WO2019052388A1 - 数据传输的方法和设备 - Google Patents

数据传输的方法和设备 Download PDF

Info

Publication number
WO2019052388A1
WO2019052388A1 PCT/CN2018/104205 CN2018104205W WO2019052388A1 WO 2019052388 A1 WO2019052388 A1 WO 2019052388A1 CN 2018104205 W CN2018104205 W CN 2018104205W WO 2019052388 A1 WO2019052388 A1 WO 2019052388A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
resource unit
modulation symbol
group
Prior art date
Application number
PCT/CN2018/104205
Other languages
English (en)
French (fr)
Inventor
施弘哲
葛士斌
毕晓艳
张闽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18855840.7A priority Critical patent/EP3664550B1/en
Publication of WO2019052388A1 publication Critical patent/WO2019052388A1/zh
Priority to US16/822,781 priority patent/US11251997B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0043Realisations of complexity reduction techniques, e.g. use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver

Definitions

  • the present application relates to the field of communications, and in particular, to a method and device for data transmission.
  • TTI transmission time interval
  • TBs transport blocks
  • CRC cyclic redundancy check
  • interleaving the modulated symbols is considered to be a feasible method.
  • the existing method of interleaving the modulated symbols is relatively complicated, which affects the data demodulation performance.
  • the present application provides a method and device for data transmission, which can reduce the interlacing complexity of modulation symbols.
  • a method of data transmission comprising:
  • the transmitting device acquires a modulation symbol sequence to be transmitted in multiple time-frequency resource unit groups, where one time-frequency resource unit group includes N time-frequency resource units, N is an integer greater than or equal to 2, and one time-frequency resource unit Include at least one resource unit RE, one time-frequency resource unit is used to carry one modulation symbol group, one modulation symbol group includes at least one modulation symbol, the size of the time-frequency resource unit group is protocol-stipulated, or the time-frequency resource The size of the unit group is determined according to the transmission parameters;
  • the transmitting end device performs interleaving processing on the modulation symbol sequence by using the time-frequency resource unit group as an interleaving unit, and acquires an order in which the modulation symbol sequence is mapped in the multiple time-frequency resource unit groups, where The plurality of consecutive modulation symbol groups in the modulation symbol sequence are mapped on at least two time-frequency resource unit groups of the plurality of time-frequency resource unit groups;
  • the size of one or a limited number of explicit time-frequency resource unit groups can be determined by the manner agreed by the protocol in the embodiment of the present application or according to the manner determined by the transmission parameter, the calculation during chip processing can be simplified.
  • the complexity solves the problem of high complexity caused by interleaving in code block (CB) in the prior art.
  • the sending end device may be a network device or a terminal device, where, when performing uplink transmission, the sending end device is a terminal device, and the receiving end device is a network device; when performing downlink transmission, the transmitting end The device is a network device, and the receiving device is a terminal device.
  • the modulation symbol sequence to be transmitted may be a layer of modulation symbol sequence, and the modulation symbol sequence may be a modulation symbol sequence after layer mapping, or may be modulated according to a layer mapping group before layer mapping.
  • the symbol sequence the embodiment of the present application is not limited thereto. It should be understood that, in the embodiment of the present application, the time-frequency resource unit corresponds to the smallest unit of interleaving, that is, the modulation symbol carried by one time-frequency resource unit is a continuous modulation symbol in the sequence of modulation symbols.
  • the modulation symbol group carried by the time-frequency resource unit includes two modulation symbols, and the two are after the interleaving process.
  • the 2 modulation symbols carried by the RE are two consecutive modulation symbols in the sequence of modulation symbols to be transmitted.
  • the size of the time-frequency resource unit group may indicate the size of the interleaving unit.
  • an interleaving unit that is, a modulation symbol carried in a time-frequency resource unit group
  • a group of discontinuous modulation symbols For example, a time-frequency resource unit group includes five time-frequency resource units.
  • the one time-frequency resource unit group is used to carry five modulation symbol groups, and that the modulation symbol sequence to be transmitted includes 24 consecutive modulations.
  • the symbol sequence group that is, the modulation symbol group #1 - modulation symbol group #24.
  • the five modulation symbol groups carried by the one time-frequency resource unit group are discontinuous modulation symbol groups, for example, five modulation symbol groups are completely non-contiguous five modulation symbol groups, for example, a modulation symbol group.
  • the five modulation symbol groups include modulation symbol group #1, modulation symbol group #2, modulation symbol group #8, modulation symbol group 9, and modulation symbol group # 18.
  • the foregoing interleaving operation may be directly applied to a bit sequence to be transmitted. After the bit sequence is cascading, before the modulation, the bit sequence before modulation is grouped according to the layer mapping after modulation. The bit sequence of each layer is obtained.
  • the plurality of time-frequency resource unit groups include all or part of frequency domain resources on at least one orthogonal frequency division multiplexing (OFDM) symbol. .
  • OFDM orthogonal frequency division multiplexing
  • the at least one OFDM symbol may be 1 OFDM symbol, 2 OFDM... or 14 OFDM symbols, and the embodiment of the present application is not limited thereto.
  • the frequency domain resource is a frequency domain resource within a scheduling bandwidth. It should be understood that the frequency domain bandwidth on the OFDM symbol may be configured by the network device or preset by the system, which is not limited by the embodiment of the present application.
  • the frequency domain bandwidth on the OFMD symbol may include at least two subcarriers, for example, including 12 subcarriers, 24 subcarriers, 36 subcarriers, and the like, and the embodiment of the present application is not limited thereto.
  • the frequency domain resource bandwidth on the OFDM symbol is 36 subcarriers
  • the multiple time frequency resource unit groups may include all frequency domain resources on the at least one OFDM symbol, that is, 36 subcarriers; and may also include partial frequency domain resources.
  • 24 subcarriers, 12 subcarriers, or 8 subcarriers, etc., are not limited thereto.
  • the size of the time-frequency resource unit group can be agreed upon by the protocol, that is, the protocol agrees on the size of the interleaving unit.
  • the transmitting device can perform interleaving processing according to the interleaving unit specified by the protocol, without calculating the CB size by calculation as in the prior art, and then performing interleaving.
  • the receiving end can also directly according to the protocol.
  • the interleaving unit performs deinterleaving processing. Therefore, the embodiment of the present application can reduce the complexity of interleaving and improve system performance.
  • the size of the time-frequency resource unit group is determined according to a transmission parameter, where the transmission parameter includes at least one of the following parameters: scheduling bandwidth, Delay spread and moving speed of the terminal device;
  • the method also includes:
  • the sending end device determines, according to a correspondence between the preset transmission parameter and the time-frequency resource unit group size, the size of the time-frequency resource unit group corresponding to the current transmission parameter.
  • the size of the time-frequency resource unit group is determined according to a transmission parameter, where the transmission parameter includes at least one of the following parameters: scheduling bandwidth, Delay spread and moving speed of the terminal device;
  • the sending end device is a network device, and the receiving end device is a terminal device. Before the sending end device performs interleaving processing on the modulation symbol sequence, the method further includes:
  • the sending end device sends interleaving indication information to the receiving end device, where the interleaving indication information indicates a size of the time-frequency resource group;
  • the sending end device is a terminal device, and the receiving end device is a network device. Before the sending end device performs interleaving processing on the modulation symbol sequence, the method further includes:
  • the sending end device receives the interleaving indication information sent by the receiving end device, where the interleaving indication information indicates a size of the time-frequency resource group.
  • the network device determines the size of the time-frequency resource group according to the transmission parameter, and the network device sends, by using the signaling, the interleaving indication information, where the interleaving indication information indicates the size of the time-frequency resource group.
  • the network device can determine the size of the time-frequency resource group corresponding to the transmission parameter according to the transmission parameter, and determine the size of the different time-frequency resource group according to the value of the parameter, so as to meet the interleaving requirement in different scenarios.
  • the interleaving indication information is sent by radio resource control RRC signaling, a medium access control layer control element MAC-CE, or downlink control information DCI.
  • the modulation symbol sequence includes a modulation symbol of a data transmission block and a modulation symbol of a reference signal included in a scheduling resource corresponding to the data transmission block, where
  • the frequency resource unit group is a physical time-frequency resource unit group.
  • the physical time-frequency resource unit may be used to carry the modulation symbol of the data transmission block, and may also be used to carry the modulation symbol of the reference signal.
  • the embodiment of the present application may set a larger interleaving unit to perform interleaving, and by setting a larger interleaving unit, after the interleaving, the position of the reference signal does not change, and the position of the reference signal can be avoided, and All OFDM symbols can be interleaved using the same interleaving scheme, resulting in low complexity.
  • the modulation symbol sequence includes only modulation symbols of a data transmission block
  • the time-frequency resource unit group is a logical time-frequency resource unit group
  • the resource unit group includes a time-frequency resource unit of a physical time-frequency resource that is only used to carry modulation symbols of the data transmission block, where the physical time-frequency resource includes a time-frequency for transmitting a modulation symbol of the data transmission block.
  • the embodiment of the present application may choose to avoid interleaving the modulation symbol of the reference signal when interleaving, and in this case, the modulation symbol sequence may not include the reference signal.
  • the modulation symbol but only the modulation symbols of the data transmission block.
  • the plurality of time-frequency resource groups for carrying the sequence of modulation symbols to be transmitted are logical time-frequency resource unit groups, and the logical time-frequency resource unit group includes only the physical time-frequency resources for carrying the data. a time-frequency resource unit of a modulation symbol of a transport block,
  • the embodiment of the present application interleaves the modulation symbols of the data transmission block in the logical resource unit group by skipping the reference signal, and can be affected by the reference signal, and since the base station and the UE are very clear on the location of the pilot, Low complexity.
  • the modulation symbol sequence includes only modulation symbols of a data transmission block, and the time-frequency resource unit group is a physical time-frequency resource unit group.
  • the embodiment of the present application is directed to the case where the time-frequency resource does not transmit the reference signal, that is, the modulation symbol sequence to be transmitted does not include the modulation symbol of the reference signal, and the smaller interleaving unit is set to perform interleaving, and by setting a smaller interleaving unit, Increase the interleaving depth and increase the diversity gain.
  • all the OFDM symbols in the embodiment of the present application can be interleaved by using the same interleaving scheme, and the embodiment of the present application can increase the interleaving depth and improve the diversity gain by setting a smaller interleaving unit.
  • the modulation symbol sequence includes a first modulation symbol sequence and a second modulation symbol sequence, the plurality of time-frequency resource unit groups including a first time-frequency resource unit a set of the first time-frequency resource unit group for carrying the first modulation symbol sequence, and a second set of time-frequency resource unit groups for carrying the second modulation symbol a sequence
  • the first time-frequency resource unit group set includes at least two first time-frequency resource unit groups
  • the first time-frequency resource unit group includes N 1 first time-frequency resource units, where N 1 is greater than or equal to An integer of 2
  • the second time-frequency resource unit group set includes at least two second time-frequency resource unit groups
  • the second time-frequency resource unit group includes N 2 second time-frequency resource units, where N 2 is greater than Or an integer equal to 2
  • a first time-frequency resource unit is configured to carry a first modulation symbol group
  • a second time-frequency resource unit is configured to carry a second modulation symbol group, where the first time-frequency resource unit
  • the transmitting end device performs interleaving processing on the modulation symbol sequence by using the time-frequency resource unit group as an interleaving unit, and acquires an order in which the modulation symbol sequence is mapped in the multiple time-frequency resource unit groups, including :
  • the transmitting end device performs interleaving processing on the first modulation symbol sequence by using the first time-frequency resource unit group as an interleaving unit, and using the second time-frequency resource unit group as an interleaving unit to the second modulation symbol.
  • Performing an interleaving process on the sequence acquiring a first sequence in which the first modulation symbol sequence is mapped in the first time-frequency resource unit group set, and mapping the second modulation symbol sequence in the second time-frequency resource unit group a second sequence in the set, wherein a plurality of consecutive first modulation symbol groups in the first modulation symbol sequence are mapped to at least two first time-frequency resource unit groups in the first time-frequency resource unit group set And a plurality of consecutive second modulation symbol groups in the second modulation symbol sequence are mapped on at least two second time-frequency resource unit groups in the second time-frequency resource unit group set.
  • the embodiment of the present application may set a larger interleaving unit for the resource part carrying the reference signal, for example, the second time-frequency resource unit, and set a smaller interleaving unit for the resource part that does not carry the reference signal.
  • the first time-frequency resource unit For example, the first time-frequency resource unit.
  • the embodiment of the present application performs independent interleaving processing on two modulation symbol sequences, and acquires a first sequence in which two modulation symbol sequences are respectively mapped in a first time-frequency resource unit group set and a mapping in a first time-frequency resource unit group.
  • the second order in the collection Therefore, in the embodiment of the present application, by setting the size of two resource unit groups, it is ensured that the maximum interleaving depth is obtained as much as possible under the premise of including the reference signal. Since the base station and the UE are very clear about the location of the pilot, the implementation complexity is still very low.
  • a method of data transmission comprising:
  • the receiving end device receives the modulation symbols transmitted by the plurality of time-frequency resource unit groups, and the modulation symbols are mapped to the plurality of time-frequency resources according to the sequence in which the time-frequency resource unit group is interleaved to the modulation symbol sequence.
  • one time-frequency resource unit group includes N time-frequency resource units, N is an integer greater than or equal to 2
  • one time-frequency resource unit includes at least one resource unit RE
  • one time-frequency resource unit is used for carrying a modulation symbol group
  • a modulation symbol group includes at least one modulation symbol
  • a size of the time-frequency resource unit group is protocol-scheduled, or a size of the time-frequency resource unit group is determined according to a transmission parameter;
  • the receiving end device deinterleaves the modulation symbols transmitted by the plurality of time-frequency resource unit groups by using the time-frequency resource unit group as an interleaving unit, and acquires the modulation symbol sequence.
  • the size of one or a limited number of explicit time-frequency resource unit groups can be determined by the manner agreed by the protocol in the embodiment of the present application or according to the manner determined by the transmission parameter, the calculation during chip processing can be simplified.
  • the complexity solves the problem of high complexity caused by interleaving in CB units in the prior art.
  • the data transmission method described in the second aspect from the device side of the receiving device corresponds to the data transmission method described in the first aspect, and the features and effects of the second aspect can be referred to the first aspect. The description is not detailed here to avoid repetition.
  • the modulation symbol sequence includes a modulation symbol of a data transmission block and a modulation symbol of a reference signal included in a scheduling resource corresponding to the data transmission block, where
  • the frequency resource unit group is a physical time-frequency resource unit group.
  • the modulation symbol sequence includes only modulation symbols of a data transmission block
  • the time-frequency resource unit group is a logical time-frequency resource unit group
  • the resource unit group includes a time-frequency resource unit of a physical time-frequency resource that is only used to carry modulation symbols of the data transmission block, where the physical time-frequency resource includes a time-frequency for transmitting a modulation symbol of the data transmission block.
  • the modulation symbol sequence includes a first modulation symbol sequence and a second modulation symbol sequence
  • the plurality of time-frequency resource unit groups include a first time-frequency resource unit a set of the first time-frequency resource unit group for carrying the first modulation symbol sequence, and a second set of time-frequency resource unit groups for carrying the second modulation symbol a sequence
  • the first time-frequency resource unit group set includes at least two first time-frequency resource unit groups
  • the first time-frequency resource unit group includes N 1 first time-frequency resource units, where N 1 is greater than or equal to An integer of 2
  • the second time-frequency resource unit group set includes at least two second time-frequency resource unit groups
  • the second time-frequency resource unit group includes N 2 second time-frequency resource units, where N 2 is greater than Or an integer equal to 2
  • a first time-frequency resource unit is configured to carry a first modulation symbol group
  • a second time-frequency resource unit is configured to carry a second modulation symbol group, where the first time-frequency resource
  • the receiving end device performs deinterleaving processing on the modulation symbols transmitted by the multiple time-frequency resource unit groups by using the time-frequency resource unit group as an interleaving unit, and acquiring the modulation symbol sequence, including:
  • the receiving end device performs deinterleaving processing on the modulation symbols carried by the first time-frequency resource unit group set by using the first time-frequency resource unit group as an interleaving unit, and the second time-frequency resource unit group is an interleaved unit pair.
  • the modulation symbols carried by the second time-frequency resource unit group set are subjected to de-interleaving processing, and the first modulation symbol sequence and the second modulation symbol sequence are obtained.
  • the size of the time-frequency resource unit group is determined according to a transmission parameter, where the transmission parameter includes at least one of the following parameters: scheduling bandwidth, Delay spread and moving speed of the terminal device;
  • the method further includes: before the receiving end device de-interleaves the modulation symbols transmitted by the plurality of time-frequency resource unit groups by using the time-frequency resource unit group as an interleaving unit, the method further includes:
  • the receiving end device determines, according to a correspondence between the preset transmission parameter and the time-frequency resource unit group size, the size of the time-frequency resource unit group corresponding to the current transmission parameter.
  • the size of the time-frequency resource unit group is determined according to a transmission parameter, where the transmission parameter includes at least one of the following parameters: scheduling bandwidth, Delay spread and moving speed of the terminal device;
  • the receiving end device is a network device
  • the sending end device is a terminal device, where the receiving end device receives the modulation symbols transmitted by the plurality of time-frequency resource unit groups, and the method further includes:
  • the receiving end device sends interleaving indication information to the sending end device, where the interleaving indication information indicates a size of the time-frequency resource group;
  • the receiving end device is a terminal device, and the transmitting end device is a network device, and the receiving end device deinterleaves the modulation symbols transmitted by the multiple time-frequency resource unit groups by using the time-frequency resource unit group as an interleaving unit.
  • the method further includes:
  • the receiving end device receives the interleaving indication information sent by the sending end device, where the interleaving indication information indicates a size of the time-frequency resource group.
  • the interleaving indication information is sent by radio resource control RRC signaling, a medium access control layer control element MAC-CE, or downlink control information DCI.
  • the plurality of time-frequency resource unit groups include all or part of frequency domain resources on the at least one OFDM symbol.
  • a method for interleaving comprising:
  • the network device generates the interleaving indication information, where the interleaving indication information is used to indicate the size of the interleaving unit, where the interleaving unit is a time-frequency resource unit group or a modulation symbol group;
  • the network device sends the interlace indication information.
  • the method before the generating, by the network device, the interleaving indication information, the method further includes:
  • the network device determines a size of the interleaving unit according to a transmission parameter, where the transmission parameter includes at least one of the following parameters: a scheduling bandwidth, a delay extension, and a moving speed of the terminal device.
  • the sending, by the network device, the interleaving indication information includes:
  • the network device sends the interlace indication information by using radio resource control RRC signaling, a medium access control layer control element MAC-CE, or downlink control information DCI.
  • the network device can determine the size of the time-frequency resource group corresponding to the transmission parameter according to the transmission parameter, and determine the size of the different time-frequency resource group according to the value of the parameter, so as to meet the interleaving requirements in different scenarios, and solve the prior art.
  • a method for interleaving comprising:
  • the terminal device receives the interleaving indication information, where the interleaving indication information is used to indicate the size of the interleaving unit, where the interleaving unit is a time-frequency resource unit group or a modulation symbol group;
  • the terminal device determines the size of the time-frequency resource unit group according to the interleaving indication information.
  • the receiving, by the terminal device, the interleaving indication information includes:
  • the terminal device receives the interlace indication information that is sent by the network device by using the radio resource control RRC signaling, the medium access control layer control element MAC-CE, or the downlink control information DCI.
  • the network device can determine the size of the time-frequency resource group corresponding to the transmission parameter according to the transmission parameter, and determine the size of the different time-frequency resource group according to the value of the parameter, so as to meet the interleaving requirements in different scenarios, and solve the prior art.
  • a method for interleaving comprising:
  • the transmitting end device performs interleaving processing on the modulation symbol sequence to be sent by using the interleaving unit, and obtains an interleaving result, where the size of the interleaving unit is determined by a protocol or determined according to a transmission parameter, where the interleaving unit is a time-frequency resource unit group or a modulation.
  • the transmitting device sends the modulation symbol sequence according to the interleaving result.
  • the size of one or a limited number of explicit time-frequency resource unit groups can be determined by the manner agreed by the protocol in the embodiment of the present application or according to the manner determined by the transmission parameter, the calculation during chip processing can be simplified.
  • the complexity solves the problem of high complexity caused by interleaving in CB units in the prior art.
  • a method for interleaving comprising:
  • the receiving end device receives the modulation symbol, and the modulation symbol is interleaved and processed on the time-frequency resource according to the interleaving unit.
  • the receiving end device performs deinterleaving processing using an interleaving unit to obtain a modulation symbol sequence, where the interleaving unit is a protocol specified by a time-of-arrival protocol or determined according to a transmission parameter, where the interleaving unit is a time-frequency resource unit group or a modulation symbol group. .
  • the size of one or a limited number of explicit time-frequency resource unit groups can be determined by the manner agreed by the protocol in the embodiment of the present application or according to the manner determined by the transmission parameter, the calculation during chip processing can be simplified.
  • the complexity solves the problem of high complexity caused by interleaving in CB units in the prior art.
  • a transmitting device in a seventh aspect, includes a module or a unit for performing the method in the first aspect or the first possible implementation manner of the first aspect, or is used to perform the fifth aspect or A fifth aspect of the various modules or units of the communication method of any of the possible implementations.
  • the transmitting end device in the uplink transmission, is a terminal device, and in the downlink transmission, the transmitting end device is a network device.
  • a receiving end device comprising each module or unit for performing the communication method in the second aspect or the second possible aspect, or Aspect or the various modules or units of the communication method of any of the possible implementations of the sixth aspect.
  • the receiving end device in the uplink transmission, is a network device, and in the downlink transmission, the receiving end device is a terminal device.
  • a network device comprising modules or units for performing the method of any of the possible implementations of the third aspect or the third aspect.
  • a terminal device comprising respective modules or units for performing the communication method in any of the possible implementations of the fourth aspect or the fourth aspect.
  • a terminal device including a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the terminal device performs the first to sixth aspects and their possible implementations A method performed by a terminal device.
  • a network device including a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network device performs the first to sixth aspects and their possible implementations A method performed by a network device.
  • the solution implemented by the above network device can be implemented by a chip.
  • the solution implemented by the above terminal device can be implemented by a chip.
  • a computer program product comprising: a computer program (also referred to as a code, or an instruction), when the computer program is executed, causing the computer to perform the first aspect to The method of any of the sixth aspect, and any one of the first aspect to the sixth aspect.
  • a computer program also referred to as a code, or an instruction
  • a computer readable medium storing a computer program (which may also be referred to as code, or instructions), when executed on a computer, causes the computer to perform the first aspect described above.
  • FIG. 1 is a schematic diagram of a system scenario applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a data processing process in accordance with one embodiment of the present application.
  • FIG. 3 is a schematic diagram of interleaving with CB as an interleaving unit according to an embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a method of data transmission according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a plurality of time-frequency resource unit groups according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of interleaving according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of interleaving according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of interleaving according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of physical time-frequency resources according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a plurality of time-frequency resource unit groups according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of interleaving according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of interleaving according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of interleaving according to another embodiment of the present application.
  • FIG. 14 is a schematic flow diagram of a method for interleaving in accordance with one embodiment of the present application.
  • FIG. 15 is a schematic flow chart of a method for interleaving according to another embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • 17 is a schematic block diagram of a network device in accordance with one embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a communication device in accordance with one embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 shows a communication system 100 to which an embodiment of the present application is applied.
  • the communication system 100 can be any of the communication systems described above.
  • the communication system 100 can include at least one network device 110 and at least one terminal device 120.
  • Each network device 1100 can provide communication coverage for a particular geographic area and can communicate with terminal devices 120 (e.g., UEs) located within the coverage area (cell).
  • terminal devices 120 e.g., UEs
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a global system of mobile communication (GSM) system or code division multiple access (CDMA).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • PLMN public land mobile network
  • Figure 2 shows the main steps of the data processing process performed before the data is transmitted through the OFDM symbol. The remaining steps can be referred to the existing literature.
  • data from an upper layer for example, a MAC layer
  • CRC addition code block division, channel coding, rate matching, symbol modulation, and the like
  • the modulated symbols are mapped to time-frequency resources for transmission.
  • each OFDM signal is limited to a relatively narrow bandwidth under OFDM transmission. Therefore, when the OFDM transmission experiences frequency selective channel conditions, some of the modulated signals will be completely in the frequency band with weak transient signal strength. If these signals belong to the same decoding unit, the error may exceed the forward error correction.
  • the error correction capability of the forward error correction (FEC) causes the entire transport block to be received incorrectly. In order to improve the performance of the system and to combat frequency domain selectivity or time domain selectivity, interleaving the modulated symbols is considered to be a feasible method.
  • the interleaving of modulation symbols is in units of code blocks (CB).
  • CB code blocks
  • the modulation symbols generated by modulation are first mapped to layers, then mapped to the frequency domain, and finally mapped to the time domain, and in the process of mapping. Interleaving is performed to achieve the effect of distributing the data of the same CB in the frequency domain.
  • a CB data can be concentrated in a certain or consecutive time domain symbols, which is beneficial for the receiver to perform fast demodulation.
  • one CB includes 10 modulation symbols.
  • the distribution of modulation symbols of CBs in the three OFDM symbols before interleaving is the first 10 REs corresponding to CB1 in OFDM symbol 1.
  • the last two REs correspond to CB2, and so on.
  • the interleaving range is interleaved in each OFDM symbol.
  • the first 5 REs and the 7th to 11th REs in the OFDM symbol 1 after interleaving correspond to CB1, 6th.
  • the embodiment of the present application subtly proposes an interleaving method, so that all OFDM adopt the same one or two interleaving schemes, which can reduce the interlacing complexity and improve system performance.
  • FIG. 4 is a schematic flow chart of a method for data interleaving according to an embodiment of the present application, from the perspective of device interaction.
  • the method shown in Figure 4 includes:
  • the source device acquires a sequence of modulation symbols to be transmitted in multiple time-frequency resource unit groups.
  • the one time-frequency resource unit group includes N time-frequency resource units, N is an integer greater than or equal to 2, one time-frequency resource unit includes at least one resource element (RE), and one time-frequency resource unit is used for carrying A modulation symbol group, a modulation symbol group includes at least one modulation symbol, a size of the time-frequency resource unit group is protocol-agreeted, or a size of the time-frequency resource unit group is determined according to a transmission parameter.
  • N is an integer greater than or equal to 2
  • one time-frequency resource unit includes at least one resource element (RE)
  • one time-frequency resource unit is used for carrying A modulation symbol group
  • a modulation symbol group includes at least one modulation symbol
  • a size of the time-frequency resource unit group is protocol-agreeted
  • a size of the time-frequency resource unit group is determined according to a transmission parameter.
  • the sending end device may be a network device or a terminal device, where, when performing uplink transmission, the sending end device is a terminal device, and the receiving end device is a network device; when performing downlink transmission, the transmitting end The device is a network device, and the receiving device is a terminal device.
  • the modulation symbol sequence to be transmitted may be a layer of modulation symbol sequence, and the modulation symbol sequence may be a modulation symbol sequence after layer mapping, or may be modulated according to a layer mapping group before layer mapping.
  • the symbol sequence, the embodiment of the present application is not limited thereto.
  • the time-frequency resource unit in the embodiment of the present application corresponds to the smallest unit of interleaving, that is, the modulation symbol carried by one time-frequency resource unit is a continuous modulation symbol in the sequence of modulation symbols.
  • the modulation symbol group carried by the time-frequency resource unit includes two modulation symbols, and the two are after the interleaving process.
  • the 2 modulation symbols carried by the RE are two consecutive modulation symbols in the sequence of modulation symbols to be transmitted.
  • the size of the time-frequency resource unit group may indicate the size of the interleaving unit.
  • an interleaving unit that is, a modulation symbol carried in a time-frequency resource unit group
  • a group of discontinuous modulation symbols For example, a time-frequency resource unit group includes five time-frequency resource units.
  • the one time-frequency resource unit group is used to carry five modulation symbol groups, and that the modulation symbol sequence to be transmitted includes 24 consecutive modulations.
  • the symbol sequence group that is, the modulation symbol group #1 - modulation symbol group #24.
  • the five modulation symbol groups carried by the one time-frequency resource unit group are discontinuous modulation symbol groups, for example, five modulation symbol groups are completely non-contiguous five modulation symbol groups, for example, a modulation symbol group.
  • the five modulation symbol groups include modulation symbol group #1, modulation symbol group #2, modulation symbol group #8, modulation symbol group 9, and modulation symbol group # 18.
  • multiple time-frequency resource unit groups may include all or part of frequency domain resources on at least one OFDM symbol.
  • the at least one OFDM symbol may be 1 OFDM symbol, 2 OFDM... or 14 OFDM symbols, and the embodiment of the present application is not limited thereto.
  • the frequency domain resource is a frequency domain resource within a scheduling bandwidth.
  • the frequency domain bandwidth on the OFDM symbol may be configured by the network device or preset by the system, which is not limited by the embodiment of the present application.
  • the frequency domain bandwidth on the OFMD symbol may include at least two subcarriers, for example, including 12 subcarriers, 24 subcarriers, 36 subcarriers, and the like, and the embodiment of the present application is not limited thereto.
  • the frequency domain resource bandwidth on the OFDM symbol is 36 subcarriers
  • the multiple time frequency resource unit groups may include all frequency domain resources on the at least one OFDM symbol, that is, 36 subcarriers; and may also include partial frequency domain resources.
  • 24 subcarriers, 12 subcarriers, or 8 subcarriers, etc., are not limited thereto.
  • a plurality of time-frequency resource units include all of the frequency domain resources on 2 OFDM, that is, OFDM #1 and OFDM #2, for example, 12 subcarriers.
  • One resource unit includes one RE
  • one modulation symbol group includes one modulation symbol
  • the frequency resource unit group includes a total of six time-frequency resource unit groups, and an instant frequency resource unit group #1 to a time-frequency resource unit group #6.
  • a total of 24 time-frequency resource units (ie, 24 REs) are sequentially in the order of OFDM after the first subcarrier, and the 24 REs are resource unit #1, resource unit #2, and resource unit #24.
  • the modulation symbol sequence comprises 24 modulation symbol groups, namely modulation symbol group #1, modulation symbol group #2 ... modulation symbol group #24.
  • the modulation symbol sequence that is, the modulation symbol group #1 to the modulation symbol group #24, may be carried by the time-frequency resource unit #1 to the time-frequency resource unit #24, respectively.
  • the size of the time-frequency resource unit group can be agreed upon by the protocol, that is, the protocol agrees on the size of the interleaving unit.
  • the transmitting device can perform interleaving processing according to the interleaving unit specified by the protocol, without calculating the CB size by calculation as in the prior art, and then performing interleaving.
  • the receiving end can also directly according to the protocol.
  • the interleaving unit performs deinterleaving processing. Therefore, the embodiment of the present application can reduce the complexity of interleaving and improve system performance.
  • the protocol may be configured with one time-frequency resource unit group size for all service types, and different time-frequency resource unit group sizes may be agreed for different service types.
  • the embodiment of the present application is not limited thereto.
  • the size of the time-frequency resource unit group may be determined according to a transmission parameter.
  • the transmission parameter includes at least one of the following parameters: scheduling bandwidth, delay extension, and moving speed of the terminal device.
  • the size of the time-frequency resource unit group may be determined according to the transmission parameter in various manners, which will be exemplified below.
  • Both the sender device and the receiver device pre-store the correspondence between the value of multiple transmission parameters and the size of multiple time-frequency resource unit groups. For example, if the transmission parameter is bandwidth, then the correspondence may be as shown in Table 1.
  • the sending end device and the receiving end device may determine, according to the preset correspondence, the size of the time-frequency resource unit group corresponding to the current transmission parameter. For example, when the transmission parameter is the scheduling bandwidth, the sending end device and the receiving end device may take a value according to the current scheduling bandwidth. For example, the second scheduling bandwidth lookup table 1 determines that the size of the time-frequency resource group is the second time-frequency resource group. size.
  • Table 1 shows the one-to-one correspondence between the transmission parameters and the time-frequency resource group, but the embodiment of the present application is not limited thereto. In practical applications, multiple transmission parameter values may correspond to the same time-frequency resource group. size.
  • Scheduling bandwidth value The size of the time-frequency resource group First scheduling bandwidth First time-frequency resource group size Second scheduling bandwidth Second time-frequency resource group size ... ...
  • the network device determines the size of the time-frequency resource group according to the transmission parameter, and the network device sends, by using the signaling, the interleaving indication information, where the interleaving indication information indicates the size of the time-frequency resource group.
  • the network device can determine the size of the time-frequency resource group corresponding to the transmission parameter according to the transmission parameter, and determine the size of the different time-frequency resource group according to the value of the parameter, so as to meet the interleaving requirement in different scenarios.
  • the above time-frequency resource unit group has only one or a limited number of explicit sizes, either by means of protocol agreement or by means of transmission parameters, thereby greatly simplifying the computational complexity of the chip processing and solving the present problem.
  • the foregoing signaling may be the RRC signaling, the medium access control layer control element MAC-CE, or the downlink control information DCI.
  • the embodiment of the present application is not limited thereto.
  • the network device in the first mode, does not need to send additional signaling to the terminal to indicate the size of the time-frequency resource group. Therefore, the first manner can reduce the signaling overhead.
  • the two ends of the transceiver do not need to pre-store the corresponding relationship. Therefore, the second method can reduce the occupied space of the pre-stored data in the device.
  • the transmitting end device performs interleaving processing on the modulation symbol sequence by using a time-frequency resource unit group as an interleaving unit, and acquires an order in which the modulation symbol sequence is mapped in the multiple time-frequency resource unit groups.
  • the consecutive N modulation symbol groups in the modulation symbol sequence are mapped on at least two time-frequency resource unit groups of the plurality of time-frequency resource unit groups.
  • the embodiment of the present application may perform interleaving processing in multiple manners, as long as multiple consecutive (hereinafter referred to as M, M is an integer greater than or equal to 2) modulation symbol group in the modulation symbol sequence after the interleaving process.
  • Mapping on at least two time-frequency resource unit groups of the plurality of time-frequency resource unit groups, that is, after the interleaving process, the inter-interleave unit, that is, the modulation symbol group on one time-frequency resource unit group is a modulation symbol sequence to be transmitted.
  • the discontinuous modulation symbol group can be used. This embodiment of the present application does not specifically limit this.
  • M is not limited in the embodiment of the present application, as long as the value of M is greater than or equal to 2.
  • the value range of M can be different.
  • M 2, 3, 4, 5 or 6, and so on.
  • a particular M may be equal to N, and M may be equal to Z/N, where Z represents the total number of modulation symbol groups in the sequence of modulation symbols, and embodiments of the present application are not limited thereto.
  • the modulation symbol sequence is sequentially mapped in the order of the modulation symbol group #1 to the modulation symbol group #24 in the resource unit group #1 to the resource unit group.
  • the first time-frequency resource unit ie, the first RE
  • the second time-frequency resource unit in resource unit group #1 to resource unit group #6 resource unit group #1 to resource unit
  • the result of the interleaving process is as shown in FIG. 6.
  • FIG. 7 is a result of performing another interleaving on the corresponding modulation symbol sequence in FIG. 5.
  • the set that is, the modulation symbol group #1 to the modulation symbol group #4 is the group set #1
  • the modulation symbol group #5 to the modulation symbol 8 is the group set #2, ..., then in the order of the group set #1 to the group set #6
  • the result of the interleaving process is as shown in FIG.
  • the modulation symbol sequence in another interleave processing mode, may be used.
  • the modulation symbol sequence may be used.
  • modulation symbol group #1 to modulation symbol group #6 is a group.
  • Set #1, modulation symbol group #7 to modulation symbol 12 is group set #2, ..., then the first modulation symbol group in each set is sequentially selected in the order of group set #1 to group set #4, each The second modulation symbol group in the group, ... the fourth modulation symbol group in each group, sequentially maps the modulation symbol group on the time-frequency resource unit #1 to the time-frequency resource unit #24 in accordance with the selection order.
  • the result of the interleaving process is as shown in FIG.
  • FIG. 6 and FIG. 8 only show three interleaving manners in which the modulation symbol group is an interleaving unit.
  • the modulation symbol group may be interleaved in an interleaving unit in various manners. Not limited to this.
  • one time-frequency resource unit may include a resource block formed by consecutive K sub-carriers on L OFDM symbols, L is an integer greater than or equal to 1, and K is an integer greater than or equal to 1, one modulation.
  • one time-frequency resource may include K REs on the one OFDM symbol.
  • K may be a value of 2, 3, 4, 14, or 24, and the embodiment of the present application is not limited thereto.
  • the modulation symbols mapped on the time-frequency resources include reference signals for channel estimation (for example, CSI). -RS) or a reference signal for demodulation (for example, DMRS). Since the time-frequency resource position of the reference signal is usually fixed, if the reference signal is present, if the interleaving unit is still interleaved as the RE, the position of the reference signal will be disturbed, so that the receiving end cannot perform channel estimation or demodulation. Data that affects network performance.
  • the embodiment of the present application describes a specific interleaving scheme. The following will be described in detail in combination with different situations.
  • the embodiment of the present application may set a larger interleaving unit to perform interleaving, so that the position of the reference signal does not change after the interleaving, thereby solving the above problem.
  • one time-frequency resource unit includes resource blocks composed of 12 sub-carriers on at least one OFDM symbol.
  • a resource block composed of 12 sub-carriers on one OFDM resource block is described as an example.
  • one time-frequency resource unit includes consecutive 12 REs on one OFDM symbol, that is, the frequency domain bandwidth of one time-frequency resource unit is the same as the frequency domain width of one RB, and since the position of the reference signal in the RB is usually fixed,
  • the interleaved unit that is, 12 REs and the RB frequency domain width are the same, after the interleaving process, the relative position of the reference signal in the frequency domain resource corresponding to the RB does not change, and therefore, the above-mentioned existence of the reference signal can be solved. Under the problem of disturbing the position of the reference signal.
  • the distribution interval of the reference signal in the frequency domain in the NR may be p*12, where p is an integer greater than 1, and the subcarriers on the at least one OFDM symbol included in the time-frequency resource unit at this time The number should also be adjusted accordingly.
  • the number of subcarriers on at least one OFDM symbol included in the time-frequency resource unit is a multiple of p*12.
  • the modulation symbol sequence may include a modulation symbol of a data transmission block and a modulation symbol of a reference signal included in a scheduling resource corresponding to the data transmission block, where the time-frequency resource unit group is a physical time Frequency resource unit group.
  • the physical time-frequency resource unit may be used to carry the modulation symbol of the data transmission block, and may also be used to carry the modulation symbol of the reference signal.
  • the interleaving method in this case can be referred to the description in FIG. 5 to FIG. 8, as long as the time-frequency resource unit in FIG. 5 to FIG. 8 is replaced with consecutive 12 REs on the OFDM, and the modulation symbol group is replaced by continuous modulation.
  • the interleaving method of the first case can be obtained by consecutive 12 modulation symbols in the symbol sequence. To avoid repetition, we will not repeat them here.
  • the location of the reference signal can be avoided by setting a large interleave unit, and all the OFDM symbols can be interleaved by using the same interleaving scheme, and the implementation complexity is low.
  • the embodiment of the present application is directed to the case where there is no reference signal, that is, the modulation symbol sequence to be transmitted does not include the modulation symbol of the reference signal, and the smaller interleaving unit is set for interleaving, and the interleaving depth can be improved by setting a smaller interleaving unit. , increase the diversity gain.
  • the embodiment of the present application is not limited to the one in which the time-frequency resource unit includes one RE, two REs, or three REs.
  • the modulation symbol sequence includes only modulation symbols of a data transmission block
  • the time-frequency resource unit group is a physical time-frequency resource unit group.
  • the interleaving method in this case can be referred to the description in FIG. 5 to FIG. 8. As long as the time-frequency resource unit in FIG. 5 to FIG. 8 is replaced with the time-frequency resource unit in the second case, the modulation symbol group is replaced with the second case.
  • the interleaving method of Case 2 can be obtained by the modulation symbol group in the middle. To avoid repetition, we will not repeat them here.
  • all the OFDM symbols in the embodiment of the present application can be interleaved by using the same interleaving scheme, and the embodiment of the present application can increase the interleaving depth and improve the diversity gain by setting a smaller interleaving unit.
  • the embodiment of the present application may choose to avoid interleaving the modulation symbol of the reference signal when interleaving, in this case, the modulation symbol sequence may not include the modulation symbol of the reference signal, and Is a modulation symbol that only includes data transfer blocks.
  • the plurality of time-frequency resource groups for carrying the sequence of modulation symbols to be transmitted are logical time-frequency resource unit groups, and the logical time-frequency resource unit group includes only the physical time-frequency resources for carrying the data.
  • time-frequency resource unit of a modulation symbol of a transport block where the physical time-frequency resource includes a time-frequency resource unit for carrying a modulation symbol of the data transport block and a scheduling resource corresponding to the data transport block A time-frequency resource unit of a modulation symbol of the included reference signal.
  • the physical time-frequency resource includes all frequency domain resources for carrying data modulation symbols and reference signals on two OFDM, ie, OFDM#1 and OFDM#2, that is, 12 subcarriers, for a total of 24 Time-frequency resource unit (one time-frequency resource unit includes one RE), real-time resource unit #1 to time-frequency resource unit #24, wherein time-frequency resource unit #5 corresponding to sub-carrier 5 and sub-carrier 9 and time-frequency resource unit #9, time-frequency resource unit #17 and time-frequency resource unit #21 are used to carry RS,
  • the resources used to carry the modulation symbol sequence in the embodiment of the present application include only OFDM#1 and OFDM#2. All frequency domain resources used to carry data modulation symbols, that is, 10 subcarriers of the above 12 subcarriers, that is, subcarriers 1-4, 6-8, and 10-12.
  • Each of the logical time-frequency resource unit groups includes a time-frequency resource unit of the physical time-frequency resource that is only used to carry the modulation symbol of the data transmission block.
  • the logical time-frequency resource unit group may be included.
  • the time-frequency resource unit is called a logical time-frequency resource unit, and 20 logical time-frequency resource units (ie, 20 REs) in the four logical time-frequency resource unit groups can be sequentially numbered to obtain a logical time-frequency resource unit. 1 to logical time-frequency resource unit #20, then as shown in FIG. 9 and FIG. 10, the correspondence between the logical time-frequency resource unit in FIG. 10 and the time-frequency resource unit in the physical time-frequency resource in FIG. 9 is as shown in Table 5 below.
  • the sequence of modulation symbols comprises only the modulation symbols of the data transmission block.
  • the modulation symbol sequence includes 20 modulation symbol groups, namely, modulation symbol group #1, modulation symbol group #2, ... modulation symbol group #20.
  • the number of the resource unit in the embodiment of the present application may be in the order of the OFDM symbol after the first subcarrier, or may be numbered in the order of the subcarrier after the OFDM symbol, and the embodiment of the present application is not limited thereto.
  • the modulation symbol sequence that is, the modulation symbol group #1 to the modulation symbol group #20, may be carried in the logical time-frequency resource unit #1 to the logical time-frequency resource unit #20, respectively.
  • the interleaving process and method of the modulation symbols of the data transmission block in the logical resource unit group and the interleaving process and method type of the modulation symbols in the physical resource unit group of FIG. 6 to FIG. 8 are different in the case
  • the time-frequency resource unit group of the three is a logical time-frequency resource unit group.
  • the logical time-frequency resource unit group #1 to the logical time-frequency resource On the second logical time-frequency resource unit in the cell group #4, on the third logical time-frequency resource unit in the logical time-frequency resource unit group #1 to the logical time-frequency resource unit group #4, the logical time-frequency resource unit Group #1 to the fifth logical time-frequency resource on the fourth logical time-frequency resource unit in logical time-frequency resource unit group #4, logical time-frequency resource unit group #1 to logical time-frequency resource unit group #4 On the unit. Specifically, the result of the interleaving process is as shown in FIG.
  • FIG. 12 is a result of performing another interleaving on the corresponding modulation symbol sequence in FIG.
  • one interleaving processing manner shown in FIG. 12 is that the modulation symbol sequence is in the order of modulation symbol group #1 to modulation symbol group #20, to N.
  • it is divided into four sets of groups, that is, modulation symbol group #1 to modulation symbol group #5 is group set #1, modulation symbol group #6 to modulation symbol 10 is group set #2, ..., then according to the group set The order of #1 to group set #4, sequentially select the first modulation symbol group in each group set, the second modulation symbol group in each group, ...
  • the modulation symbol groups are sequentially mapped on the logical time-frequency resource unit #1 to the logical time-frequency resource unit #20. Specifically, the result of the interleaving process is as shown in FIG.
  • the modulation symbol sequence may be used.
  • modulation symbol group #1 to modulation symbol group #4 is a group.
  • Set #1, modulation symbol group #5 to modulation symbol 8 is group set #2, ..., then the first modulation symbol group in each set is sequentially selected in the order of group set #1 to group set #5, each The second modulation symbol group in the group, ...
  • the fourth modulation symbol group in each group sequentially maps the modulation symbol group on the logical time-frequency resource unit #1 to the logical time-frequency resource unit #20 in accordance with the selection order. Specifically, the result of the interleaving process is as shown in FIG.
  • FIG. 11 and FIG. 13 only show three interleaving manners in which the modulation symbol group is an interleaving unit.
  • the modulation symbol group may be interleaved in an interleaving unit in various manners. Not limited to this.
  • the embodiment of the present application interleaves the modulation symbols of the data transmission block in the logical resource unit group by skipping the reference signal, and can be affected by the reference signal, and since the base station and the UE are very clear on the location of the pilot, Low complexity.
  • the embodiment of the present application may set a larger interleaving unit for the resource part carrying the reference signal, for example, the second time-frequency resource unit, and set a smaller interleaving unit for the resource part that does not carry the reference signal.
  • the first time-frequency resource unit For example, the first time-frequency resource unit.
  • the modulation symbol sequence includes a first modulation symbol sequence and a second modulation symbol sequence
  • the plurality of time-frequency resource unit groups include a first time-frequency resource unit group set and a second time-frequency resource unit group set
  • the first time-frequency resource unit group set is configured to carry the first modulation symbol sequence
  • the second time-frequency resource unit group set is configured to carry a second modulation symbol sequence
  • the first time-frequency resource unit group set Include at least two first time-frequency resource unit groups, where the first time-frequency resource unit group includes N 1 first time-frequency resource units, N 1 is an integer greater than or equal to 2, and the second time-frequency resource unit
  • the group set includes at least two second time-frequency resource unit groups, the second time-frequency resource unit group includes N 2 second time-frequency resource units, and N 2 is an integer greater than or equal to 2, and a first time-frequency resource
  • the unit is configured to carry a first modulation symbol group
  • a second time-frequency resource unit is configured to carry a second modulation symbol group, where the first
  • the interleaving process may include the transmitting end device performing interleaving processing on the first modulation symbol sequence by using the first time-frequency resource unit group as an interleaving unit, and using the second time-frequency resource unit group as an interleaving unit.
  • Performing an interleaving process on the second modulation symbol sequence acquiring a first sequence in which the first modulation symbol sequence is mapped in the first time-frequency resource unit group set, and mapping the second modulation symbol sequence in the a second sequence in the second set of time-frequency resource unit groups, wherein a plurality of consecutive first modulation symbol groups in the first modulation symbol sequence are mapped in at least two of the first time-frequency resource unit group set On the first time-frequency resource unit group, a plurality of consecutive second modulation symbol groups in the second modulation symbol sequence are mapped to at least two second time-frequency resource units in the second time-frequency resource unit group set On the group.
  • the first modulation symbol sequence is a previous part of the modulation symbol sequence, which does not include a modulation symbol of a reference signal
  • the first modulation symbol sequence includes a plurality of first modulation symbol groups, wherein the first time-frequency resource unit The set of sets is for transmitting the first sequence of modulation symbols
  • the second sequence of modulation symbols is the latter part of the sequence of modulation symbols, ie the modulation symbols comprising the reference signal also comprise modulation symbols of the data, the sequence of second modulation symbols comprising And a plurality of second modulation symbol groups, wherein the second time-frequency resource unit group set is used to transmit the second modulation symbol sequence.
  • the first time-frequency resource unit group set does not transmit the reference signal, for the first modulation symbol, in order to increase the inter-diving depth and improve the diversity gain, a smaller interleaving unit, that is, the first time-frequency resource unit may be set.
  • the source unit includes one RE, two REs, or three REs, and the like, and the embodiment of the present application is not limited thereto.
  • a larger interleaving unit that is, a second time-frequency resource unit, for example, a first
  • the second time-frequency resource unit includes a resource block composed of 12 sub-carriers on at least one OFDM symbol.
  • a resource block composed of 12 second-time resource units including 12 sub-carriers on one OFDM is used as an example for description. .
  • a second time-frequency resource unit includes consecutive 12 REs on one OFDM symbol, that is, the frequency domain bandwidth of one second time-frequency resource unit is the same as the frequency domain width of one RB, because the position of the reference signal in the RB is usually It is fixed. Therefore, by setting the interleaved unit, that is, 12 REs and the RB frequency domain width are the same, after the interleaving process, the relative position of the reference signal in the frequency domain resource corresponding to the RB does not change, and therefore, the disorder can be avoided. The problem caused by the reference signal position.
  • the distribution interval of the reference signal in the frequency domain in the NR may be p*12, where p is an integer greater than 1, and the second time-frequency resource unit includes at least one OFDM symbol.
  • the number of subcarriers should also be adjusted accordingly.
  • the number of subcarriers on at least one OFDM symbol included in the second time-frequency resource unit is a multiple of p*12.
  • the interleaving process is separately performed, and the first sequence of the two modulation symbol sequences respectively mapped in the first time-frequency resource unit group set and the first time-frequency resource unit group are mapped.
  • the second order in the collection is separately performed, and the first sequence of the two modulation symbol sequences respectively mapped in the first time-frequency resource unit group set and the first time-frequency resource unit group are mapped.
  • the protocol can stipulate the relationship between the two values, for example, the ratio of the two values, the difference, etc.
  • the protocol can only stipulate the size of one of the values, and the two ends can be based on two The value relationship determines another value.
  • the network device determines only the size of one value and indicates the value.
  • the transmitting and receiving ends can determine another value according to the size of the one value and the relationship between the two values.
  • the above describes four schemes for setting different interleaving units for interleaving in a scenario in which a reference signal is transmitted in a time-frequency resource.
  • the scheme of case 2 can be adopted; in the case where the reference signal needs to be transmitted, the case one, three, and four schemes can be used, specifically, the reference signal needs to be transmitted.
  • the schemes of Case 1 and Case 4 may be adopted; in the case where the reference signal needs to be transmitted, and the modulation symbols of the reference signal do not participate in the interleaving, the situation may be adopted.
  • the three-in-one program in the scenario where the reference signal is not transmitted.
  • the embodiment of the present application can flexibly determine the size of the interleaving unit according to whether the reference signal is transmitted in the time-frequency resource, and can meet the requirements of different transmission scenarios.
  • the transmitting end device sends the modulation symbol sequence according to the sequence in which the modulation symbol sequence is mapped in the plurality of time-frequency resource unit groups.
  • the receiving end device deinterleaves the modulation symbol to obtain the modulation symbol sequence.
  • the receiving end device may deinterleave the modulation symbol according to the size of the interleaving unit (the group of the instant frequency resource unit) to obtain the modulation symbol sequence. Further, the receiving end device may perform other decoding processing on the modulation symbol to acquire data sent by the transmitting end. For a specific decoding process, refer to the description in the existing standard, and details are not described herein again.
  • the interleaving method in the embodiment of the present application enables all OFDMs to adopt the same one or two interleaving schemes, which can reduce the interlacing complexity and improve system performance.
  • FIG. 14 is a schematic flowchart of a method of data interleaving according to another embodiment of the present application, which is shown from the perspective of device interaction.
  • the method 1400 shown in Figure 14 includes:
  • the network device generates interlace indication information, where the interlace indication information is used to indicate a size of an interleave unit, where the interleave unit is a time-frequency resource unit group or a modulation symbol group.
  • an interleaving unit that is, a modulation symbol carried in a time-frequency resource unit group is discontinuous in the sequence of modulation symbols to be transmitted. Modulation symbol.
  • the interleaving unit is a modulation symbol group
  • one interleave unit that is, the modulation symbols in one modulation symbol group, is mapped on the discontinuous time-frequency resource.
  • the method may further include: before the network device generates the interleaving indication information, the network device determines the size of the interleaving unit according to the transmission parameter, where the transmission parameter includes at least one of the following parameters: scheduling bandwidth, delay Expansion and speed of movement of the terminal device.
  • the process of determining the interleave unit by the network device can be referred to the description of the second mode in the above 410, and details are not described herein again.
  • the network device sends the interlace indication information.
  • the network device may send the indication information by using the radio resource control RRC signaling, the medium access control layer control element MAC-CE, or the downlink control information DCI, and the embodiment of the present application is not limited thereto.
  • the terminal device receives the interlace indication information.
  • the terminal device determines, according to the indication information, a size of the interleaving unit.
  • the terminal device can determine the size of the interleaving unit.
  • the transmitting device device (which may be a network device or a terminal device) may perform interleaving processing on the modulation symbol sequence to be transmitted by using the interleaving unit, and send the interpolated processing modulation symbol, and the receiving end device may according to the interleaving unit.
  • a deinterleaving process of the modulation symbols is performed to obtain the sequence of modulation symbols.
  • the interleaving process in the embodiment of the present application may also refer to the interleaving process in the prior art.
  • the embodiment of the present application is not limited thereto.
  • the network device can determine the size of the time-frequency resource group corresponding to the transmission parameter according to the transmission parameter, and determine the size of the different time-frequency resource group according to the value of the parameter, so as to meet the interleaving requirements in different scenarios, and solve the prior art.
  • Figure 15 is a schematic flow chart of a method of data interleaving according to another embodiment of the present application, from the perspective of device interaction.
  • the method 1500 shown in Figure 15 includes:
  • the sending end device performs interleaving processing on the modulation symbol sequence to be sent by using the interleaving unit to obtain an interleaving result, where the interleaving unit is stipulated by the protocol, or determined according to the transmission parameter, where the interleaving unit is a time-frequency resource unit group or Modulation symbol group.
  • the sending end device sends a sequence of modulation symbols according to the interleaving result.
  • the receiving end device performs deinterleaving processing on the received modulation symbols by using an interleaving unit to obtain a modulation symbol sequence.
  • the size of the time-frequency resource unit group may be agreed upon by the protocol, that is, the protocol agrees on the size of the interleaved unit.
  • the transmitting device can perform the interleaving process according to the interleaving unit specified by the protocol, without determining the CB size by calculation as in the prior art, and then performing interleaving.
  • the receiving end can also directly interleave according to the protocol.
  • the unit performs deinterleaving processing. Therefore, the embodiment of the present application can reduce the complexity of interleaving and improve system performance.
  • the size of the time-frequency resource unit group can be agreed upon by the protocol, that is, the protocol agrees on the size of the interleaving unit.
  • the transmitting device can perform the interleaving process according to the interleaving unit specified by the protocol, without determining the CB size by calculation as in the prior art, and then performing interleaving.
  • the receiving end can also directly interleave according to the protocol.
  • the unit performs deinterleaving processing. Therefore, the embodiment of the present application can reduce the complexity of interleaving and improve system performance.
  • Both the sender device and the receiver device pre-store the correspondence between the value of multiple transmission parameters and the size of multiple time-frequency resource unit groups. For example, if the transmission parameter is bandwidth, then the correspondence may be as shown in Table 1.
  • the sending end device and the receiving end device may determine, according to the preset correspondence, the size of the time-frequency resource unit group corresponding to the current transmission parameter. For example, when the transmission parameter is the scheduling bandwidth, the sending end and the receiving end may take a value according to the current scheduling bandwidth. For example, the second scheduling bandwidth lookup table 1 determines that the size of the time-frequency resource group is the second time-frequency resource group size.
  • the interleaving process in the embodiment of the present application may also refer to the interleaving process in the prior art.
  • the embodiment of the present application is not limited thereto.
  • the transmitting end and the receiving end device can determine the size of the time-frequency resource group corresponding to the transmission parameter flexibly according to the transmission parameter, and can determine different time-frequency resource group sizes according to the different values of the parameters, and meet the interleaving requirements in different scenarios.
  • the problem of high complexity caused by interleaving in CB units in the prior art is solved.
  • the method for interacting with the method in the embodiment of the present application is described above with reference to FIG. 1 to FIG. 15.
  • the communication device provided by the embodiment of the present application is further described below with reference to FIG. 16 to FIG.
  • FIG. 16 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device can be adapted for use in the system shown in FIG.
  • FIG. 16 shows only the main components of the terminal device.
  • the terminal device 10 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, for supporting the terminal device to perform the actions described in the foregoing method embodiments, such as And performing interleaving processing on the modulation symbol sequence by using the time-frequency resource unit group as an interleaving unit in the uplink transmission, acquiring an order in which the modulation symbol sequence is mapped in the multiple time-frequency resource unit groups, and mapping the modulation symbol sequence according to the modulation symbol sequence
  • the modulation symbol sequence is sequentially transmitted in the plurality of time-frequency resource unit groups; and the received modulation symbols are deinterleaved by using the time-frequency resource unit group as an interleaving unit to receive the modulation symbol sequence.
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 16 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 16 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • an antenna and a control circuit having a transceiving function can be regarded as a transceiving unit 101 of the terminal device 10, for example, for supporting the terminal device to perform a transceiving function performed by the terminal device in the method implementation in FIG. .
  • the processor having the processing function is regarded as the processing unit 102 of the terminal device 10.
  • the terminal device 10 includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the processor 102 can be configured to execute instructions stored in the memory to control the transceiver unit 101 to receive signals and/or transmit signals to perform the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 101 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • FIG. 17 is a schematic structural diagram of a network device according to an embodiment of the present disclosure, which may be a schematic structural diagram of a base station. As shown in FIG. 17, the base station can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 20 includes one or more radio frequency units, such as a remote radio unit (RRU) 201 and one or more baseband units (BBUs) (also referred to as digital units, DUs) 202.
  • RRU 201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2011 and a radio frequency unit 2012.
  • the RRU 201 portion is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals with baseband signals, for example, for transmitting modulation symbols to terminal devices.
  • the BBU 202 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 201 and the BBU 202 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 202 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing unit
  • the BBU can be used to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 202 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may separately support different access modes of wireless. Access network (such as LTE network, 5G network or other network).
  • the BBU 202 also includes a memory 2021 and a processor 2022.
  • the memory 2021 is used to store necessary instructions and data.
  • the processor 2022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the memory 2021 and the processor 2022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • FIG. 18 is a schematic structural diagram of a communication device 1800.
  • the device 1800 can be used to implement the method described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments.
  • the communication device 1800 can be a chip, a network device (such as a base station), a terminal device, or the like.
  • the communication device 1800 includes one or more processors 1801.
  • the processor 1801 may be a general purpose processor or a dedicated processor or the like. It should be understood that when the processor 1801 is a dedicated processor, the method of the foregoing embodiment may be completed by an integrated logic circuit of hardware in the processor without instructions.
  • the processor can be an application specific integrated circuit (ASIC) or the like.
  • the processor 1801 may also be, for example, a general purpose processor.
  • the communication device 1800 may include one or more memories 1802 on which instructions 1804 are stored, the instructions being available in the processor The operation is performed such that the communication device 1800 performs the method described in the above method embodiments.
  • data may also be stored in the memory. Instructions and/or data can also be stored in the optional processor.
  • the processor and the memory may be provided separately or integrated.
  • the processor includes a central processing unit (CPU), a network processor (NP), a microprocessor, and the like.
  • the processor may also be a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or any conventional processor, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • FPGA field-programmable gate array
  • the embodiment of the present application is not limited thereto.
  • the processor 1801 may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • the communication device may include a transceiver unit for implementing input (reception) and output (transmission) of signals.
  • the communication device can be a chip, and the transceiver unit can be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used for a terminal or base station or other network device.
  • the communication device may be a terminal or a base station or other network device, and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication device 1800 includes one or more of the processors 1801, and the one or more processors 1801 can implement the methods of the network devices or terminal devices in the embodiments shown in FIGS. 1 and 15.
  • the communication device 1800 includes means for acquiring modulation symbols, interleaving processing means for modulating symbols, and means for transmitting interleaved modulation symbols.
  • the function of interleaving the modulation symbols and transmitting the interleaved modulation symbols may be implemented by one or more processors.
  • the modulation symbols can be acquired by one or more processors and the modulation symbols interleaved; the interleaved modulation symbols are transmitted through the transceiver, or the input/output circuit, or the interface of the chip.
  • the specific interleaving method and process refer to the related description in the foregoing method embodiment.
  • the communication device 1800 includes means for receiving modulation symbols and means for deinterleaving the modulation symbols.
  • the modulation symbols can be received, for example, by a transceiver, or an input/output circuit, or an interface of the chip, and the modulation symbols are deinterleaved by one or more processors.
  • processor 1801 can implement other functions in addition to the methods of the embodiments shown in FIG. 1 and FIG. 15.
  • the processor 1801 may be a general purpose processor, and the processor 1801 may include an instruction 1803, the instructions may be executed on the processor, such that the communication device 1800 performs the above method implementation. The method described in the example.
  • the communication device 1800 can also include circuitry that can implement the functions of the foregoing method embodiments.
  • the communication device 1800 may further include a transceiver unit 1805 and an antenna 1806.
  • the processor 1801 may be referred to as a processing unit that controls a communication device (terminal device or network device).
  • the transceiver unit 1805 can be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 1806.
  • the embodiment of the present application further provides a communication system, which includes the foregoing network device and terminal device.
  • the processor may be a CPU, and the processor may also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), ready-made devices.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGA Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请提供了一种数据传输的方法和设备,该方法包括发送端设备获取在多个时频资源单元组中待传输的调制符号序列,该时频资源单元组的大小是协议约定的,或者该时频资源单元组的大小是根据传输参数确定的;该发送端设备以该时频资源单元组为交织单位对该调制符号序列进行交织处理,获取该调制符号序列映射在该多个时频资源单元组中的顺序,其中,该调制符号序列中连续的多个调制符号组映射在该多个时频资源单元组中的至少两个时频资源单元组上;该发送端设备根据该调制符号序列映射在该多个时频资源单元组中的顺序发送该调制符号序列。本申请实施例能够简化芯片处理时的计算复杂度,解决现有技术中以CB为单位交织带来的复杂度高的问题。

Description

数据传输的方法和设备
本申请要求于2017年09月18日提交中国专利局、申请号为201710841935.6、申请名称为“数据传输的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种数据传输的方法和设备。
背景技术
在长期演进(long term evolution,LTE)中,信息比特在物理层以传输块(transport block,TB)为单位在某一个传输时间间隔(transmission time interval,TTI)TTI内传输,一个TB的信息比特经过循环冗余校验(cyclic redundancy check,CRC)比特添加、码块划分(code block segmentation)、信道编码(channel coding)、速率匹配(rate matching)、符号调制(modulation)等步骤,最终将调制后的符号映射到所调度的时频资源上。
为了提升***的性能,对抗频域选择性或时域选择性,对调制后的符号进行交织被认为是一种可行的方法。然而,目前现有的对调制后的符号进行交织方法复杂度较高,影响数据解调性能。
因此,如何降低调制符号的交织复杂度,成为亟待解决的问题。
发明内容
本申请提供一种数据传输的方法和设备,能够降低调制符号的交织复杂度。
第一方面,提供了一种数据传输的方法,该方法包括:
发送端设备获取在多个时频资源单元组中待传输的调制符号序列,其中,一个时频资源单元组包括N个时频资源单元,N为大于或等于2的整数,一个时频资源单元包括至少一个资源单元RE,一个时频资源单元用于承载一个调制符号组,一个调制符号组包括至少一个调制符号,所述时频资源单元组的大小是协议约定的,或者所述时频资源单元组的大小是根据传输参数确定的;
所述发送端设备以所述时频资源单元组为交织单位对所述调制符号序列进行交织处理,获取所述调制符号序列映射在所述多个时频资源单元组中的顺序,其中,所述调制符号序列中连续的多个调制符号组映射在所述多个时频资源单元组中的至少两个时频资源单元组上;
所述发送端设备根据所述调制符号序列映射在所述多个时频资源单元组中的顺序发送所述调制符号序列。
由于本申请实施例中通过过协议约定的方式,或是根据传输参数确定的方式,均能够确定一种或有限的几种明确的时频资源单元组的大小,因此能够简化芯片处理时的计算复 杂度,解决现有技术中以码块(code block,CB)为单位交织带来的复杂度高的问题。
本申请实施例中,发送端设备可以是网络设备,也可以是终端设备,其中,在进行上行传输时,发送端设备为终端设备,接收端设备为网络设备;在进行下行传输时,发送端设备为网络设备,接收端设备为终端设备。
本申请实施例中,待传输的调制符号序列,可以为一个层的调制符号序列,该调制符号序列可以是层映射之后的调制符号序列,也可以在层映射之前预先按照层映射分组得到的调制符号序列,本申请实施例并不限于此。应理解,本申请实施例中时频资源单元对应交织的最小单元,也就是说,一个时频资源单元承载的调制符号为调制符号序列中连续的调制符号。举例而言,一个时频资源单元包括2个RE,对应的一个调制符号组包括2个调制符号,那么该时频资源单元承载的调制符号组包括2个调制符号,在交织处理后该2个RE承载的2调制符号为待传输的调制符号序列中连续的两个调制符号。
本申请实施例中,时频资源单元组的大小可以表示交织单位的大小,具体而言,交织处理后,一个交织单位即一个时频资源单元组中承载的调制符号为待传输的调制符号序列中不连续的调制符号组。举例而言,一个时频资源单元组包括5个时频资源单元,对应的,该一个时频资源单元组用于承载5个调制符号组,假设待传输的调制符号序列包括连续的24个调制符号序列组,即调制符号组#1-调制符号组#24。在交织处理后,该一个时频资源单元组承载的5个调制符号组为不连续的调制符号组,例如,5个调制符号组为完全不连续的5个调制符号组,例如:调制符号组#1、调制符号组#5、调制符号组#9、调制符号组#13和调制符号组#18;可选地,一个交织单位承载的5个调制符号组可以包括部分连续的调制符号组,但从整体而言,该5个调制符号组不连续,例如,5个调制符号组包括调制符号组#1、调制符号组#2、调制符号组#8、调制符号组9和调制符号组#18。
应理解,以上数值仅是示例性的,仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景中。
应理解,在一些实现方式中,上述交织操作可以直接应用于待传输的比特序列,该比特序列为码块级联之后,调制之前,即对调制之前的比特序列按照调制之后的层映射分组,得到每一层的比特序列。
结合第一方面,在第一方面的某些实现方式中,所述多个时频资源单元组包括至少一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上全部或部分频域资源。
例如,该至少一个OFDM符号可以是1个OFDM符号、2个OFDM…或14个OFDM符号,本申请实施例并不限于此。所述频域资源为调度带宽范围内的频域资源。应理解,OFDM符号上的频域带宽可以是网络设备配置的,或者***预设的,本申请实施例并不对此作限定。OFMD符号上的频域带宽可以包括至少两个子载波,例如,包括12个子载波、24个子载波、36个子载波等,本申请实施例并不限于此。例如,OFDM符号上的频域资源带宽为36个子载波,该多个时频资源单元组可以包括该至少一个OFDM符号上的全部频域资源,即36个子载波;也可以包括部分频域资源,例如,24个子载波、12个子载波或者8个子载波等,本申请实施例并不限于此。
本申请实施例中,时频资源单元组的大小可以协议约定的,也就是说,协议约定好该交织单位的大小。这种情况下,发送端设备可以根据协议规定的该交织单位为单位进行交 织处理,无需像现有技术那样通过计算确定CB大小,然后再进行交织,类似的,接收端也可以直接根据协议规定的交织单位进行解交织处理。因此,本申请实施例能够降低交织复杂度,提升***性能。
结合第一方面,在第一方面的某些实现方式中,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
其中,在所述发送端设备根据数据传输块的调制符号映射在多个时频资源单元组中的第一顺序,对所述多个时频资源单元组中的调制符号进行交织处理之前,所述方法还包括:
所述发送端设备从预设的传输参数与时频资源单元组大小的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。
结合第一方面,在第一方面的某些实现方式中,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
所述发送端设备为网络设备,所述接收端设备为终端设备,在所述发送端设备对所述调制符号序列进行交织处理之前,所述方法还包括:
所述发送端设备根据所述传输参数确定所述时频资源单元组的大小;
所述发送端设备向所述接收端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小;
或者,
所述发送端设备为终端设备,所述接收端设备为网络设备,在所述发送端设备对所述调制符号序列进行交织处理之前,所述方法还包括:
所述发送端设备接收所述接收端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小。
具体而言,由网络设备根据传输参数确定时频资源组的大小,网络设备通过信令向终端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小。
因此,网络设备可以根据传输参数灵活的确定与之对应的时频资源组的大小,能够根据参数的取值不同确定不同的时频资源组大小,满足不同场景下的交织需求。
结合第一方面,在第一方面的某些实现方式中,所述交织指示信息是通过无线资源控制RRC信令、媒体接入控制层控制元素MAC-CE、或下行控制信息DCI发送的。
结合第一方面,在第一方面的某些实现方式中,所述调制符号序列包括数据传输块的调制符号和所述数据传输块对应的调度资源中包含的参考信号的调制符号,所述时频资源单元组为物理时频资源单元组。
应理解,本申请实施例中,物理时频资源单元即可以用于承载数据传输块的调制符号,也可以用于承载参考信号的调制符号。
本申请实施例针对存在参考信号的情况,可以设置较大的交织单元进行交织,通过设置较大的交织单位,使得交织后,参考信号的位置不会变,能够避免影响参考信号的位置,且所有的OFDM符号均可以采用相同的交织方案进行交织,实现复杂度低。
结合第一方面,在第一方面的某些实现方式中,所述调制符号序列仅包括数据传输块的调制符号,所述时频资源单元组为逻辑时频资源单元组,所述逻辑时频资源单元组包括 物理时频资源中仅用于承载所述数据传输块的调制符号的时频资源单元,其中,所述物理时频资源包括用于承载所述数据传输块的调制符号的时频资源单元和用于承载所述数据传输块对应的调度资源中包含的参考信号的调制符号的时频资源单元。
具体而言,本申请实施例针对传输资源中存在参考信号的情况,可以选择在交织时,避开对参考信号的调制符号进行交织,那么这种情况下,调制符号序列可以不包括参考信号的调制符号,而是仅包括数据传输块的调制符号。这种情况下,用于承载待传输的调制符号序列的多个时频资源组为逻辑时频资源单元组,所述逻辑时频资源单元组包括物理时频资源中仅用于承载所述数据传输块的调制符号的时频资源单元,
本申请实施例通过跳过参考信号,将数据传输块的调制符号在逻辑资源单元组中进行交织,能够不会受到参考信号的影响,并且由于基站和UE对导频所在位置十分清楚,因此实现复杂度低。
结合第一方面,在第一方面的某些实现方式中,所述调制符号序列仅包括数据传输块的调制符号,所述时频资源单元组为物理时频资源单元组。
本申请实施例针对时频资源不传输参考信号的情况,即待传输的调制符号序列不包括参考信号的调制符号的情况,设置较小的交织单元进行交织,通过设置较小的交织单元,能够提高交织深度,提升分集增益。
因此,本申请实施例中所有的OFDM符号均可以采用相同的交织方案进行交织,且本申请实施例通过设置较小的交织单位,能够提高交织深度,提升分集增益。
结合第一方面,在第一方面的某些实现方式中,所述调制符号序列包括第一调制符号序列和第二调制符号序列,所述多个时频资源单元组包括第一时频资源单元组集合和第二时频资源单元组集合,所述第一时频资源单元组集合用于承载所述第一调制符号序列,所述第二时频资源单元组集合用于承载第二调制符号序列,所述第一时频资源单元组集合包括至少两个第一时频资源单元组,所述第一时频资源单元组包括N 1个第一时频资源单元,N 1为大于或等于2的整数,所述第二时频资源单元组集合包括至少两个第二时频资源单元组,所述第二时频资源单元组包括N 2个第二时频资源单元,N 2为大于或等于2的整数,一个第一时频资源单元用于承载一个第一调制符号组,一个第二时频资源单元用于承载一个第二调制符号组,其中,第一时频资源单元和第二时频资源单元包含的资源单元RE的个数不同;
其中,所述发送端设备以所述时频资源单元组为交织单位对所述调制符号序列进行交织处理,获取所述调制符号序列映射在所述多个时频资源单元组中的顺序,包括:
所述发送端设备以所述第一时频资源单元组为交织单位对所述第一调制符号序列进行交织处理,以所述第二时频资源单元组为交织单位对所述第二调制符号序列进行交织处理,获取所述第一调制符号序列映射在所述第一时频资源单元组集合中的第一顺序,和所述第二调制符号序列映射在所述第二时频资源单元组集合中的第二顺序,其中,所述第一调制符号序列中连续的多个第一调制符号组映射在所述第一时频资源单元组集合中的至少两个第一时频资源单元组上,所述第二调制符号序列中连续的多个第二调制符号组映射在所述第二时频资源单元组集合中的至少两个第二时频资源单元组上。
本申请实施例针对存在参考信号的情况,可以针对承载参考信号的资源部分设置较大的交织单元,例如,第二时频资源单元,针对不承载参考信号的资源部分设置较小的交织 单元,例如,第一时频资源单元。
本申请实施例针对两个调制符号序列,分别独立的进行交织处理,获取两个调制符号序列分别映射在第一时频资源单元组集合中的第一顺序和映射在第而时频资源单元组集合中的第二顺序。因此,本申请实施例通过设置两个资源单元组的大小,可以保证包含参考信号的前提下的交织下尽可能的获得最大的交织深度。由于基站和UE对导频所在位置十分清楚,因此实现复杂度仍然非常低。
第二方面,提供了一种数据传输的方法,该方法包括:
接收端设备接收多个时频资源单元组传输的调制符号,所述调制符号是按照所述时频资源单元组为交织单位对调制符号序列交织处理后的顺序映射在所述多个时频资源单元组上的,其中,一个时频资源单元组包括N个时频资源单元,N为大于或等于2的整数,一个时频资源单元包括至少一个资源单元RE,一个时频资源单元用于承载一个调制符号组,一个调制符号组包括至少一个调制符号,所述时频资源单元组的大小是协议约定的,或者所述时频资源单元组的大小是根据传输参数确定的;
所述接收端设备以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理,获取所述调制符号序列。
由于本申请实施例中通过过协议约定的方式,或是根据传输参数确定的方式,均能够确定一种或有限的几种明确的时频资源单元组的大小,因此能够简化芯片处理时的计算复杂度,解决现有技术中以CB为单位交织带来的复杂度高的问题。
应理解,第二方面从接收端设备设备侧描述的数据传输方法与第一方面从发送端设备描述的数据传输方法向对应,具体的,第二方面侧的特征及效果可以参见第一方面中的描述,为了避免重复此处不再详述。
结合第二方面,在第二方面的某些实现方式中,所述调制符号序列包括数据传输块的调制符号和所述数据传输块对应的调度资源中包含的参考信号的调制符号,所述时频资源单元组为物理时频资源单元组。
结合第二方面,在第二方面的某些实现方式中,所述调制符号序列仅包括数据传输块的调制符号,所述时频资源单元组为逻辑时频资源单元组,所述逻辑时频资源单元组包括物理时频资源中仅用于承载所述数据传输块的调制符号的时频资源单元,其中,所述物理时频资源包括用于承载所述数据传输块的调制符号的时频资源单元和用于承载所述数据传输块对应的调度资源中包含的参考信号的调制符号的时频资源单元。
结合第二方面,在第二方面的某些实现方式中,所述调制符号序列包括第一调制符号序列和第二调制符号序列,所述多个时频资源单元组包括第一时频资源单元组集合和第二时频资源单元组集合,所述第一时频资源单元组集合用于承载所述第一调制符号序列,所述第二时频资源单元组集合用于承载第二调制符号序列,所述第一时频资源单元组集合包括至少两个第一时频资源单元组,所述第一时频资源单元组包括N 1个第一时频资源单元,N 1为大于或等于2的整数,所述第二时频资源单元组集合包括至少两个第二时频资源单元组,所述第二时频资源单元组包括N 2个第二时频资源单元,N 2为大于或等于2的整数,一个第一时频资源单元用于承载一个第一调制符号组,一个第二时频资源单元用于承载一个第二调制符号组,其中,第一时频资源单元和第二时频资源单元包含的资源单元RE的个数不同;
其中,所述接收端设备以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理,获取所述调制符号序列,包括:
所述接收端设备以所述第一时频资源单元组为交织单位对第一时频资源单元组集合承载的调制符号进行解交织处理,以所述第二时频资源单元组为交织单位对所述第二时频资源单元组集合承载的调制符号进行解交织处理,获取所述第一调制符号序列和所述第二调制符号序列。
结合第二方面,在第二方面的某些实现方式中,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
其中,在所述接收端设备以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理之前,所述方法还包括:
所述接收端设备从预设的传输参数与时频资源单元组大小的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。
结合第二方面,在第二方面的某些实现方式中,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
所述接收端设备为网络设备,所述发送端设备为终端设备,在所述接收端设备接收多个时频资源单元组传输的调制符号,之前,所述方法还包括:
所述接收端设备根据所述传输参数确定所述时频资源单元组的大小;
所述接收端设备向所述发送端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小;
或者,
所述接收端设备为终端设备,所述发送端设备为网络设备,在所述接收端设备以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理之前,所述方法还包括:
所述接收端设备接收所述发送端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小。
结合第二方面,在第二方面的某些实现方式中,所述交织指示信息是通过无线资源控制RRC信令、媒体接入控制层控制元素MAC-CE、或下行控制信息DCI发送的。
结合第二方面,在第二方面的某些实现方式中,所述多个时频资源单元组包括至少一个OFDM符号上全部或部分频域资源。
第三方面,提供了一种用于交织的方法,该方法包括:
网络设备生成交织指示信息,所述交织指示信息用于指示交织单位的大小,其中,所述交织单位为时频资源单元组或者调制符号组;
所述网络设备发送所述交织指示信息。
结合第三方面,在第三方面的某些实现方式中,在所述网络设备生成交织指示信息之前,所述方法还包括:
所述网络设备根据传输参数确定所述交织单位的大小,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度。
结合第三方面,在第三方面的某些实现方式中,所述网络设备发送所述交织指示信息包括:
所述网络设备通过无线资源控制RRC信令、媒体接入控制层控制元素MAC-CE、或下行控制信息DCI发送所述交织指示信息。
因此,网络设备可以根据传输参数灵活的确定与之对应的时频资源组的大小,能够根据参数的取值不同确定不同的时频资源组大小,满足不同场景下的交织需求,解决现有技术中以CB为单位交织带来的复杂度高的问题。
第四方面,提供了一种用于交织的方法,该方法包括:
终端设备接收交织指示信息,所述交织指示信息用于指示交织单位的大小,其中,所述交织单位为时频资源单元组或者调制符号组;
所述终端设备根据交织指示信息确定时频资源单元组的大小。
结合第四方面,在第四方面的某些实现方式中,所述终端设备接收交织指示信息包括:
所述终端设备接收网络设备通过无线资源控制RRC信令、媒体接入控制层控制元素MAC-CE、或下行控制信息DCI发送的所述交织指示信息。
因此,网络设备可以根据传输参数灵活的确定与之对应的时频资源组的大小,能够根据参数的取值不同确定不同的时频资源组大小,满足不同场景下的交织需求,解决现有技术中以CB为单位交织带来的复杂度高的问题。
第五方面,提供了一种用于交织的方法,该方法包括:
发送端设备使用交织单位对待发送的调制符号序列进行交织处理,获取交织结果,其中所述交织单位的大小是协议约定的或者根据传输参数确定的,所述交织单位为时频资源单元组或者调制符号组;
所述发送端设备按照所述交织结果发送所述调制符号序列。
由于本申请实施例中通过过协议约定的方式,或是根据传输参数确定的方式,均能够确定一种或有限的几种明确的时频资源单元组的大小,因此能够简化芯片处理时的计算复杂度,解决现有技术中以CB为单位交织带来的复杂度高的问题。
第六方面,提供了一种用于交织的方法,该方法包括:
接收端设备接收调制符号,所述调制符号是按照交织单位对调制符号序列交织处理后映射在时频资源上的,
所述接收端设备使用交织单位进行解交织处理,获取调制符号序列,其中所述交织单位的大小时协议约定的或者根据传输参数确定的,所述交织单位为时频资源单元组或者调制符号组。
由于本申请实施例中通过过协议约定的方式,或是根据传输参数确定的方式,均能够确定一种或有限的几种明确的时频资源单元组的大小,因此能够简化芯片处理时的计算复杂度,解决现有技术中以CB为单位交织带来的复杂度高的问题。
第七方面,提供了一种发送端设备,所述发送端备包括用于执行第一方面或第一方面任一种可能实现方式中方法的各个模块或单元,或者用于执行第五方面或第五方面任一种可能实现方式中的通信方法的各个模块或单元。
应理解,在上行传输时,该发送端设备为终端设备,在下行传输时,该发送端设备为网络设备。
第八方面,提供了一种接收端设备,所述接收端设备包括用于执行第二方面或第二方面任一种可能实现方式中的通信方法的各个模块或单元,或者用于执行第六方面或第六方面任一种可能实现方式中的通信方法的各个模块或单元。
应理解,在上行传输时,该接收端设备为网络设备,在下行传输时,该接收端设备为终端设备。
第九方面,提供了一种网络设备,所述发送端备包括用于执行第三方面或第三方面任一种可能实现方式中方法的各个模块或单元。
第十方面,提供了一种终端设备,所述接收端设备包括用于执行第四方面或第四方面任一种可能实现方式中的通信方法的各个模块或单元。
第十一方面,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第一方面至第六方面及其可能实现方式中由终端设备执行的方法。
第十二方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第一方面至第六方面及其可能实现方式中由网络设备执行的方法。
在一种可能的设计中,上述网络设备实现的方案可以由芯片实现。
在一种可能的设计中,上述终端设备实现的方案可以由芯片实现。
第十三方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第六方面以及第一方面至第六方面中任一种可能实现方式中的方法。
第十四方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第六方面以及第一方面至第六方面中任一种可能实现方式中的方法。
附图说明
图1是本申请实施例可应用的***场景示意图。
图2是根据本申请一个实施例的数据处理过程示意图。
图3是根据本申请一个实施例以CB为交织单元的交织示意图。
图4是根据本申请一个实施例的数据传输的方法示意流程图。
图5是根据本申请一个实施例的多个时频资源单元组示意图。
图6是根据本申请一个实施例的交织示意图。
图7是根据本申请另一实施例的交织示意图。
图8是根据本申请另一实施例的交织示意图。
图9是根据本申请一个实施例的物理时频资源示意图。
图10是根据本申请一个实施例的多个时频资源单元组示意图。
图11是根据本申请另一实施例的交织示意图。
图12是根据本申请另一实施例的交织示意图。
图13是根据本申请另一实施例的交织示意图。
图14是根据本申请一个实施例的用于交织的方法示意流程图。
图15是根据本申请另一实施例的用于交织的方法示意流程图。
图16是根据本申请一个实施例的终端设备的示意框图。
图17是根据本申请一个实施例的网络设备的示意框图。
图18是根据本申请一个实施例的通信装置的示意框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)或全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***或未来的5G***或新无线(new radio,NR)等。
图1示出了本申请实施例应用的通信***100。该通信***100可以是上述任一通信***。该通信***100可以包括至少一个网络设备110和至少一个终端设备120。每个网络设备1100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端设备120(例如UE)进行通信。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)***或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是WCDMA***中的基站(node B,NB),还可以是LTE***中的演进型基站(evolutional node B,eNB或eNodeB),或者是云无线接入网络(cloud radio access network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。
图2示出了数据在通过OFDM符号发送出去之前所进行的数据处理过程的主要步骤,其余步骤可参考现有文献。如图2所示,来自上层(例如,MAC层)的数据经过CRC添 加、码块划分、信道编码、速率匹配、符号调制等步骤,最终将调制后的符号映射到时频资源上发送出去。
由于OFDM传输是一种多载波传输,在OFDM传输下,每个调制信号被限制在一个相对窄的带宽内。因此,当OFDM传输经历频率选择性信道条件时,某些调制信号会完全处于瞬时信号强度很弱的频带内,如果这些信号均属于同一个解码单元,则其误码可能会超过前向纠错码(forward error correction,FEC)的纠错能力,导致整个传输块无法正确被接收。为了提升***的性能,对抗频域选择性或时域选择性,对调制后的符号进行交织被认为是一种可行的方法。
现有讨论中,通常调制符号的交织以码块(CB)为单位,例如,将调制产生的调制符号先映射到层,再映射到频域,最后映射到时域,同时在映射的过程中进行交织,实现同一CB的数据在频域上分散分布的效果。同时,一个CB的数据可以集中在某个或连续的几个时域符号,有利于接收端进行快速解调。
例如,如图3所示,假设一个CB包括10个调制符号,如图3所示,交织前该三个OFDM符号内的CB的调制符号的分布情况为OFDM符号1中前10个RE对应CB1,后两个RE对应CB2,以此类推。在应用快速解调场景,假设交织的范围为在每一个OFDM符号内进行交织,如图3所示,交织后OFDM符号1中前5个RE和第7至第11个RE对应CB1,第6和第12个RE对应CB2,以此类推。由图3可以看出,交织后不同的OFDM符号内来自不同码块的RE数目比例不同,使得交织后不同的OFDM符号内资源映射的图样不相同,导致实现复杂度较高。并且,该比例关系没有确定的规律可以遵循,随着调度带宽的变化,传输块大小的变化,在不同的OFDM符号上都可能不停的变化,因此基于CB的交织对芯片实现来说,复杂度较高。
针对上述问题,本申请实施例巧妙地提出了一种交织方法,使得所有的OFDM采用相同的一种或两种交织方案,能够降低交织复杂度,提升***性能。
以下,为了便于理解和说明,作为示例而非限定,对本申请中的数据传输的方法在通信***中的执行过程和动作进行详细说明。
图4是从设备交互的角度示出的根据本申请一个实施例的数据交织的方法的示意性流程图。图4所示的方法包括:
410,发送端设备获取在多个时频资源单元组中待传输的调制符号序列。
其中,一个时频资源单元组包括N个时频资源单元,N为大于或等于2的整数,一个时频资源单元包括至少一个资源单元(resource element,RE),一个时频资源单元用于承载一个调制符号组,一个调制符号组包括至少一个调制符号,所述时频资源单元组的大小是协议约定的,或者所述时频资源单元组的大小是根据传输参数确定的。
本申请实施例中,发送端设备可以是网络设备,也可以是终端设备,其中,在进行上行传输时,发送端设备为终端设备,接收端设备为网络设备;在进行下行传输时,发送端设备为网络设备,接收端设备为终端设备。
本申请实施例中,待传输的调制符号序列,可以为一个层的调制符号序列,该调制符号序列可以是层映射之后的调制符号序列,也可以在层映射之前预先按照层映射分组得到的调制符号序列,本申请实施例并不限于此。
应理解,本申请实施例中时频资源单元对应交织的最小单元,也就是说,一个时频资 源单元承载的调制符号为调制符号序列中连续的调制符号。举例而言,一个时频资源单元包括2个RE,对应的一个调制符号组包括2个调制符号,那么该时频资源单元承载的调制符号组包括2个调制符号,在交织处理后该2个RE承载的2调制符号为待传输的调制符号序列中连续的两个调制符号。
本申请实施例中,时频资源单元组的大小可以表示交织单位的大小,具体而言,交织处理后,一个交织单位即一个时频资源单元组中承载的调制符号为待传输的调制符号序列中不连续的调制符号组。举例而言,一个时频资源单元组包括5个时频资源单元,对应的,该一个时频资源单元组用于承载5个调制符号组,假设待传输的调制符号序列包括连续的24个调制符号序列组,即调制符号组#1-调制符号组#24。在交织处理后,该一个时频资源单元组承载的5个调制符号组为不连续的调制符号组,例如,5个调制符号组为完全不连续的5个调制符号组,例如:调制符号组#1、调制符号组#5、调制符号组#9、调制符号组#13和调制符号组#18;可选地,一个交织单位承载的5个调制符号组可以包括部分连续的调制符号组,但从整体而言,该5个调制符号组不连续,例如,5个调制符号组包括调制符号组#1、调制符号组#2、调制符号组#8、调制符号组9和调制符号组#18。
应理解,以上数值仅是示例性的,仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景中。
应理解,本申请实施例中,多个时频资源单元组可以包括至少一个OFDM符号上全部或部分频域资源。例如,该至少一个OFDM符号可以是1个OFDM符号、2个OFDM…或14个OFDM符号,本申请实施例并不限于此。所述频域资源为调度带宽范围内的频域资源。应理解,OFDM符号上的频域带宽可以是网络设备配置的,或者***预设的,本申请实施例并不对此作限定。OFMD符号上的频域带宽可以包括至少两个子载波,例如,包括12个子载波、24个子载波、36个子载波等,本申请实施例并不限于此。例如,OFDM符号上的频域资源带宽为36个子载波,该多个时频资源单元组可以包括该至少一个OFDM符号上的全部频域资源,即36个子载波;也可以包括部分频域资源,例如,24个子载波、12个子载波或者8个子载波等,本申请实施例并不限于此。
例如,如图5所示,多个时频资源单元包括2个OFDM即OFDM#1和OFDM#2上的全部频域资源,例如,12个子载波。其中一个资源单元包括1个RE,一个调制符号组包括1个调制符号,一个时频资源单元组包括4个时频资源单元(即N=4),那么如图5所示,该多个时频资源单元组总共包括6个时频资源单元组,即时频资源单元组#1至时频资源单元组#6。共24个时频资源单元(即24个RE),按照先子载波后OFDM的顺序,该24个RE依次为资源单元#1、资源单元#2…资源单元#24。相应地,该调制符号序列包括24个调制符号组,即调制符号组#1、调制符号组#2…调制符号组#24。
应理解,在未交织传输的情况下,调制符号序列即调制符号组#1至调制符号组#24可以分别通过时频资源单元#1至时频资源单元#24承载。
本申请实施例中,时频资源单元组的大小可以协议约定的,也就是说,协议约定好该交织单位的大小。这种情况下,发送端设备可以根据协议规定的该交织单位为单位进行交织处理,无需像现有技术那样通过计算确定CB大小,然后再进行交织,类似的,接收端也可以直接根据协议规定的交织单位进行解交织处理。因此,本申请实施例能够降低交织复杂度,提升***性能。
应理解,在实际应用中,协议可以针对所有的业务类型约定一个时频资源单元组大小,也可以针对不同的业务类型约定不同的时频资源单元组大小,本申请实施例并不限于此。
可选地,作为一个实施例,该时频资源单元组的大小可以是根据传输参数确定的。其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度。
在本申请实施例中,可以使用多种方式根据传输参数确定时频资源单元组的大小,下面将举例说明。
第一种方式:
发送端设备和接收端设备均预存有多个传输参数的取值与多个时频资源单元组大小的对应关系。例如,传输参数为带宽,那么该对应关系可以如表1所示。
所述发送端设备和接收端设备可以从该预设的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。例如,当传输参数为调度带宽时,发送端设备和接收端设备可以根据当前的调度带宽取值,例如,第二调度带宽查找表1,确定时频资源组的大小为第二时频资源组大小。
应理解,表1示出了传输参数与时频资源组的一一对应关系,但本申请实施例并不限于此,在实际应用中,多个传输参数取值可以对应同一个时频资源组大小。
表1
调度带宽取值 时频资源组的大小
第一调度带宽 第一时频资源组大小
第二调度带宽 第二时频资源组大小
第二种方式,
由网络设备根据传输参数确定时频资源组的大小,网络设备通过信令向终端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小。
因此,网络设备可以根据传输参数灵活的确定与之对应的时频资源组的大小,能够根据参数的取值不同确定不同的时频资源组大小,满足不同场景下的交织需求。
以上时频资源单元组无论是通过协议约定的方式,或是根据传输参数确定的方式,均只有一种或有限的几种明确的大小,因此大大简化了芯片处理时的计算复杂度,解决现有技术中以CB为单位交织带来的复杂度高的问题。
可选地,上述信令可以是无线资源控制RRC信令、媒体接入控制层控制元素MAC-CE、或下行控制信息DCI等,本申请实施例并不限于此。
根据上文描述的这两种方式,可以得到第一种方式中无需网络设备向终端发送额外信令来指示时频资源组的大小,因此,第一种方式能够减少信令开销。第二种方式中收发两端无需预存对应关系,因此,第二种方式能够减少设备中预存数据的占用空间。
420,该发送端设备以时频资源单元组为交织单位对该调制符号序列进行交织处理,获取该调制符号序列映射在该多个时频资源单元组中的顺序。
其中,所述调制符号序列中连续的N个调制符号组映射在所述多个时频资源单元组中的至少两个时频资源单元组上。
应理解,本申请实施例可以采用多种方式进行交织处理,只要交织处理后,所述调制 符号序列中连续的多个(以下称为M个,M为大于或等于2的整数)调制符号组映射在所述多个时频资源单元组中的至少两个时频资源单元组上,即在交织处理后,交织单位即一个时频资源单元组上的调制符号组为待传输的调制符号序列中不连续的调制符号组即可。本申请实施例并不对此作具体限定。
应理解,本申请实施例中并不对M的取值做限定,只要M的取值大于或等于2即可。其中不同的交织方式,M的取值范围可以不同。例如,M=2、3、4、5或6等。特别的M可以等于N,M也可以等于Z/N,其中,Z表示调制符号序列中调制符号组的总个数,本申请实施例并不限于此。
例如,如图6所示,图6是对图5中对应的调制符号序列进行一种交织的结果。具体地,N=4,图6所示的一种交织处理方式为,将调制符号序列按照调制符号组#1至调制符号组#24的顺序,依次映射在资源单元组#1至资源单元组#6中的第1个时频资源单元(即第一个RE)上、资源单元组#1至资源单元组#6中的第2个时频资源单元上、资源单元组#1至资源单元组#6中的第3个时频资源单元上、资源单元组#1至资源单元组#6中的第4个时频资源单元上。具体地交织处理后的结果如图6所示。
具体地,表2示出了图6中调制符号序列交织处理后调制符号映射在多个时频资源单元组中的顺序。由表2和图6可以看出调制符号序列中连续的6个调制符号组(对应M=6=Z/N)映射在所述多个时频资源单元组中的6个时频资源单元组上,例如,连续的6个调制符号组调制符号组#1至调制符号组#6分别映射在时频资源单元组#1至时频资源单元组#6中。
表2
Figure PCTCN2018104205-appb-000001
再例如,如图7所示,图7是对图5中对应的调制符号序列进行另一种交织的结果。具体地,N=4,如图7所示的一种交织处理方式为,将调制符号序列按照调制符号组#1至调制符号组#24的顺序,以N为单位,依次划分为6个组集合,即调制符号组#1至调制符号组#4为组集合#1,调制符号组#5至调制符号8为组集合#2,…,那么按照组集合#1至组集合#6的顺序,依次选取每组集合中的第1个调制符号组,每组中的第2个调制符 号组,…每组中的第4个调制符号组,按照该选取顺序将调制符号组依次映射在时频资源单元#1至时频资源单元#24上。具体地交织处理后的结果如图7所示。
具体地,如表3所示,表3示出了图7中调制符号序列交织处理后调制符号映射在多个时频资源单元组中的顺序。由表3和图7可以看出调制符号序列中连续的4个调制符号组(对应M=N=4)映射在所述多个时频资源单元组中的4个时频资源单元组上,例如,连续的4个调制符号组调制符号组#1至调制符号组#4分别映射在时频资源单元组#1、时频资源单元组#2、时频资源单元组#4、时频资源单元组#5中。
表3
Figure PCTCN2018104205-appb-000002
应理解,图7中示出了以N为单位,将调制符号序列划分为6个组集合的情况,可替代地,如图8所示,在另一交织处理方式中,可以将调制符号序列按照调制符号组#1至调制符号组#24的顺序,以Z/N即24/4=6为单位,依次划分为4个组集合,即调制符号组#1至调制符号组#6为组集合#1,调制符号组#7至调制符号12为组集合#2,…,那么按照组集合#1至组集合#4的顺序,依次选取每组集合中的第1个调制符号组,每组中的第2个调制符号组,…每组中的第4个调制符号组,按照该选取顺序将调制符号组依次映射在时频资源单元#1至时频资源单元#24上。具体地交织处理后的结果如图8所示。
具体地,如表4所示,表4示出了图8中调制符号序列交织处理后调制符号映射在多个时频资源单元组中的顺序。由表4和图8可以看出调制符号序列中连续的6个调制符号组(对应M=Z/N=6)映射在所述多个时频资源单元组中的6个时频资源单元组上,例如,连续的6个调制符号组调制符号组#1至调制符号组#6分别映射在时频资源单元组#1至时频资源单元组#6中的第一个时频资源单元上。
表4
Figure PCTCN2018104205-appb-000003
Figure PCTCN2018104205-appb-000004
应理解,图6和图8仅示出了以调制符号组为交织单位的3种交织方式,在实际应用中,可以采用多种方式以调制符号组为交织单位进行交织,本申请实施例并不限于此。
应理解,图5至图8的例子仅以一个时频资源单元包括1个RE,一个调制符号组包括一个调制符号为例进行了描述,但本申请实施例并不限于此。在实际应用中,一个时频资源单元可以包括L个OFDM符号上连续的K个子载波所构成的资源块,L为大于或等于1的整数,K为大于或等于1的整数,一个所述调制符号组包括所述数据传输块的L*K个调制符号;其中,在L=1,K=1时,一个时频资源单元包括一个RE。其中,在L=1,一个时频资源可以包括该一个OFDM符号上的K个RE,例如,K可以取值为2、3、4、14或24等,本申请实施例并不限于此。
需要说明的是,上述图5至图7示出了交织单元为一个RE的情况,然而,在实际应用中,时频资源上映射的调制符号中包括用于信道估计的参考信号(例如,CSI-RS)或者用于解调的参考信号(例如,DMRS)。由于通常参考信号的时频资源位置是固定的,因此,在存在参考信号的话,如果仍然按照交织单元为RE进行交织,将会打乱参考信号的位置,使得接收端无法进行信道估计或者解调数据,影响网络性能。
对于该问题,本申请实施例分情况描述了具体地交织方案。下面将结合不同的情况分别进行详细说明。
情况一:
本申请实施例针对存在参考信号的情况,可以设置较大的交织单元进行交织,使得交织后,参考信号的位置不会变化,进而能解决上述问题。
例如,一个时频资源单元包括至少一个OFDM符号上的12个子载波所构成的资源块,为描述方便,本文以一个时频资源单元包括一个OFDM上的12个子载波构成的资源块为例进行描述。也即一个时频资源单元包括一个OFDM符号上的连续的12个RE,即一个 时频资源单元的频域带宽与一个RB的频域宽度相同,由于通常RB中参考信号的位置固定,因此,通过设置交织的单元即12个RE与RB频域宽度相同,在交织处理后,参考信号在所述RB所对应频域资源中的相对位置不会变化,因此,能够解决上述存在参考信号的情况下打乱参考信号位置的问题。
应理解,本例中以12个子载波为举例进行说明,但本申请实施例并不限于此。在实际应用中NR中参考信号的在频域上的分布间隔可能为p*12,其中p为大于1的整数,此时所述的时频资源单元所包括的至少一个OFDM符号上的子载波数也应当做出相应的调整,例如,时频资源单元所包括的至少一个OFDM符号上的子载波数为p*12的倍数。
具体而言,在情况一中,该调制符号序列可以包括数据传输块的调制符号和所述数据传输块对应的调度资源中包含的参考信号的调制符号,所述时频资源单元组为物理时频资源单元组。应理解,本申请实施例中,物理时频资源单元即可以用于承载数据传输块的调制符号,也可以用于承载参考信号的调制符号。
这种情况下的交织方法可以参考图5至图8中的描述,只要将图5至图8中的时频资源单元替换为OFDM上连续的12个RE,将调制符号组替换为连续的调制符号序列中连续的12个调制符号即可得到情况一的交织方法。为避免重复此处不再赘述。
因此,本申请实施例中通过设置较大的交织单位能够避免影响参考信号的位置,且所有的OFDM符号均可以采用相同的交织方案进行交织,实现复杂度低。
情况二,
本申请实施例针对不存在参考信号的情况,即待传输的调制符号序列不包括参考信号的调制符号的情况,设置较小的交织单元进行交织,通过设置较小的交织单元,能够提高交织深度,提升分集增益。
例如,设置一个时频资源单元包括一个RE、两个RE或者3个RE等,本申请实施例并不限于此。
具体而言,在情况二中,该调制符号序列仅包括数据传输块的调制符号,所述时频资源单元组为物理时频资源单元组。
这种情况下的交织方法可以参考图5至图8中的描述,只要将图5至图8中的时频资源单元替换为情况二中的时频资源单元,将调制符号组替换为情况二中的调制符号组即可得到情况二的交织方法。为避免重复此处不再赘述。
因此,本申请实施例中所有的OFDM符号均可以采用相同的交织方案进行交织,且本申请实施例通过设置较小的交织单位,能够提高交织深度,提升分集增益。
情况三,
本申请实施例针对传输资源中存在参考信号的情况,可以选择在交织时,避开对参考信号的调制符号进行交织,那么这种情况下,调制符号序列可以不包括参考信号的调制符号,而是仅包括数据传输块的调制符号。这种情况下,用于承载待传输的调制符号序列的多个时频资源组为逻辑时频资源单元组,所述逻辑时频资源单元组包括物理时频资源中仅用于承载所述数据传输块的调制符号的时频资源单元,其中,所述物理时频资源包括用于承载所述数据传输块的调制符号的时频资源单元和用于承载所述数据传输块对应的调度 资源中包含的参考信号的调制符号的时频资源单元。
例如,如图9所示,假设物理时频资源包括2个OFDM即OFDM#1和OFDM#2上的用于承载数据调制符号和参考信号的全部频域资源,即12个子载波,共24个时频资源单元(一个时频资源单元包括一个RE),即时频资源单元#1至时频资源单元#24,其中,子载波5和子载波9对应的时频资源单元#5、时频资源单元#9、时频资源单元#17和时频资源单元#21用于承载RS,
那么为了避开对参考信号的调制符号进行交织,如图10所示,本申请实施例中用于承载调制符号序列的资源,即多个时频资源单元仅包括OFDM#1和OFDM#2上的用于承载数据调制符号的全部频域资源,即上述12个子载波中的10个子载波,即子载波1-4、6-8和10-12。其中一个时频资源单元包括1个RE,一个调制符号组包括1个调制符号,一个时频资源单元组包括5个资源单元(即N=5),那么如图10所示,该多个时频资源单元组总共包括4个逻辑时频资源单元组,即逻辑时频资源单元组#1至逻辑时频资源单元组#4。
其中,每一个逻辑时频资源单元组中包括物理时频资源中仅用于承载所述数据传输块的调制符号的时频资源单元,本申请实施例中可以将逻辑时频资源单元组包括的时频资源单元称为逻辑时频资源单元,并可以把该4个逻辑时频资源单元组中的20个逻辑时频资源单元(即20个RE)进行顺序编号,得到逻辑时频资源单元#1至逻辑时频资源单元#20,那么如图9和图10所示,图10中的逻辑时频资源单元与图9中物理时频资源中时频资源单元的对应关系如下表5所示。相应地,该调制符号序列仅包括数据传输块的调制符号。该调制符号序列包括20个调制符号组,即调制符号组#1、调制符号组#2…调制符号组#20。
表5
Figure PCTCN2018104205-appb-000005
Figure PCTCN2018104205-appb-000006
应理解,本申请实施例中资源单元的编号可以按照先子载波后OFDM符号顺序,也可以按照先OFDM符号后子载波的顺序进行编号,本申请实施例并不限于此。
应理解,在未交织传输的情况下,调制符号序列即调制符号组#1至调制符号组#20可以分别通过逻辑时频资源单元#1至逻辑时频资源单元#20中承载。
应理解,在情况三中,数据传输块的调制符号在逻辑资源单元组中的交织过程和方法与图6至图8调制符号在物理资源单元组中的交织过程和方法类型,区别在于,情况三中的时频资源单元组为逻辑时频资源单元组。为了使得调制符号序列在逻辑时频资源单元中的交织更加明确,下面结合图11至图13进行详细描述。
例如,如图11所示,图11是对图10中对应的调制符号序列进行一种交织的结果。具体地,N=5,一个逻辑时频资源单元包括一个RE,图11所示的一种交织处理方式为,将调制符号序列按照调制符号组#1至调制符号组#20的顺序,依次映射在逻辑时频资源单元组#1至逻辑时频资源单元组#4中的第1个逻辑时频资源单元(即第一个RE)上、逻辑时频资源单元组#1至逻辑时频资源单元组#4中的第2个逻辑时频资源单元上、逻辑时频资源单元组#1至逻辑时频资源单元组#4中的第3个逻辑时频资源单元上、逻辑时频资源单元组#1至逻辑时频资源单元组#4中的第4个逻辑时频资源单元上、逻辑时频资源单元组#1至逻辑时频资源单元组#4中的第5个逻辑时频资源单元上。具体地交织处理后的结果如图11所示。
具体地,表6示出了图11中调制符号序列交织处理后调制符号映射在多个逻辑时频资源单元组中的顺序。由表6和图11可以看出调制符号序列中连续的4个调制符号组(对应M=4=Z/N)映射在所述多个逻辑时频资源单元组中的4个逻辑时频资源单元组上,例如,连续的4个调制符号组,即调制符号组#1至调制符号组#4分别映射在逻辑时频资源单元组#1至逻辑时频资源单元组#4中。
表6
Figure PCTCN2018104205-appb-000007
Figure PCTCN2018104205-appb-000008
再例如,如图12所示,图12是对图10中对应的调制符号序列进行另一种交织的结果。具体地,N=5,一个逻辑时频资源单元包括一个RE,图12所示的一种交织处理方式为,将调制符号序列按照调制符号组#1至调制符号组#20的顺序,以N为单位,依次划分为4个组集合,即调制符号组#1至调制符号组#5为组集合#1,调制符号组#6至调制符号10为组集合#2,…,那么按照组集合#1至组集合#4的顺序,依次选取每组集合中的第1个调制符号组,每组中的第2个调制符号组,…每组中的第5个调制符号组,按照该选取顺序将调制符号组依次映射在逻辑时频资源单元#1至逻辑时频资源单元#20上。具体地交织处理后的结果如图12所示。
具体地,如表7所示,表7示出了图12中调制符号序列交织处理后调制符号映射在多个逻辑时频资源单元组中的顺序。由表7和图12可以看出调制符号序列中连续的5个调制符号组(对应M=N=5)映射在所述多个逻辑时频资源单元组中的4个逻辑时频资源单元组上,例如,连续的5个调制符号组调制符号组#1至调制符号组#5分别映射在逻辑时频资源单元组#1、逻辑时频资源单元组#1、逻辑时频资源单元组#2、逻辑时频资源单元组#3和逻辑时频资源单元组#4中。
表7
Figure PCTCN2018104205-appb-000009
Figure PCTCN2018104205-appb-000010
应理解,图12中示出了以N为单位,将调制符号序列划分为4个组集合的情况,可替代地,如图13所示,在另一交织处理方式中,可以将调制符号序列按照调制符号组#1至调制符号组#24的顺序,以Z/N即20/5=4为单位,依次划分为5个组集合,即调制符号组#1至调制符号组#4为组集合#1,调制符号组#5至调制符号8为组集合#2,…,那么按照组集合#1至组集合#5的顺序,依次选取每组集合中的第1个调制符号组,每组中的第2个调制符号组,…每组中的第4个调制符号组,按照该选取顺序将调制符号组依次映射在逻辑时频资源单元#1至逻辑时频资源单元#20上。具体地交织处理后的结果如图13所示。
具体地,如表8所示,表8示出了图13中调制符号序列交织处理后调制符号映射在多个逻辑时频资源单元组中的顺序。由表8和图13可以看出调制符号序列中连续的4个调制符号组(对应M=Z/N=4)映射在所述多个逻辑时频资源单元组中的4个逻辑时频资源单元组上,例如,连续的4个调制符号组调制符号组#1至调制符号组#4分别映射在逻辑时频资源单元组#1至逻辑时频资源单元组#4中的第一个逻辑时频资源单元上。
表8
Figure PCTCN2018104205-appb-000011
Figure PCTCN2018104205-appb-000012
应理解,图11和图13仅示出了以调制符号组为交织单位的3种交织方式,在实际应用中,可以采用多种方式以调制符号组为交织单位进行交织,本申请实施例并不限于此。
本申请实施例通过跳过参考信号,将数据传输块的调制符号在逻辑资源单元组中进行交织,能够不会受到参考信号的影响,并且由于基站和UE对导频所在位置十分清楚,因此实现复杂度低。
情况四:
本申请实施例针对存在参考信号的情况,可以针对承载参考信号的资源部分设置较大的交织单元,例如,第二时频资源单元,针对不承载参考信号的资源部分设置较小的交织单元,例如,第一时频资源单元。
具体而言,所述调制符号序列包括第一调制符号序列和第二调制符号序列,所述多个时频资源单元组包括第一时频资源单元组集合和第二时频资源单元组集合,所述第一时频资源单元组集合用于承载所述第一调制符号序列,所述第二时频资源单元组集合用于承载第二调制符号序列,所述第一时频资源单元组集合包括至少两个第一时频资源单元组,所述第一时频资源单元组包括N 1个第一时频资源单元,N 1为大于或等于2的整数,所述第二时频资源单元组集合包括至少两个第二时频资源单元组,所述第二时频资源单元组包括N 2个第二时频资源单元,N 2为大于或等于2的整数,一个第一时频资源单元用于承载一个第一调制符号组,一个第二时频资源单元用于承载一个第二调制符号组,其中,第一时频资源单元和第二时频资源单元包含的资源单元RE的个数不同;
其中,交织处理过程可以包括所述发送端设备以所述第一时频资源单元组为交织单位对所述第一调制符号序列进行交织处理,以所述第二时频资源单元组为交织单位对所述第二调制符号序列分别进行交织处理,获取所述第一调制符号序列映射在所述第一时频资源单元组集合中的第一顺序,和所述第二调制符号序列映射在所述第二时频资源单元组集合中的第二顺序,其中,所述第一调制符号序列中连续的多个第一调制符号组映射在所述第一时频资源单元组集合中的至少两个第一时频资源单元组上,所述第二调制符号序列中连续的多个第二调制符号组映射在所述第二时频资源单元组集合中的至少两个第二时频资源单元组上。
例如,第一调制符号序列为所述调制符号序列中的前一部分,其不包括参考信号的调制符号,该第一调制符号序列包括多个第一调制符号组,其中,第一时频资源单元组集合用于传输该第一调制符号序列;第二调制符号序列为所述调制符号序列中的后一部分,其即包括参考信号的调制符号也包括数据的调制符号,该第二调制符号序列包括多个第二调制符号组,其中,第二时频资源单元组集合用于传输该第二调制符号序列。
具体而言,由于第一时频资源单元组集合不传输参考信号,因此,针对第一调制符号,为了提高交织深度,提升分集增益,可以设置较小的交织单元,即第一时频资源单元,例如,源单元包括一个RE、两个RE或者3个RE等,本申请实施例并不限于此。
由于第二时频资源单元组集合中传输参考信号,因此,针对第二调制符号,为了保证参考信号的相对位置,可以设置较大的交织单元,即第二时频资源单元,例如,一个第二时频资源单元包括至少一个OFDM符号上的12个子载波所构成的资源块,为描述方便,本文以一个第二时频资源单元包括一个OFDM上的12个子载波构成的资源块为例进行描述。也即一个第二时频资源单元包括一个OFDM符号上的连续的12个RE,即一个第二时频资源单元的频域带宽与一个RB的频域宽度相同,由于通常RB中参考信号的位置固定,因此,通过设置交织的单元即12个RE与RB频域宽度相同,在交织处理后,参考信号在所述RB所对应频域资源中的相对位置不会变化,因此,能够避免打乱参考信号位置带来的问题。
应理解,本例中以12个子载波为举例进行说明,但本申请实施例并不限于此。在实际应用中NR中参考信号的在频域上的分布间隔可能为p*12,其中p为大于1的整数,此时所述的第二时频资源单元所包括的至少一个OFDM符号上的子载波数也应当做出相应的调整,例如,第二时频资源单元所包括的至少一个OFDM符号上的子载波数为p*12的倍数。
情况四中,针对两个调制符号序列,分别独立的进行交织处理,获取两个调制符号序列分别映射在第一时频资源单元组集合中的第一顺序和映射在第而时频资源单元组集合中的第二顺序。
具体地,针对第一调制符号序列的交织可以参见上文中针对情况二的描述,针对第二调制符号序列的交织可以参见上文中针对情况一的描述,为了避免重复,此处不再赘述。
应当理解,此时所述第一时频资源单元组的大小N 1和第二时频资源单元组的大小N 2的取值可以相同也可以不同,本申请实施例并不限于此,在N 1=N 2时,协议可以约定该取值,或者由网络设备确定该取值,并通过信令指示终端设备该取值。在N 1与N 2不同时,协议可以分别约定该两个值,或由网络设备确定该两个值,并通过信令指示终端设备该两个值。可选地,协议可以约定这两个值之间的关系,例如,两个值的比例、差值等,这种情况下,协议可以只约定其中一个值的大小,收发两端可以根据两个值的关系确定另一值,或者,网络设备仅确定一个值的大小,并指示该一个值,收发两端可以根据该一个值的大小和两个值的关系确定另一个值。
因此,本申请实施例通过设置两个资源单元组的大小,可以保证包含参考信号的前提下的交织下尽可能的获得最大的交织深度。由于基站和UE对导频所在位置十分清楚,因此实现复杂度仍然非常低。
上文描述了时频资源中是否传输参考信号的场景下,设置不同的交织单位进行交织的四种方案。在实际应用中,在没有传输参考信号的场景下,可以采用情况二的方案;在需要传输参考信号的情况下,可以采用情况一、三和四方案,具体而言,在需要传输参考信号的情况下,且参考信号的调制符号参与交织的情况下,可以采用情况一和情况四的方案;在需要传输参考信号的情况下,且参考信号的调制符号不参与交织的情况下,可以采用情况三中的方案。
因此,本申请实施例可以根据时频资源中是否传输参考信号,灵活的确定交织单位的大小,能够满足不同传输场景的需求。
430,该发送端设备根据该调制符号序列映射在该多个时频资源单元组中的顺序发送 该调制符号序列。
应理解,本申请实施例中在发送调制符号序列之前,还可以对调制符号序列作其他处理,例如,对调制符号进行预编码等,本申请实施例并不限于此。
440,接收端设备对调制符号进行解交织,获取该调制符号序列。
具体而言,接收端设备可以根据交织单位(即时频资源单元组)的大小对调制符号进行解交织,获取该调制符号序列。进一步,接收端设备可以对调制符号进行其他译码处理,获取发送端发送的数据。具体的译码过程可以参见现有标准中的描述,此处不再赘述。
因此,本申请实施例的交织方法,使得所有的OFDM采用相同的一种或两种交织方案,能够降低交织复杂度,提升***性能。
图14是从设备交互的角度示出的根据本申请另一实施例的数据交织的方法的示意性流程图。图14所示的方法1400包括:
1410,网络设备生成交织指示信息,该交织指示信息用于指示交织单位的大小,其中,该交织单位为时频资源单元组或者调制符号组。
应理解,本申请实施例中,在交织单位为时频资源单元组时,交织处理后,一个交织单位即一个时频资源单元组中承载的调制符号为待传输的调制符号序列中不连续的调制符号。
在交织单位为调制符号组时,交织处理后,一个交织单位即一个调制符号组中的调制符号映射在不连续的时频资源上。
应理解,该方法还可以包括在该网络设备生成交织指示信息之前,该网络设备根据传输参数确定该交织单位的大小,其中,该传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度。
具体的,网络设备确定交织单位的过程可以参见上文中410中针对第二种方式的描述,此处不再赘述。
1420,该网络设备发送该交织指示信息。
具体地,网络设备可以通过无线资源控制RRC信令、媒体接入控制层控制元素MAC-CE、或下行控制信息DCI发送该指示信息,本申请实施例并不限于此。
相应地,终端设备接收该交织指示信息。
1430,终端设备根据指示信息确定交织单位的大小。
具体而言,终端设备在获取指示信息后,即可确定交织单位的大小。
进一步地,发送端设备设备(可以是网络设备也可以是终端设备)可以采用该交织单位对待发送的调制符号序列进行交织处理,并发送交织处理后的调制符号,接收端设备可以根据该交织单位进行调制符号的解交织处理,获取该调制符号序列。
具体的,交织过程可以参见上文中针对图4-图13方法实施例中交织方法的描述,为避免重复,此处不再赘述。可选地,本申请实施例交织过程也可以参考已有技术中的交织过程,本申请实施例并不限于此。
因此,网络设备可以根据传输参数灵活的确定与之对应的时频资源组的大小,能够根据参数的取值不同确定不同的时频资源组大小,满足不同场景下的交织需求,解决现有技术中以CB为单位交织带来的复杂度高的问题。
图15是从设备交互的角度示出的根据本申请另一实施例的数据交织的方法的示意性 流程图。图15所示的方法1500包括:
1510,发送端设备使用交织单位对待发送的调制符号序列进行交织处理,获取交织结果,其中该交织单位的大小时协议约定的,或根据传输参数确定的,该交织单位为时频资源单元组或者调制符号组。
1520,该发送端设备按照该交织结果发送调制符号序列。
1530,该接收端设备使用交织单位对接收到的调制符号进行解交织处理,获取调制符号序列。
具体而言,一种情况,本申请实施例中,时频资源单元组的大小可以协议约定的,也就是说,协议约定好该交织单位的大小。这种情况下,发送端设备可以根据协议规定的该交织单元进行交织处理,无需像现有技术那样通过计算确定CB大小,然后再进行交织,类似的,接收端也可以直接根据协议规定的交织单位进行解交织处理。因此,本申请实施例能够降低交织复杂度,提升***性能。
本申请实施例中,时频资源单元组的大小可以协议约定的,也就是说,协议约定好该交织单位的大小。这种情况下,发送端设备可以根据协议规定的该交织单元进行交织处理,无需像现有技术那样通过计算确定CB大小,然后再进行交织,类似的,接收端也可以直接根据协议规定的交织单位进行解交织处理。因此,本申请实施例能够降低交织复杂度,提升***性能。
另一种情况,
发送端设备和接收端设备均预存有多个传输参数的取值与多个时频资源单元组大小的对应关系。例如,传输参数为带宽,那么该对应关系可以如表1所示。
所述发送端设备和接收端设备可以从该预设的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。例如,当传输参数为调度带宽时,发送端和接收端可以根据当前的调度带宽取值,例如,第二调度带宽查找表1,确定时频资源组的大小为第二时频资源组大小。
具体的,图15中的交织过程可以参见上文中针对图4至图13方法实施例中交织方法的描述,为避免重复,此处不再赘述。可选地,本申请实施例交织过程也可以参考已有技术中的交织过程,本申请实施例并不限于此。
因此,发送端和接收端设备可以根据传输参数灵活的确定与之对应的时频资源组的大小,能够根据参数的取值不同确定不同的时频资源组大小,满足不同场景下的交织需求,解决现有技术中以CB为单位交织带来的复杂度高的问题。
前文结合图1至图15对本申请实施例的方法交互方案进行了说明,下面结合图16至图18对本申请实施例的提供的通信装置做进一步说明。
图16为本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的***中。为了便于说明,图16仅示出了终端设备的主要部件。如图16所示,终端设备10包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如,在上行传输时以时频资源单元组为交织单位对调制符号序列进行交织处理,获取该调制符号序列映射在该多个时频资源单元组中的顺序,并根据该调制符号序列映射在该多个时频资源单 元组中的顺序发送该调制符号序列;在接收下行数据时以时频资源单元组为交织单位对接收到的调制符号进行解交织处理,获取调制符号序列。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图16仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图16中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在发明实施例中,可以将具有收发功能的天线和控制电路视为终端设备10的收发单元101,例如,用于支持终端设备执行如图1-图15中方法实施中终端设备执行的收发功能。将具有处理功能的处理器视为终端设备10的处理单元102。如图16所示,终端设备10包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器102可用于执行该存储器存储的指令,以控制收发单元101接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元101的功能可以考虑通过收发电路或者收发的专用芯片实现。
图17为本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图17所示,该基站可应用于如图1所示的***中,执行上述方法实施例中网络设备的功能。基站20包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU) 202。所述RRU201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。所述RRU201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送调制符号。所述BBU202部分主要用于进行基带处理,对基站进行控制等。所述RRU201与BBU202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU202还包括存储器2021和处理器2022。所述存储器2021用以存储必要的指令和数据。所述处理器2022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图18给出了一种通信装置1800的结构示意图,装置1800可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置1800可以是芯片、网络设备(如基站)或终端设备等。
所述通信装置1800包括一个或多个处理器1801。所述处理器1801可以是通用处理器或者专用处理器等。应理解,所述处理器1801为专用处理器时可以无需指令,由处理器中的硬件的集成逻辑电路完成上述实施例的方法。例如,该处理器可以是专用集成电路(ASIC)等。
可选地,该处理器1801还可以例如是通用处理器,这种情况下,通信装置1800中可以包括一个或多个存储器1802,其上存有指令1804,所述指令可在所述处理器上被运行,使得所述通信装置1800执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,该处理器包括中央处理器(central processing unit,CPU)、网络处理器(network processor,NP)、微处理器等。可选地,该处理器还可以是数字信号处理器(DSP)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者任何常规的处理器等,本申请实施例并不限于此。
具体地,处理器1801可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,通信装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端或基站或其他网络设备。又如,通信装置可以为终端或基站或其他网络设备,所述收发单元可以为收发器,射频芯片等。
所述通信装置1800包括一个或多个所述处理器1801,所述一个或多个处理器1801可实现图1和图15所示各实施例中网络设备或者终端设备的方法。
在一种可能的设计中,所述通信装置1800包括获取调制符号的部件(means),用于对调制符号进行交织处理部件(means),以及用于发送交织后的调制符号的部件(means)。可以通过一个或多个处理器来实现所述对调制符号进行交织处理以及发送交织后的调制符号的功能。例如可以通过一个或多个处理器获取调制符号并对调制符号进行交织处理;通过收发器、或输入/输出电路、或芯片的接口发送交织后的调制符号。具体地交织方法及过程可以参见上述方法实施例中的相关描述
在一种可能的设计中,所述通信装置1800包括用于接收调制符号的部件(means)以及用于解交织调制符号的部件(means)。例如可以通过收发器、或输入/输出电路、或芯片的接口接收调制符号,通过一个或多个处理器解交织调制符号。
可选的,处理器1801除了实现图1和图15所示各实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1801可以为通用处理器,该处理器1801可以包括指令1803,所述指令可以在所述处理器上被运行,使得所述通信装置1800执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1800也可以包括电路,所述电路可以实现前述方法实施例中的功能。
在又一种可能的设计中,所述通信装置1800还可以包括收发单元1805以及天线1806。所述处理器1801可以称为处理单元,对通信装置(终端设备或者网络设备)进行控制。所述收发单元1805可以称为收发机、收发电路、或者收发器等,用于通过天线1806实现通信装置的收发功能。
本申请实施例还提供一种通信***,其包括前述的网络设备和终端设备。
应理解,上文中描述的本申请实施例的各个实施例中,处理器可以是CPU,该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
总线***除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种数据传输的方法,其特征在于,包括:
    发送端设备获取在多个时频资源单元组中待传输的调制符号序列,其中,一个时频资源单元组包括N个时频资源单元,N为大于或等于2的整数,一个时频资源单元包括至少一个资源单元RE,一个时频资源单元用于承载一个调制符号组,一个调制符号组包括至少一个调制符号,所述时频资源单元组的大小是协议约定的,或者所述时频资源单元组的大小是根据传输参数确定的;
    所述发送端设备以所述时频资源单元组为交织单位对所述调制符号序列进行交织处理,获取所述调制符号序列映射在所述多个时频资源单元组中的顺序,其中,所述调制符号序列中连续的多个调制符号组映射在所述多个时频资源单元组中的至少两个时频资源单元组上;
    所述发送端设备根据所述调制符号序列映射在所述多个时频资源单元组中的顺序发送所述调制符号序列。
  2. 一种数据传输的方法,其特征在于,包括:
    接收端设备接收多个时频资源单元组传输的调制符号,所述调制符号是按照所述时频资源单元组为交织单位对调制符号序列交织处理后的顺序映射在所述多个时频资源单元组上的,其中,一个时频资源单元组包括N个时频资源单元,N为大于或等于2的整数,一个时频资源单元包括至少一个资源单元RE,一个时频资源单元用于承载一个调制符号组,一个调制符号组包括至少一个调制符号,所述时频资源单元组的大小是协议约定的,或者所述时频资源单元组的大小是根据传输参数确定的;
    所述接收端设备以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理,获取所述调制符号序列。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述调制符号序列包括数据传输块的调制符号和所述数据传输块对应的调度资源中包含的参考信号的调制符号,所述时频资源单元组为物理时频资源单元组。
  4. 根据权利要求1或2所述的方法,其特征在于,
    所述调制符号序列仅包括数据传输块的调制符号,所述时频资源单元组为逻辑时频资源单元组,所述逻辑时频资源单元组包括物理时频资源中仅用于承载所述数据传输块的调制符号的时频资源单元,其中,所述物理时频资源包括用于承载所述数据传输块的调制符号的时频资源单元和用于承载所述数据传输块对应的调度资源中包含的参考信号的调制符号的时频资源单元。
  5. 根据权利要求1或2所述的方法,其特征在于,
    所述调制符号序列包括第一调制符号序列和第二调制符号序列,所述多个时频资源单元组包括第一时频资源单元组集合和第二时频资源单元组集合,所述第一时频资源单元组集合用于承载所述第一调制符号序列,所述第二时频资源单元组集合用于承载第二调制符号序列,所述第一时频资源单元组集合包括至少两个第一时频资源单元组,所述第一时频资源单元组包括N 1个第一时频资源单元,N 1为大于或等于2的整数,所述第二时频资源 单元组集合包括至少两个第二时频资源单元组,所述第二时频资源单元组包括N 2个第二时频资源单元,N 2为大于或等于2的整数,一个第一时频资源单元用于承载一个第一调制符号组,一个第二时频资源单元用于承载一个第二调制符号组,其中,第一时频资源单元和第二时频资源单元包含的资源单元RE的个数不同;
    其中,所述发送端设备以所述时频资源单元组为交织单位对所述调制符号序列进行交织处理,获取所述调制符号序列映射在所述多个时频资源单元组中的顺序,包括:
    所述发送端设备以所述第一时频资源单元组为交织单位对所述第一调制符号序列进行交织处理,以所述第二时频资源单元组为交织单位对所述第二调制符号序列进行交织处理,获取所述第一调制符号序列映射在所述第一时频资源单元组集合中的第一顺序,和所述第二调制符号序列映射在所述第二时频资源单元组集合中的第二顺序,其中,所述第一调制符号序列中连续的多个第一调制符号组映射在所述第一时频资源单元组集合中的至少两个第一时频资源单元组上,所述第二调制符号序列中连续的多个第二调制符号组映射在所述第二时频资源单元组集合中的至少两个第二时频资源单元组上。
  6. 根据权利要求1、3至5中任一项所述的方法,其特征在于,
    所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    其中,在所述发送端设备根据数据传输块的调制符号映射在多个时频资源单元组中的第一顺序,对所述多个时频资源单元组中的调制符号进行交织处理之前,所述方法还包括:
    所述发送端设备从预设的传输参数与时频资源单元组大小的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。
  7. 根据权利要求2至5中任一项所述的方法,其特征在于,
    所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    其中,在所述接收端设备以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理之前,所述方法还包括:
    所述接收端设备从预设的传输参数与时频资源单元组大小的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。
  8. 根据权利要求1、3至6中任一项所述的方法,其特征在于,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    所述发送端设备为网络设备,所述接收端设备为终端设备,在所述发送端设备对所述调制符号序列进行交织处理之前,所述方法还包括:
    所述发送端设备根据所述传输参数确定所述时频资源单元组的大小;
    所述发送端设备向所述接收端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小;
    或者,
    所述发送端设备为终端设备,所述接收端设备为网络设备,在所述发送端设备对所述调制符号序列进行交织处理之前,所述方法还包括:
    所述发送端设备接收所述接收端设备发送交织指示信息,所述交织指示信息指示所述 时频资源组的大小。
  9. 根据权利要求2至5、7中任一项所述的方法,其特征在于,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    所述接收端设备为网络设备,所述发送端设备为终端设备,在所述接收端设备接收多个时频资源单元组传输的调制符号,之前,所述方法还包括:
    所述接收端设备根据所述传输参数确定所述时频资源单元组的大小;
    所述接收端设备向所述发送端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小;
    或者,
    所述接收端设备为终端设备,所述发送端设备为网络设备,在所述接收端设备以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理之前,所述方法还包括:
    所述接收端设备接收所述发送端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述交织指示信息是通过无线资源控制RRC信令、媒体接入控制层控制元素MAC-CE、或下行控制信息DCI发送的。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,
    所述多个时频资源单元组包括至少一个正交频分复用OFDM符号上全部或部分频域资源。
  12. 一种发送端设备,其特征在于,包括:
    处理单元,用于获取在多个时频资源单元组中待传输的调制符号序列,其中,一个时频资源单元组包括N个时频资源单元,N为大于或等于2的整数,一个时频资源单元包括至少一个资源单元RE,一个时频资源单元用于承载一个调制符号组,一个调制符号组包括至少一个调制符号,所述时频资源单元组的大小是协议约定的,或者所述时频资源单元组的大小是根据传输参数确定的;
    以所述时频资源单元组为交织单位对所述调制符号序列进行交织处理,获取所述调制符号序列映射在所述多个时频资源单元组中的顺序,其中,所述调制符号序列中连续的多个调制符号组映射在所述多个时频资源单元组中的至少两个时频资源单元组上;
    收发单元,用于根据所述调制符号序列映射在所述多个时频资源单元组中的顺序发送所述调制符号序列。
  13. 一种接收端设备,其特征在于,包括:
    收发单元,用于接收多个时频资源单元组传输的调制符号,所述调制符号是按照所述时频资源单元组为交织单位对调制符号序列交织处理后的顺序映射在所述多个时频资源单元组上的,其中,一个时频资源单元组包括N个时频资源单元,N为大于或等于2的整数,一个时频资源单元包括至少一个资源单元RE,一个时频资源单元用于承载一个调制符号组,一个调制符号组包括至少一个调制符号,所述时频资源单元组的大小是协议约定的,或者所述时频资源单元组的大小是根据传输参数确定的;
    处理单元,用于以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理,获取所述调制符号序列。
  14. 根据权利要求12所述的发送端设备,或者根据权利要求13所述的接收端设备,其特征在于,
    所述调制符号序列包括数据传输块的调制符号和所述数据传输块对应的调度资源中包含的参考信号的调制符号,所述时频资源单元组为物理时频资源单元组。
  15. 根据权利要求12所述的发送端设备,或者根据权利要求13所述的接收端设备,其特征在于,
    所述调制符号序列仅包括数据传输块的调制符号,所述时频资源单元组为逻辑时频资源单元组,所述逻辑时频资源单元组包括物理时频资源中仅用于承载所述数据传输块的调制符号的时频资源单元,其中,所述物理时频资源包括用于承载所述数据传输块的调制符号的时频资源单元和用于承载所述数据传输块对应的调度资源中包含的参考信号的调制符号的时频资源单元。
  16. 根据权利要求12所述的发送端设备,或者根据权利要求13所述的接收端设备,其特征在于,
    所述调制符号序列包括第一调制符号序列和第二调制符号序列,所述多个时频资源单元组包括第一时频资源单元组集合和第二时频资源单元组集合,所述第一时频资源单元组集合用于承载所述第一调制符号序列,所述第二时频资源单元组集合用于承载第二调制符号序列,所述第一时频资源单元组集合包括至少两个第一时频资源单元组,所述第一时频资源单元组包括N1个第一时频资源单元,N1为大于或等于2的整数,所述第二时频资源单元组集合包括至少两个第二时频资源单元组,所述第二时频资源单元组包括N2个第二时频资源单元,N2为大于或等于2的整数,一个第一时频资源单元用于承载一个第一调制符号组,一个第二时频资源单元用于承载一个第二调制符号组,其中,第一时频资源单元和第二时频资源单元包含的资源单元RE的个数不同;
    其中,所述处理单元具体用于以所述第一时频资源单元组为交织单位对所述第一调制符号序列进行交织处理,以所述第二时频资源单元组为交织单位对所述第二调制符号序列进行交织处理,获取所述第一调制符号序列映射在所述第一时频资源单元组集合中的第一顺序,和所述第二调制符号序列映射在所述第二时频资源单元组集合中的第二顺序,其中,所述第一调制符号序列中连续的多个第一调制符号组映射在所述第一时频资源单元组集合中的至少两个第一时频资源单元组上,所述第二调制符号序列中连续的多个第二调制符号组映射在所述第二时频资源单元组集合中的至少两个第二时频资源单元组上。
  17. 根据权利要求12、14至16中任一项所述的发送端设备,其特征在于,
    所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    其中,所述处理单元还用于在所述收发单元根据数据传输块的调制符号映射在多个时频资源单元组中的第一顺序,对所述多个时频资源单元组中的调制符号进行交织处理之前,从预设的传输参数与时频资源单元组大小的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。
  18. 根据权利要求13至16中任一项所述的接收端设备,其特征在于,
    所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    其中,在所述处理单元以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理之前,所述处理单元还用于从预设的传输参数与时频资源单元组大小的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。
  19. 根据权利要求12、14至17中任一项所述的发送端设备,其特征在于,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    所述发送端设备为网络设备,所述接收端设备为终端设备,在所述处理单元对所述调制符号序列进行交织处理之前,所述处理单元还用于根据所述传输参数确定所述时频资源单元组的大小;所述收发单元还用于向所述接收端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小;
    或者,
    所述发送端设备为终端设备,所述接收端设备为网络设备,在所述处理单元对所述调制符号序列进行交织处理之前,收发单元还用于接收所述接收端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小。
  20. 根据权利要求13至16、18中任一项所述的接收端设备,其特征在于,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    所述接收端设备为网络设备,所述发送端设备为终端设备,在所述收发单元接收多个时频资源单元组传输的调制符号之前,所述处理单元还用于根据所述传输参数确定所述时频资源单元组的大小;
    所述收发单元向所述发送端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小;
    或者,
    所述接收端设备为终端设备,所述发送端设备为网络设备,在所述处理单元以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理之前,所述收发单元还用于接收所述发送端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小。
  21. 根据权利要求12、14至17、19中任一项所述的发送端设备,或者,根据权利要求13至16、18、20中任一项所述的接收端设备,其特征在于,
    所述交织指示信息是通过无线资源控制RRC信令、媒体接入控制层控制元素MAC-CE、或下行控制信息DCI发送的。
  22. 根据权利要求12、14至17、19、21中任一项所述的发送端设备,或者,根据权利要求13至16、18、20、21中任一项所述的接收端设备,其特征在于,
    所述多个时频资源单元组包括至少一个正交频分复用OFDM符号上全部或部分频域资源。
  23. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品被计算机执行时,使得所述计算机实现权利要求1至11中任一项所述的方法。
  25. 一种处理装置,其特征在于,包括:处理器和接口;
    所述处理器用于执行权利要求1至11中任一项所述的方法。
  26. 一种处理装置,其特征在于,包括:处理器、接口和存储器;
    所述存储器中存储有代码,所述处理器用于执行所述存储器中的代码执行权利要求1至11中任一项所述的方法。
  27. 根据权利要求26所述的处理装置,其特征在于,
    所述存储器设置在所述处理器中,或
    所述存储器与所述处理器独立设置。
  28. 一种发送端设备,其特征在于,包括:处理器和收发器,
    所述处理器用于获取在多个时频资源单元组中待传输的调制符号序列,其中,一个时频资源单元组包括N个时频资源单元,N为大于或等于2的整数,一个时频资源单元包括至少一个资源单元RE,一个时频资源单元用于承载一个调制符号组,一个调制符号组包括至少一个调制符号,所述时频资源单元组的大小是协议约定的,或者所述时频资源单元组的大小是根据传输参数确定的;
    所述处理器还用于以所述时频资源单元组为交织单位对所述调制符号序列进行交织处理,获取所述调制符号序列映射在所述多个时频资源单元组中的顺序,其中,所述调制符号序列中连续的多个调制符号组映射在所述多个时频资源单元组中的至少两个时频资源单元组上;
    所述收发器用于根据所述调制符号序列映射在所述多个时频资源单元组中的顺序发送所述调制符号序列。
  29. 一种接收端设备,其特征在于,包括:处理器和收发器,
    所述收发器用于接收多个时频资源单元组传输的调制符号,所述调制符号是按照所述时频资源单元组为交织单位对调制符号序列交织处理后的顺序映射在所述多个时频资源单元组上的,其中,一个时频资源单元组包括N个时频资源单元,N为大于或等于2的整数,一个时频资源单元包括至少一个资源单元RE,一个时频资源单元用于承载一个调制符号组,一个调制符号组包括至少一个调制符号,所述时频资源单元组的大小是协议约定的,或者所述时频资源单元组的大小是根据传输参数确定的;
    所述处理器用于以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理,获取所述调制符号序列。
  30. 根据权利要求28所述的发送端设备,或者根据权利要求29所述的接收端设备,其特征在于,
    所述调制符号序列包括数据传输块的调制符号和所述数据传输块对应的调度资源中包含的参考信号的调制符号,所述时频资源单元组为物理时频资源单元组。
  31. 根据权利要求28所述的发送端设备,或者根据权利要求29所述的接收端设备,其特征在于,
    所述调制符号序列仅包括数据传输块的调制符号,所述时频资源单元组为逻辑时频资源单元组,所述逻辑时频资源单元组包括物理时频资源中仅用于承载所述数据传输块的调 制符号的时频资源单元,其中,所述物理时频资源包括用于承载所述数据传输块的调制符号的时频资源单元和用于承载所述数据传输块对应的调度资源中包含的参考信号的调制符号的时频资源单元。
  32. 根据权利要求28所述的发送端设备,或者根据权利要求29所述的接收端设备,其特征在于,
    所述调制符号序列包括第一调制符号序列和第二调制符号序列,所述多个时频资源单元组包括第一时频资源单元组集合和第二时频资源单元组集合,所述第一时频资源单元组集合用于承载所述第一调制符号序列,所述第二时频资源单元组集合用于承载第二调制符号序列,所述第一时频资源单元组集合包括至少两个第一时频资源单元组,所述第一时频资源单元组包括N1个第一时频资源单元,N1为大于或等于2的整数,所述第二时频资源单元组集合包括至少两个第二时频资源单元组,所述第二时频资源单元组包括N2个第二时频资源单元,N2为大于或等于2的整数,一个第一时频资源单元用于承载一个第一调制符号组,一个第二时频资源单元用于承载一个第二调制符号组,其中,第一时频资源单元和第二时频资源单元包含的资源单元RE的个数不同;
    其中,所述处理器具体用于以所述第一时频资源单元组为交织单位对所述第一调制符号序列进行交织处理,以所述第二时频资源单元组为交织单位对所述第二调制符号序列进行交织处理,获取所述第一调制符号序列映射在所述第一时频资源单元组集合中的第一顺序,和所述第二调制符号序列映射在所述第二时频资源单元组集合中的第二顺序,其中,所述第一调制符号序列中连续的多个第一调制符号组映射在所述第一时频资源单元组集合中的至少两个第一时频资源单元组上,所述第二调制符号序列中连续的多个第二调制符号组映射在所述第二时频资源单元组集合中的至少两个第二时频资源单元组上。
  33. 根据权利要求28、30至32中任一项所述的发送端设备,其特征在于,
    所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    其中,所述处理器还用于在所述收发器根据数据传输块的调制符号映射在多个时频资源单元组中的第一顺序,对所述多个时频资源单元组中的调制符号进行交织处理之前,从预设的传输参数与时频资源单元组大小的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。
  34. 根据权利要求29至32中任一项所述的接收端设备,其特征在于,
    所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    其中,在所述处理器以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理之前,所述处理器还用于从预设的传输参数与时频资源单元组大小的对应关系中确定当前传输参数对应的所述时频资源单元组的大小。
  35. 根据权利要求28、30至33中任一项所述的发送端设备,其特征在于,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    所述发送端设备为网络设备,所述接收端设备为终端设备,在所述处理器对所述调制符号序列进行交织处理之前,所述处理器还用于根据所述传输参数确定所述时频资源单元 组的大小;所述收发器还用于向所述接收端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小;
    或者,
    所述发送端设备为终端设备,所述接收端设备为网络设备,在所述处理器对所述调制符号序列进行交织处理之前,收发器还用于接收所述接收端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小。
  36. 根据权利要求29至32、34中任一项所述的接收端设备,其特征在于,所述时频资源单元组的大小是根据传输参数确定的,其中,所述传输参数包括以下参数中的至少一种:调度带宽、时延扩展和终端设备的移动速度;
    所述接收端设备为网络设备,所述发送端设备为终端设备,在所述收发器接收多个时频资源单元组传输的调制符号之前,所述处理器还用于根据所述传输参数确定所述时频资源单元组的大小;
    所述收发器向所述发送端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小;
    或者,
    所述接收端设备为终端设备,所述发送端设备为网络设备,在所述处理器以所述时频资源单元组为交织单位对多个时频资源单元组传输的调制符号进行解交织处理之前,所述收发器还用于接收所述发送端设备发送交织指示信息,所述交织指示信息指示所述时频资源组的大小。
  37. 根据权利要求28、30至33、35中任一项所述的发送端设备,或者,根据权利要求29至32、34、36中任一项所述的接收端设备,其特征在于,
    所述交织指示信息是通过无线资源控制RRC信令、媒体接入控制层控制元素MAC-CE、或下行控制信息DCI发送的。
  38. 根据权利要求28、30至33、35、37中任一项所述的发送端设备,或者,根据权利要求29至32、34、36、37中任一项所述的接收端设备,其特征在于,
    所述多个时频资源单元组包括至少一个正交频分复用OFDM符号上全部或部分频域资源。
PCT/CN2018/104205 2017-09-18 2018-09-05 数据传输的方法和设备 WO2019052388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18855840.7A EP3664550B1 (en) 2017-09-18 2018-09-05 Data transmission method and device
US16/822,781 US11251997B2 (en) 2017-09-18 2020-03-18 Data transmission method and device to reduce complexity of interleaving modulation symbols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710841935.6 2017-09-18
CN201710841935.6A CN109525359B (zh) 2017-09-18 2017-09-18 数据传输的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/822,781 Continuation US11251997B2 (en) 2017-09-18 2020-03-18 Data transmission method and device to reduce complexity of interleaving modulation symbols

Publications (1)

Publication Number Publication Date
WO2019052388A1 true WO2019052388A1 (zh) 2019-03-21

Family

ID=65722427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104205 WO2019052388A1 (zh) 2017-09-18 2018-09-05 数据传输的方法和设备

Country Status (4)

Country Link
US (1) US11251997B2 (zh)
EP (1) EP3664550B1 (zh)
CN (1) CN109525359B (zh)
WO (1) WO2019052388A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219149B (zh) * 2017-07-08 2020-05-22 上海朗帛通信技术有限公司 一种被用于动态调度的用户设备、基站中的方法和装置
CN111769899B (zh) * 2019-03-30 2021-10-01 华为技术有限公司 确定传输资源的方法及装置
US20200351070A1 (en) * 2019-05-02 2020-11-05 Mediatek Singapore Pte. Ltd. Low papr computer generated sequence pairing
WO2020163881A2 (en) * 2019-06-03 2020-08-13 Futurewei Technologies, Inc. Apparatus and methods for receiving signals using optical lens as a beamformer
WO2022141326A1 (zh) * 2020-12-30 2022-07-07 华为技术有限公司 交织、解交织方法及装置
CN115277340B (zh) * 2021-04-30 2024-04-19 维沃移动通信有限公司 数据传输方法、装置、设备及存储介质
CN117318879A (zh) * 2022-06-22 2023-12-29 大唐移动通信设备有限公司 数据传输方法、设备、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082600A (zh) * 2009-12-01 2011-06-01 中兴通讯股份有限公司 中继链路下行控制信息配置方法及传输基站、中继站与方法
US20150215904A1 (en) * 2012-07-31 2015-07-30 Zte Corporation Method and device for sending and receiving epdcch, base station, and user equipment
CN105656596A (zh) * 2014-11-14 2016-06-08 电信科学技术研究院 一种进行数据传输的方法和设备
CN105812107A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 Ofdma***中数据包处理方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8254245B2 (en) * 2007-04-27 2012-08-28 Lg Electronics Inc. Method for transmitting downlink control channel in a mobile communications system and a method for mapping the control channel to physical resource using block interleaver in a mobile communications system
CN101330487B (zh) * 2007-06-19 2012-04-04 华为技术有限公司 一种符号交织方法、装置及终端设备
CN102904665A (zh) * 2011-07-25 2013-01-30 华为技术有限公司 一种控制信道的传输方法、装置和***
US20130294318A1 (en) * 2012-05-03 2013-11-07 Qualcomm Incorporated Efficient update of tmgi list in lte embms
US9681426B2 (en) * 2012-06-08 2017-06-13 Lg Electronics Inc. Method and device for transmitting uplink control signal in wireless communication system
US9832001B2 (en) * 2013-06-21 2017-11-28 Sharp Kabushiki Kaisha Terminal device, base station, communication system, and communication method
US11743897B2 (en) * 2013-12-20 2023-08-29 Qualcomm Incorporated Techniques for configuring uplink channels in unlicensed radio frequency spectrum bands
US10355812B2 (en) * 2016-02-05 2019-07-16 Samsung Electronics Co., Ltd. Multiple access method, and corresponding transmission method, receiver and transmitter
KR20240038174A (ko) * 2017-06-16 2024-03-22 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 데이터 채널 및 제어 채널의 송수신 방법, 장치, 및 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082600A (zh) * 2009-12-01 2011-06-01 中兴通讯股份有限公司 中继链路下行控制信息配置方法及传输基站、中继站与方法
US20150215904A1 (en) * 2012-07-31 2015-07-30 Zte Corporation Method and device for sending and receiving epdcch, base station, and user equipment
CN105656596A (zh) * 2014-11-14 2016-06-08 电信科学技术研究院 一种进行数据传输的方法和设备
CN105812107A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 Ofdma***中数据包处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3664550A4

Also Published As

Publication number Publication date
CN109525359A (zh) 2019-03-26
US11251997B2 (en) 2022-02-15
CN109525359B (zh) 2022-03-11
EP3664550B1 (en) 2022-08-24
EP3664550A1 (en) 2020-06-10
EP3664550A4 (en) 2020-09-09
US20200220752A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP7039526B2 (ja) クロスキャリアスケジューリングのための物理ダウンリンク制御チャンネルの制御チャンネル要素の獲得
EP3606242B1 (en) Data transmission method and apparatus
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
WO2019052388A1 (zh) 数据传输的方法和设备
EP4075708B1 (en) Communication method and communication apparatus
WO2019029378A1 (zh) 参考信号配置信息的指示方法、基站及终端
WO2018201860A1 (zh) 上报端口信息的方法、终端设备和网络设备
CN108632003B (zh) 一种信息传输方法和装置
CN108632011B (zh) 用于进行数据传输的方法和装置
WO2018082457A1 (zh) 配置参考信号的方法和装置
WO2018113618A1 (zh) 参考信号的发送和接收方法,接入网设备和终端设备
JP2021090209A (ja) アンテナポート指示方法および装置
TWI734805B (zh) 傳輸數據的方法和設備
WO2020057375A1 (zh) 一种资源配置方法及通信装置
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
WO2018171742A1 (zh) 无线通信的方法和装置
JP2023159100A (ja) 無線通信システムで基準信号の送受信方法及び装置
WO2018018633A1 (zh) 一种csi-rs传输方法及网络设备
CN109495968B (zh) 用于进行数据传输的方法和装置
WO2018202106A1 (zh) 无线通信方法及装置
WO2018171697A1 (zh) 一种信息传输方法和装置
WO2022052131A1 (zh) 通信方法、装置
KR20210124967A (ko) 신뢰할 수 있는 다중 전송 시스템을 위한 방법 및 장치
WO2018171691A1 (zh) 用于进行数据传输的方法和装置
US20240195570A1 (en) Communication device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018855840

Country of ref document: EP

Effective date: 20200306