WO2019047829A1 - 数据传输方法、终端、网络设备和通信*** - Google Patents

数据传输方法、终端、网络设备和通信*** Download PDF

Info

Publication number
WO2019047829A1
WO2019047829A1 PCT/CN2018/104021 CN2018104021W WO2019047829A1 WO 2019047829 A1 WO2019047829 A1 WO 2019047829A1 CN 2018104021 W CN2018104021 W CN 2018104021W WO 2019047829 A1 WO2019047829 A1 WO 2019047829A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
codebook
group
sequence
terminal
Prior art date
Application number
PCT/CN2018/104021
Other languages
English (en)
French (fr)
Inventor
张锦芳
郭文婷
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019047829A1 publication Critical patent/WO2019047829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method, a terminal, a network device, and a communication system.
  • the data transmission method in the unlicensed mode has great advantages in network delay and signaling overhead.
  • the non-orthogonal multiple access technology allows different data streams to be transmitted on the same time-frequency resource using different codebooks, and the receiving end can implement error-free decoding of multiple data streams. Therefore, the data transmission method combining non-orthogonal multiple access technology will be widely used in future cellular communication systems (such as 5G).
  • the network device is configured to pre-configure transmission parameters of the terminal for unauthorized transmission, and the transmission parameters include but are not limited to: time-frequency resources, non-orthogonal multiple access The mapping relationship between the pilot sequence and the codebook. If the terminal needs to send data, select a pilot sequence, and use the codebook corresponding to the pilot sequence to perform multiple access coding on the data, and send the pilot and the encoded in the pre-configured time-frequency resource. data. The network device detects the pilot sequence used by the terminal to send data on the pre-configured time-frequency resource, and obtains the codebook by using the mapping relationship between the pilot sequence and the codebook, and decodes the received data.
  • the network device When the terminal uses the data transmission method of the non-orthogonal multiple access technology mentioned above to perform data transmission, the network device is used for pre-configured and relatively fixed transmission parameters of the terminal, and the adaptability is poor for different channel states. , resource utilization is low.
  • the embodiment of the present application provides a data transmission method, a terminal, a network device, and a communication system, so that a terminal selects a codebook corresponding to a pilot sequence in a pilot group that is adapted to a channel state, and performs multiple access coding, and adaptability. better.
  • a data transmission method when a terminal performs data transmission, a pilot group can be determined according to the number of codebooks, and a pilot sequence is selected in the pilot group. The terminal performs multiple access coding according to the codebook corresponding to the selected pilot sequence, and then transmits the multiple access coded data.
  • the terminal selects the codebook corresponding to the pilot sequence in the pilot group to perform multiple access access coding, and the pilot group is determined according to the number of codebooks, and the number of codebooks can be adapted to the channel state. Therefore, the data transmission method provided by the embodiment of the present application has good adaptability.
  • the terminal may send the multiple access coded data to the network device, and may also send the multiple access coded data to other terminals.
  • the number of codebooks has a corresponding relationship with the code rate
  • the terminal may determine the number of codebooks according to a code rate used for channel coding the transmitted data, and according to the code rate corresponding to the determined number of codebooks, Channel coding the data.
  • the terminal may determine a code rate required for channel coding according to a channel state, and determine a codebook number corresponding to the code rate, thereby enabling the terminal to select a code corresponding to the pilot sequence in the pilot group of the channel state.
  • the present invention performs multi-access access coding on the channel-encoded data, and has good adaptability. Moreover, the resource utilization rate can be improved.
  • the terminal can reduce the code rate, and by multiplexing multiple transmission layers to improve the transmission accuracy rate, the terminal can reduce the transmission layer used for transmitting data for a better channel state.
  • the number reduces the complexity of system decoding, and at the same time, it can support more users, obtain the beneficial effects of multiplexing, and improve spectrum utilization.
  • the terminal may predetermine the correspondence between the number of codebooks, the pilot group, the pilot sequence, and the codebook.
  • the different pilot groups correspond to different numbers of codebooks, that is, the number of codebooks corresponding to each pilot sequence included in each pilot group is the same, and the number of codebooks corresponding to the pilot sequences in different pilot groups Inconsistent.
  • Each pilot group includes at least one pilot sequence, and each pilot sequence included in the pilot group has a mapping relationship with a corresponding number of codebooks of the pilot group.
  • the pilot sequence may be divided into multiple pilot groups according to the correspondence between the code rate and the number of codebooks by the network device, and the pilot group, the pilot sequence, and the codebook are determined. Mapping relationship. After the network device determines the mapping relationship between the pilot group, the pilot sequence, and the codebook, the mapping relationship between the pilot group, the pilot sequence, and the codebook may be pre-configured for the terminal, so that the terminal predetermines the pilot group. And the mapping relationship between the pilot sequence and the codebook, when performing data transmission, the codebook corresponding to the pilot sequence in the pilot group of the channel state can be selected to perform multiple access coding, and the adaptability is good. .
  • the pilot group, the pilot sequence, and the codebook may be directly The mapping relationship is sent to the terminal.
  • the network device may also send a mapping relationship between the pilot group, the pilot sequence, and the codebook.
  • the indication information the terminal receives the indication information, and determines a mapping relationship between the pilot group, the pilot sequence, and the codebook according to the indication information.
  • the indication information sent by the network device to the terminal may indicate different content in different communication scenarios. For example, if the pilot sequence and the codebook are determined in a predefined manner, the indication information can be used to indicate the pilot group identification and the number of pilot sequences included in the pilot group.
  • the terminal receives the indication information sent by the network device, and determines the pilot sequence and the codebook in the pilot group according to the pilot group identifier indicated in the indication information and the number of pilot sequences included in the pilot group.
  • the network device determines the pilot group required by the terminal, and the pilot sequence and the codebook have a fixed mapping relationship, and the indication information sent by the network device to the terminal may be used to indicate the pilot group identifier.
  • the terminal receives the indication information sent by the network device, and determines a pilot sequence and a codebook in the pilot group according to the pilot group identifier indicated in the indication information and a fixed mapping relationship between the pilot sequence and the codebook. Or the network device determines the pilot group required by the terminal, and the number of pilot sequences included in each pilot group can be configured, and the indication information sent by the network device to the terminal can be used to indicate the pilot group identifier and the pilot group. The initial pilot sequence index and the number of pilot sequences included in the pilot group. The terminal receives the indication information sent by the network device, and can determine the pilot in the pilot group according to the pilot group identifier indicated in the indication information, the initial pilot sequence index in the pilot group, and the number of pilot sequences included in the pilot group. Frequency sequence and codebook.
  • the network device may send the foregoing indication information or a mapping relationship between a pilot group, a pilot sequence, and a codebook to a plurality of terminals by using a broadcast manner, and may also send the foregoing related manner to the set terminal by using a unicast manner. Indicates the mapping relationship between information or pilot groups, pilot sequences, and codebooks.
  • the mapping information sent by the network device or the mapping relationship between the pilot group, the pilot sequence, and the codebook may be sent through a field added in the RRC or MAC CE to indicate a mapping relationship between the pilot group, the pilot sequence, and the codebook.
  • the network device may update the mapping relationship between the pilot group, the pilot sequence, and the codebook according to the channel state information of the terminal. After updating the mapping relationship between the maintained pilot group, the pilot sequence, and the codebook according to the channel state information of the terminal, the network device may send the update indication information to the terminal, where the update indication information is used to indicate the updated pilot group and the pilot sequence. And the mapping relationship between the codebooks. The terminal receives the update indication information sent by the network device, and updates the mapping relationship between the pilot group, the pilot sequence, and the codebook according to the update indication information.
  • the network device and the terminal update the mapping relationship between the maintained pilot group, the pilot sequence, and the codebook, so as to better adapt the channel state and improve resource utilization.
  • a terminal which may be a mobile phone, a tablet computer, a computer with a wireless transceiver function, a wireless terminal in a smart grid, or the like, or may be a control node.
  • the terminal includes a processor and a transceiver, where the processor is configured to determine, according to the number of codebooks, a pilot group corresponding to the number of codebooks, where different pilot groups correspond to different numbers of codebooks. Selecting a pilot sequence in the determined pilot group to determine a codebook corresponding to the selected pilot sequence, wherein each pilot group includes at least one pilot sequence, and each pilot included in the pilot group The sequence has a mapping relationship with the codebook corresponding to the number of the pilot group; the channel is encoded according to the code rate corresponding to the determined number of codebooks; and the channel-coded data is multi-accessed according to the determined codebook. Encoding; transmitting indication information instructing the transceiver to transmit the multiple access encoded data. And a transceiver, configured to send the processor to perform multiple access access encoded data according to an indication of the processor.
  • the terminal provided by the embodiment of the present application can select a codebook corresponding to the pilot sequence in the pilot group of the channel state to perform multiple access coding, and the adaptability is good.
  • the transceiver is further configured to: before the processor determines the pilot group corresponding to the number of codebooks, receive the network device, before the processor, and the function implemented by the transceiver,
  • the indication information is used to receive a mapping relationship between a pilot group, a pilot sequence, and a codebook sent by the network device.
  • the indication information sent by the network device is used to indicate a mapping relationship between the pilot group, the pilot sequence, and the codebook.
  • the processor is further configured to predetermine the pilot group, the pilot sequence, and the codebook according to the indication information received by the transceiver. The mapping relationship between them.
  • the indication information sent by the network device is used to indicate the pilot group identifier; or used to indicate the pilot group identifier, the starting pilot sequence index in the pilot group, and the number of pilot sequences included in the pilot group; or Indicates the pilot group identification and the number of pilot sequences included in the pilot group.
  • the processor is further configured to: generate, for each pilot group, information according to a preset pilot root sequence and a preset pilot sequence, to generate a guide in each pilot group.
  • the frequency sequence is determined according to a preset mapping rule of the codebook and the pilot sequence, and the codebook corresponding to each pilot sequence is determined.
  • the transceiver is further configured to receive update indication information sent by the network device, where the update indication information is determined by the network device according to the channel state, and is used to indicate to update the pilot group, the pilot sequence, and the codebook. And a mapping relationship between the pilot group and the codebook, after updating the mapping relationship between the pilot group, the pilot sequence, and the codebook, updating the pilot group and the pilot sequence according to the update indication information received by the transceiver And the mapping relationship between the codebooks can better adapt the channel state and improve resource utilization.
  • the application provides a network device, which may be a base station.
  • the network device includes a processor and a transceiver, where the processor is configured to determine a mapping relationship between a pilot group, a pilot sequence, and a codebook.
  • the transceiver is configured to send the indication information to the terminal according to the indication of the processor or send a mapping relationship between the pilot group, the pilot sequence, and the codebook to the terminal.
  • the indication information sent by the transceiver to the terminal is used to instruct the processor to determine a mapping relationship between the pilot group, the pilot sequence, and the codebook.
  • the different pilot groups correspond to different numbers of codebooks, and each pilot group includes at least one pilot sequence, and each pilot sequence included in the pilot group has a mapping with a corresponding number of codebooks of the pilot group. relationship.
  • the network device provided by the present application groups the pilot sequences in advance to obtain a plurality of pilot groups, and different pilot groups correspond to different codebook numbers, and determine a mapping relationship between the pilot group, the pilot sequence, and the codebook, and Sending the indication information or transmitting the mapping relationship between the pilot group, the pilot sequence, and the codebook to the terminal, so that when the terminal performs data transmission, the codebook corresponding to the pilot sequence in the pilot group of the adapted channel state may be selected for multiple access. Access coding, good adaptability.
  • the indication information involved is used to indicate a pilot group identifier; or used to indicate a pilot group identifier, a starting pilot sequence index in a pilot group, and a number of pilot sequences included in a pilot group; or for indicating The pilot group identification and the number of pilot sequences included in the pilot group.
  • the processor is further configured to: according to a preset pilot root sequence and a preset for each pilot group
  • the pilot sequence generates information, generates a pilot sequence in each pilot group, and determines a codebook corresponding to each pilot sequence according to a preset mapping rule of the codebook and the pilot sequence.
  • the processor is further configured to: update the mapping relationship between the pilot group, the pilot sequence, and the codebook according to the channel state information of the terminal, so as to better adapt the channel state and improve resources. Utilization rate.
  • the present application provides a data transmission device having a function of implementing a method performed by a terminal involved in the above first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes at least one module corresponding to the functions described above.
  • the structure of the data transmission device includes a processor and a transceiver configured to support execution of a corresponding function of the terminal in the above method of the data transmission device.
  • the transceiver is configured to support communication between the data transmission device and the network device, and send information or signaling involved in the foregoing method to the network device, and receive information or instructions sent by the network device.
  • the data transmission device can also include a memory for coupling with a processor that holds program instructions and data necessary for the data transmission device.
  • the memory can be integrated in the processor.
  • the present application provides a data transmission device having a function of implementing a method performed by the network device related to the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes at least one module corresponding to the functions described above.
  • the structure of the data transmission device includes a processor and a transceiver.
  • the processor is configured to support the data transmission device to perform the corresponding functions of the network device in the above method.
  • the transceiver is configured to support communication between the data transmission device and the terminal, and send information or signaling involved in the foregoing method to the terminal, and receive information or instructions sent by the terminal.
  • the data transmission device may also include a memory. The memory is for coupling to a processor that holds the necessary program instructions and data for the data transfer device.
  • the memory can be integrated in the processor.
  • the data transmission device involved in the fourth aspect and the fifth aspect may also be implemented by hardware corresponding software.
  • the hardware or software includes at least one module corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the processor may be a chip, and the processor may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software,
  • the processor can be a general purpose processor implemented by reading software code stored in a memory, which can be integrated in the processor and can be external to the processor.
  • an embodiment of the present application provides a communication system, where the system includes the network device and the terminal in the foregoing aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network device, which includes a program designed to perform the above aspects.
  • an embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal, including a program designed to perform the above aspects.
  • the data transmission method, the terminal, the network device and the communication system provided by the application network pre-groups the pilot sequences to obtain a plurality of pilot groups, different pilot groups correspond to different codebook numbers, and determines the pilot group, The mapping relationship between the pilot sequence and the codebook.
  • the network device sends the indication information to the terminal or sends a mapping relationship between the pilot group, the pilot sequence, and the codebook to the terminal, so that the terminal can select the codebook corresponding to the pilot sequence in the pilot group of the adapted channel state to perform multiple Address access coding, good adaptability.
  • FIG. 1 is a system architecture diagram of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a data transmission process provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of implementing a data transmission method according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for configuring a mapping relationship between a pilot group, a pilot sequence, and a codebook by a network device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a data transmission device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another data transmission device according to an embodiment of the present disclosure.
  • the terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Devices for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • augmented reality, AR augmented reality, AR
  • wireless terminals in industrial control wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • Network device refers to a device in a wireless network, for example, a radio access network (RAN) node (or device) that accesses a terminal to a wireless network, and may also be referred to as a base station.
  • RAN nodes are: a continuation of evolved Node B (gNB), a transmission reception point (TRP), an evolved Node B (eNB), and a radio network controller (radio network controller, RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB) , a base band unit (BBU), or a wireless fidelity (Wifi) access point (AP).
  • gNB evolved Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system, and the functions of some protocol layers are centrally controlled in the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU by the CU. Centrally control the DU.
  • LTE long term evolution
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • Interaction refers to the process in which the two parties exchange information with each other.
  • the information transmitted here may be the same or different.
  • the two parties are the base station 1 and the base station 2, and the base station 1 may request information from the base station 2, and the base station 2 provides the base station 1 with the information requested by the base station 1.
  • the base station 1 and the base station 2 may request information from each other, and the information requested here may be the same or different.
  • the code rate can be understood as the ratio between the number of bits of data before encoding and the number of bits of data after encoding, for reflecting channel coding redundancy. Generally, the larger the code rate, the smaller the redundancy, the smaller the code rate, and the greater the redundancy.
  • the channel-encoded data with different code rates has different lengths, and the channel-coded data of different lengths can be realized by superimposing different layers of the transport layer.
  • the codebook corresponds to the number of layers of the transport layer multiplexed on the transmission resource used for data transmission.
  • Each transport layer corresponds to one codebook, and the transport layer of different layers corresponds to a different number of codebooks, so different The number of codebooks may reflect the amount of data carried on the used transmission resources, and may further reflect the code rate used when the data is channel coded.
  • the transport layer and the layer, and the number of layers and the codebook of the transport layer may sometimes be mixed. It should be noted that the meanings to be expressed are consistent when the difference is not emphasized.
  • a pilot sequence also referred to as a pilot resource, may include a reference signal sequence, such as a Demodulation Reference Signal (DMRS) sequence, a Preamble sequence, or a Sounding RS sequence.
  • DMRS Demodulation Reference Signal
  • the encoding method of the data provided by the embodiment of the present application can be applied to the wireless communication system shown in FIG. 1.
  • the terminal accesses the network through a network device such as a base station, and the network device and the core network complete data backhaul and forward transmission.
  • the terminal and the network device communicate and interact through the air interface.
  • the terminal and the terminal communicate and interact through a sidelink.
  • the wireless communication system shown in FIG. 1 is only described by taking one network device as an example, but the embodiment of the present application is not limited thereto.
  • more network devices may be included in the wireless communication system; similarly, More terminals may also be included in the wireless communication system, and may also include other devices.
  • the wireless communication system in the embodiment of the present application may refer to a Public Land Mobile Network (PLMN) or a Device to Device (D2D) network or an M2M network or other network.
  • PLMN Public Land Mobile Network
  • D2D Device to Device
  • FIG. 1 is only a simplified schematic diagram of an example. Other devices may also be included in the communication network, which are not shown in FIG.
  • the wireless communication system to which the solution in the embodiment of the present application is applied may be a 5G New Radio (NR) network.
  • NR 5G New Radio
  • the solution in the embodiment of the present application may also be applied to other wireless communication systems.
  • the corresponding names of the network devices and terminals involved in the embodiments of the present application may be names of corresponding functions in the wireless communication network.
  • FIG. 2 is a schematic diagram of a data transmission process. Referring to FIG. 2, when a terminal transmits data, it first needs to determine a code rate for performing channel coding, and performs channel coding on the data according to the code rate.
  • the terminal selects a pilot sequence, and performs multi-access access encoding on the channel-encoded data using the codebook corresponding to the pilot sequence, and then transmits the multiple-access encoded data.
  • the pilot sequence used by the received data is detected by using a blind detection method, and the codebook is obtained by the mapping relationship between the pilot sequence and the codebook.
  • the received data is subjected to multiple access decoding, and the decoded data of the multiple access access is decoded by the channel to obtain the data sent by the terminal.
  • An embodiment of the present application provides a data encoding method, in which a network device can pre-configure a plurality of pilot groups according to the number of codebooks.
  • Different pilot groups correspond to different numbers of codebooks, that is, the number of codebooks corresponding to each pilot sequence included in each pilot group is consistent, and the number of codebooks corresponding to pilot sequences in different pilot groups is inconsistent.
  • each pilot group includes at least one pilot sequence, and each pilot sequence included in the pilot group has a mapping relationship with a corresponding number of codebooks of the pilot group.
  • the code rate required for channel coding may be determined according to the channel state, and the number of codebooks corresponding to the code rate may be determined, and then the corresponding pilot group may be determined according to the required number of codebooks, and then A pilot sequence is selected in the pilot group, and the multiple access encoding is performed according to the codebook corresponding to the selected pilot sequence.
  • the terminal selects a codebook corresponding to the pilot sequence in the pilot group of the adapted channel state to perform multiple access coding, and the adaptability is good.
  • FIG. 3 is a flowchart of implementing a data transmission method according to an embodiment of the present application. See Figure 3, including:
  • S101 The terminal determines the number of codebooks.
  • the number of codebooks has a corresponding relationship with the code rate
  • the terminal may determine the number of codebooks according to a code rate used for channel coding the transmitted data.
  • the correspondence between the number of codebooks and the code rate can be determined, for example, by using a method of: pre-configuring a time-frequency resource block as 8 resource blocks (RBs), wherein each RB is defined as 12 Subcarriers * 5 orthogonal frequency division multiplexing (OFDM) symbols.
  • RBs resource blocks
  • OFDM orthogonal frequency division multiplexing
  • the codebook is designed as 24 codebooks*8 resource elements (REs), where each codebook corresponds to one resource mapping mode, and 8 REs are one basic transmission resource unit.
  • a resource mapping corresponding to 24 codebooks can be supported on a basic transmission resource unit, and one codebook corresponds to one transport layer, that is, data transmission supporting up to 24 transport layers.
  • There are 12*5*8/8 60 basic transmission resource units on a pre-configured time-frequency resource block.
  • the terminal may acquire a channel state of a channel used for transmitting data, and determine a code rate of the channel coding according to the channel state. For example, when the channel state is poor, more redundant information is needed for decoding, and encoding can be performed using a 1/3 code rate.
  • the channel state is good, and less redundant information can be used, such as encoding using 2/3 code rate, in which case the effective information accounts for 2/3 of the total encoded information.
  • the channel state is determined by the channel quality. For example, if the first channel quality value is higher than the second channel quality value, the channel quality corresponding to the first channel quality value is better, and the channel state corresponding to the second channel quality value is better. Poor.
  • the code rate of a channel with a better channel state can be set to be higher than the code rate of a channel with a poor channel state.
  • the terminal may obtain channel state information by measuring a demodulation reference signal (DMRS) and/or a common reference signal (CRS).
  • DMRS demodulation reference signal
  • CRS common reference signal
  • channel state information may be obtained according to channel measurement of information interaction (such as receiving a broadcast message, information interaction in a random access process, etc.) when the terminal enters the network.
  • the channel state message may be obtained according to the channel measurement when the paging message is received.
  • the channel state information can be obtained according to the channel measurement when the terminal transmits other data.
  • the channel state information or the code rate information may also be sent by the network device to the terminal.
  • S101 is an optional step.
  • S102 The terminal determines, according to the number of codebooks, a pilot group corresponding to the number of codebooks.
  • the pilot sequence may be divided into multiple pilot groups according to a code rate according to a correspondence between a code rate and a codebook number, and each pilot group includes at least one pilot sequence, and different
  • the pilot group corresponds to a different number of codebooks, that is, the number of codebooks corresponding to each pilot sequence included in each pilot group is consistent, and the number of codebooks corresponding to the pilot sequences in different pilot groups is inconsistent.
  • the terminal may determine the group information of the pilot group in advance, and after the terminal determines the number of the codebook, the terminal may query the pilot group corresponding to the number of the codebook according to the predetermined pilot component group information. It is possible to determine the pilot group according to the number of codebooks. And the number of pilot groups is multiple, and the terminal can select a pilot group corresponding to the code rate required by the current channel state to implement adaptation of the channel state.
  • the number of pilot groups may be one or multiple. If the number of pilot groups is multiple, the terminal may select a pilot group that adapts the number of codebooks according to the determined number of codebooks. If the number of frequency groups is one, the terminal can directly use the pilot group as a pilot group of the number of adaptation codebooks.
  • S103 The terminal performs channel coding on the data according to a code rate corresponding to the determined number of codebooks.
  • the terminal after determining the number of codebooks, determines the code rate for channel coding the data, and performs channel coding according to the code rate corresponding to the determined number of codebooks.
  • S104 The terminal selects a pilot sequence in the determined pilot group, and determines a codebook corresponding to the selected pilot sequence.
  • the terminal may predetermine a mapping relationship between each pilot sequence included in the pilot group and a codebook corresponding to the pilot group.
  • the mapping relationship between the pilot sequence and the codebook may be configured in a preset manner.
  • pilot sequences in different pilot groups are different, and different pilot sequences may correspond to the same codebook.
  • the starting pilot sequences in each pilot group in Table 1 above are different, but the corresponding codebooks are all S0.
  • the terminal may randomly select a pilot sequence in the determined pilot group and determine a codebook corresponding to the selected pilot sequence.
  • S105 The terminal performs multiple access coding on the channel-coded data according to the determined codebook.
  • the terminal may perform multiple access coding on the channel-coded data according to the codebook corresponding to the selected pilot sequence.
  • the specific implementation process of the multiple access coding may be implemented by using the existing multiple access coding technology.
  • the previously existing multiple access coding technology may be, for example, non-orthogonal multiple access (Non-Orthogonal Multiple Access). , NOMA), multi-user shared access (MUSA), sparse code multiple access (SCMA), and the like.
  • the embodiment of the present application does not limit the execution sequence of the foregoing execution steps.
  • the execution step of S103 may be performed before S104 or after S104.
  • the terminal when performing data encoding, may determine a code rate required for performing channel coding according to a channel state, and determine a codebook number corresponding to the code rate, and further determine a corresponding number according to the required number of codebooks. a pilot group, then selecting a pilot sequence in the pilot group, and performing multiple access coding according to a codebook corresponding to the selected pilot sequence, and the terminal selects a pilot sequence in a pilot group adapted to the channel state
  • the corresponding codebook performs multiple access coding, and the adaptability is good.
  • the resource utilization rate can be improved.
  • the terminal can reduce the code rate, and by multiplexing multiple transmission layers to improve the transmission accuracy rate, the terminal can reduce the transmission used for transmitting the transmission data for a better channel state.
  • the number of layers reduces the complexity of system decoding, and at the same time, it can support more users, obtain the beneficial effects of multiplexing, and improve spectrum utilization.
  • S106 The terminal performs the multiple access coded data and sends the data to the network device or other terminal.
  • the network device or other terminal receives the data sent by the terminal, and blindly detects the pilot sequence used for the received data.
  • the network device or another terminal determines, according to a mapping relationship between the pilot sequence and the codebook, a codebook corresponding to the blind detected pilot sequence.
  • the network device or other terminal may pre-determine the mapping relationship between the pilot sequence and the codebook, and the mapping relationship between the pilot sequence and the codebook may be used when the terminal performs multiple access coding.
  • the mapping relationship between the pilot sequence and the codebook is the same.
  • the network device or other terminal may also maintain a mapping relationship between the pilot group, the pilot sequence, and the codebook required by the terminal.
  • S109 The network device or other terminal performs multiple access decoding on the received data according to the determined codebook.
  • the network device or other terminal performs multiple access decoding according to multiple codebooks.
  • S1010 The network device or other terminal performs channel decoding on the decoded data of the multiple access.
  • the specific implementation process of the network device or other terminal for performing multiple access decoding and channel decoding on the data may adopt the existing technology, and details are not described herein again.
  • the mapping between the pilot group, the pilot sequence, and the codebook needs to be determined and maintained in advance.
  • the pilot sequence may be divided into multiple pilot groups according to the correspondence between the code rate and the number of codebooks, and the pilot group, the pilot sequence, and the codebook are determined. Mapping relations. After the network device determines the mapping relationship between the pilot group, the pilot sequence, and the codebook, the mapping relationship between the pilot group, the pilot sequence, and the codebook can be configured for the terminal.
  • the mapping relationship between the pilot group, the pilot sequence, and the codebook may be directly sent to the mapping relationship between the pilot group, the pilot sequence, and the codebook.
  • the network device maintains the mapping relationship between the pilot group, the pilot sequence, and the codebook in a tabular form, the table of the mapping relationship between the reaction pilot group, the pilot sequence, and the codebook may be directly sent to the terminal.
  • the network device may send, to the terminal, a mapping between the pilot group, the pilot sequence, and the codebook.
  • the indication information of the relationship the terminal receives the indication information, and determines a mapping relationship between the pilot group, the pilot sequence, and the codebook according to the indication information.
  • FIG. 4 is a flowchart of a method for configuring a mapping relationship between a pilot group, a pilot sequence, and a codebook by using a network device according to an embodiment of the present disclosure. Referring to FIG. 4, the method includes:
  • the network device determines a mapping relationship between the pilot group, the pilot sequence, and the codebook.
  • the network device may divide the pilot sequence into multiple pilot groups according to the number of codebooks corresponding to the pilot sequence, and each pilot group includes at least one pilot sequence, and each pilot sequence corresponds to the set code. This. Different pilot groups correspond to different numbers of codebooks, that is, the number of codebooks corresponding to each pilot sequence included in each pilot group is consistent, and the number of codebooks corresponding to pilot sequences in different pilot groups is inconsistent.
  • the mapping relationship between the pilot group, the pilot sequence, and the codebook determined by the network device may be a mapping relationship such as shown in Table 1.
  • the network device may generate a pilot sequence in each pilot group, and determine a codebook corresponding to each pilot sequence. Specifically, the network device may generate information according to a preset pilot root sequence and a preset pilot sequence, generate a pilot sequence in each pilot group, and preset mapping rules according to the codebook and the pilot sequence. And determining a codebook corresponding to each pilot sequence.
  • the pilot root sequence is Pa, Pb, ...
  • the preset pilot sequence generation information is a phase rotation of a pilot root sequence to generate a set of pilot sequences. Therefore, according to a set of pilot root sequences and preset pilot sequences, information can be generated to generate pilot sequences in each pilot group: Pa0, Pa1, ...; Pb0, Pb1, ....
  • the mapping rules of the pilot sequence and the codebook may be pre-designed, and the mapping of the pilot sequences in each pilot group in Table 1 above starts from codebook 0.
  • codebook 1:1 mapping table
  • each pilot sequence corresponds to each codebook, that is, the mapping rule of the pilot sequence and the codebook may be Pi:Si
  • the mapping rules of the pilot sequence and the codebook may not be limited to this.
  • the network device sends indication information to the terminal, where the indication information is used to indicate a mapping relationship between the pilot group, the pilot sequence, and the codebook.
  • the terminal receives the indication information sent by the network device, and determines a mapping relationship between the pilot group, the pilot sequence, and the codebook according to the indication information.
  • the indication information may be used to indicate the pilot group identifier and the number of pilot sequences included in the pilot group.
  • the pilot group identifier is used to indicate the number of codebooks corresponding to each pilot sequence in the pilot group.
  • the number of pilot sequences included in the pilot set is used to represent the number of available pilot sequences contained within the pilot set.
  • the indication information indicates that the pilot group identifier is 1 and 2, the pilot group with the pilot group identifier of 1 has 4 pilot sequences, and the pilot group with the pilot group identifier of 2 has 8 pilot sequences, then
  • the number of codebooks corresponding to each pilot sequence in the pilot group with the pilot group identifier being 1 is 1, and the pilot group with the pilot group identifier of 1 has 4 pilot sequences; the pilot group identifier is 2.
  • the number of codebooks corresponding to each pilot sequence in the pilot group is 2, and the pilot group identified by the pilot group has 2 pilot sequences.
  • the terminal receives the indication information sent by the network device, and determines the pilot according to the pilot group identifier indicated in the indication information and the number of pilot sequences included in the pilot group, and in the same manner as the network device determines the pilot sequence and the codebook. Sequence and codebook. For example, if the indication information indicates that the pilot group identifier is 1 and 2, the pilot group with the pilot group identifier of 1 has 4 pilot sequences, and the pilot group with the pilot group identifier of 2 has 8 pilot sequences, then The terminal can determine the mapping relationship between the pilot group, the pilot sequence, and the codebook as shown in Table 2 below:
  • the network device determines the pilot group required by the terminal.
  • the indication information sent by the network device to the terminal may be used to indicate a mapping relationship between the pilot sequence and the codebook in the specific pilot group.
  • the code rate used by the terminal channel coding is 1/3. In this case, two transmission layers are used for transmission.
  • the pilot group identifier is 2.
  • the network device can send a pilot to the terminal to indicate the pilot.
  • the mapping relationship between the pilot sequence and the codebook in the pilot group whose group identifier is 2.
  • the indication information sent by the network device to the terminal may be used to indicate the pilot group identifier.
  • the indication information sent by the network device to the terminal may be used to indicate the pilot group identifier, the initial pilot sequence index in the pilot group, and the pilot group included.
  • the number of pilot sequences for example, the pilot group identifier is 2, the pilot group index of the pilot group identifier 2 is P4, and the pilot group contains 8 pilots.
  • the terminal Receiving, by the terminal, the indication information sent by the network device, determining the pilot sequence and the codebook according to the content indicated by the indication information, and determining the pilot sequence and the codebook in the same manner as the network device determining the pilot sequence and the codebook, and determining the pilot group, the pilot sequence, and The mapping relationship of the codebook.
  • the content indicated by the indication information is that the pilot group identifier is 2, the pilot group index of the pilot group with the pilot group identifier of 2 is P4, and the pilot group contains the pilot number of 8, the terminal can determine the guide.
  • the mapping relationship between the frequency group, the pilot sequence and the codebook is as shown in Table 3 below:
  • the indication information sent by the network device to the terminal in the embodiment of the present application may be sent to multiple terminals in a broadcast manner, or may be unicast.
  • the case where the indication information is transmitted to the terminal by using the broadcast method is applicable to the case where the mapping relationship between the pilot group, the pilot sequence, and the codebook required by the plurality of terminals is the same.
  • the unicast mode is applicable to the case where a terminal separately needs a mapping relationship between a pilot group, a pilot sequence, and a codebook.
  • the indication information sent by the network device to the terminal may be sent by adding a field indicating a mapping relationship between the pilot group, the pilot sequence, and the codebook in the existing signaling, for example, by using radio resource control signaling.
  • radio resource control radio resource control
  • the network device may update the mapping relationship between the pilot group, the pilot sequence, and the codebook according to the channel state information of the terminal.
  • the mapping relationship between the pilot group, the pilot sequence, and the codebook maintained by the network device is as shown in Table 2.
  • the network device detects that the channel state information of the terminal changes, and confirms that the number of codebooks needs to be increased by one.
  • the number of pilot sequences may be updated for the mapping relationship between the maintained pilot group, the pilot sequence, and the codebook. For example, the pilot sequence in the pilot group whose pilot group is identified as 1 in Table 2 is increased.
  • the pilot sequence in the pilot group with the pilot group identifier 2 is reduced, and the mapping relationship between the pilot group, the pilot sequence, and the codebook shown in Table 4 is obtained:
  • the network device may send the update indication information to the terminal, for example, the performing step of the step S204 may be included:
  • the network device sends update indication information to the terminal, where the update indication information is used to indicate a mapping relationship between the updated pilot group, the pilot sequence, and the codebook.
  • S205 The terminal receives the update indication information sent by the network device, and updates the mapping relationship between the pilot group, the pilot sequence, and the codebook according to the update indication information.
  • the network device and the terminal update the mapping relationship between the maintained pilot group, the pilot sequence, and the codebook, so as to better adapt the channel state and improve resource utilization.
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of interaction between the terminal and the network device.
  • the terminal and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements of the examples and algorithm steps described in the embodiments disclosed in the application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the embodiment of the present application provides a terminal.
  • the location of the terminal in the communication system can be referred to the terminal in FIG. 1.
  • the terminal can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality terminal, and an augmented reality terminal.
  • a terminal 100 provided by an embodiment of the present application includes a processor (device, unit) 101 and a transceiver (device, unit) 102.
  • the processor (device, unit) 101 is configured to determine, according to the number of codebooks, a pilot group corresponding to the number of codebooks, where different pilot groups correspond to different numbers of codebooks; Selecting a pilot sequence in the group, and determining a codebook corresponding to the selected pilot sequence, where each pilot group includes at least one pilot sequence, each pilot sequence included in the pilot group and the pilot group Corresponding number of codebooks have a mapping relationship; according to the determined code rate corresponding to the codebook number, the data is channel-coded; according to the determined codebook, the channel-encoded data is subjected to multiple access coding; and the indication information is sent.
  • the transceiver (device, unit) 102 is instructed to transmit the multiple access encoded data.
  • the transceiver (device, unit) 102 is configured to send, according to the instruction of the processor (device, unit) 101, the data that the processor (device, unit) 101 performs the multiple access encoding.
  • the terminal provided by the embodiment of the present application can select a codebook corresponding to the pilot sequence in the pilot group of the channel state to perform multiple access coding, and the adaptability is good.
  • the transceiver (device, unit) 102 is further configured to: before the processor (device, unit) 101 determines a pilot group corresponding to the number of the codebooks, receive indication information sent by the network device, Or for receiving a mapping relationship between a pilot group, a pilot sequence, and a codebook sent by the network device; the indication information is used to indicate a mapping relationship between the pilot group, the pilot sequence, and the codebook; The device (device, unit) 101 is further configured to predetermine a mapping relationship between a pilot group, a pilot sequence, and a codebook according to the indication information received by the transceiver (device, unit) 102.
  • the indication information is used to indicate a pilot group identifier; or the indication information is used to indicate a pilot group identifier, a starting pilot sequence index in the pilot group, and a number of pilot sequences included in the pilot group; or The indication information is used to indicate a pilot group identifier and a number of pilot sequences included in the pilot group.
  • the processor (device, unit) 101 is further configured to: generate, for each pilot group, information according to a preset pilot root sequence and a preset pilot sequence, and generate each A pilot sequence in a pilot group, and determining a codebook corresponding to each pilot sequence according to a preset mapping rule of the codebook and the pilot sequence.
  • the transceiver (device, unit) 102 is further configured to receive update indication information sent by the network device, where the update indication information is determined by the network device according to a channel state, and is used to indicate Updating a mapping relationship between a pilot group, a pilot sequence, and a codebook; the processor (device, unit) 101 is further configured to: after determining a mapping relationship between a pilot group, a pilot sequence, and a codebook, According to the update indication information received by the transceiver (device, unit) 102, the mapping relationship between the pilot group, the pilot sequence, and the codebook is updated, and the channel state can be better adapted to improve resource utilization.
  • the embodiment of the present application further provides a data transmission device, which may have a function of implementing a method performed by the terminal involved in the foregoing.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes at least one module corresponding to the functions described above.
  • the structure of the data transmission device 1000 includes a processor 1004 and a transceiver 1008 configured to support execution of a corresponding function of the terminal in the above method of the data transmission device.
  • the transceiver 1008 is configured to support communication between the data transmission device 1000 and the network device, and send information or signaling involved in the foregoing method to the network device, and receive information or instructions sent by the network device.
  • the data transmission device 1000 can also include a memory 1019 for coupling with a processor that holds program instructions and data necessary for the data transmission device.
  • the processor 1004 described above may be configured to perform the actions implemented by the terminal as described in the foregoing method embodiments, and the transceiver 1008 may be configured to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the transceiver 1008 may be configured to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the processor 1004 and the memory 1019 described above may be integrated into one processing device, and the processor 1004 is configured to execute program code stored in the memory 1019 to implement the above functions.
  • the memory 1019 can also be integrated in the processor 1004.
  • the data transmission device 1000 described above may further include a power source 1012 for providing power to various devices or circuits in the data transmission device 1000; the data transmission device 1000 may include an antenna 1010 for outputting data or control signals from the transceiver 1008. Let it be sent out by wireless signal.
  • the data transmission device 1000 may further include one or more of an input unit 1014, a display unit 1016, an audio circuit 1018, a camera 1020, a sensor 1022, and the like.
  • the audio circuit may also include a speaker 10182, a microphone 10184, and the like.
  • the terminal 100 and the data transmission device 1000 provided by the embodiments of the present application may determine a code rate required for channel coding according to a channel state, determine a codebook number corresponding to the code rate, and further select a pilot that adapts the channel state.
  • the codebook corresponding to the pilot sequence in the group performs multiple access coding, and the adaptability is good.
  • the resource utilization rate can be improved. For example, for a poor channel state, the terminal can reduce the code rate, and by multiplexing multiple transmission layers to improve the transmission accuracy rate, the terminal can reduce the transmission used for transmitting the transmission data for a better channel state.
  • the number of layers reduces the complexity of system decoding, and at the same time, it can support more users, obtain the beneficial effects of multiplexing, and improve spectrum utilization.
  • a network device is also provided in the embodiment of the present application.
  • the location of the network device in the communication system may be referred to the network device in FIG. 1 , where the network device may be a device for communicating with the terminal, and the network device may be a base station. It may also be a wireless controller in a cloud wireless access network scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network or a PLMN network in a future evolution. Network equipment, etc.
  • a network device 200 includes at least a processor (device, unit) 201 and a transceiver (device, unit) 202.
  • a processor (device, unit) 201 is configured to determine a mapping relationship between a pilot group, a pilot sequence, and a codebook.
  • the transceiver (device, unit) 202 is configured to send indication information to the terminal according to the instruction of the processor (device, unit) 201 or send a mapping relationship between the pilot group, the pilot sequence, and the codebook to the terminal,
  • the indication information is used to indicate a mapping relationship between a pilot group, a pilot sequence, and a codebook determined by the processor (device, unit) 201.
  • the different pilot groups correspond to different numbers of codebooks, and each pilot group includes at least one pilot sequence, and each pilot sequence included in the pilot group has a mapping with a corresponding number of codebooks of the pilot group. relationship.
  • the network device 200 provided by the present application groups the pilot sequences to obtain multiple pilot groups, and the different pilot groups correspond to different codebook numbers, and the mapping relationship between the pilot group, the pilot sequence, and the codebook is determined. And transmitting the indication information to the terminal or transmitting the mapping relationship between the pilot group, the pilot sequence, and the codebook to the terminal, so that when the terminal performs data transmission, the pilot sequence in the pilot group that adapts the channel state may be selected.
  • the codebook performs multiple access coding and has good adaptability.
  • the indication information is used to indicate a pilot group identifier; or the indication information is used to indicate a pilot group identifier, an initial pilot sequence index in a pilot group, and a number of pilot sequences included in a pilot group; or The indication information is used to indicate a pilot group identifier and a number of pilot sequences included in the pilot group.
  • the processor (device, unit) 201 is further configured to: generate, for each pilot group, information according to a preset pilot root sequence and a preset pilot sequence, and generate each A pilot sequence in the pilot group, and determining a codebook corresponding to each pilot sequence according to a preset mapping rule of the codebook and the pilot sequence.
  • the processor (device, unit) 201 is further configured to: according to channel state information of the terminal, update a mapping relationship between the pilot group, the pilot sequence, and the codebook to better adapt the channel state. Improve resource utilization.
  • the embodiment of the present application further provides a data transmission device, which may have a function of implementing a method performed by the network device involved above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes at least one module corresponding to the functions described above.
  • the structure of the data transmission device 2000 is a processor 2001 and a transceiver 2002, and the processor 2001 is configured to support the data transmission device 2000 to perform the corresponding functions of the network device in the above method.
  • the transceiver 2002 is configured to support communication between the data transmission device 2000 and the terminal, and send information or signaling involved in the foregoing method to the terminal, and receive information or instructions sent by the terminal.
  • the data transmission device 2000 may also include a memory 2003 for coupling with the processor 2001, which holds the necessary program instructions and data for the data transmission device 2000.
  • the above processor 2001 and the memory 2003 can synthesize a processing device for executing the program code stored in the memory 2003 to implement the above functions.
  • the data transmission device 2000 may further include an antenna 2004 for transmitting downlink data or downlink control signaling output by the transceiver 2002 by using a wireless signal.
  • the processor 1004 of the data transmission device 1000 and the processor 2001 of the data transmission device 2000 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP. .
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 1019 of the data transmission device 1000 and the memory 2003 of the data transmission device 2000 may include a volatile memory such as a random access memory (RAM); and may also include a non-volatile memory (non- A volatile memory, such as a flash memory, a hard disk drive (HDD), or a solid-state drive (SSD); the memory may also include a combination of the above types of memories.
  • RAM random access memory
  • non-volatile memory such as a flash memory, a hard disk drive (HDD), or a solid-state drive (SSD)
  • SSD solid-state drive
  • the solution described in the embodiment of the terminal 100 shown in FIG. 5, the data transmission device 1000 shown in FIG. 6, the network device 200 shown in FIG. 7, and the data transmission device 2000 shown in FIG. 8 can solve the above technical problem.
  • the terminal can select the codebook corresponding to the pilot sequence in the pilot group of the adapted channel state to perform multiple access coding, and the adaptability is good.
  • the embodiment of the present application further provides a communication system.
  • the communication system includes: any one of the foregoing terminals and any network device, wherein the functions of the terminal can be referred to FIG. 5 and FIG. 6 and corresponding implementations.
  • the functions of the network device can be referred to FIG. 7 and FIG. 8 and a detailed description of the corresponding embodiment.
  • the network device of the device embodiment of the present application may correspond to the method implementation of the present application, such as FIG. 2 to FIG. 4 and the corresponding network device
  • the terminal may correspond to the method of the present application, for example, FIG. 2 to FIG. 4 and the corresponding terminal.
  • the above-mentioned and other operations and/or functions of the respective modules of the network device and the terminal are respectively implemented in order to implement the corresponding processes of the foregoing method embodiments.
  • the description of the method embodiments of the present application may be applied to the device embodiment, and Let me repeat.
  • the embodiment of the present application provides a communication system, where a network device groups a pilot sequence to obtain a plurality of pilot groups, different pilot groups correspond to different codebook numbers, and determines mappings of pilot groups, pilot sequences, and codebooks. relationship.
  • the network device sends the indication information to the terminal or sends a mapping relationship between the pilot group, the pilot sequence, and the codebook to the terminal, so that the terminal can select the codebook corresponding to the pilot sequence in the pilot group of the adapted channel state to perform multiple Address access coding, good adaptability.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法、终端、网络设备和通信***,该方法由终端执行时,终端进行数据传输时,可先确定码本数量,然后根据码本数量确定导频组,并在该导频组中选择导频序列。终端根据与选择的导频序列对应的码本进行多址接入编码,并发送多址接入编码后的数据。本申请实施例提供的数据传输方法,终端选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。

Description

数据传输方法、终端、网络设备和通信***
本申请要求在2017年9月7日提交中国专利局、申请号为201710802306.2、申请名称为《数据传输方法、终端、网络设备和通信***》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法、终端、网络设备和通信***。
背景技术
非授权模式的数据传输方法在网络时延和信令开销方面具有很大的优势。非正交的多址接入技术,允许使用不同的码本在同一时频资源上发送不同的数据流,接收端可以实现多个数据流的无差错译码。因此,结合非正交的多址接入技术的数据传输方法在未来蜂窝通信***(如5G)中将得到极为广泛的应用。
目前,非正交的多址接入技术的数据传输方法中,网络设备为终端预配置进行非授权传输的传输参数,该传输参数包括但不限于:时频资源,非正交多址接入中导频序列和码本的映射关系等。终端如果有数据需要发送,则选择一个导频序列,并使用该导频序列对应的码本对数据进行多址接入编码,并在预配置的时频资源中发送该导频和编码后的数据。网络设备在预配置的时频资源上使用盲检测的方法检测到终端发送数据所使用的导频序列,并通过导频序列和码本的映射关系获得码本,对接收到的数据进行解码。
终端采用上述涉及的非正交的多址接入技术的数据传输方法进行数据传输时,采用网络设备为终端预配置且相对固定的传输参数进行传输,针对不同的信道状态,适配性较差,资源利用率较低。
发明内容
本申请实施例提供一种数据传输方法、终端、网络设备和通信***,以使终端选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。
第一方面,提供一种数据传输方法,在该方法中,终端进行数据传输时,可根据码本数量确定导频组,并在该导频组中选择导频序列。终端根据与选择的导频序列对应的码本进行多址接入编码,然后发送多址接入编码后的数据。
本申请实施例提供的数据传输方法中,终端选择导频组中的导频序列对应的码本进行多址接入编码,导频组依据码本数量确定,而码本数量能够适配信道状态,故本申请实施例提供的数据传输方法适配性较好。
其中,终端可向网络设备发送多址接入编码后的数据,也可向其它终端发送多址接入编码后的数据。
一种可能的实施方式中,码本数量与码率之间具有对应关系,终端可根据对传输的数据进行信道编码所用的码率确定码本数量,根据确定的码本数量对应的码率,对数据进行信道编码。其中,终端可根据信道状态确定进行信道编码所需的码率,并确定该码率所对应的码本数量,进而使得终端能够选择适配信道状态的导频组中的导频序列对应的码本对 信道编码后的数据进行多址接入编码,适配性较好。并且可以提高资源利用率,例如,对较差的信道状态,终端可以降低码率,通过复用多个传输层以提高传输正确率,对较好信道状态,终端可降低传输数据所用的传输层数,降低***解码复杂度,同时可以支持更多用户,获得复用的有益效果,提高频谱利用率。
另一种可能的实施方式中,终端可预先确定码本数量、导频组、导频序列以及码本的对应关系。其中,不同的导频组对应不同数量的码本,即每个导频组中包括的各导频序列所对应的码本数量一致,不同导频组中的导频序列所对应的码本数量不一致。每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本具有映射关系。
又一种可能的实施方式中,可由网络设备预先根据码率与码本数量的对应关系,将导频序列划分为多个导频组,并确定导频组、导频序列以及码本之间的映射关系。网络设备确定了导频组、导频序列以及码本之间的映射关系之后,可为终端预先配置导频组、导频序列以及码本之间的映射关系,以使终端预先确定导频组、导频序列以及码本之间的映射关系,在进行数据传输时,可选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。
在该实施方式中,一种可能的实现,网络设备确定了导频组、导频序列以及码本之间的映射关系之后,可直接将该导频组、导频序列以及码本之间的映射关系发送给终端。另一种可能的实现,网络设备确定了导频组、导频序列以及码本之间的映射关系之后,也可向终端发送用于指示导频组、导频序列以及码本之间映射关系的指示信息,终端接收该指示信息,并依据该指示信息确定该导频组、导频序列以及码本之间的映射关系。
网络设备向终端发送指示信息的实现中,网络设备向终端发送的指示信息在不同的通信场景下,可指示不同的内容。例如,若导频序列和码本采用预定义的方式确定,则指示信息可以用于指示导频组标识和导频组中包含的导频序列数目。终端接收网络设备发送的指示信息,根据指示信息中指示的导频组标识和导频组中包含的导频序列数目,确定导频组内的导频序列以及码本。或者,网络设备确定了终端所需的导频组,且导频序列与码本之间具有固定的映射关系,则网络设备向终端发送的指示信息可用于指示导频组标识。终端接收网络设备发送的指示信息,根据指示信息中指示的导频组标识,以及导频序列与码本之间固定的映射关系,可确定导频组内的导频序列以及码本。或者网络设备确定了终端所需的导频组,每个导频组中包括的导频序列数目可配,则网络设备向终端发送的指示信息可用于指示导频组标识、导频组中起始导频序列索引以及导频组中包括的导频序列数目。终端接收网络设备发送的指示信息,根据指示信息中指示的导频组标识、导频组中起始导频序列索引以及导频组中包括的导频序列数目,可确定导频组内的导频序列以及码本。
其中,网络设备可采用广播的方式向多个终端发送上述涉及的指示信息或导频组、导频序列和码本的映射关系,也可采用单播的方式向设定的终端发送上述涉及的指示信息或导频组、导频序列和码本的映射关系。网络设备发送的指示信息或导频组、导频序列和码本的映射关系可通过RRC或MAC CE中新增用于指示导频组、导频序列和码本的映射关系的字段发送。
又一种可能的实施方式中,网络设备可根据终端的信道状态信息,更新导频组、导频序列以及码本之间的映射关系。网络设备根据终端的信道状态信息更新维护的导频组、导 频序列以及码本之间的映射关系之后,可向终端发送更新指示信息,更新指示信息用于指示更新导频组、导频序列以及码本之间的映射关系。终端接收网络设备发送的更新指示信息,并根据更新指示信息,更新导频组、导频序列以及码本之间的映射关系。
本申请实施例中,网络设备和终端对维护的导频组、导频序列以及码本之间的映射关系进行更新,可更好的适配信道状态,提高资源利用率。
第二方面,提供一种终端,该终端可以是手机、平板电脑、带无线收发功能的电脑、智能电网中的无线终端等,也可以是一种控制节点。
本申请提供的终端包括处理器和收发器,其中,处理器,用于根据码本数量,确定与所述码本数量对应的导频组,其中,不同的导频组对应不同数量的码本;在确定的导频组中选择导频序列,确定与选择的导频序列对应的码本,其中,每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本具有映射关系;根据确定的码本数量对应的码率,对数据进行信道编码;根据确定的所述码本,对信道编码后的数据进行多址接入编码;发送指示信息指示收发器发送所述多址接入编码后的数据。收发器,用于根据所述处理器的指示,发送所述处理器进行多址接入编码后的数据。
本申请实施例提供的终端,能够选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。
在上述的终端的处理器以及收发器实现的功能基础上,一种可能的实施方式中,收发器还用于:在处理器确定与码本数量对应的导频组之前,接收网络设备发送的指示信息,或者用于接收网络设备发送的导频组、导频序列以及码本之间的映射关系。网络设备发送的指示信息用于指示导频组、导频序列以及码本之间的映射关系;处理器还用于根据收发器收到的指示信息预先确定导频组、导频序列以及码本之间的映射关系。
其中,网络设备发送的指示信息用于指示导频组标识;或者用于指示导频组标识,导频组中起始导频序列索引以及导频组中包括的导频序列数目;或者用于指示导频组标识以及导频组中包括的导频序列数目。
另一种可能的实施方式中,处理器还用于:针对每一导频组,根据预设的导频根序列、以及预设的导频序列生成信息,生成每一导频组内的导频序列,并根据码本和导频序列的预设映射规则,确定各导频序列对应的码本。
又一种可能的实施方式中,收发器还用于接收网络设备发送的更新指示信息,更新指示信息由网络设备根据信道状态所确定,并用于指示更新导频组、导频序列以及码本之间的映射关系;处理器还用于:在确定导频组、导频序列以及码本之间的映射关系之后,根据所述收发器接收到的更新指示信息,更新导频组、导频序列以及码本之间的映射关系,可更好的适配信道状态,提高资源利用率。
第三方面,本申请提供了一种网络设备,该网络设备可以是基站。
本申请提供的网络设备包括处理器和收发器,其中,处理器,用于确定导频组、导频序列以及码本之间的映射关系。收发器,用于根据处理器的指示,向终端发送指示信息或者向终端发送导频组、导频序列以及码本之间的映射关系。收发器向终端发送的指示信息用于指示处理器确定导频组、导频序列以及码本的映射关系。其中,不同的导频组对应不同数量的码本,每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本具有映射关系。
本申请提供的网络设备预先对导频序列进行分组得到多个导频组,不同的导频组对应 不同的码本数量,确定导频组、导频序列以及码本的映射关系,并向终端发送指示信息或者向终端发送导频组、导频序列以及码本的映射关系,使得终端进行数据传输时,可选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。
其中,上述涉及的指示信息用于指示导频组标识;或者用于指示导频组标识、导频组中起始导频序列索引以及导频组中包括的导频序列数目;或者用于指示导频组标识以及导频组中包括的导频序列数目。
在上述网络设备的处理器及收发器实现功能的基础上,一种可能的实施方式中,处理器还用于:针对每一导频组,根据预设的导频根序列、以及预设的导频序列生成信息,生成每一导频组内的导频序列,并根据码本和导频序列的预设映射规则,确定各导频序列对应的码本。
另一种可能的实施方式中,处理器还用于:根据终端的信道状态信息,更新导频组、导频序列以及码本之间的映射关系,以更好的适配信道状态,提高资源利用率。
第四方面,本申请提供了一种数据传输设备,该数据传输设备具有实现上述第一方面涉及的终端执行的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括至少一个与上述功能相对应的模块。
在一个可能的设计中,数据传输设备的结构中包括处理器和收发器,所述处理器被配置为支持执行数据传输设备上述方法中终端相应的功能。所述收发器用于支持数据传输设备与网络设备之间的通信,向网络设备发送上述方法中所涉及的信息或者信令,接收网络设备所发送的信息或指令。所述数据传输设备还可以包括存储器,所述存储器用于与处理器耦合,其保存数据传输设备必要的程序指令和数据。
其中,所述存储器可以集成在处理器中。
第五方面,本申请提供了一种数据传输设备,该数据传输设备具有实现上述第一方面涉及的网络设备所执行方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括至少一个与上述功能相对应的模块。
在一个可能的设计中,数据传输设备的结构中包括处理器和收发器。处理器被配置为支持数据传输设备执行上述方法中网络设备相应的功能。收发器用于支持数据传输设备与终端之间的通信,向终端发送上述方法中所涉及的信息或者信令,接收终端所发送的信息或指令。所述数据传输设备还可以包括存储器。存储器用于与处理器耦合,其保存数据传输设备必要的程序指令和数据。
其中,所述存储器可以集成在处理器中。
第四方面和第五方面涉及的数据传输设备也可以通过硬件执行相应的软件实现。所述硬件或软件包括至少一个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
所述处理器可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
第六方面,本申请实施例提供了一种通信***,该***包括上述方面所述的网络设备和终端。
第七方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本申请提供的数据传输方法、终端、网络设备及通信***,网络设备预先对导频序列进行分组得到多个导频组,不同的导频组对应不同的码本数量,并确定导频组、导频序列以及码本之间的映射关系。网络设备向终端发送指示信息或者向终端发送导频组、导频序列以及码本之间的映射关系,使得终端可选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。
附图说明
图1为本申请实施例提供的数据传输方法所应用的***架构图;
图2为本申请实施例提供的数据传输过程示意图;
图3为本申请实施例提供的一种数据传输方法实现流程图;
图4为本申请实施例提供的一种网络设备为终端配置导频组、导频序列以及码本之间映射关系的实施流程图;
图5为本申请实施例提供的终端的结构示意图;
图6为本申请实施例提供的网络设备的结构示意图;
图7为本申请实施例提供的一种数据传输设备的结构示意图;
图8为本申请实施例提供的另一种数据传输设备的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、网络设备,指无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单 元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)***中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)、“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
4)、交互,是指交互双方彼此向对方传递信息的过程,这里传递的信息可以相同,也可以不同。例如,交互双方为基站1和基站2,可以是基站1向基站2请求信息,基站2向基站1提供基站1请求的信息。当然,也可以基站1和基站2彼此向对方请求信息,这里请求的信息可以相同,也可以不同。
5)、名词“网络”和“***”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant”)和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
6)、码率,可以理解为是编码前数据的比特数与编码后数据的比特数之间的比值,用于反映信道编码冗余度。通常,码率越大,冗余度越小,码率越小,冗余度越大。采用不同码率进行信道编码后的数据具有不同的长度,信道编码后的不同长度的数据可以通过叠加不同层数的传输层来实现。
7)、码本与数据传输时所采用传输资源上复用的传输层的层数相对应,每一传输层对应一个码本,不同层数的传输层相当于不同数量的码本,故不同数量的码本可以反映在所采用的传输资源上承载的数据量,进一步可以反映数据进行信道编码时所采用的码率。本申请实施例中,传输层和层,以及传输层的层数和码本数量有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
8)、导频序列,也可称为导频资源,可包括参考信号序列,例如,解调参考信号(DMRS)序列,前导(Preamble)序列,或探测参考信号(Sounding RS)序列。
本申请实施例提供的数据的编码方法可应用于图1所示的无线通信***中。图1所示的无线通信***中,终端通过诸如基站等网络设备接入到网络中,网络设备与核心网完成数据的回传和前向传递。其中,终端与网络设备之间通过空口进行通信与交互。终端与终端之间通过侧行链路(sidelink)进行通信与交互。
应理解,图1所示的无线通信***中仅以包括一个网络设备为例进行说明,但本申请实施例并不限于此,例如,无线通信***中还可以包括更多的网络设备;类似地,无线通信***中也可以包括更多的终端,并且还可以包括其它设备。
本申请实施例的无线通信***中可以是指公共陆地移动网络(Public Land Mobile Network,PLMN)或者设备对设备(Device to Device,D2D)网络或者M2M网络或者其他网络,图1只是举例的简化示意图,通信网络中还可以包括其他设备,图1中未予以示出。
可以理解的是,本申请实施例中的方案所应用的无线通信***可以是5G新无线(New Radio,NR)网络,当然本申请实施例中的方案还可以应用于其他无线通信***中。本申请实施例中涉及的网络设备和终端相应的名称可以是无线通信网络中对应功能的名称。
无线通信***中,终端通过空口与网络设备进行数据传输时,或者终端通过侧行链路(sidelink)与其它终端进行数据传输时,通常由终端采用非正交的多址接入技术进行多址接入编码后发送编码后的数据,由网络设备或其它终端对接收到的数据进行多址接入解码。图2所示为数据传输过程示意图,参阅图2所示:终端发送数据时,首先需要确定进行信道编码的码率,并根据该码率对数据进行信道编码。终端然后选择导频序列,并使用该导频序列对应的码本对经过信道编码后的数据进行多址接入编码,然后发送多址接入编码后的数据。网络设备或其它终端接收到多址接入编码的数据后,使用盲检测的方法检测到接收到的数据所使用的导频序列,并通过导频序列和码本的映射关系获得码本,对接收到的数据进行多址接入解码,多址接入解码后的数据经过信道解码后可得到终端发送的数据。
本申请实施例提供一种数据的编码方法,在该编码方法中,网络设备可预先根据码本数量配置多个导频组。不同的导频组对应不同数量的码本,即每个导频组中包括的各导频序列所对应的码本数量一致,不同导频组中的导频序列所对应的码本数量不一致。并且每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本具有映射关系。终端进行数据编码时,可根据信道状态确定进行信道编码所需的码率,并确定该码率所对应的码本数量,进而可根据所需的码本数量确定对应的导频组,然后在该导频组中选择导频序列,并根据与选择的导频序列对应的码本进行多址接入编码。通过上述编码实现方法,终端选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。
图3所示为本申请实施例提供的一种数据传输方法实现流程图。参阅图3所示,包括:
S101:终端确定码本数量。
本申请实施例中,码本数量与码率之间具有对应关系,终端可根据对传输的数据进行信道编码所用的码率确定码本数量。
具体的,码本数量与码率之间的对应关系,例如可采用如下方式确定:假设预配置的时频资源块为8个资源块(resource block,RB),其中,每个RB定义为12个子载波*5个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。假设码本设计为24个码本*8个资源元素(resource element,RE),其中每个码本对应一种资源映射模式,8个RE为一个基本传输资源单位。在一个基本传输资源单位上可以最多支持24个码本对应的资源映射,一个码本对应一个传输层,即支持最多24个传输层的数据传输。在一个预配置的时频资源块上共有12*5*8/8=60个基本传输资源单位。进一步假设,码本点数为4,则每8个RE上每个传输层可传输2比特的数据,如果使用一个传输层进行数据传输,可传输60*2=120比特的数据。如果使用两个传输层进行数据传输可传输240比特。假设数据包大小为10个字节大小,则传输层层数与码率的对应关系可以表示为10*8/120n=2/3n,其中,n为传输的层数,1<=n<=24。
进一步的,本申请实施例中,终端可获取传输数据所用信道的信道状态,并根据信道状态确定信道编码的码率。例如,信道状态较差时,需要更多的冗余信息用于译码,可使用1/3码率进行编码。信道状态较好,可以使用较少的冗余信息,如使用2/3码率的编码,此时有效信息占总编码后信息的2/3。其中,信道状态的好差可通过信道质量来确定,例如第一信道质量值高于第二信道质量值,则第一信道质量值对应的信道状态较好,第二信道质量值对应的信道状态较差。本申请实施例中,可将信道状态较好的信道的码率设置为 高于信道状态较差的信道的码率。
本申请实施例中,终端可通过测量解调参考信号(demodulation reference signal,DMRS)和/或公共参考信号(common reference signal,CRS)获取信道状态信息。例如,对于初次进行数据传输,可以根据终端入网时信息交互(如接收广播消息,随机接入过程中的信息交互等)的信道测量获得信道状态信息。对于终端在空闲(Idle)态或去激活(Inactive)态的数据传输,可以根据接收寻呼消息时的信道测量获得信道状态消息。对于终端在连接(Connected态)的数据传输,可以根据该终端传输其它数据时的信道测量获得信道状态信息。当然也可以由网络设备向终端发送信道状态信息或码率信息。
其中,S101为可选步骤。
S102:终端根据码本数量,确定与码本数量对应的导频组。
本申请实施例中,可根据码率、码本数量之间的对应关系,根据码率将导频序列分成多个导频组,每个导频组中包括至少一个导频序列,且不同的导频组对应不同数量的码本,即每个导频组中包括的各导频序列所对应的码本数量一致,不同导频组中的导频序列所对应的码本数量不一致。如表1所示,导频组1中的每个导频序列对应1个码本,记为导频:码本=1:1,导频组2中的每个导频序列对应2个码本,记为导频:码本=1:2,以此类推。
表1
Figure PCTCN2018104021-appb-000001
本申请实施例中,终端可预先确定导频组的分组信息,当终端确定了码本数量后,可根据预先确定的导频组分组信息,查询到与该码本数量对应的导频组,可实现根据码本数量确定导频组。并且导频组的数量为多个,终端可选择与目前的信道状态所需的码率对应的导频组,实现对信道状态的适配。
进一步的,导频组的数量可以为一个,也可以为多个,若导频组的数量为多个,则终端可根据确定的码本数量选择适配码本数量的导频组,若导频组的数量为一个,则终端可直接将该导频组作为适配码本数量的导频组。
S103:终端根据确定的码本数量对应的码率,对数据进行信道编码。
本申请实施例中,终端确定了码本数量后,即确定了对数据进行信道编码的码率,根据该确定的码本数量对应的码率进行信道编码。
S104:终端在确定的导频组中选择导频序列,并确定与选择的导频序列对应的码本。
本申请实施例中,终端可预先确定导频组中包括的每个导频序列与该导频组对应数量的码本的映射关系。其中,导频序列与码本之间的映射关系可采用预设的方式配置。
需要说明的是,不同导频组中的导频序列是不同的,而不同的导频序列可对应相同的码本。例如,上述表1中每个导频组中的起始导频序列都不同,但是对应的码本都为S0。
终端在确定了导频组之后,可在确定的导频组中随机选择导频序列,并确定与选择的导频序列对应的码本。
S105:终端根据确定的码本,对信道编码后的数据进行多址接入编码。
终端可根据与选择的导频序列对应的码本对进行信道编码后的数据进行多址接入编码。其中,多址接入编码的具体实施过程可采用目前已有的多址接入编码技术实施,前已有的多址接入编码技术例如可以是非正交多址接入(Non-Orthogonal Multiple Access,NOMA),多用户共享接入(multi-User Shared Access,MUSA),稀疏码多址接入(sparse code multiple access,SCMA)等。
需要说明的是,本申请实施例并不限定上述各执行步骤的执行先后顺序,例如,S103的执行步骤可以在S104之前执行,也可在S104之后执行。
本申请实施例中,终端进行数据编码时,可根据信道状态确定进行信道编码所需的码率,并确定该码率所对应的码本数量,进而可根据所需的码本数量确定对应的导频组,然后在该导频组中选择导频序列,并根据与选择的导频序列对应的码本进行多址接入编码,终端选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。并且可以提高资源利用率,例如,对较差的信道状态,终端可以降低码率,通过复用多个传输层以提高传输正确率,对较好信道状态,终端可降低发送传输数据所用的传输层数,降低***解码复杂度,同时可以支持更多用户,获得复用的有益效果,提高频谱利用率。
S106:终端将进行多址接入编码后的数据,发送给网络设备或其它终端。
S107:网络设备或其它终端接收终端发送的数据,并盲检得到接收到的数据所用的导频序列。
S108:网络设备或其它终端根据导频序列与码本的映射关系,确定与所述盲检到的导频序列对应的码本。
本申请实施例中,网络设备或其它终端可预先确定导频序列与码本之间的映射关系,该导频序列与码本之间的映射关系,可与终端进行多址接入编码时所用的导频序列与码本之间的映射关系相同。进一步的,网络设备或其它终端也可维护终端所需的导频组、导频序列以及码本之间的映射关系。
S109:网络设备或其它终端根据确定的码本,对接收到的数据进行多址接入解码。
其中,若导频序列对应多个码本,则网络设备或其它终端根据多个码本进行多址接入解码。
S1010:网络设备或其它终端对多址接入解码后的数据进行信道解码。
本申请实施例中,网络设备或其它终端对于数据进行多址接入解码以及信道解码的具体实施过程,可采用目前已有的技术,在此不再赘述。
本申请实施例中,终端在采用上述实施例涉及的编码方法对数据进行编码之前,需要预先确定并维护导频组、导频序列以及码本之间的映射关系。
本申请实施例中,可由网络设备预先根据码率与码本数量之间的对应关系,将导频序列划分为多个导频组,并确定导频组、导频序列以及码本之间的映射关系。网络设备确定了导频组、导频序列以及码本之间的映射关系之后,可为终端配置导频组、导频序列以及 码本之间的映射关系。
一种可能的实施方式中,网络设备确定了导频组、导频序列以及码本之间的映射关系之后,可直接将该导频组、导频序列以及码本之间的映射关系发送给终端。例如,网络设备以表格形式维护导频组、导频序列以及码本之间的映射关系,则可直接将该反应导频组、导频序列以及码本之间映射关系的表格发送给终端。
另一种可能的实施方式中,网络设备确定了导频组、导频序列以及码本之间的映射关系之后,可向终端发送用于指示导频组、导频序列以及码本之间映射关系的指示信息,终端接收该指示信息,并依据该指示信息确定该导频组、导频序列以及码本之间的映射关系。
图4所示为本申请实施例提供的一种网络设备为终端配置导频组、导频序列以及码本之间映射关系的实施流程图,参阅图4所示,包括:
S201:网络设备确定导频组、导频序列以及码本之间的映射关系。
其中,网络设备可根据导频序列对应的码本数量,将导频序列划分为多个导频组,每个导频组中包括至少一个导频序列,每个导频序列对应设定的码本。不同的导频组对应不同数量的码本,即每个导频组中包括的各导频序列所对应的码本数量一致,不同导频组中的导频序列所对应的码本数量不一致。
网络设备确定的导频组、导频序列以及码本之间的映射关系,可为诸如表1所示的映射关系。
本申请实施例中,网络设备可生成各导频组内的导频序列,并确定各导频序列对应的码本。具体的,网络设备可根据预设的导频根序列、以及预设的导频序列生成信息,生成每一导频组内的导频序列,并根据码本和导频序列的预设映射规则,确定各导频序列对应的码本。
例如,导频根序列为Pa,Pb,…;预设的导频序列生成信息为将一个导频根序列经过相位旋转生成一组导频序列。故,根据一组导频根序列以及预设的导频序列生成信息,可以生成各导频组内的导频序列:Pa0,Pa1,…;Pb0,Pb1,…。
导频序列和码本的映射规则可以是预先设计的,如上表1中每个导频组中导频序列的映射都是从码本0开始。针对导频序列:码本=1:1的映射表,每个导频序列顺序的对应每个码本,即导频序列和码本的映射规则可以是Pi:Si;针对导频序列:码本=1:2的映射表,每个导频序列可以顺序的对应两个码本,即导频序列和码本的映射规则可以是Pi:(Si,Si+1)。当然,导频序列和码本的映射规则可以不限于此。
S202:网络设备向终端发送指示信息,该指示信息用于指示导频组、导频序列以及码本之间的映射关系。
S203:终端接收网络设备发送的指示信息,根据该指示信息确定导频组、导频序列以及码本之间的映射关系。
一种可能的实施方式中,若导频序列和码本采用预定义的方式确定,则指示信息可以用于指示导频组标识和导频组中包含的导频序列数目。其中,导频组标识用于表示该导频组内各导频序列对应的码本数量。导频组中包含的导频序列数目用于表示导频组内包含的可用的导频序列的数目。例如指示信息指示导频组标识为1和2,导频组标识为1的导频组内有4个导频序列,导频组标识为2的导频组内有8个导频序列,则表示导频组标识为1的导频组内各导频序列对应的码本数量为1,且该导频组标识为1的导频组内有4个导频序列;导频组标识为2的导频组内各导频序列对应的码本数量为2,且该导频组标识为 2的导频组内有8个导频序列。
终端接收网络设备发送的指示信息,根据指示信息中指示的导频组标识和导频组中包含的导频序列数目,并采用与网络设备确定导频序列以及码本相同的方式,确定导频序列以及码本。例如指示信息指示导频组标识为1和2,导频组标识为1的导频组内有4个导频序列,导频组标识为2的导频组内有8个导频序列,则终端可确定导频组、导频序列和码本的映射关系如下表2所示:
表2
Figure PCTCN2018104021-appb-000002
另一种可能的实施方式中,若网络设备已确定终端的信道状态(网络设备已确定了终端进行信道编码所用码率对应的码本数量),即网络设备确定了终端所需的导频组,则网络设备向终端发送的指示信息可用于指示具体的导频组内的导频序列与码本的映射关系。例如终端信道编码使用的码率为1/3,此时使用2个传输层传输,对应的码本数量为2,则导频组标识为2,则网络设备可向终端发送用于指示导频组标识为2的导频组中的导频序列与码本的映射关系。具体的,若导频序列与码本之间具有固定的映射关系,则网络设备向终端发送的指示信息可用于指示导频组标识。若每个导频组中包括的导频序列数目可配,则网络设备向终端发送的指示信息可用于指示导频组标识、导频组中起始导频序列索引以及导频组中包括的导频序列数目,例如导频组标识为2,导频组标识为2的导频组内起始导频序列索引为P4,导频组内包含导频数为8。
终端接收到网络设备发送的指示信息,根据指示信息指示的内容,并采用与网络设备确定导频序列以及码本相同的方式确定导频序列以及码本,可确定导频组、导频序列和码本的映射关系。例如,指示信息指示的内容为导频组标识为2,导频组标识为2的导频组内起始导频序列索引为P4,导频组内包含导频数为8,则终端可确定导频组、导频序列和码本的映射关系如下表3所示:
表3
Figure PCTCN2018104021-appb-000003
可以理解的是,本申请实施例中网络设备向终端发送的指示信息,可以采用广播的方式向多个终端发送,也可采用单播的方式。其中,采用广播的方式向终端发送指示信息的情形适用于多个终端所需的导频组、导频序列和码本的映射关系相同的情况。采用单播的 方式,适用于某个终端单独需要导频组、导频序列和码本的映射关系的情况。
具体的,网络设备向终端发送的指示信息,可通过在已有的信令中增加用于指示该导频组、导频序列和码本的映射关系的字段发送,例如通过无线资源控制信令(radio resource control,RRC)在对用户非授权时频资源配置/重配置时新增字段发送,或者通过媒体接入控制元素(media access control control element,MAC CE)在预留的下行逻辑信道(01011-11001)上新增字段发送。
本申请实施例中,网络设备可根据终端的信道状态信息,更新导频组、导频序列以及码本之间的映射关系。例如,目前网络设备维护的导频组、导频序列以及码本之间的映射关系如表2所示,但是网络设备检测到终端的信道状态信息发生变化,确认需要增加码本数量为1的导频序列数量,则可对维护的导频组、导频序列以及码本之间的映射关系更新,例如将表2中导频组标识为1的导频组中的导频序列增多,将导频组标识为2的导频组中的导频序列减少,得到表4所示的导频组、导频序列以及码本之间的映射关系:
表4
Figure PCTCN2018104021-appb-000004
本申请实施例中,网络设备根据终端的信道状态信息更新维护的导频组、导频序列以及码本之间的映射关系之后,可向终端发送更新指示信息,例如可包括S204的执行步骤:
S204:网络设备向终端发送更新指示信息,更新指示信息用于指示更新导频组、导频序列以及码本之间的映射关系。
S205:终端接收网络设备发送的更新指示信息,并根据更新指示信息,更新导频组、导频序列以及码本之间的映射关系。
本申请实施例中,网络设备和终端对维护的导频组、导频序列以及码本之间的映射关系进行更新,可更好的适配信道状态,提高资源利用率。
上述主要从终端和网络设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元的划分,例如, 可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例提供了一种终端,该终端在通信***中的位置可以参见图1中的终端,该终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端、增强现实终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。
具体参见图5所示,本申请实施例提供的一种终端100,包括处理器(器件、单元)101和收发器(器件、单元)102。其中,处理器(器件、单元)101,用于根据码本数量,确定与所述码本数量对应的导频组,其中,不同的导频组对应不同数量的码本;在确定的导频组中选择导频序列,确定与选择的导频序列对应的码本,其中,每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本具有映射关系;根据确定的码本数量对应的码率,对数据进行信道编码;根据确定的所述码本,对信道编码后的数据进行多址接入编码;发送指示信息指示收发器(器件、单元)102发送所述多址接入编码后的数据。收发器(器件、单元)102,用于根据所述处理器(器件、单元)101的指示,向网络设备发送所述处理器(器件、单元)101进行多址接入编码后的数据。
本申请实施例提供的终端,能够选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。
进一步的,所述收发器(器件、单元)102还用于:在所述处理器(器件、单元)101确定与所述码本数量对应的导频组之前,接收网络设备发送的指示信息,或者用于接收网络设备发送的导频组、导频序列以及码本之间的映射关系;所述指示信息用于指示导频组、导频序列以及码本之间的映射关系;所述处理器(器件、单元)101还用于根据所述收发器(器件、单元)102收到的指示信息预先确定导频组、导频序列以及码本之间的映射关系。
其中,所述指示信息用于指示导频组标识;或者所述指示信息用于指示导频组标识,导频组中起始导频序列索引以及导频组中包括的导频序列数目;或者所述指示信息用于指示导频组标识以及导频组中包括的导频序列数目。
一种可能的实施方式中,所述处理器(器件、单元)101还用于:针对每一导频组,根据预设的导频根序列、以及预设的导频序列生成信息,生成每一导频组内的导频序列,并根据码本和导频序列的预设映射规则,确定各导频序列对应的码本。
另一种可能的实施方式中,所述收发器(器件、单元)102还用于接收网络设备发送的更新指示信息,所述更新指示信息由所述网络设备根据信道状态所确定,并用于指示更新导频组、导频序列以及码本之间的映射关系;所述处理器(器件、单元)101还用于:在确定导频组、导频序列以及码本之间的映射关系之后,根据所述收发器(器件、单元)102接收到的更新指示信息,更新导频组、导频序列以及码本之间的映射关系,可更好的适配信道状态,提高资源利用率。
本申请实施例还提供一种数据传输设备,该数据传输设备可以具有实现上述涉及的终端执行的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括至少一个与上述功能相对应的模块。
具体参见图6所示,数据传输设备1000的结构中包括处理器1004和收发器1008,所 述处理器1004被配置为支持执行数据传输设备上述方法中终端相应的功能。所述收发器1008用于支持数据传输设备1000与网络设备之间的通信,向网络设备发送上述方法中所涉及的信息或者信令,接收网络设备所发送的信息或指令。所述数据传输设备1000还可以包括存储器1019,所述存储器1019用于与处理器耦合,其保存数据传输设备必要的程序指令和数据。
上述处理器1004可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器1008可以用于执行前面方法实施例中描述的终端向网络设备传输或者发送的动作。具体请见前面方法实施例中的描述,此处不再赘述。
上述处理器1004和存储器1019可以集成为一个处理装置,处理器1004用于执行存储器1019中存储的程序代码来实现上述功能。具体实现时,该存储器1019也可以集成在处理器1004中。
上述数据传输设备1000还可以包括电源1012,用于给数据传输设备1000中的各种器件或电路提供电源;上述数据传输设备1000可以包括天线1010,用于将收发器1008输出的数据或控制信令通过无线信号发送出去。
除此之外,为了使得数据传输设备1000的功能更加完善,该数据传输设备1000还可以包括输入单元1014,显示单元1016,音频电路1018,摄像头1020和传感器1022等中的一个或多个,所述音频电路还可以包括扬声器10182,麦克风10184等。
本申请实施例提供的终端100以及数据传输设备1000,可根据信道状态确定进行信道编码所需的码率,并确定该码率所对应的码本数量,进而能够选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。并且可以提高资源利用率,例如,对较差的信道状态,终端可以降低码率,通过复用多个传输层以提高传输正确率,对较好信道状态,终端可降低发送传输数据所用的传输层数,降低***解码复杂度,同时可以支持更多用户,获得复用的有益效果,提高频谱利用率。
本申请实施例还提供的一种网络设备,所述网络设备在通信***中的位置可以参见图1中的网络设备,该网络设备可以是用于与终端通信的设备,该网络设备可以是基站,还可以是云无线接入网络场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
参见图7所示,本申请实施例提供的一种网络设备200,至少包括:处理器(器件、单元)201和收发器(器件、单元)202。处理器(器件、单元)201,用于确定导频组、导频序列以及码本之间的映射关系。收发器(器件、单元)202,用于根据所述处理器(器件、单元)201的指示,向终端发送指示信息或者向终端发送导频组、导频序列以及码本之间的映射关系,所述指示信息用于指示所述处理器(器件、单元)201确定的导频组、导频序列以及码本之间的映射关系。其中,不同的导频组对应不同数量的码本,每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本具有映射关系。
本申请提供的网络设备200,对导频序列进行分组得到多个导频组,不同的导频组对应不同的码本数量,确定导频组、导频序列以及码本之间的映射关系,并向终端发送指示信息或者向终端发送导频组、导频序列以及码本之间的映射关系,使得终端进行数据传输时,可选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较 好。
其中,所述指示信息用于指示导频组标识;或者所述指示信息用于指示导频组标识、导频组中起始导频序列索引以及导频组中包括的导频序列数目;或者所述指示信息用于指示导频组标识以及导频组中包括的导频序列数目。
一种可能的示例中,所述处理器(器件、单元)201还用于:针对每一导频组,根据预设的导频根序列、以及预设的导频序列生成信息,生成每一导频组内的导频序列,并根据码本和导频序列的预设映射规则,确定各导频序列对应的码本。
进一步的,所述处理器(器件、单元)201还用于:根据终端的信道状态信息,更新导频组、导频序列以及码本之间的映射关系,以更好的适配信道状态,提高资源利用率。
本申请实施例还提供了一种数据传输设备,该数据传输设备可以具有实现上述涉及的网络设备执行的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括至少一个与上述功能相对应的模块。
具体参见图8所示,数据传输设备2000的结构中处理器2001和收发器2002,所述处理器2001被配置为支持数据传输设备2000执行上述方法中网络设备相应的功能。所述收发器2002用于支持数据传输设备2000与终端之间的通信,向终端发送上述方法中所涉及的信息或者信令,接收终端所发送的信息或指令。所述数据传输设备2000还可以包括存储器2003,所述存储器2003用于与处理器2001耦合,其保存数据传输设备2000必要的程序指令和数据。
上述处理器2001和存储器2003可以合成一个处理装置,处理器2001用于执行存储器2003中存储的程序代码来实现上述功能。
上述数据传输设备2000还可以包括天线2004,用于将收发器2002输出的下行数据或下行控制信令通过无线信号发送出去。
需要说明的是:数据传输设备1000的处理器1004和数据传输设备2000的处理器2001可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
数据传输设备1000的存储器1019和数据传输设备2000的存储器2003可以包括易失性存储器(volatile memory),例如随机存取内存(random access memory,RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
上述图5所示的终端100、图6所示的数据传输设备1000、图7所示的网络设备200以及图8所示的数据传输设备2000的实施例描述的方案可以解决上述的技术问题,使得终端可选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。这里具体的描述请参见上述具体方法实施例的描述,就不再赘述。
本申请实施例还提供一种通信***,如图1所示,所述通信***包括:上述的任意一终端和任意一网络设备,其中,终端的功能可参阅图5和图6以及对应的实施例的具体描 述,网络设备的功能可参阅图7和图8以及对应的实施例的具体描述。
本申请装置实施例的网络设备可对应于本申请方法实施例如图2-图4以及对应的网络设备,终端可对应于本申请方法实施例如图2-图4以及对应的终端。并且,网络设备和终端的各个模块的上述和其它操作和/或功能分别为了实现上述方法实施例的相应流程,为了简洁,本申请方法实施例的描述可以适用于该装置实施例,在此不再赘述。
本申请实施例提供通信***,网络设备预先对导频序列进行分组得到多个导频组,不同的导频组对应不同的码本数量,并确定导频组、导频序列以及码本的映射关系。网络设备向终端发送指示信息或者向终端发送导频组、导频序列以及码本之间的映射关系,使得终端可选择适配信道状态的导频组中的导频序列对应的码本进行多址接入编码,适配性较好。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种数据传输方法,其特征在于,包括:
    终端根据码本数量,确定与所述码本数量对应的导频组,其中,不同的导频组对应不同数量的码本;
    所述终端在确定的导频组中选择导频序列,确定与选择的导频序列对应的码本,其中,每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本具有映射关系;
    所述终端根据确定的码本数量对应的码率,对数据进行信道编码;
    所述终端根据确定的所述码本,对信道编码后的数据进行多址接入编码;
    所述终端发送多址接入编码后的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述终端确定与所述码本数量对应的导频组之前,所述方法还包括:
    所述终端接收网络设备发送的指示信息,所述指示信息用于指示导频组、导频序列以及码本之间的映射关系;
    所述终端根据所述指示信息预先确定导频组、导频序列以及码本之间的映射关系;
    或者
    所述终端接收网络设备发送的导频组、导频序列以及码本之间的映射关系。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息用于指示导频组标识;或者
    所述指示信息用于指示导频组标识,导频组中起始导频序列索引以及导频组中包括的导频序列数目;或者
    所述指示信息用于指示导频组标识以及导频组中包括的导频序列数目。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述终端针对每一导频组,根据预设的导频根序列、以及预设的导频序列生成信息,生成每一导频组内的导频序列,并根据码本和导频序列的预设映射规则,确定各导频序列对应的码本。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述终端确定导频组、导频序列以及码本之间的映射关系之后,所述方法还包括:
    所述终端接收网络设备发送的更新指示信息,所述更新指示信息由所述网络设备根据信道状态所确定,并用于指示更新导频组、导频序列以及码本之间的映射关系;
    所述终端根据所述更新指示信息,更新导频组、导频序列以及码本之间的映射关系。
  6. 一种数据传输方法,其特征在于,包括:
    网络设备确定导频组、导频序列以及码本之间的映射关系;
    所述网络设备向终端发送指示信息,所述指示信息用于指示导频组、导频序列以及码本之间的映射关系;或者所述网络设备向终端发送导频组、导频序列以及码本之间的映射关系;
    其中,不同的导频组对应不同数量的码本,每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本具有映射关系。
  7. 根据权利要求6所述的方法,其特征在于,所述指示信息用于指示导频组标识; 或者
    所述指示信息用于指示导频组标识、导频组中起始导频序列索引以及导频组中包括的导频序列数目;或者
    所述指示信息用于指示导频组标识以及导频组中包括的导频序列数目。
  8. 根据权利要求6或7所述的方法,其特征在于,网络设备确定导频组、导频序列以及码本之间的映射关系之前,所述方法还包括:
    所述网络设备针对每一导频组,根据预设的导频根序列、以及预设的导频序列生成信息,生成每一导频组内的导频序列,并根据码本和导频序列的预设映射规则,确定各导频序列对应的码本。
  9. 根据权利要求6至8任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据终端的信道状态信息,更新导频组、导频序列以及码本之间的映射关系。
  10. 一种终端,其特征在于,包括:
    处理器,用于根据码本数量,确定与所述码本数量对应的导频组,其中,不同的导频组对应不同数量的码本;在确定的导频组中选择导频序列,确定与选择的导频序列对应的码本,其中,每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本具有映射关系;根据确定的码本数量对应的码率,对数据进行信道编码;根据确定的所述码本,对信道编码后的数据进行多址接入编码;发送指示信息指示收发器发送所述多址接入编码后的数据;
    收发器,用于根据所述处理器的指示,发送所述处理器进行多址接入编码后的数据。
  11. 根据权利要求10所述的终端,其特征在于,所述收发器还用于:在所述处理器确定与所述码本数量对应的导频组之前,接收网络设备发送的指示信息,或者用于接收网络设备发送的导频组、导频序列以及码本之间的映射关系;
    所述指示信息用于指示导频组、导频序列以及码本之间的映射关系;
    所述处理器还用于根据所述收发器收到的指示信息预先确定导频组、导频序列以及码本之间的映射关系。
  12. 根据权利要求11所述的终端,其特征在于,所述指示信息用于指示导频组标识;或者所述指示信息用于指示导频组标识,导频组中起始导频序列索引以及导频组中包括的导频序列数目;或者所述指示信息用于指示导频组标识以及导频组中包括的导频序列数目。
  13. 根据权利要求11或12所述的终端,其特征在于,所述处理器还用于:针对每一导频组,根据预设的导频根序列、以及预设的导频序列生成信息,生成每一导频组内的导频序列,并根据码本和导频序列的预设映射规则,确定各导频序列对应的码本。
  14. 根据权利要求11至13任一项所述的终端,其特征在于,所述收发器还用于接收网络设备发送的更新指示信息,所述更新指示信息由所述网络设备根据信道状态所确定,并用于指示更新导频组、导频序列以及码本之间的映射关系;
    所述处理器还用于:在确定导频组、导频序列以及码本之间的映射关系之后,根据所述收发器接收到的更新指示信息,更新导频组、导频序列以及码本之间的映射关系。
  15. 一种网络设备,其特征在于,包括:
    处理器,用于确定导频组、导频序列以及码本之间的映射关系;
    收发器,用于根据所述处理器的指示,向终端发送指示信息或者向终端发送导频组、导频序列以及码本之间的映射关系,所述指示信息用于指示所述处理器确定的导频组、导频序列以及码本之间的映射关系;
    其中,不同的导频组对应不同数量的码本,每个导频组中包括至少一个导频序列,导频组中包括的每个导频序列与该导频组对应数量的码本有对应关系。
  16. 根据权利要求15所述的网络设备,其特征在于,所述指示信息用于指示导频组标识;或者所述指示信息用于指示导频组标识、导频组中起始导频序列索引以及导频组中包括的导频序列数目;或者所述指示信息用于指示导频组标识以及导频组中包括的导频序列数目。
  17. 根据权利要求15或16所述的网络设备,其特征在于,所述处理器还用于:
    针对每一导频组,根据预设的导频根序列、以及预设的导频序列生成信息,生成每一导频组内的导频序列,并根据码本和导频序列的预设映射规则,确定各导频序列对应的码本。
  18. 根据权利要求15至17任一项所述的网络设备,其特征在于,所述处理器还用于:
    根据终端的信道状态信息,更新导频组、导频序列以及码本之间的映射关系。
  19. 一种通信***,其特征在于,所述通信***包括:如权利要求10-14所述的任意一终端和如权利要求15-18所述的任意一网络设备。
  20. 一种数据传输设备,包括存储器和处理器,以及存储在所述存储器上可供所述处理器执行的计算机程序,其特征在于:
    所述处理器执行所述计算机程序实现如权利要求1-5任一项所述数据传输方法的步骤。
  21. 一种数据传输设备,包括存储器和处理器,以及存储在所述存储器上可供所述处理器执行的计算机程序,其特征在于:
    所述处理器执行所述计算机程序实现如权利要求6-9任一项所述数据传输方法的步骤。
  22. 一种数据传输设备,其特征在于,所述装置用于执行权利要求1-5任意一项所述的方法。
  23. 一种数据传输设备,其特征在于,所述装置用于执行权利要求6-9任意一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,用于储存为上述网络设备所用的计算机软件指令,当其在计算机上运行时,使得计算机执行如权利要求1-5中任一所述的方法。
  25. 一种计算机可读存储介质,其特征在于,用于储存为上述网络设备所用的计算机软件指令,当其在计算机上运行时,使得计算机执行如权利要求6-9中任一所述的方法。
PCT/CN2018/104021 2017-09-07 2018-09-04 数据传输方法、终端、网络设备和通信*** WO2019047829A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710802306.2 2017-09-07
CN201710802306.2A CN109474395B (zh) 2017-09-07 2017-09-07 数据传输方法、终端、网络设备和通信***

Publications (1)

Publication Number Publication Date
WO2019047829A1 true WO2019047829A1 (zh) 2019-03-14

Family

ID=65634603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104021 WO2019047829A1 (zh) 2017-09-07 2018-09-04 数据传输方法、终端、网络设备和通信***

Country Status (2)

Country Link
CN (1) CN109474395B (zh)
WO (1) WO2019047829A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060159A1 (zh) * 2022-09-22 2024-03-28 华为技术有限公司 一种通信方法、相关装置、可读存储介质以及芯片***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291222A (zh) * 2010-06-21 2011-12-21 电信科学技术研究院 一种反馈预编码矩阵指示方法、装置及***
CN107105503A (zh) * 2016-02-19 2017-08-29 华为技术有限公司 一种数据传输方法及通信设备、***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835285B1 (ko) * 2006-12-06 2008-06-05 한국전자통신연구원 빔 형성 방법 및 이를 위한 빔 형성 장치
US7961807B2 (en) * 2007-03-16 2011-06-14 Freescale Semiconductor, Inc. Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple input, multiple output (MU-MIMO) systems
KR101336961B1 (ko) * 2008-04-17 2013-12-04 삼성전자주식회사 다중 입출력 무선통신 시스템에서 미드앰블을 이용한프리코딩 장치 및 방법
CN101924585B (zh) * 2010-08-10 2013-10-02 中国科学院计算技术研究所 一种两级码本的构造与信道反馈方法
WO2015020291A1 (en) * 2013-08-09 2015-02-12 Lg Electronics Inc. Antenna combining for massive mimo scheme
RU2637789C1 (ru) * 2014-01-29 2017-12-07 Хуавэй Текнолоджиз Ко., Лтд. Система, устройство и способ доступа по восходящей линии связи

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291222A (zh) * 2010-06-21 2011-12-21 电信科学技术研究院 一种反馈预编码矩阵指示方法、装置及***
CN107105503A (zh) * 2016-02-19 2017-08-29 华为技术有限公司 一种数据传输方法及通信设备、***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Remaining Issue with Link Level Simulation for Multiple Access", 3GPP TSG RAN WG1 MEETING #85, RL-164262, 27 May 2017 (2017-05-27), XP051090028 *

Also Published As

Publication number Publication date
CN109474395B (zh) 2020-10-16
CN109474395A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
TWI554051B (zh) A method, system and apparatus for transmitting and receiving data
WO2018059210A1 (zh) 一种用于数据传输的方法和装置
TWI775790B (zh) 傳輸數據的方法、終端設備和網絡設備
WO2020001532A1 (zh) 定位参考信号配置方法、网络侧设备和终端设备
WO2018202061A1 (zh) 监测信息的方法、终端和网络设备
US10701524B2 (en) Multicast transmission method, information extraction method and corresponding terminal and device
TWI694698B (zh) 傳輸數據的方法和通信設備
WO2019096131A1 (zh) 一种指示和确定时域资源的方法、装置及***
WO2016029667A1 (zh) 一种上行数据传输方法及装置
KR20210002117A (ko) 다운링크 피드백 정보를 송신하는 방법, 기지국 및 단말 기기
WO2019051802A1 (zh) 传输数据的方法、网络设备和终端设备
CN112020145A (zh) 一种通信方法及装置
WO2014205727A1 (zh) 传输数据的方法和装置
TW201947882A (zh) 降低複雜度之極化編碼及解碼
WO2019238066A1 (zh) 用于无线通信***的电子设备、方法和存储介质
EP3550761B1 (en) Data transmission method and device, and information transmission method and device
JP2020503738A (ja) 情報伝送方法、ネットワーク機器及び端末装置
US11515972B2 (en) Method and apparatus for determining time-domain resource used for grant-free transmission
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
WO2018170877A1 (zh) 信息发送方法、装置、终端、接入网设备及***
WO2019047829A1 (zh) 数据传输方法、终端、网络设备和通信***
JP6517366B2 (ja) 下りリンク情報受信方法および下りリンク情報送信方法、ユーザ機器、ならびにネットワークデバイス
JP6472889B2 (ja) 端末デバイス、ネットワークデバイス、及びグループ通信方法
WO2019062535A1 (zh) 比特到符号的映射方法和通信装置
US20190158225A1 (en) Data Transmission Method and Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852997

Country of ref document: EP

Kind code of ref document: A1