WO2019051953A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2019051953A1
WO2019051953A1 PCT/CN2017/108721 CN2017108721W WO2019051953A1 WO 2019051953 A1 WO2019051953 A1 WO 2019051953A1 CN 2017108721 W CN2017108721 W CN 2017108721W WO 2019051953 A1 WO2019051953 A1 WO 2019051953A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
communication device
ack
resource
communication
Prior art date
Application number
PCT/CN2017/108721
Other languages
English (en)
French (fr)
Inventor
杜振国
庄宏成
丁志明
韩云博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780069621.7A priority Critical patent/CN109964511A/zh
Publication of WO2019051953A1 publication Critical patent/WO2019051953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • the 3GPP standards organization is discussing the introduction of low-power Wake-up Radio (WUR), also known as Wake-up Receiver (WUR), to reduce the power consumption of end devices.
  • WUR Wake-up Receiver
  • the signal that can be received and decoded by the WUR is called the wake-up signal.
  • the wake-up signal is, for example, a wake-up packet (Wakeup Packet), which is also called a wake-up frame.
  • WUR refers to a terminal device (such as a UE) that introduces a WUR interface (also called a main radio (such as LTE/NR, etc., also called a main module or a main communication module).
  • the main module is usually in the off state. Only when the trigger signal from the WUR module is received, the main module is activated, and then the terminal device communicates with the base station through the main module.
  • the base station may send a wake-up signal to the terminal device to wake up the terminal device (the WUR interface of the terminal device triggers the activation of the primary interface after receiving the wake-up signal), and then the base station sends the terminal interface to the terminal device.
  • the primary interface sends downstream data.
  • the base station sends a wake-up signal to the terminal device but does not successfully wake up the terminal device (for example, the terminal device does not correctly receive the wake-up signal)
  • the base station sends downlink data to the terminal device, which causes waste of resources.
  • the embodiment of the present invention provides a communication method and device, which are used to prevent a base station from blindly transmitting downlink data to a terminal device, thereby causing waste of resources.
  • the embodiment of the present application provides a communication method, where the first communication device includes a first interface and a second interface, where the second communication device includes a third interface and a fourth interface, where the first interface is used for The third interface is in communication, and the second interface is configured to communicate with the fourth interface;
  • the method includes:
  • the first communication device sends a wake-up signal to the second communication device through the first interface, where the wake-up signal is used to wake up the fourth interface of the second communication device;
  • the first communication device receives a wake up Acknowledge (WU-ACK) sent by the second communication device.
  • WU-ACK wake up Acknowledge
  • the first communication device determines that the second communication device has been successfully called after receiving the WU-ACK sent by the second communication device. Wake up, and then send the downlink data, avoiding the waste of resources caused by the blind communication of the downlink data by the first communication device.
  • the first communications device receives the WU-ACK sent by the second communications device, including:
  • the first communication device receives the WU-ACK sent by the second communication device by using the second interface.
  • the method further includes:
  • the first communication device transmits downlink data to the second communication device through the second interface.
  • the method further includes:
  • the first communication device sends a physical downlink control channel (PDCCH) to the second communication device by using the second interface, where the PDCCH is used to schedule transmission of the downlink data, where the PDCCH includes Time Advance (TA), which is obtained by the first communication device according to the WU-ACK.
  • PDCCH physical downlink control channel
  • TA Time Advance
  • the second communication device obtains the scheduling information and the TA of the downlink data from the PDCCH at the same time, which reduces the delay and signaling overhead of the TA acquisition process.
  • the method further includes:
  • the first communication device receives, by using the second interface, a data response message sent by the second communication device by using the TA, where the data response message is used to confirm whether the downlink data is successfully received.
  • the TA obtained by the second communication device from the PDCCH can be used for the data response message of the subsequent downlink data, which avoids the reliability of the uplink response transmission caused by using the inaccurate TA, and improves the reliability.
  • the first communications device receives the WU-ACK sent by the second communications device, including:
  • the first communication device receives the WU-ACK sent by the second communication device on a first resource.
  • the first resource is preset, or the first resource is configured by the first communication device to the second communication device.
  • the time offset is preset, or the time offset is configured by the first communication device to the second communication device.
  • the method before the first communication device sends the wake-up signal to the second communication device by using the first interface, the method further includes:
  • the first communication device receives the wake-up time sent by the second communication device by using the second interface; the wake-up time is that the second communication device enters the work from receiving the wake-up signal to the fourth interface The length of time required for the state;
  • the first communication device determines the TA according to the wake-up time.
  • the wake-up signal further includes: resource indication information, where the resource indication information is used to indicate a time domain location and/or a frequency domain location of the first resource.
  • the first resource is a Physical Random Access Channel (PRACH) resource, or a Grant-free resource, or a WU-ACK dedicated resource.
  • PRACH Physical Random Access Channel
  • Grant-free resource or a WU-ACK dedicated resource.
  • the first resource is a WU-ACK dedicated resource.
  • the method further includes:
  • the first communication device determines the identifier of the second communication device according to the first resource and a one-to-one correspondence between the first resource and the identifier of the second communication device.
  • the first resource that sends the WU-ACK has a one-to-one correspondence with the second communication device, so that when the first communication device receives a WU-ACK, it can determine which is the first resource according to the first resource that carries the WU-ACK.
  • the WU-ACK sent by the second communication device is a one-to-one correspondence with the second communication device, so that when the first communication device receives a WU-ACK, it can determine which is the first resource according to the first resource that carries the WU-ACK.
  • the WU-ACK sent by the second communication device is a one-to-one correspondence with the second communication device, so that when the first communication device receives a WU-ACK, it can determine which is the first resource according to the first resource that carries the WU-ACK.
  • the WU-ACK sent by the second communication device is a one-to-one correspondence with the second communication device, so that when the first communication device receives a WU-ACK, it can determine which is the first resource according to the first resource that
  • the WU-ACK includes a signal sequence, and the signal sequence has a one-to-one correspondence with the identifier of the second communication device;
  • the method further includes:
  • the first communication device determines an identifier of the second communication device according to the signal sequence and a one-to-one correspondence between the signal sequence and an identifier of the second communication device.
  • the WU-ACK includes a signal sequence, and the first resource, the signal sequence, and the identifier of the second communication device have a corresponding relationship;
  • the method further includes:
  • the first communication device determines an identifier of the second communication device according to the first resource, the signal sequence, and a correspondence between the signal sequence and the identifier of the second communication device.
  • the WU-ACK transmitted by the different second communication device corresponds to a different signal sequence, which enables the first communication device to determine which second communication device transmits the WU-ACK based on the received signal sequence of the WU-ACK. .
  • the method further includes:
  • the first communication device sends signal sequence indication information to the second communication device through the second interface, the indication information is used to indicate the signal sequence.
  • the communication mode of the first interface and the third interface is a first communication mode
  • the communication mode of the second interface and the fourth interface is a second communication mode
  • the first communication method is different from the second communication method.
  • the first interface and the third interface are wake-up radio interfaces
  • the second interface and the fourth interface are main communication interfaces.
  • the wake-up RF interface is used to receive the wake-up signal, which has low power consumption and is convenient for power saving; the main communication interface can be used for data communication after being woken up, and the transmission rate is also high.
  • first interface and the second interface are different physical interfaces, or the first interface and the second interface are integrated into the same physical interface;
  • the third interface and the fourth interface are different physical interfaces.
  • the embodiment of the present application provides a communication method, where the first communication device includes a first interface and a second interface, and the second communication device includes a third interface and a fourth interface, where the third interface is used for The first interface is in communication, and the fourth interface is configured to communicate with the second interface;
  • the second communication device receives the wake-up signal sent by the first communication device by using the third interface, where the wake-up signal is used to wake up the fourth interface of the second communication device;
  • the second communication device wakes up the fourth interface of the second pass device according to the wake-up signal
  • the second communication device sends a call WU-ACK to the first communication device.
  • the first communication device determines that the second communication device has been successfully awake, and then transmits the downlink data, thereby avoiding waste of resources caused by the blind communication of the downlink data by the first communication device.
  • the WU-ACK sent by the second communications device to the first communications device includes:
  • the second communication device transmits the WU-ACK to the first communication device through the fourth interface.
  • it also includes:
  • the second communication device receives, by using the fourth interface, downlink data that is sent by the first communications device according to the WU-ACK.
  • the method further includes:
  • the second communication device receives the PDCCH sent by the first communications device by using the fourth interface, where the PDCCH is used to schedule transmission of the downlink data, the PDCCH includes a TA, and the TA is the second The communication device is obtained according to the WU-ACK.
  • the second communication device obtains the scheduling information and the TA of the downlink data from the PDCCH at the same time, which reduces the delay and signaling overhead of the TA acquisition process.
  • the method further includes:
  • the second communication device uses the TA to send a data response message to the first communication device through the fourth interface, where the data response message is used to confirm whether the downlink data is successfully received.
  • the TA obtained by the second communication device from the PDCCH can be used for the data response message of the subsequent downlink data, which avoids the reliability of the uplink response transmission caused by using the inaccurate TA, and improves the reliability.
  • the second communications device sends a WU-ACK to the first communications device by using the third interface, including:
  • the second communication device transmits the WU-ACK to the first communication device on the first resource through the third interface.
  • the first resource is preset, or the first resource is configured by the first communication device to the second communication device.
  • the time offset is preset, or the time offset is configured by the first communication device to the second communication device.
  • the method before the second communication device receives the wake-up signal sent by the first communications device by using the third interface, the method further includes:
  • the second communication device sends a wake-up time to the first communication device through the fourth interface; the wake-up time is that the second communication device enters a working state from receiving the wake-up signal to the fourth interface The length of time required;
  • the wake-up time is for the first communication device to determine the TA.
  • the wake-up signal further includes: resource indication information, where the resource indication information is used to indicate a time domain location and/or a frequency domain location of the first resource.
  • the first resource is a PRACH resource, or an unlicensed resource, or a WU-ACK dedicated resource.
  • the first resource that sends the WU-ACK has a one-to-one correspondence with the second communication device, so that when the first communication device receives a WU-ACK, it can determine which is the first resource according to the first resource that carries the WU-ACK.
  • the WU-ACK sent by the second communication device is a one-to-one correspondence with the second communication device, so that when the first communication device receives a WU-ACK, it can determine which is the first resource according to the first resource that carries the WU-ACK.
  • the WU-ACK sent by the second communication device is a one-to-one correspondence with the second communication device, so that when the first communication device receives a WU-ACK, it can determine which is the first resource according to the first resource that carries the WU-ACK.
  • the WU-ACK sent by the second communication device is a one-to-one correspondence with the second communication device, so that when the first communication device receives a WU-ACK, it can determine which is the first resource according to the first resource that
  • the WU-ACK includes a signal sequence, and the signal sequence has a one-to-one correspondence with the identifier of the second communication device.
  • the WU-ACK transmitted by the different second communication device corresponds to a different signal sequence, which enables the first communication device to determine which second communication device transmits the WU-ACK based on the received signal sequence of the WU-ACK. .
  • the WU-ACK includes a signal sequence, and the first resource, the signal sequence, and the identifier of the second communication device have a corresponding relationship.
  • the method further includes:
  • the second communication device receives, by using the fourth interface, the first communication device to send the signal sequence indication information, where the indication information is used to indicate the signal sequence.
  • the communication mode of the first interface and the third interface is a first communication mode
  • the communication mode of the second interface and the fourth interface is a second communication mode
  • the first communication method is different from the second communication method.
  • the first interface and the third interface are wake-up radio interfaces
  • the second interface and the fourth interface are main communication interfaces.
  • first interface and the second interface are different physical interfaces, or the first interface and the second interface are integrated into the same physical interface;
  • the third interface and the fourth interface are different physical interfaces.
  • the embodiment of the present application provides a communication device, as a first communication device, including: a memory, a processor, a first interface, and a second interface; wherein the first interface is used by the second communication device a third interface for communicating with the fourth interface of the second communication device;
  • the memory is configured to store an instruction
  • the processor is configured to execute the instructions in the memory, and perform the method according to the first aspect of the present application.
  • the second interface is integrated with the first interface as a same transceiver;
  • the first interface is a different physical component, and the first interface is a transmitter, and the second interface is a transceiver.
  • the embodiment of the present application provides a communication device, as a second communication device, including: a memory, a processor, a third interface, and a fourth interface; wherein the third interface is used for the first communication device a first interface for communicating with the second interface of the first communication device;
  • the memory is configured to store an instruction
  • the processor is configured to execute the instructions in the memory, and perform the method according to the second aspect of the present application.
  • the third interface and the fourth interface are different physical components, the third interface is a receiver, and the fourth interface is a transceiver.
  • the embodiment of the present application provides a computer program product, including a computer program, when the computer program is executed on a computer unit, the computer unit is configured to implement the communication method according to the first aspect of the present application. .
  • the embodiment of the present application provides a computer program product, including a computer program, when the computer program is executed on a computer unit, the computer unit is configured to implement the communication method according to the second aspect of the present application. .
  • the embodiment of the present application provides a communication device, as a first communication device, configured to perform the communication method according to the first aspect of the present application.
  • the embodiment of the present application provides a communication device, as a second communication device, configured to perform the second aspect.
  • the communication method described in the embodiment of the present application is not limited to:
  • the embodiment of the present application provides a chip, including: a processing module, a first interface, and a second interface; and the processing module is configured to execute the communication method in the first aspect of the present application.
  • the chip further includes a storage module, the storage module is configured to store program instructions, the processing module is configured to execute the program instructions stored in the memory, and the program stored in the memory The execution of the instructions causes the processing module to perform the communication method described in the second aspect of the present application.
  • the second interface is integrated with the first interface as the same communication interface; or the first interface and the second interface are different communication interfaces.
  • the embodiment of the present application provides a chip, including: a processing module, a third interface, and a fourth interface; and the processing module is configured to perform the communication method according to the second aspect of the present application.
  • the chip further includes a storage module, the storage module is configured to store program instructions, the processing module is configured to execute the program instructions stored in the memory, and the program stored in the memory The execution of the instructions causes the processing module to perform the communication method described in the second aspect of the present application.
  • the third interface and the fourth interface are different communication interfaces.
  • the embodiment of the present application provides a computer readable storage medium, where a computer program is stored thereon, and when the computer program is executed on a computer, the computer is implemented to implement the first aspect of the present application.
  • the embodiment of the present application provides a computer readable storage medium, where a computer program is stored, and when the computer program is executed on a computer, the computer is implemented to implement the second aspect of the present application.
  • a method for synchronizing uplink transmission the method being applied to a network device and a terminal device, where the network device includes a first interface and a second interface, where the terminal device includes a third interface and a fourth interface, where the An interface and the third interface communicate by using a first communication manner, and the second interface and the fourth interface communicate by using a second communication manner;
  • the method includes:
  • the network device sends a wake-up frame to the third interface of the terminal device by using the first interface, so that the terminal device wakes up the fourth interface;
  • the network device sends a PDCCH to the fourth interface of the terminal device by using a second interface, where the PDCCH is used to schedule transmission of DL data of the terminal device, where the PDCCH includes a timing advance TA, and the TA is The network device is measured based on the wakeup acknowledgement message.
  • the UE After the UE configured with the WUR is awake by the base station, the UE obtains the DL data scheduling information and the TA from the PDCCH at the same time, which reduces the delay and signaling overhead of the TA acquisition process. On the other hand, after receiving the WU-ACK of the UE, the base station determines that the UE has been successfully awake, and then transmits downlink (DL) data, thereby avoiding waste of resources caused by the base station blindly transmitting DL data.
  • DL downlink
  • the method after the network device sends the PDCCH to the fourth interface of the terminal device by using the second interface, the method includes:
  • the network device receives, by using the second interface, a data response message sent by the terminal device through the fourth interface, where the data response message is used to confirm the DL data, and the data response message is transmitted by using the TA.
  • the TA obtained by the UE from the PDCCH can be used for the UL response of the subsequent DL data, avoiding the reliability reduction of the UL response transmission caused by using the inaccurate TA.
  • the UE can only send the WU-ACK through the primary communication interface. If the WUR interface supports the sending capability, the WU-ACK can also be sent through the WUR interface.
  • the network device receiving the WU-ACK sent by the terminal device including:
  • the network device Receiving, by the network device, the WU-ACK sent by the terminal device on a first resource, where the first resource is a standard predefined, or the first resource is configured by the network device to the terminal device .
  • the transmission resource used by the UE to transmit the WU-ACK may be standard pre-defined or configured by the base station to the UE.
  • a time domain position of the first resource is a time offset from a time domain position of the wake-up frame, where
  • the T is a standard pre-defined, or the T is the network device configured to the terminal device.
  • the UE may also be a fixed time offset T between receiving the wake-up frame and transmitting the corresponding WU-ACK in the present application.
  • T can be standard pre-defined or base station configured.
  • the network device before the network device configures the T for the terminal device, the network device receives a wake-up time reported by the terminal device, and the network device is based on the wake-up time. Determining the T, the wake-up time is a time required by the terminal device to enter the working state from receiving the wake-up frame to the fourth interface.
  • the wake-up times of different UEs may be different.
  • the UE may report its wake-up time to the base station, so that the base station determines the T value of the UE based on the information.
  • the longer the wake-up time of the UE the larger the corresponding T value, because the UE needs to spend more time to wake up its own main communication interface.
  • the network device receives the WU-ACK sent by the terminal device on a first resource, where the first resource is indicated by the network device in the illustrated wake-up frame.
  • the base station may indicate a transmission resource of the corresponding WU-ACK, that is, the first resource, in the wake-up frame.
  • the information included in the awake frame may be a time domain and/or a frequency domain resource allocation of the first resource, or may be a resource index of the first resource, or the foregoing T value corresponding to the first resource.
  • the first resource is a PRACH resource, or a Grant-free resource, or a WU-ACK dedicated resource.
  • the resource for transmitting the WU-ACK may be a PRACH resource or a Grant-free resource resource, or may be a dedicated resource specially designed for the WU-ACK, that is, a WACH resource.
  • the network device receives the WU-ACK sent by the terminal device on a first resource, where the first resource has a one-to-one correspondence with the terminal device.
  • the transmission resource that sends the WU-ACK has a one-to-one correspondence with the UE, so that when receiving a WU-ACK, the base station can determine which UE sends the WU-ACK according to the resource that carries the WU-ACK. Based on this, the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the network device receives the WU-ACK sent by the terminal device, where the WU-ACK includes a signal sequence, and the signal sequence has a one-to-one correspondence with the terminal device.
  • the WU-ACK transmitted by different UEs corresponds to different orthogonal signal sequences, which enables the base station to determine which UE transmits the WU-ACK based on the received signal sequence of the WU-ACK. Based on this, the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the method in this embodiment may enable multiple UEs to multiplex the same time-frequency resource to transmit a WU-ACK signal, that is, distinguish the UE by using a code division method, which is beneficial to save transmission resources. Since the right item refers to the previous weight, different UEs having different WU-ACK signal sequences may also be combined with the first resource. In other words, the base station may distinguish the UE based on the first resource and the WU-ACK signal sequence.
  • the network device configures the signal sequence to the terminal device.
  • Different UEs have different WU-ACK signal sequences, so the base station must configure corresponding orthogonal sequences for the UE through signaling.
  • the network device after the network device receives the WU-ACK sent by the terminal device, the network device is based on the first resource and the terminal device Corresponding relationship, or determining the terminal device based on a correspondence between the signal sequence and the terminal device.
  • the base station must be able to determine the transmitting UE based on the received WU-ACK to determine which UE to transmit DL data to. For the UE to bind the WU-ACK transmission resource, the base station determines the corresponding UE based on the transmission resource where the received WU-ACK is located; and for the UE to bind the orthogonal sequence, the base station includes the positive based on the received WU-ACK. The signal sequence is handed over to determine the corresponding UE.
  • the network device After the network device receives the WU-ACK sent by the terminal device, the network device is based on the first resource, and the signal sequence Determining the terminal device in correspondence with the terminal device.
  • the base station determines the corresponding UE based on the transmission resource in which the received WU-ACK is located and the orthogonal sequence included in the WU-ACK.
  • the third interface of the UE is WUR, and the fourth interface is the main communication interface.
  • the former is used to receive the wake-up signal, and the power consumption is low, which is convenient for the UE to save power; the latter can be used for data communication after being woken up, and the power consumption is high, but the transmission rate is also high.
  • a method for synchronizing uplink transmission the method being applied to a network device and a terminal device, where the network device includes a first interface and a second interface, where the terminal device includes a third interface and a fourth interface, where the An interface and the third interface communicate by using a first communication manner, and the second interface and the fourth interface communicate by using a second communication manner;
  • the method includes:
  • the terminal device wakes up the fourth interface based on the wake-up frame
  • the PDCCH that is sent by the network device by using the second interface, where the PDCCH is used for scheduling transmission of DL data of the terminal device, where the PDCCH includes a timing advance TA, and the TA is The network device is measured based on the wake up confirmation message.
  • the UE After the UE configured with the WUR is awake by the base station, the UE obtains the DL data scheduling information and the TA from the PDCCH at the same time, which reduces the delay and signaling overhead of the TA acquisition process. On the other hand, after receiving the wake-up frame, the UE sends a WU-ACK to the base station, so that the base station determines that the UE has been successfully awake based on the WU-ACK, and then the base station sends the DL data again, thereby avoiding resource waste caused by the base station blindly transmitting the DL data. .
  • the method after the terminal device receives the PDCCH sent by the network device by using the second interface, by using the fourth interface, the method includes:
  • the terminal device sends a data response message to the fourth interface of the network device by using the fourth interface, where the data response message is used to confirm the DL data, and the data response message is transmitted by using the TA.
  • the TA obtained by the UE from the PDCCH can be used for the UL response of the subsequent DL data, avoiding the reliability reduction of the UL response transmission caused by using the inaccurate TA.
  • the terminal device sends the WU-ACK to the first interface of the network device by using the third interface, or the terminal device sends the WU-ACK to the second interface of the terminal device by using the fourth interface.
  • the UE can only send the WU-ACK through the primary communication interface. If the WUR interface supports the sending capability, the WU-ACK can also be sent through the WUR interface.
  • the terminal device sends the WU-ACK to the network device on the first resource, where the first resource is a standard pre-defined, or the first resource is configured by the network device to the terminal device.
  • the transmission resource used by the UE to transmit the WU-ACK may be standard pre-defined or configured by the base station to the UE.
  • a time domain position of the first resource is a time offset from a time domain position of the wake-up frame, where T is standard pre-defined, or the T is the network device configured to the terminal device.
  • the UE may also be a fixed time offset T between receiving the wake-up frame and transmitting the corresponding WU-ACK in the present application.
  • T can be standard pre-defined or base station configured.
  • the terminal device reports a wake-up time to the network device, so that the network device is based on the wake-up time.
  • the wake-up time is a time required by the terminal device to enter the working state from receiving the wake-up frame to the fourth interface.
  • the wake-up times of different UEs may be different.
  • the UE may report its wake-up time to the base station, so that the base station determines the T value of the UE based on the information.
  • the longer the wake-up time of the UE the larger the corresponding T value, because the UE needs to spend more time to wake up its own main communication interface.
  • the terminal device sends the WU-ACK to the network device on a first resource, where the first resource is indicated by the network device in the illustrated wake-up frame.
  • the base station may indicate a transmission resource of the corresponding WU-ACK, that is, the first resource, in the wake-up frame.
  • the information included in the awake frame may be a time domain and/or a frequency domain resource allocation of the first resource, or may be a resource index of the first resource, or the foregoing T value corresponding to the first resource.
  • the first resource is a PRACH resource, or a Grant-free resource, or a WU-ACK dedicated resource.
  • the resource for transmitting the WU-ACK may be a PRACH resource or a Grant-free resource resource, or may be a dedicated resource specially designed for the WU-ACK, that is, a WACH resource.
  • the terminal device sends the WU-ACK to the network device on a first resource, where the first resource has a one-to-one correspondence with the terminal device.
  • the transmission resource that sends the WU-ACK has a one-to-one correspondence with the UE, so that when receiving a WU-ACK, the base station can determine which UE sends the WU-ACK according to the resource that carries the WU-ACK. Based on this, the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the terminal device sends the WU-ACK to the network device, where the WU-ACK includes a signal sequence, and the signal sequence has a one-to-one correspondence with the terminal device.
  • the WU-ACK transmitted by different UEs corresponds to different orthogonal signal sequences, which enables the base station to determine which UE transmits the WU-ACK based on the received signal sequence of the WU-ACK. Based on this, the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the method in this embodiment may enable multiple UEs to multiplex the same time-frequency resource to transmit a WU-ACK signal, that is, distinguish the UE by using a code division method, which is beneficial to save transmission resources. Since the right item refers to the previous weight, different UEs having different WU-ACK signal sequences may also be combined with the first resource. In other words, the base station may distinguish the UE based on the first resource and the WU-ACK signal sequence.
  • the terminal device before the terminal device sends the WU-ACK to the network device, the terminal device receives the signal sequence configured by the network device.
  • Different UEs have different WU-ACK signal sequences, so the base station must configure corresponding orthogonal sequences for the UE through signaling.
  • the third interface of the UE is WUR, and the fourth interface is the main communication interface.
  • the former is used to receive the wake-up signal, and the power consumption is low, which is convenient for the UE to save power; the latter can be used for data communication after being woken up, and the power consumption is high, but the transmission rate is also high.
  • a network device comprising:
  • the transceiver is configured to receive and send data
  • the memory is configured to store an instruction
  • the processor configured to execute the instructions in the memory, perform the method of any of embodiments 1-14.
  • the transceiver comprising:
  • the transmitter is configured to send the wake-up frame according to any one of Embodiments 1-14, the DL data or the PDCCH;
  • the receiver is configured to receive the WU-ACK and the data response message as described in any of Embodiments 1-14.
  • a terminal device comprising:
  • a processor a memory, a transceiver, and a receiver, the transceiver being in an off state, the receiver being in an active state or an intermittent activation state;
  • the transceiver is configured to receive and send data
  • the memory is for storing instructions
  • the processor is operative to execute the instructions in the memory, performing the method of any of embodiments 15-26.
  • the terminal device of embodiment 30 or 31, the transceiver comprising:
  • the transmitter is configured to send the WU-ACK and the data response message as described in any one of Embodiments 15-26;
  • the receiver is configured to receive the PDCCH and the DL data as described in any of Embodiments 15-26.
  • a method for synchronizing uplink transmission the method being applied to a network device and a terminal device, where the network device includes a first interface and a second interface, where the terminal device includes a third interface and a fourth interface, where the An interface and the third interface communicate by using a first communication manner, and the second interface and the fourth interface communicate by using a second communication manner;
  • the method includes:
  • the network device sends a wake-up frame to the third interface of the terminal device by using the first interface, so that the terminal device wakes up the fourth interface;
  • the network device receives a WU-ACK sent by the terminal device.
  • the base station After receiving the WU-ACK of the UE, the base station determines that the UE has been successfully awake, and then transmits the DL data, thereby avoiding waste of resources caused by the base station blindly transmitting the DL data.
  • the receiving, by the network device, the WU-ACK sent by the terminal device including:
  • the UE can only send the WU-ACK through the primary communication interface. If the WUR interface supports the sending capability, the WU-ACK can also be sent through the WUR interface.
  • the receiving, by the network device, the WU-ACK sent by the terminal device including:
  • the network device Receiving, by the network device, the WU-ACK sent by the terminal device on a first resource, where the first resource is a standard predefined, or the first resource is configured by the network device to the terminal device .
  • the transmission resource used by the UE to transmit the WU-ACK may be standard pre-defined or configured by the base station to the UE.
  • a time domain position of the first resource is a time offset from a time domain position of the wake-up frame, where T is a standard predefined, or the T is the
  • the network device is configured to the terminal device.
  • the UE may also be a fixed time offset T between receiving the wake-up frame and transmitting the corresponding WU-ACK in the present application.
  • T can be standard pre-defined or base station configured.
  • the network device before the network device configures the T for the terminal device, the network device receives a wake-up time reported by the terminal device, and the network device is based on the wake-up time. Determining the T, the wake-up time is a time required by the terminal device to enter the working state from receiving the wake-up frame to the fourth interface.
  • the wake-up times of different UEs may be different.
  • the UE may report its wake-up time to the base station, so that the base station determines the T value of the UE based on the information.
  • the longer the wake-up time of the UE the larger the corresponding T value, because the UE needs to spend more time to wake up its own main communication interface.
  • the network device receives the WU-ACK sent by the terminal device on a first resource, where the first resource is indicated by the network device in the illustrated wake-up frame.
  • the base station may indicate a transmission resource of the corresponding WU-ACK, that is, the first resource, in the wake-up frame.
  • the information included in the awake frame may be a time domain and/or a frequency domain resource allocation of the first resource, or may be a resource index of the first resource, or the foregoing T value corresponding to the first resource.
  • the first resource is a PRACH resource, or a Grant-free resource, or a WU-ACK dedicated resource.
  • the resource for transmitting the WU-ACK may be a PRACH resource or a Grant-free resource resource, or may be a dedicated resource specially designed for the WU-ACK, that is, a WACH resource.
  • the network device receives the WU-ACK sent by the terminal device on a first resource, where the first resource has a one-to-one correspondence with the terminal device.
  • the transmission resource that sends the WU-ACK has a one-to-one correspondence with the UE, so that when receiving a WU-ACK, the base station can determine which UE sends the WU-ACK according to the resource that carries the WU-ACK. Based on this, the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the network device receives the WU-ACK sent by the terminal device, where the WU-ACK includes a signal sequence, and the signal sequence has a one-to-one correspondence with the terminal device.
  • the WU-ACK transmitted by different UEs corresponds to different orthogonal signal sequences, which enables the base station to determine which UE transmits the WU-ACK based on the received signal sequence of the WU-ACK. Based on this, the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the method in this embodiment may enable multiple UEs to multiplex the same time-frequency resource to transmit a WU-ACK signal, that is, distinguish the UE by using a code division method, which is beneficial to save transmission resources. Since the right item refers to the previous weight, different UEs having different WU-ACK signal sequences may also be combined with the first resource, in other words. Said that the base station can distinguish the UE based on the first resource and the WU-ACK signal sequence.
  • the network device configures the signal sequence to the terminal device.
  • Different UEs have different WU-ACK signal sequences, so the base station must configure corresponding orthogonal sequences for the UE through signaling.
  • the network device after the network device receives the WU-ACK sent by the terminal device, the network device is based on the first resource and the terminal device Corresponding relationship, or determining the terminal device based on a correspondence between the signal sequence and the terminal device.
  • the base station must be able to determine the transmitting UE based on the received WU-ACK to determine which UE to transmit DL data to. For the UE to bind the WU-ACK transmission resource, the base station determines the corresponding UE based on the transmission resource where the received WU-ACK is located; and for the UE to bind the orthogonal sequence, the base station includes the positive based on the received WU-ACK. The signal sequence is handed over to determine the corresponding UE.
  • the network device after the network device receives the WU-ACK sent by the terminal device, the network device is based on the first resource, and the signal sequence Determining the terminal device in correspondence with the terminal device.
  • the base station determines the corresponding UE based on the transmission resource in which the received WU-ACK is located and the orthogonal sequence included in the WU-ACK.
  • the third interface of the UE is WUR, and the fourth interface is the main communication interface.
  • the former is used to receive the wake-up signal, and the power consumption is low, which is convenient for the UE to save power; the latter can be used for data communication after being woken up, and the power consumption is high, but the transmission rate is also high.
  • a method for synchronizing uplink transmission the method being applied to a network device and a terminal device, where the network device includes a first interface and a second interface, where the terminal device includes a third interface and a fourth interface, where the An interface and the third interface communicate by using a first communication manner, and the second interface and the fourth interface communicate by using a second communication manner;
  • the method includes:
  • the terminal device wakes up the fourth interface based on the wake-up frame
  • the terminal device sends a WU-ACK to the network device.
  • the UE After receiving the wake-up frame, the UE sends a WU-ACK to the base station, so that the base station determines that the UE has been successfully awake based on the WU-ACK, and then the base station sends the DL data again, thereby avoiding waste of resources caused by the base station blindly transmitting the DL data.
  • the terminal device sends a WU-ACK to the network device, including:
  • the terminal device sends the WU-ACK to the first interface of the network device by using the third interface, or the terminal device sends the WU-ACK to the second interface of the terminal device by using the fourth interface.
  • the UE can only send the WU-ACK through the primary communication interface. If the WUR interface supports the sending capability, the WU-ACK can also be sent through the WUR interface.
  • the terminal device sends the WU-ACK to the network device on the first resource, where the first resource is a standard pre-defined, or the first resource is configured by the network device to the terminal device.
  • the transmission resource used by the UE to transmit the WU-ACK may be standard pre-defined or configured by the base station to the UE.
  • the terminal device sends a WU-ACK to the network device, including:
  • a time domain position of the first resource is a time offset from a time domain position of the wake-up frame, where T is standard pre-defined, or the T is the network device configured to the terminal device.
  • the UE may also be a fixed time offset T between receiving the wake-up frame and transmitting the corresponding WU-ACK in the present application.
  • T can be standard pre-defined or base station configured.
  • the terminal device reports a wake-up time to the network device, so that the network device is based on the wake-up time.
  • the wake-up time is a time required by the terminal device to enter the working state from receiving the wake-up frame to the fourth interface.
  • the wake-up times of different UEs may be different.
  • the UE may report its wake-up time to the base station, so that the base station determines the T value of the UE based on the information.
  • the longer the wake-up time of the UE the larger the corresponding T value, because the UE needs to spend more time to wake up its own main communication interface.
  • the terminal device sends the WU-ACK to the network device on a first resource, where the first resource is indicated by the network device in the illustrated wake-up frame.
  • the base station may indicate a transmission resource of the corresponding WU-ACK, that is, the first resource, in the wake-up frame.
  • the information included in the awake frame may be a time domain and/or a frequency domain resource allocation of the first resource, or may be a resource index of the first resource, or the foregoing T value corresponding to the first resource.
  • the first resource is a PRACH resource, or a Grant-free resource, or a WU-ACK dedicated resource.
  • the resource for transmitting the WU-ACK may be a PRACH resource or a Grant-free resource resource, or may be a dedicated resource specially designed for the WU-ACK, that is, a WACH resource.
  • the terminal device sends the WU-ACK to the network device on a first resource, where the first resource has a one-to-one correspondence with the terminal device.
  • the transmission resource that sends the WU-ACK has a one-to-one correspondence with the UE, so that when receiving a WU-ACK, the base station can determine which UE sends the WU-ACK according to the resource that carries the WU-ACK. Based on this, the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the terminal device sends the WU-ACK to the network device, where the WU-ACK includes a signal sequence, and the signal sequence has a one-to-one correspondence with the terminal device.
  • the WU-ACK transmitted by different UEs corresponds to different orthogonal signal sequences, which enables the base station to determine which UE transmits the WU-ACK based on the received signal sequence of the WU-ACK. Based on this, the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the method in this embodiment may enable multiple UEs to multiplex the same time-frequency resource to transmit a WU-ACK signal, that is, distinguish the UE by using a code division method, which is beneficial to save transmission resources. Since the right item refers to the previous weight, different UEs having different WU-ACK signal sequences may also be combined with the first resource. In other words, the base station may distinguish the UE based on the first resource and the WU-ACK signal sequence.
  • the terminal device before the terminal device sends the WU-ACK to the network device, the terminal device receives the signal sequence configured by the network device.
  • Different UEs have different WU-ACK signal sequences, so the base station must configure corresponding orthogonal sequences for the UE through signaling.
  • the third interface of the UE is WUR, and the fourth interface is the main communication interface.
  • the former is used to receive the wake-up signal, and the power consumption is low, which is convenient for the UE to save power; the latter can be used for data communication after being woken up, and the power consumption is high, but the transmission rate is also high.
  • a network device comprising:
  • the transceiver is configured to receive and send data
  • the memory is configured to store an instruction
  • the processor configured to execute the instructions in the memory, perform the method of any of embodiments 33-45.
  • the transceiver comprising:
  • the transmitter is configured to send a wake-up frame as described in any of Embodiments 33-45;
  • the receiver is configured to receive the WU-ACK as described in any of embodiments 33-45.
  • the network device of embodiment 57 the network device further comprising a transmitter for transmitting a wake frame frame as described in any of embodiments 33-45.
  • a terminal device comprising:
  • a processor a memory, a transceiver, and a receiver, the transceiver being in an off state, the receiver being in an active state or an intermittent activation state;
  • the transceiver is configured to receive and send data
  • the memory is for storing instructions
  • the processor is operative to execute the instructions in the memory, performing the method of any of embodiments 46-56.
  • the terminal device of embodiment 60 or 61, the transceiver comprising:
  • the transmitter is operative to transmit the WU-ACK as described in any of embodiments 46-56.
  • a computer program product comprising a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 1-14.
  • a computer program product comprising a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 15-26.
  • a computer program product comprising a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 33-45.
  • a computer program product comprising a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 46-56.
  • a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 1-14.
  • a computer program that, when executed on a computer unit, causes the computer unit to be The method of any of embodiments 15-26.
  • a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 33-45.
  • a computer program which, when executed on a computer unit, causes the computer unit to implement the method of any of embodiments 46-56.
  • a network device configured to perform the method of any of embodiments 1-14.
  • a terminal device configured to perform the method of any of embodiments 15-26.
  • a network device configured to perform the method of any of embodiments 33-45.
  • a terminal device configured to perform the method of any of embodiments 46-56.
  • a chip comprising: a processing module and a communication interface, the processing module being operative to perform the method of any of embodiments 1-14.
  • the chip of embodiment 75 the chip further comprising a memory module, the memory module for storing instructions, the processing module for executing the memory stored instructions, and for storing in the memory Execution of the instructions causes the processing module to perform the method of any of embodiments 1-14.
  • a chip comprising: a processing module and a communication interface, the processing module being operative to perform the method of any of embodiments 15-26.
  • a chip comprising: a processing module and a communication interface, the processing module being operative to perform the method of any of embodiments 33-45.
  • a chip comprising: a processing module and a communication interface, the processing module being operative to perform the method of any of embodiments 46-56.
  • the chip of embodiment 81 the chip further comprising a storage module, the storage module is configured to store an instruction, the processing module is configured to execute the instruction stored by the memory, and is stored in the memory Execution of the instructions causes the processing module to perform the method of any of embodiments 46-56.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 1-14.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 15-26.
  • a communication system comprising the terminal device of any of embodiments 15-26 and the network device of any of embodiments 1-14.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 33-45.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 46-56.
  • a communication system comprising the terminal device of any of embodiments 46-56 and the network device of any of embodiments 33-45.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of communication between a base station and a UE according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an intermittently active state of a WUR interface of a UE according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a general signaling of communication between a base station and a UE according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a base station and a UE communicating through a WUR interface and a main communication interface according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a non-contention based random access procedure according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a structure of an RAR according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a contention-based random access procedure according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of a communication method according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a base station and a UE communicating through a WUR interface and a main communication interface according to another embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a communication apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a chip according to another embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • the first communication device is the transmitting end of the wake-up signal
  • the second communication device is the receiving end of the wake-up signal.
  • the first communication device may be a network device, and the network device is, for example, a base station; and the second communication device may be a terminal device, such as a mobile phone, a sensor, or the like.
  • the first communication device may be a terminal device, for example, the terminal device is a mobile phone or the like; and the second communication device may also be a terminal device, for example, the first communication device is a mobile phone or the like, and the second communication device is a smart watch or a hand.
  • the first communication device is a smart watch, a wristband, etc.
  • the second communication device is a mobile phone or the like.
  • the first communication device may be a terminal device, such as a mobile phone
  • the second communication device may be a network device, such as a base station. It should be noted that the embodiment is not limited to the above product form.
  • the solution of the present application will be described below with the first communication device as a network device and the second communication device as a terminal device.
  • the communication system includes a network device and at least one terminal device, the network device including, for example, a radio access network device.
  • the terminal is connected to the wireless access network device by means of a wireless connection, and the wireless access network device is connected to the core network device by wireless or wired.
  • the core network device and the radio access network device may be independent physical devices, or may be functions of the core network device and the logic of the wireless access network device.
  • the functions are integrated on the same physical device, and may also be a function of integrating some core network devices and a part of the functions of the wireless access network device on one physical device.
  • the terminal device can be fixed or mobile.
  • the communication system may further include other network devices, such as a wireless relay device and a wireless backhaul device, which are not shown in FIG. 1.
  • the embodiment of the present application does not limit the number of core network devices, radio access network devices, and terminals included in the communication system.
  • the radio access network device is a network device that the terminal accesses to the communication system in a wireless manner, and may be a base station NodeB, an evolved base station eNodeB, a base station in a 5G communication system, a base station in a future communication system, or a connection in a WiFi system.
  • the specific technology and the specific device configuration adopted by the network device are not limited in the embodiment of the present application.
  • the terminal device may also be called a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), or the like.
  • the terminal can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, and an industrial control.
  • Wireless terminal wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless terminal in transportation safety, wisdom A wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • Radio access network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or on-board; they can also be deployed on the water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the application scenarios of the radio access network device and the terminal device are not limited.
  • the embodiments of the present application can be applied to downlink signal transmission, and can also be applied to uplink signal transmission, and can also be applied to device to device (D2D) signal transmission.
  • the transmitting device is a radio access network device, and the corresponding receiving device is a terminal device.
  • the transmitting device is a terminal device, and the corresponding receiving device is a wireless access network device.
  • the transmitting device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • the radio access network device and the terminal device and the terminal device and the terminal device and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously pass the licensed spectrum and Authorize the spectrum for communication.
  • Communication between the radio access network device and the terminal device and between the terminal device and the terminal device may be performed through a spectrum of 6 gigahertz (GHz) or less, or may be communicated through a spectrum of 6 GHz or higher, or may be used below 6 GHz.
  • the spectrum communicates with the spectrum above 6 GHz.
  • the embodiment of the present application does not limit the spectrum resources used between the radio access network device and the terminal device.
  • the application scenario of the present application is described below with the network device as the base station, that is, the first communication device is the base station, and the terminal device is the UE, that is, the second communication device is the UE.
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • a base station may perform data transmission with a UE.
  • the base station can transmit wake-up signals, such as wake-up frames and synchronization frames; the UE can receive the wake-up signal sent by the base station.
  • the UE is configured with a WUR interface (which may also be referred to as a WUR module) and a primary communication interface (which may also be referred to as a primary communication module), and the UE may receive a wake-up signal sent by the base station through the WUR interface.
  • the base station may perform the following embodiments of the present application with the at least one UE, where three UEs are shown in FIG. 2, for example, UE1, UE2, and UE3, but the embodiment is not limited thereto.
  • FIG. 3 is a schematic diagram of communication between a base station and a UE according to an embodiment of the present application.
  • the primary communication interface of the UE is usually in a closed state.
  • Receive a trigger signal from the UE's WUR interface The primary communication interface is activated and then communicates with the base station via the primary communication interface.
  • the trigger signal may be an interrupt signal sent by the WUR interface to the main communication interface, and is used to trigger the main communication interface to enter an active state.
  • the trigger signal is an internal signal of the UE, and may be transmitted by wire or wirelessly. It should be noted that the foregoing WUR interface sends a trigger signal to the main communication interface. In an actual system, the WUR interface can also forward the received wake-up signal to the processor of the UE, and the processor of the UE determines whether to wake up. The main communication interface, at this time, the trigger signal is actually sent by the processor, or is indicated by the processor to other modules.
  • the WUR interface of the UE may be continuously in the receiving state, or may be intermittently in the receiving state.
  • the WUR interface of the UE receives the wake-up signal from the base station in the receiving state, such as a wake-up packet (also referred to as a wake-up frame,
  • a trigger signal is sent to the main communication interface to wake up the main communication interface in the closed state, so that the main communication interface enters the working state, and then performs the main communication interface with the base station through the wake-up main communication interface.
  • the base station may logically include a primary communication interface and a WUR interface.
  • the primary communication interface is often an OFDM broadband transmitter, and the wake-up signal may be a narrowband signal (to reduce the WUR interface of the UE).
  • Receive power consumption for cost reduction and structural simplicity, OFDM wideband transmitters can be utilized to generate narrowband wake-up signals.
  • a partial subcarrier of an OFDM signal is vacant and only transmits a signal on a narrowband corresponding to the wakeup signal, thereby generating a narrowband signal, which is an example of generating a WUR narrowband signal by using an OFDM wideband transmitter. Therefore, the primary communication interface of the base station and the WUR The interface can also be the same interface (that is, the same module). In this case, the base station shown in FIG.
  • the base station can also implement the main communication interface and the WUR interface separately, that is, the base station side can also include two interfaces, which are a main communication interface and a WUR interface.
  • the base station and the UE shown in FIG. 3 have only one antenna. This is mainly considering that the same communication antenna and the WUR interface can share the same antenna in the case of using the same or close frequency band carrier, thereby saving cost and simplifying the device structure. Of course, it is obviously feasible to use different antennas for the main communication interface and the WUR interface, respectively.
  • the two antennas should be configured with different antennas.
  • the primary communication interface uses the 6 GHz band and the WUR interface uses the 1.8 GHz band, where both antennas should use different antennas.
  • the UE uses the WUR interface to receive signals and can reduce power consumption by using the main communication interface.
  • the main reason is that the receiving and decoding of the wake-up signal is much simpler than the traditional main communication interface signal.
  • the wake-up signal is usually modulated by a receiver that is easy to receive, such as on-off key (OOK) modulation, frequency-shift keying (FSK) modulation, and amplitude shift keying (Amplitude shift keying). ASK) modulation, etc.
  • OOK modulation on-off key
  • FSK frequency-shift keying
  • Amplitude shift keying amplitude shift keying
  • ASK amplitude shift keying
  • the signal of the traditional main communication interface (such as the signal of LTE/NR) adopts Orthogonal Frequency Division Multiplexing (OFDM) modulation, Turbo/LDPC/Polar channel coding, etc. at the transmitting end, and accordingly, receives
  • the terminal (such as the UE) needs to perform complex signal processing operations such as FFT and FEC decoding, which require a lot of energy.
  • Another way to implement a low power WUR is to use a passive receiver, such as Near Field Communication (NFC), at the receiving end (such as a UE).
  • NFC Near Field Communication
  • the primary communication interface of the UE and the base station in FIG. 3 may also be other communication interfaces, such as WiFi, BlueTooth. Interfaces for data communication, collectively referred to as the main communication interface or main communication module (main radio), such as LTE, NR, WiFi interfaces; interfaces for device wake-up, collectively referred to as wake-up radio interface (WUR interface) or wake-up radio interface ( WUR interface). For cost-saving and simplified design considerations, the UE's WUR interface often only supports the receiving capability of the wake-up signal without supporting the transmission capability.
  • main radio main communication module
  • WUR interface wake-up radio interface
  • WUR interface wake-up radio interface
  • WUR interface wake-up radio interface
  • the WUR interface can be intermittently activated, and the time window in which the UE's WUR interface is active is called a Wakeup window.
  • the appearance of such an awake window should be regular so that the base station can know when the WUR interface of the UE can receive the wake-up signal.
  • the WUR interface is active for 2ms every 100ms.
  • a wake-up signal (such as a wake-up packet) may be sent in the awake window of the UE, thereby waking up the primary communication interface of the UE, which can save power consumption.
  • the start time, window duration, and period of the awake window may be preset (for example, predefined by communication standards) or may be configured by the base station.
  • the awake window may not be introduced, that is, the WUR interface of the UE is always in the listening state, which makes the base station wake up the UE at any time, which is beneficial to reduce the wakeup delay.
  • the receiving end (such as the UE) of the wake-up signal needs to configure the WUR interface.
  • the above wake-up signal is a general term for all signals that can be received and decoded by the WUR interface.
  • the wake-up signal may be the aforementioned wake-up frame or other frames.
  • the WUR is introduced in the NR, that is, the NR UE is configured with the WUR interface, and when the base station has no data to send to the UE and the UE has no data transmission, the primary communication interface (such as NR/LTE/CDMA/GSM, etc.) of the UE is in the closed state. And the WUR interface is active or intermittently activated as shown in Figure 4.
  • the base station When the base station has data to send to the UE, it first sends a wake-up frame to the WUR interface of the UE, so that the UE wakes up its own primary communication interface, and then the base station schedules the DL data transmission of the UE.
  • the general signaling flow is shown in FIG. 5.
  • the PDCCH is sent to the primary communication interface of the UE through the primary communication interface, where the DL transmission scheduling information, that is, the resource used for the subsequent DL data transmission and the related transmission parameters are used.
  • the base station sends a PDSCH to the primary communication interface of the UE through the primary communication interface, where the downlink data is carried.
  • the UE sends a PUCCH to the base station for carrying a response for the DL data, that is, ACK/NACK information.
  • the wake-up signal is WUR interface signaling
  • other messages are the primary communication interface signaling after the primary communication interface of the UE is woken up.
  • the first communication interface (for example, the base station) is configured with a first interface and a second interface, where the first interface may be referred to as a WUR interface, and the second interface may be referred to as a primary communication interface; a wake-up signal
  • the receiving end that is, the second communication device (for example, the UE), configures the third interface and the fourth interface, wherein the third interface may be referred to as a WUR interface, and the fourth interface may be referred to as a primary communication interface.
  • the above WUR interface may also be referred to as a WUR module, and the main communication interface may also be referred to as a main communication module.
  • the base station sends a wake-up signal to the WUR module of the UE through the WUR interface, and the UE receives the wake-up signal sent by the base station through the WUR interface; the base station communicates with the primary communication interface of the UE through the primary communication interface.
  • FIG. 6 is a flowchart of a communication method according to an embodiment of the present disclosure.
  • a first communication device is used as a base station
  • a second communication device is a UE
  • a wake-up signal is used as a wake-up frame.
  • the method of this embodiment may include:
  • the base station sends a wake-up frame to the UE by using a WUR interface of the base station.
  • the UE receives the wake-up frame sent by the base station by using the WUR interface of the UE.
  • the base station includes a first interface and a second interface, where the first interface is a WUR interface, and the second interface is a primary communication interface.
  • the UE includes a third interface and a fourth interface, where the third interface is a WUR interface, and the fourth interface is a primary communication interface.
  • the WUR interface of the base station communicates with the WUR interface of the UE
  • the primary communication interface of the base station communicates with the primary communication interface of the UE.
  • the communication mode of the WUR interface of the base station and the WUR interface of the UE is the first communication mode
  • the communication mode of the primary communication interface of the base station and the primary communication interface of the UE is the second communication mode
  • the first communication mode is This second communication method is different.
  • the WUR interface of the UE and the primary communication interface of the UE are different physical interfaces.
  • the WUR interface of the UE is a receiver
  • the primary communication interface of the UE is a transceiver.
  • the WUR interface of the base station is integrated with the primary communication interface of the base station as the same physical interface.
  • the WUR interface of the base station and the primary communication interface of the base station are integrated into the same transceiver.
  • the WUR interface and the primary communication interface of the base station are two logical interfaces.
  • the WUR interface of the base station and the primary communication interface of the base station are different physical interfaces, for example: in hardware
  • the WUR interface of the base station is a transmitter
  • the primary communication interface of the base station is a transceiver.
  • the base station when the base station needs to transmit data with the UE, the base station needs to send a wake-up frame to the UE to wake up the primary communication interface of the UE. Therefore, the base station sends a wake-up frame to the UE through the WUR interface of the base station, where the wake-up frame is used to wake up the primary communication interface of the UE; that is, the base station sends the wake-up frame to the WUR interface of the UE through the WUR interface of the base station.
  • the UE receives the wake-up frame sent by the base station (the WUR interface of the base station) through the WUR interface of the UE.
  • the UE wakes up the primary communication interface of the UE according to the wake-up frame.
  • the UE receives the wake-up frame sent by the base station, where the wake-up frame is used to wake up the main communication module, and the main communication module of the current UE is in the off state, and then the UE wakes up the main communication module according to the wake-up frame, so that the main communication module Enter the working state.
  • the identifier of the target UE may also be included in the wake-up frame, where the target UE is a UE that the base station wants to wake up. After receiving the wake-up frame, a UE may determine whether it is the target wake-up device of the wake-up frame based on the identifier of the target UE carried therein. If so, the UE wakes up the primary communication interface, otherwise the wake-up frame is ignored.
  • the target UE identifier included in the wake-up frame may indicate one UE, and may also indicate a group of UEs.
  • the wake-up object of the wake-up frame can be either a device or a group of devices. For the latter, as long as the UE determines that it is one of the set of devices, it considers itself to be the target wake-up device for the wake-up frame.
  • the UE sends a WU-ACK to the base station by using a primary communication interface of the UE.
  • the base station receives the WU-ACK sent by the UE by using a primary communication interface of the base station.
  • the UE after the UE wakes up the primary communication interface of the UE, the UE sends a WU-ACK to the base station, where the WU-ACK is used to indicate that the UE successfully receives the wake-up frame and has awake the primary communication interface of the UE.
  • the base station receives the WU-ACK sent by the UE, and determines that the primary communication interface of the UE has successfully awake according to the WU-ACK, so the primary communication interface of the base station can communicate with the primary communication interface of the UE.
  • the UE may send a WU-ACK to the base station (the primary communication interface of the base station) through the primary communication interface of the UE, and correspondingly, the base station may receive the UE (the primary communication interface of the UE) by using the primary communication interface of the base station.
  • WU-ACK That is, the WU-ACK is transmitted through the main communication interface, wherein FIG. 6 is shown in this implementation manner.
  • the base station and the UE communicate through the WUR interface and the main communication interface as shown in FIG. 7.
  • the UE may send a WU-ACK to the base station (the WUR interface of the base station) through the WUR interface of the UE, and correspondingly, the base station may receive the WU sent by the UE (the WUR interface of the UE) through the WUR interface of the base station.
  • ACK the WU-ACK is transmitted through the WUR interface, which means that if the WUR interface of the UE has the transmission capability, the WU-ACK can also be sent by the WUR interface of the UE.
  • the base station of the embodiment further sends downlink data to the UE (the primary communication interface of the UE) by using the primary communication interface of the base station, and correspondingly, the UE also receives the base station by using the primary communication interface of the UE.
  • the primary communication interface sends the downlink data.
  • the downlink data may be a PDSCH, a paging, a system message, or the like.
  • the base station determines, according to the received WU-ACK, that the primary communication interface of the UE has successfully awake, and then sends downlink data to the primary communication interface of the UE through the primary communication interface. Because the primary communication interface of the UE has successfully awake, the UE may The downlink data sent by the base station is received through the main communication interface, which improves the data transmission success rate and avoids waste of data transmission due to blind data transmission.
  • the base station sends a wake-up frame to the WUR interface of the UE through the WUR interface; the UE wakes up the primary communication interface of the UE according to the wake-up frame, and then sends a WU-ACK to the base station, where the UE successfully receives the wake-up frame and has Wake up the main communication interface.
  • the base station After receiving the WU-ACK of the UE, the base station determines that the UE has been successfully awake, and then sends downlink data to the UE, so as to prevent the UE from waking up the main communication interface (eg, the UE does not correctly receive the wake-up frame, or , the UE correctly receives the wake-up frame but the primary communication interface In the case where the port has not yet entered the working state, the base station blindly transmits downlink data to the UE and wastes resources.
  • the base station sends a PDSCH to the primary communication interface of the UE through the primary communication interface, where the downlink data is carried.
  • the UE sends a PUCCH to the base station to carry a response for the downlink data, that is, ACK/NACK information.
  • the problem is how the UE determines the Timing Advance (TA) used when transmitting the PUCCH carrying the ACK/NACK.
  • TA Timing Advance
  • the base station After the UE is awake from the last time, the base station communicates with the base station through the main communication interface until the wake-up is reached.
  • the base station may have communicated through the main communication interface for a long period of time, and the location of the UE may change greatly due to the movement.
  • the saved TA is no longer applicable to the transmission of the current PUCCH. Therefore, how to determine the appropriate TA is an urgent problem to be solved.
  • one way for the UE to acquire the TA is a random access procedure, specifically including contention based random access and non-contention based random access.
  • FIG. 8 is a schematic diagram of a non-contention based random access procedure according to an embodiment of the present disclosure.
  • the base station pre-configures a random access preamble (preamble) and a physical random number used to transmit a random access preamble.
  • a physical random access channel PRACH
  • PRACH physical random access channel
  • the UE's TA then, the base station sends a PDCCH to the UE, and the PDCCH is used to schedule downlink (DL) transmission resources to transmit a random access response (RAR); the base station then transmits the RAR on the scheduled DL transmission resource.
  • DL downlink
  • RAR random access response
  • the aforementioned TA is carried in the RAR.
  • the structure of the RAR is as shown in FIG. 9. Note that the PDCCH is not indicated in FIG.
  • FIG. 10 is a schematic diagram of a contention-based random access procedure according to an embodiment of the present disclosure.
  • a PRACH used for transmitting a random access preamble in a contention-based random access procedure is shared by multiple UEs.
  • the preamble that the UE selects is also indeterminate, and multiple UEs may simultaneously transmit the preamble on the same PRACH resource, thereby causing a preamble collision. Therefore, the contention-based random access procedure adds two new signalings based on the non-contention access-based random access procedure for collision resolution, and the UE's TA acquisition and random access based on non-competitive access.
  • the access procedure is exactly the same, that is, the base station estimates the TA of the UE based on the random access preamble sent by the receiving UE, and informs the UE in the RAR that the TA is carried in the RAR. Similarly, before the base station sends the RAR, the PDCCH needs to be sent to indicate the resource allocation of the RAR.
  • the structure of the RAR is shown in Figure 9.
  • the UE needs to obtain at least three signalings: a random access preamble, a PDCCH, and an RAR. Thereafter, the UE can perform uplink (UL) transmission based on the TA obtained from the RAR.
  • RAR is high-level signaling, and the transmission delay is large. Therefore, the above process of acquiring a TA may have a large signaling overhead and cause a large delay.
  • the UE obtains the TA. But over time, the UE's TA may change. If the UE is in the RRC_IDLE state, the random access procedure needs to be performed again; if the UE is in the RRC_CONNECTED state, the random access procedure does not need to be re-executed because the base station can be based on any signal sent by the UE (such as SRS) /DMRS/CQI/ACK/NACK/PUSCH, etc.) Estimate the TA of the UE.
  • SRS signal sent by the UE
  • the base station When the base station considers that the TA of a certain UE needs to be adjusted, it sends a Timing Advance Command MAC control element (TAC MAC CE) to the UE, where the TAC MAC CE carries a new TA.
  • TAC MAC CE Timing Advance Command MAC control element
  • the TAC MAC CE is usually carried on the PDSCH. Therefore, before the TAC MAC CE, the base station needs to first send a PDCCH for scheduling the resources used by the TAC MAC CE.
  • the solution only applies to the UE in the RRC_CONNECTED state, that is, the UE and the base station always have signaling interaction, and the UE working on the WUR interface and the primary communication interface is off does not have signaling interaction with the base station.
  • this scheme also has the problem of large signaling overhead and large delay.
  • the present invention provides a solution to the problem that the UE acquires the uplink of the UE after the UE is awake by the WUR.
  • a communication method is used to acquire the TA, so that the UE can quickly acquire the TA, thereby reducing the signaling overhead of the TA acquisition process and reducing the delay. The details are as follows.
  • FIG. 11 is a flowchart of a communication method according to another embodiment of the present application.
  • the first communication device is a base station
  • the second communication device is a UE
  • the wake-up signal is used as a wake-up frame.
  • the method of this embodiment may include:
  • the base station sends a wake-up frame to the UE by using a WUR interface of the base station.
  • the UE receives the wake-up frame sent by the base station by using the WUR interface of the UE.
  • the UE wakes up the primary communication interface of the UE according to the wake-up frame.
  • the UE sends a WU-ACK to the base station by using a primary communication interface of the UE.
  • the base station receives the WU-ACK sent by the UE by using a primary communication interface of the base station.
  • S204 and S205 in FIG. 11 are used to transmit the WU-ACK by using the primary communication interface.
  • the present embodiment is not limited thereto.
  • the WU-ACK may also be transmitted through the WUR interface.
  • the base station sends a PDCCH to the UE by using a primary communication interface of the base station.
  • the UE receives the PDCCH sent by the base station by using a primary communication interface of the UE.
  • the WU-ACK received by the base station in this embodiment may also be used to measure the TA of the UE. Therefore, after receiving the WU-ACK sent by the primary communication interface of the UE by using the primary communication interface of the base station, the base station measures the TA of the UE based on the WU-ACK. Then, the TA of the UE is carried in the PDCCH, and then the base station sends the PDCCH to the UE (the primary communication interface of the UE) through the primary communication interface.
  • the UE receives the PDCCH sent by the base station (the primary communication interface of the base station) through the primary communication interface of the UE; the PDCCH is used to schedule transmission of downlink data, for example, resource allocation and transmission parameters of the downlink data used by the PDCCH for scheduling the UE;
  • the PDCCH includes the TA, wherein the TA is obtained by the base station according to the WU-ACK.
  • the UE updates its saved TA, and the updated TA (that is, the received TA) can be used for PUCCH transmission, such as the PUCCH shown in FIG. 12, and can also be used for subsequent transmission of other data.
  • the bearer ACK/NACK is shown in the PUCCH in FIG. 12, where the ACK/NACK may be referred to as a data response message.
  • the WU-ACK in this embodiment may also be used for channel measurement and transmission parameter determination, that is, the base station measures the UL channel quality of the UE based on the WU-ACK, and determines the corresponding DL channel quality based on the channel reciprocity, thereby determining the DL transmission.
  • Transmission parameters such as MCS.
  • the WU-ACK can be a highly reliable signal waveform, such as a random access preamble in a random access procedure. Such a signal waveform has a large tolerance for timing deviation, and can be successfully detected by the base station with a large probability even if the TA is inaccurate, thereby improving the accuracy of the base station measurement and obtaining the TA.
  • the base station sends downlink data to the UE by using a primary communication interface of the base station.
  • the UE receives downlink data sent by the base station by using a primary communication interface of the UE.
  • the UE uses the TA to send a data response message to the base station by using a primary communication interface of the UE.
  • the base station receives a data response message sent by the UE by using a primary communication interface of the base station.
  • the UE after receiving the downlink data sent by the primary communication interface of the base station, the UE sends a data response message to the primary communication interface of the base station through the primary communication interface, and the UE adopts the PDCCH received in the foregoing S207.
  • the included TA sends a data response message.
  • the data response message is used to confirm whether the downlink data is successfully received.
  • the data response message may be an ACK, indicating that the UE has successfully received the downlink data; or the data response message may also be a NACK, indicating that the UE has not successfully received the downlink data.
  • the TA obtained by the UE from the PDCCH can be used for the data response message of the subsequent downlink data, which avoids the reliability reduction of the UL response transmission caused by using the inaccurate TA, and improves the reliability.
  • the base station after receiving the WU-ACK of the UE, determines that the primary communication interface of the UE has been successfully awake, and then sends the downlink data, thereby avoiding resource waste caused by the base station blindly transmitting downlink data.
  • the base station may also obtain the TA of the UE based on the WU-ACK measurement, and carry the TA in the PDCCH, and send the UE to the UE through the primary communication interface, and after the UE configured with the WUR interface is awake by the base station, the UE receives the information from the primary communication interface.
  • the downlink data scheduling information and the TA are simultaneously obtained in the PDCCH, which reduces the delay and signaling overhead of the TA acquisition process.
  • the UE sends a WU-ACK to the base station (for example, the primary communication interface of the base station) on the first resource (for example, through the primary communication interface), and accordingly, the base station (
  • the WU-ACK transmitted by the UE e.g., the primary communication interface of the UE
  • the first resource for example, through the primary communication interface.
  • the first resource is preset, such as defined in a communication standard, or the first resource is a base station configured for the UE.
  • the base station and the UE may be based on the time offset and the time domain of the wake-up frame
  • the location determines the time domain location of the first resource.
  • the time offset is preset, or the time offset is configured by the base station to the UE.
  • the base station configures the time offset for the UE (the primary communication interface of the UE) through the primary communication interface in advance, or the base station indicates the time offset in the wake-up frame.
  • the UE further sends a wake-up time to the base station (the primary communication interface of the base station) by using the primary communication interface of the UE, where the wake-up time is required for the UE to enter the working state from the receiving the wake-up frame to the primary communication interface of the UE.
  • the base station receives the wake-up time sent by the UE through the primary communication interface, and then the base station determines the time offset according to the wake-up time, for example, the time offset is greater than or equal to the wake-up time to ensure that the first resource arrives.
  • the UE's main communication interface has entered the working state, it can send WU-ACK.
  • the wake-up times of different UEs may be different.
  • the UE reports its wake-up time to the base station, so that the base station determines the time offset T corresponding to the UE based on the wake-up time.
  • the longer the wake-up time of the UE the larger the corresponding T value, because the UE needs to spend more time to wake up its own main communication interface.
  • the wake-up frame further includes: resource indication information, where the resource indication information is used to indicate a time domain location and/or a frequency domain location of the first resource.
  • the UE determines the first resource according to the resource indication information included in the wake-up frame.
  • the resource indication information may also be a resource index number.
  • the first resource has different resources for different resources.
  • the first resource may be a PRACH resource, that is, the resource that transmits the WU-ACK may multiplex the PRACH resource.
  • the PRACH resource may be preset, or the PRACH resource is configured by the base station to the UE.
  • the UE may send a WU-ACK on the PRACH resource configured by the base station.
  • the WU-ACK may be a random access preamble or a specially designed WU-ACK signal.
  • the PRACH resource may be shared by multiple UEs (contention based random access) or may be dedicated to the target UE (based on non-contention based random access). Since the PRACH resource is not always available, there may be a long period of time between the UE receiving the wake-up frame and the next PRACH resource opportunity, which may result in a large delay.
  • the first resource may be an unauthorized (Grant-free, also known as UL transmission without grant) Resources, that is, resources that transmit WU-ACKs, can use Grant-free resources.
  • Grant-free also known as UL transmission without grant
  • Resources that is, resources that transmit WU-ACKs, can use Grant-free resources.
  • the PRACH resource may be preset, or the PRACH resource is configured by the base station to the UE.
  • the base station needs to configure the Grant-free resource for the UE in advance.
  • the UE receives the wake-up frame of the base station, the UE sends a WU-ACK to the base station on the Grant-free resource configured by the base station.
  • Grant-free resources are generally shared by multiple UEs, and the wake-up frame does not always need to be sent (correspondingly, the UE does not always need to send WU-ACK), so the WU-ACK is transmitted using the Grant-free resource. Can effectively save WU-ACK transmission resources.
  • the Grant-free resource may be dedicated to transmitting WU-ACK, or may be shared by WU-ACK and UL data.
  • the first resource may be a dedicated transmission resource, which is called a WU-ACK dedicated resource, and may also be referred to as a wake-up response channel (WU-ACK Channel, WACH) resource.
  • WU-ACK dedicated resource a dedicated transmission resource
  • WACH wake-up response channel
  • the first resource is a WU-ACK dedicated resource
  • the WU-ACK dedicated resource is located at a fixed time-frequency location, and the time-frequency location may be preset, or the time-frequency location is configured by the base station to the UE.
  • a WU-ACK dedicated resource may be located in a specific frequency domain bandwidth of a specific subframe.
  • the WU-ACK dedicated resource is located on a specific frequency band in each subframe 3, or the WU-ACK dedicated resource is located on a specific frequency band of subframe 3 in the even system frame.
  • the WU-ACK dedicated resource belongs to the UL resource, so in the case of Time Division Duplexing (TDD), it can only be located in the UL subframe.
  • TDD Time Division Duplexing
  • the specific time domain and/or frequency domain resource allocation of the WACH resource may be semi-static configuration by the base station through RRC signaling, MAC CE or system message, or physical layer signaling such as DCI or group common DCI. Dynamic configuration.
  • the time domain location of the WU-ACK dedicated resource is located at a location offset by a time offset of the wake-up signal.
  • the base station sends a wake-up frame to the WUR interface of the UE through the WUR interface in the subframe n, and the corresponding WU-ACK dedicated resource is located in the subframe n+k.
  • k can be standard pre-defined or configured by the base station to the UE.
  • the UE may report the wake-up time of the primary communication interface to the base station (ie, the duration from when the UE receives the wake-up frame on the WUR interface to the active state of the primary communication interface), so that the base station can determine k.
  • the frequency domain location of the WU-ACK may be standard pre-defined, or may be configured by the base station (such as the base station is semi-statically configured to the UE through RRC signaling), or determined by other methods.
  • the base station sends the resource indication information in the wake-up frame sent by the WUR interface.
  • the resource indication information may directly indicate a WU-ACK dedicated resource, that is, directly indicate a time domain and/or a frequency domain location of the WU-ACK dedicated resource.
  • the resource indication information indicates the k in the second implementation manner described above.
  • the resource indication information may indirectly indicate a WU-ACK dedicated resource, that is, the UE needs to calculate a time domain and/or a frequency domain location of the WU-ACK resource based on the resource indication information and a predefined rule.
  • the indirect indication reference may be made to the method of calculating the PHICH resource location based on the UL resource-based minimum PRB index and the base station configured n DMRS in the existing communication standard, and details are not described herein again.
  • the size of the WU-ACK dedicated resource is configurable.
  • the base station semi-statically configures the size of the WU-ACK dedicated resource through RRC signaling, MAC CE, system message, etc. based on the number of current UEs; or, the base station dynamically configures the WU through physical layer signaling (such as DCI or group common DCI).
  • the base station indicates the size of the WU-ACK dedicated resource in the wake-up frame.
  • base station configuration to the UE is completed by interaction between the primary communication interface of the base station and the primary communication interface of the UE.
  • the base station sends a wake-up frame to one UE as an example, but In some application scenarios, the base station may send the wake-up frame to multiple UEs at the same time. Accordingly, the base station may receive the WU-ACK sent by multiple UEs at the same time, that is, the base station simultaneously receives multiple WU-ACKs, so the UE sends
  • the WU-ACK should enable the base station to determine which UE the WU-ACK is sent according to the WU-ACK, that is, determine the identity of the UE that sent the WU-ACK. In other words, the WU-ACK should directly or indirectly indicate the identity (UE ID) of the UE that sent the WU-ACK.
  • the mapping between the WU-ACK and the identity of the UE can be implemented in various ways. Specifically, the following implementation manners may exist, but the embodiment is not limited thereto.
  • the first resource has a one-to-one correspondence with the identifier of the UE; correspondingly, the base station may further be configured according to the first resource, and between the identifier of the first resource and the UE.
  • the one-to-one correspondence determines the identity of the UE, that is, determines the UE that sends the WU-ACK. Based on this, the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the base station may configure different WU-ACK transmission resources for different UEs, which are also referred to as a first resource (for example, a WU-ACK dedicated resource), and the following description is performed by using the first resource as a WU-ACK transmission resource, and receiving The WU-ACK transmission resource where the WU-ACK is located to identify the transmitting UE.
  • the WU-ACK transmission resource may be a time domain and/or a frequency domain resource. In this case, the signal sequences included in the WU-ACK of different UEs may be the same or different.
  • the base station needs to configure the WU-ACK transmission resource corresponding to each UE by using signaling, which may be RRC signaling/physical layer signaling/waking frame.
  • the base station and the UE may also determine the WU-ACK transmission resource corresponding to the UE by using a predefined rule.
  • the base station configures a WU-ACK transmission resource pool (for example, a WU-ACK dedicated resource pool) through RRC signaling/physical layer signaling, and the base station and the UE can calculate the UE based on the identifier of the UE (eg, C-RNTI) and a predefined rule.
  • the corresponding WU-ACK transmission resource in the WU-ACK transmission resource pool may be used to calculate the UE based on the identifier of the UE (eg, C-RNTI) and a predefined rule.
  • the WU-ACK transmission resource corresponding to the UE should be reserved to receive a possible incoming WU-ACK on the WU-ACK transmission resource.
  • the WU-ACK transmission resource corresponding to the UE may be scheduled by the base station for other purposes. For example, the base station can schedule the WU-ACK transmission resource to UL data transmissions of other UEs.
  • WU-ACK transmission resources need to be reserved for each UE, there may be more reserved WU-ACK transmission resources in the case of more UEs, but in reality, since these WU-ACK transmission resources are not always It is used, and the base station can use the WU-ACK transmission resource that is not currently used as the UL data transmission resource scheduling. In summary, in this embodiment, resources are not actually wasted because too many WU-ACK transmission resources are reserved.
  • the WU-ACK includes a signal sequence
  • the signal sequence has a one-to-one correspondence with the identifier of the UE
  • the base station may further perform the signal sequence included in the WU-ACK.
  • the base station can determine that the corresponding UE has been successfully awake, and can send DL data to the UE. This avoids the waste of resources caused by the base station blindly transmitting DL data without determining whether the UE is successfully awake.
  • the method in this embodiment may enable multiple UEs to multiplex the same time-frequency resource to transmit the WU-ACK, that is, distinguish the UE by the code division method, which is beneficial to save transmission resources.
  • the base station may also send signal sequence indication information to the UE (the primary communication interface of the UE) through the primary communication interface, the indication information being used to indicate the signal sequence.
  • the signal sequence indication information may be an index of the signal sequence.
  • the signal sequence may also be referred to as a WU-ACK signal sequence.
  • the base station may allocate different orthogonal sequences to the UE as a WU-ACK signal sequence in an explicit or implicit manner.
  • the base station is Different UEs configure different DMRS sequences and use the DMRS sequence as the WU-ACK signal sequence.
  • the base station may configure each UE with a corresponding WU-ACK signal sequence, such as a WU-ACK orthogonal sequence, by signaling, which may be RRC signaling or physical layer signaling.
  • signaling which may be RRC signaling or physical layer signaling.
  • the signaling may also be a wake-up frame, that is, the wake-up frame further includes the foregoing signal sequence indication information. Therefore, the signal sequence indication is sent by the base station to the UE through the WUR interface.
  • the WU-ACK transmission of different UEs may be multiplexed with the same time-frequency resource, that is, the WU-ACK transmission resources of different UEs may be the same, but different UEs may be distinguished by a signal sequence (eg, an orthogonal sequence) in the WU-ACK.
  • the user is beneficial to reduce the overhead of the WU-ACK transmission resource (ie, the first resource).
  • the WU-ACK includes a signal sequence
  • the first resource, the signal sequence, and the identifier of the UE have a corresponding relationship.
  • the base station may further be configured according to the first resource in which the received WU-ACK is located, the signal sequence included in the WU-ACK, and the correspondence between the first resource, the signal sequence, and the identifier of the UE.
  • the identity of the UE is determined, that is, the UE that transmits the WU-ACK is determined.
  • the base station may also send signal sequence indication information to the UE (the primary communication interface of the UE) through the primary communication interface, the indication information being used to indicate the signal sequence.
  • the signal sequence may also be referred to as a WU-ACK signal sequence.
  • the signal sequence included in the WU-ACK of a given length may also be referred to as a WU-ACK signal sequence, and the WU-ACK signal sequence may be an orthogonal sequence; wherein the number of available orthogonal sequences may be limited, and There may be many UEs with a WUR interface configured under one base station. The number of available orthogonal sequences may be much smaller than the number of UEs. In this case, the orthogonal sequence can be combined with the WU-ACK transmission resource to reuse the orthogonal sequence. In other words, different UE groups are bound to different WU-ACK transmission resources, and different WU-ACK transmission resources can use the same orthogonal sequence.
  • the WU-ACK transmission resource may be a time domain and/or a frequency domain resource.
  • the first group of UEs transmits the WU-ACK in the first WU-ACK transmission resource
  • the second group of UEs transmits the WU-ACK in the second WU-ACK transmission resource
  • this N orthogonal sequences can be multiplexed in two sets of UEs, while UEs in the same group cannot use the same orthogonal sequence. Since the two sets of UEs transmit WU-ACK on different WU-ACK transmission resources, even if the same orthogonal sequence is used as the WU-ACK signal sequence, the base station will not cause confusion when identifying different UEs.
  • the base station may configure a WU-ACK transmission resource associated with each UE and a signal sequence in the WU-ACK (for example, referred to as a WU-ACK orthogonal sequence) by signaling.
  • the signaling may be RRC signaling or physical layer signaling, or may be a wake-up frame.
  • the base station may also configure the WU-ACK transmission resource and the WU-ACK orthogonal sequence associated with each UE through different signaling. For example, the base station configures a WU-ACK transmission resource corresponding to the UE by using the first type of signaling in the RRC signaling/physical layer signaling/awake frame, and adopts the second type in the RRC signaling/physical layer signaling/waking frame.
  • the signaling configures a WU-ACK orthogonal sequence corresponding to the UE, and a different type of signaling of the first type of signaling and the second type of signaling. It should be noted that, in some embodiments, when the base station configures the WU-ACK transmission resource and the WU-ACK orthogonal sequence to the base station through the wake-up frame, the WUR interface is used.
  • the method or the step implemented by the first communication device may also be implemented by a chip inside the first communication device.
  • the method or step may be implemented by a second communication device, such as a base station, or by a chip internal to the second communication device.
  • FIG. 13 is a schematic structural diagram of a communication apparatus according to an embodiment of the present disclosure.
  • the communication apparatus of the present embodiment may include a sending module 1301 and a receiving module 1302.
  • the communication device of this embodiment further includes a first interface and a second interface, which are not shown in the figure.
  • the first interface is for communicating with a third interface of the second communication device
  • the second interface is for communicating with a fourth interface of the second communication device.
  • the sending module 1301 is configured to send, by using the first interface, a wake-up signal to the second communications device, where the wake-up A signal is used to wake up the fourth interface of the second communication device.
  • the receiving module 1302 is configured to receive a WU-ACK sent by the second communications device.
  • the receiving module 1302 is configured to: receive, by the first interface, the WU-ACK sent by the second communications device; or receive the second through the second interface. The WU-ACK transmitted by the communication device.
  • the sending module 1301 is further configured to: after the receiving module 1302 receives the WU-ACK sent by the second communications device, send the downlink to the second communications device by using the second interface. data.
  • the sending module 1301 is further configured to: after the receiving module 1302 receives the WU-ACK sent by the second communications device, send the PDCCH to the second communications device by using the second interface. And the PDCCH is used to schedule transmission of the downlink data, where the PDCCH includes a TA, and the TA is obtained by the first communications device according to the WU-ACK.
  • the receiving module 1302 is further configured to: receive, by using the second interface, a data response message sent by the second communications apparatus by using the TA, where the data response message is used to confirm whether the terminal is successfully received.
  • the downlink data is further configured to: receive, by using the second interface, a data response message sent by the second communications apparatus by using the TA, where the data response message is used to confirm whether the terminal is successfully received.
  • the receiving module 1302 is specifically configured to: receive, by using the first resource, the WU-ACK sent by the second communications device.
  • the first resource is preset, or the first resource is configured by the first communication device to the second communication device.
  • the time offset is preset, or the time offset is configured by the first communication device to the second communication device.
  • the communication device of this embodiment further includes a processing module 1303.
  • the receiving module 1302 is further configured to receive the second through the second interface before the sending module 1301 sends a wake-up signal to the second communications device by using the first interface.
  • the wake-up time sent by the communication device; the wake-up time is a length of time required for the second communication device to enter the working state from receiving the wake-up signal to the fourth interface;
  • the processing module 1303 is configured to determine the TA according to the wakeup time.
  • the wake-up signal further includes: resource indication information, where the resource indication information is used to indicate a time domain location and/or a frequency domain location of the first resource.
  • the first resource is a PRACH resource, or an unlicensed resource, or a WU-ACK dedicated resource.
  • the first resource is a WU-ACK dedicated resource.
  • the first resource has a one-to-one correspondence with the identifier of the second communication device; the processing module 1303 is further configured to: according to the first resource, and the first The one-to-one correspondence between the resource and the identifier of the second communication device determines the identity of the second communication device.
  • the WU-ACK includes a signal sequence
  • the signal sequence has a one-to-one correspondence with the identifier of the second communication device
  • the processing module 1303 is further configured to: according to the signal And determining, by the sequence, a one-to-one correspondence between the signal sequence and an identifier of the second communication device, determining an identity of the second communication device.
  • the WU-ACK includes a signal sequence
  • the first resource, the signal sequence, and the identifier of the second communication device have a corresponding relationship
  • the processing module 1303 further uses Determining, according to the first resource, the signal sequence, and the correspondence between the signal sequence and the identifier of the second communication device, determining the second communication The identification of the device.
  • the sending module 1301 is further configured to: send, by using the second interface, signal sequence indication information to the second communications device, where the indication information is used to indicate the signal sequence.
  • the communication mode of the first interface and the third interface is a first communication mode
  • the communication mode of the second interface and the fourth interface is a second communication mode
  • the first communication method is different from the second communication method.
  • the first interface and the third interface are wake-up radio interfaces, and the second interface and the fourth interface are main communication interfaces.
  • first interface and the second interface are different physical interfaces, or the first interface and the second interface are integrated into the same physical interface;
  • the third interface and the fourth interface are different physical interfaces.
  • the communication device described above in this embodiment may be used to perform the technical solution of performing chip execution of the base station/base station in the foregoing method embodiments, and the implementation principle and the technical effect are similar.
  • the function of each module may refer to the corresponding method embodiment. The description is not repeated here.
  • FIG. 14 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • the communication apparatus of this embodiment may include: a memory 1401, a processor 1402, a first interface 1403, and Second interface 1404.
  • the first interface 1403 and the second interface 1404 are the same communication interface, or are different communication interfaces.
  • the first interface 1403 is configured to communicate with a third interface of the second communication device, and the second interface 1404 is configured to communicate with a fourth interface of the second communication device.
  • the memory 1401, the processor 1402, the first interface 1403, and the second interface 1404 are connected to each other through a bus 1405.
  • the bus 1405 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1405 described above can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the processor 1402 is configured to execute the program instruction in the memory 1401 to perform a method performed by a base station in any of the foregoing method embodiments.
  • the program instructions may be implemented in the form of a software functional unit and can be sold or used as a standalone product, which may be any form of computer readable storage medium. Based on such understanding, all or part of the technical solution of the present application may be embodied in the form of a software product, including a plurality of instructions for causing a computer device, specifically a processor 1402, to perform the base station in various embodiments of the present application. All or part of the steps.
  • the foregoing computer readable storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. The medium of the code.
  • the first communication device described above in this embodiment may be used to implement the technical solution of the base station or its internal chip in the foregoing method embodiments of the present application, and the implementation principle and the technical effect are similar, wherein the functions of each module may be implemented by referring to the method. The corresponding description in the example will not be repeated here.
  • FIG. 15 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • the chip 1500 of the embodiment may include: a processing module 1501 , a first interface 1502 , and a second interface 1503 .
  • the first interface 1502 and the second interface 1503 are the same communication interface, or are different communication interfaces.
  • the processing module 1501 is configured to perform the method performed by the base station in any of the foregoing method embodiments.
  • the chip of this embodiment may further include: a storage module 1504, where the storage module 1504 is configured to store program instructions, where the processing module 1501 is configured to execute the program instructions stored by the storage module 1504, and Execution of the program instructions stored in the storage module 1504 causes the processing module 1501 to perform the method performed by the base station in any of the method embodiments described above.
  • a storage module 1504 is configured to store program instructions
  • the processing module 1501 is configured to execute the program instructions stored by the storage module 1504
  • Execution of the program instructions stored in the storage module 1504 causes the processing module 1501 to perform the method performed by the base station in any of the method embodiments described above.
  • the chip described above in this embodiment may be used to implement the technical solution of the base station or its internal chip in the foregoing method embodiments of the present application, and the implementation principle and the technical effect thereof are similar, and the functions of each module may refer to the corresponding in the method embodiment. The description is not repeated here.
  • FIG. 16 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • the communication apparatus of this embodiment is used as the first communication apparatus, and the first communication apparatus is used as the base station 1600.
  • the base station 1600 may include A processor 1601, a memory 1602, a transceiver 1603, and a bus 1604.
  • the processor 1601, the memory 1602, and the transceiver 1603 are connected to each other through a bus 1604.
  • the bus 1604 can be a PCI bus or an EISA bus.
  • the bus 1604 described above can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 16, but it does not mean that there is only one bus or one type of bus.
  • the memory 1602 is configured to store program instructions.
  • the transceiver 1603 acts as a primary communication interface for transceiving the primary communication interface signals (eg, LTE/NR signals) and also as a WUR interface for transmitting wake-up signals.
  • the processor 1601 is configured to execute the program instruction in the memory 1602, and send a wake-up signal to the second communication device by using the transceiver 1603, wherein the wake-up signal is used to wake up and receive the second communication device. And receiving, by the transceiver 1603, the WU-ACK sent by the second communication device.
  • the base station 1600 of this embodiment may further include a transmitter 1605 as a main communication interface for transmitting and receiving a main communication interface signal (for example, an LTE/NR signal), and the transmitter 1605 as a WUR.
  • the interface is used to send wake-up signals.
  • the processor 1601 is configured to execute the program instruction in the memory 1602, and send a wake-up signal to the second communication device by using a transmitter 1605, where the wake-up signal is used to wake up and receive the second communication device. And receiving, by the transceiver 1603, the WU-ACK sent by the second communication device.
  • the processor 1601 is further configured to: send, by using the transceiver 1603, downlink data to the second communications device.
  • the processor 1601 is further configured to: send, by using the transceiver 1603, a PDCCH to the second communications apparatus, where the PDCCH is used to schedule transmission of the downlink data, where the PDCCH includes timing
  • the TA is advanced, and the TA is obtained by the first communication device according to the WU-ACK.
  • the processor 1601 is further configured to: receive, by using the transceiver 1603, a data response message sent by the second communications apparatus by using the TA, where the data response message is used to confirm whether the terminal is successfully received.
  • the downlink data is further configured to: receive, by using the transceiver 1603, a data response message sent by the second communications apparatus by using the TA, where the data response message is used to confirm whether the terminal is successfully received.
  • the downlink data is further configured to: receive, by using the transceiver 1603, a data response message sent by the second communications apparatus by using the TA, where the data response message is used to confirm whether the terminal is successfully received.
  • the downlink data is further configured to: receive, by using the transceiver 1603, a data response message sent by the second communications apparatus by using the TA, where the data response message is used to confirm whether the terminal is successfully received.
  • the processor 1601 is specifically configured to: receive, by the first resource, the WU-ACK sent by the second communications device by using the transceiver 1603.
  • the first resource is preset, or the first resource is configured by the first communication device to the second communication device.
  • the time offset is preset, or the time offset is configured by the first communication device to the second communication device.
  • the processor 1601 is further configured to receive, by the transceiver 1603, a wake-up time sent by the second communications device, where the wake-up time is that the second communications device receives the wake-up from the second communications device. Signaling to the fourth interface to enter the work The length of time required for the state; and determining the TA based on the wake-up time.
  • the wake-up signal further includes: resource indication information, where the resource indication information is used to indicate a time domain location and/or a frequency domain location of the first resource.
  • the first resource is a PRACH resource, or an unlicensed resource, or a WU-ACK dedicated resource.
  • the first resource is a WU-ACK dedicated resource.
  • the processor 1601 is further configured to determine an identifier of the second communications device according to the first resource and a one-to-one correspondence between the first resource and an identifier of the second communications device.
  • the WU-ACK includes a signal sequence, and the signal sequence has a one-to-one correspondence with the identifier of the second communication device;
  • the processor 1601 is further configured to determine an identifier of the second communication device according to the signal sequence and a one-to-one correspondence between the signal sequence and an identifier of the second communication device.
  • the WU-ACK includes a signal sequence, and the first resource, the signal sequence, and the identifier of the second communication device have a corresponding relationship;
  • the processor 1601 is further configured to determine the second communication device according to the first resource, the signal sequence, and a correspondence between the signal sequence and identifiers of the second communication device. logo.
  • the processor 1601 is further configured to send, by using the transceiver 1603, signal sequence indication information to the second communication device, where the indication information is used to indicate the signal sequence.
  • the embodiment of the present application further provides a non-volatile storage medium, where the one or more program codes are stored, and when the processor 1601 of the base station 1600 executes the program code, the base station 1600 executes the program. Applying related method steps performed by a base station in any of the above method embodiments.
  • the base station 1600 provided by the embodiment of the present application can perform the related method steps performed by the base station in the foregoing method embodiment of the present application, and the detailed description of each module or unit and each module or unit perform the method embodiment in any of the embodiments of the present application.
  • the technical effects of the related method steps performed by the base station refer to the related description in the method embodiment of the present application, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • the communication apparatus of the present embodiment may include a receiving module 1701, a processing module 1702, and a sending module 1703.
  • the communication device of this embodiment further includes a third interface and a fourth interface, which are not shown in the figure.
  • the third interface is for communicating with the first interface of the first communication device
  • the fourth interface is for communicating with the second interface of the first communication device.
  • the receiving module 1701 is configured to receive, by using the third interface, a wake-up signal sent by the first communications device, where the wake-up signal is used to wake up the fourth interface of the second communications device;
  • the processing module 1702 is configured to wake up the fourth interface of the second pass device according to the wakeup signal
  • the sending module 1703 is configured to send a call WU-ACK to the first communications device.
  • the sending module 1703 is specifically configured to: send the WU-ACK to the first communications device by using the third interface; or send the first communications to the first communications by using the fourth interface The device transmits the WU-ACK.
  • the receiving module 1701 is further configured to: receive, by using the fourth interface, downlink data that is sent by the first communications device according to the WU-ACK.
  • the receiving module 1701 is further configured to: after the sending module 1703 sends a WU-ACK to the first communications device, receive, by using the fourth interface, the PDCCH sent by the first communications device.
  • the PDCCH is used for Scheduling the transmission of the downlink data, the PDCCH includes a TA, and the TA is obtained by the second communication device according to the WU-ACK.
  • the sending module 1703 is further configured to: by using the TA, send, by using the fourth interface, a data response message to the first communications apparatus, where the data response message is used to confirm whether the terminal is successfully received. Describe the downlink data.
  • the sending module is specifically configured to: send, by using the third interface, the WU-ACK to the first communications device on a first resource.
  • the first resource is preset, or the first resource is configured by the first communication device to the second communication device.
  • the time offset is preset, or the time offset is configured by the first communication device to the second communication device.
  • the sending module 1703 is further configured to send a wake-up time to the first communications device by using the fourth interface before receiving the wake-up signal sent by the first communications device by using the third interface.
  • the wake-up time is a length of time required by the second communication device to enter the working state from receiving the wake-up signal to the fourth interface;
  • the wake-up time is for the first communication device to determine the TA.
  • the wake-up signal further includes: resource indication information, where the resource indication information is used to indicate a time domain location and/or a frequency domain location of the first resource.
  • the first resource is a PRACH resource, or an unlicensed resource, or a WU-ACK dedicated resource.
  • the first resource is a WU-ACK dedicated resource.
  • the WU-ACK includes a sequence of signals having a one-to-one correspondence with the identification of the second communication device.
  • the WU-ACK includes a signal sequence, and the first resource, the signal sequence, and the identifier of the second communication device have a corresponding relationship.
  • the receiving module 1701 is further configured to: receive, by using the fourth interface, the first communications device to send the signal sequence indication information, where the indication information is used to indicate the signal sequence.
  • the communication mode of the first interface and the third interface is a first communication mode
  • the communication mode of the second interface and the fourth interface is a second communication mode
  • the first communication method is different from the second communication method.
  • the first interface and the third interface are wake-up radio interfaces, and the second interface and the fourth interface are main communication interfaces.
  • first interface and the second interface are different physical interfaces, or the first interface and the second interface are integrated into the same physical interface;
  • the third interface and the fourth interface are different physical interfaces.
  • the communication device described above in this embodiment may be used to perform the technical solution of performing chip execution of the UE/UE in the foregoing method embodiments, and the implementation principle and the technical effect are similar.
  • the function of each module may refer to the corresponding method embodiment. The description is not repeated here.
  • FIG. 18 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • the second communication device may be configured as: a memory 1801, a processor 1802, a third interface 1803, and a fourth interface 1804, wherein the third interface 1803 and the fourth interface 1804 are different communication interfaces.
  • the third interface 1803 is for communicating with the first interface of the first communication device
  • the fourth interface 1804 is for communicating with the second interface of the first communication device.
  • the memory 1801, the processor 1802, the third interface 1803, and the fourth interface 1804 are connected to each other through a bus 1805.
  • the bus 1805 can be a PCI bus or an ISA bus.
  • the bus 1805 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 18, but it does not mean that there is only one bus or one type of bus.
  • the processor 1802 is configured to execute the program instruction in the memory 1801, and execute the method performed by the UE in any one of the foregoing method embodiments.
  • the program instructions may be implemented in the form of a software functional unit and can be sold or used as a standalone product, which may be any form of computer readable storage medium. Based on such understanding, all or part of the technical solution of the present application may be embodied in the form of a software product, including a plurality of instructions for causing a computer device, specifically a processor 1802, to perform the UE in various embodiments of the present application. All or part of the steps.
  • the foregoing computer readable storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. The medium of the code.
  • the second communication device described above in this embodiment may be used to implement the technical solution of the UE or its internal chip in the foregoing method embodiments of the present application, and the implementation principle and the technical effect thereof are similar, wherein the functions of each module may be implemented by referring to the method. The corresponding description in the example will not be repeated here.
  • FIG. 19 is a schematic structural diagram of a chip according to another embodiment of the present invention.
  • the chip 1900 of the embodiment may include: a processing module 1901, a third interface 1902, and a fourth interface 1903, and a third interface 1902.
  • the fourth interface 1903 is a different communication interface.
  • the processing module 1901 is configured to perform a method performed by a UE in any of the foregoing method embodiments.
  • the chip of this embodiment may further include: a storage module 1904, where the storage module 1904 is configured to store program instructions, where the processing module 1901 is configured to execute the program instructions stored by the storage module 1904, and Execution of the program instructions stored in the storage module 1904 causes the processing module 1901 to perform the method performed by the UE in any of the method embodiments described above.
  • a storage module 1904 configured to store program instructions
  • the processing module 1901 is configured to execute the program instructions stored by the storage module 1904
  • Execution of the program instructions stored in the storage module 1904 causes the processing module 1901 to perform the method performed by the UE in any of the method embodiments described above.
  • the chip described in this embodiment may be used to implement the technical solution of the UE or its internal chip in the foregoing method embodiments of the present application.
  • the implementation principle and the technical effect are similar.
  • the function of each module may refer to the corresponding method embodiment. The description is not repeated here.
  • FIG. 20 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • the communication device in this embodiment is used as the second communication device, and the second communication device is used as the UE2000.
  • the UE2000 may include: The device 2001, the memory 2002, the receiver 2003, the transceiver 2004, and the bus 2005.
  • the processor 2001, the memory 2002, the receiver 2003, and the transceiver 2004 are connected to one another via a bus 2005.
  • the bus 2005 can be a PCI bus or an EISA bus.
  • the above bus 2005 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 20, but it does not mean that there is only one bus or one type of bus.
  • the memory 2002 is configured to store program instructions.
  • the transceiver 2004 is used as a main communication interface for transmitting and receiving main communication interface signals (for example, LTE/NR signals), and the receiver 2003 is also used as a WUR interface for receiving wake-up signals.
  • main communication interface signals for example, LTE/NR signals
  • WUR interface for receiving wake-up signals.
  • the processor 2001 is configured to execute the program instruction in the memory 2002, and receive, by the receiver 2003, a wake-up signal sent by the first communication device, where the wake-up signal is used to wake up the second communication device.
  • the fourth interface Awakening the transceiver 2004 of the second pass device according to the wake-up signal; and transmitting the WU-ACK to the first communication device through the transceiver 2003.
  • the processor 2001 is further configured to: receive, by using the transceiver 2004, downlink data that is sent by the first communications device according to the WU-ACK.
  • the processor 2001 is further configured to: receive, by using the transceiver 2004, a PDCCH that is sent by the first communications device, where the PDCCH is used to schedule transmission of the downlink data, where the PDCCH includes timing advance
  • the TA is obtained by the second communication device according to the WU-ACK.
  • the processor 2001 is further configured to: by using the TA, send, by the transceiver 2004, a data response message to the first communications apparatus, where the data response message is used to confirm whether the Downstream data.
  • the processor 2001 is specifically configured to: send, by the transceiver 2004, the WU-ACK to the first communications device on a first resource.
  • the first resource is preset, or the first resource is configured by the first communication device to the second communication device.
  • the time offset is preset, or the time offset is configured by the first communication device to the second communication device.
  • the processor 2001 is further configured to send a wakeup to the first communication device by using the transceiver 2004 before receiving the wakeup signal sent by the first communication device by the receiver 2003.
  • the wake-up time is a length of time required for the second communication device to enter the working state from receiving the wake-up signal to the fourth interface;
  • the wake-up time is for the first communication device to determine the TA.
  • the wake-up signal further includes: resource indication information, where the resource indication information is used to indicate a time domain location and/or a frequency domain location of the first resource.
  • the first resource is a PRACH resource, or an unlicensed resource, or a WU-ACK dedicated resource.
  • the first resource is a WU-ACK dedicated resource.
  • the WU-ACK includes a sequence of signals having a one-to-one correspondence with the identification of the second communication device.
  • the WU-ACK includes a signal sequence, and the first resource, the signal sequence, and the identifier of the second communication device have a corresponding relationship.
  • the processor 2001 is further configured to: receive, by the transceiver 2004, the first communications device to send the signal sequence indication information, where the indication information is used to indicate the signal sequence.
  • the embodiment of the present application further provides a non-volatile storage medium, where the one or more program codes are stored in the non-volatile storage medium.
  • the processor 2001 of the UE 2000 executes the program code, the UE 2000 performs the above application.
  • the UE 2000 provided by the embodiment of the present application can perform the related method steps performed by the UE in any of the foregoing method embodiments, and the detailed description of each module or unit, and each module or unit performs the UE in any of the method embodiments of the present application.
  • the related method steps reference may be made to the related description in the method embodiments of the present application, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法和装置,第一通信装置包括第一接口和第二接口,第二通信装置包括第三接口和第四接口;其中,所述第一接口用于与所述第三接口通信,所述第二接口用于与所述第四接口通信;所述方法包括:所述第一通信装置通过所述第一接口向所述第二通信装置发送唤醒信号,其中,所述唤醒信号用于唤醒所述第二通信装置的所述第四接口;所述第一通信装置接收所述第二通信装置发送的WU-ACK。避免了第二通信装置未唤醒第四接口(如第二通信装置未正确接收唤醒信号,或者,第二通信装置正确接收唤醒信号但第四接口尚未进入工作状态)的情况下,第一通信装置盲目向第二通信装置发送下行数据而造成的资源浪费。

Description

通信方法和装置
本申请要求于2017年9月12日提交中国专利局、申请号为201710817752.0、申请名称为“一种上行传输的同步方法、设备和***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法和装置。
背景技术
3GPP标准组织正在讨论引入低功耗的唤醒射频(Wake-up Radio,WUR),又称为唤醒接收机(Wake-up Receiver,WUR),以降低终端设备的功耗。可被WUR接收并解码的信号称为唤醒信号(Wakeup Signal)。该唤醒信号例如为唤醒包(Wakeup Packet),又称为唤醒帧。其中,所谓的WUR,是指终端设备(如UE)在配置传统主接口(main radio,如LTE/NR等,又称为主模块或主通信模块)的基础上,引入一个WUR接口(又称为WUR模块),主模块通常处于关闭状态,只有当收到来自WUR模块的触发信号时,主模块才会激活,然后终端设备通过主模块与基站进行数据通信。
因此基于上述唤醒机制,基站在需要向终端设备发送数据时,基站可以向终端设备发送唤醒信号以唤醒终端设备(终端设备的WUR接口收到唤醒信号后触发主接口激活),然后基站向终端设备的主接口发送下行数据。但是在基站向终端设备发送了唤醒信号但未成功唤醒终端设备的情况下(例如,终端设备未正确接收唤醒信号),基站就向终端设备发送下行数据,会造成资源浪费。
发明内容
本申请实施例提供一种通信方法和装置,用于避免基站盲目向终端设备发送下行数据而造成资源浪费。
第一方面,本申请实施例提供一种通信方法,第一通信装置包括第一接口和第二接口,第二通信装置包括第三接口和第四接口;其中,所述第一接口用于与所述第三接口通信,所述第二接口用于与所述第四接口通信;
所述方法包括:
所述第一通信装置通过所述第一接口向所述第二通信装置发送唤醒信号,其中,所述唤醒信号用于唤醒所述第二通信装置的所述第四接口;
所述第一通信装置接收所述第二通信装置发送的唤醒确认消息(Wake up Acknowledge,WU-ACK)。
因此,第一通信装置在接收到第二通信装置发送的WU-ACK后确定第二通信装置已被成功唤 醒,然后再发送下行数据,避免了第一通信装置盲目发送下行数据造成的资源浪费。
在一种可能的设计中,所述第一通信装置接收所述第二通信装置发送的WU-ACK,包括:
所述第一通信装置通过所述第一接口接收所述第二通信装置发送的所述WU-ACK;或者,
所述第一通信装置通过所述第二接口接收所述第二通信装置发送的所述WU-ACK。
在一种可能的设计中,所述第一通信装置接收所述第二通信装置发送的WU-ACK之后,还包括:
所述第一通信装置通过所述第二接口向所述第二通信装置发送下行数据。
在一种可能的设计中,所述第一通信装置接收所述第二通信装置发送的WU-ACK之后,还包括:
所述第一通信装置通过所述第二接口向所述第二通信装置发送物理下行控制信道(Physical Downlink Control Channel,PDCCH),所述PDCCH用于调度所述下行数据的传输,所述PDCCH包括定时提前量(Time Advance,TA),所述TA是所述第一通信装置根据所述WU-ACK获得的。
因此,第二通信装置从PDCCH中同时获得下行数据的调度信息和TA,降低了TA获取过程的时延和信令开销。
在一种可能的设计中,所述方法还包括:
所述第一通信装置通过所述第二接口接收所述第二通信装置采用所述TA发送的数据响应消息,所述数据响应消息用于确认是否成功接收所述下行数据。
因此,第二通信装置从PDCCH中获得的TA,可用于随后下行数据的数据响应消息,避免了使用不准确的TA造成的上行响应传输可靠性降低,提高了可靠性。
在一种可能的设计中,所述第一通信装置接收所述第二通信装置发送的WU-ACK,包括:
所述第一通信装置在第一资源上接收所述第二通信装置发送的所述WU-ACK。
在一种可能的设计中,所述第一资源是预先设定的,或者,所述第一资源是所述第一通信装置配置给所述第二通信装置的。
在一种可能的设计中,所述第一资源的时域位置与所述唤醒信号的时域位置之间存在时间偏移量;
其中,所述时间偏移量是预先设定的,或者,所述时间偏移量是所述第一通信装置配置给所述第二通信装置的。
在一种可能的设计中,所述第一通信装置通过所述第一接口向所述第二通信装置发送唤醒信号之前,还包括:
所述第一通信装置通过所述第二接口接收所述第二通信装置发送的唤醒时间;所述唤醒时间为所述第二通信装置从接收到所述唤醒信号到所述第四接口进入工作状态所需的时长;
所述第一通信装置根据所述唤醒时间确定所述TA。
在一种可能的设计中,所述唤醒信号还包括:资源指示信息,所述资源指示信息用于指示所述第一资源的时域位置和/或频域位置。
在一种可能的设计中,所述第一资源为物理随机接入信道(Physical Random Access Channel,PRACH)资源,或者,免授权(Grant-free)资源,或者,WU-ACK专用资源。
在一种可能的设计中,所述第一资源为WU-ACK专用资源。
在一种可能的设计中,所述第一资源与所述第二通信装置的标识之间具有一一对应关系;
所述方法还包括:
所述第一通信装置根据所述第一资源,以及所述第一资源与所述第二通信装置的标识之间的一一对应关系,确定所述第二通信装置的标识。
因此,发送WU-ACK的第一资源与第二通信装置具有一一对应关系,使得第一通信装置在接收到一个WU-ACK时即可根据承载该WU-ACK的第一资源确定是哪个第二通信装置发送的WU-ACK。
在一种可能的设计中,所述WU-ACK包括信号序列,所述信号序列与所述第二通信装置的标识之间具有一一对应关系;
所述方法还包括:
所述第一通信装置根据所述信号序列,以及所述信号序列与所述第二通信装置的标识之间的一一对应关系,确定所述第二通信装置的标识。
在一种可能的设计中,所述WU-ACK包括信号序列,所述第一资源、所述信号序列与所述第二通信装置的标识三者之间具有对应关系;
所述方法还包括:
所述第一通信装置根据所述第一资源、所述信号序列,以及所述信号序列与所述第二通信装置的标识三者之间的对应关系,确定所述第二通信装置的标识。
因此,不同第二通信装置发送的WU-ACK对应不同的信号序列,这使得第一通信装置基于收到的WU-ACK所包含的信号序列即可确定是哪个第二通信装置发送的WU-ACK。
在一种可能的设计中,所述方法还包括:
所述第一通信装置通过所述第二接口向所述第二通信装置发送信号序列指示信息,所述指示信息用于指示所述信号序列。
在一种可能的设计中,所述第一接口与所述第三接口的通信方式为第一通信方式,所述第二接口与所述第四接口的通信方式为第二通信方式;
所述第一通信方式与所述第二通信方式不同。
在一种可能的设计中,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
唤醒射频接口用于接收唤醒信号,功耗低,便于省电;主通信接口被唤醒后可用于数据通信,传输速率也高。
在一种可能的设计中,所述第一接口与所述第二接口为不同的物理接口,或者,所述第一接口与所述第二接口集成为同一物理接口;
所述第三接口与所述第四接口为不同的物理接口。
第二方面,本申请实施例提供一种通信方法,第一通信装置包括第一接口和第二接口,第二通信装置包括第三接口和第四接口;其中,所述第三接口用于与所述第一接口通信,所述第四接口用于与所述第二接口通信;包括:
所述第二通信装置通过所述第三接口接收所述第一通信装置发送的唤醒信号,其中,所述唤醒信号用于唤醒所述第二通信装置的所述第四接口;
所述第二通信装置根据所述唤醒信号,唤醒所述第二通装置的所述第四接口;
所述第二通信装置向所述第一通信装置发送唤WU-ACK。
因此,第一通信装置在接收到第二通信装置发送的WU-ACK后确定第二通信装置已被成功唤醒,然后再发送下行数据,避免了第一通信装置盲目发送下行数据造成的资源浪费。
在一种可能的设计中,所述第二通信装置向所述第一通信装置发送的WU-ACK,包括:
所述第二通信装置通过所述第三接口向所述第一通信装置发送所述WU-ACK;或者,
所述第二通信装置通过所述第四接口向所述第一通信装置发送所述WU-ACK。
在一种可能的设计中,还包括:
所述第二通信装置通过所述第四接口接收所述第一通信装置根据所述WU-ACK发送的下行数据。
在一种可能的设计中,所述第二通信装置向所述第一通信装置发送WU-ACK之后,还包括:
所述第二通信装置通过所述第四接口接收所述第一通信装置发送的PDCCH,所述PDCCH用于调度所述下行数据的传输,所述PDCCH包括TA,所述TA为所述第二通信装置根据所述WU-ACK获得的。
因此,第二通信装置从PDCCH中同时获得下行数据的调度信息和TA,降低了TA获取过程的时延和信令开销。
在一种可能的设计中,所述方法还包括:
所述第二通信装置采用所述TA,通过所述第四接口向所述第一通信装置发送数据响应消息,所述数据响应消息用于确认是否成功接收所述下行数据。
因此,第二通信装置从PDCCH中获得的TA,可用于随后下行数据的数据响应消息,避免了使用不准确的TA造成的上行响应传输可靠性降低,提高了可靠性。
在一种可能的设计中,所述第二通信装置通过所述第三接口向第一通信装置发送WU-ACK,包括:
所述第二通信装置通过所述第三接口在第一资源上向所述第一通信装置发送所述WU-ACK。
在一种可能的设计中,所述第一资源是预先设定的,或者,所述第一资源是所述第一通信装置配置给所述第二通信装置的。
在一种可能的设计中,所述第一资源的时域位置与所述唤醒信号的时域位置之间存在时间偏移量;
其中,所述时间偏移量是预先设定的,或者,所述时间偏移量是所述第一通信装置配置给所述第二通信装置的。
在一种可能的设计中,所述第二通信装置通过所述第三接口接收所述第一通信装置发送的唤醒信号之前,还包括:
所述第二通信装置通过所述第四接口向所述第一通信装置发送唤醒时间;所述唤醒时间为所述第二通信装置从接收到所述唤醒信号到所述第四接口进入工作状态所需的时长;
所述唤醒时间用于所述第一通信装置确定所述TA。
在一种可能的设计中,所述唤醒信号还包括:资源指示信息,所述资源指示信息用于指示所述第一资源的时域位置和/或频域位置。
在一种可能的设计中,所述第一资源为PRACH资源,或者,免授权资源,或者,WU-ACK专用资源。
在一种可能的设计中,所述第一资源与所述第二通信装置的标识之间具有一一对应关系。
因此,发送WU-ACK的第一资源与第二通信装置具有一一对应关系,使得第一通信装置在接收到一个WU-ACK时即可根据承载该WU-ACK的第一资源确定是哪个第二通信装置发送的WU-ACK。
在一种可能的设计中,所述WU-ACK包括信号序列,所述信号序列与所述第二通信装置的标识之间具有一一对应关系。
因此,不同第二通信装置发送的WU-ACK对应不同的信号序列,这使得第一通信装置基于收到的WU-ACK所包含的信号序列即可确定是哪个第二通信装置发送的WU-ACK。
在一种可能的设计中,所述WU-ACK包括信号序列,所述第一资源、所述信号序列与所述第二通信装置的标识三者之间具有对应关系。
在一种可能的设计中,所述方法还包括:
所述第二通信装置通过所述第四接口接收所述第一通信装置发送所述信号序列指示信息,所述指示信息用于指示所述信号序列。
在一种可能的设计中,所述第一接口与所述第三接口的通信方式为第一通信方式,所述第二接口与所述第四接口的通信方式为第二通信方式;
其中,所述第一通信方式与所述第二通信方式不同。
在一种可能的设计中,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
在一种可能的设计中,所述第一接口与所述第二接口为不同的物理接口,或者,所述第一接口与所述第二接口集成为同一物理接口;
所述第三接口与所述第四接口为不同的物理接口。
第三方面,本申请实施例提供一种通信装置,作为第一通信装置,包括:存储器、处理器、第一接口和第二接口;其中,所述第一接口用于与第二通信装置的第三接口通信,所述第二接口用于与所述第二通信装置的第四接口通信;
所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如第一方面本申请实施例所述的方法。
在一种可能的设计中,所述第二接口与所述第一接口集成为同一收发器;或者,
所述第一接口为所述第二接口为不同的物理部件,且所述第一接口为发射器,所述第二接口为收发器。
第四方面,本申请实施例提供一种通信装置,作为第二通信装置,包括:存储器、处理器、第三接口和第四接口;其中,所述第三接口用于与第一通信装置的第一接口通信,所述第四接口用于与所述第一通信装置的第二接口通信;
所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如第二方面本申请实施例所述的方法。
在一种可能的设计中,所述第三接口与所述第四接口为不同的物理部件,所述第三接口为接收器,所述第四接口为收发器。
第五方面,本申请实施例提供一种计算机程序产品,包括计算机程序,所述计算机程序在计算机单元上执行时,将会使所述计算机单元实现第一方面本申请实施例所述的通信方法。
第六方面,本申请实施例提供一种计算机程序产品,包括计算机程序,所述计算机程序在计算机单元上执行时,将会使所述计算机单元实现第二方面本申请实施例所述的通信方法。
第七方面,本申请实施例提供一种通信装置,作为第一通信装置,被配置为执行如第一方面本申请实施例所述的通信方法。
第八方面,本申请实施例提供一种通信装置,作为第二通信装置,被配置为执行如第二方面 本申请实施例所述的通信方法。
第九方面,本申请实施例提供一种芯片,包括:处理模块、第一接口和第二接口;所述处理模块用于执行第一方面本申请实施例所述的通信方法。
在一种可能的设计中,所述芯片还包括存储模块,所述存储模块用于存储程序指令,所述处理模块用于执行所述存储器存储的程序指令,并且对所述存储器中存储的程序指令的执行使得所述处理模块执行第二方面本申请实施例所述的通信方法。
在一种可能的设计中,所述第二接口与所述第一接口集成为同一通信接口;或者,所述第一接口与所述第二接口为不同的通信接口。
第十方面,本申请实施例提供一种芯片,包括:处理模块、第三接口和第四接口;所述处理模块用于执行第二方面本申请实施例所述的通信方法。
在一种可能的设计中,所述芯片还包括存储模块,所述存储模块用于存储程序指令,所述处理模块用于执行所述存储器存储的程序指令,并且对所述存储器中存储的程序指令的执行使得所述处理模块执行第二方面本申请实施例所述的通信方法。
在一种可能的设计中,所述第三接口与所述第四接口为不同的通信接口。
第十一方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在计算机上执行时,将会使所述计算机实现第一方面本申请实施例所述的通信方法。
第十二方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在计算机上执行时,将会使所述计算机实现第二方面本申请实施例所述的通信方法。
本申请提供的实施例包括以下任一个:
1、一种上行传输的同步方法,所述方法应用于网络设备和终端设备,所述网络设备包括第一接口和第二接口,所述终端设备包括第三接口和第四接口,所述第一接口和所述第三接口通过第一通信方式进行通信,所述第二接口和所述第四接口通过第二通信方式进行通信;
所述方法包括:
所述网络设备通过第一接口向所述终端设备的第三接口发送唤醒帧,以使所述终端设备唤醒所述第四接口;
所述网络设备接收所述终端设备发送的WU-ACK;
所述网络设备通过第二接口向所述终端设备的第四接口发送PDCCH,所述PDCCH用于调度所述终端设备的DL数据的传输,所述PDCCH中包括定时提前TA,所述TA是所述网络设备基于所述唤醒确认消息测量得到的。
配置有WUR的UE被基站唤醒后,UE从PDCCH中同时获得DL数据调度信息和TA,降低了TA获取过程的时延和信令开销。另一方面,基站收到UE的WU-ACK后确定UE已被成功唤醒,然后再发送下行(Down Link,DL)数据,避免了基站盲目发送DL数据造成的资源浪费。
2、根据实施例1所述的方法,在所述网络设备通过第二接口向所述终端设备的第四接口发送PDCCH之后,包括:
所述网络设备通过第二接口向所述终端设备的第四接口发送所述DL数据;
所述网络设备通过第二接口接收所述终端设备通过第四接口发送的数据响应消息,所述数据响应消息用于对所述DL数据进行确认,所述数据响应消息的传输采用所述TA。
UE从PDCCH中获得的TA,可用于随后DL数据的UL响应,避免了使用不准确的TA造成的UL响应传输可靠性降低。
3、根据实施例1或2所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备通过第一接口接收所述终端设备通过第三接口发送的所述WU-ACK,或,所述网络设备通过第二接口接收所述终端设备通过第四接口发送的所述WU-ACK。
若WUR接口不支持发送能力,则UE只能通过主通信接口发送WU-ACK。若WUR接口支持发送能力,则也可以通过WUR接口发送WU-ACK。
4、根据实施例1-3任一所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备在第一资源上接收所述终端设备发送的所述WU-ACK,所述第一资源是标准预定义的,或者,所述第一资源是网络设备配置给所述终端设备的。
UE发送WU-ACK所使用的传输资源可以是标准预定义的,或,是基站配置给UE的。
5、根据实施例1-3任一所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备在第一资源上接收所述终端设备发送的所述WU-ACK,所述第一资源的时域位置相比于所述唤醒帧的时域位置的时间偏移为T,所述T是标准预定义的,或者,所述T是所述网络设备配置给所述终端设备的。
类似于LTE标准中UE接收DL数据到发送对应UL响应消息之间的子帧偏移,本申请中UE接收唤醒帧到发送对应WU-ACK之间也可以是固定时间偏移T。T可以是标准预定义或基站配置的。
6、根据实施例5所述的方法,在所述网络设备为所述终端设备配置所述T之前,所述网络设备接收所述终端设备上报的唤醒时间,所述网络设备基于所述唤醒时间确定所述T,所述唤醒时间是所述终端设备从接收到所述唤醒帧到所述第四接口进入工作状态所需的时间。
不同UE的唤醒时间可能是不同的。这种情况下,UE可向基站上报自己的唤醒时间,以便基站基于此信息确定该UE的T值。一般来说,UE的唤醒时间越长,则对应的T值越大,因为UE需要花费更多时间用来唤醒自己的主通信接口。
7、根据实施例1-6任一所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备在第一资源上接收所述终端设备发送的所述WU-ACK,所述第一资源由所述网络设备在所示唤醒帧中指示。
基站可以在唤醒帧中指示对应的WU-ACK的传输资源,即第一资源。具体的,唤醒帧中包含的信息可以是第一资源的时域和/或频域资源分配,也可以是第一资源的资源索引,或者是第一资源对应的上述T值。
8、根据实施例1-7任一所述的方法,所述第一资源为PRACH资源,或,Grant-free资源,或,WU-ACK专用资源。
发送WU-ACK的资源可以复用PRACH资源或Grant-free资源资源,也可以是专门为WU-ACK设计的专用资源,即WACH资源。
9、根据实施例1-8任一所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备在第一资源上接收所述终端设备发送的所述WU-ACK,所述第一资源与所述终端设备具有一一对应关系。
发送WU-ACK的传输资源与UE具有一一对应关系,使得基站在接收到一个WU-ACK时即可根据承载该WU-ACK的资源确定是哪个UE发送的WU-ACK。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。
10、根据实施例1-8任一所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备接收所述终端设备发送的所述WU-ACK,所述WU-ACK包括信号序列,所述信号序列与所述终端设备具有一一对应关系。
不同UE发送的WU-ACK对应不同正交信号序列,这使得基站基于收到的WU-ACK所包含的信号序列即可确定是哪个UE发送的WU-ACK。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。相比基于WU-ACK资源确定UE的方法,本实施例的方法可使得多个UE复用相同时频资源发送WU-ACK信号,即通过码分的方法区分UE,有利于节省传输资源。由于本权项引用前面的权项,故不同UE具有不同WU-ACK信号序列也可以是和第一资源结合的,换句话说,基站可基于第一资源和WU-ACK信号序列来区分UE。
11、根据实施例10所述的方法,在所述网络设备接收所述终端设备发送的所述WU-ACK之前,所述网络设备将所述信号序列配置给所述终端设备。
不同UE的WU-ACK信号序列不同,故基站必须通过信令为UE配置对应的正交序列。
12、根据实施例9-11任一所述的方法,在所述网络设备接收所述终端设备发送的所述WU-ACK之后,所述网络设备基于所述第一资源与所述终端设备的对应关系,或,基于所述信号序列与所述终端设备的对应关系,确定所述终端设备。
基站必须能够基于接收到的WU-ACK确定ACK的发送UE,才能确定后续向哪个UE发送DL数据。对于UE绑定WU-ACK传输资源的方法,基站基于接收到的WU-ACK所在的传输资源确定对应UE;对于UE绑定正交序列的方法,基站基于接收到的WU-ACK所包含的正交信号序列来确定对应UE。
13、根据实施例10-11任一所述的方法,在所述网络设备接收所述终端设备发送的所述WU-ACK之后,所述网络设备基于所述第一资源,以及所述信号序列与所述终端设备的对应关系,确定所述终端设备。
对于WU-ACK传输资源和正交序列结合的方法,基站基于接收到的WU-ACK所在的传输资源以及WU-ACK所包含的正交序列来确定对应UE。
14、根据实施例1-13任一所述的方法,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
UE的第三接口为WUR,第四接口为主通信接口。前者用于接收唤醒信号,功耗低,便于UE省电;后者被唤醒后可用于数据通信,功耗高,但传输速率也高。
15、一种上行传输的同步方法,所述方法应用于网络设备和终端设备,所述网络设备包括第一接口和第二接口,所述终端设备包括第三接口和第四接口,所述第一接口和所述第三接口通过第一通信方式进行通信,所述第二接口和所述第四接口通过第二通信方式进行通信;
所述方法包括:
所述终端设备通过第三接口接收所述网络设备通过第一接口发送的唤醒帧;
基于所述唤醒帧,所述终端设备唤醒所述第四接口;
所述终端设备向所述网络设备发送WU-ACK;
所述终端设备通过第四接口接收所述网络设备通过第二接口发送的PDCCH,所述PDCCH用于调度所述终端设备的DL数据的传输,所述PDCCH中包括定时提前TA,所述TA是所述网络设备基于所述唤醒确认消息测量得到的。
配置有WUR的UE被基站唤醒后,UE从PDCCH中同时获得DL数据调度信息和TA,降低了TA获取过程的时延和信令开销。另一方面,UE收到唤醒帧后向基站发送WU-ACK,以使基站基于该WU-ACK确定UE已被成功唤醒,然后基站再发送DL数据,避免了基站盲目发送DL数据造成的资源浪费。
16、根据实施例15所述的方法,在所述终端设备通过第四接口接收所述网络设备通过第二接口发送的PDCCH之后,包括:
所述终端设备通过第四接口接收所述网络设备通过第四接口发送的所述DL数据;
所述终端设备通过第四接口向所述网络设备的第四接口发送数据响应消息,所述数据响应消息用于对所述DL数据进行确认,所述数据响应消息的传输采用所述TA。
UE从PDCCH中获得的TA,可用于随后DL数据的UL响应,避免了使用不准确的TA造成的UL响应传输可靠性降低。
17、根据实施例15或16所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备通过第三接口向所述网络设备的第一接口发送所述WU-ACK,或,所述终端设备通过第四接口向所述终端设备的第二接口发送所述WU-ACK。
若WUR接口不支持发送能力,则UE只能通过主通信接口发送WU-ACK。若WUR接口支持发送能力,则也可以通过WUR接口发送WU-ACK。
18、根据实施例15-17任一所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备在第一资源上向所述网络设备发送所述WU-ACK,所述第一资源是标准预定义的,或者,所述第一资源是网络设备配置给所述终端设备的。
UE发送WU-ACK所使用的传输资源可以是标准预定义的,或,是基站配置给UE的。
19、根据实施例15-17任一所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备在第一资源上向所述网络设备发送所述WU-ACK,所述第一资源的时域位置相比于所述唤醒帧的时域位置的时间偏移为T,所述T是标准预定义的,或者,所述T是所述网络设备配置给所述终端设备的。
类似于LTE标准中UE接收DL数据到发送对应UL响应消息之间的子帧偏移,本申请中UE接收唤醒帧到发送对应WU-ACK之间也可以是固定时间偏移T。T可以是标准预定义或基站配置的。
20、根据实施例19所述的方法,在所述网络设备为所述终端设备配置所述T之前,所述终端设备向所述网络设备上报唤醒时间,以便所述网络设备基于所述唤醒时间确定所述T,所述唤醒时间是所述终端设备从接收到所述唤醒帧到所述第四接口进入工作状态所需的时间。
不同UE的唤醒时间可能是不同的。这种情况下,UE可向基站上报自己的唤醒时间,以便基站基于此信息确定该UE的T值。一般来说,UE的唤醒时间越长,则对应的T值越大,因为UE需要花费更多时间用来唤醒自己的主通信接口。
21、根据实施例15-20任一所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备在第一资源上向所述网络设备发送所述WU-ACK,所述第一资源由所述网络设备在所示唤醒帧中指示。
基站可以在唤醒帧中指示对应的WU-ACK的传输资源,即第一资源。具体的,唤醒帧中包含的信息可以是第一资源的时域和/或频域资源分配,也可以是第一资源的资源索引,或者是第一资源对应的上述T值。
22、根据实施例15-21任一所述的方法,所述第一资源为PRACH资源,或,Grant-free资源,或,WU-ACK专用资源。
发送WU-ACK的资源可以复用PRACH资源或Grant-free资源资源,也可以是专门为WU-ACK设计的专用资源,即WACH资源。
23、根据实施例15-22任一所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备在第一资源上向所述网络设备发送所述WU-ACK,所述第一资源与所述终端设备具有一一对应关系。
发送WU-ACK的传输资源与UE具有一一对应关系,使得基站在接收到一个WU-ACK时即可根据承载该WU-ACK的资源确定是哪个UE发送的WU-ACK。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。
24、根据实施例15-22任一所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备向所述网络设备发送所述WU-ACK,所述WU-ACK包括信号序列,所述信号序列与所述终端设备具有一一对应关系。
不同UE发送的WU-ACK对应不同正交信号序列,这使得基站基于收到的WU-ACK所包含的信号序列即可确定是哪个UE发送的WU-ACK。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。相比基于WU-ACK资源确定UE的方法,本实施例的方法可使得多个UE复用相同时频资源发送WU-ACK信号,即通过码分的方法区分UE,有利于节省传输资源。由于本权项引用前面的权项,故不同UE具有不同WU-ACK信号序列也可以是和第一资源结合的,换句话说,基站可基于第一资源和WU-ACK信号序列来区分UE。
25、根据实施例24所述的方法,在所述终端设备向所述网络设备发送所述WU-ACK之前,所述终端设备接收所述网络设备配置的所述信号序列。
不同UE的WU-ACK信号序列不同,故基站必须通过信令为UE配置对应的正交序列。
26、根据实施例15-25任一所述的方法,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
UE的第三接口为WUR,第四接口为主通信接口。前者用于接收唤醒信号,功耗低,便于UE省电;后者被唤醒后可用于数据通信,功耗高,但传输速率也高。
27、一种网络设备,所述网络设备包括:
处理器,存储器和收发器;
所述收发器,用于接收和发送数据;
所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如实施例1-14任一所述的方法。
28、根据实施例27所述的网络设备,所述收发器包括:
发送器和接收器;
所述发送器用于发送如实施例1-14任一所述唤醒帧,所述DL数据或所述PDCCH;
所述接收器用于接收如实施例1-14任一所述WU-ACK和所述数据响应消息。
29、根据实施例27所述的网络设备,所述网络设备还包括发射器,所述发射器用于发送如实施例1-14任一所述唤醒帧。
30、一种终端设备,所述终端设备包括:
处理器,存储器,收发器和接收器,所述收发器处于关闭状态,所述接收器处于激活状态或间歇性激活状态;
所述收发器,用于接收和发送数据;
所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如实施例15-26任一所述的方法。
31、根据实施例30所述的终端设备,所述接收器用于接收如实施例15-26任一所述唤醒帧。
32、根据实施例30或31所述的终端设备,所述收发器包括:
发送器和接收器;
所述发送器用于发送如实施例15-26任一所述WU-ACK和所述数据响应消息;
所述接收器用于接收如实施例15-26任一所述PDCCH和所述DL数据。
33、一种上行传输的同步方法,所述方法应用于网络设备和终端设备,所述网络设备包括第一接口和第二接口,所述终端设备包括第三接口和第四接口,所述第一接口和所述第三接口通过第一通信方式进行通信,所述第二接口和所述第四接口通过第二通信方式进行通信;
所述方法包括:
所述网络设备通过第一接口向所述终端设备的第三接口发送唤醒帧,以使所述终端设备唤醒所述第四接口;
所述网络设备接收所述终端设备发送的WU-ACK。
基站收到UE的WU-ACK后确定UE已被成功唤醒,然后再发送DL数据,避免了基站盲目发送DL数据造成的资源浪费。
34、根据实施例33所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备通过第一接口接收所述终端设备通过第三接口发送的所述WU-ACK,或,所述网络设备通过第二接口接收所述终端设备通过第四接口发送的所述WU-ACK。
若WUR接口不支持发送能力,则UE只能通过主通信接口发送WU-ACK。若WUR接口支持发送能力,则也可以通过WUR接口发送WU-ACK。
35、根据实施例33或34所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备在第一资源上接收所述终端设备发送的所述WU-ACK,所述第一资源是标准预定义的,或者,所述第一资源是网络设备配置给所述终端设备的。
UE发送WU-ACK所使用的传输资源可以是标准预定义的,或,是基站配置给UE的。
36、根据实施例33或34所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备在第一资源上接收所述终端设备发送的所述WU-ACK,所述第一资源的时域位置相比于所述唤醒帧的时域位置的时间偏移为T,所述T是标准预定义的,或者,所述T是所述 网络设备配置给所述终端设备的。
类似于LTE标准中UE接收DL数据到发送对应UL响应消息之间的子帧偏移,本申请中UE接收唤醒帧到发送对应WU-ACK之间也可以是固定时间偏移T。T可以是标准预定义或基站配置的。
37、根据实施例36所述的方法,在所述网络设备为所述终端设备配置所述T之前,所述网络设备接收所述终端设备上报的唤醒时间,所述网络设备基于所述唤醒时间确定所述T,所述唤醒时间是所述终端设备从接收到所述唤醒帧到所述第四接口进入工作状态所需的时间。
不同UE的唤醒时间可能是不同的。这种情况下,UE可向基站上报自己的唤醒时间,以便基站基于此信息确定该UE的T值。一般来说,UE的唤醒时间越长,则对应的T值越大,因为UE需要花费更多时间用来唤醒自己的主通信接口。
38、根据实施例33-37任一所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备在第一资源上接收所述终端设备发送的所述WU-ACK,所述第一资源由所述网络设备在所示唤醒帧中指示。
基站可以在唤醒帧中指示对应的WU-ACK的传输资源,即第一资源。具体的,唤醒帧中包含的信息可以是第一资源的时域和/或频域资源分配,也可以是第一资源的资源索引,或者是第一资源对应的上述T值。
39、根据实施例33-38任一所述的方法,所述第一资源为PRACH资源,或,Grant-free资源,或,WU-ACK专用资源。
发送WU-ACK的资源可以复用PRACH资源或Grant-free资源资源,也可以是专门为WU-ACK设计的专用资源,即WACH资源。
40、根据实施例33-39任一所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备在第一资源上接收所述终端设备发送的所述WU-ACK,所述第一资源与所述终端设备具有一一对应关系。
发送WU-ACK的传输资源与UE具有一一对应关系,使得基站在接收到一个WU-ACK时即可根据承载该WU-ACK的资源确定是哪个UE发送的WU-ACK。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。
41、根据实施例33-39任一所述的方法,所述网络设备接收所述终端设备发送的WU-ACK,包括:
所述网络设备接收所述终端设备发送的所述WU-ACK,所述WU-ACK包括信号序列,所述信号序列与所述终端设备具有一一对应关系。
不同UE发送的WU-ACK对应不同正交信号序列,这使得基站基于收到的WU-ACK所包含的信号序列即可确定是哪个UE发送的WU-ACK。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。相比基于WU-ACK资源确定UE的方法,本实施例的方法可使得多个UE复用相同时频资源发送WU-ACK信号,即通过码分的方法区分UE,有利于节省传输资源。由于本权项引用前面的权项,故不同UE具有不同WU-ACK信号序列也可以是和第一资源结合的,换句话 说,基站可基于第一资源和WU-ACK信号序列来区分UE。
42、根据实施例41所述的方法,在所述网络设备接收所述终端设备发送的所述WU-ACK之前,所述网络设备将所述信号序列配置给所述终端设备。
不同UE的WU-ACK信号序列不同,故基站必须通过信令为UE配置对应的正交序列。
43、根据实施例40-42任一所述的方法,在所述网络设备接收所述终端设备发送的所述WU-ACK之后,所述网络设备基于所述第一资源与所述终端设备的对应关系,或,基于所述信号序列与所述终端设备的对应关系,确定所述终端设备。
基站必须能够基于接收到的WU-ACK确定ACK的发送UE,才能确定后续向哪个UE发送DL数据。对于UE绑定WU-ACK传输资源的方法,基站基于接收到的WU-ACK所在的传输资源确定对应UE;对于UE绑定正交序列的方法,基站基于接收到的WU-ACK所包含的正交信号序列来确定对应UE。
44、根据实施例41-42任一所述的方法,在所述网络设备接收所述终端设备发送的所述WU-ACK之后,所述网络设备基于所述第一资源,以及所述信号序列与所述终端设备的对应关系,确定所述终端设备。
对于WU-ACK传输资源和正交序列结合的方法,基站基于接收到的WU-ACK所在的传输资源以及WU-ACK所包含的正交序列来确定对应UE。
45、根据实施例33-44任一所述的方法,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
UE的第三接口为WUR,第四接口为主通信接口。前者用于接收唤醒信号,功耗低,便于UE省电;后者被唤醒后可用于数据通信,功耗高,但传输速率也高。
46、一种上行传输的同步方法,所述方法应用于网络设备和终端设备,所述网络设备包括第一接口和第二接口,所述终端设备包括第三接口和第四接口,所述第一接口和所述第三接口通过第一通信方式进行通信,所述第二接口和所述第四接口通过第二通信方式进行通信;
所述方法包括:
所述终端设备通过第三接口接收所述网络设备通过第一接口发送的唤醒帧;
基于所述唤醒帧,所述终端设备唤醒所述第四接口;
所述终端设备向所述网络设备发送WU-ACK。
UE收到唤醒帧后向基站发送WU-ACK,以使基站基于该WU-ACK确定UE已被成功唤醒,然后基站再发送DL数据,避免了基站盲目发送DL数据造成的资源浪费。
47、根据实施例46所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备通过第三接口向所述网络设备的第一接口发送所述WU-ACK,或,所述终端设备通过第四接口向所述终端设备的第二接口发送所述WU-ACK。
若WUR接口不支持发送能力,则UE只能通过主通信接口发送WU-ACK。若WUR接口支持发送能力,则也可以通过WUR接口发送WU-ACK。
48、根据实施例46或47所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备在第一资源上向所述网络设备发送所述WU-ACK,所述第一资源是标准预定义的,或者,所述第一资源是网络设备配置给所述终端设备的。
UE发送WU-ACK所使用的传输资源可以是标准预定义的,或,是基站配置给UE的。
49、根据实施例46或47所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备在第一资源上向所述网络设备发送所述WU-ACK,所述第一资源的时域位置相比于所述唤醒帧的时域位置的时间偏移为T,所述T是标准预定义的,或者,所述T是所述网络设备配置给所述终端设备的。
类似于LTE标准中UE接收DL数据到发送对应UL响应消息之间的子帧偏移,本申请中UE接收唤醒帧到发送对应WU-ACK之间也可以是固定时间偏移T。T可以是标准预定义或基站配置的。
50、根据实施例49所述的方法,在所述网络设备为所述终端设备配置所述T之前,所述终端设备向所述网络设备上报唤醒时间,以便所述网络设备基于所述唤醒时间确定所述T,所述唤醒时间是所述终端设备从接收到所述唤醒帧到所述第四接口进入工作状态所需的时间。
不同UE的唤醒时间可能是不同的。这种情况下,UE可向基站上报自己的唤醒时间,以便基站基于此信息确定该UE的T值。一般来说,UE的唤醒时间越长,则对应的T值越大,因为UE需要花费更多时间用来唤醒自己的主通信接口。
51、根据实施例46-50任一所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备在第一资源上向所述网络设备发送所述WU-ACK,所述第一资源由所述网络设备在所示唤醒帧中指示。
基站可以在唤醒帧中指示对应的WU-ACK的传输资源,即第一资源。具体的,唤醒帧中包含的信息可以是第一资源的时域和/或频域资源分配,也可以是第一资源的资源索引,或者是第一资源对应的上述T值。
52、根据实施例46-51任一所述的方法,所述第一资源为PRACH资源,或,Grant-free资源,或,WU-ACK专用资源。
发送WU-ACK的资源可以复用PRACH资源或Grant-free资源资源,也可以是专门为WU-ACK设计的专用资源,即WACH资源。
53、根据实施例46-52任一所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备在第一资源上向所述网络设备发送所述WU-ACK,所述第一资源与所述终端设备具有一一对应关系。
发送WU-ACK的传输资源与UE具有一一对应关系,使得基站在接收到一个WU-ACK时即可根据承载该WU-ACK的资源确定是哪个UE发送的WU-ACK。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。
54、根据实施例46-52任一所述的方法,所述终端设备向所述网络设备发送WU-ACK,包括:
所述终端设备向所述网络设备发送所述WU-ACK,所述WU-ACK包括信号序列,所述信号序列与所述终端设备具有一一对应关系。
不同UE发送的WU-ACK对应不同正交信号序列,这使得基站基于收到的WU-ACK所包含的信号序列即可确定是哪个UE发送的WU-ACK。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。相比基于WU-ACK资源确定UE的方法,本实施例的方法可使得多个UE复用相同时频资源发送WU-ACK信号,即通过码分的方法区分UE,有利于节省传输资源。由于本权项引用前面的权项,故不同UE具有不同WU-ACK信号序列也可以是和第一资源结合的,换句话说,基站可基于第一资源和WU-ACK信号序列来区分UE。
55、根据实施例54所述的方法,在所述终端设备向所述网络设备发送所述WU-ACK之前,所述终端设备接收所述网络设备配置的所述信号序列。
不同UE的WU-ACK信号序列不同,故基站必须通过信令为UE配置对应的正交序列。
56、根据实施例46-55任一所述的方法,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
UE的第三接口为WUR,第四接口为主通信接口。前者用于接收唤醒信号,功耗低,便于UE省电;后者被唤醒后可用于数据通信,功耗高,但传输速率也高。
57、一种网络设备,所述网络设备包括:
处理器,存储器和收发器;
所述收发器,用于接收和发送数据;
所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如实施例33-45任一所述的方法。
58、根据实施例57所述的网络设备,所述收发器包括:
发送器和接收器;
所述发送器用于发送如实施例33-45任一所述唤醒帧;
所述接收器用于接收如实施例33-45任一所述WU-ACK。
59、根据实施例57所述的网络设备,所述网络设备还包括发射器,所述发射器用于发送如实施例33-45任一所述唤醒帧帧。
60、一种终端设备,所述终端设备包括:
处理器,存储器,收发器和接收器,所述收发器处于关闭状态,所述接收器处于激活状态或间歇性激活状态;
所述收发器,用于接收和发送数据;
所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如实施例46-56任一所述的方法。
61、根据实施例60所述的终端设备,所述接收器用于接收如实施例46-56任一所述唤醒帧。
62、根据实施例60或61所述的终端设备,所述收发器包括:
发送器;
所述发送器用于发送如实施例46-56任一所述WU-ACK。
63、一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例1-14任一所述的方法。
64、一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例15-26任一所述的方法。
65、一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例33-45任一所述的方法。
66、一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例46-56任一所述的方法。
67、一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例1-14任一所述的方法。
68、一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实 现实施例15-26任一所述的方法。
69、一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例33-45任一所述的方法。
70、一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现实施例46-56任一所述的方法。
71、一种网络设备,所述网络设备被配置为执行如实施例1-14任一所述的方法。
72、一种终端设备,所述终端设备被配置为执行如实施例15-26任一所述的方法。
73、一种网络设备,所述网络设备被配置为执行如实施例33-45任一所述的方法。
74、一种终端设备,所述终端设备被配置为执行如实施例46-56任一所述的方法。
75、一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例1-14中任一项所述的方法。
76、根据实施例75所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理模块执行实施例1-14中任一项所述的方法。
77、一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例15-26中任一项所述的方法。
78、根据实施例77所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理模块执行实施例15-26中任一项所述的方法。
79、一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例33-45中任一项所述的方法。
80、根据实施例79所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理模块执行实施例33-45中任一项所述的方法。
81、一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例46-56中任一项所述的方法。
82、根据实施例81所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理模块执行实施例46-56中任一项所述的方法。
83、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1-14任一所述的方法。
84、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例15-26任一所述的方法。
85、一种通信***,包括如实施例15-26任一所述的终端设备和如实施例1-14任一所述的网络设备。
86、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例33-45任一所述的方法。
87、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例46-56任一所述的方法。
88、一种通信***,包括如实施例46-56任一所述的终端设备和如实施例33-45任一所述的网络设备。
附图说明
图1为本申请实施例应用的通信***的架构示意图;
图2为本申请实施例的一种应用场景示意图;
图3为本申请一实施例提供的基站与UE的通信示意图;
图4为本申请一实施例提供的UE的WUR接口间歇性处于激活状态的示意图;
图5为本申请一实施例提供的基站与UE通信的大体信令流程图;
图6为本申请一实施例提供的通信方法的流程图;
图7为本申请一实施例提供的基站与UE通过WUR接口和主通信接口进行通信的示意图;
图8为本申请一实施例提供的基于非竞争的随机接入过程的示意图;
图9为本申请一实施例提供的RAR的结构的示意图;
图10为本申请一实施例提供的基于竞争的随机接入过程的示意图;
图11为本申请另一实施例提供的通信方法的流程图;
图12为本申请另一实施例提供的基站与UE通过WUR接口和主通信接口进行通信的示意图;
图13为本申请一实施例提供的通信装置的结构示意图;
图14为本申请另一实施例提供的通信装置的结构示意图;
图15为本申请一实施例提供的芯片的结构示意图;
图16为本申请另一实施例提供的通信装置的结构示意图;
图17为本申请另一实施例提供的通信装置的结构示意图;
图18为本申请另一实施例提供的通信装置的结构示意图;
图19为本申请另一实施例提供的芯片的结构示意图;
图20为本申请另一实施例提供的通信装置的结构示意图。
具体实施方式
本申请中,第一通信装置为唤醒信号的发送端,第二通信装置为唤醒信号的接收端。其中,第一通信装置可以为网络设备,该网络设备例如为基站;第二通信装置可以为终端设备,该终端设备例如为手机、传感器等。或者,第一通信装置可以为终端设备,例如:该终端设备为手机等;第二通信装置也可以为终端设备,例如:该第一通信装置为手机等,第二通信装置为智能手表、手环等;或者,该第一通信装置为智能手表、手环等,第二通信装置为手机等。或者,第一通信装置可以为终端设备,该终端设备例如为手机,第二通信装置可以为网络设备,该网络设备例如为基站。需要说明的是,本实施例并不限于上述产品形态。
下面以第一通信装置为网络设备,第二通信装置为终端设备为例对本申请的方案进行说明。
其中,图1为本申请实施例应用的通信***的架构示意图。如图1所示,该通信***包括网络设备和至少一个终端设备,该网络设备例如包括无线接入网设备。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑 功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信***中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该通信***中包括的核心网设备、无线接入网设备和终端的数量不做限定。
无线接入网设备是终端通过无线方式接入到该通信***中的网络设备,可以是基站NodeB、演进型基站eNodeB、5G通信***中的基站、未来通信***中的基站或WiFi***中的接入节点等,本申请的实施例对该网络设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端(Terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
下面以网络设备为基站,即第一通信装置为基站,以终端设备为UE,即第二通信装置为UE为例,对本申请的一种应用场景进行描述。
图2为本申请实施例的一种应用场景示意图,如图2所示,基站可与UE进行数据传输。基站能够发送唤醒信号,例如唤醒帧和同步帧;UE能够接收基站发送的唤醒信号。UE配置了WUR接口(也可以称为WUR模块)和主通信接口(也可以称为主通信模块),并且UE可通过WUR接口接收基站发送的唤醒信号。其中,基站可以与至少一个UE分别执行如下所述的本申请实施例,其中,图2中示出三个UE,例如为:UE1、UE2、UE3;但本实施例不以此为限。
下面以基站与一个UE进行通信为例对本申请的方案进行描述,其它UE类似。本申请结合图3对基站向UE发送唤醒信号进行描述,图3为本申请一实施例提供的基站与UE的通信示意图,如图3所示,UE的主通信接口通常处于关闭状态,只有当收到来自UE的WUR接口的触发信号 时,主通信接口才会激活,然后通过主通信接口与基站进行数据通信。其中,触发信号可是由WUR接口发送给主通信接口的中断信号,用于触发主通信接口进入激活状态,触发信号是UE的内部信号,可通过有线或无线方式传输。需要说明的是,上述WUR接口发送触发信号给主通信接口是逻辑上的,在实际***中,WUR接口也可以将接收到的唤醒信号转发给UE的处理器,由UE的处理器决定是否唤醒主通信接口,此时,触发信号实际上是由处理器发出的,或由处理器指示其它模块发出的。
UE的WUR接口可以是持续处于接收状态,或者可以是间歇性处于接收状态,当UE的WUR接口在接收状态中收到来自基站的唤醒信号,例如唤醒包(Wakeup Packet,又称为唤醒帧,是唤醒信号的一种)时,向主通信接口发送触发信号,以唤醒处于关闭状态的主通信接口,使得主通信接口进入工作状态,然后通过唤醒后的主通信接口与基站的主通信接口进行数据交互。其中,基站在逻辑上也可以包括主通信接口和WUR接口,但对于当前3GPP标准而言,主通信接口常常为OFDM宽带发射机,而唤醒信号则可能是窄带信号(以降低UE的WUR接口的接收功耗),出于降低成本和结构简单考虑,可以利用OFDM宽带发射机产生窄带的唤醒信号。例如,将OFDM信号的部分子载波空置而仅在唤醒信号对应的窄带上传输信号,从而产生窄带信号,这就是利用OFDM宽带发射机产生WUR窄带信号的例子,因此,基站的主通信接口与WUR接口也可以是同一接口(即同一模块),这种情况下,图3中示出基站包括一个接口,即主通信接口,只是主通信接口也可以执行WUR接口的功能,即发送唤醒信号。需要特别说明的是,基站在具体实现中也可将主通信接口和WUR接口分别进行单独实现,即基站侧也可以同时包含两个接口,分别为主通信接口和WUR接口。另外,图3中示出的基站和UE都只有一个天线,这主要是考虑主通信接口和WUR接口使用相同或接近的频段载波情况下,可共用同一天线,以节省成本和简化设备结构。当然,主通信接口和WUR接口分别使用不同天线显然也是可行的。当主通信接口和WUR接口使用频域上距离较大的不同频段载波时,两者应配置不同天线。例如,主通信接口使用6GHz频段,WUR接口使用1.8GHz频段,此时两者应使用不同天线。
UE采用WUR接口接收信号相比使用主通信接口接收信号能够降低功耗,其主要原因在于唤醒信号的接收和译码远比传统的主通信接口信号简单。唤醒信号通常采用易于接收端解调的调制方式,例如开关键控(on-off key,OOK)调制、频移键控(Frequency-shift keying,FSK)调制、幅移键控(Amplitude shift keying,ASK)调制等。以OOK调制为例,接收端(如UE)通过有无能量判断接收信号承载的信息,例如,有能量为1,无能量为0。而传统的主通信接口的信号(如LTE/NR的信号)由于在发送端采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)调制、Turbo/LDPC/Polar信道编码等,相应地,接收端(如UE)需执行FFT、FEC译码等复杂信号处理操作,这些操作需要耗费大量能量。另一种实现低功耗WUR的方法是接收端(如UE)采用被动接收机,例如近场通信(Near Field Communication,NFC)技术。
图3中UE和基站的主通信接口也可以是其它通信接口,例如WiFi、BlueTooth。用于数据通信的接口,统称为主通信接口或主通信模块(main radio),如LTE、NR、WiFi接口;用于设备唤醒的接口,统称为唤醒射频接口(WUR接口)或唤醒射频接口(WUR接口)。出于节省成本和简化设计的考虑,UE的WUR接口往往只支持唤醒信号的接收能力即可,而无需支持发送能力。
在一种方式中,WUR接口可以间歇性处于激活状态,UE的WUR接口处于激活状态的时间窗口称为唤醒窗口(Wakeup window)。这种唤醒窗口的出现应当是规律性的,以便基站能够知道UE的WUR接口何时能够接收唤醒信号。例如,WUR接口在每100ms中有2ms处于激活状态, 如图4所示。当基站有数据需要向UE发送时,可在该UE的唤醒窗口中发送唤醒信号(如唤醒包),从而唤醒UE的主通信接口,这样可以节省耗电量。唤醒窗口的起始时刻、窗口时长以及周期,可以是预先设定的(例如通信标准预定义的),也可以是基站配置的。
当然,在另一种方式中,也可以不引入唤醒窗口,即UE的WUR接口始终处于监听状态,这使得基站可随时唤醒UE,有利于降低唤醒延迟。
需要说明的是,唤醒信号的接收端(如UE)需要配置WUR接口。上述唤醒信号是所有可被WUR接口接收并解码的信号的统称,例如,唤醒信号可以是前述唤醒帧,也可以是其它帧。
假设NR中引入了WUR,即NR UE配置了WUR接口,则当基站没有数据向UE发送且UE也没有数据传输时,UE的主通信接口(如NR/LTE/CDMA/GSM等)处于关闭状态,而WUR接口处于激活状态或如图4所示的间歇性激活状态。当基站有数据向UE发送时,首先向UE的WUR接口发送唤醒帧,以便使UE唤醒自己的主通信接口,然后基站调度UE的DL数据传输,大体信令流程如图5所示。其中,基站向UE的WUR接口发送唤醒帧之后,通过主通信接口向UE的主通信接口发送PDCCH,其中承载DL传输调度信息,即用于指示随后DL数据传输所使用的资源以及相关传输参数(如MCS等);然后,基站通过主通信接口向UE的主通信接口发送PDSCH,其中承载下行数据;最后,UE向基站发送PUCCH,用于承载针对DL数据的响应,即ACK/NACK信息。上述过程中,唤醒信号为WUR接口信令,其它消息均为UE的主通信接口被唤醒后的主通信接口信令。
其中,唤醒信号的发送端,即第一通信装置(例如基站)配置了第一接口和第二接口,其中,第一接口可以称为WUR接口,第二接口可以称为主通信接口;唤醒信号的接收端,即第二通信装置(例如UE)配置了第三接口和第四接口,其中,第三接口可以称为WUR接口,第四接口可以称为主通信接口。上述的WUR接口也可以称为WUR模块,主通信接口也可以称为主通信模块。相应地,基站通过WUR接口向UE的WUR模块发送唤醒信号,UE通过WUR接口接收基站发送的唤醒信号;基站通过主通信接口与UE的主通信接口进行通信。
基于上述描述,对本申请的方案进行描述。
图6为本申请一实施例提供的通信方法的流程图,如图6所示,本实施例以第一通信装置为基站,第二通信装置为UE为例,以唤醒信号为唤醒帧进行说明,本实施例的方法可以包括:
S101、基站通过基站的WUR接口向UE发送唤醒帧。
S102、UE通过UE的WUR接口接收基站发送的唤醒帧。
本实施例中,基站包括第一接口和第二接口,其中,第一接口为WUR接口,第二接口为主通信接口。UE包括第三接口和第四接口,其中,第三接口为WUR接口,第四接口为主通信接口。并且,基站的WUR接口与UE的WUR接口通信,基站的主通信接口与UE的主通信接口通信。在一些实施例中,基站的WUR接口与UE的WUR接口的通信方式为第一通信方式,基站的主通信接口与UE的主通信接口的通信方式为第二通信方式,该第一通信方式与该第二通信方式不同。
在一些实施例中,UE的WUR接口与UE的主通信接口为不同的物理接口,例如:在硬件实现上,UE的WUR接口为接收器,UE的主通信接口为收发器。
在一些实施例中,基站的WUR接口与基站的主通信接口集成为同一物理接口,例如:在硬件实现上,基站的WUR接口与基站的主通信接口集成为同一收发器。这种情况下,基站的WUR接口和主通信接口是两个逻辑接口。
在一些实施例中,基站的WUR接口与基站的主通信接口为不同的物理接口,例如:在硬件 实现上,基站的WUR接口为发射器,基站的主通信接口为收发器。
本实施例中,当基站需要与UE传输数据的情况下,基站需要向UE发送唤醒帧,以唤醒UE的主通信接口。因此,基站通过基站的WUR接口向UE发送唤醒帧,该唤醒帧用于唤醒UE的主通信接口;即基站通过基站的WUR接口向UE的WUR接口发送唤醒帧。相应地,UE通过UE的WUR接口接收基站(基站的WUR接口)发送的唤醒帧。
S103、UE根据所述唤醒帧,唤醒UE的主通信接口。
本实施例中,UE接收到基站发送的唤醒帧,该唤醒帧用于唤醒主通信模块,而且当前UE的主通信模块处于关闭状态,然后UE根据该唤醒帧唤醒主通信模块,使得主通信模块进入工作状态。
其中,唤醒帧中还可以包含目标UE的标识,该目标UE为基站想要唤醒的UE。一个UE接收到唤醒帧后,可基于其中携带的目标UE的标识确定自身是否该唤醒帧的目标唤醒设备。若是,则该UE唤醒主通信接口,否则,忽略该唤醒帧。需要说明的是,唤醒帧中包含的目标UE标识可以指示一个UE,也可以指示一组UE。换句话说,唤醒帧的唤醒对象,可以是一个设备,也可以是一组设备。对于后者,只要UE确定自己是这一组设备中的一个,则认为自己是该唤醒帧的目标唤醒设备。
S104、UE通过UE的主通信接口向基站发送WU-ACK。
S105、基站通过基站的主通信接口接收UE发送的WU-ACK。
本实施例中,UE在唤醒UE的主通信接口之后,UE向基站发送WU-ACK,WU-ACK用于指示UE成功接收唤醒帧且已唤醒UE的主通信接口。相应地,基站接收UE发送的WU-ACK,根据该WU-ACK确定该UE的主通信接口已成功唤醒,因此基站的主通信接口可以与UE的主通信接口进行通信。
在一种实现方式中,UE可以通过UE的主通信接口向基站(基站的主通信接口)发送WU-ACK,相应地,基站可以通过基站的主通信接口接收UE(UE的主通信接口)发送的WU-ACK。即WU-ACK是通过主通信接口进行传输的,其中,图6是以这种实现方式示出,另外,基站与UE通过WUR接口和主通信接口进行通信如图7所示。
在另一种实现方式中,UE可以通过UE的WUR接口向基站(基站的WUR接口)发送WU-ACK,相应地,基站可以通过基站的WUR接口接收UE(UE的WUR接口)发送的WU-ACK。即WU-ACK是通过WUR接口进行传输的,这表示若UE的WUR接口具备发射能力,则WU-ACK也可以由UE的WUR接口发送。
可选地,本实施例的基站在执行S105之后,基站还通过基站的主通信接口向UE(UE的主通信接口)发送下行数据,相应地,UE还通过UE的主通信接口接收基站(基站的主通信接口)发送的下行数据。其中,下行数据可以是PDSCH、paging、***消息等。本实施例,基站根据接收的WU-ACK确定UE的主通信接口已成功唤醒,然后再通过主通信接口向UE的主通信接口发送下行数据,由于UE的主通信接口已成功唤醒,因此UE可以通过主通信接口接收到基站发送的下行数据,提高了数据传输成功率,避免了盲目进行数据传输而造成资源浪费。
本实施例中,基站通过WUR接口向UE的WUR接口发送唤醒帧;UE根据所述唤醒帧,唤醒UE的主通信接口,然后向基站发送WU-ACK,用于表示UE成功接收唤醒帧且已唤醒主通信接口,相应地,基站收到UE的WU-ACK后确定UE已被成功唤醒,然后再向UE发送下行数据,避免了UE未唤醒主通信接口(如UE未正确接收唤醒帧,或者,UE正确接收唤醒帧但主通信接 口尚未进入工作状态)的情况下,基站盲目向UE发送下行数据而造成的资源浪费。
另外,基站通过主通信接口向UE的主通信接口发送PDSCH,其中承载下行数据;最后,UE向基站发送PUCCH,用于承载针对下行数据的响应,即ACK/NACK信息。但是问题在于,UE如何确定发送承载ACK/NACK的PUCCH时所使用的定时提前量(Timing Advance,TA)。从UE上次被唤醒后与基站通过主通信接口通信至这次被唤醒与基站通过主通信接口通信可能已经经过了较长一段时间,UE的位置可能因移动而发生了较大变化,UE所保存的TA已经不适用于当前PUCCH的传输。因此如何确定合适的TA是急需解决的问题。
在一种方案中,UE获取TA的一种方式是随机接入过程,具体包括基于竞争的随机接入和基于非竞争的随机接入。
图8为本申请一实施例提供的基于非竞争的随机接入过程的示意图,如图8所示,基站为UE预先配置随机接入前导(preamble)以及用于发送随机接入前导的物理随机接入信道(Physical Random Access Channel,PRACH),PRACH即为用于发送随机接入前导的物理资源;当基站在PRACH上接收到预配置的随机接入前导时,基于该随机接入前导测量该UE的TA;然后,基站向UE发送PDCCH,PDCCH用于调度下行(DownLink,DL)传输资源,以传输随机接入响应(Random Access Response,RAR);基站再在调度的DL传输资源上发送RAR,其中RAR中承载前述TA。其中,RAR的结构如图9所示。注意,图8中未标出PDCCH。
图10为本申请一实施例提供的基于竞争的随机接入过程的示意图,如图10所示,由于基于竞争的随机接入过程中用于发送随机接入前导的PRACH是由多个UE共享的,且UE选择哪个preamble也是不确定的,多个UE可能在相同的PRACH资源上同时发送preamble,从而导致preamble冲突。因此,基于竞争的随机接入过程在基于非竞争接入的随机接入过程基础上增加了两条新的信令,用于进行冲突解决,而UE的TA获取与基于非竞争接入的随机接入过程是完全一样的,即基站基于接收UE发送的随机接入前导来估算UE的TA,并在RAR中告知UE,RAR中承载该TA。类似的,基站发送RAR之前还需发送PDCCH,用于指示RAR的资源分配。RAR的结构如图9所示。
由上述分析可以得知,无论基于竞争的随机接入过程还是基于非竞争的随机接入过程,UE想要获得TA,至少需要三条信令:随机接入前导、PDCCH、RAR。之后,UE才可以基于从RAR中获得的TA进行上行(Uplink,UL)传输。RAR是高层信令,传输时延较大。因此,上述获取TA的过程可能具有较大信令开销,且导致较大时延。
在另一种方案中,随机接入过程之后,UE获得了TA。但随着时间推移,UE的TA可能发生变化。若UE处于RRC_IDLE(RRC空闲)状态,则需再次执行随机接入过程;若UE处于RRC_CONNECTED(RRC连接)状态,则无需重新执行随机接入过程,因为基站可基于UE发送的任何信号(如SRS/DMRS/CQI/ACK/NACK/PUSCH等)估算UE的TA。当基站认为某个UE的TA需要调整时,则向该UE发送Timing Advance Command MAC control element(TAC MAC CE),其中TAC MAC CE中携带新的TA。TAC MAC CE通常承载于PDSCH,故在TAC MAC CE之前,基站需首先发送PDCCH,用于调度发送TAC MAC CE所使用的资源。
但是,该方案只适用RRC_CONNECTED状态的UE,即UE和基站一直有信令交互,而工作于WUR接口开启、主通信接口关闭状态的UE不会与基站有信令交互的。另一方面,该方案同样存在信令开销较大、延迟大的问题。
针对UE通过WUR被基站唤醒后进行上行传输的TA获取所存在的问题,本申请实施例提出 一种通信方法来获取TA,使得UE能够快速获取TA,从而降低TA获取过程的信令开销并降低时延。具体如下所述。
图11为本申请另一实施例提供的通信方法的流程图,如图11所示,本实施例以第一通信装置为基站,第二通信装置为UE为例,以唤醒信号为唤醒帧进行说明,本实施例的方法可以包括:
S201、基站通过基站的WUR接口向UE发送唤醒帧。
S202、UE通过UE的WUR接口接收基站发送的唤醒帧。
S203、UE根据所述唤醒帧,唤醒UE的主通信接口。
S204、UE通过UE的主通信接口向基站发送WU-ACK。
S205、基站通过基站的主通信接口接收UE发送的WU-ACK。
本实施例中,S201-S205的具体实现过程可以参见图6所示实施例中的相关描述,此处不再赘述。
需要说明的是,图11中S204与S205以主通信接口传输WU-ACK为例,但本实施例不以此为限,例如也可以通过WUR接口来传输WU-ACK。
S206、基站通过基站的主通信接口向UE发送PDCCH。
S207、UE通过UE的主通信接口接收基站发送的PDCCH。
本实施例中基站接收的WU-ACK还可以用于测量UE的TA,因此基站通过基站的主通信接口接收UE的主通信接口发送的WU-ACK之后,基于该WU-ACK测量该UE的TA,再将该UE的TA携带在PDCCH中,然后基站通过主通信接口向UE(UE的主通信接口)发该PDCCH。相应地,UE通过UE的主通信接口接收基站(基站的主通信接口)发送的PDCCH;该PDCCH用于调度下行数据的传输,例如PDCCH用于调度UE的下行数据的资源分配以及传输参数;并且该PDCCH包括该TA,其中,该TA是基站根据WU-ACK获得的。UE接收到PDCCH中的上述TA后,更新自己保存的TA,该更新后的TA(即接收的上述TA)可用于PUCCH的发送,如图12所示的PUCCH,也可用于后续其它数据的传输,图12中示出PUCCH中承载ACK/NACK,其中,ACK/NACK又可称为数据响应消息。
另外,本实施例WU-ACK还可以用于信道测量和传输参数确定,即基站基于WU-ACK测量UE的UL信道质量,并基于信道互易性确定对应的DL信道质量,进而确定DL传输的MCS等传输参数。在UE发送WU-ACK时,UE尚未获得更新后的TA,故此时UE只能使用之前保存的TA或其它TA。为保证这种情况下WU-ACK能够被基站正确接收,WU-ACK可以是可靠性较高的信号波形,例如类似随机接入过程中的随机接入preamble。这种信号波形对于定时偏差有较大容忍能力,即使TA不准确也能够被基站以较大概率成功检测,从而提高基站测量获得TA的准确率。
S208、基站通过基站的主通信接口向UE发送下行数据。
S209、UE通过UE的主通信接口接收基站发送的下行数据。
本实施例中,S208和S209的具体实现过程可以参见图6所示实施例中的相关描述,此处不再赘述。
S210、UE采用所述TA,通过UE的主通信接口向基站发送数据响应消息。
S211、基站通过基站的主通信接口接收UE发送的数据响应消息。
本实施例中,UE通过UE的主通信接口接收基站的主通信接口发送的下行数据之后,还通过主通信接口向基站的主通信接口发送数据响应消息,并且UE是采用上述S207中接收的PDCCH 包括的TA发送数据响应消息。所述数据响应消息用于确认是否成功接收所述下行数据。数据响应消息可以为ACK,表示UE已成功接收所述下行数据;或者,数据响应消息也可以为NACK,表示UE未成功接收所述下行数据。
因此,UE从PDCCH中获得的TA,可用于随后下行数据的数据响应消息,避免了使用不准确的TA造成的UL响应传输可靠性降低,提高了可靠性。
本实施例,通过上述方案,基站收到UE的WU-ACK后确定UE的主通信接口已被成功唤醒,然后再发送下行数据,避免了基站盲目发送下行数据造成的资源浪费。另外,基站还可以基于WU-ACK测量获得UE的TA,并将TA携带在PDCCH中通过主通信接口发送给UE,而且配置有WUR接口的UE被基站唤醒后,UE从通过主通信接口接收的PDCCH中同时获得下行数据调度信息和TA,降低了TA获取过程的时延和信令开销。
在上述各本申请实施例的基础上,在一些实施例中,UE(例如通过主通信接口)在第一资源上向基站(例如基站的主通信接口)发送WU-ACK,相应地,基站(例如通过主通信接口)通过第一资源接收UE(例如UE的主通信接口)发送的WU-ACK。
在一些实施例中,所述第一资源是预先设定的,例如通信标准中定义的,或者,所述第一资源是基站配置给UE的。
在一些实施例中,所述第一资源的时域位置与所述唤醒帧的时域位置之间存在时间偏移量;因此,基站和UE可以根据该时间偏移量与唤醒帧的时域位置,确定第一资源的时域位置。其中,所述时间偏移量是预先设定的,或者,所述时间偏移量是基站配置给UE的。例如,基站事先通过主通信接口为UE(UE的主通信接口)配置所述时间偏移量,或者,基站在唤醒帧中指示所述时间偏移量。可选地,UE还通过UE的主通信接口向基站(基站的主通信接口)发送唤醒时间,所述唤醒时间为UE从接收到所述唤醒帧到UE的主通信接口进入工作状态所需的时长;相应地,基站通过主通信接口接收UE发送的唤醒时间,然后基站根据该唤醒时间确定上述时间偏移量,例如:该时间偏移量大于或等于该唤醒时间,以保证第一资源到来时UE的主通信接口已进入工作状态,能够发送WU-ACK。不同UE的唤醒时间可能是不同的。这种情况下,UE向基站上报自己的唤醒时间,以便基站基于此唤醒时间确定该UE对应的时间偏移量T。一般来说,UE的唤醒时间越长,则对应的T值越大,因为UE需要花费更多时间用来唤醒自己的主通信接口。
在一些实施例中,所述唤醒帧还包括:资源指示信息,所述资源指示信息用于指示所述第一资源的时域位置和/或频域位置。相应地,UE根据唤醒帧中包括的资源指示信息,确定第一资源。该资源指示信息也可以是资源索引号。
其中,第一资源为何种资源具有不同的方案。
在第一种方案中,第一资源可以为PRACH资源,即传输WU-ACK的资源可以复用PRACH资源。
该PRACH资源可以是预先设定的,或者,该PRACH资源是基站配置给UE的。例如:UE可以在基站事先配置的PRACH资源上发送WU-ACK,这种情况下,WU-ACK可以是随机接入preamble,也可以是专门设计的WU-ACK信号。其中,PRACH资源可以多个UE共享的(基于竞争的随机接入),也可以是专用于目标UE的(基于非竞争的随机接入)。由于PRACH资源并不是随时都有,UE从收到唤醒帧到下一次PRACH资源机会之间可能存在较长一段时间,这可能导致较大的时延。
在第二种方案中,第一资源可以为免授权(Grant-free,又称为UL transmission without grant) 资源,即传输WU-ACK的资源可以使用Grant-free资源。
该PRACH资源可以是预先设定的,或者,该PRACH资源是基站配置给UE的。例如:基站需事先为UE配置Grant-free资源,当UE收到基站的唤醒帧时,在基站配置的Grant-free资源上向基站发送WU-ACK。Grant-free资源一般都是多个UE共享的,而唤醒帧也并不总是需要发送的(相应的,UE并不总是需要发送WU-ACK),故使用Grant-free资源传输WU-ACK能够有效节省WU-ACK传输资源。该Grant-free资源可以是专用于发送WU-ACK的,也可以是WU-ACK与UL数据共享的。
在第三种方案中,第一资源可以是专门的发送资源,称为WU-ACK专用资源,也可称为唤醒响应信道(WU-ACK Channel,WACH)资源。
在第一资源为WU-ACK专用资源的方案中,存在如下几种实现方式。
在第一种实现方式中,WU-ACK专用资源位于固定的时频位置,该时频位置可以是预先设定的,或者,该时频位置是基站配置给UE的。
例如:WU-ACK专用资源可以位于特定子帧的特定频域带宽中。例如,WU-ACK专用资源位于每个子帧3中的特定频带上,或者,WU-ACK专用资源位于偶数***帧中子帧3的特定频带上。需要注意的是,WU-ACK专用资源属于UL资源,故时分双工(Time Division Duplexing,TDD)情况下只能位于UL子帧中。WACH资源的具体时域和/或频域资源分配可以是基站通过RRC信令、MAC CE或***消息等进行半静态配置,也可通过DCI或group common DCI(组公共DCI)等物理层信令进行动态配置。
在第二种实现方式中,WU-ACK专用资源的时域位置位于所述唤醒信号的时域位置之后一时间偏移量的位置。
假设基站在子帧n中通过WUR接口向UE的WUR接口发送唤醒帧,则对应的WU-ACK专用资源位于子帧n+k中。其中,k可以是标准预定义的,也可以是基站配置给UE的。对于k是基站配置给UE的情况,UE可向基站上报自己的主通信接口的唤醒时间(即UE从在WUR接口上收到唤醒帧到主通信接口进入工作状态的时长),以便基站能够确定k。其中,WU-ACK的频域位置可以是标准预定义的,也可以是基站配置的(如基站通过RRC信令半静态向UE配置的),或者通过其它方法确定的。
在第三种实现方式中,基站通过WUR接口发送的唤醒帧中包括资源指示信息。其中,资源指示信息可以直接指示WU-ACK专用资源,即直接指示WU-ACK专用资源的时域和/或频域位置。一种方法是,资源指示信息指示上述第二种实现方式中的所述k。或者,资源指示信息可以间接指示WU-ACK专用资源,即UE需要基于该资源指示信息以及预定义规则来计算WU-ACK资源的时域和/或频域位置。对于间接指示的情况,可参考现有通信标准中基于UL资源的最小PRB索引以及基站配置的nDMRS计算PHICH资源位置的方法,此处不再赘述。
在一些实施例中,WU-ACK专用资源的大小是可配置的。例如,基站基于当前UE的数量,通过RRC信令、MAC CE、***消息等半静态配置WU-ACK专用资源的大小;或者,基站通过物层信令(如DCI或group common DCI)动态配置WU-ACK专用资源的大小;或者,基站在唤醒帧中指示WU-ACK专用资源的大小。
需要说明的是,上述的“基站配置给UE的”是通过基站的主通信接口和UE的主通信接口的交互来完成的。
需要说明的是,虽然上述各本申请实施例中以基站向一个UE发送唤醒帧为例进行示出,但 是在一些应用场景下,基站有可能同时向多个UE发送唤醒帧,相应地,基站可能同时收到多个UE发送的WU-ACK,即基站同时接收到多个WU-ACK,故UE发送的WU-ACK应使基站能够根据WU-ACK判断该WU-ACK是哪个UE发送的,即判断发送该WU-ACK的UE的标识。换句话说,WU-ACK应直接或间接指示发送该WU-ACK的UE的标识(UE ID)。具体地,可通过多种方式实现WU-ACK与UE的标识之间的映射。具体可以存在如下几种实现方案,但本实施例并不限于此。
在第一种实现方案中,所述第一资源与所述UE的标识之间具有一一对应关系;相应在地,基站还可以根据该第一资源,以及第一资源与UE的标识之间的一一对应关系,确定UE的标识,即确定发送WU-ACK的UE。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。
本实施例通过不同的WU-ACK传输资源来区分不同的UE。其中,基站可以为不同的UE配置不同的WU-ACK传输资源,也称为第一资源(例如:WU-ACK专用资源),下面以第一资源称为WU-ACK传输资源进行说明,通过接收到的WU-ACK所在的WU-ACK传输资源来识别发送UE。其中,WU-ACK传输资源可以是时域和/或频域资源。这种情况下,不同UE的WU-ACK中包括的信号序列可以是相同或不同的。
基站需通过信令配置与每个UE对应的WU-ACK传输资源,该信令可以是RRC信令/物理层信令/唤醒帧。
基站和UE还可以通过预定义规则确定UE对应的WU-ACK传输资源。例如,基站通过RRC信令/物理层信令配置了WU-ACK传输资源池(例如WU-ACK专用资源池),基站和UE可基于UE的标识(如C-RNTI)和预定义规则计算UE在WU-ACK传输资源池中对应的WU-ACK传输资源。
当基站向UE发送了唤醒帧时,则应预留与该UE对应的WU-ACK传输资源,以便在该WU-ACK传输资源上接收可能到来的WU-ACK。可选地,若基站未向该UE发送唤醒帧,则与该UE对应的WU-ACK传输资源可被基站调度作为其他用途。例如,基站可将该WU-ACK传输资源调度给其他UE的UL数据传输。因此,虽然需要为每个UE保留不同WU-ACK传输资源,在UE较多的情况下可能导致预留的WU-ACK传输资源较多,但实际上,由于这些WU-ACK传输资源并不总是会被使用,基站可以将其中当前未使用的WU-ACK传输资源作为UL数据传输资源调度使用。总之,本实施例中实际上并不会因为预留太多的WU-ACK传输资源而造成资源浪费。
在第二种实现方案中,所述WU-ACK包括信号序列,所述信号序列与所述UE的标识之间具有一一对应关系;基站还可以根据WU-ACK中包括的所述信号序列,以及所述信号序列与所述UE的标识之间的一一对应关系,确定所述UE的标识,即确定发送WU-ACK的UE。基于此,基站即可确定对应UE已被成功唤醒,可以向该UE发送DL数据了。这避免了基站在不确定UE是否成功唤醒情况下盲目发送DL数据造成的资源浪费。相比基于WU-ACK传输资源确定UE的方法,本实施例的方法可使得多个UE复用相同时频资源发送WU-ACK,即通过码分的方法区分UE,有利于节省传输资源。
本实施例通过不同信号序列来区分不同的UE。在这种实现方案中,基站还可以通过主通信接口向UE(UE的主通信接口)发送信号序列指示信息,该指示信息用于指示所述信号序列。信号序列指示信息可以是信号序列的索引。其中,所述信号序列也可以称为WU-ACK信号序列。例如:基站可以通过显式或隐式的方式为UE分配不同正交序列作为WU-ACK信号序列。例如,基站为 不同的UE配置不同的DMRS序列,并以DMRS序列作为WU-ACK信号序列。基站可以通过信令向每个UE配置其所对应的WU-ACK信号序列,例如WU-ACK正交序列,该信令可以是RRC信令或物理层信令。但是一些实施例中,上述信令也可以是唤醒帧,即唤醒帧还包括上述信号序列指示信息,因此,信号序列指示是基站通过WUR接口发送给UE的。
而且,不同UE的WU-ACK传输可复用相同时频资源,即不同的UE的WU-ACK传输资源可以相同,但是通过WU-ACK中的信号序列(例如正交序列)可区分不同的UE户,有利于降低WU-ACK传输资源(即第一资源)的开销。
在第三种实现方案中,所述WU-ACK包括信号序列,所述第一资源、所述信号序列与所述UE的标识三者之间具有对应关系。基站还可以根据收到的WU-ACK所在的第一资源、WU-ACK中包括的所述信号序列,以及所述第一资源、所述信号序列与UE的标识三者之间的对应关系,确定UE的标识,即确定发送WU-ACK的UE。
本实施例,通过WU-ACK传输资源结合信号序列来识别不同的UE。在这种实现方案中,基站还可以通过主通信接口向UE(UE的主通信接口)发送信号序列指示信息,该指示信息用于指示所述信号序列。其中,所述信号序列也可以称为WU-ACK信号序列。
其中,对于给定长度的WU-ACK中包括的信号序列,也可以称为WU-ACK信号序列,WU-ACK信号序列可以为正交序列;其中,可用的正交序列个数可能有限,而一个基站下面配置有WUR接口的UE可能有很多。可用正交序列的个数可能远少于UE个数。这种情况下,可将正交序列与WU-ACK传输资源结合起来,以便重复使用正交序列。换句话说,不同UE组绑定不同的WU-ACK传输资源,而不同WU-ACK传输资源可使用相同正交序列。其中,WU-ACK传输资源可以是时域和/或频域资源。例如,第一组UE在第一WU-ACK传输资源中传输WU-ACK,第二组UE在第二WU-ACK传输资源中传输WU-ACK,假设一共有N个可用正交序列,则这N个正交序列可在两组UE中复用,而同一组中的UE则不能使用相同正交序列。由于两组UE在不同WU-ACK传输资源上传输WU-ACK,即使使用相同正交序列作为WU-ACK信号序列,也不会造成基站在识别不同UE时产生混淆。
基站可以通过信令配置与每个UE关联的WU-ACK传输资源以及WU-ACK中的信号序列(例如称为WU-ACK正交序列)。该信令可以是RRC信令或物理层信令,也可以是唤醒帧。基站也可以通过不同信令配置与每个UE关联的WU-ACK传输资源以及WU-ACK正交序列。例如,基站通过RRC信令/物理层信令/唤醒帧中的第一种信令配置与UE对应的WU-ACK传输资源,通过RRC信令/物理层信令/唤醒帧中的第二种信令配置与UE对应的WU-ACK正交序列,第一种信令和第二种信令的不同种类信令。需要说明的是,在一些实施例中,当基站通过唤醒帧向基站配置WU-ACK传输资源和WU-ACK正交序列时,使用的是WUR接口。
可以理解的是,上述各个实施例中,由第一通信装置,例如UE,实现的方法或步骤,也可以是由第一通信装置内部的芯片实现的。由第二通信装置,例如基站,实现方法或者步骤,也可以是由第二通信装置内部的芯片实现的。
图13为本申请一实施例提供的通信装置的结构示意图,如图13所示,本实施例的通信装置作为第一通信装置,可以包括:发送模块1301和接收模块1302。另外,本实施例的通信装置还包括第一接口和第二接口,图中未示出。其中,第一接口用于与第二通信装置的第三接口通信,第二接口用于与第二通信装置的第四接口通信。
发送模块1301,用于通过所述第一接口向所述第二通信装置发送唤醒信号,其中,所述唤醒 信号用于唤醒所述第二通信装置的所述第四接口。
接收模块1302,用于接收所述第二通信装置发送的WU-ACK。
在一些实施例中,所述接收模块1302,具体用于:通过所述第一接口接收所述第二通信装置发送的所述WU-ACK;或者,通过所述第二接口接收所述第二通信装置发送的所述WU-ACK。
在一些实施例中,所述发送模块1301,还用于在所述接收模块1302接收所述第二通信装置发送的WU-ACK之后,通过所述第二接口向所述第二通信装置发送下行数据。
在一些实施例中,所述发送模块1301,还用于在所述接收模块1302接收所述第二通信装置发送的WU-ACK之后,通过所述第二接口向所述第二通信装置发送PDCCH,所述PDCCH用于调度所述下行数据的传输,所述PDCCH包括TA,所述TA是所述第一通信装置根据所述WU-ACK获得的。
在一些实施例中,所述接收模块1302,还用于:通过所述第二接口接收所述第二通信装置采用所述TA发送的数据响应消息,所述数据响应消息用于确认是否成功接收所述下行数据。
在一些实施例中,所述接收模块1302,具体用于:在第一资源上接收所述第二通信装置发送的所述WU-ACK。
在一些实施例中,所述第一资源是预先设定的,或者,所述第一资源是所述第一通信装置配置给所述第二通信装置的。
在一些实施例中,所述第一资源的时域位置与所述唤醒信号的时域位置之间存在时间偏移量;
其中,所述时间偏移量是预先设定的,或者,所述时间偏移量是所述第一通信装置配置给所述第二通信装置的。
可选地,本实施例的通信装置还包括处理模块1303。
在一些实施例中,所述接收模块1302,还用于在所述发送模块1301通过所述第一接口向所述第二通信装置发送唤醒信号之前,通过所述第二接口接收所述第二通信装置发送的唤醒时间;所述唤醒时间为所述第二通信装置从接收到所述唤醒信号到所述第四接口进入工作状态所需的时长;
所述处理模块1303,用于根据所述唤醒时间确定所述TA。
在一些实施例中,所述唤醒信号还包括:资源指示信息,所述资源指示信息用于指示所述第一资源的时域位置和/或频域位置。
在一些实施例中,所述第一资源为PRACH资源,或者,免授权资源,或者,WU-ACK专用资源。
在一些实施例中,所述第一资源为WU-ACK专用资源。
在一些实施例中,所述第一资源与所述第二通信装置的标识之间具有一一对应关系;所述处理模块1303,还用于:根据所述第一资源,以及所述第一资源与所述第二通信装置的标识之间的一一对应关系,确定所述第二通信装置的标识。
在一些实施例中,所述WU-ACK包括信号序列,所述信号序列与所述第二通信装置的标识之间具有一一对应关系;所述处理模块1303,还用于:根据所述信号序列,以及所述信号序列与所述第二通信装置的标识之间的一一对应关系,确定所述第二通信装置的标识。
在一些实施例中,所述WU-ACK包括信号序列,所述第一资源、所述信号序列与所述第二通信装置的标识三者之间具有对应关系;所述处理模块1303,还用于:根据所述第一资源、所述信号序列,以及所述信号序列与所述第二通信装置的标识三者之间的对应关系,确定所述第二通信 装置的标识。
在一些实施例中,所述发送模块1301,还用于:通过所述第二接口向所述第二通信装置发送信号序列指示信息,所述指示信息用于指示所述信号序列。
在一些实施例中,所述第一接口与所述第三接口的通信方式为第一通信方式,所述第二接口与所述第四接口的通信方式为第二通信方式;
所述第一通信方式与所述第二通信方式不同。
在一些实施例中,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
在一些实施例中,所述第一接口与所述第二接口为不同的物理接口,或者,所述第一接口与所述第二接口集成为同一物理接口;
所述第三接口与所述第四接口为不同的物理接口。
本实施例以上所述的通信装置,可以用于执行上述各方法实施例中基站/基站的芯片执行的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图14为本申请另一实施例提供的通信装置的结构示意图,如图14所示,本实施例的通信装置作为第一通信装置,可以包括:存储器1401、处理器1402、第一接口1403和第二接口1404。第一接口1403与第二接口1404为同一通信接口,或者,为不同的通信接口。其中,第一接口1403用于与第二通信装置的第三接口通信,第二接口1404用于与第二通信装置的第四接口通信。
其中,存储器1401、处理器1402、第一接口1403和第二接口1404通过总线1405相互连接。其中,总线1405可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。上述总线1405可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器1401,用于存储程序指令;
处理器1402,用于执行所述存储器1401中的所述程序指令,执行上述任一方法实施例中基站执行的方法。
所述程序指令可以以软件功能单元的形式实现并能够作为独立的产品销售或使用,所述存储器1401可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得一台计算机设备,具体可以是处理器1402,来执行本申请各个实施例中基站的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例以上所述的第一通信装置,可以用于执行本申请上述各方法实施例中基站或其内部芯片的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图15为本申请一实施例提供的芯片的结构示意图,如图15所示,本实施例的芯片1500,可以包括:处理模块1501、第一接口1502和第二接口1503。第一接口1502与第二接口1503为同一通信接口,或者,为不同的通信接口。
所述处理模块1501用于执行上述任一方法实施例中基站执行的方法。
可选地,本实施例的芯片还可以包括:存储模块1504,所述存储模块1504用于存储程序指令,所述处理模块1501用于执行所述存储模块1504存储的程序指令,并且对所述存储模块1504中存储的程序指令的执行使得所述处理模块1501执行上述任一方法实施例中基站执行的方法。
本实施例以上所述的芯片,可以用于执行本申请上述各方法实施例中基站或其内部芯片的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图16为本申请另一实施例提供的通信装置的结构示意图,如图16所示,本实施例的通信装置作为第一通信装置,以第一通信装置为基站1600为例,基站1600可以包括:处理器1601、存储器1602、收发器1603以及总线1604。其中,处理器1601、存储器1602和收发器1603通过总线1604相互连接。其中,总线1604可以是PCI总线或EISA总线等。上述总线1604可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,存储器1602,用于存储程序指令。
在一种可能的实现方式中,收发器1603作为主通信接口用于收发主通信接口信号(例如,LTE/NR信号),还作为WUR接口用于发送唤醒信号。处理器1601,用于执行所述存储器1602中的所述程序指令,通过收发器1603向所述第二通信装置发送唤醒信号,其中,所述唤醒信号用于唤醒所述第二通信装置的收发器;以及通过收发器1603接收所述第二通信装置发送的WU-ACK。
在一种可能的实现方式中,本实施例的基站1600还可以包括发射器1605,收发器1603作为主通信接口用于收发主通信接口信号(例如,LTE/NR信号),发射器1605作为WUR接口用于发送唤醒信号。处理器1601,用于执行所述存储器1602中的所述程序指令,通过发射器1605向所述第二通信装置发送唤醒信号,其中,所述唤醒信号用于唤醒所述第二通信装置的收发器;以及通过收发器1603接收所述第二通信装置发送的WU-ACK。
在一些实施例中,所述处理器1601,还用于:通过所述收发器1603向所述第二通信装置发送下行数据。
在一些实施例中,所述处理器1601,还用于:通过所述收发器1603向所述第二通信装置发送PDCCH,所述PDCCH用于调度所述下行数据的传输,所述PDCCH包括定时提前量TA,所述TA是所述第一通信装置根据所述WU-ACK获得的。
在一些实施例中,所述处理器1601,还用于:通过所述收发器1603接收所述第二通信装置采用所述TA发送的数据响应消息,所述数据响应消息用于确认是否成功接收所述下行数据。
在一些实施例中,所述处理器1601具体用于:在第一资源通过所述收发器1603上接收所述第二通信装置发送的所述WU-ACK。
在一些实施例中,所述第一资源是预先设定的,或者,所述第一资源是所述第一通信装置配置给所述第二通信装置的。
在一些实施例中,所述第一资源的时域位置与所述唤醒信号的时域位置之间存在时间偏移量;
其中,所述时间偏移量是预先设定的,或者,所述时间偏移量是所述第一通信装置配置给所述第二通信装置的。
在一些实施例中,所述处理器1601,还用于通过所述收发器1603接收所述第二通信装置发送的唤醒时间;所述唤醒时间为所述第二通信装置从接收到所述唤醒信号到所述第四接口进入工 作状态所需的时长;以及根据所述唤醒时间确定所述TA。
在一些实施例中,所述唤醒信号还包括:资源指示信息,所述资源指示信息用于指示所述第一资源的时域位置和/或频域位置。
在一些实施例中,所述第一资源为PRACH资源,或者,免授权资源,或者,WU-ACK专用资源。
在一些实施例中,所述第一资源为WU-ACK专用资源。
在一些实施例中,所述第一资源与所述第二通信装置的标识之间具有一一对应关系;
所述处理器1601,还用于根据所述第一资源,以及所述第一资源与所述第二通信装置的标识之间的一一对应关系,确定所述第二通信装置的标识。
在一些实施例中,所述WU-ACK包括信号序列,所述信号序列与所述第二通信装置的标识之间具有一一对应关系;
所述处理器1601,还用于根据所述信号序列,以及所述信号序列与所述第二通信装置的标识之间的一一对应关系,确定所述第二通信装置的标识。
在一些实施例中,所述WU-ACK包括信号序列,所述第一资源、所述信号序列与所述第二通信装置的标识三者之间具有对应关系;
所述处理器1601,还用于根据所述第一资源、所述信号序列,以及所述信号序列与所述第二通信装置的标识三者之间的对应关系,确定所述第二通信装置的标识。
在一些实施例中,所述处理器1601,还用于通过所述收发器1603向所述第二通信装置发送信号序列指示信息,所述指示信息用于指示所述信号序列。
本申请实施例还提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当基站1600的处理器1601执行该程序代码时,该基站1600执行本申请上述任一方法实施例中基站执行的相关方法步骤。
其中,本申请实施例提供的基站1600能执行本申请上述任一方法实施例中基站执行的相关方法步骤,其各个模块或单元的详细描述以及各个模块或单元执行本申请任一方法实施例中基站执行的相关方法步骤后所带来的技术效果可以参考本申请方法实施例中的相关描述,此处不再赘述。
图17为本申请另一实施例提供的通信装置的结构示意图,如图17所示,本实施例的通信装置作为第二通信装置,可以包括:接收模块1701、处理模块1702和发送模块1703。另外,本实施例的通信装置还包括第三接口和第四接口,图中未示出。其中,第三接口用于与第一通信装置的第一接口通信,第四接口用于与第一通信装置的第二接口通信。
所述接收模块1701,用于通过所述第三接口接收所述第一通信装置发送的唤醒信号,其中,所述唤醒信号用于唤醒所述第二通信装置的所述第四接口;
所述处理模块1702,用于根据所述唤醒信号,唤醒所述第二通装置的所述第四接口;
所述发送模块1703,用于向所述第一通信装置发送唤WU-ACK。
在一些实施例中,所述发送模块1703,具体用于:通过所述第三接口向所述第一通信装置发送所述WU-ACK;或者,通过所述第四接口向所述第一通信装置发送所述WU-ACK。
在一些实施例中,所述接收模块1701,还用于:通过所述第四接口接收所述第一通信装置根据所述WU-ACK发送的下行数据。
在一些实施例中,所述接收模块1701,还用于在所述发送模块1703向所述第一通信装置发送WU-ACK之后,通过所述第四接口接收所述第一通信装置发送的PDCCH,所述PDCCH用于 调度所述下行数据的传输,所述PDCCH包括TA,所述TA为所述第二通信装置根据所述WU-ACK获得的。
在一些实施例中,所述发送模块1703,还用于采用所述TA,通过所述第四接口向所述第一通信装置发送数据响应消息,所述数据响应消息用于确认是否成功接收所述下行数据。
在一些实施例中,所述发送模块,具体用于:通过所述第三接口在第一资源上向所述第一通信装置发送所述WU-ACK。
在一些实施例中,所述第一资源是预先设定的,或者,所述第一资源是所述第一通信装置配置给所述第二通信装置的。
在一些实施例中,所述第一资源的时域位置与所述唤醒信号的时域位置之间存在时间偏移量;
其中,所述时间偏移量是预先设定的,或者,所述时间偏移量是所述第一通信装置配置给所述第二通信装置的。
在一些实施例中,所述发送模块1703还用于在通过所述第三接口接收所述第一通信装置发送的唤醒信号之前,通过所述第四接口向所述第一通信装置发送唤醒时间;所述唤醒时间为所述第二通信装置从接收到所述唤醒信号到所述第四接口进入工作状态所需的时长;
所述唤醒时间用于所述第一通信装置确定所述TA。
在一些实施例中,所述唤醒信号还包括:资源指示信息,所述资源指示信息用于指示所述第一资源的时域位置和/或频域位置。
在一些实施例中,所述第一资源为PRACH资源,或者,免授权资源,或者,WU-ACK专用资源。
在一些实施例中,所述第一资源为WU-ACK专用资源。
在一些实施例中,所述第一资源与所述第二通信装置的标识之间具有一一对应关系。
在一些实施例中,所述WU-ACK包括信号序列,所述信号序列与所述第二通信装置的标识之间具有一一对应关系。
在一些实施例中,所述WU-ACK包括信号序列,所述第一资源、所述信号序列与所述第二通信装置的标识三者之间具有对应关系。
在一些实施例中,所述接收模块1701,还用于:通过所述第四接口接收所述第一通信装置发送所述信号序列指示信息,所述指示信息用于指示所述信号序列。
在一些实施例中,所述第一接口与所述第三接口的通信方式为第一通信方式,所述第二接口与所述第四接口的通信方式为第二通信方式;
其中,所述第一通信方式与所述第二通信方式不同。
在一些实施例中,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
在一些实施例中,所述第一接口与所述第二接口为不同的物理接口,或者,所述第一接口与所述第二接口集成为同一物理接口;
所述第三接口与所述第四接口为不同的物理接口。
本实施例以上所述的通信装置,可以用于执行上述各方法实施例中UE/UE的芯片执行的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图18为本申请另一实施例提供的通信装置的结构示意图,如图18所示,本实施例的通信装 置作为第二通信装置,可以包括:存储器1801、处理器1802、第三接口1803和第四接口1804,其中,第三接口1803与第四接口1804为不同的通信接口。其中,第三接口1803用于与第一通信装置的第一接口通信,第四接口1804用于与第一通信装置的第二接口通信。
其中,存储器1801、处理器1802、第三接口1803和第四接口1804通过总线1805相互连接。其中,总线1805可以是PCI总线或ISA总线等。上述总线1805可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器1801,用于存储程序指令;
处理器1802,用于执行所述存储器1801中的所述程序指令,执行上述任一方法实施例中UE执行的方法。
所述程序指令可以以软件功能单元的形式实现并能够作为独立的产品销售或使用,所述存储器1801可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得一台计算机设备,具体可以是处理器1802,来执行本申请各个实施例中UE的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例以上所述的第二通信装置,可以用于执行本申请上述各方法实施例中UE或其内部芯片的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图19为本申请另一实施例提供的芯片的结构示意图,如图19所示,本实施例的芯片1900,可以包括:处理模块1901、第三接口1902和第四接口1903,第三接口1902与第四接口1903为不同的通信接口。所述处理模块1901用于执行上述任一方法实施例中UE执行的方法。
可选地,本实施例的芯片还可以包括:存储模块1904,所述存储模块1904用于存储程序指令,所述处理模块1901用于执行所述存储模块1904存储的程序指令,并且对所述存储模块1904中存储的程序指令的执行使得所述处理模块1901执行上述任一方法实施例中UE执行的方法。
本实施例以上所述的芯片,可以用于执行本申请上述各方法实施例中UE或其内部芯片的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图20为本申请另一实施例提供的通信装置的结构示意图,如图20所示,本实施例的通信装置作为第二通信装置,以第二通信装置为UE2000为例,UE2000可以包括:处理器2001、存储器2002、接收器2003、收发器2004以及总线2005。其中,处理器2001、存储器2002、接收器2003和收发器2004通过总线2005相互连接。其中,总线2005可以是PCI总线或EISA总线等。上述总线2005可以分为地址总线、数据总线、控制总线等。为便于表示,图20中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,存储器2002,用于存储程序指令。
其中,收发器2004作为主通信接口用于收发主通信接口信号(例如,LTE/NR信号),接收器2003还作为WUR接口用于接收唤醒信号。
处理器2001,用于执行所述存储器2002中的所述程序指令,通过接收器2003接收所述第一通信装置发送的唤醒信号,其中,所述唤醒信号用于唤醒所述第二通信装置的所述第四接口;根 据所述唤醒信号,唤醒所述第二通装置的所述收发器2004;以及通过所述收发器2003向所述第一通信装置发送所述WU-ACK。
在一些实施例中,处理器2001,还用于:通过所述收发器2004接收所述第一通信装置根据所述WU-ACK发送的下行数据。
在一些实施例中,处理器2001,还用于:通过所述收发器2004接收所述第一通信装置发送的PDCCH,所述PDCCH用于调度所述下行数据的传输,所述PDCCH包括定时提前量TA,所述TA为所述第二通信装置根据所述WU-ACK获得的。
在一些实施例中,处理器2001,还用于:采用所述TA,通过所述收发器2004向所述第一通信装置发送数据响应消息,所述数据响应消息用于确认是否成功接收所述下行数据。
在一些实施例中,处理器2001,具体用于:通过所述收发器2004在第一资源上向所述第一通信装置发送所述WU-ACK。
在一些实施例中,所述第一资源是预先设定的,或者,所述第一资源是所述第一通信装置配置给所述第二通信装置的。
在一些实施例中,所述第一资源的时域位置与所述唤醒信号的时域位置之间存在时间偏移量;
其中,所述时间偏移量是预先设定的,或者,所述时间偏移量是所述第一通信装置配置给所述第二通信装置的。
在一些实施例中,所述处理器2001,还用于在通过所述接收器2003接收所述第一通信装置发送的唤醒信号之前,通过所述收发器2004向所述第一通信装置发送唤醒时间;所述唤醒时间为所述第二通信装置从接收到所述唤醒信号到所述第四接口进入工作状态所需的时长;
所述唤醒时间用于所述第一通信装置确定所述TA。
在一些实施例中,所述唤醒信号还包括:资源指示信息,所述资源指示信息用于指示所述第一资源的时域位置和/或频域位置。
在一些实施例中,所述第一资源为PRACH资源,或者,免授权资源,或者,WU-ACK专用资源。
在一些实施例中,所述第一资源为WU-ACK专用资源。
在一些实施例中,所述第一资源与所述第二通信装置的标识之间具有一一对应关系。
在一些实施例中,所述WU-ACK包括信号序列,所述信号序列与所述第二通信装置的标识之间具有一一对应关系。
在一些实施例中,所述WU-ACK包括信号序列,所述第一资源、所述信号序列与所述第二通信装置的标识三者之间具有对应关系。
在一些实施例中,所述处理器2001,还用于:通过所述收发器2004接收所述第一通信装置发送所述信号序列指示信息,所述指示信息用于指示所述信号序列。
本申请实施例还提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当UE2000的处理器2001执行该程序代码时,该UE2000执行本申请上述任一方法实施例中UE执行的相关方法步骤。
其中,本申请实施例提供的UE2000能执行本申请上述任一方法实施例中UE执行的相关方法步骤,其各个模块或单元的详细描述以及各个模块或单元执行本申请任一方法实施例中UE执行的相关方法步骤后所带来的技术效果可以参考本申请方法实施例中的相关描述,此处不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技 术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (54)

  1. 一种通信方法,其特征在于,第一通信装置包括第一接口和第二接口,第二通信装置包括第三接口和第四接口;其中,所述第一接口用于与所述第三接口通信,所述第二接口用于与所述第四接口通信;
    所述方法包括:
    所述第一通信装置通过所述第一接口向所述第二通信装置发送唤醒信号,其中,所述唤醒信号用于唤醒所述第二通信装置的所述第四接口;
    所述第一通信装置接收所述第二通信装置发送的唤醒确认消息WU-ACK。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信装置接收所述第二通信装置发送的WU-ACK,包括:
    所述第一通信装置通过所述第一接口接收所述第二通信装置发送的所述WU-ACK;或者,
    所述第一通信装置通过所述第二接口接收所述第二通信装置发送的所述WU-ACK。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一通信装置接收所述第二通信装置发送的WU-ACK之后,还包括:
    所述第一通信装置通过所述第二接口向所述第二通信装置发送下行数据。
  4. 根据权利要求3所述的方法,其特征在于,所述第一通信装置接收所述第二通信装置发送的WU-ACK之后,还包括:
    所述第一通信装置通过所述第二接口向所述第二通信装置发送物理下行控制信道PDCCH,所述PDCCH用于调度所述下行数据的传输,所述PDCCH包括定时提前量TA,所述TA是所述第一通信装置根据所述WU-ACK获得的。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置通过所述第二接口接收所述第二通信装置采用所述TA发送的数据响应消息,所述数据响应消息用于确认是否成功接收所述下行数据。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一通信装置接收所述第二通信装置发送的WU-ACK,包括:
    所述第一通信装置在第一资源上接收所述第二通信装置发送的所述WU-ACK。
  7. 根据权利要求6所述的方法,其特征在于,所述第一资源是预先设定的,或者,所述第一资源是所述第一通信装置配置给所述第二通信装置的。
  8. 根据权利要求6所述的方法,其特征在于,所述第一资源的时域位置与所述唤醒信号的时域位置之间存在时间偏移量;
    其中,所述时间偏移量是预先设定的,或者,所述时间偏移量是所述第一通信装置配置给所述第二通信装置的。
  9. 根据权利要求8所述的方法,其特征在于,所述第一通信装置通过所述第一接口向所述第二通信装置发送唤醒信号之前,还包括:
    所述第一通信装置通过所述第二接口接收所述第二通信装置发送的唤醒时间;所述唤醒时间为所述第二通信装置从接收到所述唤醒信号到所述第四接口进入工作状态所需的时长;
    所述第一通信装置根据所述唤醒时间确定TA。
  10. 根据权利要求6所述的方法,其特征在于,所述唤醒信号还包括:资源指示信息,所述资源指示信息用于指示所述第一资源的时域位置和/或频域位置。
  11. 根据权利要求6或7所述的方法,其特征在于,所述第一资源为物理随机接入信道PRACH资源,或者,免授权资源,或者,WU-ACK专用资源。
  12. 根据权利要求8-10任一项所述的方法,其特征在于,所述第一资源为WU-ACK专用资源。
  13. 根据权利要求6-12任一项所述的方法,其特征在于,所述第一资源与所述第二通信装置的标识之间具有一一对应关系;
    所述方法还包括:
    所述第一通信装置根据所述第一资源,以及所述第一资源与所述第二通信装置的标识之间的一一对应关系,确定所述第二通信装置的标识。
  14. 根据权利要求1-12任一项所述的方法,其特征在于,所述WU-ACK包括信号序列,所述信号序列与所述第二通信装置的标识之间具有一一对应关系;
    所述方法还包括:
    所述第一通信装置根据所述信号序列,以及所述信号序列与所述第二通信装置的标识之间的一一对应关系,确定所述第二通信装置的标识。
  15. 根据权利要求6-12任一项所述的方法,其特征在于,所述WU-ACK包括信号序列,所述第一资源、所述信号序列与所述第二通信装置的标识三者之间具有对应关系;
    所述方法还包括:
    所述第一通信装置根据所述第一资源、所述信号序列,以及所述信号序列与所述第二通信装置的标识三者之间的对应关系,确定所述第二通信装置的标识。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置通过所述第二接口向所述第二通信装置发送信号序列指示信息,所述指示信息用于指示所述信号序列。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述第一接口与所述第三接口的通信方式为第一通信方式,所述第二接口与所述第四接口的通信方式为第二通信方式;
    所述第一通信方式与所述第二通信方式不同。
  18. 根据权利要求17所述的方法,其特征在于,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一接口与所述第二接口为不同的物理接口,或者,所述第一接口与所述第二接口集成为同一物理接口;
    所述第三接口与所述第四接口为不同的物理接口。
  20. 一种通信方法,其特征在于,第一通信装置包括第一接口和第二接口,第二通信装置包括第三接口和第四接口;其中,所述第三接口用于与所述第一接口通信,所述第四接口用于与所述第二接口通信;包括:
    所述第二通信装置通过所述第三接口接收所述第一通信装置发送的唤醒信号,其中,所述唤醒信号用于唤醒所述第二通信装置的所述第四接口;
    所述第二通信装置根据所述唤醒信号,唤醒所述第二通装置的所述第四接口;
    所述第二通信装置向所述第一通信装置发送唤醒确认消息WU-ACK。
  21. 根据权利要求20所述的方法,其特征在于,所述第二通信装置向所述第一通信装置发送的WU-ACK,包括:
    所述第二通信装置通过所述第三接口向所述第一通信装置发送所述WU-ACK;或者,
    所述第二通信装置通过所述第四接口向所述第一通信装置发送所述WU-ACK。
  22. 根据权利要求20或21所述的方法,其特征在于,还包括:
    所述第二通信装置通过所述第四接口接收所述第一通信装置根据所述WU-ACK发送的下行数据。
  23. 根据权利要求22所述的方法,其特征在于,所述第二通信装置向所述第一通信装置发送WU-ACK之后,还包括:
    所述第二通信装置通过所述第四接口接收所述第一通信装置发送的物理下行控制信道PDCCH,所述PDCCH用于调度所述下行数据的传输,所述PDCCH包括定时提前量TA,所述TA为所述第二通信装置根据所述WU-ACK获得的。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置采用所述TA,通过所述第四接口向所述第一通信装置发送数据响应消息,所述数据响应消息用于确认是否成功接收所述下行数据。
  25. 根据权利要求20-24任一项所述的方法,其特征在于,所述第二通信装置通过所述第三接口向第一通信装置发送WU-ACK,包括:
    所述第二通信装置通过所述第三接口在第一资源上向所述第一通信装置发送所述WU-ACK。
  26. 根据权利要求25所述的方法,其特征在于,所述第一资源是预先设定的,或者,所述第一资源是所述第一通信装置配置给所述第二通信装置的。
  27. 根据权利要求25所述的方法,其特征在于,所述第一资源的时域位置与所述唤醒信号的时域位置之间存在时间偏移量;
    其中,所述时间偏移量是预先设定的,或者,所述时间偏移量是所述第一通信装置配置给所述第二通信装置的。
  28. 根据权利要求27所述的方法,其特征在于,所述第二通信装置通过所述第三接口接收所述第一通信装置发送的唤醒信号之前,还包括:
    所述第二通信装置通过所述第四接口向所述第一通信装置发送唤醒时间;所述唤醒时间为所述第二通信装置从接收到所述唤醒信号到所述第四接口进入工作状态所需的时长;
    所述唤醒时间用于所述第一通信装置确定所述TA。
  29. 根据权利要求25所述的方法,其特征在于,所述唤醒信号还包括:资源指示信息,所述资源指示信息用于指示所述第一资源的时域位置和/或频域位置。
  30. 根据权利要求25或26所述的方法,其特征在于,所述第一资源为物理随机接入信道PRACH资源,或者,免授权资源,或者,WU-ACK专用资源。
  31. 根据权利要求27-29任一项所述的方法,其特征在于,所述第一资源为WU-ACK专用资源。
  32. 根据权利要求25-31任一项所述的方法,其特征在于,所述第一资源与所述第二通信装置的标识之间具有一一对应关系。
  33. 根据权利要求20-31任一项所述的方法,其特征在于,所述WU-ACK包括信号序列,所述信号序列与所述第二通信装置的标识之间具有一一对应关系。
  34. 根据权利要求25-31任一项所述的方法,其特征在于,所述WU-ACK包括信号序列,所述第一资源、所述信号序列与所述第二通信装置的标识三者之间具有对应关系。
  35. 根据权利要求33或34所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置通过所述第四接口接收所述第一通信装置发送所述信号序列指示信息,所述指示信息用于指示所述信号序列。
  36. 根据权利要求20-35任一项所述的方法,其特征在于,所述第一接口与所述第三接口的通信方式为第一通信方式,所述第二接口与所述第四接口的通信方式为第二通信方式;
    其中,所述第一通信方式与所述第二通信方式不同。
  37. 根据权利要求36所述的方法,其特征在于,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
  38. 根据权利要求36或37所述的方法,其特征在于,所述第一接口与所述第二接口为不同的物理接口,或者,所述第一接口与所述第二接口集成为同一物理接口;
    所述第三接口与所述第四接口为不同的物理接口。
  39. 一种通信装置,其特征在于,作为第一通信装置,包括:存储器、处理器、第一接口和第二接口;其中,所述第一接口用于与第二通信装置的第三接口通信,所述第二接口用于与所述第二通信装置的第四接口通信;
    所述存储器,用于存储指令;
    所述处理器,用于执行所述存储器中的所述指令,执行如权利要求1-19任一所述的方法。
  40. 根据权利要求39所述的通信装置,其特征在于,所述第二接口与所述第一接口集成为同一收发器;或者,
    所述第一接口为所述第二接口为不同的物理部件,且所述第一接口为发射器,所述第二接口为收发器。
  41. 一种通信装置,其特征在于,作为第二通信装置,包括:存储器、处理器、第三接口和第四接口;其中,所述第三接口用于与第一通信装置的第一接口通信,所述第四接口用于与所述第一通信装置的第二接口通信;
    所述存储器,用于存储指令;
    所述处理器,用于执行所述存储器中的所述指令,执行如权利要求20-38任一所述的方法。
  42. 根据权利要求41所述的通信装置,其特征在于,所述第三接口与所述第四接口为不同的物理部件,所述第三接口为接收器,所述第四接口为收发器。
  43. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序在计算机单元上执行时,将会使所述计算机单元实现权利要求1-19任一所述的通信方法。
  44. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序在计算机单元上执行时,将会使所述计算机单元实现权利要求20-38任一所述的通信方法。
  45. 一种通信装置,其特征在于,作为第一通信装置,被配置为执行如权利要求1-19任一所述的通信方法。
  46. 一种通信装置,其特征在于,作为第二通信装置,被配置为执行如权利要求20-38任一所述的通信方法。
  47. 一种芯片,其特征在于,包括:处理模块、第一接口和第二接口;所述处理模块用于执行权利要求1-19中任一项所述的通信方法。
  48. 根据权利要求47所述的芯片,其特征在于,所述芯片还包括存储模块,所述存储模块用于存储程序指令,所述处理模块用于执行所述存储器存储的程序指令,并且对所述存储器中存储 的程序指令的执行使得所述处理模块执行权利要求1-19中任一项所述的通信方法。
  49. 根据权利要求47或48所述的芯片,其特征在于,所述第二接口与所述第一接口集成为同一通信接口;或者,所述第一接口与所述第二接口为不同的通信接口。
  50. 一种芯片,其特征在于,包括:处理模块、第三接口和第四接口;所述处理模块用于执行权利要求20-38中任一项所述的通信方法。
  51. 根据权利要求50所述的芯片,其特征在于,所述芯片还包括存储模块,所述存储模块用于存储程序指令,所述处理模块用于执行所述存储器存储的程序指令,并且对所述存储器中存储的程序指令的执行使得所述处理模块执行权利要求20-38中任一项所述的通信方法。
  52. 根据权利要求50或51所述的芯片,其特征在于,所述第三接口与所述第四接口为不同的通信接口。
  53. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序在计算机上执行时,将会使所述计算机实现权利要求1-19任一所述的通信方法。
  54. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序在计算机上执行时,将会使所述计算机实现权利要求20-38任一所述的通信方法。
PCT/CN2017/108721 2017-09-12 2017-10-31 通信方法和装置 WO2019051953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780069621.7A CN109964511A (zh) 2017-09-12 2017-10-31 通信方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710817752 2017-09-12
CN201710817752.0 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019051953A1 true WO2019051953A1 (zh) 2019-03-21

Family

ID=65722334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108721 WO2019051953A1 (zh) 2017-09-12 2017-10-31 通信方法和装置

Country Status (2)

Country Link
CN (1) CN109964511A (zh)
WO (1) WO2019051953A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220201610A1 (en) * 2019-03-27 2022-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Use of Wake-Up Receiver with Bluetooth Low Energy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787731B (zh) * 2019-11-08 2022-05-24 大唐移动通信设备有限公司 终端省电性能的测试方法、装置、网络模拟器及终端
CN117955783A (zh) * 2022-10-31 2024-04-30 华为技术有限公司 信息传输的方法与装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756560A (zh) * 2012-10-24 2015-07-01 高通股份有限公司 具有常规ps模式且无ulp的近乎无源接收机(ap不知道该接收机/电路模式)
US20160381638A1 (en) * 2015-06-26 2016-12-29 Intel Corporation Techniques for mobile platform power management using low-power wake-up signals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070260780A1 (en) * 2006-04-11 2007-11-08 Nokia Corporation Media subsystem, method and computer program product for adaptive media buffering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756560A (zh) * 2012-10-24 2015-07-01 高通股份有限公司 具有常规ps模式且无ulp的近乎无源接收机(ap不知道该接收机/电路模式)
US20160381638A1 (en) * 2015-06-26 2016-12-29 Intel Corporation Techniques for mobile platform power management using low-power wake-up signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220201610A1 (en) * 2019-03-27 2022-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Use of Wake-Up Receiver with Bluetooth Low Energy

Also Published As

Publication number Publication date
CN109964511A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
US11457494B2 (en) Communication method, communications device, and network device
KR102295958B1 (ko) 스케줄링 요청 송신 방법, 스케줄링 요청 처리 방법, 및 관련 디바이스
KR102409728B1 (ko) 업링크 신호 송신 방법 및 사용자 장치
CA3012395C (en) Communication method and communications apparatus
CN112586052B (zh) 用于空闲模式传输的预配置专用资源
US20220015154A1 (en) Random access method and communication apparatus
CN113260089B (zh) 利用多个不连续接收组对活动时间的确定
CN114424629A (zh) 一种唤醒信号的检测方法及装置
WO2017024564A1 (zh) 一种发送上行信息的方法及装置
CN115699909A (zh) 无线通信的方法和终端设备
CN114499803A (zh) 发送数据的方法、通信装置、计算机存储介质
JP2023500344A (ja) 情報表示方法及び装置
CN115699951A (zh) 无线通信的方法和终端设备
WO2019051953A1 (zh) 通信方法和装置
CN110720251B (zh) 调度请求传输方法及设备
KR20230053654A (ko) Nr v2x에서 sl drx 설정의 비활성 구간을 사용한 동작 방법 및 장치
JP2020519058A (ja) 無線ネットワークにおける通信デバイスおよび方法
CN111713151A (zh) 一种通信方法及装置
CN113645680A (zh) 一种确定侧行链路资源的方法、装置以及***
CN114071509A (zh) 一种指示数据传输的方法、装置
CN109392171B (zh) 半持续调度数据传输方法、通信设备及存储介质
KR20230053653A (ko) Nr v2x에서 sl drx를 기반으로 통신을 수행하는 방법 및 장치
WO2018059171A1 (zh) 响应信息的传输方法、设备及***
WO2022183406A1 (zh) 传输数据信道的方法、终端设备和网络设备
CN111757509A (zh) 一种数据传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924889

Country of ref document: EP

Kind code of ref document: A1