WO2019054400A1 - 金属板の両面摩擦撹拌接合方法および両面摩擦撹拌接合装置 - Google Patents

金属板の両面摩擦撹拌接合方法および両面摩擦撹拌接合装置 Download PDF

Info

Publication number
WO2019054400A1
WO2019054400A1 PCT/JP2018/033761 JP2018033761W WO2019054400A1 WO 2019054400 A1 WO2019054400 A1 WO 2019054400A1 JP 2018033761 W JP2018033761 W JP 2018033761W WO 2019054400 A1 WO2019054400 A1 WO 2019054400A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
metal plate
tools
shoulder
pair
Prior art date
Application number
PCT/JP2018/033761
Other languages
English (en)
French (fr)
Inventor
松下 宗生
池田 倫正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US16/637,906 priority Critical patent/US11446757B2/en
Priority to CN201880052674.2A priority patent/CN111050973B/zh
Priority to MX2020001795A priority patent/MX2020001795A/es
Priority to KR1020207003456A priority patent/KR102281397B1/ko
Priority to EP18857155.8A priority patent/EP3653329B1/en
Priority to JP2018563736A priority patent/JP6737347B2/ja
Publication of WO2019054400A1 publication Critical patent/WO2019054400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/1205Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using translation movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/121Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1265Non-butt welded joints, e.g. overlap-joints, T-joints or spot welds

Definitions

  • the present invention arranges a pair of rotating tools facing each other on the front side and the back side of the butt joint or overlapping section which is a joint of metal plates, and rotates the pair of rotating tools at the butt joint or overlapping section. While moving the metal plate in the bonding direction and softening the metal plate by the frictional heat between the rotating tool and the metal plate, the softened part is stirred with the rotating tool to generate plastic flow to join the metal plates together.
  • the present invention relates to a friction stir welding method and a double-sided friction stir welding apparatus for performing double-sided friction stir welding.
  • butt portions which are in a state in which metal plates (for example, steel plates etc.) are abutted (or overlapped) but are not joined yet are joined by "unjoined portion”.
  • the integrated part shall be called "joint”.
  • Patent Document 1 As a friction welding method, in Patent Document 1, by rotating both or one of a pair of metal materials, frictional heat is generated in the metal material to soften it, and the softened portion is agitated to cause plastic flow. Discloses a technique for bonding metal materials. However, since this technique rotates the metal material to be joined, the shape and size of the metal material are limited.
  • Patent Document 2 a rotary tool made of a material substantially harder than a metal plate is inserted into an unjoined portion of a metal plate, and the rotary tool is moved while being rotated.
  • a method is proposed in which the metal plates are joined continuously in the longitudinal direction by the heat and plastic flow generated between them.
  • a metal plate is joined by moving it while rotating a rotating tool while the metal plate is fixed.
  • solid members can be bonded continuously in the longitudinal direction even to a member that is substantially infinite along the bonding direction.
  • it is solid-phase joining using the plastic flow of the metal by the frictional heat of a rotary tool and a metal plate, it can join, without fuse
  • the heating temperature is low, deformation after joining is small, and since the joint portion is not melted, there are many advantages such as few defects and no need for a filler metal.
  • the friction stir welding method has been widely used in the fields of aircraft, ships, railway cars, automobiles and the like as a bonding method of low melting point metal plates represented by aluminum alloy and magnesium alloy. The reason is that these low melting metal plates are difficult to obtain satisfactory characteristics of the joint by the conventional arc welding method, and the productivity is improved by applying the friction stir welding method, and the quality is high. It is because a junction can be obtained.
  • the application of the friction stir welding method to structural steel plates mainly applied as materials of structures such as buildings, ships, heavy machinery, pipelines and automobiles is solidification cracking and hydrogen cracking which become problems in conventional fusion welding Since the structural change of the steel plate is also suppressed while improving the joint performance, it can be expected. In addition, since a clean surface can be created and the clean surfaces can be brought into contact with each other by agitating the bonding interface with a rotating tool, it is possible to expect the advantage that a preliminary preparation step such as diffusion bonding is unnecessary. Thus, the application of the friction stir welding method to a structural steel plate is expected to have many advantages. However, because there remain problems in joining workability such as suppression of defects during joining and speeding up of the joining speed (that is, moving speed of the rotating tool), friction stir welding is popular compared to low melting point metal plates. It has not progressed.
  • Patent Documents 3, 4 and 5 disclose a double-sided friction stir welding method.
  • the shoulders of a pair of rotating tools opposed to each other are pressed against the front and back sides of the joint of the metal plate, and the rotation of the shoulder causes a large temperature rise due to a sufficient temperature rise and shear stress.
  • a plastic flow sufficient to achieve the bonding state can be obtained uniformly in the thickness direction of the metal sheet, and the bonding speed is high while suppressing the generation of defects during bonding. It is believed that speeding can be achieved.
  • the present invention solves the problems of the prior art, and when performing double-sided friction stir welding, the shoulders of a pair of rotating tools facing each other are pressed against the front and back sides of the joint of metal plates Rotation causes a sufficient temperature rise and shear stress. As a result, large deformation is applied to both sides at high temperature, and it is possible to obtain a plastic flow sufficient to achieve the bonding state uniformly in the thickness direction of the metal sheet.
  • a friction stir welding method capable of achieving high bonding speed while suppressing generation of defects during bonding, and capable of improving bonding workability together with sufficient strength, and friction thereof It is an object of the present invention to provide a suitable friction stir welding apparatus for performing stir welding.
  • An object of the present invention is to provide a friction stir welding apparatus.
  • the temperature rise and shear stress can be made homogeneous with respect to the thickness direction of the metal plate by making the rotational speed of a pair of rotating tools facing each other the same and strictly controlling the ratio of bonding speed and rotational speed It is possible to obtain a high bonding speed while suppressing the occurrence of defects during bonding.
  • the clearance between the shoulders of the rotary tool, the diameter of the shoulders and the thickness of the metal plate a remarkable effect can be obtained by limiting the ratio of the bonding speed to the number of revolutions.
  • the present invention is based on such findings.
  • the present invention arranges a pair of rotating tools facing each other on the front side and the back side of the butt joint or overlapping portion which is a joint of two metal plates, and the pair of rotating tools in the butt joint or overlapping portion Move in the joining direction while rotating, soften the metal plate by the frictional heat between the rotating tool and the metal plate, and stir the softened part with the rotating tool to create plastic flow and join the metal plates together
  • a pair of rotating tools comprising a shoulder and a pin arranged on the shoulder and sharing the rotation axis with the shoulder, and at least the shoulder and the pin being formed of a material harder than a metal plate use, While fixing the metal plate with the holding device, the pair of rotating tools are pressed against the front and back of the metal plate, and the rotating tool is moved in the bonding direction while rotating
  • the rotation axes of the pair of rotary tools are inclined at an inclination angle ⁇ (°) to the side where the tip of the pin precedes the joining direction from the vertical direction with respect to
  • a pair of rotating tools facing each other are disposed on the front side and the back side of a butt joint or overlapping section which is a joint of two metal plates, and a pair of rotating tools in the butt joint or overlapping section Move in the joining direction while rotating, soften the metal plate by the frictional heat between the rotating tool and the metal plate, and stir the softened part with the rotating tool to create plastic flow and join the metal plates together
  • the rotating tool includes a shoulder and a pin disposed on the shoulder and sharing the rotation axis with the shoulder, and at least the shoulder and the pin are formed of a harder material than the metal plate,
  • the rotation axes of the pair of rotary tools are inclined at an inclination angle ⁇ (°) to the side where the tip of the pin precedes the joining direction from the vertical direction with respect to the metal plate, and the inclination angle ⁇ is 0 ⁇
  • the shoulders of a pair of rotating tools facing each other are pressed against the front and back surfaces of the joint of the metal plate, and the temperature rise and shear stress are sufficiently increased by the rotation of the shoulders. Will occur.
  • the plastic flow is homogeneously promoted in the thickness direction of the metal plate by the large deformation being applied to both surfaces at high temperature, and a good bonding state can be achieved.
  • FIG. 1 is a perspective view schematically showing an example of the arrangement of a rotary tool and a metal plate in the present invention.
  • (1) is the case of butt joint
  • (2) is the case of lap joint.
  • FIG. 2 (1) is a plan view of the rotary tool and the metal plate in FIG. 1
  • FIG. 2 (2) is a cross-sectional view taken along the line AA.
  • FIG. 3 is a cross-sectional view showing cross-sectional dimensions of the rotary tool used in the examples.
  • FIG. 4 shows the relationship between the axial load and the clearance of the shoulder of the opposing rotary tool.
  • FIG. 5 shows the relationship between axial load and bonding speed and rotational speed.
  • two metal plates are butted or stacked, and a pair of rotating tools are disposed on the front and back sides of the butted portion or the overlapping portion to perform double-sided friction stir welding.
  • a pair of rotary tools 1 and 8 are disposed opposite to each other on the front and back sides of the two metal plates 3 which are butted, and from both the front and back sides of the metal plate 3
  • the rotary tools 1 and 8 are inserted into the unjoined portion 12 and moved in the joining direction while being further rotated.
  • Arrow P in FIG. 1 indicates the advancing direction of the rotary tools 1 and 8 (ie, bonding direction)
  • arrow Q indicates the rotational direction of the rotary tool 1 disposed on the front side
  • arrow R indicates the rotary tool 8 disposed on the back side. Indicates the direction of rotation.
  • a straight line 7 (hereinafter referred to as a bonding center line) extending from the unbonded portion 12 to the width center of the bonded portion 4 in FIG. 1 coincides with the locus of the rotating tools 1 and 8 advancing in the direction of arrow P (FIG. 2) (Refer to (1)).
  • the two metal plates 3 are both gripped by a gripping device (not shown) and fixed at a predetermined position.
  • a gripping device which can prevent the fluctuation
  • a gap g (mm) is provided as shown in FIG.
  • a gap G (mm) is formed between steps 5 and 9 (hereinafter referred to as shoulders) generated by the difference between the diameter D (mm) of the rotating tools 1 and 8 and the diameter a (mm) of the tips of the pin portions 6 and 10. ) Occurs.
  • the rotary tool 8 on the back side is rotated in the reverse direction (ie, arrow R) with respect to the rotation direction (ie, arrow Q) of the rotary tool 1 on the front side.
  • the rotary tool 8 is rotated in the counterclockwise direction.
  • illustration is omitted, when rotating the rotary tool 1 counterclockwise, the rotary tool 8 is rotated clockwise.
  • the gap g is provided at the tip of the pin portion 6 of the rotary tool 1 and the tip of the pin portion 10 of the rotary tool 8 and the gap G is provided at the shoulder 5 of the rotary tool 1 and the shoulder 9 of the rotary tool 8
  • the gap G is provided at the shoulder 5 of the rotary tool 1 and the shoulder 9 of the rotary tool 8
  • the rotating tool 1 on the front side comprises a shoulder 5 and a pin 6 arranged on this shoulder 5 and sharing the axis of rotation 2 with the shoulder 5.
  • the back side rotary tool 8 comprises a shoulder 9 and a pin 10 arranged on this shoulder 9 and sharing the axis of rotation 11 with the shoulder 9. And, at least the shoulders 5 and 9 and the pin portions 6 and 10 are formed of a material harder than the metal plate 3.
  • the rotational directions Q and R of the rotating tools 1 and 8 facing each other in opposite directions on the front and back sides, the rotational torques applied to the metal plate 3 by the rotation of the rotating tools 1 and 8 cancel each other
  • the structure of the jig for restraining the metal plate 3 can be simplified.
  • the rotational directions Q and R of the mutually opposing rotary tools 1 and 8 are set.
  • the opposite direction is on the front side and the back side.
  • the present invention is effective in improving the life of the rotating tool, suppressing the occurrence of bonding defects, and increasing the bonding speed by adjusting the arrangement of the rotating tool as follows.
  • the rotary tools 2 and 11 of the rotary tools 1 and 8 are inclined at an angle ⁇ (°) from the vertical direction with respect to the metal plate 3 so that the tips of the pin portions 6 and 10 precede the bonding direction P.
  • the loads on 1 and 8 can be received by the rotating tools 1 and 8 as component forces compressed in the directions of the rotating shafts 2 and 11.
  • the pair of rotary tools 1 and 8 need to be formed of a material harder than the metal plate 3, and when using a material with poor toughness such as ceramic, the force in the bending direction with respect to the pin portions 6 and 10 When it is loaded, stress concentrates on the part and it leads to failure.
  • the inclination angle ⁇ of the rotary tools 1 and 8 on the front and back sides is 0 ° ⁇ ⁇ 3 °, the thickness t (mm) of the metal plate 3 in butt joint, and the superposed metal plate 3 in lap joint
  • the gap G (mm) is at least (0.5 ⁇ t) ⁇ (0.2 ⁇ D ⁇ sin ⁇ )
  • the shoulders 5 and 9 of the rotating tools 1 and 8 facing each other are in a state of being closely or pushed into the front and back sides of the metal plate 3
  • the metal plate 3 is pressed with sufficient load from the front and back sides by the shoulders 5 and 9 of the rotary tools 1 and 8.
  • Fig. 4 shows a steel sheet of thickness, chemical composition, and tensile strength shown in symbol 1 of Table 1, but with so-called I-shaped groove not angled, but the steel plates are butted according to the surface condition of the milling degree.
  • a rotary tool made of tungsten carbide (WC) having a cross-sectional shape is placed on both the front and back sides, and the inclined angle ⁇ is pressed at 1.5 °, and the rotary tools on the front and back sides are The clearance G between the shoulders of the rotating tool on the front surface side and the back surface side and the axial load F are shown when the rotational speed is 1000 rpm and the welding speed is 2 m / min.
  • WC tungsten carbide
  • the limited range of the gap G is 0.74 mm or more and 1.54 mm or less, and the axial load F can be 10 kN or more by setting the gap G to 1.54 mm or less.
  • the rotating tools 1, 8 facing each other It is effective to strictly control the gap g at the tips of the pin portions 6 and 10 of the above.
  • the diameter D of the shoulders 5 and 9 of the rotary tools 1 and 8 and the thickness t (mm) of the metal plate 3 (in the case of butt joint) or the total thickness t (mm) of superposed metal plates (lap joint) In the case where the ratio (D / t) is small, frictional heat generated at the shoulders of the rotating tools on the front and back sides is difficult to be transmitted in the thickness direction, and the material is softened by heating from the shoulders.
  • the gap g at the tip of the pin portion 6 or 10 is set to [0.1-0.09 ⁇ exp ⁇ -0.011 ⁇ (D / It is effective to limit t) 2 ⁇ ] ⁇ t or more and [1-0.9 ⁇ exp ⁇ -0.011 ⁇ (D / t) 2 ⁇ ] ⁇ t or less.
  • the gap g can be adjusted by changing the positions of the rotating tools on the front and back sides or the length b of the pin portions of both rotating tools.
  • the gap g is set to [0.1-0.09 x exp ⁇ -0.011 x (D / t) 2 ⁇ ] x t g g [[1-0.9 x exp ⁇ -0.011 x (D / t) 2 ⁇ ] x t .
  • the precise management of the diameter D of the shoulders 5, 9 of the rotating tools 1, 8 facing one another ensures that the temperature is homogeneously in the thickness direction of the metal plate 3 It is effective in obtaining rise and shear stress and achieving high bonding speed while suppressing the generation of defects during bonding.
  • the diameter D is smaller at the ratio to t, the frictional heat generated at the shoulders of the rotating tools on the front and back sides is less likely to be transmitted in the thickness direction, and the softening of the material by heating from the shoulders progresses
  • plastic flow does not occur homogeneously in the thickness direction. Therefore, the effect can be obtained by limiting the thickness t (mm) of the metal plate 3 to 4 ⁇ t or more and 20 ⁇ t or less.
  • the diameter D is set to 4 ⁇ t ⁇ D ⁇ 20 ⁇ t.
  • the thickness t refers to the thickness t of the metal plate 3 in the case of butt bonding, and the total thickness t of the metal plates 3 stacked in the case of the lap bonding.
  • Fig. 5 shows a steel sheet of thickness, chemical composition, and tensile strength indicated by symbol 1 in Table 1, but with a so-called I-shaped groove with no angle, butted according to the surface condition of a degree of milling processing.
  • 1) Place a rotating tool made of tungsten carbide (WC) having a cross-sectional shape on both the front and back sides, press the inclination angle ⁇ at 1.5 °, and set the gap G between the shoulders of the rotating tool
  • T ⁇ 1000 / rotational speed S (mm) is shown. As the welding speed T / rotational speed S increased, the axial load F tended to increase.
  • the above-mentioned QJ-t can be obtained as follows.
  • a rotary tool made of tungsten carbide (WC) having a shape is placed on both the front and back sides, pressed with an inclination angle ⁇ of 1.5 °, and the gap G between the shoulders of the rotary tool is 0.8 to 1.5 mm
  • the friction stir welding is performed with the rotation speed of the rotating tool on the front side and the back side set to 400 to 3000 rpm and the welding speed set to 1 to 5 m / min
  • the right side of the above equation in proportional relation to QJ-t is (3.4 ⁇ T ⁇ 1000 / S-32.2 ⁇ G / t + 34.5) ⁇ D ⁇ S / (1000 ⁇ T ⁇ t) ⁇ 53
  • the heat input was sufficient and a sound joint free of defects was obtained.
  • T / S (1/1000) ⁇ (D / t) ⁇ ⁇ 34.5-32.2 ⁇ (G / t) ⁇ / ⁇ 53-3.4 ⁇ (D / t) ⁇
  • the ratio T / S of the welding speed T (m / min) to the number of revolutions S (times / min) of the rotating tool is the diameter D (mm) of the shoulder of the rotating tool on the front and back sides and the metal plate 3
  • Relationship between the ratio G / t of the gap G (mm) and the thickness t (mm) of the metal plate 3 (in the case of butting) or the total thickness t (mm) of the superposed metal plates 3 (in the case of overlapping) Is represented by
  • the ratio D / of the diameter D of the shoulders 5 and 9 of the rotating tools 1 and 8 to the thickness t of the metal plates 3 (for butting) or the total thickness t of the superposed metal plates 3 (for overlapping) When t is small, that is, the frictional heat generated at the shoulders of the rotating tools on the front and back sides is hard to be transmitted in the thickness direction, and softening of the material due to heating from the shoulders does not proceed.
  • the ratio G / t of the gap G between the shoulders 5, 9 and the thickness t of the metal plate 3 (in the case of butting) or the total thickness t of the superposed metal plates 3 (in the case of overlapping) is large That is, when the axial load of the rotating tool on the front and back sides is smaller than the thickness t and the frictional heating between the rotating tool and the material is small, compositional flow occurs homogeneously in the thickness direction.
  • the ratio T / S of the rotational speed S of the turning tool is limited to (1/1000) ⁇ (D / t) ⁇ ⁇ 34.5-32.2 ⁇ (G / t) ⁇ / ⁇ 53-3.4 ⁇ (D / t) ⁇ or less It is effective to do.
  • the rotational speeds S of the rotating tools 1 and 8 opposing each other are the same.
  • the pin portions of the rotating tools 1 and 8 on the front surface side and the back surface side can be tapered from the boundary with the shoulder portion to the tip.
  • the length b of the pin portions 6 and 10 may be appropriately determined in accordance with the inclination angle ⁇ , the gap G, the gap g, the diameter D, and the thickness t.
  • the diameter a (mm) of the tip of the pin portion 6, 10 may be in accordance with the design matters of those skilled in the art.
  • the bonding conditions other than the above may be in accordance with the design matters of those skilled in the art. By doing this, it is possible to increase the bonding speed to 1000 mm / min or more by setting the rotation speed of the rotating tools 1 and 8 facing each other to a range of 100 to 5000 times / min.
  • the metal plate 3 targeted by the present invention can be suitably applied to general structural steels and carbon steel plates such as steel plates corresponding to JIS G 3106 and JIS G 4051.
  • it can be advantageously applied to high strength structural steel plates with a tensile strength of 800 MPa or more, and even in this case, at the joint, a strength of 85% or more of the tensile strength of the steel plate, and further 90% or more Strength is obtained.
  • Friction stir welding was performed using the steel plate of thickness, chemical composition, and tensile strength shown in Table 1.
  • the joint butting surface is a so-called I-shaped groove that does not form an angle, and according to the surface condition of the milling degree, welding is performed by pressing the rotary tool from both the surface side and back side of the steel plate butt
  • the rotation direction of the rotating tools on the front and back sides is clockwise in the plan view of the surface-side rotating tool (rotating tool 1) as seen from the front side of the steel plate (metal plate 3) as shown in FIG.
  • the surface side rotation tool (rotation tool 8) was rotated counterclockwise.
  • the joining conditions for friction stir welding are shown in Table 2. Further, in this case, a rotating tool made of two types of tungsten carbide (WC) having cross-sectional shapes in FIGS. 3 (1) and 3 (2) was used.
  • WC tungsten carbide
  • Table 3 shows the presence or absence of a surface defect in joint appearance observation at the time of joining, the presence or absence of an internal defect in joint cross-section observation, and a tensile test of the dimensions of No. 1 test piece prescribed by JIS Z 3121 from the obtained jointed joint The tensile strength at the time of taking a piece and performing a tensile test is shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

両面摩擦撹拌接合を行なうに際し、金属板の厚さ方向に対して均質的に接合状態を達成するに十分な塑性流動を得ることが可能となり、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成し、十分な強度と共に、接合施工性を向上することが可能な摩擦撹拌接合方法、及びその摩擦撹拌接合を行なうための好適な摩擦撹拌接合装置を提供する。 互いに対向する一対の回転ツールを2枚の金属板の接合部である突合せ部もしくは重ね部の表面側と裏面側にそれぞれ配置し、突合せ部もしくは重ね部において一対の回転ツールを回転させながら接合方向に移動させ、回転ツールと金属板との摩擦熱により金属板を軟化させつつ、その軟化した部位を回転ツールで撹拌することにより塑性流動を生じさせて金属板同士を接合する。

Description

金属板の両面摩擦撹拌接合方法および両面摩擦撹拌接合装置
 本発明は、互いに対向する一対の回転ツールを金属板の接合部である突合せ部もしくは重ね部の表面側と裏面側に対向してそれぞれ配置し、突合せ部もしくは重ね部において一対の回転ツールを回転させながら接合方向に移動させ、回転ツールと金属板との摩擦熱により金属板を軟化させつつ、その軟化した部位を回転ツールで撹拌することにより塑性流動を生じさせて金属板同士を接合する両面摩擦撹拌接合方法、およびその両面摩擦撹拌接合を行なうための両面摩擦撹拌接合装置に関する。
 また、本発明は、この摩擦撹拌接合方法を金属板の接合に適用した場合、あるいは摩擦撹拌接合装置を使用した場合に懸念される問題点、すなわち接合部における金属板の厚さ方向に生じる温度、塑性流動の差異に起因する接合部内の局所的な塑性流動不良を解消することで接合欠陥を有利に解消し、十分な強度と共に、接合施工性の向上、特に接合速度の向上を図ろうとするものである。
 なお以下では、金属板(たとえば鋼板等)を突合せた(もしくは重ねた)だけで未だ接合されていない状態にある突合せ部分(もしくは重ね部分)を「未接合部」、一方、塑性流動により接合されて一体化された部分を「接合部」と呼ぶものとする。
 摩擦溶接法として、特許文献1には、一対の金属材料の両方または片方を回転することにより、金属材料に摩擦熱を生じさせて軟化させながら、その軟化した部位を撹拌して塑性流動を起こすことによって、金属材料を接合する技術が開示されている。しかしながら、この技術は、接合される金属材料を回転させるものであるから、その金属材料の形状や寸法に限界がある。
 一方、特許文献2には、金属板よりも実質的に硬い材質からなる回転ツールを金属板の未接合部に挿入し、この回転ツールを回転させながら移動させることにより、回転ツールと金属板との間に生じる熱と塑性流動によって、金属板を長手方向に連続的に接合する方法が提案されている。この技術は、金属板を固定した状態で、回転ツールを回転させながら移動させることによって金属板を接合する。このため、接合方向に沿って実質的に無限に長い部材にも、その長手方向に連続的に固相接合できるという利点がある。また、回転ツールと金属板との摩擦熱による金属の塑性流動を利用した固相接合であるため、接合部を溶融することなく接合することができる。さらに、加熱温度が低いため接合後の変形が少なく、また接合部は溶融されないため欠陥が少なく、加えて溶加材を必要としないなど多くの利点がある。
 摩擦撹拌接合法は、アルミニウム合金やマグネシウム合金に代表される低融点金属板の接合法として、航空機、船舶、鉄道車輌および自動車等の分野で利用が広がってきている。その理由としては、これらの低融点金属板は、従来のアーク溶接法では接合部の満足な特性を得ることが難しく、摩擦撹拌接合法を適用することにより生産性を向上すると共に、品質の高い接合部を得ることができるためである。
 一方、建築物や船舶、重機、パイプライン、自動車といった構造物の素材として主に適用されている構造用鋼板に対する摩擦撹拌接合法の適用は、従来の溶融溶接で課題となる凝固割れや水素割れを回避できるとともに、鋼板の組織変化も抑制されるので、継手性能の向上が期待できる。また、回転ツールにより接合界面を撹拌することで清浄面を創出して清浄面同士を接触できるので、拡散接合のような事前の準備工程は不要であるというメリットも期待できる。このように、構造用鋼板に対する摩擦撹拌接合法の適用は、多くの利点が期待される。しかし、接合時における欠陥発生の抑制、接合速度(すなわち回転ツールの移動速度)の高速度化といった接合施工性に問題を残していたため、低融点金属板と比較して摩擦撹拌接合法の普及が進んでいない。
 特許文献2に記載された摩擦撹拌接合法における欠陥発生の主な要因として、金属板の厚さ方向に生じる温度、塑性流動の差異が挙げられる。金属板の接合部の一方の面側に対して回転ツールを押圧させ、回転させながら接合方向に移動することで接合する場合、回転ツールの肩部が押圧される面側では、肩部の回転により十分な温度上昇とせん断応力の負荷により高温で大きな変形が加わることで、接合界面に清浄面を創出して接触させることで冶金的な接合状態を達成するに十分な塑性流動が得られる。一方、その反対の面側では、比較的低温で、負荷されるせん断応力が小さくなるために、冶金的な接合状態を達成するに十分な塑性流動が得られない状態に陥りやすい。
 特許文献2に記載された摩擦撹拌接合技術を構造用鋼板に適用する場合、構造用鋼板の高温における強度が高いため、低入熱でかつ接合速度が高い場合に上記のような状態となる傾向が強く、接合時における欠陥発生を抑制しつつ接合速度の高速度化が困難である。
 特許文献3、4、5には両面摩擦撹拌接合方法が開示されている。両面摩擦撹拌接合方法においては、互いに対向する一対の回転ツールの肩部が金属板の接合部の表面側と裏面側に押圧され、肩部の回転により十分な温度上昇とせん断応力により高温で大きな変形を両面に加えることで、接合状態を達成するに十分な塑性流動を、金属板の厚さ方向に対して均質的に得ることができ、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成することができると考えられる。しかし特許文献3、4、5に記載された技術に関しては、互いに対向する一対の回転ツールの肩部を金属板の接合部の表面側と裏面側に押圧するに際して、接合状態を達成するに十分な温度上昇とせん断応力を得る上で重要な意味を持つ一対の回転ツールの肩間の隙間に関しては何ら考慮されていない。
特開昭62-183979号公報 特表平7-505090号公報 特許第3261433号 特許第4838385号 特許第4838388号
 本発明は、従来の技術の問題点を解消し、両面摩擦撹拌接合を行なうに際し、互いに対向する一対の回転ツールの肩部が金属板の接合部の表面側と裏面側に押圧され、肩部の回転により十分な温度上昇とせん断応力が生じる。これにより高温で大きな変形が両面に加わり、接合状態を達成するに十分な塑性流動を金属板の厚さ方向に対して均質的に得ることが可能となる。以上により、本発明においては、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成し、十分な強度と共に、接合施工性を向上することが可能な摩擦撹拌接合方法、及びその摩擦撹拌接合を行なうための好適な摩擦撹拌接合装置を提供することを目的とする。とりわけ、接合状態を達成するに十分な温度上昇とせん断応力を得る上で重要となる、互いに対向する一対の回転ツールの肩間の隙間を厳密に精査した摩擦撹拌接合方法、およびそれを実現する摩擦撹拌接合装置を提供することを目的とする。
 さて、発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、以下に述べる知見(a)~(e)を得た。
 (a)両面摩擦撹拌接合においては、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成する上で、接合状態を得るに十分な温度上昇とせん断応力を、金属板の厚さ方向に対して均質的に分布させるために、互いに対向する一対の回転ツールの肩部同士の隙間を厳密に管理する必要がある。特に、一対の回転ツールに傾斜角度が付与される場合は、金属板の厚さに加えて、回転ツールの肩部の直径、傾斜角度を調整することが有効である。
 (b)互いに対向する一対の回転ツールの回転方向を表面側と裏面側で同方向とすると、一方の回転ツールに対する他方の回転ツールの相対速度はゼロである。そのため、回転ツールの肩部同士の隙間において金属板の塑性流動が均質状態に近づくほど塑性変形が小さくなり、金属板の塑性変形による発熱も得られないので、良好な接合状態は達成不可能となる。よって、良好な接合状態を達成するに十分な温度上昇とせん断応力を金属板の厚さ方向に対して均質的に得るためには、一対の回転ツールの回転方向を表面側と裏面側で逆方向とする必要がある。
 (c)互いに対向する一対の回転ツールのピン部の先端間の隙間を厳密に管理することによって、温度上昇とせん断応力を金属板の厚さ方向に対して均質的に得ることが可能となり、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成することができる。さらに、金属板の厚さ、回転ツールの肩部の直径を調整することによって、効果が顕著に発揮される。
 (d)互いに対向する一対の回転ツールの肩部の直径を厳密に管理することによって、温度上昇とせん断応力を金属板の厚さ方向に対して均質的に得ることが可能となり、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成することができる。特に、金属板の厚さに関連して肩部の直径を限定することで顕著な効果を得ることができる。
 (e) 互いに対向する一対の回転ツールの回転数を同一とし、接合速度と回転数の比を厳密に管理することによって、温度上昇とせん断応力を金属板の厚さ方向に対して均質的に得ることが可能となり、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成することができる。特に、回転ツールの肩部同士の隙間、肩部の直径および金属板の厚さに関連して、接合速度と回転数の比を限定することで顕著な効果を得ることができる。
 本発明は、このような知見に立脚するものである。
 すなわち本発明は、互いに対向する一対の回転ツールを2枚の金属板の接合部である突合せ部もしくは重ね部の表面側と裏面側にそれぞれ配置し、突合せ部もしくは重ね部において一対の回転ツールを回転させながら接合方向に移動させ、回転ツールと金属板との摩擦熱により金属板を軟化させつつ、その軟化した部位を回転ツールで撹拌することにより塑性流動を生じさせて金属板同士を接合する両面摩擦撹拌接合方法において、
一対の回転ツールとして、肩部およびその肩部に配され肩部と回転軸を共有するピン部を備え、かつ少なくとも肩部とピン部とが金属板よりも硬い材質により形成されてなるものを使用し、
金属板を把持装置により固定しつつ、一対の回転ツールを金属板の表面と裏面とに押圧させ、回転ツールを回転させながら接合方向に移動させるとともに、
一対の回転ツールの回転軸を金属板に対して鉛直方向から、ピン先端が接合方向に対して先行する側に傾斜角度α(°)で傾斜させ、傾斜角度αが
0<α≦3
を満たし、
かつ一対の回転ツールのピン部の先端間に隙間g(mm)を与えることによって生じる肩部の隙間G(mm)が、突合せの場合は金属板の厚さt(mm)、もしくは重ねの場合は重ね合せた金属板の総厚さt(mm)ならびに回転ツールの肩部の直径D(mm)に対して
(0.5×t)-(0.2×D×sinα)≦G≦t-(0.2×D×sinα)
を満たし、
肩部の直径D(mm)が、突合せの場合は金属板の厚さt(mm)、もしくは重ねの場合は重ね合せた金属板の総厚さt(mm)に対して
4×t≦D≦20×t
を満たし、
隙間gが、突合せの場合は金属板の厚さt(mm)、もしくは重ねの場合は重ね合せた金属板の総厚さt(mm)ならびに回転ツールの肩部の直径D(mm)に対して
[0.1-0.09×exp{-0.011×(D/t)2}]×t≦g
         ≦[1-0.09×exp{-0.011×(D/t)2}]×t
を満たし、
さらに一対の回転ツールを互いに逆方向に回転させて摩擦撹拌接合を行ない、
かつ一対の逆方向に回転する回転ツールの回転数S(回/分)が同一であり、回転ツールによる接合速度T(m/分)と回転ツールの回転数Sの比T/Sが、肩部の隙間G(mm)、肩部の直径D(mm)、突合せの場合は金属板の厚さt(mm)、もしくは重ねの場合は重ね合せた金属板の総厚さt(mm)に対して
T/S≦(1/1000)×(D/t)×{34.5-32.2×(G/t)}/{53-3.4×(D/t)}
を満たす両面摩擦撹拌接合方法である。
 また本発明は、互いに対向する一対の回転ツールを2枚の金属板の接合部である突合せ部もしくは重ね部の表面側と裏面側にそれぞれ配置し、突合せ部もしくは重ね部において一対の回転ツールを回転させながら接合方向に移動させ、回転ツールと金属板との摩擦熱により金属板を軟化させつつ、その軟化した部位を回転ツールで撹拌することにより塑性流動を生じさせて金属板同士を接合する両面摩擦撹拌接合装置において、
回転ツールが、肩部およびその肩部に配され肩部と回転軸を共有するピン部を備え、かつ少なくとも肩部とピン部とが金属板よりも硬い材質により形成され、
一対の回転ツールを回転させながら接合方向に移動させる間、金属板を固定する把持装置を備え、
一対の回転ツールの回転軸を金属板に対して鉛直方向から、ピン先端が接合方向に対して先行する側に傾斜角度α(°)で傾斜させ、傾斜角度αが
0<α≦3
を満たし、
一対の回転ツールのピン部の先端間に隙間g(mm)を与えることによって生じる肩部の隙間G(mm)が、突合せの場合は金属板の厚さt(mm)、もしくは重ねの場合は重ね合せた金属板の総厚さt(mm)ならびに回転ツールの肩部の直径D(mm)に対して
(0.5×t)-(0.2×D×sinα)≦G≦t-(0.2×D×sinα)
を満たし、
肩部の直径D(mm)が、突合せの場合は金属板の厚さt(mm)、もしくは重ねの場合は重ね合せた金属板の総厚さt(mm)に対して
4×t≦D≦20×t
を満たし、
隙間gが、突合せの場合は金属板の厚さt(mm)、もしくは重ねの場合は重ね合せた金属板の総厚さt(mm)ならびに回転ツールの肩部の直径D(mm)に対して
[0.1-0.09×exp{-0.011×(D/t)2}]×t≦g
         ≦[1-0.09×exp{-0.011×(D/t)2}]×t
を満たし、
さらに一対の回転ツールを互いに逆方向に回転させる回転駆動装置を備え、
かつ一対の逆方向に回転する回転ツールの回転数S(回/分)が同一であり、回転ツールによる接合速度T(m/分)と回転ツールの回転数Sの比T/Sが、肩部の隙間G(mm)、肩部の直径D(mm)、突合せの場合は金属板の厚さt(mm)、もしくは重ねの場合は重ね合せた金属板の総厚さt(mm)に対して
T/S≦(1/1000)×(D/t)×{34.5-32.2×(G/t)}/{53-3.4×(D/t)}
を満たす両面摩擦撹拌接合装置である。
 本発明によれば、両面摩擦撹拌接合を行なうに際し、互いに対向する一対の回転ツールの肩部が金属板の接合部の表面と裏面に押圧され、肩部の回転により十分な温度上昇とせん断応力が生じる。これにより高温で大きな変形が両面に加えることで、金属板の厚さ方向に対して均質的に塑性流動が促進され良好な接合状態を達成することができる。その結果、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成し、十分な強度と共に、接合施工性を向上することができるため、産業上格段の効果を奏する。
図1は本発明における回転ツールと金属板の配置の例を模式的に示す斜視図である。(1)は突合せ接合の場合であり、(2)は重ね接合の場合である。 図2(1)は図1中の回転ツールと金属板の平面図であり、図2(2)はA-A矢視の断面図である。 図3は実施例で使用した回転ツールの断面寸法を示す断面図である。 図4は対抗する回転ツールの、軸荷重と肩部の隙間の関係を示す。 図5は軸荷重と、接合速度および回転数との関係を示す。
 本発明では、2枚の金属板を突き合わせて、もしくは重ね合わせて、その突合せ部もしくは重ね部の表面側と裏面側に一対の回転ツールを配置して両面摩擦撹拌接合を行なう。
 以下、図1、2を参照して、突合せ部の両面摩擦撹拌接合を行なう場合について具体的に説明する。
 図1に示すように、突き合わされた2枚の金属板3の表面側と裏面側に一対の回転ツール1、8を互いに対向して配置し、金属板3の表面側と裏面側の両方から未接合部12に回転ツール1、8を挿入して、さらに回転させながら接合方向に移動させる。図1中の矢印Pは回転ツール1、8の進行方向(すなわち接合方向)、矢印Qは表面側に配置される回転ツール1の回転方向、矢印Rは裏面側に配置される回転ツール8の回転方向を示す。
 そして、互いに対抗する一対の回転ツール1、8を回転させて摩擦熱を発生させ、金属板3を軟化させつつ、その軟化した部位を一対の回転ツール1、8で撹拌することにより塑性流動を生じさせて、金属板3を接合する。こうして得られる接合部4は、回転ツール1、8の進行方向に沿って線状に形成される。図1中の未接合部12から接合部4の幅中央に延伸する直線7(以下、接合中央線という)は、矢印Pの方向へ進行する回転ツール1、8の軌跡に一致する(図2(1)参照)。
 2枚の金属板3は、回転ツール1、8が接合中央線7に沿って進行する際に、いずれも把持装置(図示せず)で把持されて、所定の位置に固定される。なお把持装置は、回転ツール1、8の進行に伴う金属板3の位置の変動を防止できるものを使用すれば良いので、その構成は特に限定しない。
 表面側の回転ツール1のピン部6先端と、裏面側の回転ツール8のピン部10先端は当接させず、図2(2)に示すように隙間g(mm)を与える。また、回転ツール1、8の直径D(mm)とピン部6、10の先端の直径a(mm)の差によって生じる段差5、9(以下、肩部という)の間には隙間G(mm)が生じる。
 さらに、表面側から見て、表面側の回転ツール1の回転方向(すなわち矢印Q)に対して裏面側の回転ツール8を逆方向(すなわち矢印R)に回転させる。たとえば図2(1)に示すように、金属板3の表面側から見た平面図において、回転ツール1を時計方向に回転させる場合は、回転ツール8を反時計方向に回転させる。図示を省略するが、回転ツール1を反時計方向に回転させる場合は、回転ツール8を時計方向に回転させる。
 このようにして、回転ツール1のピン部6先端と回転ツール8のピン部10先端に隙間gを設け、回転ツール1の肩部5と回転ツール8の肩部9に隙間Gを設け、かつ回転ツール1と回転ツール8を逆方向に回転させることによって、十分な温度上昇とせん断応力が両面から加えられ、接合部4における金属板3の厚さ方向に生じる温度、塑性流動の差異を低減し均質的な接合状態を達成することができる。また、接合部4内に局所的に発生する塑性流動不良を解消することで接合欠陥を有利に解消し、十分な強度と共に、接合施工性の向上、特に接合速度の向上を図ることが可能となる。
 表面側の回転ツール1は、肩部5、および、この肩部5に配置され、かつ肩部5と回転軸2を共有するピン部6を備える。裏面側の回転ツール8は、肩部9、および、この肩部9に配置され、かつ肩部9と回転軸11を共有するピン部10を備える。そして、少なくとも肩部5、9とピン部6、10は金属板3よりも硬い材質により形成される。
 また、互いに対向する回転ツール1、8の回転方向Q、Rを、表面側と裏面側で逆方向とすることで、回転ツール1、8の回転によって金属板3に加わる回転トルクを打ち消し合うことができ、従来の一方面側から回転ツールを押圧して接合する摩擦撹拌接合法と比較すると、金属板3を拘束する治具の構造を簡略化することが可能である。
 一方、互いに対向する回転ツール1、8の回転方向を表面側と裏面側で同方向とすると、表面側の回転ツール1に対する裏面側の回転ツール8の相対速度はゼロであるため、回転ツール1、8の肩部5、9間では金属板3の塑性流動が均質状態に近づくほど塑性変形が小さくなり金属板3の塑性変形による発熱も得られなくなるため、良好な接合状態は達成不可能となる。
 よって、良好な接合状態を達成するに十分な温度上昇とせん断応力を被加工材の厚さ方向に対して均質的に得るために、互いに対向する回転ツール1、8の回転方向Q、Rを表面側と裏面側で逆方向とする。
 さらに、本発明では、回転ツールの配置を以下のように調整することによって、回転ツール寿命の向上、接合欠陥発生の抑制、接合速度の高速度化を図る上で有効である。
 まず、表面側および裏面側の回転ツールの傾斜角度α(°)について説明する。
 回転ツール1、8の回転軸2、11を、金属板3に対する鉛直方向から角度α(°)をもって傾斜させて、ピン部6、10先端を接合方向Pに対して先行させることで、回転ツール1、8に対する負荷を回転軸2、11方向に圧縮される分力として回転ツール1、8に受けることができる。一対の回転ツール1、8は、金属板3よりも硬い材質により形成される必要があり、セラミックなどの靭性に乏しい材料を使用する場合には、ピン部6、10に対して曲げ方向の力が負荷されると、局部に応力が集中し破壊に至る。よって、一対の回転ツール1、8の回転軸2、11を角度α(以下、傾斜角度という)で傾けることで回転ツール1、8に加わる負荷を回転軸2、11方向に圧縮される分力として受け、曲げ方向の力を低減することができ、回転ツール1、8の破損を回避することができる。
 傾斜角度αは0°を超えると上述の効果が得られるが、3°を超えると接合部の表裏面が凹形となり接合継手強度に悪影響を及ぼすため、3°を上限とする。すなわち、0<α≦3の範囲内である。
 次に、表面側および裏面側の回転ツールの肩部間の隙間G(mm)について説明する。
 両面摩擦撹拌接合においては、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成する上で、接合状態を達成するに十分な温度上昇とせん断応力を金属板3の厚さ方向に対して均質的に得るに際し重要となる一対の回転ツール1、8の肩部5、9間の隙間Gを厳密に管理する必要がある。
 表面側および裏面側の回転ツール1、8の傾斜角度αを0°<α≦3°とし、突合せ接合においては金属板3の厚さt(mm)、重ね接合においては重ね合せた金属板3の総厚さt(mm)、回転ツール1、8の肩部5、9の直径D(mm)に対して、隙間G(mm)を(0.5×t)-(0.2×D×sinα)以上かつt-(0.2×D×sinα)以下の範囲内とすることで、互いに対向する回転ツール1、8の肩部5、9が金属板3の表面側および裏面側に密接もしくは押し込まれる状態となり、結果として、金属板3は表面側および裏面側から回転ツール1、8の肩部5、9により十分な荷重で押圧される。
 図4は、表1の記号1に示す厚さ、化学組成、引張強さの鋼板を用いて、角度をつけないいわゆるI型開先でフライス加工程度の表面状態により鋼板を突合せ、図3(1)に断面形状を有する炭化タングステン(WC)を素材とした回転ツールを表面側、裏面側の両方に配置し、傾斜角度αを1.5°として押圧して、表面側、裏面側の回転ツールの回転数を1000rpm、接合速度を2m/minとして摩擦撹拌接合を行なった際の、表面側、裏面側の回転ツールの肩部間の隙間G、軸荷重Fを示す。この際の隙間Gの限定範囲は、0.74mm以上かつ1.54mm以下となり、隙間Gを1.54mm以下とすることで、軸荷重Fは10kN以上とすることができる。十分な荷重で押圧されることで、回転ツール1、8の肩部5、9による摩擦とせん断方向への塑性変形により発熱と塑性流動が促進される。これにより、厚さ方向に対して均質的に塑性流動が促進され、良好な接合状態を達成することができる。一対の回転ツール1、8の肩部5、9間の隙間Gは、t-(0.2×D×sinα)を超えると回転ツール1、8の肩部5、9が金属板3の表面側および裏面側に十分な荷重で押圧することができず、上記の効果が得られない。一方、(0.5×t)-(0.2×D×sinα)未満となると、接合部の表面と裏面が凹形となり接合継手強度に悪影響を及ぼす。よって、
(0.5×t)-(0.2×D×sinα)≦G≦t-(0.2×D×sinα)
とする。
 次に、表面側および裏面側の回転ツールのピン部先端の隙間g(mm)について説明する。
 金属板3の厚さ方向に対して均質的に温度上昇とせん断応力を得、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成するために、互いに対向する回転ツール1、8のピン部6、10先端の隙間gを厳密に管理することが有効である。特に、回転ツール1、8の肩部5、9の直径Dと金属板3の厚さt(mm)(突合せ接合の場合)もしくは重ね合せた金属板の総厚さt(mm)(重ね接合の場合)の比(D/t)が小さい場合は、表面側および裏面側の回転ツールの肩部で発生する摩擦発熱が厚さ方向に対して伝わりにくく、肩部からの加熱による材料の軟化が進まず、厚さ方向に対して均質的に塑性流動が起こり難くなる。よって、接合状態を得るに必要十分な摩擦発熱と塑性流動をピン部から発生させる必要があるので、ピン部6、10先端の隙間gを、[0.1-0.09×exp{-0.011×(D/t)2}]×t以上かつ[1-0.9×exp{-0.011×(D/t)2}]×t以下に限定することが有効である。この式によりD/tが小さくなる程、隙間gの上限と下限はより小さい値で管理される。隙間gの調整は表面側および裏面側の回転ツールの位置もしくは両方の回転ツールのピン部の長さbを変化させることで可能である。
 ピン部6、10先端の隙間gが[0.1-0.09×exp{-0.011×(D/t)2}]×t未満では、互いに対向する回転ツール1、8のピン部6、10先端が接触し損傷する恐れがあるので望ましくない。また、[1-0.9×exp{-0.011×(D/t)2}]×tを超えると、厚さ方向に対して均質的な塑性流動、摩擦発熱が有効に得られない。したがって隙間gは、[0.1-0.09×exp{-0.011×(D/t)2}]×t≦g≦[1-0.9×exp{-0.011×(D/t)2}]×tとする。
 次に、表面側および裏面側の回転ツールの肩部の直径D(mm)について説明する。
 既に説明した隙間G、gに加えて、互いに対向する回転ツール1、8の肩部5、9の直径Dを厳密に管理することが、金属板3の厚さ方向に対して均質的に温度上昇とせん断応力を得、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成する上で有効である。直径Dがtとの比において小さくなる場合は、表面側および裏面側の回転ツールの肩部で発生する摩擦発熱が厚さ方向に対して伝わりにくく、肩部からの加熱による材料の軟化が進まず、厚さ方向に対して均質的に塑性流動が起こり難くなる。よって、特に、金属板3の厚さt(mm)に対して、4×t以上かつ20×t以下に限定することで効果を得ることができる。
 直径Dが4×t未満では、厚さ方向に対して均質的な塑性流動が有効に得られない。一方、20×tを超えると、不要に塑性流動を生じる領域を広げるのみで、装置に対して過大な負荷がかかるため好ましくない。したがって直径Dは、4×t≦D≦20×tとする。なお厚さtは、突合せ接合においては金属板3の厚さt、重ね接合においては重ね合せた金属板3の総厚さtを指す。
 次に、表面側および裏面側の回転ツールによる接合速度T(m/分)と回転ツールの回転数Sの比T/Sについて説明する。
 金属板3の厚さ方向に対して均質的に温度上昇とせん断応力を得、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成するために、互いに対抗する回転ツール1、8による接合速度T(m/分)と回転ツールの回転数S(回/分)の比T/Sを厳密に管理することが有効である。
 両面摩擦攪拌接合において、表面側、裏面側の回転ツールの軸荷重F、肩部の直径D、または回転速度Sの上昇により時間単位あたりの摩擦発熱Qtimeは上昇する。よって、下記のような関係が考えられる。
time(J/分)∝F×D×S
 さらに時間単位あたりの摩擦発熱を接合速度T(m/分)、板厚t(mm)で除することにより、熱量を接合方向および板厚方向の距離で標準化することができる。
 QJ-t(J/mm2)=Qtime/(T×t)∝F×D×S/(1000×T×t)
ここで、軸荷重F(kN)に関しては、図4に示される表面側、裏面側の回転ツールの肩部間の隙間Gと軸荷重Fの関係と共に、図5に示されるように接合速度T、表面側、裏面側の回転ツールの回転数Sの関係を考慮する必要がある。
 図5は、表1の記号1に示す厚さ、化学組成、引張強さの鋼板を用いて、角度をつけないいわゆるI型開先でフライス加工程度の表面状態により鋼板を突合せ、図3(1)に断面形状を有する炭化タングステン(WC)を素材とした回転ツールを表面側、裏面側の両方に配置し、傾斜角度αを1.5°として押圧し、回転ツールの肩部間の隙間Gを1.0mmとし、表面側、裏面側の回転ツールの回転数を2000~3000回/分、接合速度を4~5m/分として摩擦撹拌接合を行なった際の、軸荷重F(kN)と接合速度T×1000/回転数S(mm)の関係を示す。接合速度T/回転数Sの上昇に従い軸荷重Fは上昇する傾向が示された。
 図4、5に示される実験的な傾向より、軸荷重Fは、接合速度T、表面側、裏面側の回転ツールの回転数S、接合速度T、回転数S、板厚tにより、以下の式で表される。
F=3.4×T×1000/S-32.2×G/t+34.5
これにより、上述のQJ-tを表すと下記のように得られる。
QJ-t(J/mm2)∝F×D×S/(1000×T×t)
=(3.4×T×1000/S-32.2×G/t+34.5)×D×S/(1000×T×t)
表1の記号1に示す厚さ、化学組成、引張強さの鋼板を用いて、角度をつけないいわゆるI型開先でフライス加工程度の表面状態により鋼板を突合せ、図3(1)に断面形状を有する炭化タングステン(WC)を素材とした回転ツールを表面側、裏面側の両方に配置し、傾斜角度αを1.5°として押圧し、回転ツールの肩部間の隙間Gを0.8~1.5mmとし、表面側、裏面側の回転ツールの回転数を400~3000rpm、接合速度を1~5m/minとして摩擦撹拌接合を行なった際、QJ-tと比例関係にある上述の式の右辺が、
(3.4×T×1000/S-32.2×G/t+34.5)×D×S/(1000×T×t)≧53
を満たす場合、入熱が十分となり欠陥の無い健全な継手が得られた。
上記の式を変形すると、
T/S≦(1/1000)×(D/t)×{34.5-32.2×(G/t)}/{53-3.4×(D/t)}
となり、接合速度T(m/分)と回転ツールの回転数S(回/分)の比T/Sは、表面側、裏面側の回転ツールの肩部の直径D(mm)と金属板3の厚さt(mm)(突合せの場合)もしくは重ね合わせた金属板3の総厚さt(mm)(重ねの場合)の比D/t、回転ツール1、8の肩部5、9間の隙間G(mm)と金属板3の厚さt(mm)(突合せの場合)もしくは重ね合わせた金属板3の総厚さt(mm)(重ねの場合)の比G/tとの関係で表される。
 特に、回転ツール1、8の肩部5、9の直径Dと金属板3の厚さt(突合せの場合)もしくは重ね合わせた金属板3の総厚さt(重ねの場合)の比D/tが小さい場合、すなわち表面側および裏面側の回転ツールの肩部で発生する摩擦発熱が厚さ方向に対して伝わりにくく、肩部からの加熱による材料の軟化が進まない場合や、回転ツール1、8の肩部5、9間の隙間Gと金属板3の厚さt(突合せの場合)もしくは重ね合わせた金属板3の総厚さt(重ねの場合)の比G/tが大きい場合、すなわち表面側および裏面側の回転ツールの軸荷重が厚さtに対して小さく、回転ツールと材料間での摩擦発熱が小さくなる場合は、厚さ方向に対して均質的に組成流動がおこり難くなるので、互いに対向する回転ツール1、8による接合速度Tと回転ツールの回転数Sの比T/Sを(1/1000)×(D/t)×{34.5-32.2×(G/t)}/{53-3.4×(D/t)}以下に限定することが有効である。なお、互いに対抗する回転ツール1、8の回転数Sは同一とする。
 また、表面側および裏面側の回転ツール1、8のピン部は肩部との境界から先端にかけてテーパ状とすることができる。該ピン部6、10の長さbは、傾斜角度α、隙間G、隙間g、直径D、厚さtに応じて適宜決定すればよい。また、該ピン部6、10の先端部の直径a(mm)は、当業者の設計的事項に従えばよい。
 上記以外の接合条件については、当業者の設計的事項に従えばよい。こうすることによって、互いに対向する回転ツール1、8の回転数を100~5000回/分の範囲とし、接合速度を1000mm/分以上に高速化することができる。
 また、本発明が対象とする金属板3は、一般的な構造用鋼や炭素鋼板、例えばJIS G 3106やJIS G 4051に相当する鋼板等に好適に適用することができる。また、引張強さが800MPa以上の高強度構造用鋼板にも有利に適用でき、この場合であっても、接合部において、鋼板の引張強さの85%以上の強度、さらには90%以上の強度が得られる。
 表1に示す厚さ、化学組成、引張強さの鋼板を用いて、摩擦撹拌接合を行なった。突合せ接合の場合は、継手突合せ面は、角度をつけないいわゆるI型開先でフライス加工程度の表面状態により、鋼板突合せ部の表面側、裏面側の両方から回転ツールを押圧して接合を行なった。重ね接合の場合は、同種の鋼板を2枚重ねて、鋼板重ね部の表面側、裏面側の両方から回転ツールを押圧して接合を行なった。表面側、裏面側の回転ツールの回転方向は、図2(1)に示すように鋼板(金属板3)の表面側から見た平面図において、表面側回転ツール(回転ツール1)を時計方向に回転させ、表面側回転ツール(回転ツール8)を反時計方向に回転させた。摩擦撹拌接合の接合条件を表2に示す。また、ここでは、図3(1)、(2)に断面形状を有する2種類の炭化タングステン(WC)を素材とした回転ツールを用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表3に、接合した際の継手外観観察での表面欠陥の有無、継手断面観察での内部欠陥の有無と、得られた接合継手よりJIS Z 3121で規定する1号試験片の寸法の引張試験片を採取し、引張試験を行った際の引張強さを示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、突合せ継手の発明例1~10、重ね継手の発明例11、12では、接合速度を2m/分以上と高速化した場合であっても、継手外観観察で表面欠陥は認められず、継手断面観察でも内部欠陥は認められず、健全な接合状態が得られたことが確認された。さらに、継手強度に関しては、母材となる鋼板の引張強さの95%以上が得られた。
 一方、突合せ継手の比較例1~7、重ね継手の比較例8~10では、継手外観観察で表面欠陥、継手断面観察で内部欠陥のいずれか片方もしくは両方が認められ、健全な接合状態が得られなかった。さらに、継手強度に関しては、母材となる鋼板の引張強さの70%以下となった。
 1 表面側の回転ツール
 2 表面側の回転ツールの回転軸
 3 金属板
 4 接合部
 5 表面側の回転ツールの肩部
 6 表面側の回転ツールのピン部
 7 接合中央線
 8 裏面側の回転ツール
 9 裏面側の回転ツールの肩部
 10  裏面側の回転ツールのピン部
 11 裏面側の回転ツールの回転軸
 12 未接合部

Claims (4)

  1.  互いに対向する一対の回転ツールを2枚の金属板の接合部である突合せ部の表面側と裏面側にそれぞれ配置し、前記突合せ部において前記一対の回転ツールを回転させながら接合方向に移動させ、前記回転ツールと前記金属板との摩擦熱により前記金属板を軟化させつつ、その軟化した部位を前記回転ツールで撹拌することにより塑性流動を生じさせて前記金属板同士を接合する両面摩擦撹拌接合方法において、
    前記一対の回転ツールとして、肩部および該肩部に配され前記肩部と回転軸を共有するピン部を備え、かつ少なくとも前記肩部と前記ピン部とが前記金属板よりも硬い材質により形成されてなるものを使用し、
    前記金属板を把持装置により固定しつつ、前記一対の回転ツールを前記金属板の表面と裏面とに押圧させ、前記回転ツールを回転させながら接合方向に移動させるとともに、
    前記一対の回転ツールの前記回転軸を前記金属板に対して鉛直方向から、ピン先端が前記接合方向に対して先行する側に傾斜角度α(°)で傾斜させ、該傾斜角度αが
    0<α≦3
    を満たし、
    かつ前記一対の回転ツールの前記ピン部の先端間に隙間g(mm)を与えることによって生じる前記肩部の隙間G(mm)が、前記金属板の厚さt(mm)ならびに前記回転ツールの前記肩部の直径D(mm)に対して
    (0.5×t)-(0.2×D×sinα)≦G≦t-(0.2×D×sinα)
    を満たし、
    前記肩部の前記直径D(mm)が、前記金属板の前記厚さt(mm)に対して
    4×t≦D≦20×t
    を満たし、
    前記隙間gが、前記金属板の前記厚さt(mm)ならびに前記回転ツールの前記肩部の前記直径D(mm)に対して
    [0.1-0.09×exp{-0.011×(D/t)2}]×t≦g
          ≦[1-0.09×exp{-0.011×(D/t)2}]×t
    を満たし、
    さらに前記一対の回転ツールを互いに逆方向に回転させて前記摩擦撹拌接合を行ない、
    かつ前記一対の逆方向に回転する前記回転ツールの回転数S(回/分)が同一であり、前記回転ツールによる接合速度T(m/分)と前記回転ツールの前記回転数Sの比T/Sが、前記肩部の前記隙間G(mm)、前記肩部の前記直径D(mm)、前記金属板の前記厚さt(mm)に対して
    T/S≦(1/1000)×(D/t)×{34.5-32.2×(G/t)}/{53-3.4×(D/t)}
    を満たすことを特徴とする両面摩擦撹拌接合方法。
  2.  互いに対向する一対の回転ツールを2枚の金属板の接合部である重ね部の表面側と裏面側にそれぞれ配置し、前記重ね部において前記一対の回転ツールを回転させながら接合方向に移動させ、前記回転ツールと前記金属板との摩擦熱により前記金属板を軟化させつつ、その軟化した部位を前記回転ツールで撹拌することにより塑性流動を生じさせて前記金属板同士を接合する両面摩擦撹拌接合方法において、
    前記一対の回転ツールとして、肩部および該肩部に配され前記肩部と回転軸を共有するピン部を備え、かつ少なくとも前記肩部と前記ピン部とが前記金属板よりも硬い材質により形成されてなるものを使用し、
    前記金属板を把持装置により固定しつつ、前記一対の回転ツールを前記金属板の表面と裏面とに押圧させ、前記回転ツールを回転させながら接合方向に移動させるとともに、
    前記一対の回転ツールの前記回転軸を前記金属板に対して鉛直方向から、ピン先端が前記接合方向に対して先行する側に傾斜角度α(°)で傾斜させ、該傾斜角度αが
    0<α≦3
    を満たし、
    かつ前記一対の回転ツールの前記ピン部の先端間に隙間g(mm)を与えることによって生じる前記肩部の隙間G(mm)が、重ね合わせた前記金属板の総厚さt(mm)ならびに前記回転ツールの前記肩部の直径D(mm)に対して
    (0.5×t)-(0.2×D×sinα)≦G≦t-(0.2×D×sinα)
    を満たし、
    前記肩部の前記直径D(mm)が、前記金属板の前記総厚さt(mm)に対して
    4×t≦D≦20×t
    を満たし、
    前記隙間gが、前記金属板の前記総厚さt(mm)ならびに前記回転ツールの前記肩部の前記直径D(mm)に対して
    [0.1-0.09×exp{-0.011×(D/t)2}]×t≦g
          ≦[1-0.09×exp{-0.011×(D/t)2}]×t
    を満たし、
    さらに前記一対の回転ツールを互いに逆方向に回転させて前記摩擦撹拌接合を行ない、
    かつ前記一対の逆方向に回転する前記回転ツールの回転数S(回/分)が同一であり、前記回転ツールによる接合速度T(m/分)と前記回転ツールの前記回転数Sの比T/Sが、前記肩部の前記隙間G(mm)、前記肩部の前記直径D(mm)、前記金属板の前記総厚さt(mm)に対して
    T/S≦(1/1000)×(D/t)×{34.5-32.2×(G/t)}/{53-3.4×(D/t)}
    を満たすことを特徴とする両面摩擦撹拌接合方法。
  3.  互いに対向する一対の回転ツールを2枚の金属板の接合部である突合せ部の表面側と裏面側にそれぞれ配置し、前記突合せ部において前記一対の回転ツールを回転させながら接合方向に移動させ、前記回転ツールと前記金属板との摩擦熱により前記金属板を軟化させつつ、その軟化した部位を前記回転ツールで撹拌することにより塑性流動を生じさせて前記金属板同士を接合する両面摩擦撹拌接合装置において、
    前記回転ツールが、肩部および該肩部に配され前記肩部と回転軸を共有するピン部を備え、かつ少なくとも前記肩部と前記ピン部とが前記金属板よりも硬い材質により形成され、
    前記一対の回転ツールを回転させながら接合方向に移動させる間、前記金属板を固定する把持装置を備え、
    前記一対の回転ツールの前記回転軸を前記金属板に対して鉛直方向から、ピン先端が前記接合方向に対して先行する側に傾斜角度α(°)で傾斜させ、該傾斜角度αが
    0<α≦3
    を満たし、
    前記一対の回転ツールの前記ピン部の先端間に隙間g(mm)を与えることによって生じる前記肩部の隙間G(mm)が、前記金属板の厚さt(mm)ならびに前記回転ツールの前記肩部の直径D(mm)に対して
    (0.5×t)-(0.2×D×sinα)≦G≦t-(0.2×D×sinα)
    を満たし、
    前記肩部の前記直径D(mm)が、前記金属板の前記厚さt(mm)に対して
    4×t≦D≦20×t
    を満たし、
    前記隙間gが、前記金属板の前記厚さt(mm)ならびに前記回転ツールの前記肩部の前記直径D(mm)に対して
    [0.1-0.09×exp{-0.011×(D/t)2}]×t≦g
          ≦[1-0.09×exp{-0.011×(D/t)2}]×t
    を満たし、
    さらに前記一対の回転ツールを互いに逆方向に回転させる回転駆動装置を備え、
    かつ前記一対の逆方向に回転する前記回転ツールの回転数S(回/分)が同一であり、前記回転ツールによる接合速度T(m/分)と前記回転ツールの前記回転数Sの比T/Sが、前記肩部の前記隙間G(mm)、前記肩部の前記直径D(mm)、前記金属板の前記厚さt(mm)に対して
    T/S≦(1/1000)×(D/t)×{34.5-32.2×(G/t)}/{53-3.4×(D/t)}
    を満たすことを特徴とする両面摩擦撹拌接合装置。
  4.  互いに対向する一対の回転ツールを2枚の金属板の接合部である重ね部の表面側と裏面側にそれぞれ配置し、前記重ね部において前記一対の回転ツールを回転させながら接合方向に移動させ、前記回転ツールと前記金属板との摩擦熱により前記金属板を軟化させつつ、その軟化した部位を前記回転ツールで撹拌することにより塑性流動を生じさせて前記金属板同士を接合する両面摩擦撹拌接合装置において、
    前記回転ツールが、肩部および該肩部に配され前記肩部と回転軸を共有するピン部を備え、かつ少なくとも前記肩部と前記ピン部とが前記金属板よりも硬い材質により形成され、
    前記一対の回転ツールを回転させながら接合方向に移動させる間、前記金属板を固定する把持装置を備え、
    前記一対の回転ツールの前記回転軸を前記金属板に対して鉛直方向から、ピン先端が前記接合方向に対して先行する側に傾斜角度α(°)で傾斜させ、該傾斜角度αが
    0<α≦3
    を満たし、
    前記一対の回転ツールの前記ピン部の先端間に隙間g(mm)を与えることによって生じる前記肩部の隙間G(mm)が、重ね合わせた前記金属板の総厚さt(mm)ならびに前記回転ツールの前記肩部の直径D(mm)に対して
    (0.5×t)-(0.2×D×sinα)≦G≦t-(0.2×D×sinα)
    を満たし、
    前記肩部の前記直径D(mm)が、前記金属板の前記総厚さt(mm)に対して
    4×t≦D≦20×t
    を満たし、
    前記隙間gが、前記金属板の前記総厚さt(mm)ならびに前記回転ツールの前記肩部の前記直径D(mm)に対して
    [0.1-0.09×exp{-0.011×(D/t)2}]×t≦g
          ≦[1-0.09×exp{-0.011×(D/t)2}]×t
    を満たし、
    さらに前記一対の回転ツールを互いに逆方向に回転させる回転駆動装置を備え、
    かつ前記一対の逆方向に回転する前記回転ツールの回転数S(回/分)が同一であり、前記回転ツールによる接合速度T(m/分)と前記回転ツールの前記回転数Sの比T/Sが、前記肩部の前記隙間G(mm)、前記肩部の前記直径D(mm)、前記金属板の前記総厚さt(mm)に対して
    T/S≦(1/1000)×(D/t)×{34.5-32.2×(G/t)}/{53-3.4×(D/t)}
    を満たすことを特徴とする両面摩擦撹拌接合装置。
PCT/JP2018/033761 2017-09-13 2018-09-12 金属板の両面摩擦撹拌接合方法および両面摩擦撹拌接合装置 WO2019054400A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/637,906 US11446757B2 (en) 2017-09-13 2018-09-12 Double-sided friction stir welding method for metal sheets and double-sided friction stir welding device
CN201880052674.2A CN111050973B (zh) 2017-09-13 2018-09-12 金属板的双面摩擦搅拌接合方法及双面摩擦搅拌接合装置
MX2020001795A MX2020001795A (es) 2017-09-13 2018-09-12 Metodo de soldadura por friccion-agitacion para chapas de metal de doble lado y dispositivo de soldadura por friccion-agitacion de doble lado.
KR1020207003456A KR102281397B1 (ko) 2017-09-13 2018-09-12 금속판의 양면 마찰 교반 접합 방법 및 양면 마찰 교반 접합 장치
EP18857155.8A EP3653329B1 (en) 2017-09-13 2018-09-12 Double-sided friction stir welding method for metal plate
JP2018563736A JP6737347B2 (ja) 2017-09-13 2018-09-12 金属板の両面摩擦撹拌接合方法および両面摩擦撹拌接合装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-175618 2017-09-13
JP2017175618 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019054400A1 true WO2019054400A1 (ja) 2019-03-21

Family

ID=65722843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033761 WO2019054400A1 (ja) 2017-09-13 2018-09-12 金属板の両面摩擦撹拌接合方法および両面摩擦撹拌接合装置

Country Status (7)

Country Link
US (1) US11446757B2 (ja)
EP (1) EP3653329B1 (ja)
JP (1) JP6737347B2 (ja)
KR (1) KR102281397B1 (ja)
CN (1) CN111050973B (ja)
MX (1) MX2020001795A (ja)
WO (1) WO2019054400A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060176A1 (ja) * 2019-09-25 2021-04-01 Jfeスチール株式会社 両面摩擦攪拌接合方法、冷延鋼帯及びめっき鋼帯の製造方法、両面摩擦攪拌接合装置、並びに冷延鋼帯及びめっき鋼帯の製造設備
JP7230976B1 (ja) 2021-09-13 2023-03-01 Jfeスチール株式会社 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法
JP7231130B1 (ja) * 2021-11-30 2023-03-01 Jfeスチール株式会社 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法
JP7230978B1 (ja) 2021-09-13 2023-03-01 Jfeスチール株式会社 電磁鋼帯の接合継手および摩擦撹拌接合方法、ならびに、電磁鋼帯の製造方法
JP7230977B1 (ja) 2021-09-13 2023-03-01 Jfeスチール株式会社 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法
JP7230975B1 (ja) 2021-09-13 2023-03-01 Jfeスチール株式会社 電磁鋼帯の接合継手および摩擦撹拌接合方法、ならびに、電磁鋼帯の製造方法
TWI815595B (zh) * 2021-09-13 2023-09-11 日商杰富意鋼鐵股份有限公司 電磁鋼帶的接合接頭及摩擦攪拌接合方法、以及電磁鋼帶的製造方法
TWI815601B (zh) * 2021-11-30 2023-09-11 日商杰富意鋼鐵股份有限公司 電磁鋼帶的摩擦攪拌接合方法、及電磁鋼帶的製造方法
TWI815594B (zh) * 2021-09-13 2023-09-11 日商杰富意鋼鐵股份有限公司 電磁鋼帶的摩擦攪拌接合方法、及電磁鋼帶的製造方法
TWI831324B (zh) * 2021-11-30 2024-02-01 日商杰富意鋼鐵股份有限公司 電磁鋼帶的摩擦攪拌接合方法及電磁鋼帶的製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805074B (zh) * 2020-07-16 2022-07-01 柳州市智甲金属科技有限公司 搅拌摩擦焊装置及其标定方法
CN112192015A (zh) * 2020-09-22 2021-01-08 王书杰 制备铝合金复合材料的方法
CN114433997B (zh) * 2022-03-22 2023-08-08 大连交通大学 一种预开槽式填充锌粒搅拌摩擦焊接方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838385B1 (ja) 1969-02-25 1973-11-16
JPS4838388B1 (ja) 1969-03-28 1973-11-16
JPS62183979A (ja) 1986-01-17 1987-08-12 ザ ウエルデイング インステイテユ−ト 摩擦溶接方法及びその装置
JP3261433B2 (ja) 1999-05-25 2002-03-04 川崎重工業株式会社 接合装置及び接合方法
JP2007505090A (ja) 2003-09-10 2007-03-08 アストラゼネカ・ユーケイ・リミテッド ビス[(e)−7−[4−(4−フルオロフェニル)−6−イソプロピル−2−[メチル(メチルスルホニル)アミノ]ピリミジン−5−イル](3r,5s)−3,5−ジヒドロキシ−6−ヘプテン酸]カルシウム塩の結晶形
JP4838385B2 (ja) * 2009-08-31 2011-12-14 三菱日立製鉄機械株式会社 両面摩擦攪拌接合方法、接合装置、冷間圧延設備の金属板接合方法及び冷間圧延設備

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9125978D0 (en) 1991-12-06 1992-02-05 Welding Inst Hot shear butt welding
DE19957136C1 (de) * 1999-11-18 2001-02-08 Geesthacht Gkss Forschung Vorrichtung zum Verbinden von Werkstücken nach der Methode des Reibrührschweißens
JP3510612B2 (ja) 2001-11-27 2004-03-29 川崎重工業株式会社 摩擦撹拌接合方法
JP4479401B2 (ja) * 2004-07-27 2010-06-09 マツダ株式会社 摩擦点接合方法及びその装置
JP4586698B2 (ja) * 2005-09-29 2010-11-24 マツダ株式会社 摩擦点接合装置
CN100506041C (zh) 2005-11-25 2009-07-01 陈正林 复方驱鼠杀虫粉
JP4869817B2 (ja) * 2006-07-28 2012-02-08 川崎重工業株式会社 摩擦撹拌接合装置
CN102131612B (zh) * 2009-11-18 2014-02-26 三菱日立制铁机械株式会社 双面摩擦搅拌接合方法及装置以及双面摩擦搅拌接合用工具组
JP5835952B2 (ja) * 2011-06-15 2015-12-24 株式会社Uacj 摩擦攪拌接合用の回転接合ツール、ならびに、これを用いた摩擦攪拌接合方法
JP6284444B2 (ja) * 2014-06-25 2018-02-28 三菱重工業株式会社 摩擦撹拌接合方法及び摩擦撹拌接合装置
JP6403515B2 (ja) * 2014-09-24 2018-10-10 三菱重工業株式会社 接合部処理方法及びドーム部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838385B1 (ja) 1969-02-25 1973-11-16
JPS4838388B1 (ja) 1969-03-28 1973-11-16
JPS62183979A (ja) 1986-01-17 1987-08-12 ザ ウエルデイング インステイテユ−ト 摩擦溶接方法及びその装置
JP3261433B2 (ja) 1999-05-25 2002-03-04 川崎重工業株式会社 接合装置及び接合方法
JP2007505090A (ja) 2003-09-10 2007-03-08 アストラゼネカ・ユーケイ・リミテッド ビス[(e)−7−[4−(4−フルオロフェニル)−6−イソプロピル−2−[メチル(メチルスルホニル)アミノ]ピリミジン−5−イル](3r,5s)−3,5−ジヒドロキシ−6−ヘプテン酸]カルシウム塩の結晶形
JP4838385B2 (ja) * 2009-08-31 2011-12-14 三菱日立製鉄機械株式会社 両面摩擦攪拌接合方法、接合装置、冷間圧延設備の金属板接合方法及び冷間圧延設備

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060176A1 (ja) * 2019-09-25 2021-04-01 Jfeスチール株式会社 両面摩擦攪拌接合方法、冷延鋼帯及びめっき鋼帯の製造方法、両面摩擦攪拌接合装置、並びに冷延鋼帯及びめっき鋼帯の製造設備
JPWO2021060176A1 (ja) * 2019-09-25 2021-10-14 Jfeスチール株式会社 両面摩擦攪拌接合方法、冷延鋼帯及びめっき鋼帯の製造方法、両面摩擦攪拌接合装置、並びに冷延鋼帯及びめっき鋼帯の製造設備
TWI748660B (zh) * 2019-09-25 2021-12-01 日商杰富意鋼鐵股份有限公司 雙面摩擦攪拌接合方法、冷軋鋼帶和鍍覆鋼帶的製造方法、雙面摩擦攪拌接合裝置、冷軋鋼帶和鍍覆鋼帶的製造設備
CN114423561A (zh) * 2019-09-25 2022-04-29 杰富意钢铁株式会社 双面摩擦搅拌接合方法、冷轧钢带及电镀钢带的制造方法、双面摩擦搅拌接合装置、冷轧钢带及电镀钢带的制造设备
JP7099621B2 (ja) 2019-09-25 2022-07-12 Jfeスチール株式会社 両面摩擦攪拌接合方法、冷延鋼帯及びめっき鋼帯の製造方法、両面摩擦攪拌接合装置、並びに冷延鋼帯及びめっき鋼帯の製造設備
EP4035817A4 (en) * 2019-09-25 2022-12-14 JFE Steel Corporation WELDING PROCESS ON BOTH SIDES BY FRICTION-MIXING; COLD ROLLED STEEL STRIP AND METHOD FOR MAKING CLATED STEEL STRIP; DEVICE FOR WELDING ON BOTH SIDES BY FRICTION-MIXING; AND COLD ROLLED STEEL STRIP AND PLATED STEEL STRIP MANUFACTURING EQUIPMENT
JP7230978B1 (ja) 2021-09-13 2023-03-01 Jfeスチール株式会社 電磁鋼帯の接合継手および摩擦撹拌接合方法、ならびに、電磁鋼帯の製造方法
JP7230976B1 (ja) 2021-09-13 2023-03-01 Jfeスチール株式会社 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法
JP7230977B1 (ja) 2021-09-13 2023-03-01 Jfeスチール株式会社 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法
JP7230975B1 (ja) 2021-09-13 2023-03-01 Jfeスチール株式会社 電磁鋼帯の接合継手および摩擦撹拌接合方法、ならびに、電磁鋼帯の製造方法
JP2023041554A (ja) * 2021-09-13 2023-03-24 Jfeスチール株式会社 電磁鋼帯の接合継手および摩擦撹拌接合方法、ならびに、電磁鋼帯の製造方法
JP2023041557A (ja) * 2021-09-13 2023-03-24 Jfeスチール株式会社 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法
JP2023041560A (ja) * 2021-09-13 2023-03-24 Jfeスチール株式会社 電磁鋼帯の接合継手および摩擦撹拌接合方法、ならびに、電磁鋼帯の製造方法
JP2023041556A (ja) * 2021-09-13 2023-03-24 Jfeスチール株式会社 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法
TWI815595B (zh) * 2021-09-13 2023-09-11 日商杰富意鋼鐵股份有限公司 電磁鋼帶的接合接頭及摩擦攪拌接合方法、以及電磁鋼帶的製造方法
TWI815594B (zh) * 2021-09-13 2023-09-11 日商杰富意鋼鐵股份有限公司 電磁鋼帶的摩擦攪拌接合方法、及電磁鋼帶的製造方法
JP7231130B1 (ja) * 2021-11-30 2023-03-01 Jfeスチール株式会社 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法
TWI815601B (zh) * 2021-11-30 2023-09-11 日商杰富意鋼鐵股份有限公司 電磁鋼帶的摩擦攪拌接合方法、及電磁鋼帶的製造方法
TWI831324B (zh) * 2021-11-30 2024-02-01 日商杰富意鋼鐵股份有限公司 電磁鋼帶的摩擦攪拌接合方法及電磁鋼帶的製造方法

Also Published As

Publication number Publication date
US11446757B2 (en) 2022-09-20
CN111050973A (zh) 2020-04-21
EP3653329A1 (en) 2020-05-20
US20200215644A1 (en) 2020-07-09
KR20200028413A (ko) 2020-03-16
EP3653329B1 (en) 2023-10-11
EP3653329A4 (en) 2020-07-22
JP6737347B2 (ja) 2020-08-05
KR102281397B1 (ko) 2021-07-23
JPWO2019054400A1 (ja) 2019-11-07
CN111050973B (zh) 2021-11-30
MX2020001795A (es) 2020-03-20

Similar Documents

Publication Publication Date Title
JP6737347B2 (ja) 金属板の両面摩擦撹拌接合方法および両面摩擦撹拌接合装置
JP6350334B2 (ja) 接合方法及び複合圧延材の製造方法
JP6901001B2 (ja) 両面摩擦撹拌接合用回転ツール、両面摩擦撹拌接合装置、及び両面摩擦撹拌接合方法
JP6992773B2 (ja) 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置
JP4838389B1 (ja) 突合せ部に隙間のある金属板の両面摩擦攪拌接合方法
JP7247996B2 (ja) 両面摩擦撹拌接合用回転ツール及び両面摩擦撹拌接合方法
JP7070642B2 (ja) 金属板の両面摩擦撹拌接合方法および両面摩擦撹拌接合装置
JP4543204B2 (ja) 摩擦攪拌接合方法
CN110691668A (zh) 接合方法以及复合轧制材料的制造方法
JP2021164943A (ja) アルミニウム合金板と鋼板の摩擦撹拌接合方法
JP4194419B2 (ja) 鉄系材料とアルミニウム系材料との接合方法および接合継手
JP7165315B2 (ja) アルミニウム合金板と鋼板の摩擦撹拌接合方法
JP2024042668A (ja) 摩擦撹拌接合用回転ツール及び摩擦撹拌接合方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563736

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207003456

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018857155

Country of ref document: EP

Effective date: 20200211

NENP Non-entry into the national phase

Ref country code: DE