistical analysis was performed using SPSS statistical analysis program, and the graph was presented through Sigma plot program. Statistical significance was significantly evaluated when the P value was less than 0.05.
[수학식 2]&Quot; (2) "
상처회복 면적(Wound healing area) (%) = {(A-B)/A}x100Wound healing area (%) = {(A-B) / A} x 100
A = 실험군 또는 대조군 처리 직후 0시간대, 상처 면적A = 0 time zone immediately after treatment or control group, wound area
B = 실험군 또는 대조군 처리 후 20시간대, 상처 면적B = 20 hours after treatment or control group, wound area
그 결과, 변이된 헥사펩타이드 복합체 6종 모두에서 음성대조군(PBS)보다 회복 면적이 증가하였다(도 49). As a result, the recovery area was increased in all six mutant hexapeptide complexes than the negative control (PBS) (FIG. 49).
또한, 실시예 2.에서 합성한 베타메타손 발레레이트-EEMQRR-NH2, 베타메타손 디프로피오네이트-EEMQRR-NH2, 디플루코르토론 발레레이트-Glutaroyl-EEMQRR-NH2, 하이드로코르티손 17-부틸레이트-EEMQRR-NH2, 모메타손푸로에이트-EEMQRR-NH2 및 메틸프레드니솔론 아세포네이트-EEMQRR-NH2 복합체에 의한 세포 증식 및 이동 촉진 유무를 통해 피부재생 효과를 평가하였다. 실험방법은 상기와 동일하게 진행하였다. Further, the embodiment 2. betamethasone valerate -EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, prepared in hydrocortisone 17-butyrate - The skin regeneration effect was assessed by cell proliferation and migration promotion by EEMQRR-NH 2 , mometasone furoate-EEMQRR-NH 2 and methylprednisolone acetonate-EEMQRR-NH 2 complex. The experiment was carried out in the same manner as described above.
그 결과, 베타메타손 발레레이트-EEMQRR-NH2, 베타메타손 디프로피오네이트-EEMQRR-NH2, 디플루코르토론 발레레이트-Glutaroyl-EEMQRR-NH2, 하이드로코르티손 17-부틸레이트-EEMQRR-NH2, 모메타손푸로에이트-EEMQRR-NH2 및 메틸프레드니솔론 아세포네이트-EEMQRR-NH2복합체 모두 음성대조군에 비해 각각 약 2배 이상 회복 면적(healing area)이 증가하였다(도 50). As a result, betamethasone valerate -EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, Mo meta hand furoate -EEMQRR-NH 2 and methylprednisolone fibroblasts carbonate -EEMQRR-NH 2 conjugate were both about 2 times or more and recovery area (healing area), respectively as compared to the negative control group increased (Fig. 50).
나아가, 실시예 2.에서 제조한 9종의 링커를 이용하여 스테로이드를 결합시킨 베타메타손 발레레이트-Glutaric-EEMQRR-NH2, 베타메타손 발레레이트-Succinic-EEMQRR-NH2, 베타메타손 발레레이트-Maleic-EEMQRR-NH2, 베타메타손 발레레이트-Malonic-EEMQRR-NH2, 베타메타손 발레레이트-Adipic-EEMQRR-NH2, 베타메타손 발레레이트-Fumaric-EEMQRR-NH2, 베타메타손 발레레이트-Isophthalic-EEMQRR-NH2, 베타메타손 발레레이트-Terephthalic-EEMQRR-NH2 및 베타메타손 발레레이트-2,6-Naphthalenedicarboxylic-EEMQRR-NH2 복합체에 의한 세포 증식 및 이동 촉진 유무를 통해 피부재생 효과를 평가하였다. 실험방법은 상기와 동일하게 진행하였다.Further, Example 2 was betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2, betamethasone valerate -Maleic EEMQRR--binding steroid using a linker of the nine kinds of manufactured NH 2, betamethasone valerate -Malonic-EEMQRR-NH 2, betamethasone valerate -Adipic-EEMQRR-NH 2, betamethasone valerate -Fumaric-EEMQRR-NH 2, betamethasone valerate -Isophthalic-EEMQRR-NH 2, betamethasone valerate -Terephthalic-EEMQRR-NH 2 and Betamethasone valerate-2,6-Naphthalenedicarboxylic-EEMQRR-NH 2 complexes to stimulate cell proliferation and migration. The experiment was carried out in the same manner as described above.
그 결과, 베타메타손 발레레이트-Glutaric-EEMQRR-NH2, 베타메타손 발레레이트-Succinic-EEMQRR-NH2, 베타메타손 발레레이트-Maleic-EEMQRR-NH2, 베타메타손 발레레이트-Malonic-EEMQRR-NH2, 베타메타손 발레레이트-Adipic-EEMQRR-NH2, 베타메타손 발레레이트-Fumaric-EEMQRR-NH2, 베타메타손 발레레이트-Isophthalic-EEMQRR-NH2, 베타메타손 발레레이트-Terephthalic-EEMQRR-NH2 및 베타메타손 발레레이트-2,6-Naphthalenedicarboxylic-EEMQRR-NH2 복합체 모두 음성대조군에 비해 각각 약 2배 이상 회복 면적(healing area)이 증가하였다. 이를 통해 변이된 헥사펩타이드 복합체들이 세포의 증식 및 이동을 촉진하여 회복 면적을 증가시키는데 효과적이며, 따라서 피부재생에도 효능을 가짐으로 화장료 조성물로서 사용할 수 있음을 확인하였다(도 51). As a result, betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2, betamethasone valerate -Maleic-EEMQRR-NH 2, betamethasone valerate -Malonic-EEMQRR-NH 2, betamethasone valerate EemQRR-NH 2 , Betamethasone valerate-Fumaric-EEMQRR-NH 2 , Betamethasone valerate-Isophthalic-EEMQRR-NH 2 , Betamethasone valerate-Terephthalic-EEMQRR- NH 2 and Betamethasone valerate-2,6-Naphthalenedicarboxylic all -EEMQRR-NH 2 complex were increased about 2-fold recovery area (healing area), respectively as compared to the negative control. Thus, it was confirmed that the mutated hexapeptide complexes are effective in promoting proliferation and migration of cells to increase the recovery area, and thus have an effect on skin regeneration, thus being used as a cosmetic composition (FIG. 51).
실험예 6. 변이된 헥사펩타이드 복합체의 세포독성 확인Experimental Example 6: Cytotoxicity of mutated hexapeptide complexes
베타메타손 발레레이트-EEMQRR-NH2, 베타메타손 디프로피오네이트-EEMQRR-NH2, 디플루코르토론 발레레이트-Glutaroyl-EEMQRR-NH2, 하이드로코르티손 17-부틸레이트-EEMQRR-NH2, 모메타손푸로에이트-EEMQRR-NH2, 메틸프레드니솔론 아세포네이트-EEMQRR-NH2, 베타메타손 발레레이트-Glutaric-EEMQRR-NH2, 베타메타손 발레레이트-Succinic-EEMQRR-NH2, 베타메타손 발레레이트-Maleic-EEMQRR-NH2, 베타메타손 발레레이트-Malonic-EEMQRR-NH2, 베타메타손 발레레이트-Adipic-EEMQRR-NH2, 베타메타손 발레레이트-Fumaric-EEMQRR-NH2, 베타메타손 발레레이트-Isophthalic-EEMQRR-NH2, 베타메타손 발레레이트-Terephthalic-EEMQRR-NH2 및 베타메타손 발레레이트-2,6-Naphthalenedicarboxylic-EEMQRR-NH2 복합체의 세포독성을 확인하기 위해 WST-1 분석을 수행하였다. As betamethasone valerate -EEMQRR-NH 2, betamethasone dipropionate -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17-butyrate -EEMQRR-NH 2, mometasone Eight -EEMQRR-NH 2, methylprednisolone fibroblasts carbonate -EEMQRR-NH 2, betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2, betamethasone valerate -Maleic-EEMQRR-NH 2, Betamethasone valerate-Malonic-EEMQRR-NH 2 , Betamethasone valerate-Adipic-EEMQRR-NH 2 , Betamethasone valerate-Fumaric-EEMQRR-NH 2 , Betamethasone valerate- Isophthalic- EEMQRR- NH 2 , Betamethasone valerate- to determine the cytotoxicity of EEMQRR-NH 2, and betamethasone valerate -2,6-Naphthalenedicarboxylic-EEMQRR-NH 2 complex was performed WST-1 assay.
구체적으로, 충분히 성장한 세포를 2x104 cells/well 농도로 96-웰-플레이트에 옮겨 배양하였다. 세포가 플레이트 바닥에 모두 부착할 수 있도록 24시간 동안 배양하였고, 몇 개의 웰은 세포없이 배지만 채워주었다. 샘플은 DMEM을 이용하여 최종 부피가 100 ㎕이 되도록 제조하였다. WST-1 시약은 각 웰당 10 ㎕ 분주하였으며, 분주 후 4시간 동안 37℃ 온도에서 배양하였다. 그 후, ELISA reader를 이용하여 450nm 파장에서 흡광도를 측정하였다.Specifically, fully grown cells were transferred to a 96-well plate at a concentration of 2 x 10 cells / well and cultured. Cells were incubated for 24 hours to allow attachment to the bottom of the plate, and several wells were filled without cells but filled. Samples were prepared using DMEM to a final volume of 100 μl. The WST-1 reagent was dispensed at 10 [mu] l per well and incubated at 37 [deg.] C for 4 hours after dispensing. After that, absorbance was measured at a wavelength of 450 nm using an ELISA reader.
그 결과, 도 52 및 53에 나타난 바와 같이, 베타메타손 발레레이트-EEMQRR-NH2, 베타메타손 디프로피오네이트-EEMQRR-NH2, 디플루코르토론 발레레이트-Glutaroyl-EEMQRR-NH2, 하이드로코르티손 17-부틸레이트-EEMQRR-NH2, 모메타손푸로에이트-EEMQRR-NH2, 메틸프레드니솔론 아세포네이트-EEMQRR-NH2, 베타메타손 발레레이트-Glutaric-EEMQRR-NH2, 베타메타손 발레레이트-Succinic-EEMQRR-NH2, 베타메타손 발레레이트-Maleic-EEMQRR-NH2, 베타메타손 발레레이트-Malonic-EEMQRR-NH2, 베타메타손 발레레이트-Adipic-EEMQRR-NH2, 베타메타손 발레레이트-Fumaric-EEMQRR-NH2, 베타메타손 발레레이트-Isophthalic-EEMQRR-NH2, 베타메타손 발레레이트-Terephthalic-EEMQRR-NH2 및 베타메타손 발레레이트-2,6-Naphthalenedicarboxylic-EEMQRR-NH2 복합체 모두 세포독성이 나타나지 않는 것을 확인하였다.As a result, as shown in Fig. 52 and 53, betamethasone valerate -EEMQRR-NH 2, betamethasone propionate as deep -EEMQRR-NH 2, di-fluorenyl cor discussion valerate -Glutaroyl-EEMQRR-NH 2, hydrocortisone 17- butyrate -EEMQRR-NH 2, mometasone furoate -EEMQRR-NH 2, methylprednisolone fibroblasts carbonate -EEMQRR-NH 2, betamethasone valerate -Glutaric-EEMQRR-NH 2, betamethasone valerate -Succinic-EEMQRR-NH 2 , betamethasone valerate -Maleic-EEMQRR-NH 2, betamethasone valerate -Malonic-EEMQRR-NH 2, betamethasone valerate -Adipic-EEMQRR-NH 2, betamethasone valerate -Fumaric-EEMQRR-NH 2, betamethasone valerate -Isophthalic -EEMQRR-NH 2, betamethasone valerate -Terephthalic-EEMQRR-NH 2, and betamethasone valerate -2,6-Naphthalenedicarboxylic-EEMQRR-NH 2 complex It was confirmed that no cytotoxicity was observed.

Claims (27)

  1. EEMQRR(서열번호 1)의 아미노산 서열을 가지는 헥사펩타이드와 활성물질이 결합된 활성물질-헥사펩타이드 복합체. An active substance-hexapeptide complex in which an active substance is conjugated with a hexapeptide having an amino acid sequence of EEMQRR (SEQ ID NO: 1).
  2. 제 1항에 있어서, The method according to claim 1,
    상기 활성물질이 유기산 또는 스테로이드인 것인, 활성물질-헥사펩타이드 복합체.Wherein the active substance is an organic acid or a steroid.
  3. 제 2항에 있어서, 3. The method of claim 2,
    상기 유기산은 모노엑시드, 다이엑시드, 트라이엑시드, 지방산, 시나믹엑시드 및 아로마틱엑시드로 이루어진 군으로부터 선택되는 어느 하나인 것인, 활성물질-헥사펩타이드 복합체. Wherein the organic acid is any one selected from the group consisting of mono-acide, di-acide, tri-acide, fatty acid, cinnamic acid, and aromatic acid.
  4. 제 3항에 있어서,The method of claim 3,
    상기 모노엑시드는 포름산(Formic acid), 글루쿠론산(Glucuronic acid), 락트산(Lactic acid), 메발론산(Mevalonic acid), 프로피온산(Propionic acid), 피루브산(Pyruvic acid), 퀸산(Quinic acid) 및 시키미산(Shikimic acid), 아비에트산(Abietic acid), 아시아틱산(Asiatic acid), 콜산(Cholic acid), 우르소디옥시콜산(Ursodeoxycholic acid), 우르솔산(Ursolic acid)으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 활성물질-헥사펩타이드 복합체. The mono-acid is selected from the group consisting of formic acid, glucuronic acid, lactic acid, mevalonic acid, propionic acid, pyruvic acid, quinic acid, And any one selected from the group consisting of Shikimic acid, Abietic acid, Asiatic acid, Cholic acid, Ursodeoxycholic acid, Ursolic acid, ≪ / RTI > active substance-hexapeptide complex.
  5. 제 3항에 있어서, The method of claim 3,
    상기 다이엑시드는 아젤라산(Azelaic acid), 디피콜린산(Dipicolinic acid), 푸마르산(Fumaric acid), 이타콘산(Itaconic acid), 말산(Malic acid), 옥살산(Oxalic acid), 숙신산(Succinic acid), 타르타르산(Tartaric acid) 및 알파-케토글루타르산(α-Ketoglutaric acid)로 이루어진 군으로부터 선택되는 어느 하나인 것인, 활성물질-헥사펩타이드 복합체. The die acid may be selected from the group consisting of azelaic acid, dipicolinic acid, fumaric acid, itaconic acid, malic acid, oxalic acid, succinic acid, Wherein the active substance is any one selected from the group consisting of tartaric acid and alpha-ketoglutaric acid.
  6. 제 3항에 있어서,The method of claim 3,
    상기 트라이엑시드는 시트르산(Citric acid)인 것인, 활성물질-헥사펩타이드 복합체. Wherein the triaxide is citric acid. ≪ RTI ID = 0.0 > 11. < / RTI >
  7. 제 3항에 있어서, The method of claim 3,
    상기 지방산은 리포산(Lipoic acid), 제란산(Geranic acid), 소르빈산(Sorbic acid), 바이오틴(Biotin) 및 트레티노인(Tretinoin)으로 이루어지는 군으로부터 선택되는 어느 하나인 것인, 활성물질-헥사펩타이드 복합체. Wherein the fatty acid is any one selected from the group consisting of Lipoic acid, Geranic acid, Sorbic acid, Biotin and Tretinoin.
  8. 제 3항에 있어서,The method of claim 3,
    상기 시나믹엑시드는 카페산(Caffeic acid), 계피산(Cinnamic acid), 페룰산(Ferulic acid) 및 로즈마린산(Rosmarinic acid)으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 활성물질-헥사펩타이드 복합체. Wherein the visual acid is any one selected from the group consisting of Caffeic acid, Cinnamic acid, Ferulic acid and Rosmarinic acid.
  9. 제 3항에 있어서, The method of claim 3,
    상기 아로마틱엑시드는 니코틴산(Nicotinic acid) 및 시링산(Syringic acid)으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 활성물질-헥사펩타이드 복합체. Wherein the aromatic acid is any one selected from the group consisting of nicotinic acid and syringic acid.
  10. 제 2항에 있어서, 3. The method of claim 2,
    상기 스테로이드는 베타메타손(betamethasone), 덱사메타손(dexamethasone), 하이드로코르티손(hydrocortisone), 프리드니손(prednisone), 메틸프리드니손(methyl prednisone), 에스트리올(estriol), 베타메타손 발레레이트(Betamethasone valerate), 베타메타손 디프로피오네이트(Betamethasone dipropionate), 모메타손푸로에이트(Mometasone furoate), 하이드로코르티손 17-부틸레이트(Hydrocortisone 17-butyrate), 디플루코르토론 발레레이트(Diflucortolone valerate) 및 메틸프레드니솔론 아세포네이트(Methylprednisolone aceponate)로 이루어진 군으로부터 선택되는 어느 하나인 것인, 활성물질-헥사펩타이드 복합체.The steroid may be selected from the group consisting of betamethasone, dexamethasone, hydrocortisone, prednisone, methyl prednisone, estriol, betamethasone valerate, But are not limited to, Betamethasone dipropionate, Mometasone furoate, Hydrocortisone 17-butyrate, Diflucortolone valerate and Methylprednisolone aceponate). < / RTI >
  11. 제 2항에 있어서,3. The method of claim 2,
    상기 스테로이드가 링커를 통해 결합하는 것을 특징으로 하는, 활성물질-헥사펩타이드 복합체.≪ / RTI > wherein said steroid is bound through a linker.
  12. 제 11항에 있어서, 12. The method of claim 11,
    상기 링커는 하기 화학식 50으로 표시되는 것인, 활성물질-헥사펩타이드 복합체: Wherein the linker is represented by the following formula (50): < EMI ID =
    [화학식 50](50)
    Figure PCTKR2018010914-appb-I000114
    Figure PCTKR2018010914-appb-I000114
    상기 Z는 C1-10 알킬렌, C2-12 알케닐렌 또는 C6-14 아릴렌이다. Wherein Z is C 1-10 alkylene, C 2-12 alkenylene or C 6-14 arylene.
  13. 제 12항에 있어서, 13. The method of claim 12,
    상기 Z는
    Figure PCTKR2018010914-appb-I000115
    ,
    Figure PCTKR2018010914-appb-I000116
    ,
    Figure PCTKR2018010914-appb-I000117
    ,
    Figure PCTKR2018010914-appb-I000118
    ,
    Figure PCTKR2018010914-appb-I000119
    ,
    Figure PCTKR2018010914-appb-I000120
    ,
    Figure PCTKR2018010914-appb-I000121
    ,
    Figure PCTKR2018010914-appb-I000122
    Figure PCTKR2018010914-appb-I000123
    로 이루어진 군으로부터 선택되는 어느 하나인 것인, 활성물질-헥사펩타이드 복합체.
    Z is
    Figure PCTKR2018010914-appb-I000115
    ,
    Figure PCTKR2018010914-appb-I000116
    ,
    Figure PCTKR2018010914-appb-I000117
    ,
    Figure PCTKR2018010914-appb-I000118
    ,
    Figure PCTKR2018010914-appb-I000119
    ,
    Figure PCTKR2018010914-appb-I000120
    ,
    Figure PCTKR2018010914-appb-I000121
    ,
    Figure PCTKR2018010914-appb-I000122
    And
    Figure PCTKR2018010914-appb-I000123
    ≪ / RTI > is an active substance-hexapeptide complex.
  14. 제 11항에 있어서,12. The method of claim 11,
    상기 링커는 글루타르산(Glutaric acid), 숙신산(Succinic acid), 말레산(Maleic acid), 말론산(Malonic acid), 아디프산(Adipic acid), 푸마르산(Fumaric acid), 이소프탈산(Isophthalic acid), 테레프탈산(Terephthalic acid) 및 2,6-나프탈렌디카르복시산(2,6-Naphthalenedicarboxylic acid)로 이루어진 군으로부터 선택되는 어느 하나인 것인, 활성물질-헥사펩타이드 복합체.The linker may be selected from the group consisting of glutaric acid, succinic acid, maleic acid, malonic acid, adipic acid, fumaric acid, isophthalic acid ), Terephthalic acid, and 2,6-naphthalenedicarboxylic acid. 2. The active substance-hexapeptide complex according to claim 1, wherein the active substance-hexapeptide complex is selected from the group consisting of terephthalic acid and 2,6-naphthalenedicarboxylic acid.
  15. 제 1항에 있어서, The method according to claim 1,
    상기 활성물질이 헥사펩타이드의 N-말단과 펩타이드 결합을 하는 것을 특징으로 하는, 활성물질-헥사펩타이드 복합체. Characterized in that the active substance is peptide-linked to the N-terminus of the hexapeptide.
  16. 제 1항에 있어서, The method according to claim 1,
    상기 헥사펩타이드의 C-말단에 카르복시기가 아마이드기로 치환된 것을 특징으로 하는 활성물질-헥사펩타이드 복합체. Wherein the C-terminal of the hexapeptide is substituted with a carboxyl group.
  17. 제 16항에 있어서,17. The method of claim 16,
    상기 아마이드기는 1차, 2차 및 3차 아마이드기로 이루어진 군으로부터 선택되는 어느 하나의 아마이드기인 것인, 활성물질-헥사펩타이드 복합체. Wherein the amide group is any amide group selected from the group consisting of primary, secondary and tertiary amide groups.
  18. 제 16항에 있어서, 17. The method of claim 16,
    상기 아마이드기는 1차 아마이드기인 것을 특징으로 하는, 활성물질-헥사펩타이드 복합체. ≪ / RTI > wherein said amide group is a primary amide group.
  19. 제1항 내지 제18항 중 어느 한 항의 활성물질-헥사펩타이드 복합체를 유효성분으로 포함하는 화장료 조성물. 18. A cosmetic composition comprising the active substance-hexapeptide complex of any one of claims 1 to 18 as an active ingredient.
  20. 제 19항에 있어서, 20. The method of claim 19,
    상기 화장료 조성물은 화장수, 크림, 로션, 세럼, 에센스로 이루어진 군으로부터 선택되는 어느 하나의 제형인 것을 특징으로 하는, 화장료 조성물. Wherein the cosmetic composition is any one selected from the group consisting of lotion, cream, lotion, serum, and essence.
  21. 제1항 내지 제18항 중 어느 한 항의 활성물질-헥사펩타이드 복합체를 유효성분으로 포함하는 피부 상처 치료용 약학 조성물.A pharmaceutical composition for treating skin wounds comprising the active substance-hexapeptide complex of any one of claims 1 to 18 as an active ingredient.
  22. 피부상태 개선을 위한 제1항의 활성물질-헥사펩타이드 복합체의 용도.Use of the active substance-hexapeptide complex of claim 1 for improving skin condition.
  23. 피부상태 개선용 화장료 조성물을 제조하기 위한 제1항의 활성물질-헥사펩타이드 복합체의 용도. Use of the active substance-hexapeptide complex of claim 1 for the preparation of cosmetic compositions for improving skin conditions.
  24. 피부 상처를 치료하기 위한 제1항의 활성물질-헥사펩타이드 복합체의 용도.Use of the active substance-hexapeptide complex of claim 1 for treating skin wounds.
  25. 피부상처용 약학 조성물을 제조하기 위한 제1항의 활성물질-헥사펩타이드 복합체의 용도.Use of the active substance-hexapeptide complex of claim 1 for the preparation of a pharmaceutical composition for scarring.
  26. 제1항의 활성물질-헥사펩타이드 복합체를 개체의 피부에 처리하는 단계를 포함하는 피부상태 개선 방법. A method for improving skin condition comprising treating the skin of an individual with the active substance-hexapeptide complex of claim 1.
  27. 제1항의 활성물질-헥사펩타이드 복합체를 개체의 피부에 처리하는 단계를 포함하는 피부상처 치료방법.A method for treating skin wounds comprising treating the skin of an individual with the active substance-hexapeptide complex of claim 1.
PCT/KR2018/010914 2017-09-18 2018-09-17 Active substance-hexapeptide complex and cosmetic composition containing same WO2019054822A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880060597.5A CN111278420B (en) 2017-09-18 2018-09-17 Active substance-hexapeptide complex and cosmetic composition comprising same
JP2020537121A JP7100390B2 (en) 2017-09-18 2018-09-17 Active substance-hexapeptide complex and cosmetic composition containing it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0119516 2017-09-18
KR20170119529 2017-09-18
KR10-2017-0119529 2017-09-18
KR20170119516 2017-09-18

Publications (1)

Publication Number Publication Date
WO2019054822A1 true WO2019054822A1 (en) 2019-03-21

Family

ID=65723959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010914 WO2019054822A1 (en) 2017-09-18 2018-09-17 Active substance-hexapeptide complex and cosmetic composition containing same

Country Status (4)

Country Link
JP (1) JP7100390B2 (en)
KR (2) KR102293250B1 (en)
CN (1) CN111278420B (en)
WO (1) WO2019054822A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ309857B6 (en) * 2022-03-31 2023-12-20 Contipro A.S. Hexapeptide, compositions comprising this hexapeptide, and topical use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102135551B1 (en) * 2019-08-29 2020-07-20 주식회사 씨앤피코스메틱스 A cosmetic composition comprising red propolis extract having formononetin as a maker compound with excellent anti aging effect
CN117017874B (en) * 2023-10-08 2023-12-05 铂臻(广州)生物科技有限公司 Anti-wrinkle tightening face cream and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167285B1 (en) * 2011-11-18 2012-07-23 에이앤펩주식회사 Niacin-peptides having skin whitening effect and uses thereof
CN103012554A (en) * 2012-12-13 2013-04-03 山东百因制药技术有限公司 Hydrocortisone-RGD polypeptide conjugate, and preparation method and application thereof
CN103044523A (en) * 2012-12-13 2013-04-17 济南向惠医药技术有限公司 Dexamethasone-RGD polypeptide conjugate, preparation method thereof and application
KR20160084540A (en) * 2015-01-05 2016-07-14 원광대학교산학협력단 Oligopeptide derivatives and skin wrinkle composition comprising it
KR20160129292A (en) * 2015-04-30 2016-11-09 주식회사 바이오에프디엔씨 Galloyl-peptide derivatives and Anti-aginig Skin External Composition Comprising the Same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777389B1 (en) * 1998-11-19 2004-08-17 Connective Tissue Imagineering Llc Cosmetic or dermatological use of 7-hydroxylated steroids in combination with elastin derived peptides
WO2008063441A2 (en) * 2006-11-16 2008-05-29 The Procter & Gamble Company Personal care composition
MX2009005726A (en) * 2006-12-01 2009-09-28 Anterios Inc Peptide nanoparticles and uses therefor.
KR100857846B1 (en) * 2007-03-02 2008-09-10 주식회사 펩트론 Peptide-stabilized vitamin c derivative, and use thereof
ES2356883B1 (en) * 2008-07-24 2012-02-22 Bcn Peptides, S.A. COMPOSITION FOR THE TREATMENT OF PAIN AND / OR INFLAMMATION.
KR101093252B1 (en) * 2008-08-27 2011-12-14 주식회사 바이오에프디엔씨 Novel cinnamoyl peptide derivative having 4-hydroxy substituent, method for preparing the same and cosmetic composition comprising the same
KR101138312B1 (en) * 2009-04-13 2012-04-27 주식회사 바이오에프디엔씨 Peptide Derivatives and Cosmetic Composition Comprising the Same
AU2012208283B2 (en) * 2011-01-20 2017-01-05 Oneday - Biotech And Pharma Ltd. Antioxidant, anti-inflammatory, anti-radiation, metal chelating compounds and uses thereof
CN104039339B (en) * 2011-11-07 2016-01-20 格瑞复斯(武汉)生化科技股份有限公司 Peptides is as inhibitors of neurotransmitter secretion
KR101582306B1 (en) * 2013-04-22 2016-01-05 애니젠 주식회사 Curcumin-peptide complexes having improved solubility in comparison with curcumin and methods of preparing the same
CN103505377B (en) * 2013-09-11 2015-06-03 深圳市维琪医药研发有限公司 Polypeptide composition with skin activity
KR101553637B1 (en) 2014-01-27 2015-09-16 (주)셀인바이오 Peptide fatty acid derivative and cosmetic composition having anti-wrinkle activity containing the derivative
US20160166703A1 (en) * 2014-12-08 2016-06-16 JJSK R&D Pte Ltd Carrier Molecule Compositions and Related Methods
ES2928882T3 (en) * 2016-03-18 2022-11-23 Caregen Co Ltd Finasteride Peptide Conjugate
CN106699847B (en) * 2017-01-04 2020-08-14 陕西慧康生物科技有限责任公司 Method for purifying hexapeptide at low cost

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167285B1 (en) * 2011-11-18 2012-07-23 에이앤펩주식회사 Niacin-peptides having skin whitening effect and uses thereof
CN103012554A (en) * 2012-12-13 2013-04-03 山东百因制药技术有限公司 Hydrocortisone-RGD polypeptide conjugate, and preparation method and application thereof
CN103044523A (en) * 2012-12-13 2013-04-17 济南向惠医药技术有限公司 Dexamethasone-RGD polypeptide conjugate, preparation method thereof and application
KR20160084540A (en) * 2015-01-05 2016-07-14 원광대학교산학협력단 Oligopeptide derivatives and skin wrinkle composition comprising it
KR20160129292A (en) * 2015-04-30 2016-11-09 주식회사 바이오에프디엔씨 Galloyl-peptide derivatives and Anti-aginig Skin External Composition Comprising the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ309857B6 (en) * 2022-03-31 2023-12-20 Contipro A.S. Hexapeptide, compositions comprising this hexapeptide, and topical use thereof

Also Published As

Publication number Publication date
KR20190032218A (en) 2019-03-27
KR102359224B1 (en) 2022-02-08
KR102293250B1 (en) 2021-08-26
KR20210014723A (en) 2021-02-09
JP2020534356A (en) 2020-11-26
JP7100390B2 (en) 2022-07-13
CN111278420A (en) 2020-06-12
CN111278420B (en) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2019054822A1 (en) Active substance-hexapeptide complex and cosmetic composition containing same
WO2009151302A9 (en) Composition for anti-aging or antioxidation containing plant stem cell lines derived from cambium of panax ginseng including wild ginseng and ginseng as active components
WO2019004758A2 (en) Cosmetic composition containing fusion protein with skin penetration enhancing peptide conjugated thereto for skin improvement
WO2020235932A1 (en) Novel peptide compound or pharmaceutically acceptable salt thereof
WO2021137677A1 (en) Composition containing plant extract
WO2016085127A2 (en) Stable peptide-conjugated ascorbic acid derivative, method for preparing same, and cosmetic composition containing same
WO2016108669A1 (en) Composition, containing rgd motif-containing peptide or fragment thereof, for treating burns and glaucoma, alleviating skin wrinkles, and promoting hair growth
WO2020004745A1 (en) Microneedle coated with drug and manufacturing method for same
WO2018062820A1 (en) Composition for preventing hair loss and promoting hair growth, comprising phytoestrogen as an active ingredient
WO2014003232A1 (en) Composition comprising dendropanax morbifera léveille extract as active ingredient for promoting hair growth
WO2018236186A1 (en) Composition containing sesquiterpene derivative as active ingredient for prevention or treatment of muscle diseases
WO2010027221A2 (en) Skin-whitening composition comprising an extract, fraction or compound derived from lindera erythrocarpa
WO2020032622A1 (en) Peptide having antioxidant activity and composition containing same
WO2020050462A1 (en) Neuron-protective composition comprising cassia obtusifolia shoot-derived naphthopyrone derivative
WO2019108047A2 (en) Composition for prevention or treatment of hair loss
WO2019027239A2 (en) Composition for preventing hair loss or promoting hair growth
WO2019231175A1 (en) Peptide with amidated carboxy terminus having melanogenesis inhibitory activity and composition comprising same
WO2015115796A1 (en) Pegylated 7-dehydrocholesterol derivative
WO2022163978A1 (en) Novel antimicrobial peptide with excellent microbial cytoplasm elution effect
WO2017057851A1 (en) Ginsenoside fatty acid ester compound, method for preparing same, and cosmetic composition comprising same
EP0354108B1 (en) Amino acids and peptides with a modified tyrosine, their preparation and their use as medicines
WO2021054493A1 (en) Method for production of functional polysaccharide and cosmetic composition
WO2022196858A1 (en) Amino acid derivative, preparation method therefor, and pharmaceutical composition for treating hepatitis, comprising same
WO2023106897A1 (en) Novel peptide derivative derived from adiponectin and use thereof
WO2023191148A1 (en) Novel skin-penetrating peptide, dermal and mucosal composition comprising same, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856431

Country of ref document: EP

Kind code of ref document: A1