WO2019051988A1 - 光学薄膜、有机电致发光显示面板及其制作方法 - Google Patents

光学薄膜、有机电致发光显示面板及其制作方法 Download PDF

Info

Publication number
WO2019051988A1
WO2019051988A1 PCT/CN2017/110894 CN2017110894W WO2019051988A1 WO 2019051988 A1 WO2019051988 A1 WO 2019051988A1 CN 2017110894 W CN2017110894 W CN 2017110894W WO 2019051988 A1 WO2019051988 A1 WO 2019051988A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic electroluminescent
grooves
display panel
thin film
optical film
Prior art date
Application number
PCT/CN2017/110894
Other languages
English (en)
French (fr)
Inventor
许杰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2019051988A1 publication Critical patent/WO2019051988A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the invention relates to a liquid crystal display panel technology, in particular to an optical film, an organic electroluminescence display panel and a manufacturing method thereof.
  • LCD liquid crystal display
  • OLED organic light emitting display
  • an LCD device includes a liquid crystal panel including an upper substrate (a color filter (CF) substrate) and a lower substrate (a thin film transistor array (TFT) substrate) and a liquid crystal layer between the upper substrate and the lower substrate ( LC).
  • the liquid crystal layer is driven by an electric field generated between the pixel electrode and the common electrode to display an image.
  • the OLED device includes an organic light emitting diode including an anode, a cathode, and an organic light emitting layer between the anode and the cathode. In an organic light emitting diode, holes and electrons from the anode and the cathode, respectively, are combined such that light is emitted from the organic light emitting layer to display an image.
  • AMOLED Active-matrix organic light emitting diode
  • AMOLED Active-matrix organic light emitting diode
  • ⁇ /4 polarizer and linear polarizer to eliminate the influence of external natural light on AMOLED.
  • it can avoid the influence of external natural light on AMOLED, it also leads to organic electroluminescence. Nearly 50% of the device's self-illumination is lost.
  • the present invention provides an optical film, an organic electroluminescence display panel, and a method of fabricating the same, thereby reducing the influence of natural light on the organic electroluminescent device and the loss of self-luminescence of the organic electroluminescent device.
  • the present invention provides an optical film comprising a transparent film body having a plurality of grooves disposed on one surface of the film body and protrusions formed between adjacent grooves.
  • the array of grooves is arranged to form a grid-like structure.
  • the cross-sectional shape of the protrusion is a rectangle, an arc or a triangle.
  • the film body is made of a metal material or a ceramic material.
  • the groove has a width of 20-50 nm and a depth of 30-120 nm.
  • the protrusion has a width of 10-20 nm.
  • the present invention also provides an organic electroluminescence display panel comprising an organic electroluminescence device and an encapsulation layer disposed on the organic electroluminescence device, further comprising the optical film disposed on the encapsulation layer away from the organic electricity On one side surface of the light-emitting device, the groove is disposed opposite to the sub-pixel.
  • the invention also provides a method for fabricating an organic electroluminescence display panel. After the encapsulation layer is formed, a transparent film is formed on a surface of the encapsulation layer facing away from the organic electroluminescent device;
  • an optical film having a plurality of grooves is formed, the grooves being disposed opposite to the sub-pixels.
  • the transparent film has a thickness of 50 to 150 nm.
  • the array of grooves is arranged to form a grid-like structure.
  • the present invention provides a groove on the film body, and replaces the existing polarizer by the optical film, so that natural light is projected into the groove and then annihilated by multiple reflections to cause light loss, thereby reducing natural light.
  • the effect on the organic electroluminescent device also reduces the loss of self-luminescence of the organic electroluminescent device, and also reduces the production cost.
  • Figure 1 is a plan view of an optical film of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • FIG. 3 is a schematic structural view of an organic electroluminescence display panel of the present invention.
  • FIG. 4 is a schematic structural view of an organic electroluminescence display device with a touch screen according to the present invention.
  • Figure 5 is a schematic view showing the formation of a transparent film on the encapsulation layer of the present invention.
  • Figure 6 is a schematic view of the transparent film after the present invention is patterned
  • Figure 7 is a schematic view of the natural light of the present invention reflected in a groove
  • Figure 8 is a schematic illustration of the self-luminous emission of the OLED of the present invention.
  • an optical film of the present invention comprises a transparent film body 1.
  • the film body 1 is provided with a plurality of grooves 3 on one side surface thereof, and a convex portion is formed between adjacent grooves 3.
  • the orthographic shape of the groove 3 may be rectangular or square, depending on the shape of the sub-pixel; the array of grooves 3 is arranged to form a grid-like structure; the cross section of the protrusion 2
  • the shape is a rectangle, an arc or a triangle, which is not specifically limited herein;
  • the cross-sectional shape of the groove 3 may be a rectangle, an arc, an inverted trapezoid or other shape, and if the section of the groove 3 is a rectangle, the bottom of the groove 3
  • the joint with the surrounding groove wall may be a circular transition surface.
  • the film body 1 may be made of a metal material or a ceramic material, for example, the metal material is ruthenium, osmium or calcium, and the ceramic material is a polyoxide.
  • the film body 1 has a thickness of 50-150 nm, the groove 3 has a width of 20-50 nm, and a depth of 30-120 nm; and the protrusion 2 has a width of 10-20 nm.
  • the reflection coefficient of the film body 1 is larger than the projection coefficient.
  • This structure mainly applies the optical black hole effect, so that the external natural light is irradiated onto the optical film, as shown in FIG. Multiple reflections cause the natural light loss of the outside world to be annihilated. If some natural light can still be emitted from the structure after multiple reflections, and because of the design of the pattern (the groove on the film body), the light emitted is diffusely reflected, and the effect on the self-luminescence of the OLED is negligible. However, the self-luminous OLED can be emitted through the film body 1 (as shown in FIG. 8).
  • the present invention discloses an organic electroluminescence display panel using the above optical film, comprising an organic electroluminescent layer 41 and an encapsulation layer 42 disposed on the organic electroluminescent layer 41, and an optical film.
  • the optical film 5 is disposed on a side of the encapsulating layer 42 facing away from the organic electroluminescent layer 41, wherein the optical film comprises a transparent film body 1, and the film body 1 is provided with a plurality of recesses on one side surface thereof a groove 3, a protrusion 2 is formed between adjacent grooves 3, in particular, a front projection of the groove 3
  • the shape of the shadow may be a rectangle or a square, depending on the shape of the sub-pixel; the array of grooves 3 is arranged to form a grid-like structure; the cross-sectional shape of the protrusion 2 is a rectangle, an arc or a triangle.
  • the cross-sectional shape of the groove 3 may be a rectangle, an arc, an inverted trapezoid or other shapes. If the cross section of the groove 3 is a rectangle, the joint of the bottom of the groove 3 and the surrounding groove wall may be an arc. Transition surface.
  • the groove 3 is disposed opposite to the sub-pixel, and the opening direction of the groove 3 faces away from the encapsulation layer 42.
  • the above organic electroluminescence display panel further includes a rigid substrate 43, a flexible substrate 44 sequentially disposed on the rigid substrate 43, an array substrate layer 45, and a top electrode (not shown).
  • the organic electroluminescent layer 41 is disposed between the array substrate layer 45 and the top electrode.
  • the array substrate layer 45 includes a buffer layer, an active layer, a gate insulating layer, a gate layer, an interlayer insulating layer, a source/drain, a flat layer, a bottom electrode, and a pixel defining layer which are sequentially formed on the flexible substrate 44.
  • the present invention is not limited thereto.
  • the structure of the array substrate layer 45 may be an array substrate layer for an OLED in the prior art, which is not specifically limited herein.
  • the organic electroluminescent layer 41 includes a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, and an electron injection layer, which are sequentially disposed from the bottom electrode to the top electrode.
  • the organic electroluminescent layer 41 is an organic electroluminescent device structure used in an OLED display panel in the prior art, and is not specifically limited herein.
  • each sub-pixel is spaced between the pixel defining layers, that is, the position of the ridge 2 of the film body 1 can correspond to the position of the pixel defining layer, so that each groove 3 is one-to-one with the sub-pixel.
  • the sub-pixels referred to herein include sub-pixels for displaying colors such as RGB.
  • the film body 1 may be made of a metal material or a ceramic material, for example, the metal material is ruthenium, osmium or calcium, and the ceramic material is a polyoxide.
  • the film body 1 has a thickness of 50-150 nm, the groove 3 has a width of 20-50 nm, and a depth of 30-120 nm; and the protrusion 2 has a width of 10-20 nm.
  • the manufacturing method of the organic electroluminescent display panel comprises the following steps:
  • a transparent film is formed on the surface of the encapsulation layer 42 facing away from the organic electroluminescent layer 41; specifically, the surface of the encapsulation layer 42 is formed by evaporation or sputtering.
  • a transparent film shown in Figure 5 having a thickness of 50-150 nm is used.
  • an optical film 5 having a plurality of grooves 3 (shown in FIG. 6) is formed.
  • the patterning may be performed by etching, such as a photolithography process, and the grooves 3 and The light-emitting areas of the electroluminescent layer 41 are oppositely disposed.
  • the grooves 3 are arranged in an array to form a grid-like structure, and each of the grooves 3 has a one-to-one correspondence with the sub-pixels.
  • the groove 3 has a width of 20-50 nm and a depth of 30-120 nm; and the protrusion 2 has a width of 10-20 nm.
  • the shape of the groove 3 may be a rectangle or a square, depending on the shape of the sub-pixel; the groove 3 is arranged in an array to form a grid-like structure; if the section of the groove 3 is a rectangle, the bottom of the groove 3
  • the joint with the surrounding groove wall may be a circular arc transition surface; the cross-sectional shape of the protrusion 2 is a rectangle, an arc or a triangle, which is not specifically limited herein.
  • the optical film may be made of a metal material or a ceramic material, for example, the metal material is ruthenium, osmium or calcium, and the ceramic material is a polyoxide.
  • the encapsulating layer 42 and the following regions are produced by the prior art, and are not specifically limited herein.
  • the organic electroluminescence display panel of the present invention when the organic electroluminescence display panel of the present invention is fabricated into a display device having a touch panel, after applying an adhesive 6 on the optical film 5, the touch panel 7 is passed through the adhesive 6 and the organic electro-electricity. The light emitting display panels are bonded together, and then the cover glass 8 is assembled on the touch screen 7.
  • the optical film of the invention can not only eliminate the influence of external natural light on the OLED device, but also does not affect the light emitted by the OLED itself.
  • the thickness of the OLED device can be reduced by about 100 ⁇ m, the OLED device can be made thinner, and the OLED device can be more resistant to bending, and the flexible OLED design can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种光学薄膜(5),包括透明的薄膜本体(1),薄膜本体(1)的一侧表面上设置有若干凹槽(3),相邻凹槽(3)之间形成凸起(2)。一种有机电致发光显示面板,包括有机电致发光器件以及设于有机电致发光器件上的封装层(42),还包括该光学薄膜(5),该光学薄膜(5)设置在封装层(42)背离有机电致发光器件的一侧表面上,该凹槽(3)与有机电致发光器件的发光区相对设置。一种有机电致发光显示面板的制作方法。在薄膜本体(1)上设置凹槽(3),通过光学薄膜替代现有的偏光片,使自然光投射到凹槽(3)中后通过多次反射导致光损耗而被湮灭,从而在降低自然光对有机电致发光器件的影响的同时也降低了对有机电致发光器件自发光的损耗,而且也降低了生产成本。

Description

光学薄膜、有机电致发光显示面板及其制作方法 技术领域
本发明涉及一种液晶显示面板技术,特别是一种光学薄膜、有机电致发光显示面板及其制作方法。
背景技术
随着信息技术和移动通讯技术的发展,能够显示视觉图像的显示装置也得到发展。诸如液晶显示(LCD)装置和有机发光显示(OLED)装置之类的平板显示装置被开发并使用。
一般来说,LCD装置包括液晶面板,液晶面板包括上基板(彩色滤光片(CF)基板)和下基板(薄膜晶体管阵列(TFT)基板)以及位于上基板与下基板之间的液晶层(LC)。液晶层被像素电极与公共电极之间产生的电场驱动,以显示图像。OLED装置包括有机发光二极管,有机发光二极管包括阳极、阴极以及位于阳极与阴极之间的有机发光层。在有机发光二极管中,分别来自阳极和阴极的空穴和电子组合,使得从有机发光层发射光,以显示图像。
其中AMOLED(Active-matrix organic light emitting diode,主动矩阵有机发光二极体)具有分辨率高,广视角,响应快,自发光等特点,被广泛使用,目前为了避免外界自然光对有机电致发光器件造成的眩光影响,目前多数OLED产品会选择λ/4偏光片和线偏光片结合来消除外界自然光对AMOLED的影响,这样虽然能够避消除外界自然光对AMOLED的影响,但也导致了有机电致发光器件的自发光有将近50%被损耗。
发明内容
为克服现有技术的不足,本发明提供一种光学薄膜、有机电致发光显示面板及其制作方法,从而降低自然光对有机电致发光器件的影响以及对有机电致发光器件自发光的损耗。
本发明提供了一种光学薄膜,包括透明的薄膜本体,所述薄膜本体的一侧表面上设置有若干凹槽,相邻凹槽之间形成凸起。
进一步地,所述凹槽阵列排布,形成网格状结构。
进一步地,所述凸起的截面形状为矩形、弧形或三角形。
进一步地,所述薄膜本体由金属材料或陶瓷材料制成。
进一步地,所述凹槽的宽度为20-50nm,深度为30-120nm。
进一步地,所述凸起的宽度为10-20nm。
本发明还提供了一种有机电致发光显示面板,包括有机电致发光器件以及设于有机电致发光器件上的封装层,还包括所述的光学薄膜,光学薄膜设置在封装层背离有机电致发光器件的一侧表面上,所述凹槽与子像素相对设置。
本发明还提供了一种有机电致发光显示面板的制作方法,在制作完封装层后,在封装层背离有机电致发光器件的一侧表面上制作一层透明薄膜;
对透明薄膜进行图案化处理后,形成具有若干凹槽的光学薄膜,所述凹槽与子像素相对设置。
进一步地,所述透明薄膜的厚度为50-150nm。
进一步地,所述凹槽阵列排布,形成网格状结构。
本发明与现有技术相比,在薄膜本体上设置凹槽,通过光学薄膜替代现有的偏光片,使自然光投射到凹槽中后通过多次反射导致光损耗而被湮灭,从而在降低自然光对有机电致发光器件的影响的同时也降低了对有机电致发光器件自发光的损耗,而且也降低了生产成本。
附图说明
图1是本发明光学薄膜的俯视图;
图2是图1中沿A-A方向的剖视图;
图3是本发明有机电致发光显示面板的结构示意图;
图4是本发明具有触摸屏的有机电致发光显示装置的结构示意图;
图5是本发明在封装层上形成透明薄膜的示意图;
图6是本发明对透明薄膜图形化后的示意图;
图7是本发明自然光在凹槽中反射的示意图;
图8是本发明OLED自发光射出的示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
如图1和图2所示,本发明的一种光学薄膜,包括透明的薄膜本体1,所述薄膜本体1的一侧表面上设置有若干凹槽3,相邻凹槽3之间形成凸起2,具体地,凹槽3的正投影形状可以为矩形或正方形,具体可根据子像素形状而定;所述凹槽3阵列排布,形成网格状结构;所述凸起2的截面形状为矩形、弧形或三角形,在此不做具体限定;凹槽3的截面形状可以为矩形、弧形、倒梯形或其他形状,若凹槽3的截面为矩形时,凹槽3的底部与四周槽壁的接合处可以为圆弧过渡面。
在本发明中,薄膜本体1可由金属材料或陶瓷材料制成,例如金属材料为钡、钽或钙,陶瓷材料为多氧化物。
所述薄膜本体1的厚度为50-150nm,所述凹槽3的宽度为20-50nm,深度为30-120nm;所述凸起2的宽度为10-20nm。
在本发明中,薄膜本体1的反射系数大于投射系数,此种结构主要应用了光学的黑洞效应,使外界自然光在照射到光学膜片上后,如图7所示,在凹槽3中被多次反射导致外界自然光能力损耗而被湮灭。若某些自然光经多次反射后仍然能从此结构中发出,也由于图案(薄膜本体上设置凹槽)的设计,射出来的光属于漫反射光,对OLED自发光的影响也已经可以忽略不计,但是在OLED自发光则可穿过薄膜本体1后射出(如图8所示)。
如图3所示,本发明公开了一种采用上述光学薄膜的有机电致发光显示面板,包括有机电致发光层41以及设于有机电致发光层41上的封装层42,还包括光学薄膜5,光学薄膜5设置在封装层42背离有机电致发光层41的一侧表面上,其中,所述光学薄膜包括透明的薄膜本体1,所述薄膜本体1的一侧表面上设置有若干凹槽3,相邻凹槽3之间形成凸起2,具体地,凹槽3的正投 影形状可以为矩形或正方形,具体可根据子像素形状而定;所述凹槽3阵列排布,形成网格状结构;所述凸起2的截面形状为矩形、弧形或三角形,在此不做具体限定;凹槽3的截面形状可以为矩形、弧形、倒梯形或其他形状,若凹槽3的截面为矩形时,凹槽3的底部与四周槽壁的接合处可以为圆弧过渡面。
所述凹槽3与子像素相对设置,凹槽3的开口方向背离封装层42。
在上述的有机电致发光显示面板中还包括刚性基板43、依次设置在刚性基板43上的柔性基板44、阵列基板层45、顶电极(图中未示出)。所述有机电致发光层41设置于阵列基板层45和顶电极之间。
所述阵列基板层45包括依次形成在柔性基板44上的缓冲层、有源层、栅绝缘层、栅极层、层间绝缘层、源极/漏极、平坦层、底电极、像素限定层等,由于本发明的改进之处并非在此,阵列基板层45的结构可采用现有技术中用于OLED的阵列基板层,在此不做具体限定。
有机电致发光层41包括从底电极到顶电极顺序设置的:空穴注入层、空穴传输层、有机发光层、电子传输层及电子注入层。有机电致发光层41采用现有技术中用于OLED显示面板中的有机电致发光器件结构,在此不做具体限定。
本发明中,像素限定层之间间隔出每个子像素的位置,即薄膜本体1的凸条2的设置位置可与像素限定层位置相对应,从而使每个凹槽3均与子像素一一对应,这里所说的子像素包括了用于显示RGB等颜色的子像素。
薄膜本体1可由金属材料或陶瓷材料制成,例如金属材料为钡、钽或钙,陶瓷材料为多氧化物。
所述薄膜本体1的厚度为50-150nm,所述凹槽3的宽度为20-50nm,深度为30-120nm;所述凸起2的宽度为10-20nm。
所述有机电致发光显示面板的制作方法,包括如下步骤:
在制作完封装层42后,在封装层42背离有机电致发光层41的一侧表面上制作一层透明薄膜;具体为,通过蒸镀或溅射的方法在封装层42的表面制 作一层厚度为50-150nm的透明薄膜(图5所示)。
对透明薄膜进行图案化处理后,形成具有若干凹槽3的光学薄膜5(图6所示),具体地,图案化可采用蚀刻的方式进行,例如光刻工艺,所述凹槽3与有机电致发光层41的发光区相对设置。
所述凹槽3阵列排布,形成网格状结构,每个凹槽3均与子像素一一对应。
所述凹槽3的宽度为20-50nm,深度为30-120nm;所述凸起2的宽度为10-20nm。
凹槽3的形状可以为矩形或正方形,具体可根据子像素形状而定;所述凹槽3阵列排布,形成网格状结构;若凹槽3的截面为矩形时,凹槽3的底部与四周槽壁的接合处可以为圆弧过渡面;所述凸起2的截面形状为矩形、弧形或三角形,在此不做具体限定。
光学薄膜可由金属材料或陶瓷材料制成,例如金属材料为钡、钽或钙,陶瓷材料为多氧化物。
在上述的制作方法中,封装层42及以下的区域(如有机电致发光层41、阵列基板层45等均采用现有技术制作,在此不做具体限定。
如图4所示,将本发明的有机电致发光显示面板制作成具有触摸屏的显示装置时,在光学薄膜5上涂布一层粘着剂6后,将触摸屏7通过粘着剂6与有机电致发光显示面板粘合在一起,然后将盖板玻璃8装配于触摸屏7上。
本发明的光学薄膜,不仅可以消除外界自然光对OLED器件的影响,也可以不影响OLED本身发出的光。同时由于没有偏光片的设计,在OLED器件厚度的方面就可以减小100μm左右,可以让OLED器件变的更薄,且可以另OLED器件更加耐弯折,实现柔性OLED设计。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (15)

  1. 一种光学薄膜,其中:包括透明的薄膜本体,所述薄膜本体的一侧表面上设置有若干凹槽,相邻凹槽之间形成凸起。
  2. 根据权利要求1所述的光学薄膜,其中:所述凹槽阵列排布,形成网格状结构。
  3. 根据权利要求1所述的光学薄膜,其中:所述凸起的截面形状为矩形、弧形或三角形。
  4. 根据权利要求1所述的光学薄膜,其中:所述薄膜本体由金属材料或陶瓷材料制成。
  5. 根据权利要求1所述的光学薄膜,其中:所述凹槽的宽度为20-50nm,深度为30-120nm。
  6. 根据权利要求1所述的光学薄膜,其中:所述凸起的宽度为10-20nm。
  7. 一种有机电致发光显示面板,包括有机电致发光层以及设于有机电致发光层上的封装层,其中:还包括光学薄膜,所述光学薄膜包括透明的薄膜本体,所述薄膜本体的一侧表面上设置有若干凹槽,相邻凹槽之间形成凸起;光学薄膜设置在封装层背离有机电致发光层的一侧表面上,所述凹槽与子像素相对设置。
  8. 根据权利要求7所述的有机电致发光显示面板,其中:所述凹槽阵列排布,形成网格状结构。
  9. 根据权利要求7所述的有机电致发光显示面板,其中:所述凸起的截面形状为矩形、弧形或三角形。
  10. 根据权利要求7所述的有机电致发光显示面板,其中:所述薄膜本体由金属材料或陶瓷材料制成。
  11. 根据权利要求7所述的有机电致发光显示面板,其中:所述凹槽的宽度为20-50nm,深度为30-120nm。
  12. 根据权利要求7所述的有机电致发光显示面板,其中:所述凸起的宽度为10-20nm。
  13. 一种有机电致发光显示面板的制作方法,其中:在制作完封装层后,在封装层背离有机电致发光层的一侧表面上制作一层透明薄膜;
    对透明薄膜进行图案化处理后,形成具有若干凹槽的光学薄膜,所述凹槽与子像素相对设置。
  14. 根据权利要去13所述的有机电致发光显示面板的制作方法,其中:所述透明薄膜的厚度为50-150nm。
  15. 根据权利要求13所述的有机电致发光显示面板的制作方法,其中:所述凹槽阵列排布,形成网格状结构。
PCT/CN2017/110894 2017-09-12 2017-11-14 光学薄膜、有机电致发光显示面板及其制作方法 WO2019051988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710816266.7 2017-09-12
CN201710816266.7A CN107611279B (zh) 2017-09-12 2017-09-12 光学薄膜、有机电致发光显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2019051988A1 true WO2019051988A1 (zh) 2019-03-21

Family

ID=61063628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110894 WO2019051988A1 (zh) 2017-09-12 2017-11-14 光学薄膜、有机电致发光显示面板及其制作方法

Country Status (2)

Country Link
CN (1) CN107611279B (zh)
WO (1) WO2019051988A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164530B (zh) * 2018-09-29 2021-11-16 广州国显科技有限公司 显示面板及显示装置
CN109411514B (zh) * 2018-09-29 2020-12-11 云谷(固安)科技有限公司 显示面板及显示装置
CN109411621B (zh) * 2018-09-29 2022-02-22 广州国显科技有限公司 显示面板及显示装置
CN110071149B (zh) * 2019-04-15 2021-05-18 昆山工研院新型平板显示技术中心有限公司 显示面板及显示装置
CN112151693A (zh) 2020-09-27 2020-12-29 京东方科技集团股份有限公司 封装结构、显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182551A1 (en) * 2009-01-21 2010-07-22 Toppan Printing Co., Ltd. Anti-Glare Film
CN101802657A (zh) * 2007-09-13 2010-08-11 株式会社普利司通 显示器用光学滤波器、具备该光学滤波器的显示器及等离子体显示面板
US20120170126A1 (en) * 2009-08-05 2012-07-05 Sharp Kabushiki Kaisha Tabular Member And Structure With Observation Port
CN104395783A (zh) * 2012-06-22 2015-03-04 夏普株式会社 防反射结构体和显示装置
US20170104183A1 (en) * 2015-10-13 2017-04-13 Boe Technology Group Co., Ltd. Waterproof and anti-reflective flexible oled apparatus and method for manufacturing the same
CN206330084U (zh) * 2016-11-15 2017-07-14 茗翔科技股份有限公司 具有沟槽阵列的光学元件及其光源装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795811B1 (ko) * 2006-10-24 2008-01-21 삼성에스디아이 주식회사 편광자 및 그를 포함하는 유기 발광 표시 장치
JP4539759B2 (ja) * 2007-10-01 2010-09-08 オムロン株式会社 反射防止シート、表示素子及びディスプレイ装置
JP6105577B2 (ja) * 2012-06-22 2017-03-29 シャープ株式会社 反射防止構造体及び表示装置
CN103336328B (zh) * 2013-07-12 2016-12-28 南昌欧菲光学技术有限公司 偏光片组件及显示设备
KR102082783B1 (ko) * 2013-07-23 2020-03-02 삼성디스플레이 주식회사 와이어 그리드 편광판 및 이를 구비하는 유기 발광 디스플레이 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802657A (zh) * 2007-09-13 2010-08-11 株式会社普利司通 显示器用光学滤波器、具备该光学滤波器的显示器及等离子体显示面板
US20100182551A1 (en) * 2009-01-21 2010-07-22 Toppan Printing Co., Ltd. Anti-Glare Film
US20120170126A1 (en) * 2009-08-05 2012-07-05 Sharp Kabushiki Kaisha Tabular Member And Structure With Observation Port
CN104395783A (zh) * 2012-06-22 2015-03-04 夏普株式会社 防反射结构体和显示装置
US20170104183A1 (en) * 2015-10-13 2017-04-13 Boe Technology Group Co., Ltd. Waterproof and anti-reflective flexible oled apparatus and method for manufacturing the same
CN206330084U (zh) * 2016-11-15 2017-07-14 茗翔科技股份有限公司 具有沟槽阵列的光学元件及其光源装置

Also Published As

Publication number Publication date
CN107611279B (zh) 2019-11-22
CN107611279A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
US10403855B2 (en) Display screen and method for manufacturing the same, and display device
US9761641B2 (en) Color filter substrate and method for manufacturing the same, OLED display panel and display apparatus
KR102327918B1 (ko) 투명 디스플레이 장치와 그의 제조 방법
WO2019051988A1 (zh) 光学薄膜、有机电致发光显示面板及其制作方法
JP6211873B2 (ja) 有機el表示装置及び有機el表示装置の製造方法
TWI637657B (zh) 有機發光二極體顯示器
US11793035B2 (en) Display panel, display device and manufacturing method of the display panel
WO2016155456A1 (zh) 阵列基板及其制作方法、有机发光显示装置
US10749143B2 (en) Organic light emitting diode panel
KR101975020B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US20150340412A1 (en) Flat panel display having low reflective black matrix and method for manufacturing the same
JP2006318776A (ja) 有機エレクトロルミネッセンス表示装置
US10186556B2 (en) Thin film transistor array substrate and organic light emitting diode display device including the same
US9406735B2 (en) Organic light-emitting display apparatus with enhanced light output efficiency and manufacturing method thereof
KR20150005845A (ko) 유기 발광 표시 장치
WO2016074372A1 (zh) Amoled显示面板及其制作方法、显示装置
KR20080061675A (ko) 유기 발광 소자 및 그의 제조방법
CN109461838A (zh) 一种显示基板及其制备方法、显示面板和显示装置
CN111430445B (zh) 一种显示基板及其制备方法、显示装置
US20140091291A1 (en) Array substrate and manufacturing method thereof, oled display device
WO2018205587A1 (zh) 显示基板及其制作方法、显示装置
WO2022247180A1 (zh) 显示面板及显示装置
CN109841754A (zh) Oled显示面板
JP2008234933A (ja) 有機el表示装置
KR20150070544A (ko) 유기 발광 표시장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925274

Country of ref document: EP

Kind code of ref document: A1