WO2019047599A1 - 一种ra-rnti确定方法及装置 - Google Patents

一种ra-rnti确定方法及装置 Download PDF

Info

Publication number
WO2019047599A1
WO2019047599A1 PCT/CN2018/093408 CN2018093408W WO2019047599A1 WO 2019047599 A1 WO2019047599 A1 WO 2019047599A1 CN 2018093408 W CN2018093408 W CN 2018093408W WO 2019047599 A1 WO2019047599 A1 WO 2019047599A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
random access
time
access preamble
index
Prior art date
Application number
PCT/CN2018/093408
Other languages
English (en)
French (fr)
Inventor
任斌
赵铮
达人
李铁
郑方政
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP21202637.1A priority Critical patent/EP3961966A1/en
Priority to KR1020207010494A priority patent/KR102322470B1/ko
Priority to EP18853265.9A priority patent/EP3683994B1/en
Priority to JP2020514679A priority patent/JP7086178B2/ja
Priority to US16/646,559 priority patent/US11178701B2/en
Publication of WO2019047599A1 publication Critical patent/WO2019047599A1/zh
Priority to US17/497,987 priority patent/US11723076B2/en
Priority to US18/334,383 priority patent/US11979916B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and an apparatus for determining a random access-Radio Network Temporary Identifier (RA-RNTI) in a random access procedure.
  • RA-RNTI random access-Radio Network Temporary Identifier
  • the random access procedure refers to the process before the random access preamble is sent from the terminal to try to access the wireless network before establishing a basic signaling connection with the network.
  • the terminal listens to a random access response (RAR, also referred to as Msg2) message scheduled by the physical downlink control channel (PDCCH).
  • RAR random access response
  • the base station sends the uplink resource allocated to the terminal to the terminal by using downlink control information (DCI) in the RAR message.
  • DCI downlink control information
  • the cyclic redundancy check (CRC) of the DCI is scrambled by the RA-RNTI.
  • the terminal uses the RA-RNTI to descramble the received DCI to obtain uplink resources allocated by the base station.
  • RA-RNTI is a function related to time and frequency.
  • BL/CE bandwidth-reduced low-complexity/coverage-enhancement, bandwidth-reduced low complexity/coverage enhancement
  • the t_id is the index of the first subframe of the physical random access channel (PRACH) in the time domain
  • the f_id is the frequency domain bandwidth index occupied by the PRACH.
  • RA-RNTI cannot be calculated using the existing formula of LTE.
  • the embodiment of the present application provides a method and an apparatus for determining an RA-RNTI.
  • a method for determining an RA-RNTI including:
  • the base station Determining, by the base station, the RA-RNTI according to the time-frequency resource occupied by the random access preamble; wherein the time-frequency resource is a time-frequency resource of an OFDM symbol level;
  • the base station sends a random access response message, where the random access response message includes downlink control information allocated by the base station to the terminal, and the downlink control information is scrambled by using the RA-RNTI.
  • the RA-RNTI is determined according to the time domain resource related parameter and the frequency domain resource related parameter of the time-frequency resource occupied by the preamble; wherein the time domain resource related parameter includes: the random access preamble The index of the starting OFDM symbol occupied by the code in the time slot, the index of the time slot occupied by the random access preamble in the radio frame; the frequency domain resource related parameters include: physical random access based on the coefficient correction The index of the frequency domain bandwidth occupied by the channel PRACH; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot, and the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10* N_slot_per_subframe*N_symbol_per_slot*f_id
  • Start_symbol_index_in_slot is an index of the starting OFDM symbol occupied by the random access preamble in the time slot
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to the time domain resource related parameter and the frequency domain resource related parameter of the time-frequency resource occupied by the preamble; wherein the time domain resource related parameter includes: the random access preamble The index of the random access preamble sequence in the time slot occupied by the code, the number of OFDM symbols included in the sequence of the random access preamble, and the index of the time slot occupied by the random access preamble in the radio frame, where And the index of the starting OFDM symbol occupied by the random access preamble in the time slot corresponding to the time slot occupied by the random access preamble, and the sequence of the random access preamble includes the number of OFDM symbols Corresponding to the format of the sequence of the random access preamble; the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH modified by the coefficient; the coefficient is determined according to a subframe The number of time slots and the number of OFDM symbols in one time slot are determined, and the PRACH is used to transmit the random access
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • the N_OS is the number of OFDM symbols included in the sequence of the random access preamble; wherein the N_OS is pre-configured or pre-agreed, and the sequence of different random access preambles corresponds to different N_OS;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to the time domain resource related parameter and the frequency domain resource related parameter of the time-frequency resource occupied by the preamble; wherein the time domain resource related parameter includes: the random access preamble The index of the random access preamble sequence in the time slot occupied by the code, the total number of random access preamble sequences in the time slot occupied by the random access preamble, and the time slot occupied by the random access preamble in the wireless station An index in the frame, where an index of the starting OFDM symbol occupied by the random access preamble in the time slot is corresponding to a time slot occupied by the random access preamble, and the random access preamble is occupied.
  • the total number of random access preamble sequences in the slot corresponds to the slot index;
  • the frequency domain resource related parameter includes: an index of the frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient;
  • the PRACH is used to transmit the random access preamble according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • N_sequence_per_slot is the total number of random access preamble sequences in the slot occupied by the random access preamble; where N_sequence_per_slot corresponds to the slot, and the total number of random access preamble sequences in one slot is pre-configured or pre-agreed ;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • a method for determining an RA-RNTI including:
  • the terminal sends a random access preamble sequence to the base station
  • the terminal Determining, by the terminal, the random access-radio network identifier RA-RNTI according to the time-frequency resource occupied by the random access preamble sequence; wherein the time-frequency resource is a time-frequency resource of an OFDM symbol level;
  • the RA-RNTI is determined according to the time domain resource related parameter and the frequency domain resource related parameter of the time-frequency resource occupied by the preamble; wherein the time domain resource related parameter includes: the random access preamble The index of the starting OFDM symbol occupied by the code in the time slot, the index of the time slot occupied by the random access preamble in the radio frame; the frequency domain resource related parameters include: physical random access based on the coefficient correction The index of the frequency domain bandwidth occupied by the channel PRACH; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot, and the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • Start_symbol_index_in_slot is an index of the starting OFDM symbol occupied by the random access preamble in the time slot
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a random access preamble sequence in a slot occupied by the random access preamble, an OFDM symbol number included in a sequence of the random access preamble, and the random An index of the time slot occupied by the access preamble in the radio frame, where the index of the starting OFDM symbol occupied by the random access preamble in the time slot and the time slot occupied by the random access preamble
  • the sequence of the random access preamble includes a number of OFDM symbols corresponding to a format of the sequence of the random access preamble
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • the N_OS is the number of OFDM symbols included in the sequence of the random access preamble; wherein the N_OS is pre-configured or pre-agreed, and the sequence of different random access preambles corresponds to different N_OS;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to the time domain resource related parameter and the frequency domain resource related parameter of the time-frequency resource occupied by the preamble; wherein the time domain resource related parameter includes: the random access preamble The index of the random access preamble sequence in the time slot occupied by the code, the total number of random access preamble sequences in the time slot occupied by the random access preamble, and the time slot occupied by the random access preamble in the wireless station An index in the frame, where an index of the starting OFDM symbol occupied by the random access preamble in the time slot is corresponding to a time slot occupied by the random access preamble, and the random access preamble is occupied.
  • the total number of random access preamble sequences in the slot corresponds to the slot index;
  • the frequency domain resource related parameter includes: an index of the frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient;
  • the PRACH is used to transmit the random access preamble according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • N_sequence_per_slot is the total number of random access preamble sequences in the time slot occupied by the random access preamble; wherein N_sequence_per_slot corresponds to the time slot, and the total number of random access preamble sequences in one time slot is pre-configured or pre-agreed;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • a base station including:
  • a receiving module configured to receive a random access preamble sent by the terminal
  • a determining module configured to determine a random access-radio network identifier RA-RNTI according to the time-frequency resource occupied by the random access preamble; where the time-frequency resource is an OFDM symbol level of orthogonal frequency division multiplexing Frequency resource
  • a sending module configured to send a random access response message, where the random access response message includes downlink control information allocated by the base station to the terminal, where the downlink control information is scrambled by using the RA-RNTI.
  • a terminal including:
  • a sending module configured to send a random access preamble sequence to the base station
  • a determining module configured to determine a random access-radio network identifier RA-RNTI according to the time-frequency resource occupied by the random access preamble sequence, where the time-frequency resource is a time-frequency resource of an OFDM symbol level;
  • the receiving module is configured to receive a random access response message sent by the base station, and use the RA-RNTI to descramble the downlink control information included in the random access response message.
  • a communication apparatus including: a processor, a memory, a transceiver, and a bus interface; and the processor is configured to read a program in the memory to perform the following process:
  • RA-RNTI a random access-radio network identifier RA-RNTI, where the time-frequency resource is a time-frequency resource of an OFDM symbol level of an orthogonal frequency division multiplexing
  • the transceiver Sending, by the transceiver, a random access response message, where the random access response message includes downlink control information allocated by the base station to the terminal, and the downlink control information is scrambled by using the RA-RNTI.
  • a communication apparatus including: a processor, a memory, a transceiver, and a bus interface; and the processor is configured to read a program in the memory to perform the following process:
  • RA-RNTI a random access-radio network identifier RA-RNTI, where the time-frequency resource is a time-frequency resource of an OFDM symbol level of orthogonal frequency division multiplexing
  • a seventh aspect a computer storage medium storing computer executable instructions for causing the computer to perform the method of any of the above first aspects .
  • a computer storage medium storing computer executable instructions for causing the computer to perform the method of any of the above second aspects .
  • the RA-RNTI may be determined according to a time-frequency resource occupied by the random access preamble, and the time-frequency resource is a time-frequency resource of an OFDM symbol level. Since the RA-RNTI is calculated based on the OFDM symbol level time-frequency resources occupied by the random access preamble, for the NR system, the preamble format of the short sequence and the multiple cases of the subcarrier spacing can be made for the random access preamble The time interval is based on the OFDM symbol level, which enables the RA-RNTI to be determined during the random access procedure of the NR system.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a random access procedure according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to another embodiment of the present application.
  • FIG. 1 exemplarily shows a schematic diagram of a possible communication scenario provided by an embodiment of the present application.
  • the terminal 110 accesses a wireless network through a radio access network (RAN) node 120 to acquire a service of an external network (such as the Internet) through a wireless network, or communicates with other terminals through a wireless network.
  • RAN radio access network
  • the terminal is also called a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc., and is a device that provides voice and/or data connectivity to users.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • a handheld device having a wireless connection function, an in-vehicle device, or the like.
  • some examples of terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality. (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the RAN is the part of the network that connects the terminal to the wireless network.
  • a RAN node is a node (or device) in a radio access network, which may also be referred to as a base station.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB base station controller
  • BSC base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU wireless fidelity access point
  • AP wireless fidelity access point
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system, and the functions of some protocol layers are centrally controlled in the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU by the CU. Centrally control the DU.
  • LTE long term evolution
  • the network architecture described in the embodiments of the present application is for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and does not constitute a limitation of the technical solutions provided by the embodiments of the present application. As those skilled in the art may understand, with the evolution of the network architecture, The technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the time interval of the random access preamble is based on orthogonal frequency division multiplexing (OFDM) symbol level. Therefore, the RA-RNTI cannot be calculated based on the time-frequency resources of the subframe level occupied by the random access preamble. To solve this problem, in the embodiment of the present application, the RA-RNTI is calculated according to the time-frequency resource of the OFDM symbol level occupied by the random access preamble.
  • OFDM orthogonal frequency division multiplexing
  • the method of preferentially configuring the time domain resource, and the second frequency domain resource that is, only when given After all the time domain resources on the frequency domain resources are configured, configure the time domain resources on the next available frequency domain resource.
  • the embodiment of the present application can be applied to the calculation of the RA-RNTI corresponding to the short-sequence random access preamble in the NR system, and can also be applied to the calculation of the RA-RNTI corresponding to the long-sequence random access preamble.
  • the time domain resource related parameter used for calculating the RA-RNTI may include: an index of the start symbol occupied by the random access preamble in the time slot, and a time slot occupied by the random access preamble in the radio frame.
  • the index in the frequency domain resource related parameter for calculating the RA-RNTI may include an index based on the frequency domain bandwidth occupied by the coefficient corrected PRACH, the coefficient may be based on the number of time slots in one subframe and one time slot The number of symbols is determined.
  • the following formula (2) exemplarily shows a method of calculating the RA-RNTI based on the method 1:
  • RA-RNTI 1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id........................[2]
  • Start_symbol_index_in_slot is an index of the starting OFDM symbol occupied by the random access preamble in the time slot in which it is located. Taking the maximum of 14 OFDM symbols in one slot and the OFDM symbol index values sequentially numbered from 0, the value of start_symbol_index_in_slot ranges from [0, 13]. On the base station side, the base station can obtain the value of start_symbol_index_in_slot by detecting the time-frequency resource location of the random access preamble.
  • the slot_id is an index of the time slot occupied by the random access preamble in the 10 ms radio frame.
  • the index of the time slots within a 10 ms radio frame can be sequentially numbered starting from 1.
  • the base station obtains the value of the slot_id by detecting the time-frequency resource location of the random access preamble.
  • N_symbol_per_slot is the number of OFDM symbols in a slot. For subcarrier spacings of 15 kHz, 30 kHz, 60 kHz, and 120 kHz, the value of N_symbol_per_slot is 14. The value of N_symbol_per_slot is well known to base stations and terminals.
  • N_slot_per_subframe represents the number of slots in a 1 ms subframe, and its value is related to the size of the subcarrier spacing. For example, when the subcarrier spacing is 15 kHz, the value of N_slot_per_subframe is 1; when the subcarrier spacing is 30 kHz, the value of N_slot_per_subframe is 2; and when the subcarrier spacing is 60 kHz, the value of N_slot_per_subframe is 4; when the subcarrier spacing is 120 kHz, the value of N_slot_per_subframe is 8.
  • the value of N_symbol_per_slot is well known to base stations and terminals.
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the PRACH has a mapping relationship with the RACH, and the terminal sends a random access preamble on the RACH.
  • the frequency domain bandwidth occupied by the PRACH can be pre-agreed and is known to the base station and the terminal.
  • the time domain resource related parameter used for calculating the RA-RNTI may include: an index of the random access preamble sequence in the time slot occupied by the random access preamble (when the index and the random access preamble are occupied) Corresponding to the gap, the number of OFDM symbols included in the random access preamble sequence (the number of symbols corresponds to the format of the random access preamble sequence), and the index of the slot occupied by the random access preamble in the radio frame in which it is located
  • the frequency domain resource related parameter used to calculate the RA-RNTI may include an index based on the frequency domain bandwidth occupied by the coefficient corrected PRACH, and the coefficient may be obtained according to the number of slots in one subframe and the number of symbols in one slot. .
  • the following formula (3) exemplarily shows a method of calculating the RA-RNTI based on the method 2:
  • RA-RNTI 1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id........................[3]
  • the sequence_id_per_slot is an index of the random access preamble sequence in the slot occupied by the random access preamble.
  • the correspondence between the time slot and the index of the random access preamble is pre-configured or pre-agreed.
  • the base station can obtain the time slot (slot_id) occupied by the random access preamble and the corresponding value of the sequence_id_per_slot by detecting the time-frequency resource location of the random access preamble.
  • N_OS is the number of OFDM symbols included in a random access preamble sequence, which ranges from 1, 2, 4, 6, and 12; wherein the N_OS is pre-configured or pre-agreed.
  • the value is related to the random access preamble format, and different short-sequence random access preamble formats.
  • the value of N_OS can be seen in Table 1.
  • the base station may determine, according to the time-frequency resource occupied by the detected random access preamble, a corresponding random access preamble format (correspondence between the time-frequency resource of the random access preamble and the adopted format) It can be preset and pre-agreed, and then the value of the corresponding N_OS is determined according to the random access preamble format.
  • slot_id The meanings of slot_id, N_symbol_per_slot, N_slot_per_subframe, and f_id are the same as those in method 1.
  • the time domain resource related parameter used for calculating the RA-RNTI may include: an index of a random access preamble sequence in a time slot occupied by the random access preamble, and a time slot occupied by the random access preamble in the wireless station
  • the frequency domain resource related parameter used to calculate the RA-RNTI may include an index based on the frequency domain bandwidth occupied by the coefficient corrected PRACH, the coefficient may be based on one subframe
  • the number of time slots within and the number of symbols in one time slot is obtained.
  • the following formula (4) exemplarily shows a method of calculating the RA-RNTI based on the method 3:
  • RA-RNTI 1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id........................[4]
  • N_sequence_per_slot is the total number of random access preamble sequences in the slot occupied by the random access preamble.
  • the slot index (slot_id) has a corresponding relationship with the N_sequence_per_slot, and the value of the N_sequence_per_slot of one slot is pre-configured or pre-agreed.
  • the base station can obtain the index (slot_id) of the slot occupied by the random access preamble by detecting the time-frequency resource location of the random access preamble, and then determine the value of the corresponding N_sequence_per_slot according to the slot_id.
  • sequence_id_per_slot, slot_id, N_symbol_per_slot, N_slot_per_subframe, and f_id are the same as those in Method 1.
  • a random access procedure provided by an embodiment of the present application. As shown, the process can include:
  • S201 The terminal sends a random access preamble.
  • the message sent in this step is also called Msg1.
  • Msg1 can be sent on a random access channel (RACH), and there is a mapping relationship between RACH and PRACH.
  • RACH random access channel
  • the base station receives the random access preamble sent by the terminal, determines the RA-RNTI according to the time-frequency resource of the symbol level occupied by the random access preamble, and sends a random access response message, where the random access response message is also called Msg2 message.
  • the random access response message includes downlink control information (DCI) allocated by the base station to the terminal, and the CRC of the DCI is scrambled by using the RA-RNTI.
  • DCI downlink control information
  • the base station can calculate the RA-RATI by the method described in the foregoing embodiment.
  • the DCI may include the following information: an index of the random access preamble received by the base station, a time adjustment amount (TA) of the uplink transmission, and a physical uplink shared channel (PUSCH) scheduling information. And an allocated temporary cell radio network temporary identifier (C-RNTI) or the like.
  • TA time adjustment amount
  • PUSCH physical uplink shared channel
  • C-RNTI allocated temporary cell radio network temporary identifier
  • the terminal receives the random access response message sent by the base station, and uses the determined RA-RNTI to descramble the downlink control information included in the random access response message.
  • the terminal may determine the RA-RNTI according to the time-frequency resource occupied by the random access preamble sent by the terminal.
  • the method further includes: the terminal, according to the scheduling information and the TA information carried in the random access response, transmitting the uplink data.
  • the message sent in this step is called Msg3.
  • the Msg3 message contains the unique ID of the terminal, namely TMSI, and contains the RRC connection request generated by the radio resourse control (RRC) layer of the terminal.
  • RRC radio resourse control
  • the method may further include:
  • the base station After receiving the Msg3 message of the terminal, the base station returns a contention resolution message to the terminal that successfully accesses, and the message is also referred to as an Msg4 message.
  • the Msg4 message includes a unique ID (such as C-RNTI) of the successfully accessed terminal and an RRC connection setup response, and the RRC connection setup response is generated by the RRC layer of the base station.
  • This scenario describes an example of computing RA-RNTI using Method 1 above.
  • the random access preamble number configuration table shown in Table 2 can be pre-configured on the base station and the terminal:
  • Table 2 above defines the time slots occupied by the random preamble access code sequence and the starting OFDM symbols occupied in the time slot.
  • the subcarrier spacing is 15 kHz.
  • RA-RNTI 1+start_symbol_index_in_slot+slot_id*14+10*14*f_id
  • the terminal may determine, according to Table 2, a transmission resource of the random access preamble, for example, may send a random access preamble sequence 0 from OFDM symbol 0 in slot 1, or from an OFDM symbol in slot 4. 1 Start transmitting random access preamble sequence 1.
  • the random access preamble transmitted can be in any format.
  • the base station detects the time-frequency resource occupied by the random access preamble sent by the terminal, and obtains slot_id and start_symbol_index_in_slot.
  • the base station may also obtain a slot_id by detecting a time-frequency resource occupied by the random access preamble, and then query the foregoing table 2 according to the slot_id to obtain a corresponding start_symbol_index_in_slot.
  • the base station calculates the RA-RNTI according to the detected slot_id and start_symbol_index_in_slot, and calculates the RA-RNTI based on the above formula (5), and uses the RA-RNTI to scramble the CRC of the DCI of the terminal, and sends the DCI by using a random access response.
  • the terminal calculates the RA-RNTI according to the above formula (5), and uses the RA-RNTI to descramble the received CRC of the DCI to decode the DCI.
  • This scenario describes an example of computing RA-RNTI using Method 2 above.
  • the random access preamble number configuration table shown in Table 3 can be pre-configured on the base station and the terminal:
  • Table 3 above defines the time slot occupied by the random access preamble and the index of the random access preamble sequence in the corresponding time slot for the format A1 used by the random preamble access code sequence.
  • the subcarrier spacing is 15 kHz.
  • N_OS 2.
  • the sequence_id_per_slot ranges from 0 to 6, and the formula (3) is reduced to the following formula (6):
  • RA-RNTI 1+sequence_id_per_slot*2+slot_id*14+10*14*f_id
  • the terminal determines a random access preamble sequence in the format A1, and the terminal determines, according to Table 3, the time slot occupied by the random access preamble, for example, random access in the slot 1 or in the transmission format A1.
  • the preamble sequence 0, or the random access preamble sequence 1 of format A1 is transmitted in slot 4.
  • the base station detects the time-frequency resource occupied by the random access preamble sent by the terminal, obtains a slot_id, and according to the correspondence between the time-frequency resource occupied by the random access preamble and the random access preamble format ( The corresponding relationship is pre-configured or pre-agreed.
  • the format of the random access preamble sequence is A1, and the corresponding sequence_id_per_slot is obtained by querying the foregoing table 3 according to the slot_id.
  • the base station calculates the RA-RNTI based on the detected slot_id and sequence_id_per_slot, and calculates the RA-RNTI based on the above formula (6), and uses the RA-RNTI to scramble the CRC of the DCI of the terminal, and sends the DCI through a random access response.
  • the terminal calculates the RA-RNTI according to the above formula (6), and uses the RA-RNTI to descramble the received CRC of the DCI to decode the DCI.
  • This scenario describes an example of computing RA-RNTI using Method 3 above.
  • the random access preamble number configuration table shown in Table 4 can be pre-configured on the base station and the terminal:
  • Table 4 above defines the time slot occupied by the random access preamble and the index of the random access preamble sequence in the corresponding time slot for the format used by each random preamble access code sequence.
  • the subcarrier spacing is 15 kHz.
  • N_sequence_per_slot 7
  • the sequence_id_per_slot ranges from 0 to 6, and the formula (4) is reduced to the formula (7):
  • RA-RNTI 1+sequence_id_per_slot+slot_id*7+10*14*f_id
  • the terminal determines a random access preamble sequence in the format A1, and the terminal determines, according to Table 4, the time slot occupied by the random access preamble, for example, random access in the time slot 1 or in the transmission format A1.
  • the preamble sequence 0, or the random access preamble sequence 1 of format A1 is transmitted in slot 4.
  • the base station detects the time-frequency resource occupied by the random access preamble sent by the terminal, obtains a slot_id, and according to the correspondence between the time-frequency resource occupied by the random access preamble and the random access preamble format ( The corresponding relationship is pre-configured or pre-agreed.
  • the format of the random access preamble sequence is A1, and the corresponding sequence_id_per_slot is obtained by querying the above table 4 according to the slot_id.
  • the base station calculates the RA-RNTI according to the detected slot_id and sequence_id_per_slot, and calculates the RA-RNTI based on the above formula (7), and uses the RA-RNTI to scramble the CRC of the DCI of the terminal, and sends the DCI by using a random access response.
  • the terminal calculates the RA-RNTI according to the above formula (7), and uses the RA-RNTI to descramble the received CRC of the DCI to decode the DCI.
  • the RA-RNTI may be determined according to a time-frequency resource occupied by the random access preamble, and the time-frequency resource is a symbol-level time-frequency resource. Since the RA-RNTI is calculated based on the symbol-level time-frequency resources occupied by the random access preamble, for the NR system, the time of the random access preamble can be made for a plurality of cases of the short sequence preamble format and the subcarrier spacing. The interval is based on the symbol level, which enables the RA-RNTI to be determined during the random access procedure of the NR system.
  • the random access mechanism of the 5G NR can be guaranteed to operate normally.
  • one slot may contain multiple random access preamble sequences, and one radio intraframe is separated for different subcarriers.
  • the number of slots included is different, so the problem of calculating RA-RNTI can not be calculated by using the formula in the existing LTE system, and a solution is proposed.
  • the embodiment of the present application further provides a base station, which can implement the function of the base station side in the foregoing embodiment.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station may include: a receiving module 301, a determining module 302, and a sending module 303, where:
  • the receiving module 301 is configured to receive a random access preamble sent by the terminal, and the determining module 302 is configured to determine an RA-RNTI according to the time-frequency resource occupied by the random access preamble, where the time-frequency resource is an orthogonal frequency division.
  • the OFDM symbol level time-frequency resource is multiplexed;
  • the sending module 303 is configured to send a random access response message, where the random access response message includes downlink control information allocated by the base station to the terminal, and the downlink control information is used.
  • the RA-RNTI is scrambled.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a starting OFDM symbol occupied by the random access preamble in an intra-slot, and an index of a time slot occupied by the random access preamble in a radio frame;
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10* N_slot_per_subframe*N_symbol_per_slot*f_id
  • Start_symbol_index_in_slot is an index of the starting OFDM symbol occupied by the random access preamble in the time slot
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a random access preamble sequence in a slot occupied by the random access preamble, an OFDM symbol number included in a sequence of the random access preamble, and the random An index of the time slot occupied by the access preamble in the radio frame, where the index of the starting OFDM symbol occupied by the random access preamble in the time slot and the time slot occupied by the random access preamble
  • the sequence of the random access preamble includes a number of OFDM symbols corresponding to a format of the sequence of the random access preamble
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • the N_OS is the number of OFDM symbols included in the sequence of the random access preamble; wherein the N_OS is pre-configured or pre-agreed, and the sequence of different random access preambles corresponds to different N_OS;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a random access preamble sequence in a time slot occupied by the random access preamble, and a random access preamble sequence in a time slot occupied by the random access preamble
  • the total number, the index of the time slot occupied by the random access preamble in the radio frame, and the index of the starting OFDM symbol occupied by the random access preamble in the time slot and the random access The time slot occupied by the preamble corresponds to the time slot, and the total number of random access preamble sequences in the time slot occupied by the random access preamble corresponds to the time slot index;
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • N_sequence_per_slot is the total number of random access preamble sequences in the time slot occupied by the random access preamble; wherein N_sequence_per_slot corresponds to the time slot, and the total number of random access preamble sequences in one time slot is pre-configured or pre-agreed;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the embodiment of the present application further provides a terminal, which can implement the function of the terminal side in the foregoing embodiment.
  • FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal may include: a sending module 401, a determining module 402, and a receiving module 403, where:
  • the sending module 401 is configured to send a random access preamble sequence to the base station, and the determining module 402 is configured to determine an RA-RNTI according to the time-frequency resource occupied by the random access preamble sequence, where the time-frequency resource is an OFDM symbol level.
  • the time-frequency resource; the receiving module 403 is configured to receive the random access response message sent by the base station, and use the RA-RNTI to descramble the downlink control information included in the random access response message.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a starting OFDM symbol occupied by the random access preamble in an intra-slot, and an index of a time slot occupied by the random access preamble in a radio frame;
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • Start_symbol_index_in_slot is an index of the starting OFDM symbol occupied by the random access preamble in the time slot
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a random access preamble sequence in a slot occupied by the random access preamble, an OFDM symbol number included in a sequence of the random access preamble, and the random An index of the time slot occupied by the access preamble in the radio frame, where the index of the starting OFDM symbol occupied by the random access preamble in the time slot and the time slot occupied by the random access preamble
  • the sequence of the random access preamble includes a number of OFDM symbols corresponding to a format of the sequence of the random access preamble
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of the random access preamble in the time slot occupied by the random access preamble; wherein the correspondence between the time slot and the index of the random access preamble is pre-configured or pre-agreed;
  • the N_OS is the number of OFDM symbols included in the sequence of the random access preamble; wherein the N_OS is pre-configured or pre-agreed, and the sequence of different random access preambles corresponds to different N_OS;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a random access preamble sequence in a time slot occupied by the random access preamble, and a random access preamble sequence in a time slot occupied by the random access preamble
  • the total number, the index of the time slot occupied by the random access preamble in the radio frame, and the index of the starting OFDM symbol occupied by the random access preamble in the time slot and the random access The time slot occupied by the preamble corresponds to the time slot, and the total number of random access preamble sequences in the time slot occupied by the random access preamble corresponds to the time slot index;
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • N_sequence_per_slot is the total number of random access preamble sequences in the time slot occupied by the random access preamble; wherein N_sequence_per_slot corresponds to the time slot, and the total number of random access preamble sequences in one time slot is pre-configured or pre-agreed;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the embodiment of the present application further provides a communication device, which can implement the function of the base station side in the foregoing embodiment.
  • the communication apparatus may include: a processor 501, a memory 502, a transceiver 503, and a bus interface.
  • the processor 501 is responsible for managing the bus architecture and general processing, and the memory 502 can store data used by the processor 501 in performing operations.
  • the transceiver 503 is configured to receive and transmit data under the control of the processor 501.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 501 and various circuits of memory represented by memory 502.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor 501 is responsible for managing the bus architecture and general processing, and the memory 502 can store data used by the processor 501 in performing operations.
  • the flow disclosed in the embodiment of the present application may be applied to the processor 501 or implemented by the processor 501.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 501 or an instruction in the form of software.
  • the processor 501 can be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hardware component, which can be implemented or executed in the embodiment of the present application.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502 and completes the steps of the signal processing flow in conjunction with its hardware.
  • the processor 501 is configured to read a program in the memory 502 and execute: receiving, by the transceiver, a random access preamble sent by the terminal; determining, according to the time-frequency resource occupied by the random access preamble, the RA-RNTI
  • the time-frequency resource is an OFDM symbol-level time-frequency resource
  • the random access response message is sent by the transceiver, where the random access response message includes the base station is Downlink control information allocated by the terminal, the downlink control information is scrambled using the RA-RNTI.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a starting OFDM symbol occupied by the random access preamble in an intra-slot, and an index of a time slot occupied by the random access preamble in a radio frame;
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • Start_symbol_index_in_slot is an index of the starting OFDM symbol occupied by the random access preamble in the time slot
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a random access preamble sequence in a slot occupied by the random access preamble, an OFDM symbol number included in a sequence of the random access preamble, and the random An index of the time slot occupied by the access preamble in the radio frame, where the index of the starting OFDM symbol occupied by the random access preamble in the time slot and the time slot occupied by the random access preamble
  • the sequence of the random access preamble includes a number of OFDM symbols corresponding to a format of the sequence of the random access preamble
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • the N_OS is the number of OFDM symbols included in the sequence of the random access preamble; wherein the N_OS is pre-configured or pre-agreed, and the sequence of different random access preambles corresponds to different N_OS;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a random access preamble sequence in a time slot occupied by the random access preamble, and a random access preamble sequence in a time slot occupied by the random access preamble
  • the total number, the index of the time slot occupied by the random access preamble in the radio frame, and the index of the starting OFDM symbol occupied by the random access preamble in the time slot and the random access The time slot occupied by the preamble corresponds to the time slot, and the total number of random access preamble sequences in the time slot occupied by the random access preamble corresponds to the time slot index;
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • N_sequence_per_slot is the total number of random access preamble sequences in the time slot occupied by the random access preamble; wherein N_sequence_per_slot corresponds to the time slot, and the total number of random access preamble sequences in one time slot is pre-configured or pre-agreed;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the embodiment of the present application further provides a communication device, which can implement the function of the terminal side in the foregoing embodiment.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication apparatus may include: a processor 601, a memory 602, a transceiver 603, and a bus interface.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 602 can store data used by the processor 601 in performing operations.
  • the transceiver 603 is configured to receive and transmit data under the control of the processor 601.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 601 and various circuits of memory represented by memory 602.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 602 can store data used by the processor 601 in performing operations.
  • the flow disclosed in the embodiment of the present application may be applied to the processor 601 or implemented by the processor 601.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 601 or an instruction in the form of software.
  • the processor 601 can be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hardware component, which can be implemented or executed in the embodiment of the present application.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 602, and the processor 601 reads the information in the memory 602 and completes the steps of the signal processing flow in conjunction with its hardware.
  • the processor 601 is configured to read a program in the memory 602 and execute: sending, by using the transceiver, a random access preamble sequence to the base station; determining, according to the time-frequency resource occupied by the random access preamble sequence, the RA-RNTI And the time-frequency resource is an OFDM symbol level time-frequency resource; receiving, by the transceiver, a random access response message sent by the base station, and using the RA-RNTI descrambling device The downlink control information included in the random access response message.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a starting OFDM symbol occupied by the random access preamble in an intra-slot, and an index of a time slot occupied by the random access preamble in a radio frame;
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • Start_symbol_index_in_slot is an index of the starting OFDM symbol occupied by the random access preamble in the time slot
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a random access preamble sequence in a slot occupied by the random access preamble, an OFDM symbol number included in a sequence of the random access preamble, and the random An index of the time slot occupied by the access preamble in the radio frame, where the index of the starting OFDM symbol occupied by the random access preamble in the time slot and the time slot occupied by the random access preamble
  • the sequence of the random access preamble includes a number of OFDM symbols corresponding to a format of the sequence of the random access preamble
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • the N_OS is the number of OFDM symbols included in the sequence of the random access preamble; wherein the N_OS is pre-configured or pre-agreed, and the sequence of different random access preambles corresponds to different N_OS;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the RA-RNTI is determined according to a time domain resource related parameter and a frequency domain resource related parameter of a time-frequency resource occupied by the preamble;
  • the time domain resource related parameter includes: an index of a random access preamble sequence in a time slot occupied by the random access preamble, and a random access preamble sequence in a time slot occupied by the random access preamble
  • the total number, the index of the time slot occupied by the random access preamble in the radio frame, and the index of the starting OFDM symbol occupied by the random access preamble in the time slot and the random access The time slot occupied by the preamble corresponds to the time slot, and the total number of random access preamble sequences in the time slot occupied by the random access preamble corresponds to the time slot index;
  • the frequency domain resource related parameter includes: an index of a frequency domain bandwidth occupied by the PRACH of the physical random access channel corrected according to the coefficient; the coefficient is determined according to the number of slots in one subframe and the number of OFDM symbols in one slot.
  • the PRACH is used to transmit the random access preamble.
  • the calculation formula of the RA-RNTI is:
  • RA-RNTI 1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
  • the sequence_id_per_slot is an index of a sequence of random access preambles in a slot occupied by the random access preamble; wherein a correspondence between the time slot and an index of the random access preamble is pre-configured or pre-agreed;
  • N_sequence_per_slot is the total number of random access preamble sequences in the time slot occupied by the random access preamble; wherein N_sequence_per_slot corresponds to the time slot, and the total number of random access preamble sequences in one time slot is pre-configured or pre-agreed;
  • Slot_id is an index of a time slot occupied by a random access preamble in a radio frame
  • N_symbol_per_slot represents the number of OFDM symbols in a slot
  • N_slot_per_subframe represents the number of time slots in one subframe
  • F_id is an index of the frequency domain bandwidth occupied by the PRACH.
  • the embodiment of the present application further provides a computer storage medium.
  • the computer readable storage medium stores computer executable instructions for causing the computer to perform the processes performed by the base station side in the foregoing embodiments.
  • the embodiment of the present application further provides a computer storage medium.
  • the computer readable storage medium stores computer executable instructions for causing the computer to perform the processes performed by the terminal side in the foregoing embodiments.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种RA-RNTI确定方法及装置。本申请中,基站接收终端发送的随机接入前导码;所述基站根据所述随机接入前导码占用的时频资源,确定RA-RNTI,其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;所述基站发送随机接入响应消息,所述随机接入响应消息中包括所述基站为所述终端分配的下行控制信息,所述下行控制信息使用所述RA-RNTI加扰。采用本申请可实现在NR***的随机接入过程中确定RA-RNTI。

Description

一种RA-RNTI确定方法及装置
本申请要求在2017年9月11日提交中国专利局、申请号为201710812754.0、申请名称为“一种RA-RNTI确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种随机接入过程中的随机接入-无线网络标识(Random Access-Radio Network Temporary Identifier,RA-RNTI)的确定方法及装置。
背景技术
随机接入过程是指从终端发送随机接入前导码以尝试接入无线网络,到与网络间建立起基本的信令连接之前的过程。随机接入过程中,终端发送随机接入前导码后,监听基站通过物理下行控制信道(physical downlink control channel,PDCCH)调度的随机接入响应(random access response,简称RAR,也称Msg2)消息。基站通过该RAR消息中的下行控制信息(downlink control information,DCI),将分配给终端的上行资源发送给终端。该DCI的循环冗余校验(cyclic redundancy check,CRC)被RA-RNTI加扰。终端使用RA-RNTI对接收到的DCI进行解扰,以获得基站分配的上行资源。
在4G***长期演进(long term evolution,LTE)中,RA-RNTI是与时间以及频率有关的函数。对于非BL/CE(bandwidth-reduced low-complexity/coverage-enhancement,带宽降低的低复杂度/覆盖增强)的终端,RA-RNTI由下式给出:
RA-RNTI=1+t_id+10*f_id……………………………………[1]
其中,t_id是物理随机接入信道(physical random access channel,PRACH)在时域上的第一个子帧的索引,f_id是PRACH占用的频域带宽索引。
在5G新无线通信(NR)***中,随机接入前导码格式有长序列(L=839)和短序列(L=139或127)两种。其中,短序列的前导码格式如表1所示:
表1:NR短序列的前导码格式(子载波间隔=15/30/60/120KHz)
Figure PCTCN2018093408-appb-000001
Figure PCTCN2018093408-appb-000002
表1中,对于子载波间隔=15KHz,Ts=1/30720ms;对于SCS=30KHz,Ts=1/(2*30720)ms;对于SCS=60KHz,Ts=1/(4*30720)ms,对于SCS=120KHz,Ts=1/(8*30720)ms。
在NR***中,对于短序列的前导码格式,由于一个时隙(slot)内可能包含多个PRACH前导码序列,并且针对不同的子载波间隔,10ms的无线帧内包含的时隙个数不同,无法采用LTE现有的公式计算RA-RNTI。
因此,目前亟需针对NR***的随机接入过程,对RA-RNTI的计算方法进行定义。
发明内容
本申请实施例提供了一种RA-RNTI确定方法及装置。
第一方面,提供一种RA-RNTI确定方法,包括:
基站接收终端发送的随机接入前导码;
所述基站根据所述随机接入前导码占用的时频资源,确定RA-RNTI;其中,所述时频资源为OFDM符号级别的时频资源;
所述基站发送随机接入响应消息,所述随机接入响应消息中包括所述基站为所述终端分配的下行控制信息,所述下行控制信息使用所述RA-RNTI加扰。
可选地,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选地,所述RA-RNTI的计算公式为:
RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10* N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选地,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码的序列包含的OFDM符号数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码的序列包含的OFDM符号数与该随机接入前导码的序列的格式相对应;所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选地,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_OS是一个随机接入前导码的序列包含的OFDM符号数;其中,所述N_OS是预先配置或预先约定的,不同的随机接入前导码的序列对应不同的N_OS;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选地,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙 中随机接入前导码序列的索引、所述随机接入前导码占用的时隙中随机接入前导码序列的总数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码占用的时隙中随机接入前导码序列的总数与时隙索引相对应;所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选地,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_sequence_per_slot是随机接入前导码占用的时隙中随机接入前导码序列的总数;其中,N_sequence_per_slot与时隙相对应,一个时隙中的随机接入前导码序列的总数是预先配置或预先约定的;
slot_id是随机接入前导码占用的时隙在所在无线帧内的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
第二方面,提供一种RA-RNTI确定方法,包括:
终端向基站发送随机接入前导序列;
所述终端根据所述随机接入前导序列占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为OFDM符号级别的时频资源;
所述终端接收所述基站发送的随机接入响应消息,并使用所述RA-RNTI解扰所述随机接入响应消息中包含的下行控制信息。
可选地,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述 PRACH用于传输所述随机接入前导码。
可选地,所述RA-RNTI的计算公式为:
RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选地,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码的序列包含的OFDM符号数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码的序列包含的OFDM符号数与该随机接入前导码的序列的格式相对应;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选地,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_OS是一个随机接入前导码的序列包含的OFDM符号数;其中,所述N_OS是预先配置或预先约定的,不同的随机接入前导码的序列对应不同的N_OS;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选地,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码占用的时隙中随机接入前导码序列的总数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码占用的时隙中随机接入前导码序列的总数与时隙索引相对应;所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选地,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_sequence_per_slot是随机接入前导码占用的时隙中随机接入前导码序列的总数;其中,N_sequence_per_slot与时隙相对应,一个时隙中随机接入前导码序列的总数是预先配置或预先约定的;
slot_id是随机接入前导码占用的时隙在所在无线帧内的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
第三方面,提供一种基站,包括:
接收模块,用于接收终端发送的随机接入前导码;
确定模块,用于根据所述随机接入前导码占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;
发送模块,用于发送随机接入响应消息,所述随机接入响应消息中包括所述基站为所述终端分配的下行控制信息,所述下行控制信息使用所述RA-RNTI加扰。
第四方面,提供一种终端,包括:
发送模块,用于向基站发送随机接入前导序列;
确定模块,用于根据所述随机接入前导序列占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为OFDM符号级别的时频资源;
接收模块,用于接收所述基站发送的随机接入响应消息,并使用所述RA-RNTI解扰所述随机接入响应消息中包含的下行控制信息。
第五方面,提供一种通信装置,包括:处理器、存储器、收发机以及总线接口;所述处理器,用于读取存储器中的程序执行下列过程:
通过所述收发机接收终端发送的随机接入前导码;
根据所述随机接入前导码占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;
通过所述收发机发送随机接入响应消息,所述随机接入响应消息中包括所述基站为所述终端分配的下行控制信息,所述下行控制信息使用所述RA-RNTI加扰。
第六方面,提供一种通信装置,包括:处理器、存储器、收发机以及总线接口;所述处理器,用于读取存储器中的程序执行下列过程:
通过所述收发机向基站发送随机接入前导序列;
根据所述随机接入前导序列占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;
通过所述收发机接收所述基站发送的随机接入响应消息,并使用所述RA-RNTI解扰所述随机接入响应消息中包含的下行控制信息。
第七方面,提供一种计算机存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第一方面中任一项所述的方法。
第八方面,提供一种计算机存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第二方面中任一项所述的方法。
本申请的上述实施例中,可根据随机接入前导码占用的时频资源确定RA-RNTI,且所述时频资源为OFDM符号级别的时频资源。由于基于随机接入前导码占用的OFDM符号级别的时频资源计算RA-RNTI,因此对于NR***,可针对短序列的前导码格式以及子载波间隔的多种情况,使得随机接入前导码的时间间隔是基于OFDM符号级别的,实现了在NR***的随机接入过程中确定RA-RNTI。
附图说明
图1为本申请实施例适用的网络架构示意图;
图2为本申请实施例提供的随机接入过程示意图;
图3为本申请实施例提供的基站的结构示意图;
图4为本申请实施例提供的终端的结构示意图;
图5为本申请实施例提供的通信装置的结构示意图;
图6为本申请另一实施例提供的通信装置的结构示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本申请实施例中,名词“网络”和“***”经常交替使用,但本领域的技术人员可以理解其含义。
(2)本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
(3)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图1示例性地示出了本申请实施例提供的一种可能的通信场景的示意图。如图1所示,终端110通过无线接入网(radio access network,RAN)节点120接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。
其中,终端又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
RAN是网络中将终端接入到无线网络的部分。RAN节点(或设备)为无线接入网中的节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控 制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)***中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例描述的网络架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
对于NR***,由于存在短序列的前导码格式,并且子载波间隔也存在多种情况,使得随机接入前导码的时间间隔是基于正交频分复用(orthogonal frequency division multiplexing,OFDM)符号级别的,因此无法基于随机接入前导码占用的子帧级别的时频资源计算RA-RNTI。为解决该问题,本申请实施例中,根据随机接入前导码占用的OFDM符号级别的时频资源计算RA-RNTI。
进一步,为了降低NR***中的PRACH的频域资源开销,在配置与RA-RNTI有关的时域和频域资源时,采用优先配置时域资源,其次频域资源的方法,即只有当给定频域资源上的所有时域资源都配置完之后,再配置下一个可用频域资源上的时域资源。
本申请实施例可适用于NR***中的短序列随机接入前导码对应的RA-RNTI的计算,当然也可以适用于长序列随机接入前导码对应的RA-RNTI的计算。
本申请实施例提供了以下三种方法计算RA-RNTI:
方法1
方法1中,用于计算RA-RNTI的时域资源相关参数可包括:随机接入前导码占用的起始符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;用于计算RA-RNTI的频域资源相关参数可包括基于系数修正后的PRACH占用的频域带宽的索引,该系数可根据一个子帧内的时隙数量和一个时隙内的符号数量确定。
以下公式(2)示例性地示出了一种基于方法1计算RA-RNTI的方法:
RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id……………………[2]
其中:
start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的 索引。以一个时隙内最多14个OFDM符号且OFDM符号索引值从0开始顺序编号为例,start_symbol_index_in_slot的取值范围为[0,13]。在基站侧,基站通过检测随机接入前导码的时频资源位置,可获得start_symbol_index_in_slot的取值。
slot_id是随机接入前导码占用的时隙在所在10ms无线帧内的索引。一个10ms无线帧内的时隙的索引可从1开始顺序编号。在基站侧,基站通过检测随机接入前导码的时频资源位置,可获得slot_id的取值。
N_symbol_per_slot是一个时隙内的OFDM符号的数量。对于子载波间隔为15KHz、30KHz、60KHz以及120KHz的情况下,N_symbol_per_slot的取值均为14。N_symbol_per_slot的取值对于基站和终端所共知。
N_slot_per_subframe表示一个1ms子帧内的时隙数量,其取值与子载波间隔大小有关。比如,在子载波间隔为15KHz的情况下,N_slot_per_subframe的取值为1;在子载波间隔为30KHz的情况下,N_slot_per_subframe的取值为2;在子载波间隔为60KHz的情况下,N_slot_per_subframe的取值为4;在子载波间隔为120KHz的情况下,N_slot_per_subframe的取值为8。N_symbol_per_slot的取值对于基站和终端所共知。
f_id是PRACH占用的频域带宽的索引。PRACH与RACH存在映射关系,终端在RACH上发送随机接入前导码。PRACH占用的频域带宽可预先约定,且为基站和终端所共知。
方法2
方法2中,用于计算RA-RNTI的时域资源相关参数可包括:随机接入前导码占用的时隙中随机接入前导码序列的索引(该索引与该随机接入前导码占用的时隙相对应)、随机接入前导码序列包含的OFDM符号数(该符号数与该随机接入前导码序列的格式相对应)、随机接入前导码占用的时隙在所在无线帧中的索引;用于计算RA-RNTI的频域资源相关参数可包括基于系数修正后的PRACH占用的频域带宽的索引,该系数可根据一个子帧内的时隙数量和一个时隙内的符号数量得到。
以下公式(3)示例性地示出了一种基于方法2计算RA-RNTI的方法:
RA-RNTI=1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id……………………[3]
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码序列的索引。其中,时隙与随机接入前导码的索引之间的对应关系是预先配置的或者预先约定的。在基站侧,基站通过检测随机接入前导码的时频资源位置,可获得随机接入前导码所占用的时 隙(slot_id)和对应的sequence_id_per_slot的取值。
N_OS是一个随机接入前导码序列包含的OFDM符号数,其取值范围为1、2、4、6和12;其中,所述N_OS是预先配置的或者预先约定的。其取值与随机接入前导码格式相关,不同的短序列随机接入前导码格式,例如,N_OS的取值可参见表1。在基站侧,基站可根据检测到的随机接入前导码占用的时频资源,确定对应的随机接入前导码格式(随机接入前导码的时频资源与所采用的格式之间的对应关系可预先设置与预先约定),再根据随机接入前导码格式确定对应的N_OS的取值。
slot_id、N_symbol_per_slot、N_slot_per_subframe以及f_id的含义,与其在方法1中的含义相同。
方法3
方法3中,用于计算RA-RNTI的时域资源相关参数可包括:随机接入前导码占用的时隙中随机接入前导码序列的索引、随机接入前导码占用的时隙在所在无线帧中的索引、一个时隙内的OFDM符号的数量;用于计算RA-RNTI的频域资源相关参数可包括基于系数修正后的PRACH占用的频域带宽的索引,该系数可根据一个子帧内的时隙数量和一个时隙内的符号数量得到。
以下公式(4)示例性地示出了一种基于方法3计算RA-RNTI的方法:
RA-RNTI=1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id……………………[4]
其中:
N_sequence_per_slot是随机接入前导码占用的时隙中随机接入前导码序列的总数。其中,时隙的索引(slot_id)与N_sequence_per_slot存在对应关系,一个时隙的N_sequence_per_slot取值是预先配置的或预先约定的。在基站侧,基站通过检测随机接入前导码的时频资源位置,可获得随机接入前导码所占用的时隙的索引(slot_id),然后再根据该slot_id确定对应的N_sequence_per_slot的取值。
sequence_id_per_slot、slot_id、N_symbol_per_slot、N_slot_per_subframe以及f_id的含义,与其在方法1中的含义相同。
参见图2,为本申请实施例提供的随机接入过程。如图所示,该流程可包括:
S201:终端发送随机接入前导码。该步骤所发送的消息也称为Msg1。Msg1可在随机接入信道(random access channel,RACH)上发送,RACH与PRACH之间存在映射关系。
S202:基站接收终端发送的随机接入前导码,根据该随机接入前导码占用的符号级别的时频资源确定RA-RNTI,并发送随机接入响应消息,该随机接入响应消息也称为Msg2 消息。所述随机接入响应消息中包括该基站为该终端分配的下行控制信息(downlink control information,DCI),所述DCI的CRC使用该RA-RNTI加扰。
具体地,基站可采用前述实施例描述的方法计算RA-RATI。
该步骤中,所述DCI中可包括以下信息:基站所接收到的随机接入前导码的索引、上行发送的时间调整量(TA)、物理上行共享信道(physical uplink shared channel,PUSCH)调度信息和分配的临时小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)等。
S203:终端接收基站发送的随机接入响应消息,使用确定出的RA-RNTI解扰该随机接入响应消息中包含的下行控制信息。其中,终端可采用前述实施例提供的方法,根据其所发送的随机接入前导码占用的时频资源确定RA-RNTI。
进一步地,对于竞争随机接入过程,S203中还可包括还包括:终端根据随机接入响应中承载的调度信息和TA信息,进行上行数据的发送。该步骤发送的消息称为Msg3,该Msg3消息包含了该终端的唯一ID,即TMSI,并包含终端的无线资源控制(radio resourse control,RRC)层产生的RRC连接请求。
进一步地,对于竞争随机接入过程,S203之后还可包括:
S205:基站接收到终端的Msg3消息后,向接入成功的终端返回竞争解决消息,该消息也称为Msg4消息。该Msg4消息中包含了接入成功的终端的唯一ID(如C-RNTI)以及RRC连接建立响应,RRC连接建立响应由基站的RRC层产生。
为了更清楚的理解本申请实施例,下面结合3种具体应用场景,并结合图2所示的流程,对本申请实施例中公式(2)、公式(3)和公式(4)提供的3种RA-RNTI计算方法分别进行描述。
场景1
该场景描述了采用上述方法1计算RA-RNTI的例子。基站和终端上可预先配置如表2所示的随机接入前导个数配置表:
表2
Figure PCTCN2018093408-appb-000003
上述表2定义了随机前导接入码序列所占用的时隙以及在该时隙中占用的起始OFDM符号。
该场景以子载波间隔为15KHz为例,此种情况下,N_slot_per_subframe=1,N_symbol_per_slot=14,start_symbol_index_in_slot的取值范围是0~13,此时公式(2)简化为以下公式(5):
RA-RNTI=1+start_symbol_index_in_slot+slot_id*14+10*14*f_id
基于图2所示的流程,在该场景下:
在S201中,终端可根据表2确定随机接入前导码的发送资源,比如,可在时隙1中从OFDM符号0开始发送随机接入前导码序列0,或者在时隙4中从OFDM符号1开始发送随机接入前导码序列1。所发送的随机接入前导码可使用任何格式。
在S202中,基站检测终端发送的随机接入前导码所占用的时频资源,得到slot_id和start_symbol_index_in_slot。基站也可以通过检测随机接入前导码所占用的时频资源得到slot_id,再根据该slot_id查询上述表2得到对应的start_symbol_index_in_slot。基站根据检测到的slot_id和start_symbol_index_in_slot,并基于上述公式(5)计算得到RA-RNTI,使用该RA-RNTI对该终端的DCI的CRC进行加扰,并通过随机接入响应发送该DCI。
在S203中,终端根据上述公式(5)计算得到RA-RNTI,使用该RA-RNTI对接收到的DCI的CRC进行解扰,从而解码得到该DCI。
场景2
该场景描述了采用上述方法2计算RA-RNTI的例子。基站和终端上可预先配置如表3 所示的随机接入前导个数配置表:
表3
Figure PCTCN2018093408-appb-000004
上述表3针对随机前导接入码序列使用的格式A1,定义了随机接入前导码所占用的时隙以及相应时隙中随机接入前导码序列的索引。
该场景以子载波间隔为15KHz为例,此种情况下,N_slot_per_subframe=1,N_symbol_per_slot=14,对于随机接入前导码序列格式A1,每个随机接入前导码序列包含的OFDM符号数N_OS=2,sequence_id_per_slot取值范围为0~6,此时公式(3)简化为以下公式(6):
RA-RNTI=1+sequence_id_per_slot*2+slot_id*14+10*14*f_id
基于图2所示的流程,在该场景下:
在S201中,终端确定采用格式A1的随机接入前导码序列,终端根据表3确定随机接入前导码所占用的时隙,比如,可在时隙1中或在发送格式A1的随机接入前导码序列0,或者在时隙4中发送格式A1的随机接入前导码序列1。
在S202中,基站检测终端发送的随机接入前导码所占用的时频资源,得到slot_id,并根据随机接入前导码所占用的时频资源与随机接入前导码格式之间的对应关系(该对应关系为预先配置或预先约定)确定随机接入前导码序列的格式为A1,则根据该slot_id查询上述表3得到对应的sequence_id_per_slot。基站根据检测到的该slot_id和sequence_id_per_slot,并基于上述公式(6)计算得到RA-RNTI,使用该RA-RNTI对该终端的DCI的CRC进行加扰,并通过随机接入响应发送该DCI。
在S203中,终端根据上述公式(6)计算得到RA-RNTI,使用该RA-RNTI对接收到 的DCI的CRC进行解扰,从而解码得到该DCI。
场景3
该场景描述了采用上述方法3计算RA-RNTI的例子。基站和终端上可预先配置如表4所示的随机接入前导个数配置表:
表4
Figure PCTCN2018093408-appb-000005
上述表4针对各随机前导接入码序列使用的格式,定义了随机接入前导码所占用的时隙以及相应时隙中随机接入前导码序列的索引。
该场景以子载波间隔为15KHz为例,此种情况下,N_slot_per_subframe=1,N_symbol_per_slot=14,对于随机接入前导码序列格式A1,一个时隙中包含的随机接入前导序列个数N_sequence_per_slot=7,sequence_id_per_slot取值范围为0~6,此时公式(4)简化为公式(7):
RA-RNTI=1+sequence_id_per_slot+slot_id*7+10*14*f_id
基于图2所示的流程,在该场景下:
在S201中,终端确定采用格式A1的随机接入前导码序列,终端根据表4确定随机接入前导码所占用的时隙,比如,可在时隙1中或在发送格式A1的随机接入前导码序列0,或者在时隙4中发送格式A1的随机接入前导码序列1。
在S202中,基站检测终端发送的随机接入前导码所占用的时频资源,得到slot_id,并根据随机接入前导码所占用的时频资源与随机接入前导码格式之间的对应关系(该对应关系为预先配置或预先约定)确定随机接入前导码序列的格式为A1,则根据该slot_id查询上述表4得到对应的sequence_id_per_slot。基站根据检测到的该slot_id和 sequence_id_per_slot,并基于上述公式(7)计算得到RA-RNTI,使用该RA-RNTI对该终端的DCI的CRC进行加扰,并通过随机接入响应发送该DCI。
在S203中,终端根据上述公式(7)计算得到RA-RNTI,使用该RA-RNTI对接收到的DCI的CRC进行解扰,从而解码得到该DCI。
本申请的上述实施例中,可根据随机接入前导码占用的时频资源确定RA-RNTI,且所述时频资源为符号级别的时频资源。由于基于随机接入前导码占用的符号级别的时频资源计算RA-RNTI,因此对于NR***,可针对短序列的前导码格式以及子载波间隔的多种情况,使得随机接入前导码的时间间隔是基于符号级别的,实现了在NR***的随机接入过程中确定RA-RNTI。
通过本申请的上述实施例,可保证5G NR的随机接入机制能够正常运行。尤其针对NR短序列(L=139或者127)的随机接入前导码格式,由于一个时隙(slot)内可能包含多个随机接入前导码序列,并且针对不同的子载波间隔一个无线帧内包含的时隙个数不同,因此无法采用现有LTE***中的公式计算RA-RNTI的问题,提出了解决方案。
基于相同的技术构思,本申请实施例还提供了一种基站,该基站可实现前述实施例中基站侧的功能。
参见图3,为本申请实施例提供的基站的结构示意图,如图所示,该基站可包括:接收模块301、确定模块302、发送模块303,其中:
接收模块301用于接收终端发送的随机接入前导码;确定模块302用于根据所述随机接入前导码占用的时频资源确定RA-RNTI,其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;发送模块303用于发送随机接入响应消息,所述随机接入响应消息中包括所述基站为所述终端分配的下行控制信息,所述下行控制信息使用所述RA-RNTI加扰。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10* N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码的序列包含的OFDM符号数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码的序列包含的OFDM符号数与该随机接入前导码的序列的格式相对应;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_OS是一个随机接入前导码的序列包含的OFDM符号数;其中,所述N_OS是预先配置或预先约定的,不同的随机接入前导码的序列对应不同的N_OS;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域 资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码占用的时隙中随机接入前导码序列的总数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码占用的时隙中随机接入前导码序列的总数与时隙索引相对应;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_sequence_per_slot是随机接入前导码占用的时隙中随机接入前导码序列的总数;其中,N_sequence_per_slot与时隙相对应,一个时隙中随机接入前导码序列的总数是预先配置或预先约定的;
slot_id是随机接入前导码占用的时隙在所在无线帧内的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
基于相同的技术构思,本申请实施例还提供了一种终端,该终端可实现前述实施例中终端侧的功能。
参见图4,为本申请实施例提供的终端的结构示意图,如图所示,该终端可包括:发送模块401、确定模块402、接收模块403,其中:
发送模块401用于向基站发送随机接入前导序列;确定模块402用于根据所述随机接入前导序列占用的时频资源,确定RA-RNTI,其中,所述时频资源为OFDM符号级别的时频资源;接收模块403用于接收所述基站发送的随机接入响应消息,并使用所述RA-RNTI解扰所述随机接入响应消息中包含的下行控制信息。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域 资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码的序列包含的OFDM符号数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码的序列包含的OFDM符号数与该随机接入前导码的序列的格式相对应;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引; 其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_OS是一个随机接入前导码的序列包含的OFDM符号数;其中,所述N_OS是预先配置或预先约定的,不同的随机接入前导码的序列对应不同的N_OS;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码占用的时隙中随机接入前导码序列的总数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码占用的时隙中随机接入前导码序列的总数与时隙索引相对应;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_sequence_per_slot是随机接入前导码占用的时隙中随机接入前导码序列的总数;其中,N_sequence_per_slot与时隙相对应,一个时隙中随机接入前导码序列的总数是预先配置或预先约定的;
slot_id是随机接入前导码占用的时隙在所在无线帧内的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可实现前述 实施例中基站侧的功能。
参见图5,为本申请实施例提供的通信装置的结构示意图,如图所示,该通信装置可包括:处理器501、存储器502、收发机503以及总线接口。
处理器501负责管理总线架构和通常的处理,存储器502可以存储处理器501在执行操作时所使用的数据。收发机503用于在处理器501的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器501代表的一个或多个处理器和存储器502代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器501负责管理总线架构和通常的处理,存储器502可以存储处理器501在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器501中,或者由处理器501实现。在实现过程中,信号处理流程的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。处理器501可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器501,用于读取存储器502中的程序并执行:通过收发机接收终端发送的随机接入前导码;根据所述随机接入前导码占用的时频资源,确定RA-RNTI,其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;通过所述收发机发送随机接入响应消息,所述随机接入响应消息中包括所述基站为所述终端分配的下行控制信息,所述下行控制信息使用所述RA-RNTI加扰。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确 定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码的序列包含的OFDM符号数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码的序列包含的OFDM符号数与该随机接入前导码的序列的格式相对应;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_OS是一个随机接入前导码的序列包含的OFDM符号数;其中,所述N_OS是预先配置或预先约定的,不同的随机接入前导码的序列对应不同的N_OS;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码占用的时隙中随机接入前导码序列的总数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码占用的时隙中随机接入前导码序列的总数与时隙索引相对应;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_sequence_per_slot是随机接入前导码占用的时隙中随机接入前导码序列的总数;其中,N_sequence_per_slot与时隙相对应,一个时隙中随机接入前导码序列的总数是预先配置或预先约定的;
slot_id是随机接入前导码占用的时隙在所在无线帧内的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可实现前述实施例中终端侧的功能。
参见图6,为本申请实施例提供的通信装置的结构示意图,如图所示,该通信装置可包括:处理器601、存储器602、收发机603以及总线接口。
处理器601负责管理总线架构和通常的处理,存储器602可以存储处理器601在执行操作时所使用的数据。收发机603用于在处理器601的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器602代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器601负责管理总线架构和通常的处理,存储器602可以存储处理器601在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器601中,或者由处理器601实现。在实现过程中,信号处理流程的各步骤可以通过处理器601中的硬件的集成逻辑电路或者软件形式的指令完成。处理器601可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器602,处理器601读取存储器602中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器601,用于读取存储器602中的程序并执行:通过所述收发机向基站发送随机接入前导序列;根据所述随机接入前导序列占用的时频资源确定RA-RNTI,其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;通过所述收发机接收所述基站发送的随机接入响应消息,并使用所述RA-RNTI解扰所述随机接入响应消息中包含的下行控制信息。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导码序列的索引、所述随机接入前导码的序列包含的OFDM符号数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码的序列包含的OFDM符号数与该随机接入前导码的序列的格式相对应;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot*N_OS+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_OS是一个随机接入前导码的序列包含的OFDM符号数;其中,所述N_OS是预先配置或预先约定的,不同的随机接入前导码的序列对应不同的N_OS;
slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
可选的,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
其中,所述时域资源相关参数包括:所述随机接入前导码占用的时隙中随机接入前导 码序列的索引、所述随机接入前导码占用的时隙中随机接入前导码序列的总数、所述随机接入前导码占用的时隙在所在无线帧中的索引,其中,所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引与所述随机接入前导码占用的时隙相对应,所述随机接入前导码占用的时隙中随机接入前导码序列的总数与时隙索引相对应;
所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
可选的,所述RA-RNTI的计算公式为:
RA-RNTI=1+sequence_id_per_slot+slot_id*N_sequence_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
其中:
sequence_id_per_slot是随机接入前导码占用的时隙中,随机接入前导码的序列的索引;其中,时隙与随机接入前导码的索引之间的对应关系是预先配置或预先约定的;
N_sequence_per_slot是随机接入前导码占用的时隙中随机接入前导码序列的总数;其中,N_sequence_per_slot与时隙相对应,一个时隙中随机接入前导码序列的总数是预先配置或预先约定的;
slot_id是随机接入前导码占用的时隙在所在无线帧内的索引;
N_symbol_per_slot表示一个时隙内的OFDM符号的数量;
N_slot_per_subframe表示一个子帧内的时隙数量;
f_id是PRACH占用的频域带宽的索引。
基于相同的技术构思,本申请实施例还提供了一种计算机存储介质。所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行前述实施例中基站侧所执行的流程。
基于相同的技术构思,本申请实施例还提供了一种计算机存储介质。所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行前述实施例中终端侧所执行的流程。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种RA-RNTI确定方法,其特征在于,包括:
    基站接收终端发送的随机接入前导码;
    所述基站根据所述随机接入前导码占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;
    所述基站发送随机接入响应消息,所述随机接入响应消息中包括所述基站为所述终端分配的下行控制信息,所述下行控制信息使用所述RA-RNTI加扰。
  2. 如权利要求1所述的方法,其特征在于,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
    其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;
    所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
  3. 如权利要求1或2所述的方法,其特征在于,所述RA-RNTI的计算公式为:
    RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
    其中:
    start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
    slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
    N_symbol_per_slot表示一个时隙内的OFDM符号数量;
    N_slot_per_subframe表示一个子帧内的时隙数量;
    f_id是PRACH占用的频域带宽的索引。
  4. 一种RA-RNTI确定方法,其特征在于,包括:
    终端向基站发送随机接入前导序列;
    所述终端根据所述随机接入前导序列占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;
    所述终端接收所述基站发送的随机接入响应消息,并使用所述RA-RNTI解扰所述随机接入响应消息中包含的下行控制信息。
  5. 如权利要求4所述的方法,其特征在于,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
    其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;
    所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
  6. 如权利要求4或5所述的方法,其特征在于,所述RA-RNTI的计算公式为:
    RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
    其中:
    start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
    slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
    N_symbol_per_slot表示一个时隙内的OFDM符号数量;
    N_slot_per_subframe表示一个子帧内的时隙数量;
    f_id是PRACH占用的频域带宽的索引。
  7. 一种基站,其特征在于,包括:
    接收模块,用于接收终端发送的随机接入前导码;
    确定模块,用于根据所述随机接入前导码占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;
    发送模块,用于发送随机接入响应消息,所述随机接入响应消息中包括所述基站为所述终端分配的下行控制信息,所述下行控制信息使用所述RA-RNTI加扰。
  8. 一种终端,其特征在于,包括:
    发送模块,用于向基站发送随机接入前导序列;
    确定模块,用于根据所述随机接入前导序列占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为OFDM符号级别的时频资源;
    接收模块,用于接收所述基站发送的随机接入响应消息,并使用所述RA-RNTI解扰所述随机接入响应消息中包含的下行控制信息。
  9. 一种通信装置,其特征在于,包括:处理器、存储器、收发机以及总线接口;所述处理器,用于读取存储器中的程序执行下列过程:
    通过所述收发机接收终端发送的随机接入前导码;
    根据所述随机接入前导码占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;
    通过所述收发机发送随机接入响应消息,所述随机接入响应消息中包括所述基站为所述终端分配的下行控制信息,所述下行控制信息使用所述RA-RNTI加扰。
  10. 如权利要求9所述的通信装置,其特征在于,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
    其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;
    所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
  11. 如权利要求9或10所述的通信装置,其特征在于,所述RA-RNTI的计算公式为:
    RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
    其中:
    start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
    slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
    N_symbol_per_slot表示一个时隙内的OFDM符号数量;
    N_slot_per_subframe表示一个子帧内的时隙数量;
    f_id是PRACH占用的频域带宽的索引。
  12. 一种通信装置,其特征在于,包括:处理器、存储器、收发机以及总线接口;所述处理器,用于读取存储器中的程序,执行:
    通过所述收发机向基站发送随机接入前导序列;
    根据所述随机接入前导序列占用的时频资源,确定随机接入-无线网络标识RA-RNTI;其中,所述时频资源为正交频分复用OFDM符号级别的时频资源;
    通过所述收发机接收所述基站发送的随机接入响应消息,并使用所述RA-RNTI解扰所述随机接入响应消息中包含的下行控制信息。
  13. 如权利要求12所述的通信装置,其特征在于,所述RA-RNTI根据所述前导码占用的时频资源的时域资源相关参数和频域资源相关参数确定;
    其中,所述时域资源相关参数包括:所述随机接入前导码占用的起始OFDM符号在所在时隙内的索引、随机接入前导码占用的时隙在所在无线帧中的索引;
    所述频域资源相关参数包括:基于系数修正后的物理随机接入信道PRACH占用的频域带宽的索引;所述系数根据一个子帧内的时隙数量和一个时隙内的OFDM符号数量确定,所述PRACH用于传输所述随机接入前导码。
  14. 如权利要求12或13所述的通信装置,其特征在于,所述RA-RNTI的计算公式为:
    RA-RNTI=1+start_symbol_index_in_slot+slot_id*N_symbol_per_slot+10*N_slot_per_subframe*N_symbol_per_slot*f_id
    其中:
    start_symbol_index_in_slot是随机接入前导码占用的起始OFDM符号在所在时隙内的索引;
    slot_id是随机接入前导码占用的时隙在所在无线帧中的索引;
    N_symbol_per_slot表示一个时隙内的OFDM符号数量;
    N_slot_per_subframe表示一个子帧内的时隙数量;
    f_id是PRACH占用的频域带宽的索引。
  15. 一种计算机存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要1至3中任一项所述的方法。
  16. 一种计算机存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求4至6中任一项所述的方法。
PCT/CN2018/093408 2017-09-11 2018-06-28 一种ra-rnti确定方法及装置 WO2019047599A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21202637.1A EP3961966A1 (en) 2017-09-11 2018-06-28 Method and apparatus for determining ra-rnti
KR1020207010494A KR102322470B1 (ko) 2017-09-11 2018-06-28 Ra-rnti의 결정 방법 및 장치
EP18853265.9A EP3683994B1 (en) 2017-09-11 2018-06-28 Method and apparatus for determining ra-rnti
JP2020514679A JP7086178B2 (ja) 2017-09-11 2018-06-28 Ra-rntiを決定するための方法および装置
US16/646,559 US11178701B2 (en) 2017-09-11 2018-06-28 Method and apparatus for determining RA-RNTI
US17/497,987 US11723076B2 (en) 2017-09-11 2021-10-11 Method and apparatus for determining RA-RNTI
US18/334,383 US11979916B2 (en) 2017-09-11 2023-06-14 Method and apparatus for determining RA-RNTI

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710812754.0 2017-09-11
CN201710812754.0A CN109495222B (zh) 2017-09-11 2017-09-11 一种ra-rnti确定方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/646,559 A-371-Of-International US11178701B2 (en) 2017-09-11 2018-06-28 Method and apparatus for determining RA-RNTI
US17/497,987 Continuation US11723076B2 (en) 2017-09-11 2021-10-11 Method and apparatus for determining RA-RNTI

Publications (1)

Publication Number Publication Date
WO2019047599A1 true WO2019047599A1 (zh) 2019-03-14

Family

ID=65633558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093408 WO2019047599A1 (zh) 2017-09-11 2018-06-28 一种ra-rnti确定方法及装置

Country Status (7)

Country Link
US (3) US11178701B2 (zh)
EP (2) EP3683994B1 (zh)
JP (1) JP7086178B2 (zh)
KR (1) KR102322470B1 (zh)
CN (1) CN109495222B (zh)
TW (1) TWI702876B (zh)
WO (1) WO2019047599A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495222B (zh) * 2017-09-11 2021-06-15 大唐移动通信设备有限公司 一种ra-rnti确定方法及装置
ES2899137T3 (es) * 2017-11-09 2022-03-10 Samsung Electronics Co Ltd Procedimiento y aparato para comunicación inalámbrica en un sistema de comunicación inalámbrica
CN110035520B (zh) * 2018-01-12 2021-10-15 维沃移动通信有限公司 数据传输方法、解扰方法、解调方法及设备
KR102438912B1 (ko) * 2018-03-28 2022-09-01 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 시스템 정보의 결정 방법, 단말기 디바이스 및 네트워크 디바이스
US11202311B2 (en) 2018-07-20 2021-12-14 Qualcomm Incorporated Downlink control information response to idle mode requests
US20200053835A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Uu interface enhancement for nr v2x
CN111867133B (zh) * 2019-04-26 2023-01-06 华为技术有限公司 一种随机接入方法、网络设备和终端设备
ES2901770T3 (es) 2019-04-26 2022-03-23 Ericsson Telefon Ab L M Dispositivo de red, dispositivo terminal y métodos realizados en los mismos
CN116249223A (zh) * 2019-05-28 2023-06-09 北京小米移动软件有限公司 随机接入方法、装置、***及存储介质
CN110337835B (zh) * 2019-05-31 2022-05-13 北京小米移动软件有限公司 随机接入方法及装置、通信设备及存储介质
CN112449764B (zh) * 2019-07-03 2022-12-20 北京小米移动软件有限公司 随机接入方法、装置、***及存储介质
EP4014682A4 (en) * 2019-08-16 2023-04-26 Qualcomm Incorporated TEMPORARY RANDOM ACCESS RADIO NETWORK IDENTIFIER FOR RANDOM ACCESS
CN112584540A (zh) * 2019-09-27 2021-03-30 北京三星通信技术研究有限公司 随机接入信号发送方法、执行该方法的设备和计算机可读介质
WO2021073412A1 (en) * 2019-10-15 2021-04-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus of determining ra-rnti and user equipment
CN112672431A (zh) * 2019-10-16 2021-04-16 普天信息技术有限公司 随机接入方法和装置
WO2021184227A1 (zh) * 2020-03-17 2021-09-23 华为技术有限公司 一种随机接入方法及通信装置
CN113811016A (zh) * 2020-06-16 2021-12-17 大唐移动通信设备有限公司 一种随机接入方法和用户终端ue及网络侧设备
WO2022027365A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Resolution of mismatch in calculation of random access radio network temporary identifier
WO2022077362A1 (en) * 2020-10-15 2022-04-21 Zte Corporation Method and device for random access in wireless communication system
CN115515249A (zh) * 2021-06-22 2022-12-23 华为技术有限公司 一种随机接入方法及装置
CN116827495A (zh) * 2022-01-20 2023-09-29 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2953415A1 (en) * 2008-01-04 2015-12-09 LG Electronics Inc. Method of performing random access procedure in wireless communication system
CN105409136A (zh) * 2013-07-26 2016-03-16 Lg电子株式会社 发送用于mtc的信号的方法及其设备
CN106416115A (zh) * 2014-02-24 2017-02-15 英特尔Ip公司 用于机器类型通信的用户设备和演进节点b以及随机接入方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294088B2 (ja) 2014-01-30 2018-03-14 株式会社Nttドコモ ユーザ装置、基地局、制御情報検出方法、及び制御情報送信方法
CA2943148C (en) 2014-03-21 2019-09-10 Huawei Technologies Co., Ltd. Random access response method, base station, and terminal
WO2017132910A1 (zh) 2016-02-03 2017-08-10 华为技术有限公司 一种随机接入的方法、装置、基站及ue
US10904921B2 (en) * 2017-06-07 2021-01-26 Samsung Electronics Co., Ltd. System and method of identifying random access response
CN109495222B (zh) * 2017-09-11 2021-06-15 大唐移动通信设备有限公司 一种ra-rnti确定方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2953415A1 (en) * 2008-01-04 2015-12-09 LG Electronics Inc. Method of performing random access procedure in wireless communication system
CN105409136A (zh) * 2013-07-26 2016-03-16 Lg电子株式会社 发送用于mtc的信号的方法及其设备
CN106416115A (zh) * 2014-02-24 2017-02-15 英特尔Ip公司 用于机器类型通信的用户设备和演进节点b以及随机接入方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "R2-1708968:Calculation of RA-RNTI", 3GPP TSG-RAN WG2 MEETING #99, 25 August 2017 (2017-08-25), XP051318766 *
LG ELECTRONICS: "Rl-1713131:On four-step RACH procedure", 3GPP TSG RAN WG1 MEETING #90, 25 August 2017 (2017-08-25), XP051315940 *

Also Published As

Publication number Publication date
US11178701B2 (en) 2021-11-16
TWI702876B (zh) 2020-08-21
JP2020533903A (ja) 2020-11-19
EP3683994A4 (en) 2020-10-28
EP3961966A1 (en) 2022-03-02
US11723076B2 (en) 2023-08-08
EP3683994A1 (en) 2020-07-22
JP7086178B2 (ja) 2022-06-17
US20220030636A1 (en) 2022-01-27
US11979916B2 (en) 2024-05-07
KR102322470B1 (ko) 2021-11-05
CN109495222B (zh) 2021-06-15
KR20200047705A (ko) 2020-05-07
EP3683994B1 (en) 2021-12-01
CN109495222A (zh) 2019-03-19
TW201914348A (zh) 2019-04-01
US20230328801A1 (en) 2023-10-12
US20200275491A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
TWI702876B (zh) 一種ra-rnti確定方法及裝置
EP3606266B1 (en) Method and device for random access and instruction after random access rollback
EP3739933B1 (en) Beam failure recovery method, device, and apparatus
US11503643B2 (en) Random access method and device
EP3768016A1 (en) Communication method and device
WO2021032027A1 (zh) 一种随机接入方法、终端设备和网络设备
JP6784262B2 (ja) 基地局、無線端末、及びこれらの方法
EP3648389A1 (en) Communication method, network device, and relay device
EP3860262A1 (en) Method and apparatus for transmitting indication information
EP3301991B1 (en) Device and method of handling channel access in unlicensed band
CN110475317B (zh) Pdcch的监控方法、终端设备和网络侧设备
JP7402327B2 (ja) 情報表示方法及び装置
JP2021503216A (ja) ランダムアクセスのための方法、デバイス、コンピュータ可読ストレージ、およびキャリア
JP2024069386A (ja) アップリンク伝送方法及び装置
WO2022151171A1 (zh) 随机接入方法及装置
US10624123B2 (en) PRACH access control method, and access method and device
JP7443503B2 (ja) リソース決定方法および通信機器
EP4231713A1 (en) Communication method and apparatus
WO2022151072A1 (zh) 信息传输方法、终端设备、网络设备和计算机存储介质
EP4195785A1 (en) Communication method and apparatus
CN114073162A (zh) 用于随机接入过程的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010494

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018853265

Country of ref document: EP

Effective date: 20200414