WO2019047807A1 - 立式空调室内机 - Google Patents

立式空调室内机 Download PDF

Info

Publication number
WO2019047807A1
WO2019047807A1 PCT/CN2018/103840 CN2018103840W WO2019047807A1 WO 2019047807 A1 WO2019047807 A1 WO 2019047807A1 CN 2018103840 W CN2018103840 W CN 2018103840W WO 2019047807 A1 WO2019047807 A1 WO 2019047807A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
auxiliary heater
indoor unit
cross
heat
Prior art date
Application number
PCT/CN2018/103840
Other languages
English (en)
French (fr)
Inventor
李进超
李国行
任豪
侯延慧
郝本华
耿宝寒
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019047807A1 publication Critical patent/WO2019047807A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an air conditioner, and more particularly to a vertical air conditioner indoor unit.
  • the heat exchanger modules of some existing vertical air conditioner indoor units are provided with an electric auxiliary heat structure for enhancing the heating capacity of the indoor unit, thereby rapidly adjusting the indoor temperature.
  • the electric auxiliary heat structure is usually disposed on the front side of the heat exchanger. Due to the limitation of the internal space of the indoor unit, the electric auxiliary heat structure is usually adjacent to the cross flow fan of the indoor unit.
  • the bearing housing and the air duct divider are provided between the two cross-flow fans, so it is not very It is suitable to use the above electric auxiliary heat structure.
  • the vertical air conditioner indoor unit with two cross-flow fans arranged in the upper and lower rows in the prior art has not applied the electric auxiliary heat structure, and therefore does not have a high heating capacity for quickly adjusting the indoor temperature. ability.
  • An object of the present invention is to break through the limitations of the prior art and to provide a vertical air conditioner indoor unit having a large air supply range and capable of quickly adjusting the indoor temperature.
  • Another further object of the present invention is to effectively utilize the heat generated by the auxiliary heater corresponding to the area of each housing assembly.
  • the present invention provides a vertical air conditioner indoor unit, comprising:
  • the casing has a plurality of air outlets arranged vertically in a front side thereof, and an air inlet is arranged on the rear side thereof;
  • a heat exchanger disposed in the casing and configured to exchange heat with air flowing therethrough;
  • At least two cross-flow fans arranged in the vertical direction in the casing, and the axes of the at least two cross-flow fans are collinear, and each of the cross-flow fans is configured to urge air through the air inlet After entering the casing and exchanging heat with the heat exchanger, blowing out from the corresponding outlet;
  • An auxiliary heater disposed vertically adjacent to an adjacent side of the at least two cross flow fans to assist in heating the air driven by the at least two cross flow fans during thermal operation of the vertical air conditioning indoor mechanism ;among them
  • a bearing housing assembly for housing a fan bearing is disposed between each adjacent two of the cross flow fans, and a portion for protecting the bearing housing assembly is disposed between the bearing housing assembly and the auxiliary heater A protective member made of a non-combustible material.
  • a section of the auxiliary heater corresponding to the bearing block assembly is bound with a second protection member, and the second protection member is made of the same material as the first protection member.
  • the first protection member includes at least one first protection plate disposed in an overlapping manner, and each of the first protection plates is an L-shaped plate, and the L-shaped plate covers the bearing assembly A first side opposite the auxiliary heater and a second side adjacent to the first side.
  • a heat dissipating device is disposed between the first protection member and the auxiliary heater, and the heat dissipating device is configured to absorb at least a portion of the heat generated by the auxiliary heater corresponding to the bearing housing assembly. And being conducted outside the bearing block assembly such that the at least a portion of the heat is sent to the air outlet by the driving of the cross flow fan.
  • the heat dissipating device includes a heat transfer plate attached to the first protection member, a plurality of heat dissipation fins disposed on an outer surface of the heat transfer plate, and a plurality of the heat dissipation fins disposed between the plurality of heat dissipation sheets Heat pipe.
  • an additional air duct is provided on a side of the bearing block assembly opposite to the auxiliary heater, and an additional fan is disposed in the additional air duct, and the additional fan is configured to cause air to flow into the additional air And absorbing the at least part of the heat generated by the auxiliary heater corresponding to the bearing block assembly and flowing out of the additional duct.
  • each of the bearing block assemblies includes a bearing housing for receiving a fan bearing and a circumferential outer side disposed on the bearing housing and configured to separate spaces of two cross-flow fans located above and below thereof Air duct divider; and
  • the additional duct is formed between the bearing housing and a sidewall of the duct divider.
  • the bearing housing is integrally formed with the air duct partition.
  • At least a side of the bearing housing assembly opposite to the auxiliary heater is provided with a water storage chamber, and a top of the water storage chamber is provided with a through hole to utilize the auxiliary heater and the The heat generated by the opposite regions of the bearing block assembly causes the water in the water storage chamber to evaporate from the through hole and is sent to the air outlet under the driving action of the cross flow fan, thereby The airflow sent from the air outlet is humidified.
  • the water storage chamber includes a first sub-cavity and a second sub-cavity that are in communication with each other, the first sub-cavity being located at a first side of the bearing block assembly opposite to the auxiliary heater, a second sub-cavity located at a second side of the bearing block assembly adjacent the first side portion;
  • the second side portion is in an air inlet region or an air outlet region of the at least two cross flow fans, and the through hole is formed at a top of the second sub cavity.
  • the inventor of the present application provides an auxiliary heater on the adjacent side of at least two cross-flow fans arranged above and below, thereby assisting the auxiliary fan to assist the flow of the cross-flow fan-driven airflow, thereby improving the
  • the heating capacity of the entire vertical air conditioner indoor unit can quickly adjust the indoor temperature.
  • at least two cross-flow fans are arranged up and down, the air supply range of the vertical air conditioner indoor unit in the up and down direction is enlarged, which is advantageous for the indoor temperature balance and improves the user's comfort experience.
  • the inventors of the present application realized that the inner space of the vertical air conditioner indoor unit is limited, and the distance between the bearing block assembly between the adjacent two cross flow fans and the auxiliary heater is relatively close, which is affected by the auxiliary heater. Larger. Therefore, the present invention provides a first protection member for protecting the bearing housing assembly between the bearing housing assembly and the auxiliary heater, which can reduce the damage of the high temperature generated by the auxiliary heater to the bearing housing assembly and reduce the fire hazard. Further, the present invention further designs the material of the first protection member into a non-combustible material, which can completely eliminate the fire hazard and effectively protect the bearing housing assembly.
  • the present invention further provides a heat dissipating device between the auxiliary heater and the bearing housing assembly, and the heat dissipating device can be used to conduct at least part of the heat generated by the auxiliary heater and the corresponding region of the bearing housing assembly to the outside of the bearing housing assembly.
  • the at least part of the heat is sent to the air outlet with the air flow under the driving action of the cross flow fan, so that the temperature of the air flow sent by the air outlet is increased.
  • the present invention further provides an additional duct with an additional fan on the side of the bearing block assembly opposite at least the auxiliary heater, which can drive air into the additional duct through the additional fan, and the air absorbing auxiliary heater in the additional duct
  • At least part of the heat generated in the region corresponding to the bearing housing assembly forms a hot air with a relatively high temperature, and the hot air flows out of the additional air duct by the driving of the additional fan, and is then sent to the air outlet under the driving action of the cross-flow fan, thereby The temperature of the airflow sent from the air outlet rises.
  • the present invention further provides a water storage chamber at a side of the bearing block assembly opposite to at least the auxiliary heater, and at least a portion of the heat generated by the auxiliary heater corresponding to the bearing housing assembly is absorbed by the water in the water storage chamber.
  • the water vapor is formed, and the water vapor is evaporated through the through hole, and then sent to the air outlet under the driving action of the cross flow fan, so that the air flow sent from the air outlet can be humidified, thereby improving the problem of indoor air drying caused by the air conditioning heating. All of the above three methods improve the user experience, effectively utilize the heat generated by the auxiliary heater corresponding to each bearing block assembly, and reduce the heat loss of the auxiliary heater.
  • FIG. 1 is a schematic structural view of a vertical air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 2 is a schematic structural exploded view of a vertical air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 3 is a schematic partial structural view of a vertical air conditioner indoor unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic partial structural exploded view of a vertical air conditioner indoor unit according to an embodiment of the present invention.
  • Figure 5 is a schematic partial structural exploded view of a vertical air conditioner indoor unit according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a heat sink in the embodiment shown in Figure 5;
  • Figure 7 is a schematic partial structural exploded view of a vertical air conditioner indoor unit according to still another embodiment of the present invention.
  • Figure 8 is a schematic structural view of the bearing housing assembly in the embodiment shown in Figure 7;
  • Figure 9 is a schematic partial structural exploded view of a vertical air conditioner indoor unit according to still another embodiment of the present invention.
  • Figure 10 is a schematic structural exploded view of the bearing housing assembly of the embodiment shown in Figure 9;
  • Figure 11 is a schematic cross-sectional view of Figure 10.
  • FIG. 1 is a schematic structural view of a vertical air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 2 is a vertical air conditioner indoor unit according to an embodiment of the present invention.
  • Schematic structural exploded view Referring to FIGS. 1 and 2, the vertical air conditioner indoor unit 1 of the embodiment of the present invention may generally include a cabinet 10, a heat exchanger 20, and at least two cross flow fans 30.
  • the front side of the casing 10 is provided with a plurality of air outlets 111 arranged vertically, and the air inlet 121 is provided on the rear side.
  • the casing 10 defines an accommodation space inside to accommodate the cross flow fan and the heat exchanger 20.
  • the casing 10 may include a front panel 110 on the front side and an entrance grille 120 on the rear side.
  • the plurality of air outlets 111 are opened on the front panel 110, and the air inlet 121 is opened on the entrance grille 120.
  • the rear side of the front panel 110 may further be provided with an air outlet frame assembly 90 on which a swinging blade for guiding and adjusting the direction of the air outlet of the air outlet 111 is provided.
  • the heat exchanger 20 is disposed in the casing 10 for heat exchange with the air flowing therethrough, and forms a vapor compression refrigeration cycle system together with the compressor, the condenser, the throttling device, the connecting pipe and other accessories. The cooling/heating of air conditioners, the specific principle and structure will not be described here.
  • the at least two cross flow fans 30 are sequentially arranged in the vertical direction in the casing 10, and the axes of the at least two cross flow fans 30 are collinear. That is, at least two cross-flow fans 30 are arranged in the upper and lower rows in the casing 10, and the axes of each cross-flow fan 30 extend vertically, and the axes of all the cross-flow fans 30 are arranged in a line.
  • Each of the cross-flow fans 30 corresponds to one or a part of the air outlets 111, and is configured to cause air to enter the casing 10 through the air inlet 121 and exchange heat with the heat exchanger 20, and then blows out from the corresponding air outlet 121 to realize indoors.
  • the forced convection heat exchange between the air and the heat exchanger 20 enhances the heat exchange efficiency of the heat exchanger 20.
  • at least two cross-flow fans 30 are arranged up and down, the air supply range of the vertical air conditioner indoor unit 1 in the up and down direction is enlarged, which is advantageous for the balance of the indoor temperature and improves the user's comfort experience.
  • the vertical air conditioner indoor unit 1 further includes an auxiliary heater 40 that is disposed vertically extending on the adjacent side of the at least two cross flow fans 30 (in addition, the "near"
  • the "side” means the adjacent side, that is, the periphery, for assisting the heating of the air driven by the at least two cross-flow fans 30 during the heating operation of the vertical air-conditioning indoor unit 1. That is to say, during the heating operation of the vertical air conditioner indoor unit 1, the auxiliary heater 40 can additionally supply heat to the air entering through the air inlet 121, thereby improving the heating capacity of the entire vertical air conditioner indoor unit 1, and Quickly adjust the temperature inside the room.
  • the auxiliary heater 40 may be substantially an elongated heater extending vertically, the height of which may be substantially equal to the sum of the heights of the at least two cross flow fans 30 to make the supply air temperature more uniform.
  • the auxiliary heater 40 is preferably an electric heater having a relatively simple structure, which may specifically be a fin heater, an electric heating tube, a ceramic heating element or the like.
  • FIG. 3 is a schematic partial structural view of a vertical air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 4 is a schematic partial structural exploded view of the vertical air conditioner indoor unit according to an embodiment of the present invention.
  • a bearing housing assembly 50 for housing a fan bearing is disposed between each adjacent two cross flow fans 30.
  • the inventors of the present application realized that the inner space of the vertical air conditioner indoor unit 1 is such that the bearing housing assembly 50 between the adjacent two cross flow fans 30 is closer to the auxiliary heater 40, and is assisted by the auxiliary heater 40. The impact is greater.
  • the present invention is provided with a first protection member 60 for protecting the bearing housing assembly 50 between the bearing housing assembly 50 and the auxiliary heater 40, which can reduce the damage of the high temperature generated by the auxiliary heater 40 to the bearing housing assembly 50, Reduced fire hazards.
  • the first protection member 60 is made of a non-combustible material, and the present invention uses a non-combustible material to completely eliminate the fire hazard, and the bearing housing assembly 50 is fully and effectively protected.
  • the non-combustible material of the first protective member 60 may be, for example, a steel material.
  • the number of cross flow fans 30 is two. Accordingly, the number of housing assemblies 50 is one. Specifically, the rated air volume of the upper cross-flow fan 30 is greater than the rated air volume of the cross-flow fan 30 below, and the total flow area of the corresponding all-out air outlets of the upper cross-flow fan 30 is larger than the cross-flow fan of the lower cross-flow fan The total overflow area of all the air outlets corresponding to 30. Specifically, the number of the air outlets 111 may be three, and the shape of the three air outlets 111 is the same. The cross-flow fan 30 at the upper portion may correspond to the two air outlets 111, and the cross-flow fan 30 at the bottom may correspond to one Tuyere 111.
  • the air supply mode of the three air flow modes can be switched only by controlling the opening and closing of the two cross flow fans 30.
  • the air flow is from small to sequential: only the mode of the cross flow fan 30 under the bottom is turned on, and only the opening is in The mode of the cross flow fan 30 above and the mode in which the two cross flow fans 30 are simultaneously turned on.
  • the three air volume air supply modes by changing the wind speed of the cross flow fan, a more diverse air supply mode can be obtained to meet the different needs of the user and improve the user experience.
  • the portion of the auxiliary heater 40 corresponding to the bearing block assembly 50 is bound to the second protection member 41, and the second protection member 41 is made of the same material as the first protection member 60 to further Effectively protect the housing assembly. That is, the second protection member 41 is also made of a non-combustible material.
  • the second protection member 41 may be a square annular member wound around a section of the auxiliary heater 40 corresponding to the bearing housing assembly 50.
  • the first protection member 60 includes at least one layer of first protection plates disposed in an overlapping manner, and each of the first protection plates is an L-shaped plate.
  • the first side of the bearing block assembly 50 opposite the auxiliary heater 40 and the second side portion adjacent to the first side portion may be both hollowed out.
  • the L-shaped plate covers the bearing block assembly 50 in a occluded manner.
  • the first side portion and the second side portion of the bearing block assembly 50 may also be closed, in which case the L-shaped sheet material is attached in an attached manner to the first side of the bearing block assembly 50.
  • first protective plates may be one layer or multiple layers of two or more layers.
  • the first protective panel 60 can be secured to the sidewall of the housing assembly 50 by gluing, snapping or other suitable means.
  • the first protective sheet may also be a flat sheet that is disposed only on the side of the chock assembly 50 opposite the auxiliary heater 40.
  • each of the bearing block assemblies 50 includes a bearing housing 51 for housing a fan bearing, and bearings of two cross flow fans 30 disposed adjacent to and below the bearing housing assembly 50 are mounted in the bearing housing 51.
  • the bearing housing 51 can be generally a hollow cylinder.
  • Each chock assembly 50 further includes a duct divider 52 disposed circumferentially outward of the chock 51 and for separating the spaces of the two cross-flow fans 30 located above and below it to avoid two cross-flow fans 30 The air supply interferes with each other.
  • the first protector 60 is disposed at a side of the duct partition 52.
  • the vertical air conditioner indoor unit 1 further includes a duct assembly 70 erected on a circumferential outer side of the at least two cross flow fans 30 for guiding air from the heat exchanger 20 to the plurality of air outlets 111,
  • the duct divider 52 may separate the space within the duct assembly 70 in which the two cross-flow fans 30 are located above and below, thereby preventing the air supply of the two cross-flow fans 30 from interfering with each other.
  • the shape of the duct divider 52 may be irregularly shaped as long as it matches the duct assembly 70.
  • bearing housing 51 can be integrally formed with the duct spacer 52.
  • the bearing block 51 can be fixedly coupled to the duct divider 52 by snapping, welding or other suitable means.
  • the air duct assembly 70 includes two end plate portions 730, 740, a volute 710, and a volute tongue 720 that are vertically spaced apart.
  • the drive motors of the two cross flow fans are mounted to the end plate portion 730 and the end plate portion 740, respectively.
  • the volute 710 is erected and connected between the two end plate portions 730, 740, and the volute tongue 720 is also erected and connected between the two end plate portions 730, 740, and cooperates with the volute 710 to guide the air flow direction.
  • the duct divider 52 is coupled between the volute 710 and the volute tongue 720.
  • Two bearings that are respectively matched with the rotating shafts of the two cross-flow fans 30 are mounted in the bearing housing 51 to facilitate installation of two cross-flow fans.
  • FIG. 5 is a schematic partial structural exploded view of a vertical air conditioner indoor unit according to another embodiment of the present invention.
  • a heat sink 80 is further disposed between the bearing block assembly 50 and the auxiliary heater 40, and the heat sink 80 is configured to absorb at least the area of the auxiliary heater 40 corresponding to the bearing block assembly 50. Part of the heat is transmitted to the outside of the bearing block assembly 50 such that the at least a portion of the heat is sent to the air outlet 111 with the air flow under the driving action of the cross flow fan 30.
  • the present invention can conduct at least a portion of the heat generated by the auxiliary heater 40 in the corresponding region of the housing assembly 50 to the outside of the housing assembly 50 by the heat sink 80 such that the at least portion of the heat is in the cross-flow fan
  • the driving force of 30 is sent to the air outlet 111 with the airflow, so that the temperature of the airflow sent out by the air outlet 111 is increased, the user experience is improved, and the auxiliary heater 40 corresponding to each of the bearing housing assemblies 50 is effectively utilized.
  • the heat generated by the area reduces the heat loss of the auxiliary heater 40.
  • Fig. 6 is a schematic structural view of a heat sink in the embodiment shown in Fig. 5.
  • the heat sink 80 includes a heat transfer plate 81 attached to the first protection member 60, a plurality of heat dissipation fins 82 disposed on the outer surface of the heat transfer plate 81, and a heat transfer tube 83 disposed between the plurality of heat dissipation fins 82.
  • the heat generated by the auxiliary heater 40 corresponding to the region of the bearing block assembly 50 is transmitted more efficiently.
  • the plurality of fins 82 may be evenly spaced along the lateral direction, and a heat transfer tube 83 is disposed between each adjacent two fins 82.
  • the size of the heat transfer plate 81 in the up and down direction is equivalent to the size of the first protection member 60 in the direction, the heat sink 82 and the heat transfer tube 83 both extend vertically, and the heat transfer tube 83 extends upward to transfer heat.
  • the first predetermined distance of the upper end of the plate 81 and/or the heat pipe 83 extends downwardly from the lower end of the heat transfer plate 81 by a second predetermined distance.
  • Fig. 7 is a schematic partial structural exploded view of a vertical air conditioner indoor unit according to still another embodiment of the present invention.
  • at least the side of the chock assembly 50 opposite the auxiliary heater 40 is provided with an additional duct 53 in which an additional fan 54 is provided, the additional fan 54 being configured to spur air It flows into the additional duct 53 and absorbs at least part of the heat generated by the auxiliary heater 40 in the region corresponding to the bearing housing assembly 50, and then flows out of the additional duct 53.
  • the present invention can drive the air to flow into the additional duct 53 by the additional fan 54, and the air absorbing auxiliary heater 40 in the additional duct 53 forms at least a portion of the heat generated by the corresponding region of the chock assembly 50 at a relatively high temperature.
  • the hot air and the hot air flow out of the additional air duct 53 under the driving of the additional fan 54, and are sent to the air outlet 111 under the driving action of the cross-flow fan 30, thereby increasing the temperature of the airflow sent from the air outlet 111, thereby improving the user's
  • the use experience effectively utilizes the heat generated by the area of the auxiliary heater 40 corresponding to each of the housing assemblies 50, reducing the heat loss of the auxiliary heater 40.
  • Figure 8 is a schematic structural view of a bearing housing assembly in the embodiment shown in Figure 7. Further, the two ends of the additional air duct 53 are respectively provided with an air inlet 531 and an air outlet 532, and the air outlet 532 is located in the air inlet region or the air outlet region of the at least two cross flow fans 30 so as to be from the additional air passage 53.
  • the sent hot air can be sent to the air outlet 111 by the driving of the cross flow fan 30.
  • an additional duct 53 is formed between the bearing housing 51 and the side wall of the duct partition 52. That is, in these embodiments, the bearing block 51 and the duct divider 52 form a relatively closed space.
  • the side wall of the duct partition 52 includes a first side wall 521 opposite the auxiliary heater 40 and a second side wall 522 adjacent to the first side wall 521.
  • the air outlet 532 is opened on the second side wall 522, and the additional fan 54 is disposed inside the air outlet 532.
  • the additional air duct 53 may include a first sub air passage formed between the bearing housing 51 and the first side wall 521 of the duct partition 52 and formed between the bearing housing 51 and the second side wall 522 of the duct partition 52.
  • the second sub-duct, the air inlet 531 is located at an end of the first sub-duct away from the second sub-duct, and the air outlet 532 is located at the second sub-duct.
  • the additional fan 54 can be disposed opposite the air outlet 532.
  • FIG. 9 is a schematic partial structural exploded view of a vertical air conditioner indoor unit according to still another embodiment of the present invention.
  • at least a side of the chock assembly 50 opposite the auxiliary heater 40 is provided with a water storage chamber, and a top of the water storage chamber is provided with a through hole 55 to utilize the auxiliary heater 40
  • the heat generated in the opposite region of the bearing housing assembly 50 causes the water in the water storage chamber to evaporate from the through hole 55 and is sent to the air outlet 111 by the driving of the cross flow fan 30, thereby delivering the airflow from the air outlet 111. Perform humidification.
  • the heat generated by the auxiliary heater 40 corresponding to the bearing housing assembly 50 is absorbed by the water in the water storage chamber to form water vapor, and the water vapor is evaporated through the through hole, thereby driving the cross flow fan.
  • the air is sent to the air outlet 111, so that the airflow sent from the air outlet 111 can be humidified, the problem of drying the indoor air due to air conditioning heating is improved, the user experience is improved, and the auxiliary heater 40 is effectively utilized.
  • the heat generated by the area of each housing assembly 50 reduces the heat loss of the auxiliary heater 40.
  • Figure 10 is a schematic structural view of a bearing housing assembly in the embodiment shown in Figure 9, and Figure 11 is a schematic cross-sectional view of Figure 10.
  • the water storage chamber includes a first sub-cavity 56 and a second sub-cavity 57 that are in communication with each other.
  • the first sub-cavity 56 is located on a first side of the housing assembly 50 opposite the auxiliary heater 40,
  • the two sub-cavities 57 are located on a second side of the bearing block assembly 50 adjacent the first side. That is, the first sub-cavity 56 is opposite to the auxiliary heater 40.
  • the second sub-cavity 57 is adjacent to the first sub-cavity 56, and the upper region thereof is not obstructed, and therefore, in some preferred embodiments, the through-hole 55 is formed at the top of the second sub-cavity 57.
  • the second side portion is located in the air inlet region or the air outlet region of the at least two cross flow fans 30 so that the water vapor emitted from the through hole 55 is sent to the air outlet 111 by the cross flow fan 30.
  • the bearing block 51 and the duct divider 52 form a relatively closed space.
  • a water storage chamber is formed between the bearing housing 51 and the side wall of the duct divider 52.
  • the side wall of the duct partition 52 includes a first side wall 521 opposite the auxiliary heater 40 and a second side wall 522 adjacent to the first side wall 521.
  • the first sub-cavity 56 is formed between the bearing housing 51 and the first side wall 521 of the duct partition 52
  • the second sub-cavity 57 is formed between the bearing housing 51 and the second side wall 522 of the duct partition 52.
  • the at least two cross flow fans 30 are on the front side of the heat exchanger 20, and the auxiliary heater 40 is located between the heat exchanger 20 and the at least two cross flow fans 30 to The air after heat exchange of the heat exchanger 20 is assistedly heated, and the heating effect is better.
  • the heat exchanger 20 is preferably a "U" type heat exchanger that extends vertically and has an opening facing forward
  • the cross flow fan 30 is located on the front inner side of the heat exchanger 20, or two cross flow fans are "U" type
  • the heat exchanger is surrounded by three sides, so that the three-side suction passes through the heat exchanger 20 during the operation of the cross-flow fan, thereby increasing the air circulation of the heat exchanger 20, thereby improving the heat exchange efficiency.
  • heat exchanger 20 can also be a flat heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

一种立式空调室内机(1),包括机壳(10)、换热器(20)、至少两个贯流风扇(30)、辅助加热器(40)、轴承座组件(50)和用于保护轴承座组件(50)的第一保护件(60)。至少两个贯流风扇(30),沿竖向依次排列在机壳(10)内,且轴线共线;辅助加热器(40),沿竖向延伸地设置在至少两个贯流风扇(30)的邻侧,以在立式空调室内机(1)制热运行时对至少两个贯流风扇(30)驱动的空气进行辅助加热;其中每相邻两个贯流风扇(30)之间均设有一用于容装风扇轴承的轴承座组件(50),轴承座组件(50)与辅助加热器(40)之间设有用于保护轴承座组件(50)的第一保护件(60),第一保护件(60)由不可燃材料制成。

Description

立式空调室内机 技术领域
本发明涉及空调装置,特别是涉及一种立式空调室内机。
背景技术
现有的一些立式空调室内机的换热器模块设有电辅热结构,用于增强室内机的制热能力,从而快速地调整室内温度。电辅热结构通常设置于换热器的前侧,由于受到室内机内部空间的限制,电辅热结构通常会邻近室内机的贯流风机。
然而,对于现有的另一些设有两个上下排布的贯流风扇的立式空调室内机来说,由于其两个贯流风扇之间会设置轴承座和风道分隔件,因此并不是很适合使用上述电辅热结构。也许正是由于这个原因,现有技术中的具有上下排布的两个贯流风扇的立式空调室内机始终没有应用电辅热结构,因此也不具备较高的快速调整室内温度的制热能力。
发明内容
本发明的一个目的旨在突破现有技术中的局限,提供一种送风范围较大、且能够快速调整室内温度的立式空调室内机。
本发明的一个进一步的目的是有效地避免辅助加热器产生的高温对每两个贯流风扇之间的轴承座组件产生安全性的危害。
本发明的另一个进一步的目的是对辅助加热器的对应于每个轴承座组件的区域所产生的热量进行有效利用。
为了实现上述目的,本发明提供一种立式空调室内机,包括:
机壳,其前侧设有竖向排列的多个出风口,其后侧设有进风口;
换热器,设置在所述机壳内,并用于与流经其的空气进行热交换;
至少两个贯流风扇,沿竖向依次排列在所述机壳内,且所述至少两个贯流风扇的轴线共线,每个所述贯流风扇均配置成促使空气经所述进风口进入所述机壳内、并与所述换热器换热后从对应的所述出风口吹出;以及
辅助加热器,沿竖向延伸地设置在所述至少两个贯流风扇的邻侧,以在所述立式空调室内机制热运行时对所述至少两个贯流风扇驱动的空气进行 辅助加热;其中
每相邻两个所述贯流风扇之间均设有一用于容装风扇轴承的轴承座组件,所述轴承座组件与所述辅助加热器之间设有用于保护所述轴承座组件的第一保护件,所述第一保护件由不可燃材料制成。
可选地,所述辅助加热器的与所述轴承座组件相对应的区段包缚有第二保护件,所述第二保护件与所述第一保护件的材质相同。
可选地,所述第一保护件包括叠加设置的至少一层第一保护板,每个所述第一保护板均为L型板材,所述L型板材覆盖所述轴承座组件的与所述辅助加热器相对的第一侧部以及与所述第一侧部相邻的第二侧部。
可选地,所述第一保护件与所述辅助加热器之间设有散热装置,所述散热装置配置成吸收所述辅助加热器与所述轴承座组件相对应区域所产生的至少部分热量,并传导至所述轴承座组件之外,以使该至少部分热量在所述贯流风扇的驱动作用下送往所述出风口。
可选地,所述散热装置包括贴设于所述第一保护件的传热板、设置于所述传热板外表面的多个散热片以及穿设在多个所述散热片之间的导热管。
可选地,所述轴承座组件的与所述辅助加热器相对的侧部设有附加风道,所述附加风道内设有附加风机,所述附加风机配置成促使空气流入所述附加风道、并吸收所述辅助加热器与所述轴承座组件相对应区域所产生的至少部分热量后流出所述附加风道。
可选地,每个所述轴承座组件均包括用于容装风扇轴承的轴承座和设置在所述轴承座的周向外侧并用于分隔位于其上方和下方的两个贯流风扇所处空间的风道分隔件;且
所述附加风道形成在所述轴承座和所述风道分隔件的侧壁之间。
可选地,所述轴承座与所述风道分隔件一体成型。
可选地,所述轴承座组件的至少与所述辅助加热器相对的侧部设有储水腔,所述储水腔的顶部设有通孔,以利用所述辅助加热器的与所述轴承座组件相对的区域所产生的热量促使所述储水腔内的水从所述通孔蒸发出来,并在所述贯流风扇的驱动作用下送往所述出风口,从而对从所述出风口送出的气流进行加湿。
可选地,所述储水腔包括相连通的第一子腔和第二子腔,所述第一子腔位于所述轴承座组件的与所述辅助加热器相对的第一侧部,所述第二子腔位 于所述轴承座组件的与所述第一侧部相邻的第二侧部;且
所述第二侧部处于所述至少两个贯流风扇的进风区域或出风区域内,所述通孔形成在所述第二子腔的顶部。
为了突破现有技术的局限,本申请的发明人在上下排列的至少两个贯流风扇的邻侧设置辅助加热器,从而利用辅助加热器对贯流风扇驱动的气流进行辅助加热,从而提高了整个立式空调室内机的制热能力,能够快速地调整室内的温度。同时由于至少两个贯流风扇上下排列,因此,扩大了立式空调室内机在上下方向上的送风范围,有利于室内温度的均衡性,提高了用户的舒适度体验。
进一步地,本申请的发明人意识到,限于立式空调室内机的内部空间,相邻两个贯流风扇之间的轴承座组件与辅助加热器的距离较近,其受辅助加热器的影响较大。因此,本发明在轴承座组件与辅助加热器之间设置用于对轴承座组件进行保护的第一保护件,能够减小辅助加热器产生的高温对轴承座组件的危害,降低了火灾隐患。进一步地,本发明还将第一保护件的材料特别设计成不可燃材料,可完全杜绝火灾隐患,对轴承座组件进行有效地保护。
进一步地,本发明还在辅助加热器和轴承座组件之间特别设置散热装置,可利用散热装置将辅助加热器与轴承座组件相对应区域所产生的至少部分热量传导至轴承座组件之外,以使该至少部分热量在贯流风扇的驱动作用下随气流送往出风口,从而使出风口送出的气流温度升高。或者,本发明还在轴承座组件的至少与辅助加热器相对的侧部特别设置带有附加风机的附加风道,能通过附加风机驱动空气流入附加风道,附加风道内的空气吸收辅助加热器与轴承座组件相对应区域所产生的至少部分热量形成温度较高的热空气,热空气在附加风机的驱动下流出附加风道,进而在贯流风扇的驱动作用下送往出风口,从而使出风口送出的气流温度升高。或者,本发明还在轴承座组件的至少与辅助加热器相对的侧部特别设置储水腔,辅助加热器的与轴承座组件相对应区域所产生的至少部分热量被储水腔中的水吸收而形成水汽,水汽通过通孔蒸发出来,进而在贯流风扇的驱动作用下送往出风口,从而能够对出风口送出的气流进行加湿,改善了因空调制热导致室内空气干燥的问题。上述三种方式均提高了用户的使用体验,有效地利用了辅助加热器的对应于每个轴承座组件的区域所产生的热量,减少了辅助加热器的热量 损失。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的立式空调室内机的示意性结构图;
图2是根据本发明一个实施例的立式空调室内机的示意性结构分解图;
图3是根据本发明一个实施例的立式空调室内机的示意性部分结构图;
图4是根据本发明一个实施例的立式空调室内机的示意性部分结构分解图;
图5是根据本发明另一个实施例的立式空调室内机的示意性部分结构分解图;
图6是图5所示实施例中的散热装置的示意性结构图;
图7是根据本发明又一个实施例的立式空调室内机的示意性部分结构分解图;
图8是图7所示实施例中的轴承座组件的示意性结构图;
图9是根据本发明再一个实施例的立式空调室内机的示意性部分结构分解图;
图10是图9所示实施例中的轴承座组件的示意性结构分解图;
图11是图10的示意性剖视图。
具体实施方式
本发明实施例提供一种立式空调室内机,图1是根据本发明一个实施例的立式空调室内机的示意性结构图,图2是根据本发明一个实施例的立式空调室内机的示意性结构分解图。参见图1和图2,本发明实施例的立式空调室内机1一般性地可包括机壳10、换热器20和至少两个贯流风扇30。其中,机壳10的前侧设有竖向排列的多个出风口111,其后侧设有进风口121。具体地,机壳10内部限定有容纳空间,以容纳贯流风扇和换热器20。机壳10可包括位于前侧的前面板110和位于后侧的进风格栅120,多个出风口111 开设在前面板110上,进风口121开设在进风格栅120上。前面板110后侧还可设有出风框组件90,其上设有用于引导和调节出风口111的出风方向的摆叶。换热器20设置在机壳10内,用于与流经其的空气进行热交换,其与压缩机、冷凝器、节流装置、连接管路以及其他配件共同构成蒸汽压缩制冷循环***,实现空调的制冷/制热,具体原理和结构在此不再赘述。
上述至少两个贯流风扇30沿竖向依次排列在机壳10内,且该至少两个贯流风扇30的轴线共线。即至少两个贯流风扇30在机壳10内沿上下排列依次排列,每个贯流风扇30的轴线均沿竖向延伸,所有贯流风扇30的轴线共线设置。每个贯流风扇30均对应一个或一部分出风口111,且配置成促使空气经进风口121进入机壳10内、并与换热器20换热后从对应的出风口121吹出,实现了室内空气与换热器20的强制对流换热,提升了换热器20的换热效率。同时由于至少两个贯流风扇30上下排列,因此,扩大了立式空调室内机1在上下方向上的送风范围,有利于室内温度的均衡性,提高了用户的舒适度体验。
特别地,立式空调室内机1还包括辅助加热器40,辅助加热器40沿竖向延伸地设置在上述至少两个贯流风扇30的邻侧(需要说明的是,这里所说的“邻侧”意指邻近的侧部,也即是周围),以在立式空调室内机1制热运行时对上述至少两个贯流风扇30驱动的空气进行辅助加热。也就是说,在立式空调室内机1制热运行时,辅助加热器40能够额外地为由进风口121进入的空气提供热量,从而提高了整个立式空调室内机1的制热能力,能够快速地调整室内的温度。
具体地,辅助加热器40可大致呈沿竖向延伸的长条形加热器,其高度可大致与上述至少两个贯流风扇30的高度之和相当,以使送风温度更加均衡。辅助加热器40优选为结构较为简单的电加热器,其具体可以翅片式加热器、电加热管、陶瓷加热元件等等。
图3是根据本发明一个实施例的立式空调室内机的示意性部分结构图,图4是根据本发明一个实施例的立式空调室内机的示意性部分结构分解图。参见图2至图4,进一步地,每相邻两个贯流风扇30之间均设有一用于容装风扇轴承的轴承座组件50。本申请的发明人意识到,限于立式空调室内机1的内部空间,相邻两个贯流风扇30之间的轴承座组件50与辅助加热器40的距离较近,其受辅助加热器40的影响较大。为此,本发明在轴承座组件 50与辅助加热器40之间设有用于保护轴承座组件50的第一保护件60,能够减小辅助加热器40产生的高温对轴承座组件50的危害,降低了火灾隐患。优选地,第一保护件60由不可燃材料制成,相比于阻燃材料来说,本发明采用不可燃材料可完全杜绝火灾隐患,对轴承座组件50进行全面地、有效地保护。第一保护件60的不可燃材料例如可以为钢材。
在图1至图2所示实施例中,贯流风扇30的数量为两个。相应地,轴承座组件50的数量为一个。具体地,处于上方的贯流风扇30的额定风量大于处于下方的贯流风扇30的额定风量,处于上方的贯流风扇30的对应的全部出风口的总过流面积大于处于下方的贯流风扇30对应的全部出风口的总过流面积。具体地,出风口111的数量可以为三个,三个出风口111的形状大小均相同,处于上方的贯流风扇30可对应两个出风口111,处于下方的贯流风扇30可对应一个出风口111。由此,仅通过控制两个贯流风扇30的开闭即可实现三个风量档的送风模式的切换,风量从小到依次为:仅开启处于下方的贯流风扇30的模式、仅开启处于上方的贯流风扇30的模式以及同时开启两个贯流风扇30的模式。并且,在这三种风量档送风模式下,再通过改变贯流风扇的风速,能够获取更加多样的送风模式,以满足用户的不同的需求,提升用户体验。
在本发明的一些实施例中,辅助加热器40的与轴承座组件50相对应的区段包缚有第二保护件41,第二保护件41与第一保护件60的材质相同,以进一步有效地保护轴承座组件。即第二保护件41也由不可燃材料制成。第二保护件41可以呈缠绕在辅助加热器40的与轴承座组件50相对应区段上的方环形构件。
在本发明的一些实施例中,第一保护件60包括叠加设置的至少一层第一保护板,每个第一保护板均为L型板材。轴承座组件50的与辅助加热器40相对的第一侧部和与第一侧部相邻的第二侧部可均镂空设置,此时,该L型板材以遮挡的形式覆盖轴承座组件50的第一侧部以及第二侧部。在一些替代性实施例中,轴承座组件50的第一侧部以及第二侧部也可以为封闭的,此时,该L型板材以贴附的形式覆盖在轴承座组件50的第一侧部以及第二侧部,例如该L型板材可贴附在轴承座组件50的与辅助加热器40相对的第一侧壁的外表面以及与第一侧壁相邻的第二侧壁的外表面。第一保护板的数量可以为一层,也可以为两层以上的多层。第一保护板60可通过胶黏、卡 接或其他合适的方式固定在轴承座组件50的侧壁。
在本发明的一些替代性实施例中,第一保护板也可以为平板型板材,其仅设置于轴承座组件50的与辅助加热器40相对的侧部。
进一步地,每个轴承座组件50均包括用于容装风扇轴承的轴承座51,相邻地设置在该轴承座组件50上方和下方的两个贯流风扇30的轴承安装于轴承座51中。轴承座51可以大致呈中空的圆柱体。每个轴承座组件50还包括设置在轴承座51的周向外侧并用于分隔位于其上方和下方的两个贯流风扇30所处空间的风道分隔件52,以避免两个贯流风扇30的送风相互干扰。第一保护件60设置于风道分隔件52的侧部。立式空调室内机1还包括风道组件70,其竖立在上述至少两个贯流风扇30的周向外侧,以用于将空气从换热器20处向前引流至多个出风口111处,风道分隔件52可将位于其上方和下方的两个贯流风扇30所处的风道组件70内的空间分隔开,从而避免两个贯流风扇30的送风相互干扰。风道分隔件52的形状可以为不规则的异形,只要与风道组件70相匹配即可。
更进一步地,轴承座51可与风道分隔件52一体成型。或者,轴承座51可通过卡接、焊接或其他合适的方式与风道分隔件52固定连接。
具体地,风道组件70包括竖向间隔设置的两个端板部730、740、蜗壳710以及蜗舌720。两个贯流风扇的驱动电机分别安装于端板部730和端板部740。蜗壳710竖立设置且连接在两个端板部730、740之间,蜗舌720同样竖立设置且连接在两个端板部730、740之间,并与蜗壳710共同引导空气流向。风道分隔件52连接在蜗壳710和蜗舌720之间。轴承座51内安装有分别与两个贯流风扇30的转轴相匹配的两个轴承,以便于安装两个贯流风扇。
图5是根据本发明另一个实施例的立式空调室内机的示意性部分结构分解图。在本发明的另一些实施例中,轴承座组件50与辅助加热器40之间还设有散热装置80,散热装置80配置成吸收辅助加热器40与轴承座组件50相对应区域所产生的至少部分热量,并传导至轴承座组件50之外,以使该至少部分热量在贯流风扇30的驱动作用下随气流送往出风口111。也就是说,本发明能通过散热装置80将辅助加热器40的与轴承座组件50相对应区域所产生的至少部分热量传导至轴承座组件50之外,以使该至少部分热量在贯流风扇30的驱动作用下随气流送往出风口111,从而使出风口111 送出的气流温度升高,提高了用户的使用体验,有效地利用了辅助加热器40的对应于每个轴承座组件50的区域所产生的热量,减少了辅助加热器40的热量损失。
图6是图5所示实施例中的散热装置的示意性结构图。进一步地,散热装置80包括贴设于第一保护件60的传热板81、设置于传热板81外表面的多个散热片82以及穿设在多个散热片82之间的导热管83,以更加高效地将辅助加热器40对应于所述轴承座组件50的区域所产生的热量传递出去。具体地,多个散热片82可沿横向均匀地间隔排列,每相邻两个散热片82之间均设有一个导热管83。
更进一步地,传热板81在上下方向上的尺寸与第一保护件60在该方向上的尺寸相当,散热片82和导热管83均沿竖向延伸,且导热管83向上延伸出传热板81的上端第一预设距离和/或导热管83向下延伸出传热板81的下端第二预设距离。由此,可有效地将将辅助加热器40对应于所述轴承座组件50的区域所产生的热量传递至轴承座组件50的外部,便于在贯流风扇30的驱动下送往出风口111。
图7是根据本发明又一个实施例的立式空调室内机的示意性部分结构分解图。在本发明的又一些实施例中,轴承座组件50的至少与辅助加热器40相对的侧部设有附加风道53,附加风道53内设有附加风机54,附加风机54配置成促使空气流入附加风道53、并吸收辅助加热器40与轴承座组件50相对应区域所产生的至少部分热量后流出附加风道53。也就是说,本发明能通过附加风机54驱动空气流入附加风道53,附加风道53内的空气吸收辅助加热器40与轴承座组件50相对应区域所产生的至少部分热量形成温度较高的热空气,热空气在附加风机54的驱动下流出附加风道53,进而在贯流风扇30的驱动作用下送往出风口111,从而使出风口111送出的气流温度升高,提高了用户的使用体验,有效地利用了辅助加热器40的对应于每个轴承座组件50的区域所产生的热量,减少了辅助加热器40的热量损失。
图8是图7所示实施例中的轴承座组件的示意性结构图。进一步地,附加风道53的两端分别设有空气入口531和空气出口532,空气出口532处于上述至少两个贯流风扇30的进风区域或出风区域内,以便于从附加风道53送出的热空气能够在贯流风扇30的驱动作用下送往出风口111。
进一步地,附加风道53形成在轴承座51和风道分隔件52的侧壁之间。 也就是说,在这些实施例中,轴承座51和风道分隔件52形成了相对封闭的空间。具体地,风道分隔件52的侧壁包括与辅助加热器40相对的第一侧壁521和与第一侧壁521相邻的第二侧壁522。空气出口532开设在第二侧壁522上,附加风机54设置于空气出口532的内侧。附加风道53可包括形成在轴承座51和风道分隔件52的第一侧壁521之间的第一子风道和形成在轴承座51和风道分隔件52的第二侧壁522之间的第二子风道,空气入口531位于第一子风道的远离第二子风道的端部,空气出口532位于第二子风道。附加风机54可与空气出口532正对设置。
图9是根据本发明再一个实施例的立式空调室内机的示意性部分结构分解图。在本发明的再一些实施例中,轴承座组件50的至少与辅助加热器40相对的侧部设有储水腔,储水腔的顶部设有通孔55,以利用辅助加热器40的与轴承座组件50相对的区域所产生的热量促使储水腔内的水从通孔55蒸发出来,并在贯流风扇30的驱动作用下送往出风口111,从而对从出风口111送出的气流进行加湿。也就是说,辅助加热器40的与轴承座组件50相对应区域所产生的至少部分热量被储水腔中的水吸收而形成水汽,水汽通过通孔蒸发出来,进而在贯流风扇的驱动作用下送往出风口111,从而能够对出风口111送出的气流进行加湿,改善了因空调制热导致室内空气干燥的问题,提高了用户的使用体验,有效地利用了辅助加热器40的对应于每个轴承座组件50的区域所产生的热量,减少了辅助加热器40的热量损失。
图10是图9所示实施例中的轴承座组件的示意性结构图,图11是图10的示意性剖视图。参见图10和图11,储水腔包括相连通的第一子腔56和第二子腔57,第一子腔56位于轴承座组件50的与辅助加热器40相对的第一侧部,第二子腔57位于轴承座组件50的与第一侧部相邻的第二侧部。也即是第一子腔56与辅助加热器40相对,由于辅助加热器40的遮挡,第一子腔56上方的区域风速较小,不利于水汽的流动和扩散。相应地,第二子腔57与第一子腔56相邻,其上方区域不会受到任何遮挡,因此,在一些优选的实施例中,通孔55形成在第二子腔57的顶部。并且,第二侧部处于上述至少两个贯流风扇30的进风区域或出风区域内,以便于从通孔55散发出的水汽在贯流风扇30的作用下送往出风口111。
在这些实施例中,轴承座51和风道分隔件52形成了相对封闭的空间。储水腔形成在轴承座51和风道分隔件52的侧壁之间。具体地,风道分隔件 52的侧壁包括与辅助加热器40相对的第一侧壁521和与第一侧壁521相邻的第二侧壁522。第一子腔56形成在轴承座51与风道分隔件52的第一侧壁521之间,第二子腔57形成在轴承座51与风道分隔件52的第二侧壁522之间。
在本发明的一些实施例中,上述至少两个贯流风扇30处于换热器20的前侧,辅助加热器40位于换热器20和上述至少两个贯流风扇30之间,以对经换热器20换热后的空气进行辅助加热,加热效果更佳。具体地,换热器20优选为竖向延伸且开口朝前的“U”型换热器,贯流风扇30位于换热器20的前方内侧,或者说两个贯流风扇被“U”型换热器三面包围,以在贯流风扇的运行时,使其三面吸风均经过换热器20,提升了换热器20的空气流通量,进而提升了其换热效率。
在一些替代性的实施例中,换热器20也可为平板状的换热器。
本领域技术人员应理解,本发明实施例中所称的“上”、“下”、“内”、“外”、“横”、“前”、“后”等用于表示方位或位置关系的用语是以立式空调室内机1的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种立式空调室内机,包括:
    机壳,其前侧设有竖向排列的多个出风口,其后侧设有进风口;
    换热器,设置在所述机壳内,并用于与流经其的空气进行热交换;
    至少两个贯流风扇,沿竖向依次排列在所述机壳内,且所述至少两个贯流风扇的轴线共线,每个所述贯流风扇均配置成促使空气经所述进风口进入所述机壳内、并与所述换热器换热后从对应的所述出风口吹出;以及
    辅助加热器,沿竖向延伸地设置在所述至少两个贯流风扇的邻侧,以在所述立式空调室内机制热运行时对所述至少两个贯流风扇驱动的空气进行辅助加热;其中
    每相邻两个所述贯流风扇之间均设有一用于容装风扇轴承的轴承座组件,所述轴承座组件与所述辅助加热器之间设有用于保护所述轴承座组件的第一保护件,所述第一保护件由不可燃材料制成。
  2. 根据权利要求1所述的立式空调室内机,其中
    所述辅助加热器的与所述轴承座组件相对应的区段包缚有第二保护件,所述第二保护件与所述第一保护件的材质相同。
  3. 根据权利要求1所述的立式空调室内机,其中
    所述第一保护件包括叠加设置的至少一层第一保护板,每个所述第一保护板均为L型板材,所述L型板材覆盖所述轴承座组件的与所述辅助加热器相对的第一侧部以及与所述第一侧部相邻的第二侧部。
  4. 根据权利要求1所述的立式空调室内机,其中
    所述第一保护件与所述辅助加热器之间设有散热装置,所述散热装置配置成吸收所述辅助加热器与所述轴承座组件相对应区域所产生的至少部分热量,并传导至所述轴承座组件之外,以使该至少部分热量在所述贯流风扇的驱动作用下送往所述出风口。
  5. 根据权利要求4所述的立式空调室内机,其中
    所述散热装置包括贴设于所述第一保护件的传热板、设置于所述传热板外表面的多个散热片以及穿设在多个所述散热片之间的导热管。
  6. 根据权利要求1所述的立式空调室内机,其中
    所述轴承座组件的与所述辅助加热器相对的侧部设有附加风道,所述附加风道内设有附加风机,所述附加风机配置成促使空气流入所述附加风道、 并吸收所述辅助加热器与所述轴承座组件相对应区域所产生的至少部分热量后流出所述附加风道。
  7. 根据权利要求6所述的立式空调室内机,其中
    每个所述轴承座组件均包括用于容装风扇轴承的轴承座和设置在所述轴承座的周向外侧并用于分隔位于其上方和下方的两个贯流风扇所处空间的风道分隔件;且
    所述附加风道形成在所述轴承座和所述风道分隔件的侧壁之间。
  8. 根据权利要求7所述的立式空调室内机,其中
    所述轴承座与所述风道分隔件一体成型。
  9. 根据权利要求1所述的立式空调室内机,其中
    所述轴承座组件的至少与所述辅助加热器相对的侧部设有储水腔,所述储水腔的顶部设有通孔,以利用所述辅助加热器的与所述轴承座组件相对的区域所产生的热量促使所述储水腔内的水从所述通孔蒸发出来,并在所述贯流风扇的驱动作用下送往所述出风口,从而对从所述出风口送出的气流进行加湿。
  10. 根据权利要求9所述的立式空调室内机,其中
    所述储水腔包括相连通的第一子腔和第二子腔,所述第一子腔位于所述轴承座组件的与所述辅助加热器相对的第一侧部,所述第二子腔位于所述轴承座组件的与所述第一侧部相邻的第二侧部;且
    所述第二侧部处于所述至少两个贯流风扇的进风区域或出风区域内,所述通孔形成在所述第二子腔的顶部。
PCT/CN2018/103840 2017-09-06 2018-09-03 立式空调室内机 WO2019047807A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710796977.2 2017-09-06
CN201710796977.2A CN107588458B (zh) 2017-09-06 2017-09-06 立式空调室内机

Publications (1)

Publication Number Publication Date
WO2019047807A1 true WO2019047807A1 (zh) 2019-03-14

Family

ID=61051655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103840 WO2019047807A1 (zh) 2017-09-06 2018-09-03 立式空调室内机

Country Status (2)

Country Link
CN (1) CN107588458B (zh)
WO (1) WO2019047807A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131792A (zh) * 2019-06-25 2019-08-16 宁波奥克斯电气股份有限公司 电辅热机构及空调器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588458B (zh) * 2017-09-06 2023-06-30 青岛海尔空调器有限总公司 立式空调室内机
CN107702205B (zh) * 2017-09-06 2020-02-04 青岛海尔空调器有限总公司 立式空调室内机
CN111336592A (zh) * 2018-12-18 2020-06-26 青岛海尔空调器有限总公司 一种柜式空调
CN112412848B (zh) * 2020-10-28 2022-05-31 青岛海尔空调器有限总公司 贯流风扇组件、空调及其风量调节方法
CN113465030B (zh) * 2021-04-27 2022-11-18 青岛海尔空调器有限总公司 柜式空调室内机和柜式空调

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253141A (ja) * 1997-03-13 1998-09-25 Mitsubishi Heavy Ind Ltd 空気調和機
JP2002213764A (ja) * 2001-01-19 2002-07-31 Fujitsu General Ltd 空気調和機
CN201059689Y (zh) * 2007-06-06 2008-05-14 中国扬子集团滁州扬子空调器有限公司 强热型空调器
CN105258212A (zh) * 2015-07-31 2016-01-20 广东海悟科技有限公司 一种机房空调***
CN107588458A (zh) * 2017-09-06 2018-01-16 青岛海尔空调器有限总公司 立式空调室内机
CN207268503U (zh) * 2017-09-06 2018-04-24 青岛海尔空调器有限总公司 立式空调室内机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2682058C (en) * 2009-02-24 2012-12-18 Sharp Kabushiki Kaisha Air conditioner provided with a heater
CN104343701B (zh) * 2013-07-24 2016-08-17 台达电子工业股份有限公司 风扇
CN203604271U (zh) * 2013-12-10 2014-05-21 陈应军 一种嵌入式耐高温风机
CN104515377B (zh) * 2014-12-25 2016-11-30 焦作市真节能干燥设备研发有限公司 双半轴内冷却装置
CN105953395A (zh) * 2016-06-27 2016-09-21 美的集团武汉制冷设备有限公司 落地式空调器
CN206017223U (zh) * 2016-08-31 2017-03-15 云南弘祥化工有限公司 一种用于循环水冷塔的大型风机
CN106958867B (zh) * 2017-04-28 2021-04-20 青岛海尔空调器有限总公司 立式空调室内机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253141A (ja) * 1997-03-13 1998-09-25 Mitsubishi Heavy Ind Ltd 空気調和機
JP2002213764A (ja) * 2001-01-19 2002-07-31 Fujitsu General Ltd 空気調和機
CN201059689Y (zh) * 2007-06-06 2008-05-14 中国扬子集团滁州扬子空调器有限公司 强热型空调器
CN105258212A (zh) * 2015-07-31 2016-01-20 广东海悟科技有限公司 一种机房空调***
CN107588458A (zh) * 2017-09-06 2018-01-16 青岛海尔空调器有限总公司 立式空调室内机
CN207268503U (zh) * 2017-09-06 2018-04-24 青岛海尔空调器有限总公司 立式空调室内机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131792A (zh) * 2019-06-25 2019-08-16 宁波奥克斯电气股份有限公司 电辅热机构及空调器

Also Published As

Publication number Publication date
CN107588458B (zh) 2023-06-30
CN107588458A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2019047807A1 (zh) 立式空调室内机
EP2314937B1 (en) Air conditioner
WO2019047806A1 (zh) 立式空调室内机
US8408019B2 (en) Air conditioning device utilizing temperature differentiation of exhausted gas to even temperature of external heat exchanger
JP6283939B2 (ja) 天井埋込型空気調和機
JP5909648B2 (ja) 発熱体収納装置
CN207268503U (zh) 立式空调室内机
JP6337272B2 (ja) 除湿装置
WO2019047805A1 (zh) 立式空调室内机
WO2015196588A1 (zh) 一种降噪装置及方法
WO2019047804A1 (zh) 立式空调室内机
JP6675057B2 (ja) 熱交換形換気装置
WO2015032211A1 (zh) 屋顶式空调机
CN106969430A (zh) 室外机及空调器
JP5532099B2 (ja) 空気調和装置の室外機
JP5532100B2 (ja) 空気調和装置の室外機
KR102436120B1 (ko) 토출공기의 온도를 저감시킬 수 있는 제습기
WO2015045708A1 (ja) 空調室外ユニット
JP2016161206A (ja) 冷凍装置の熱源ユニット
JP5790162B2 (ja) 空気調和装置の室外機
CN102141030A (zh) 压缩机的储液罐结构
JP6233128B2 (ja) 天井埋込型空気調和機
JP2016161205A (ja) 冷凍装置の熱源ユニット
JP5705015B2 (ja) 空調システム及び建物
JP2010190516A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853814

Country of ref document: EP

Kind code of ref document: A1