WO2019049671A1 - Mounting structure for thermistor - Google Patents

Mounting structure for thermistor Download PDF

Info

Publication number
WO2019049671A1
WO2019049671A1 PCT/JP2018/031069 JP2018031069W WO2019049671A1 WO 2019049671 A1 WO2019049671 A1 WO 2019049671A1 JP 2018031069 W JP2018031069 W JP 2018031069W WO 2019049671 A1 WO2019049671 A1 WO 2019049671A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
bus bar
mounting structure
storage element
pressing member
Prior art date
Application number
PCT/JP2018/031069
Other languages
French (fr)
Japanese (ja)
Inventor
泰次 柳田
慎一 高瀬
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2019049671A1 publication Critical patent/WO2019049671A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a mounting structure of a thermistor, and more particularly to a mounting structure of a thermistor mounted on a storage element group in which a plurality of storage elements are arranged.
  • a plurality of single cells are connected side by side in order to increase the output.
  • a plurality of storage elements are connected in series or in parallel by connecting the electrode terminals of adjacent storage elements with a connecting member such as a bus bar.
  • Patent Document 1 discloses, as a mounting structure of a thermistor, a technology for locking a thermistor to a top surface of a battery by locking a locking arm of the thermistor to a locking portion of a case main body made of insulating resin. .
  • the case main body made of insulating resin is easily deformed by mechanical stress or stress such as temperature. If the case body is deformed, the stability of the attachment (attachment) of the thermistor to the battery will be lost. Therefore, there has been a demand for a mounting structure of the thermistor which can stably mount the thermistor by the storage element with a simple structure against mechanical stress or temperature stress.
  • the attachment structure of the thermistor which can attach a thermistor stably by an electrical storage element with a simple structure is provided.
  • the mounting structure of the thermistor disclosed by the present specification is a mounting structure of a thermistor mounted on a storage element group in which a plurality of storage elements having positive and negative electrode terminals are arranged, and the mounting structure of the plurality of storage elements
  • the bus bars are usually made of metal, and are more rigid and less deformed than those made of
  • the bus bar includes a connection plate portion connected to the electrode terminal, and an extending plate portion extended from one end edge of the bus bar in the width direction, and the locking portion is
  • the extension plate portion may be formed, and the thermistor may be disposed in a space between the extension plate portion and the surface of the storage element. According to this configuration, the width of the bus bar is expanded by providing the extension plate portion for the thermistor on the bus bar. Thereby, the cross-sectional area of the bus bar can be expanded without changing the thickness of the bus bar.
  • the heat dissipation is good, and the temperature rise of the bus bar can be suppressed to cope with the large current. Further, the space between the storage element and the storage element formed with the increase in the width of the bus bar by the extended plate portion can be effectively used.
  • the thermistor may be molded with an insulating resin, and one end of the elastic pressing member may be molded in the insulating resin of the thermistor. According to this configuration, one end of the elastic pressing member is molded to the thermistor and integrated with the thermistor. Therefore, the structure which fixes the one end part of an elastic press member to a thermistor can be implement
  • the locking portion may include a locking hole into which the other end of the elastic pressing member is inserted and locked. According to this configuration, by inserting the other end of the elastic pressing member into the locking hole, the other end of the elastic pressing member can be locked and fixed to the bus bar by a simple configuration.
  • the elastic pressing member may be configured by a metal plate spring.
  • the elastic pressing member can be realized by a simple configuration.
  • the thermistor can be stably mounted by the storage element with a simple structure.
  • FIG. 16 is a perspective view showing a storage module including a mounting structure of a thermistor according to one embodiment Top view of storage module Storage module side view Perspective view showing a bus bar Perspective view showing the bus bar holding portion Sectional view along line AA of FIG. 2 showing the mounting structure of the thermistor Sectional view along line B-B of FIG. 2 showing the mounting structure of the thermistor
  • Embodiment One embodiment of the present invention will be described with reference to FIGS. 1 to 7.
  • the storage module M1 includes a storage element group 10, a connection module 20, a thermistor (temperature sensor) 30, and the like.
  • the storage module M1 is used, for example, as a drive source of a vehicle such as an electric vehicle or a hybrid vehicle.
  • symbol may be attached
  • the storage element group 10 to which the connection module 20 is attached is configured by arranging a plurality (six in the present embodiment) of storage elements 11, as shown in FIGS.
  • the storage element 11 has a positive electrode terminal 14A and a negative electrode terminal 14B which vertically project from the upper surface of a flat rectangular parallelepiped main body in which a storage element (not shown) is accommodated.
  • Terminal insertion holes 21 H (see FIG. 7) of the bus bars 21 are inserted into the respective electrode terminals 14.
  • the side wall portion of the electrode terminal 14 is formed with a thread (not shown) on which a nut (not shown) is screwed.
  • the bus bar 21 and the electrode terminal 14 are electrically connected by bringing the bus bar 21 inserted into the electrode terminal 14 into contact with the terminal block 15 (see FIG. 3).
  • the plurality of storage elements 11 are arranged such that the polarities of the electrode terminals 14 adjacent to each other in the left-right direction (the arrow X direction) in FIG. 2 are opposite.
  • connection module 20 is attached to the storage element group 10 along the direction in which the storage elements 11 are arranged (arrow X direction), and electrically connects the plurality of storage elements 11. It has a function.
  • the connection module 20 includes a bus bar 21 and a bus bar holding portion 22 as shown in FIG.
  • the bus bar 21 connects the positive and negative electrode terminals (14A, 14B) of the adjacent storage element 11.
  • the bus bar 21 is made of a metal such as copper, copper alloy, stainless steel (SUS), or aluminum, and has a length corresponding to the dimension (electrode pitch) between the adjacent electrode terminals 14A and 14B as shown in FIG.
  • Connection board part 21P is included.
  • a pair of terminal insertion holes 21H through which the electrode terminals 14 are inserted are formed through the connection plate portions 21P of the bus bars 21 other than the external connection electrode bus bars 21A at both ends of the connection module 20. It is done.
  • FIG. 4 shows a pair of terminal insertion holes 21H through which the electrode terminals 14 are inserted.
  • only one terminal insertion hole 21H is formed through the connection plate portion 21P of the external connection electrode bus bar 21A.
  • the shape of the terminal insertion hole 21H has a long oval shape in the direction in which the storage elements 11 are arranged (the arrow X direction in FIG. 1).
  • the bus bar 21 includes an extending plate portion 21B extended from one end edge of the bus bar in the width direction (the arrow Y direction in FIG. 4).
  • the extension plate portion 21B is formed with a locking portion for attaching the thermistor 30.
  • the locking portion is configured by the locking hole 21C and the notch 21D in the present embodiment.
  • the bus bar holding portion 22 is attached to the upper surface of the storage element group 10 by holding the bus bar 21 and connecting the bus bar 21 to the electrode terminal 14.
  • the bus bar holding portion 22 is integrally formed, for example, by injection molding of polypropylene (PP), which is a thermoplastic resin, and includes a plurality of bus bar holding units 23, a unit connecting portion 24, a thermistor frame portion 25 and the like.
  • PP polypropylene
  • Each bus bar holding unit 23 includes a bus bar mounting portion 23P for holding the bus bar 21, a flexible claw portion 23Q, and the like.
  • the bus bar 21A for external connection electrodes is held by the bus bar holding unit 23A.
  • Each unit connection portion 24 connects the bus bar holding units 23 separated in the arrow Y direction in FIG. 5, whereby the bus bar holding portions 22 are integrated. Further, each unit connection portion 24 is formed in a thin plate shape, and has flexibility in the arrow X direction of FIG. 5 so as to be able to cope with the tolerance of the electrode pitch.
  • the unit connection portion 24A is formed in a Y-shape in plan view in which an end portion on the thermistor 30 side is bifurcated due to the installation of the thermistor 30.
  • Thermistor Thermistor 30, as shown in FIGS. 6 and 7, includes a thermistor main body 31 and a metal plate spring 32 (an example of an "elastic pressing member") 32.
  • the thermistor body 31 is molded of an insulating resin and includes one end 32A of a metal plate spring and a thermistor element (not shown).
  • a detection wire 35 is connected to the thermistor 30.
  • the other end 32B of the metal plate spring 32 has a U-shape in a side view, and its tip 32C has a tip of the bus bar 21 via the locking hole 21C of the bus bar 21. It locks to notch 21D. Thereby, the other end 32 B of the metal plate spring is locked to the bus bar 21.
  • the bottom of the thermistor main body 31 is pressed against the upper surface (surface) of the storage element 11 by the restoring force of the metal plate spring 32 to be in close contact.
  • the thermistor 30 is disposed in a space between the extended plate portion 21B of the bus bar 21 and the upper surface (surface) 12 of the storage element.
  • the mounting structure of the thermistor is constituted by the bus bar 21, the bus bar holding portion 22 (specifically, the bus bar holding unit 23), and the metal plate spring 32.
  • the thermistor 30 is attached to the upper surface of the storage element 11 when the connection module 20 is assembled to the storage element group 10.
  • the bus bars 21 are attached to the bus bar holding units 23 of the bus bar holding portion 22.
  • the other end 32 B of the metal plate spring 32 is locked to one bus bar 21.
  • the tip end portion 32C of the metal plate spring 32 is engaged with the notch 21D of the bus bar 21 via the engagement hole 21C of the bus bar 21.
  • connection module 20 can be assembled to the storage element group 10 by attaching a nut to each electrode terminal 14.
  • the bus bar 21 in which the thermistor 30 is locked the bus bar 21 is pressed so that the bottom portion of the thermistor main body 31 is pressed against the upper surface of the storage element 11 by the restoring force of the metal plate spring 32. Tighten the nut on the electrode terminal 14.
  • the thermistor 30 is disposed in the space between the extended plate portion 21B of the bus bar 21 and the upper surface (surface) 12 of the storage element.
  • a metal plate spring (elastic pressing member) in which one end 32A of the thermistor 30 is simply fixed to the thermistor 30, and the other end 32B is locked to the locking portion (21C, 21D) of the bus bar 21.
  • 32 is attached to the storage element group 10 by being pressed against the surface 12 of one storage element 11.
  • the bus bar 21 is usually made of metal, has higher rigidity than that of insulating resin, and is not easily deformed. Therefore, according to the attachment structure of the thermistor of the present embodiment, the thermistor 30 can be stably attached to the storage element 11 with a simple structure.
  • the width of the bus bar 21 is expanded.
  • the cross-sectional area of the bus bar 21 can be expanded without changing the thickness of the bus bar 21.
  • the heat dissipation is good as compared with the case where the plate thickness is increased to expand the cross-sectional area, and the temperature rise of the bus bar 21 can be suppressed to cope with a large current.
  • the space between the bus bar 21 and the storage element 11 which is formed along with the increase in the width of the bus bar by the extended plate portion 21B can be effectively used.
  • one end 32 A of a metal plate spring is molded in the thermistor 30 and integrated with the thermistor 30. Therefore, the configuration for fixing the one end 32A of the metal plate spring to the thermistor 30 can be easily realized.
  • the elastic pressing member is constituted by the metal plate spring 32,
  • the elastic pressing member can be realized by a simple configuration.
  • the elastic pressing member is not limited to the metal plate spring 32.
  • the bus bar 21 is provided with the extending plate portion 21B, and the thermistor 30 is disposed in the space between the extending plate portion 21B and the surface 12 of the storage element.
  • the extending plate portion 21B may not be provided, and the thermistor 30 may not be disposed in the space between the bus bar 21 and the surface 12 of the storage element.
  • locking part is not restricted to this.
  • the shape of the other end 32B of the metal plate spring is not limited to that shown in FIG. That is, the configuration in which the other end portion 32B of the metal plate spring is locked to the extending plate portion 21B of the bus bar is not limited to the configuration shown in FIGS. Further, the place where the other end portion 32B of the metal plate spring is locked to the bus bar 21 is not limited to the extended plate portion 21B.
  • the other end 32B of the metal plate spring may be locked to the connection plate 21P of the bus bar 21.
  • the configuration for fixing the one end portion 32A of the metal plate spring to the thermistor 30 is not limited to the configuration for molding in the insulating resin of the thermistor 30.
  • a locking portion may be provided on the surface of the main body portion 31 of the thermistor to lock and fix the one end portion 32A of the metal plate spring.
  • Thermistor 32 Metal leaf spring (elastic pressing member) 32A: one end of a metal plate spring 32B: the other end of a metal plate spring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Provided is a mounting structure for a thermistor 30 which is mounted to a power storage element group formed by arranging a plurality of power storage elements 11 next to each other, the mounting structure for the thermistor 30 comprising: a bus bar 21; a bus bar holding unit 22 for holding the bus bar 21; and an elastic pressing member 32. The bus bar 21 connects electrode terminals of positive poles and negative poles of adjacent power storage elements and has locking parts (21C, 21D) for mounting the thermistor 30. The elastic pressing member 32 presses the thermistor 30 to a surface 12 of the power storage element via restoring force. One end 32A of the elastic pressing member 32 is fixed to the thermistor 30, and the other end 32B is locked to the locking parts (21C, 21D) of the bus bar.

Description

サーミスタの取付け構造Mounting structure of the thermistor
 本発明は、サーミスタの取付け構造に関し、詳しくは、複数の蓄電素子が並べられてなる蓄電素子群に取り付けられるサーミスタの取付け構造に関する。 The present invention relates to a mounting structure of a thermistor, and more particularly to a mounting structure of a thermistor mounted on a storage element group in which a plurality of storage elements are arranged.
 電気自動車やハイブリッド車用の電池モジュールにおいては、出力を大きくするために複数の単電池(蓄電素子)が横並びに接続されている。隣り合う蓄電素子の電極端子間はバスバーなどの接続部材で接続することにより複数の蓄電素子が直列や並列に接続されるようになっている。 In a battery module for an electric car or a hybrid car, a plurality of single cells (storage elements) are connected side by side in order to increase the output. A plurality of storage elements are connected in series or in parallel by connecting the electrode terminals of adjacent storage elements with a connecting member such as a bus bar.
 ところで、電池モジュールを高温状態で使用すると寿命が低下することがあり、リチウムイオン電池などを複数個接続してなる電池モジュールでは、充電の際に高温になることにより発火する虞がある。そこで、このような事態を避けるべく、電池モジュールには電池温度を検知するための温度センサ(サーミスタ)が取り付けられる(例えば特許文献1を参照)。特許文献1においては、サーミスタの取付構造として、サーミスタの係止アーム部を絶縁樹脂製のケース本体部の係止部に係止して、サーミスタを電池の上面に密着する技術が開示されている。 When the battery module is used in a high temperature state, the life may be reduced, and in a battery module formed by connecting a plurality of lithium ion batteries etc., there is a possibility that the battery may catch fire when it is heated. Therefore, in order to avoid such a situation, a temperature sensor (thermistor) for detecting the battery temperature is attached to the battery module (see, for example, Patent Document 1). Patent Document 1 discloses, as a mounting structure of a thermistor, a technology for locking a thermistor to a top surface of a battery by locking a locking arm of the thermistor to a locking portion of a case main body made of insulating resin. .
特開2013-157123号公報JP, 2013-157123, A
 しかしながら、絶縁樹脂製のケース本体部は機械的や温度等のストレスによって変形しやすい。ケース本体部が変形すると、サーミスタの電池への密着(取付け)の安定性が失われることとなる。そのため、機械的や温度等のストレスに対して、簡易な構造によって、サーミスタを蓄電素子により安定して取付けできるサーミスタの取付け構造が所望されていた。 However, the case main body made of insulating resin is easily deformed by mechanical stress or stress such as temperature. If the case body is deformed, the stability of the attachment (attachment) of the thermistor to the battery will be lost. Therefore, there has been a demand for a mounting structure of the thermistor which can stably mount the thermistor by the storage element with a simple structure against mechanical stress or temperature stress.
 そこで、本明細書では、簡易な構造によって、サーミスタを蓄電素子により安定して取付けできるサーミスタの取付け構造を提供する。 So, in this specification, the attachment structure of the thermistor which can attach a thermistor stably by an electrical storage element with a simple structure is provided.
 本明細書によって開示されるサーミスタの取付け構造は、正極および負極の電極端子を有する複数の蓄電素子が並べられてなる蓄電素子群に取り付けられるサーミスタの取付け構造であって、前記複数の蓄電素子の隣接する蓄電素子の正極および負極の電極端子を接続するバスバーであって、前記サーミスタを取付けるための係止部を有するバスバーと、前記蓄電素子群に取付けられ、前記バスバーを保持するバスバー保持部と、復元力によって前記サーミスタを前記蓄電素子の表面に押圧する弾性押圧部材であって、一端部が前記サーミスタに固定され、他端部が前記バスバーの係止部に係止する弾性押圧部材と、を備える。
 本構成によれば、サーミスタが、単に、一端部がサーミスタに固定され、他端部がバスバーの係止部に係止する弾性押圧部材によって、蓄電素子の表面に押圧されて蓄電素子群に取り付けられる。バスバーは、通常、金属製であり、絶縁樹脂製と比べて剛性が強く、変形しにくい。そのため、サーミスタの取付け構造によれば、簡易な構造によって、サーミスタを蓄電素子により安定して取付けできる。
The mounting structure of the thermistor disclosed by the present specification is a mounting structure of a thermistor mounted on a storage element group in which a plurality of storage elements having positive and negative electrode terminals are arranged, and the mounting structure of the plurality of storage elements A bus bar connecting the positive and negative electrode terminals of the adjacent storage element, the bus bar having a locking portion for mounting the thermistor; and a bus bar holding portion mounted on the storage element group and holding the bus bar An elastic pressing member pressing the thermistor against the surface of the storage element by a restoring force, wherein one end is fixed to the thermistor and the other end is locked to the locking portion of the bus bar; Equipped with
According to this configuration, the thermistor is simply pressed against the surface of the storage element by the elastic pressing member whose one end is fixed to the thermistor and the other end is locked to the locking portion of the bus bar and attached to the storage element group Be The bus bars are usually made of metal, and are more rigid and less deformed than those made of insulating resin. Therefore, according to the mounting structure of the thermistor, the thermistor can be stably mounted by the storage element with a simple structure.
 上記サーミスタの取付け構造において、前記バスバーは、前記電極端子に接続される接続板部と、前記バスバーの幅方向の一端縁から延設された延設板部と、を含み、前記係止部は前記延設板部に形成されており、前記サーミスタは、前記延設板部と前記蓄電素子の表面との間の空間に配置されているようにしてもよい。
 本構成によれば、バスバーにサーミスタ用の延設板部が設けられることによって、バスバーの幅が拡がる。それによって、バスバーの板厚を変更せずにバスバーの断面積を拡げることができる。その結果、板厚を厚くして断面積を拡げる場合と比べて放熱性がよく、バスバーの温度上昇を抑制して、大電流に対応できる。また、延設板部によるバスバーの幅の増大に伴って形成される蓄電素子との間の空間を有効利用できる。
In the thermistor mounting structure, the bus bar includes a connection plate portion connected to the electrode terminal, and an extending plate portion extended from one end edge of the bus bar in the width direction, and the locking portion is The extension plate portion may be formed, and the thermistor may be disposed in a space between the extension plate portion and the surface of the storage element.
According to this configuration, the width of the bus bar is expanded by providing the extension plate portion for the thermistor on the bus bar. Thereby, the cross-sectional area of the bus bar can be expanded without changing the thickness of the bus bar. As a result, compared with the case where the plate thickness is increased to expand the cross-sectional area, the heat dissipation is good, and the temperature rise of the bus bar can be suppressed to cope with the large current. Further, the space between the storage element and the storage element formed with the increase in the width of the bus bar by the extended plate portion can be effectively used.
 また、上記サーミスタの取付け構造において、前記サーミスタは、絶縁樹脂によってモールド形成されており、前記弾性押圧部材の一端部は、前記サーミスタの絶縁樹脂内にモールドされているようにしてもよい。
 本構成によれば、弾性押圧部材の一端部がサーミスタにモールドされ、サーミスタと一体化されている。そのため、弾性押圧部材の一端部をサーミスへ固定する構成が簡易に実現できる。
In the mounting structure of the thermistor, the thermistor may be molded with an insulating resin, and one end of the elastic pressing member may be molded in the insulating resin of the thermistor.
According to this configuration, one end of the elastic pressing member is molded to the thermistor and integrated with the thermistor. Therefore, the structure which fixes the one end part of an elastic press member to a thermistor can be implement | achieved simply.
 また、上記サーミスタの取付け構造において、前記係止部は、前記弾性押圧部材の他端部が挿入されて係止される係止孔を含むようにしてもよい。
 本構成によれば、弾性押圧部材の他端部を係止孔に挿入することで、簡単な構成によって、弾性押圧部材の他端部を係止し、バスバーに固定することができる。
Further, in the thermistor mounting structure, the locking portion may include a locking hole into which the other end of the elastic pressing member is inserted and locked.
According to this configuration, by inserting the other end of the elastic pressing member into the locking hole, the other end of the elastic pressing member can be locked and fixed to the bus bar by a simple configuration.
 また、上記サーミスタの取付け構造において、前記弾性押圧部材は、金属製板バネによって構成されているようにしてもよい。 Further, in the above-mentioned mounting structure of the thermistor, the elastic pressing member may be configured by a metal plate spring.
 本構成によれば、弾性押圧部材を簡易な構成によって実現できる。 According to this configuration, the elastic pressing member can be realized by a simple configuration.
 本発明のサーミスタの取付け構造によれば、簡易な構造によって、サーミスタを蓄電素子により安定して取付けできる。 According to the mounting structure of the thermistor of the present invention, the thermistor can be stably mounted by the storage element with a simple structure.
一実施形態に係るサーミスタの取付け構造を含む蓄電モジュールを示す斜視図FIG. 16 is a perspective view showing a storage module including a mounting structure of a thermistor according to one embodiment 蓄電モジュールの平面図Top view of storage module 蓄電モジュールの側面図Storage module side view バスバーを示す斜視図Perspective view showing a bus bar バスバー保持部を示す斜視図Perspective view showing the bus bar holding portion サーミスタの取付け構造を示す図2のA-A線に沿った断面図Sectional view along line AA of FIG. 2 showing the mounting structure of the thermistor サーミスタの取付け構造を示す図2のB-B線に沿った断面図Sectional view along line B-B of FIG. 2 showing the mounting structure of the thermistor
 <実施形態>
 本発明の一実施形態を図1から図7を参照して説明する。
Embodiment
One embodiment of the present invention will be described with reference to FIGS. 1 to 7.
 図1に示されるように、蓄電モジュールM1は、蓄電素子群10、接続モジュール20、およびサーミスタ(温度センサ)30等を備える。 As illustrated in FIG. 1, the storage module M1 includes a storage element group 10, a connection module 20, a thermistor (temperature sensor) 30, and the like.
 蓄電モジュールM1は、例えば、電気自動車またはハイブリッド自動車等の車両の駆動源として使用される。また、以下の説明において、複数の同一部材については、一の部材に符号を付し、他の部材については符号および説明を省略することがある。 The storage module M1 is used, for example, as a drive source of a vehicle such as an electric vehicle or a hybrid vehicle. Moreover, in the following description, a code | symbol may be attached | subjected to one member about several identical members, and a code | symbol and description may be abbreviate | omitted about another member.
 1.蓄電素子群
 接続モジュール20が取り付けられる蓄電素子群10は、図1および図2に示すように、複数個(本実施形態では6個)の蓄電素子11を並べて構成される。
1. Storage Element Group The storage element group 10 to which the connection module 20 is attached is configured by arranging a plurality (six in the present embodiment) of storage elements 11, as shown in FIGS.
 蓄電素子11は、内部に図示しない蓄電要素が収容された扁平な直方体状の本体部の上面から垂直に突出する正極の電極端子14Aおよび負極の電極端子14Bを有する。 The storage element 11 has a positive electrode terminal 14A and a negative electrode terminal 14B which vertically project from the upper surface of a flat rectangular parallelepiped main body in which a storage element (not shown) is accommodated.
 各電極端子14にはバスバー21の端子挿通孔21H(図7参照)が挿通されるようになっている。電極端子14の側壁部分には、ナット(図示せず)が螺合されるねじ山(図示せず)が形成されている。 Terminal insertion holes 21 H (see FIG. 7) of the bus bars 21 are inserted into the respective electrode terminals 14. The side wall portion of the electrode terminal 14 is formed with a thread (not shown) on which a nut (not shown) is screwed.
 電極端子14に挿通されたバスバー21と、端子台15(図3参照)とが接触することにより、バスバー21と電極端子14とが電気的に接続される。複数の蓄電素子11は、図2における左右方向(矢印X方向)について隣り合う電極端子14の極性が反対になるように配置されている。 The bus bar 21 and the electrode terminal 14 are electrically connected by bringing the bus bar 21 inserted into the electrode terminal 14 into contact with the terminal block 15 (see FIG. 3). The plurality of storage elements 11 are arranged such that the polarities of the electrode terminals 14 adjacent to each other in the left-right direction (the arrow X direction) in FIG. 2 are opposite.
 2.接続モジュール
 接続モジュール20は、図1および図2に示すように、蓄電素子11の並び方向(矢印X方向)に沿って蓄電素子群10に取り付けられ、複数の蓄電素子11を電気的に接続する機能を有する。接続モジュール20は、図2に示されるように、バスバー21、およびバスバー保持部22等を含む。
2. Connection Module As shown in FIGS. 1 and 2, the connection module 20 is attached to the storage element group 10 along the direction in which the storage elements 11 are arranged (arrow X direction), and electrically connects the plurality of storage elements 11. It has a function. The connection module 20 includes a bus bar 21 and a bus bar holding portion 22 as shown in FIG.
 2-1.バスバー
 バスバー21は、隣接する蓄電素子11の正極および負極の電極端子(14A、14B)を接続する。バスバー21は、銅、銅合金、ステンレス鋼(SUS)、アルミニウム等の金属からなり、図4に示されるように、隣り合う電極端子14A,14B間の寸法(電極ピッチ)に応じた長さの接続板部21Pを含む。接続モジュール20の両端部の外部接続電極用バスバー21A以外のバスバー21の接続板部21Pには、図4に示されるように、電極端子14が挿通される一対の端子挿通孔21Hが、貫通形成されている。なお、外部接続電極用バスバー21Aの接続板部21Pには、図2に示されるように、端子挿通孔21Hが1つだけ貫通形成されている。端子挿通孔21Hの形状は、蓄電素子11の並び方向(図1の矢印X方向)に長い長円形状をなす。
2-1. Bus Bar The bus bar 21 connects the positive and negative electrode terminals (14A, 14B) of the adjacent storage element 11. The bus bar 21 is made of a metal such as copper, copper alloy, stainless steel (SUS), or aluminum, and has a length corresponding to the dimension (electrode pitch) between the adjacent electrode terminals 14A and 14B as shown in FIG. Connection board part 21P is included. As shown in FIG. 4, a pair of terminal insertion holes 21H through which the electrode terminals 14 are inserted are formed through the connection plate portions 21P of the bus bars 21 other than the external connection electrode bus bars 21A at both ends of the connection module 20. It is done. As shown in FIG. 2, only one terminal insertion hole 21H is formed through the connection plate portion 21P of the external connection electrode bus bar 21A. The shape of the terminal insertion hole 21H has a long oval shape in the direction in which the storage elements 11 are arranged (the arrow X direction in FIG. 1).
 また、バスバー21は、図4に示されるように、バスバーの幅方向(図4の矢印Y方向)の一端縁から延設された延設板部21Bを含む。延設板部21Bには、サーミスタ30を取付けるための係止部が形成されている。係止部は、本実施形態では、係止孔21Cおよび切り欠き部21Dによって構成されている。 Further, as shown in FIG. 4, the bus bar 21 includes an extending plate portion 21B extended from one end edge of the bus bar in the width direction (the arrow Y direction in FIG. 4). The extension plate portion 21B is formed with a locking portion for attaching the thermistor 30. The locking portion is configured by the locking hole 21C and the notch 21D in the present embodiment.
 2-2.バスバー保持部
 バスバー保持部22は、バスバー21を保持するとともに、バスバー21が電極端子14に接続されることによって、蓄電素子群10の上面に取付けられる。バスバー保持部22は、例えば、熱可塑性樹脂であるポリプロピレン(PP)の射出形成によって一体形成されており、複数のバスバー保持ユニット23、ユニット連結部24、およびサーミスタ用枠部25等を含む。
2-2. The bus bar holding portion The bus bar holding portion 22 is attached to the upper surface of the storage element group 10 by holding the bus bar 21 and connecting the bus bar 21 to the electrode terminal 14. The bus bar holding portion 22 is integrally formed, for example, by injection molding of polypropylene (PP), which is a thermoplastic resin, and includes a plurality of bus bar holding units 23, a unit connecting portion 24, a thermistor frame portion 25 and the like.
 各バスバー保持ユニット23には、バスバー21を保持するためのバスバー載置部23Pおよび可撓爪部23Q等を含む。なお、バスバー保持ユニット23Aには外部接続電極用バスバー21Aが保持される。 Each bus bar holding unit 23 includes a bus bar mounting portion 23P for holding the bus bar 21, a flexible claw portion 23Q, and the like. The bus bar 21A for external connection electrodes is held by the bus bar holding unit 23A.
 各ユニット連結部24は、図5の矢印Y方向に分離されたバスバー保持ユニット23を連結し、それによって、バスバー保持部22が一体化される。また、各ユニット連結部24は、薄板状に形成され、電極ピッチの公差に対応できるように、図5の矢印X方向に可撓性を有する。なお、ユニット連結部24Aは、サーミスタ30の設置の関係で、サーミスタ30側の端部が二股に分かれた平面視Y状に形成されている。 Each unit connection portion 24 connects the bus bar holding units 23 separated in the arrow Y direction in FIG. 5, whereby the bus bar holding portions 22 are integrated. Further, each unit connection portion 24 is formed in a thin plate shape, and has flexibility in the arrow X direction of FIG. 5 so as to be able to cope with the tolerance of the electrode pitch. The unit connection portion 24A is formed in a Y-shape in plan view in which an end portion on the thermistor 30 side is bifurcated due to the installation of the thermistor 30.
 3.サーミスタ
 サーミスタ30は、図6および図7に示されるように、サーミスタ本体部31と金属製板バネ(「弾性押圧部材」の一例)32とを含む。サーミスタ本体部31は絶縁性樹脂によってモールド形成されており、金属製板バネの一端部32Aとサーミスタ素子(図示せず)を含む。なお、サーミスタ30には検知電線35が接続されている。
3. Thermistor Thermistor 30, as shown in FIGS. 6 and 7, includes a thermistor main body 31 and a metal plate spring 32 (an example of an "elastic pressing member") 32. The thermistor body 31 is molded of an insulating resin and includes one end 32A of a metal plate spring and a thermistor element (not shown). A detection wire 35 is connected to the thermistor 30.
 金属製板バネ32の他端部32Bは、図6に示されるように、側面視、コ型の形状を有し、その先端部32Cは、バスバー21の係止孔21Cを介してバスバー21の切り欠き部21Dに係止する。それによって、金属製板バネの他端部32Bは、バスバー21に係止される。このとき、金属製板バネ32の復元力によって、サーミスタ本体部31の底部が蓄電素子11の上面(表面)に押圧されて密着される。サーミスタ30は、図6に示されるように、バスバー21の延設板部21Bと蓄電素子の上面(表面)12との間の空間に配置されている。
 ここで、サーミスタの取付け構造は、バスバー21、バスバー保持部22(詳細には、バスバー保持ユニット23)、および金属製板バネ32によって構成される。
As shown in FIG. 6, the other end 32B of the metal plate spring 32 has a U-shape in a side view, and its tip 32C has a tip of the bus bar 21 via the locking hole 21C of the bus bar 21. It locks to notch 21D. Thereby, the other end 32 B of the metal plate spring is locked to the bus bar 21. At this time, the bottom of the thermistor main body 31 is pressed against the upper surface (surface) of the storage element 11 by the restoring force of the metal plate spring 32 to be in close contact. As shown in FIG. 6, the thermistor 30 is disposed in a space between the extended plate portion 21B of the bus bar 21 and the upper surface (surface) 12 of the storage element.
Here, the mounting structure of the thermistor is constituted by the bus bar 21, the bus bar holding portion 22 (specifically, the bus bar holding unit 23), and the metal plate spring 32.
 4.サーミスタの取付け方法
 次に、サーミスタ30の取付け方法について説明する。サーミスタ30は、接続モジュール20が蓄電素子群10に組付けられる際に、蓄電素子11の上面に取付けられる。
4. Next, a method of mounting the thermistor 30 will be described. The thermistor 30 is attached to the upper surface of the storage element 11 when the connection module 20 is assembled to the storage element group 10.
 すなわち、バスバー保持部22の各バスバー保持ユニット23にバスバー21を取り付ける。その際、一個のバスバー21に対して、金属製板バネ32の他端部32Bを係止させる。具体的には、金属製板バネ32の先端部32Cを、バスバー21の係止孔21Cを介してバスバー21の切り欠き部21Dに係止させる。そして、このようにバスバー21が保持されたバスバー保持部22、すなわち、接続モジュール20を蓄電素子群10の各蓄電素子11の電極端子14が形成された面に組付ける際、蓄電素子群10の一端から順に、例えば図2の矢印X方向の左端から順に、各電極端子14をバスバー21の端子挿通孔21Hに挿通させる。 That is, the bus bars 21 are attached to the bus bar holding units 23 of the bus bar holding portion 22. At that time, the other end 32 B of the metal plate spring 32 is locked to one bus bar 21. Specifically, the tip end portion 32C of the metal plate spring 32 is engaged with the notch 21D of the bus bar 21 via the engagement hole 21C of the bus bar 21. When the bus bar holding portion 22 in which the bus bar 21 is held in this way, that is, the connection module 20 is assembled to the surface on which the electrode terminal 14 of each storage element 11 of the storage element group 10 is formed, Each electrode terminal 14 is inserted into the terminal insertion hole 21H of the bus bar 21 sequentially from one end, for example, sequentially from the left end in the arrow X direction in FIG.
 次いで、各電極端子14にナットを取り付けることによって、接続モジュール20を蓄電素子群10に組付けることができる。その際、サーミスタ30が係止されたバスバー21に関しては、金属製板バネ32の復元力によって、サーミスタ本体部31の底部が蓄電素子11の上面に押圧されて密着されるように、バスバー21を電極端子14にナット締めする。その際、サーミスタ30は、図6に示されるように、バスバー21の延設板部21Bと蓄電素子の上面(表面)12との間の空間に配置される。 Subsequently, the connection module 20 can be assembled to the storage element group 10 by attaching a nut to each electrode terminal 14. At that time, regarding the bus bar 21 in which the thermistor 30 is locked, the bus bar 21 is pressed so that the bottom portion of the thermistor main body 31 is pressed against the upper surface of the storage element 11 by the restoring force of the metal plate spring 32. Tighten the nut on the electrode terminal 14. At that time, as shown in FIG. 6, the thermistor 30 is disposed in the space between the extended plate portion 21B of the bus bar 21 and the upper surface (surface) 12 of the storage element.
 5.本実施形態の効果
 サーミスタ30が、単に、一端部32Aがサーミスタ30に固定され、他端部32Bがバスバー21の係止部(21C、21D)に係止する金属製板バネ(弾性押圧部材)32によって、1つの蓄電素子11の表面12に押圧されて蓄電素子群10に取り付けられる。バスバー21は、通常、金属製であり、絶縁樹脂製と比べて剛性が強く、変形しにくい。そのため、本実施形態のサーミスタの取付け構造によれば、簡易な構造によって、サーミスタ30を蓄電素子11により安定して取付けできる。
5. Effects of the present embodiment A metal plate spring (elastic pressing member) in which one end 32A of the thermistor 30 is simply fixed to the thermistor 30, and the other end 32B is locked to the locking portion (21C, 21D) of the bus bar 21. 32 is attached to the storage element group 10 by being pressed against the surface 12 of one storage element 11. The bus bar 21 is usually made of metal, has higher rigidity than that of insulating resin, and is not easily deformed. Therefore, according to the attachment structure of the thermistor of the present embodiment, the thermistor 30 can be stably attached to the storage element 11 with a simple structure.
 また、バスバー21にサーミスタ用の延設板部21Bが設けられることによって、バスバー21の幅が拡がる。それによって、バスバー21の板厚を変更せずにバスバー21の断面積を拡げることができる。その結果、板厚を厚くして断面積を拡げる場合と比べて放熱性がよく、バスバー21の温度上昇を抑制して、大電流に対応できる。また、延設板部21Bによるバスバーの幅の増大に伴って形成される、バスバー21と蓄電素子11との間の空間を有効利用できる。 Further, by providing the extension plate portion 21B for the thermistor on the bus bar 21, the width of the bus bar 21 is expanded. Thereby, the cross-sectional area of the bus bar 21 can be expanded without changing the thickness of the bus bar 21. As a result, the heat dissipation is good as compared with the case where the plate thickness is increased to expand the cross-sectional area, and the temperature rise of the bus bar 21 can be suppressed to cope with a large current. In addition, the space between the bus bar 21 and the storage element 11 which is formed along with the increase in the width of the bus bar by the extended plate portion 21B can be effectively used.
 また、金属製板バネの一端部32Aがサーミスタ30内にモールドされ、サーミスタ30と一体化されている。そのため、金属製板バネの一端部32Aをサーミスタ30へ固定する構成が簡易に実現できる。 Further, one end 32 A of a metal plate spring is molded in the thermistor 30 and integrated with the thermistor 30. Therefore, the configuration for fixing the one end 32A of the metal plate spring to the thermistor 30 can be easily realized.
 また、金属製板バネの他端部32Bを係止孔21Cに挿入することで、簡単な構成によって、金属製板バネの他端部32Bを係止し、バスバー21に固定することができる。
 また、弾性押圧部材は、金属製板バネ32によって構成されているため、
弾性押圧部材を簡易な構成によって実現できる。なお、弾性押圧部材は、金属製板バネ32に限られない。
Further, by inserting the other end 32B of the metal plate spring into the locking hole 21C, the other end 32B of the metal plate spring can be locked and fixed to the bus bar 21 with a simple configuration.
Further, since the elastic pressing member is constituted by the metal plate spring 32,
The elastic pressing member can be realized by a simple configuration. The elastic pressing member is not limited to the metal plate spring 32.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
Other Embodiments
The present invention is not limited to the embodiments described above with reference to the drawings. For example, the following embodiments are also included in the technical scope of the present invention.
 (1)上記実施形態では、バスバー21には延設板部21Bが設けられ、サーミスタ30が、延設板部21Bと蓄電素子の表面12との間の空間に配置されている例を示したが、これに限られない。例えば、延設板部21Bは設けられていなくてもよく、また、サーミスタ30は、バスバー21と蓄電素子の表面12との間の空間に配置されていなくてもよい。 (1) In the above embodiment, the bus bar 21 is provided with the extending plate portion 21B, and the thermistor 30 is disposed in the space between the extending plate portion 21B and the surface 12 of the storage element. However, it is not limited to this. For example, the extending plate portion 21B may not be provided, and the thermistor 30 may not be disposed in the space between the bus bar 21 and the surface 12 of the storage element.
 (2)上記実施形態では、バスバーに設けられる係止部を、係止孔21Cと切り欠き部21Dによって構成する例を示したが、係止部の構成はこれに限られない。また、金属製板バネの他端部32Bの形状も図6に示したものに限られない。すなわち、金属製板バネの他端部32Bをバスバーの延設板部21Bに係止させる構成は、図6および図7に示された構成に限られない。また、金属製板バネの他端部32Bをバスバー21に係止させる場所も延設板部21Bに限られない。例えば、金属製板バネの他端部32Bをバスバー21の接続板部21Pに係止させるようにしてもよい。
 また、金属製板バネの一端部32Aをサーミスタ30に固定する構成は、サーミスタ30の絶縁樹脂内にモールドする構成に限られない。例えば、サーミスタの本体部31の表面に金属製板バネの一端部32Aを係止して固定する係止部を設けるようにしてもよい。
(2) Although the example which comprises the latching | locking part provided in a bus-bar by the latching hole 21C and notch part 21D was shown in the said embodiment, the structure of a latching | locking part is not restricted to this. Further, the shape of the other end 32B of the metal plate spring is not limited to that shown in FIG. That is, the configuration in which the other end portion 32B of the metal plate spring is locked to the extending plate portion 21B of the bus bar is not limited to the configuration shown in FIGS. Further, the place where the other end portion 32B of the metal plate spring is locked to the bus bar 21 is not limited to the extended plate portion 21B. For example, the other end 32B of the metal plate spring may be locked to the connection plate 21P of the bus bar 21.
Further, the configuration for fixing the one end portion 32A of the metal plate spring to the thermistor 30 is not limited to the configuration for molding in the insulating resin of the thermistor 30. For example, a locking portion may be provided on the surface of the main body portion 31 of the thermistor to lock and fix the one end portion 32A of the metal plate spring.
 10:蓄電素子群
 11:蓄電素子
 12:蓄電素子の表面
 14:電極端子
 21、21A:バスバー
 21B:バスバーの延設板部
 21C:係止孔(係止部)
 21D:切り欠き部(係止部)
 21P:バスバーの接続板部
 22:バスバー保持部
 23、23A:バスバー保持ユニット(バスバー保持部)
 30:サーミスタ
 32:金属製板バネ(弾性押圧部材)
 32A:金属製板バネの一端部
 32B:金属製板バネの他端部
10: electric storage element group 11: electric storage element 12: surface of electric storage element 14: electrode terminal 21, 21A: bus bar 21B: extended plate portion of bus bar 21C: locking hole (locking portion)
21D: Notched part (locking part)
21P: connection plate portion of bus bar 22: bus bar holding portion 23, 23A: bus bar holding unit (bus bar holding portion)
30: Thermistor 32: Metal leaf spring (elastic pressing member)
32A: one end of a metal plate spring 32B: the other end of a metal plate spring

Claims (5)

  1.  正極および負極の電極端子を有する複数の蓄電素子が並べられてなる蓄電素子群に取り付けられるサーミスタの取付け構造であって、
     前記複数の蓄電素子の隣接する蓄電素子の正極および負極の電極端子を接続するバスバーであって、前記サーミスタを取付けるための係止部を有するバスバーと、
     前記蓄電素子群に取付けられ、前記バスバーを保持するバスバー保持部と、
     復元力によって前記サーミスタを前記蓄電素子の表面に押圧する弾性押圧部材であって、一端部が前記サーミスタに固定され、他端部が前記バスバーの係止部に係止する弾性押圧部材と、
     を備える、サーミスタの取付け構造。
    A mounting structure of a thermistor attached to a storage element group in which a plurality of storage elements having positive and negative electrode terminals are arranged,
    A bus bar connecting electrode terminals of a positive electrode and a negative electrode of an adjacent storage element of the plurality of storage elements, the bus bar having a locking portion for attaching the thermistor;
    A bus bar holding portion attached to the storage element group and holding the bus bar;
    An elastic pressing member pressing the thermistor against the surface of the storage element by a restoring force, wherein one end is fixed to the thermistor and the other end is locked to the locking portion of the bus bar;
    Mounting structure of the thermistor.
  2.  請求項1に記載のサーミスタの取付け構造において、
     前記バスバーは、
     前記電極端子に接続される接続板部と、
     前記バスバーの幅方向の一端縁から延設された延設板部と、を含み、
     前記係止部は、前記延設板部に形成されており、
     前記サーミスタは、前記延設板部と前記蓄電素子の表面との間の空間に配置されている、サーミスタの取付け構造。
    In the thermistor mounting structure according to claim 1,
    The bus bar is
    A connection plate connected to the electrode terminal;
    An extending plate portion extending from one end edge in the width direction of the bus bar;
    The locking portion is formed on the extending plate portion,
    The thermistor mounting structure, wherein the thermistor is disposed in a space between the extension plate portion and the surface of the storage element.
  3.  請求項1または請求項2に記載のサーミスタの取付け構造において、
     前記サーミスタは、絶縁樹脂によってモールド形成されており、
     前記弾性押圧部材の一端部は、前記サーミスタの絶縁樹脂内にモールドされている、サーミスタの取付け構造。
    In the thermistor mounting structure according to claim 1 or 2,
    The thermistor is molded with an insulating resin,
    A mounting structure of a thermistor, wherein one end of the elastic pressing member is molded in the insulating resin of the thermistor.
  4.  請求項1から請求項3のいずれか一項に記載のサーミスタの取付け構造において、
     前記係止部は、前記弾性押圧部材の他端部が挿入されて係止される係止孔を含む、サーミスタの取付け構造。
    In the thermistor mounting structure according to any one of claims 1 to 3,
    The mounting structure of a thermistor, wherein the locking portion includes a locking hole into which the other end portion of the elastic pressing member is inserted and locked.
  5.  請求項1から請求項4のいずれか一項に記載のサーミスタの取付け構造において、
     前記弾性押圧部材は、金属製板バネによって構成されている、サーミスタの取付け構造。
    In the thermistor mounting structure according to any one of claims 1 to 4,
    The mounting structure of a thermistor, wherein the elastic pressing member is constituted by a metal plate spring.
PCT/JP2018/031069 2017-09-05 2018-08-23 Mounting structure for thermistor WO2019049671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017170119A JP2019046700A (en) 2017-09-05 2017-09-05 Structure for fitting thermistor
JP2017-170119 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049671A1 true WO2019049671A1 (en) 2019-03-14

Family

ID=65634784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031069 WO2019049671A1 (en) 2017-09-05 2018-08-23 Mounting structure for thermistor

Country Status (2)

Country Link
JP (1) JP2019046700A (en)
WO (1) WO2019049671A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203734A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Power storage module and manufacturing method of power storage module
US20220209321A1 (en) * 2020-12-29 2022-06-30 Sk On Co., Ltd. Battery module comprising temperature sensor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176601A (en) * 2008-01-25 2009-08-06 Yazaki Corp Temperature sensor mounting structure
JP2014062826A (en) * 2012-09-21 2014-04-10 Furukawa Electric Co Ltd:The Battery internal resistance measurement device
JP2014089912A (en) * 2012-10-31 2014-05-15 Auto Network Gijutsu Kenkyusho:Kk Wiring module
JP2016018741A (en) * 2014-07-10 2016-02-01 矢崎総業株式会社 Battery wiring module
JP2016122575A (en) * 2014-12-25 2016-07-07 株式会社豊田自動織機 Power storage device module
JP2016152138A (en) * 2015-02-18 2016-08-22 本田技研工業株式会社 Power storage module
CN205863332U (en) * 2016-07-29 2017-01-04 泰科电子(上海)有限公司 Temperature measurement component, electric appliance component, battery bag connect assembly and automobile batteries bag
JP2017098171A (en) * 2015-11-27 2017-06-01 トヨタ自動車株式会社 Attachment unit for battery cell temperature sensor of on-vehicle battery
US20170207501A1 (en) * 2014-07-29 2017-07-20 Ford Global Technologies, Llc Thermistor assembly including elastomeric body
JP2017147033A (en) * 2016-02-15 2017-08-24 住友電装株式会社 Bus bar module and wiring module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176601A (en) * 2008-01-25 2009-08-06 Yazaki Corp Temperature sensor mounting structure
JP2014062826A (en) * 2012-09-21 2014-04-10 Furukawa Electric Co Ltd:The Battery internal resistance measurement device
JP2014089912A (en) * 2012-10-31 2014-05-15 Auto Network Gijutsu Kenkyusho:Kk Wiring module
JP2016018741A (en) * 2014-07-10 2016-02-01 矢崎総業株式会社 Battery wiring module
US20170207501A1 (en) * 2014-07-29 2017-07-20 Ford Global Technologies, Llc Thermistor assembly including elastomeric body
JP2016122575A (en) * 2014-12-25 2016-07-07 株式会社豊田自動織機 Power storage device module
JP2016152138A (en) * 2015-02-18 2016-08-22 本田技研工業株式会社 Power storage module
JP2017098171A (en) * 2015-11-27 2017-06-01 トヨタ自動車株式会社 Attachment unit for battery cell temperature sensor of on-vehicle battery
JP2017147033A (en) * 2016-02-15 2017-08-24 住友電装株式会社 Bus bar module and wiring module
CN205863332U (en) * 2016-07-29 2017-01-04 泰科电子(上海)有限公司 Temperature measurement component, electric appliance component, battery bag connect assembly and automobile batteries bag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203734A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Power storage module and manufacturing method of power storage module
US20220209321A1 (en) * 2020-12-29 2022-06-30 Sk On Co., Ltd. Battery module comprising temperature sensor
EP4024019A1 (en) * 2020-12-29 2022-07-06 SK On Co., Ltd. Battery module comprising temperature sensor
US11901526B2 (en) 2020-12-29 2024-02-13 Sk On Co., Ltd. Battery module comprising temperature sensor

Also Published As

Publication number Publication date
JP2019046700A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US10601003B2 (en) Battery module and method of assembling the battery module
US8758915B2 (en) Module unit
JP5423174B2 (en) Battery connection assembly
US10763628B2 (en) Connection module
WO2013069756A1 (en) Wiring module
WO2015163126A1 (en) Wiring module, wiring-module intermediary body, and method for manufacturing wiring module
CN110048066B (en) Connection structure of external connection bus bar and connection method of external connection bus bar
US8945747B2 (en) Battery cell having an attachment structure and vehicle battery module
JP2011258413A (en) Battery connection assembly
JP2013152918A (en) Wiring module
EP2892087B1 (en) Structure for holding voltage detecting terminal
JP2013080693A (en) Wiring module for battery
JP2013152917A (en) Wiring module
JP5673465B2 (en) Battery wiring module
JP6108177B2 (en) Wiring module
WO2019049671A1 (en) Mounting structure for thermistor
JP2013243053A (en) Connection structure for electronic component
CN112103452B (en) Bus bar module
JP7229648B2 (en) battery connection module
JP5965348B2 (en) Power storage module
US11367930B2 (en) Bus bar module
JP6610007B2 (en) Battery pack
WO2016042855A1 (en) Harness attachment structure and battery pack
JP2013196823A (en) Temperature sensor attachment structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853524

Country of ref document: EP

Kind code of ref document: A1