WO2019047528A1 - 一种机器人控制***及方法 - Google Patents

一种机器人控制***及方法 Download PDF

Info

Publication number
WO2019047528A1
WO2019047528A1 PCT/CN2018/082890 CN2018082890W WO2019047528A1 WO 2019047528 A1 WO2019047528 A1 WO 2019047528A1 CN 2018082890 W CN2018082890 W CN 2018082890W WO 2019047528 A1 WO2019047528 A1 WO 2019047528A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
information
user
control
touch sensor
Prior art date
Application number
PCT/CN2018/082890
Other languages
English (en)
French (fr)
Inventor
***
Original Assignee
南京阿凡达机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京阿凡达机器人科技有限公司 filed Critical 南京阿凡达机器人科技有限公司
Publication of WO2019047528A1 publication Critical patent/WO2019047528A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the invention relates to the field of robot control, and in particular to a robot control system and method.
  • Tactile sense is an important form of perception that is second only to vision after robots acquire environmental information. It is a necessary medium for robots to directly interact with the environment. Unlike vision, touch itself has a strong sensitivity, which can directly measure various characteristics of objects and environments. Therefore, touch is not only a supplement of vision.
  • the main task of touch is to obtain object and environment information and to complete For a certain task, a series of physical feature quantities when the robot interacts with the object and the environment are detected or perceived. Therefore, the problem that the robot has the skin peripheral nerve tactile sensation (ie, bionic electronic skin) like a human needs to be solved.
  • bionic electronic skin is mainly solved by various sensors, such as piezoresistive pressure sensors. Although some of these pressure sensors have been applied to robotic tactile measurements, their disadvantages are quite obvious.
  • the invention of the application No. 201310396009.4 discloses a piezoresistive electronic skin and a preparation method thereof, comprising two flexible substrates; two conductive layers respectively coated on two flexible substrates, the two conductive layers are in contact with each other; The poles are in contact with the two conductive layers, respectively.
  • the carbon nanotube film is used as a conductive layer and a material of a micro-nano pattern of polydimethylsiloxane, polyethylene terephthalate, polyvinyl alcohol, polyvinyl formal, polyethylene, etc., so that the base layer It has the advantages of high flexibility and flexibility.
  • the electronic skin of the invention sticks two conductive cloths together, and the greater the external pressure, the larger the contact area and the smaller the electric resistance. However, its consistency is not good, the curve between the pressure and the resistance layer is non-linear, and the two conductive layers are stuck together, and it is necessary to ensure pre-stress. This pre-stress is difficult to set, resulting in inconsistent characteristics of different sensors; and two conductive The layers are kept at a certain distance by the air, and the pressing is long as the sponge is compressed and cannot rebound.
  • the present application provides a technical solution to the above problems.
  • An object of the present invention is to provide a robot control system and method for setting a plurality of touch sensors in different parts of a robot body and transmitting the sensed control instruction information to the motion controller, and the motion controller operates according to the position signal and the robot
  • the scene control robot speaks the appropriate words or makes corresponding actions, which greatly enriches the human-computer interaction ability of the humanoid robot.
  • the touch sensor of the invention solves the problem of sensor rebound and provides the trigger sensitivity of the robot.
  • a robot control system includes: a touch sensor for sensing control instruction information input by a user; and a tactile detection controller electrically connected to the touch sensor for acquiring control instruction information of a user input induced by the touch sensor, And performing processing; the motion controller is electrically connected to the haptic detection controller, acquiring control instruction information input by the processed user from the haptic detection controller, and controlling the robot to perform corresponding according to the control instruction information Task.
  • a plurality of touch sensors are respectively mounted on a plurality of parts on the robot body; the motion controller collects a signal output by the tactile detection controller, and when the robot is touched, the tactile detection controller outputs a corresponding touched position signal to The motion controller controls the robot to speak the appropriate words or make corresponding actions according to the position signal and the working scene of the robot, which greatly enriches the human-computer interaction ability of the humanoid robot.
  • the control instruction information input by the user includes: first capacitance information and second capacitance information; the first capacitance information is capacitance information of the touch sensor disposed inside the robot,
  • the second capacitance information includes capacitance information of the user's human body;
  • the tactile detection controller converts the first capacitance information and the second capacitance information into a parallel accumulation and conversion into control instruction information input by the user.
  • the tactile detection controller is configured to perform position recognition on the control instruction information input by the user, and match the position-recognized control instruction information with the action module of the robot, and transmit the same to the motion controller.
  • the touch sensor is disposed on an inner side of the robot casing, the touch sensor side is attached to an inner side of the robot casing, and the other side of the touch sensor is soldered with a wire, and passes through the wire
  • the tactile detection controller is electrically connected.
  • the haptic detection controller comprises: a capacitive touch chip U1; a power regulator U2; the capacitive touch chip U1 is provided with 8 information input control terminals K1 to K8 and 3 information output control terminals D0 ⁇ D2; each information input control end of the capacitive touch chip U1 is electrically connected to a corresponding sensing signal input end through a current limiting resistor; each information output control end of the capacitive touch chip U1 and the motion control module respectively Corresponding to the electrical connection; the power input end of the capacitive touch chip U1 is electrically connected to the output end of the power regulator U2; the input end of the power regulator U2 is electrically connected to the power supply terminal.
  • the haptic detection controller further includes: the signal adjustment end of the capacitive touch chip U1 is electrically connected to the common ground through the capacitor C13; each information input control terminal of the capacitive touch chip U1 further passes an adjustment capacitor Electrically connected to the common ground.
  • the method comprises: the touch sensor is made of a copper foil material.
  • the mounting structure of the touch sensor is simple and convenient, and does not affect the overall shape design of the robot.
  • the touch sensor is installed at a required part according to actual use requirements; the piezoresistive electronic skin conductive material is easily generated by the copper foil touch sensor. Deformation, the problem of not being able to rebound;
  • the capacitive touch area has no mechanical structure, all the detections are small changes in the amount of electricity, so it is easier to implement and is not limited by structure.
  • a robot control method is applied to the robot control system described above, comprising: acquiring step S100 to obtain control instruction information input by the user; step S200, processing the acquired control instruction information input by the user; and step S200 according to the processing
  • the control instruction information controls the robot to perform a corresponding task.
  • control instruction information input by the user in the step S100 includes: acquiring the first capacitance information and the second capacitance information in step S110; the first capacitance information includes capacitance information of the touch sensor, and the second capacitance information includes the user The capacitance information of the human body; in step S120, the first capacitance information and the second capacitance information are connected in parallel and converted into control instruction information input by the user.
  • the step S200 includes: step S210 performs location identification on the control instruction information input by the user; and step S220 matches the position recognition control instruction information with the action module of the robot.
  • the invention provides a robot control system and method, which can bring at least one of the following beneficial effects:
  • the tactile sensing system solution can install the touch sensor in a required part according to actual use requirements; the sensing sensitivity of the electronic skin can be adjusted according to the thickness of the robot casing in actual use; the sensing carrier of the present invention is thin and thin. It can be installed in various positions, and it is easy to install; especially it can be installed inside the robot casing without changing the appearance of the robot; it can sense the touch without touching deformation.
  • the material and thickness of the outer casing can also be arbitrarily changed according to actual use requirements; plus the thickness, shape and area of the touch sensor can be designed and processed according to actual use requirements, so that it has high sensitivity, lightness and thinness. Durable and so on, it can be installed in a variety of small, variable spaces.
  • the sensitivity of the electronic skin in the present invention can be adjusted according to the thickness of the robot casing in actual use.
  • the thickness of the copper foil of the sensing carrier can be installed in various positions, and the installation is simple and convenient; in particular, it can be installed inside the robot casing without changing the appearance of the robot; and the touch can be sensed without pressing deformation.
  • a trigger control command for the robot skin is generated, and the output of the trigger control command is stable, low in cost, and easy to implement.
  • Figure 1 is a block diagram of an embodiment of a robot control system
  • FIG. 2 is a structural view of another embodiment of a robot control system
  • Figure 3 is a block diagram of another embodiment of a robot control system
  • FIG. 4 is a structural diagram of another embodiment of a robot control system
  • Figure 5 is a block diagram of an embodiment of a robot control system
  • Figure 6 is a flow chart of one embodiment of a robot control method
  • FIG. 7 is a flow chart of another embodiment of a robot control method.
  • the present invention provides an embodiment of a robot control system, as shown in FIG. 1 and FIG. 2, comprising: a touch sensor 100 for sensing control instruction information input by a user; and a tactile detection controller 200 electrically connected to the touch sensor Connecting, for acquiring control instruction information of the user input induced by the touch sensor, and performing processing; the motion controller 300 is electrically connected to the tactile detection controller, and acquiring the processed user from the tactile detection controller
  • the input control instruction information controls the robot to perform a corresponding task according to the control instruction information.
  • the system of the present invention comprises a plurality of touch sensors 100 and a casing of the robot to form a bionic electronic skin of the robot; the touch sensor uses copper foil as a tactile sensation carrier; and the tactile detection controller 200 is configured to receive
  • the electrical signals generated by the copper foil are amplified, filtered, denoised, etc., and sent to the motion controller 300, which is equivalent to the central controller of the robot, used to coordinate and adjust the robot.
  • the motion controller 300 which is equivalent to the central controller of the robot, used to coordinate and adjust the robot.
  • the robot makes different reaction information; including expression, action, voice and so on.
  • a plurality of touch sensors are respectively mounted on a plurality of parts on the robot body; the motion controller collects a signal output by the tactile detection controller, and when the robot is touched, the tactile detection controller outputs a corresponding touched position signal to The motion controller controls the robot to speak the appropriate words or make corresponding actions according to the position signal and the working scene of the robot, which greatly enriches the human-computer interaction ability of the humanoid robot.
  • the present invention further provides an embodiment; as shown in FIG. 2;
  • the control command information input by the user includes: first capacitance information and second capacitance information;
  • the information is the capacitance information of the touch sensor disposed inside the robot, the second capacitance information includes capacitance information of the user's human body;
  • the tactile detection controller 200 sets the first capacitance information and the second capacitance information Parallel accumulation is performed to convert control command information into the user input.
  • the haptic detection controller 200 is configured to perform position recognition on the control instruction information input by the user, and match the position-recognized control instruction information with the action module of the robot, and transmit the same to the motion controller.
  • the method includes: the touch sensor is disposed inside the robot casing, the touch sensor side is attached to an inner side of the robot casing, and the other side of the touch sensor is soldered with a wire, and the wire is connected to the touch The controller is electrically connected.
  • the first capacitor and the second capacitor that is, any two conductive objects, have a sensing capacitor, and a touch region and the ground can form an inductive capacitor to generate a first capacitor in the surrounding environment.
  • the value of the first capacitance of the sensing capacitor is a fixed small value.
  • the sensing capacitance formed by the human finger and the ground constitutes a second capacitance; and the second capacitance is connected in parallel between the touch area and the first capacitance formed by the ground, so that the total induced capacitance value is increased.
  • the capacitive touch sensor IC outputs a determination signal that a certain touch area is pressed after detecting that the value of the sensing capacitance of a certain touch area is changed. Since the capacitive touch area has no mechanical structure, all the detections are small changes in the amount of electricity, so it is easier to implement and is not limited by structure.
  • a plurality of touch sensors are mounted on the body of the robot, it is necessary to number the parts corresponding to each touch sensor, identify the position according to the number of the touch sensor, and set different function information according to different positions; for example, touch The left leg advances, touches the right leg to retreat, etc.; the specific implementation process of the function setting of each touch sensor is controlled by the motion controller; the touch sensor is set according to the application scenario, and according to the height and weight set by the robot, Different sizes and sizes; for example, a thickness of 0.08 mm; a copper foil having a size of 30*40 mm as a tactile sensation carrier, and the touch sensor is pasted on the inner wall of the robot casing by a sticker, that is, as shown in FIG.
  • the uppermost layer It is a robot case 400
  • the lower layer is a touch sensor 100, wherein the touch sensor is coated with a sticker on one side for easy attachment to the inner wall of the robot case.
  • the other side of the touch sensor 100 is soldered with a single-core shielded wire connected to the input end of the tactile sense controller chip.
  • the mounting structure of the touch sensor is simple, and the overall shape design of the robot is not affected, and the touch sensor is installed at a required part according to actual use requirements; the piezoresistive electronic skin conductive material is easily generated by the copper foil touch sensor. Deformation, the problem of not being able to rebound; In addition, because the capacitive touch area has no mechanical structure, all the detections are small changes in the amount of electricity, so it is easier to implement and is not limited by structure.
  • the present invention further provides an embodiment; referring to FIG. 2 and FIG. 4; the touch detection controller includes: a capacitive touch chip U1, the capacitive touch chip model is: TTY6851; The voltage regulator U2, the power regulator is: LM1117; the capacitive touch chip U1 is provided with 8 information input control terminals K1 to K8 and 3 information output control terminals D0 to D2; the capacitive touch chip Each information input control terminal of U1 is electrically connected to a corresponding sensing signal input terminal through a current limiting resistor; each information output control terminal of the capacitive touch chip U1 is electrically connected to the motion control module respectively; the capacitor The power input end of the touch chip U1 is electrically connected to the output end of the power regulator U2; the input end of the power regulator U2 is electrically connected to the power supply terminal.
  • the haptic detection controller further includes: the signal adjustment end of the capacitive touch chip U1 is electrically connected to the common ground through the capacitor C13; each information input control
  • the information input control terminal of the capacitive touch chip U1 is K1 to K8, and receives the trigger electrical signal.
  • the plurality of capacitive touch chips U1 can be expanded; and connected to the motion controller; U1 directly outputs binary BCD code, the output state is maintained until the next touch changes after the touch is left.
  • the plurality of touch sensors are a head touch sensor, a left arm touch sensor, a right arm touch sensor, a left-hand touch sensor, a right-hand touch sensor, a left-hand touch sensor, and a right-hand touch sensor, respectively.
  • Each touch sensor is mounted on a plurality of different parts of the robot body, namely a head, two side arms, two sides of the armpit and two hands.
  • the elliptical area is where the touch sensor is mounted.
  • Each touch sensor is connected to the input of the tactile detection controller via a single-core shielded wire, and the signal output by the tactile detection controller is directly connected to the motion controller.
  • the sensitivity of the electronic skin of the robot is adjusted.
  • a capacitance Cap can be connected to the CAP pin of the tactile detection controller to coarsely adjust the sensitivity of the electronic skin. The larger the value of the Cap capacitor, the higher the sensitivity, and the value thereof. The range is 6.8nF to 33nF.
  • a parallel capacitor Cs can be connected to the signal collecting end for finely adjusting the sensing sensitivity of the electronic skin.
  • the parallel capacitor has a capacitance of 0 to 5 pF.
  • the sensing sensitivity is affected; in the present application, the capacitance value corresponding to the thickness of the casing is provided; as shown in Table 1;
  • the tactile sensing system solution can install the touch sensor at a required location according to actual use requirements; the sensing sensitivity of the electronic skin can be adjusted according to the thickness of the robot casing in actual use; the sensing carrier of the present invention is thin and can be installed.
  • the installation is simple and convenient; in particular, it can be installed inside the robot casing without changing the appearance of the robot; the touch can be sensed without touching deformation.
  • the present invention also provides an embodiment of a robot control method.
  • the robot control method is applied to the above embodiment, as shown in FIG. 6 .
  • the method includes the following steps: Step S100 acquires control instruction information input by the user; The control instruction information input by the user is processed; and the step S300 controls the robot to execute the corresponding task according to the processed control instruction information.
  • the present invention further provides an embodiment, which is shown in FIG. 6 and FIG. 7;
  • the control instruction information input by the user in step S100 includes: obtaining the first capacitance information and the second capacitance information in step S110;
  • the first capacitance information includes capacitance information of the touch sensor, and the second capacitance information includes capacitance information of the user's human body; and the step S120 converts the first capacitance information and the second capacitance information into a parallel accumulation and conversion into the user.
  • the step S200 includes: step S210 performs position recognition on the control instruction information input by the user; and step S220 matches the position-recognized control instruction information with the action module of the robot.
  • the material and thickness of the outer casing can also be arbitrarily changed according to actual use requirements.
  • the thickness, shape and area of the touch sensor can be designed and processed according to the actual needs, so that it has the advantages of high sensitivity, lightness and durability, and can be installed in various narrow and variable spaces.
  • the sensitivity of the electronic skin in the present invention can be adjusted according to the thickness of the robot casing in actual use.
  • the thickness of the copper foil of the sensing carrier can be installed in various positions, and the installation is simple and convenient; in particular, it can be installed inside the robot casing without changing the appearance of the robot; and the touch can be sensed without pressing deformation.
  • a trigger control command for the robot skin is generated, and the trigger control command output characteristic is stable, low in cost, and easy to implement.
  • the present application in the case of satisfying the performance parameters of the present application, it may be adaptively replaced with other chips according to different usage scenarios and different workloads of the workload, including 51 series of single-chip microcomputers, PIC series, and ARM. Series, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种机器人控制***,包括:触摸传感器(100),用于感应用户输入的控制指令信息;触觉检测控制器(200),与触摸传感器(100)电连接,用于获取触摸传感器(100)感应的用户输入的控制指令信息,并进行处理;运动控制器(300),与触觉检测控制器(200)电连接,从触觉检测控制器(200)中获取处理后的用户输入的控制指令信息,并根据控制指令信息控制机器人执行相应的任务。该***通过设置触摸传感器解决了传感器回弹的问题,提高了机器人的触发灵敏度。还涉及一种应用于上述机器人控制***中的机器人控制方法。

Description

一种机器人控制***及方法
本申请要求2017年09月05日提交的申请号为:201710789951.5、发明名称为“一种机器人控制***及方法”的中国专利申请的优先权,其全部内容合并在此。
技术领域
本发明涉及机器人控制领域,特别涉及一种机器人控制***及方法。
背景技术
为了使机器人服务于特定的目标对象,能与人很好的沟通和交互,帮助人们完成任务,那么这类机器人应该具有视觉、听觉、触觉等感知能力。触觉是机器人获取环境信息的一种仅次于视觉的重要的知觉形式,是机器人实现与环境直接作用的必需媒介。与视觉不同,触觉本身有着很强的敏感能力,可直接测量对象和环境的多种性质特征,因此触觉不仅仅只是视觉的一种补充,触觉的主要任务是为了获取对象与环境信息和为完成某种作业任务而对机器人与对象、环境相互作用时的一系列物理特征量进行检测或感知,因此让机器人像人一样具有皮肤末梢神经触觉感知能力(即仿生电子皮肤)的问题就需要解决。
目前仿生电子皮肤主要靠各种传感器来解决,如压阻式压力传感器等,虽然这些压力传感器有一部分已经应用于机器人触觉测量,但是它们的缺点也是相当明显。其中,申请号为201310396009.4的发明公开了一种压阻式电子皮肤及其制备方法,包括两柔性衬底;两导电层,分别涂覆在两柔性衬底上,两导电层相互接触;两导电极分别与两导电层接触。其中采用碳纳米管薄膜为导电层和具有微纳米图案的聚二甲基硅氧烷、聚苯二甲酸乙二酯、聚乙烯醇、聚乙烯醇缩甲醛、聚乙烯等材料为基底,使得基层具有高柔性易弯曲等优点。该发明的电子皮肤将两导电布贴在一起,外界压力越大,接触面积越大、电阻越小。但它的一致性不好,压力和电阻层之间曲线是非线性的,两导电层贴在一起,需要保证有预应力,这个预应力难以设定,导致不同传 感器的特性不一致;而且两个导电层之间靠空气保持一定的距离,按压久了就像海绵被压缩,无法回弹。
基于以上的问题本申请提供解决以上问题的技术方案。
发明内容
本发明的目的是提供一种机器人控制***及方法,通过在机器人本体的不同部位设置多个触摸传感器,并将感应的控制指令信息发送至运动控制器,运动控制器根据位置信号和机器人的工作场景控制机器人说出适当的话语或做出相应的动作,大大的丰富了人形机器人的人机交互能力。本发明的触摸传感器解决了传感器回弹的问题,提供了机器人的触发灵敏度。
本发明提供的技术方案如下:
一种机器人控制***,包括:触摸传感器,用于感应用户输入的控制指令信息;触觉检测控制器,与所述触摸传感器电连接,用于获取所述触摸传感器感应的用户输入的控制指令信息,并进行处理;运动控制器,与所述触觉检测控制器电连接,从所述触觉检测控制器中获取处理后的用户输入的控制指令信息,并根据所述控制指令信息控制所述机器人执行相应的任务。
在本发明中,多个触摸传感器分别安装于机器人本体上的多个部位;运动控制器采集触觉检测控制器输出的信号,当机器人被触摸时,触觉检测控制器输出对应的被触摸位置信号至运动控制器,运动控制器根据位置信号和机器人的工作场景控制机器人说出适当的话语或做出相应的动作,大大的丰富了人形机器人的人机交互能力。
优选的,包括:所述用户输入的控制指令信息包括:第一电容信息和第二电容信息;所述第一电容信息是通过设置在所述机器人内部的所述触摸传感器的电容信息,所述第二电容信息包括用户人体的电容信息;触觉检测控制器将所述第一电容信息和所述第二电容信息进行并联累加转换成所述用户输入的控制指令信息。
优选的,触觉检测控制器用于将用户输入的控制指令信息进行位置识别,且将位置识别后的控制指令信息与机器人的动作模块进行匹配,并传输至所 述运动控制器。
优选的,包括:所述触摸传感器设置在所述机器人外壳的内侧,所述触摸传感器一侧附着在所述机器人外壳的内侧,所述触摸传感器的另一侧焊接有导线,并通过该导线与所述触觉检测控制器电连接。
优选的,所述触觉检测控制器包括:电容触摸芯片U1;电源稳压器U2;所述电容触摸芯片U1设置有8个信息输入控制端为K1~K8和3个信息输出控制端为D0~D2;所述电容触摸芯片U1的每个信息输入控制端通过一个限流电阻与对应的感应信号输入端电连接;所述电容触摸芯片U1的每个信息输出控制端分别与所述运动控制模块对应电连接;所述电容触摸芯片U1的电源输入端与所述电源稳压器U2的输出端电连接;所述电源稳压器U2的输入端与电源供电端电连接。
优选的,所述触觉检测控制器还包括:所述电容触摸芯片U1的信号调节端通过电容器C13与公共地端电连接;所述电容触摸芯片U1的每个信息输入控制端还通过一个调节电容与所述公共地端电连接。
优选的,包括:所述触摸传感器由铜箔材料制成。
在本发明中,触摸传感器的安装结构简单方便,不会影响机器人的整体外形设计,触摸传感器根据实际使用需要在需要的部位安装;通过铜箔触摸传感器解决了压阻式电子皮肤导电材料容易发生变形,无法回弹的问题;另外,电容式触摸区域因为没有机械构造,所有的检测都是电量的微小变化,所以实现起来更加容易,不受结构限制。
一种机器人控制方法,应用于上述所述的机器人控制***中,包括:步骤S100获取用户输入的控制指令信息;步骤S200将获取的所述用户输入的控制指令信息进行处理;步骤S200根据处理后的所述控制指令信息控制机器人执行相应的任务。
优选的,所述步骤S100中用户输入的控制指令信息包括:步骤S110获取第一电容信息和第二电容信息;所述第一电容信息包括触摸传感器的电容信息,所述第二电容信息包括用户人体的电容信息;步骤S120将所述第一电容信息和所述第二电容信息进行并联累加转换成所述用户输入的控制指令信 息。
优选的,所述步骤S200中包括:步骤S210对用户输入的控制指令信息进行位置识别;步骤S220将位置识别后的控制指令信息与机器人的动作模块进行匹配。
本发明提供的一种机器人控制***及方法,能够带来以下至少一种有益效果:
1、在本发明中,触觉传感***解决方案可根据实际使用需要在需要的部位安装触摸传感器;电子皮肤的感应灵敏度可以根据实际使用时机器人外壳厚度进行调节;本发明的感知载体厚度轻薄,可安装在各种位置,安装简单方便;尤其可以安装在机器人外壳内部,不改变机器人外观;触摸时无需挤压形变即能感知触觉。
2、在本发明中,外壳的材质和厚度也可以根据实际使用需要任意变化;再加上触摸传感器厚度、形状和面积都可以根据实际使用需要进行设计和加工,使其具有灵敏度高、轻薄、耐用等优点,可以安装在各种狭小、多变的空间里。本发明中的电子皮肤的感应灵敏度可以根据实际使用时机器人外壳厚度进行调节。
3、在本发明中,感知载体铜箔的厚度轻薄,可安装在各种位置,安装简单方便;尤其可以安装在机器人外壳内部,不改变机器人外观;触摸时无需挤压形变即能感知触觉。
4、在本发明中,通过感应铜箔电容和人体与大地之间电容信号,生成对机器人皮肤的触发控制指令,触发控制指令输出特性稳定、成本低、易于实现。
附图说明
下面将以明确易懂的方式,结合附图说明优选实施方式,对一种机器人控制***及方法的上述特性、技术特征、优点及其实现方式予以进一步说明。
图1是一种机器人控制***的一个实施例的结构图;
图2是一种机器人控制***的另一个实施例的结构图;
图3是一种机器人控制***的另一个实施例的结构图;
图4是一种机器人控制***的另一个实施例的结构图;
图5是一种机器人控制***的一个实施例的结构图;
图6是一种机器人控制方法的一个实施例的流程图;
图7是一种机器人控制方法的另一个实施例的流程图。
附图标号说明:
100.触摸传感器;200.触觉检测控制器;300.运动控制器;400.机器人外壳。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。
本发明提供一种机器人控制***的一个实施例,参考图1和图2所示,包括:触摸传感器100,用于感应用户输入的控制指令信息;触觉检测控制器200,与所述触摸传感器电连接,用于获取所述触摸传感器感应的用户输入的控制指令信息,并进行处理;运动控制器300,与所述触觉检测控制器电连接,从所述触觉检测控制器中获取处理后的用户输入的控制指令信息,并根据所述控制指令信息控制所述机器人执行相应的任务。
具体的,在本实施例中,本发明的***中由多个触摸传感器100与机器人的外壳组成了机器人的仿生电子皮肤;触摸传感器采用铜箔作为触觉感受载 体;触觉检测控制器200用于接收铜箔产生的电信号,并将每个铜箔产生的电信号进行放大、滤波、去噪等处理后,发送至运动控制器300也即相当于机器人的中央控制器,用于协调和调节机器人的相应动作,由于铜箔安装在机器人的不同的身体部位,触碰不同的部位,机器人做出不同的反应信息;包括表情,动作,语音等。
在本发明中,多个触摸传感器分别安装于机器人本体上的多个部位;运动控制器采集触觉检测控制器输出的信号,当机器人被触摸时,触觉检测控制器输出对应的被触摸位置信号至运动控制器,运动控制器根据位置信号和机器人的工作场景控制机器人说出适当的话语或做出相应的动作,大大的丰富了人形机器人的人机交互能力。
在以上实施例的基础上,本发明还提供了一个实施例;参考图2所示;包括:所述用户输入的控制指令信息包括:第一电容信息和第二电容信息;所述第一电容信息是通过设置在所述机器人内部的所述触摸传感器的电容信息,所述第二电容信息包括用户人体的电容信息;触觉检测控制器200将所述第一电容信息和所述第二电容信息进行并联累加转换成所述用户输入的控制指令信息。触觉检测控制器200用于将用户输入的控制指令信息进行位置识别,且将位置识别后的控制指令信息与机器人的动作模块进行匹配,并传输至所述运动控制器。包括:所述触摸传感器设置在所述机器人外壳的内侧,所述触摸传感器一侧附着在所述机器人外壳的内侧,所述触摸传感器的另一侧焊接有导线,并通过该导线与所述触觉检测控制器电连接。
具体的,在本实施例中,第一电容和第二电容即:任何两个导电的物体之间都存在着感应电容,一个触摸区域与大地可构成一个感应电容生成第一电容,在周围环境不变的情况下,该感应电容第一电容的值是固定不变的微小值。当有人体手指靠近触摸区域时,人体手指与大地构成的感应电容构成第二电容;第二电容并联于触摸区域与大地构成的第一电容两端,会使总感应电容值增加。电容式触摸传感器IC在检测到某个触摸区域的感应电容值发生改变后,将输出某个触摸区域被按下的确定信号。电容式触摸区域因为没有机械构造,所有的检测都是电量的微小变化,所以实现起来更加容易,不 受结构限制。由于在机器人的身体上安装有多个触摸传感器,需要对每个触摸传感器对应的部位进行编号,根据触摸传感器的编号识别所处的位置,根据不同的位置,设置不同的功能信息;例如触碰左腿前进,触碰右腿后退等;具体的每个触摸传感器的功能设置的实施过程由运动控制器实现控制;触摸传感器根据应用的场景不同,以及根据机器人设置的身高、体重不同,设置成不同大小、尺寸;例如厚度为0.08mm;大小为30*40mm的铜箔作为触觉感受载体,将触摸传感器通过不干胶粘贴在机器人外壳的内壁上,即参考图3所示,最上一层是机器人外壳400,下层是触摸传感器100,其中触摸传感器一面涂有不干胶,方便和机器人外壳内壁粘贴。触摸传感器100另一面焊接单芯屏蔽导线与触觉检测控制器芯片的输入端连接即可。
在本发明中,触摸传感器的安装结构简单,便不会影响机器人的整体外形设计,触摸传感器根据实际使用需要在需要的部位安装;通过铜箔触摸传感器解决了压阻式电子皮肤导电材料容易发生变形,无法回弹的问题;另外,电容式触摸区域因为没有机械构造,所有的检测都是电量的微小变化,所以实现起来更加容易,不受结构限制。
在以上实施例的基础上,本发明还提供了一个实施例;参考图2、图4所示;所述触觉检测控制器包括:电容触摸芯片U1,所述电容触摸芯片型号为:TTY6851;电源稳压器U2,所述电源稳压器为:LM1117;所述电容触摸芯片U1设置有8个信息输入控制端为K1~K8和3个信息输出控制端为D0~D2;所述电容触摸芯片U1的每个信息输入控制端通过一个限流电阻与对应的感应信号输入端电连接;所述电容触摸芯片U1的每个信息输出控制端分别与所述运动控制模块对应电连接;所述电容触摸芯片U1的电源输入端与所述电源稳压器U2的输出端电连接;所述电源稳压器U2的输入端与电源供电端电连接。所述触觉检测控制器还包括:所述电容触摸芯片U1的信号调节端通过电容器C13与公共地端电连接;所述电容触摸芯片U1的每个信息输入控制端还通过一个调节电容与所述公共地端电连接。
具体的,通过电容触摸芯片U1的信息输入控制端为K1~K8,接收触发电信号,根据应用场景不同,可以扩展多个电容触摸芯片U1;并将其与运动控 制器连接;U1直接输出二进制BCD编码,触摸离开后输出状态保持到下次触摸才改变。多个触摸传感器分别为头部触摸传感器、左臂触摸传感器、右臂触摸传感器、左腋触摸传感器、右腋触摸传感器、左手触摸传感器和右手触摸传感器。各触摸传感器安装于机器人本体上的多个不同部位,即头部、两侧大臂、两侧腋下和两只手。如图5所示,椭圆区域为触摸传感器安装处。每个触摸传感器通过单芯屏蔽导线连接到触觉检测控制器的输入端,触觉检测控制器输出的信号直接连到运动控制器。在本申请中调节机器人电子皮肤的感应灵敏度,可以在触觉检测控制器的CAP管脚接一电容Cap来粗调电子皮肤的感应灵敏度,所述Cap电容的值越大,灵敏度越高,其值范围为6.8nF~33nF。进一步的,可以在信号采集端连接一并联电容Cs,用于细调电子皮肤的感应灵敏度。所述并联电容的电容量为0~5pF,电容量越低灵敏度越高,不连接并联电容时灵敏度最高。在本实施例中,不连接Cs电容。由于机器人外壳根据不同的部位,设置外壳的厚度也不同,因此影响了感应灵敏度;在本申请中提供了与壳体厚度对应的电容值;参照表一所示;
表一
机器人外壳厚度(mm) Cap值(nF) 灵敏度
1 6.8 30
2 10 30
3 15 30
4 22 30
5 22 30
10 33 30
在本发明中,触觉传感***解决方案可根据实际使用需要在需要的部位安装触摸传感器;电子皮肤的感应灵敏度可以根据实际使用时机器人外壳厚度进行调节;本发明的感知载体厚度轻薄,可安装在各种位置,安装简单方便;尤其可以安装在机器人外壳内部,不改变机器人外观;触摸时无需挤压形变即能感知触觉。
本发明还提供了一种机器人控制方法的实施例,将机器人控制方法应用 在以上的实施例中,参考图6所示;包括:步骤S100获取用户输入的控制指令信息;步骤S200将获取的所述用户输入的控制指令信息进行处理;步骤S300根据处理后的所述控制指令信息控制机器人执行相应的任务。
在以上实施例的基础上,本发明还提供了一个实施例,参考图6和图7所示;步骤S100中用户输入的控制指令信息包括:步骤S110获取第一电容信息和第二电容信息;所述第一电容信息包括触摸传感器的电容信息,所述第二电容信息包括用户人体的电容信息;步骤S120将所述第一电容信息和所述第二电容信息进行并联累加转换成所述用户输入的控制指令信息。所述步骤S200中包括:步骤S210对用户输入的控制指令信息进行位置识别;步骤S220将位置识别后的控制指令信息与机器人的动作模块进行匹配。
在本发明中,外壳的材质和厚度也可以根据实际使用需要任意变化。再加上触摸传感器厚度、形状和面积都可以根据实际使用需要进行设计和加工,使其具有灵敏度高、轻薄、耐用等优点,可以安装在各种狭小、多变的空间里。本发明中的电子皮肤的感应灵敏度可以根据实际使用时机器人外壳厚度进行调节。
在本发明中,感知载体铜箔的厚度轻薄,可安装在各种位置,安装简单方便;尤其可以安装在机器人外壳内部,不改变机器人外观;触摸时无需挤压形变即能感知触觉。
在本发明中,通过感应铜箔电容和人体与大地之间电容信号,生成对机器人皮肤的触发控制指令,触发控制指令输出特性稳定、成本低、易于实现。
需要说明的是,本申请中的方法应用在本申请的***中,其执行的各步骤与本***中各模块之间的信息交互、执行过程等内容与本发明的***的实施例属于同一构思,具体内容可参见本发明申请实施例中的叙述,此处不再赘述。
本申请中在满足本申请性能参数的情况下,可以根据使用场景的不同,以及工作量的承载信息的不同,可以适应性的更换为其他的芯片,包括51系列的单片机,PIC系列,以及ARM系列等。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发 明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围

Claims (10)

  1. 一种机器人控制***,其特征在于,包括:
    触摸传感器,用于感应用户输入的控制指令信息;
    触觉检测控制器,与所述触摸传感器电连接,用于获取所述触摸传感器感应的用户输入的控制指令信息,并进行处理;
    运动控制器,与所述触觉检测控制器电连接,从所述触觉检测控制器中获取处理后的用户输入的控制指令信息,并根据所述控制指令信息控制所述机器人执行相应的任务。
  2. 根据权利要求1所述的一种机器人控制***,其特征在于,包括:
    所述用户输入的控制指令信息包括:第一电容信息和第二电容信息;
    所述第一电容信息是通过设置在所述机器人内部的所述触摸传感器的电容信息,所述第二电容信息包括用户人体的电容信息;
    触觉检测控制器将所述第一电容信息和所述第二电容信息进行并联累加转换成所述用户输入的控制指令信息。
  3. 根据权利要求1所述的一种机器人控制***,其特征在于,触觉检测控制器用于将用户输入的控制指令信息进行位置识别,且将位置识别后的控制指令信息与机器人的动作模块进行匹配,并传输至所述运动控制器。
  4. 根据权利要求1-3任一所述的一种机器人控制***,其特征在于,包括:
    所述触摸传感器设置在所述机器人外壳的内侧,所述触摸传感器一侧附着在所述机器人外壳的内侧,所述触摸传感器的另一侧焊接有导线,并通过该导线与所述触觉检测控制器电连接。
  5. 根据权利要求4所述一种机器人控制***,其特征在于,所述触觉检测控制器包括:电容触摸芯片U1;电源稳压器U2;
    所述电容触摸芯片U1设置有8个信息输入控制端为K1~K8和3个信息输出控制端为D0~D2;
    所述电容触摸芯片U1的每个信息输入控制端通过一个限流电阻与对应的感应信号输入端电连接;
    所述电容触摸芯片U1的每个信息输出控制端分别与所述运动控制模块对应电连接;
    所述电容触摸芯片U1的电源输入端与所述电源稳压器U2的输出端电连接;所述电源稳压器U2的输入端与电源供电端电连接。
  6. 根据权利要求5所述一种机器人控制***,其特征在于,所述触觉检测控制器还包括:
    所述电容触摸芯片U1的信号调节端通过电容器C13与公共地端电连接;
    所述电容触摸芯片U1的每个信息输入控制端还通过一个调节电容与所述公共地端电连接。
  7. 根据权利要求1所述的一种机器人控制***,其特征在于,包括:所述触摸传感器由铜箔材料制成。
  8. 一种机器人控制方法,应用于权利要求1-7所述的任一所述的机器人控制***中,其特征在于,包括:
    步骤S100获取用户输入的控制指令信息;
    步骤S200将获取的所述用户输入的控制指令信息进行处理;
    步骤S300根据处理后的所述控制指令信息控制机器人执行相应的任务。
  9. 根据权利要求1所述的一种基于机器人电子皮肤***的应用方法,其特征在于,所述步骤S100中用户输入的控制指令信息包括:
    步骤S110获取第一电容信息和第二电容信息;所述第一电容信息包括触摸传感器的电容信息,所述第二电容信息包括用户人体的电容信息;
    步骤S120将所述第一电容信息和所述第二电容信息进行并联累加转换成所述用户输入的控制指令信息。
  10. 根据权利要求1所述的一种基于机器人电子皮肤***的应用方法,其特征在于,所述步骤S200中包括:
    步骤S210对用户输入的控制指令信息进行位置识别;
    步骤S220将位置识别后的控制指令信息与机器人的动作模块进行匹配。
PCT/CN2018/082890 2017-09-05 2018-04-12 一种机器人控制***及方法 WO2019047528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710789951.5 2017-09-05
CN201710789951.5A CN107351090A (zh) 2017-09-05 2017-09-05 一种机器人控制***及方法

Publications (1)

Publication Number Publication Date
WO2019047528A1 true WO2019047528A1 (zh) 2019-03-14

Family

ID=60290713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082890 WO2019047528A1 (zh) 2017-09-05 2018-04-12 一种机器人控制***及方法

Country Status (2)

Country Link
CN (1) CN107351090A (zh)
WO (1) WO2019047528A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107351090A (zh) * 2017-09-05 2017-11-17 南京阿凡达机器人科技有限公司 一种机器人控制***及方法
CN108511042B (zh) * 2018-03-27 2020-07-17 哈工大机器人集团股份有限公司 一种宠物治愈系机器人
CN112518716A (zh) * 2020-11-23 2021-03-19 深圳市越疆科技有限公司 机器人的拖动示教触发方法、装置及机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117256A (ja) * 2001-10-15 2003-04-22 Microjenics Inc 愛玩用ロボット
CN101206544A (zh) * 2006-12-22 2008-06-25 财团法人工业技术研究院 人机互动的触觉感测装置及其方法
CN104635562A (zh) * 2013-11-13 2015-05-20 沈阳新松机器人自动化股份有限公司 一种触觉传感器、触觉传感***及智能机器人
CN107351090A (zh) * 2017-09-05 2017-11-17 南京阿凡达机器人科技有限公司 一种机器人控制***及方法
CN207172081U (zh) * 2017-09-05 2018-04-03 南京阿凡达机器人科技有限公司 一种机器人控制***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI306051B (en) * 2006-12-14 2009-02-11 Ind Tech Res Inst Robotic apparatus with surface information displaying and interaction capability
CN100583007C (zh) * 2006-12-21 2010-01-20 财团法人工业技术研究院 具有表面显示信息与互动功能的可动装置
JP5109573B2 (ja) * 2007-10-19 2012-12-26 ソニー株式会社 制御システム及び制御方法、並びにロボット装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117256A (ja) * 2001-10-15 2003-04-22 Microjenics Inc 愛玩用ロボット
CN101206544A (zh) * 2006-12-22 2008-06-25 财团法人工业技术研究院 人机互动的触觉感测装置及其方法
CN104635562A (zh) * 2013-11-13 2015-05-20 沈阳新松机器人自动化股份有限公司 一种触觉传感器、触觉传感***及智能机器人
CN107351090A (zh) * 2017-09-05 2017-11-17 南京阿凡达机器人科技有限公司 一种机器人控制***及方法
CN207172081U (zh) * 2017-09-05 2018-04-03 南京阿凡达机器人科技有限公司 一种机器人控制***

Also Published As

Publication number Publication date
CN107351090A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
US10101809B2 (en) Systems, articles, and methods for capacitive electromyography sensors
US9417693B2 (en) Wearable wireless HMI device
CN108319380B (zh) 力传感器
CN102207415B (zh) 基于导电橡胶的柔性阵列片式压力传感器及制造方法
WO2019047528A1 (zh) 一种机器人控制***及方法
CN106066712B (zh) 力量感测模块
CN106502447B (zh) 内嵌式触摸型显示装置
CN207172081U (zh) 一种机器人控制***
CN109690273A (zh) 传感器、带、电子设备和手表型电子设备
CN103091002A (zh) 电容式压力传感转换装置及在低端单片机上实现电容式压力传感的方法
CN115756186A (zh) 压敏触控笔
US20230270363A1 (en) Smart Electrodes for Sensing Signals and Processing Signals Using Internally-Housed Signal-Processing Components at Wearable Devices and Wearable Devices Incorporating the Smart Electrodes
Pan et al. State-of-the-art in data gloves: A review of hardware, algorithms, and applications
CN108563333A (zh) 一种穿戴设备及其控制方法
CN112659162A (zh) 触觉感知指尖装置及机器人
McCaw et al. Sensory glove for dynamic hand proprioception and tactile sensing
CN116909390A (zh) 基于手套的多模态数据采集***
CN113835355A (zh) 一种基于物联网的智能家居控制***及方法
CN111657609A (zh) 智能触摸手套、手姿检测装置、虚拟键盘及控制终端
CN205322321U (zh) 智能腕带
CN219982223U (zh) 一种基于微结构化柔性压力传感器的可穿戴智能手套
CN211987038U (zh) 一种电容式感应手柄
CN216979741U (zh) 基于触控面板的外骨骼机器人手控器
CN106067801A (zh) 压力按钮
KR102089139B1 (ko) 정전용량 방식의 사용자 의도 센싱 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854846

Country of ref document: EP

Kind code of ref document: A1