WO2019047389A1 - 激光雷达控制方法及激光雷达 - Google Patents

激光雷达控制方法及激光雷达 Download PDF

Info

Publication number
WO2019047389A1
WO2019047389A1 PCT/CN2017/113354 CN2017113354W WO2019047389A1 WO 2019047389 A1 WO2019047389 A1 WO 2019047389A1 CN 2017113354 W CN2017113354 W CN 2017113354W WO 2019047389 A1 WO2019047389 A1 WO 2019047389A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser radar
lidar
area
laser
specific
Prior art date
Application number
PCT/CN2017/113354
Other languages
English (en)
French (fr)
Inventor
邱纯鑫
刘乐天
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Publication of WO2019047389A1 publication Critical patent/WO2019047389A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the invention relates to the field of detection, in particular to a laser radar control method and a laser radar.
  • Lidar is a radar system that emits a laser beam to detect the position and velocity of a target.
  • the working principle is to first transmit a probe laser beam to the target, and then compare the received signal reflected from the target with the transmitted signal. After proper processing, information about the target, such as target distance, azimuth, altitude, speed, attitude, and even shape, can be obtained.
  • the prior art laser radars are usually hybrid solid state laser radars that enable 360 degree range scanning.
  • Hybrid solid-state laser radars typically require 360-degree scanning with an internal rotating mechanism.
  • the rotational speed of the internal rotating structure is usually fixed, so the resolution in the vertical and horizontal directions is the same and is not adjustable.
  • laser radar applied to unmanned vehicles has high requirements for scanning accuracy and resolution of the forward direction of unmanned vehicles, while other areas are required.
  • the scanning accuracy and resolution requirements are not high.
  • the laser radar is difficult to achieve the scanning accuracy and resolution requirements of the key areas, and on the other hand, the scanning of other areas cannot be avoided, thus wasting the resources of the laser radar.
  • a lidar control method comprising:
  • the lidar is adjusted to cause the lidar to perform a focused scan of a particular scan area.
  • a laser radar comprising:
  • the controller is further configured to adjust the lidar to cause the lidar to perform a focused scan on a particular scan area.
  • the laser radar of the embodiment of the present invention can The key scanning is performed in a specific scanning area, which improves the accuracy of recognition of the object and improves the reliability of the laser radar.
  • the laser radar does not focus on scanning outside the specific scanning area, and can rationally utilize the resources of the laser radar to save costs. .
  • FIG. 1 is a flow chart showing a method of controlling a laser radar according to an embodiment
  • FIG. 2 is a schematic diagram of a specific object in one frame of data of an embodiment
  • Figure 3 is a schematic illustration of a particular scan area of an embodiment.
  • FIG. 1 is a flowchart of a method for controlling a laser radar according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step S110 determining a specific scanning area of the laser radar
  • step S120 the laser radar is adjusted to cause the laser radar to perform a key scan on a specific scanning area.
  • step S110 the determining a specific scanning area of the laser radar includes:
  • the area where the specific object is located is taken as the specific scanning area.
  • FIG. 2 is a schematic diagram of a specific object in one frame of data according to an embodiment of the present invention, and FIG. 2 is a simplified schematic diagram.
  • the data collected by the laser radar is point cloud data, that is, objects in each frame of data are Consisting of multiple points.
  • the object 201 may be a roadside tree, a front vehicle, or a roadblock.
  • the object 201 is referred to as a specific object, and the area where the specific object is located is a specific scanning area.
  • a specific object is not necessarily a regular object, so a specific scanning area may be an area centered on a specific object.
  • a certain amount of redundancy can also be set.
  • the area where the object 201 is located takes a rectangular area that can enclose the object 201 as a specific area 202. If a certain amount of redundancy, such as a 10% redundancy, is taken into consideration, a rectangular area surrounding the object 201 and containing a certain amount of redundancy can be used as the specific area 203.
  • step S110 the determining a specific scanning area of the laser radar includes:
  • the specific scanning area is determined according to the moving direction of the laser radar.
  • the laser radar can be installed on a driverless car or other device and device that can move in a zigzag manner.
  • the moving direction of the driverless car or the movable device can be determined.
  • the specific scanning area can be determined according to the moving direction of the laser radar, that is, the moving direction of the driverless car and the movable device.
  • 3 is a schematic diagram of a specific scanning area according to an embodiment of the present invention.
  • the moving direction of the driverless vehicle that is, the traveling direction of the laser radar 300 is a bottom-up moving direction 301, and the moving direction is As the center line, 301 takes a sector area 302 whose angle is a preset angle as a specific scanning area.
  • the outer line of the sector area 302 is indicated by a broken line.
  • the preset angle can be set based on experience.
  • step S120 the laser radar is adjusted to perform a key scan of the specific scanning area by the laser radar, including:
  • the lidar scans a particular scan area, the power of the laser transmitter of the lidar is increased.
  • the laser emitted by the laser radar is emitted by the laser emitter.
  • the emitted laser and the reflected laser are weakened as the detection distance increases.
  • the receiver of the lidar cannot receive the laser. Reflecting the laser, therefore, the effective detection range of the laser radar is limited.
  • the power of the laser transmitter of the laser radar is increased, the effective detection distance of the laser radar can be increased. For a specific scanning area, that is, the area that you want to focus on, the effective detection distance increases, which helps to obtain more effective laser point clouds, and the scanning accuracy of the area is higher.
  • step S120 the laser radar is adjusted to perform a key scan of the specific scanning area by the laser radar, including:
  • the scan speed of the lidar is adjusted.
  • adjusting the scanning speed of the laser radar is to reduce the scanning speed of the laser radar.
  • the time it takes for the lidar to scan a certain angle is N seconds.
  • the time spent scanning the same angle is M seconds, and M seconds is greater than N seconds.
  • the laser transmitter of the laser radar emits laser light in a pulsed manner.
  • the emission process is “accumulation”-“emission”-“accumulation”.
  • the longer the energy storage time the higher the transmission power, that is, the transmission power and time. A certain relationship.
  • the energy storage time is longer. At this time, the number of laser pulses transmitted per unit time is small, thereby reducing the scanning speed of the laser radar. , you can ensure that the number of pulses sent per unit time is equal to the original.
  • the laser energy storage time of the laser radar is kept constant, reducing the scanning speed of the laser radar can increase the number of laser pulses transmitted per unit time, the scanning for a specific scanning area will be more precise and the accuracy will be higher.
  • the power of the laser transmitter is increased, the scanning distance is increased, and the time interval between the corresponding emitted laser and the emitted laser is also increased. Therefore, adjusting the scanning speed of the laser radar is also beneficial to the reception of the reflected laser, and the accuracy of the laser radar can be improved. .
  • the laser radar of the embodiment of the invention may be a solid-state laser radar.
  • the detection range of the solid-state laser radar is usually a fan shape of 120 degrees, and the scanning speed of the solid-state laser radar can be adjusted, and the adjustment method is usually different depending on the structure of the solid-state laser radar. It can adjust the rotational speed of MEMS (Micro-Electro-Mechanical System) galvanometer or other types of galvanometer, or can adjust the speed of OPA (Optical phased array), or can adjust other machinery. The speed of movement of the structure.
  • MEMS Micro-Electro-Mechanical System
  • OPA Optical phased array
  • step S120 the laser radar is adjusted to cause the laser radar to perform a key scan on a specific scanning area, including:
  • the algorithm of the lidar is adjusted if the lidar scans a particular scan area.
  • the receiving of the laser is different from the original laser radar, so the algorithm of the laser radar needs to be adjusted accordingly.
  • the specific scanning area of the laser radar is first determined, and then the laser radar is adjusted to perform the key scanning on the specific scanning area by the laser radar. Therefore, the laser radar of the embodiment of the invention can perform key scanning on the specific scanning area. , the recognition accuracy of the object is improved, and the reliability of the laser radar is improved; meanwhile, the laser radar of the embodiment of the invention is for a specific scanning area.
  • the outer area is not focused on scanning, and the resources of the laser radar can be rationally utilized to save costs.
  • a laser radar is disclosed in an embodiment of the invention, the laser radar comprising:
  • the controller is further configured to adjust the lidar to cause the lidar to perform a focused scan on a particular scan area.
  • the controller is further configured to:
  • the area where the specific object is located is taken as the specific scanning area.
  • the controller is further configured to:
  • the specific scanning area is determined according to the moving direction of the laser radar.
  • the controller is further configured to:
  • a sector area having a predetermined angle is taken as a center line with the moving direction of the laser radar as a center line.
  • the controller is further configured to:
  • the lidar scans a particular scan area, the power of the laser transmitter of the lidar is increased.
  • the controller is further configured to:
  • the scan speed of the lidar is adjusted.
  • the controller is further configured to:
  • the algorithm of the lidar is adjusted if the lidar scans a particular scan area.
  • the laser radar of the embodiment of the present invention can perform key scanning on a specific scanning area, improve the recognition accuracy of the object, and improve the reliability of the laser radar. Meanwhile, the laser radar of the embodiment of the present invention does not have a region other than the specific scanning area. Focus on scanning, you can make rational use of Lidar resources and save costs.
  • the technology in the embodiments of the present invention can be implemented by means of software plus necessary general hardware including general-purpose integrated circuits, general-purpose CPUs, A general-purpose memory, a general-purpose component, or the like can of course be realized by dedicated hardware including an application-specific integrated circuit, a dedicated CPU, a dedicated memory, a dedicated component, etc., but in many cases, the former is a better embodiment.
  • the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a read-only memory.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达控制方法及激光雷达,该激光雷达控制方法包括:确定激光雷达的特定扫描区域(110);调节激光雷达,以使激光雷达对特定扫描区域进行重点扫描(120)。该方法可以对特定扫描区域进行重点扫描,提高了对物体的识别精确度,提高了激光雷达的可靠性;同时,激光雷达对于特定扫描区域以外的区域不做重点扫描,可以合理利用激光雷达的资源,节约成本。

Description

激光雷达控制方法及激光雷达 技术领域
本发明涉及检测领域,特别涉及一种激光雷达控制方法及激光雷达。
背景技术
激光雷达是以发射激光光束来探测目标的位置、速度等特征量的雷达***,其工作原理是先向目标发射探测激光光束,然后将接收到的从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的有关信息,例如目标距离、方位、高度、速度、姿态、甚至形状等参数。
现有技术中的激光雷达通常是混合固态激光雷达,可以实现360度范围的扫描。混合固态激光雷达通常需要配合内部旋转机构实现360度的扫描,内部旋转结构的旋转速度通常是固定的,因此在垂直方向上和水平方向上的分辨率是相同且不可调的。
在实际应用中,对于重点区域的扫描具有较高的要求,例如应用于无人汽车上的激光雷达,对于无人汽车的前进方向的扫描精度和分辨率有较高的要求,而对其他区域的扫描精度和分辨率要求不高。现有技术中的激光雷达,一方面难以达到对重点区域扫描精度和分辨率的要求,另一方面也无法避免对其他区域的扫描,因此浪费了激光雷达的资源。
发明内容
基于此,有必要提供一种能合理利用激光雷达资源,节约成本,提高激光雷达精确度的激光雷达控制方法及激光雷达。
一种激光雷达控制方法,所述方法包括:
确定激光雷达的特定扫描区域;及
调节所述激光雷达,以使所述激光雷达对特定扫描区域进行重点扫描。
一种激光雷达,所述激光雷达包括:
控制器,用于确定激光雷达的特定扫描区域;
所述控制器还用于调节所述激光雷达,以使所述激光雷达对特定扫描区域进行重点扫描。
上述激光雷达控制方法及激光雷达,该方法中先确定激光雷达的特定扫描区域,然后调节激光雷达,使所述激光雷达对特定扫描区域进行重点扫描,因此,本发明实施例的激光雷达可以对特定扫描区域进行重点扫描,提高了对物体的识别精确度,提高了激光雷达的可靠性;同时,激光雷达对于特定扫描区域以外的区域不做重点扫描,可以合理利用激光雷达的资源,节约成本。
附图说明
为了更清楚地说明本实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1所示为一实施例的激光雷达控制方法的流程图;
图2所示为一实施例的一帧数据中的特定物体的示意图;
图3所示为一实施例的特定扫描区域的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术 语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1所示为本发明实施例的激光雷达控制方法的流程图,如图1所示,所述方法包括:
步骤S110,确定激光雷达的特定扫描区域;
步骤S120,调节所述激光雷达,以使所述激光雷达对特定扫描区域进行重点扫描。
步骤S110中,所述确定激光雷达的特定扫描区域包括:
对所述激光雷达采集到的前一帧数据进行分析,获取特定物体;
将所述特定物体所在的区域作为所述特定扫描区域。
图2所示为本发明实施例的一帧数据中的特定物体的示意图,图2为简化示意图,实际上激光雷达采集到的数据是点云数据,即每一帧数据中的物体都是由多个点构成的。
如图2所示,图2所示的数据帧中,物体201可以是路边的树,也可以是前方的车辆,或者可以是路障等。本发明实施例中,该物体201被称为特定物体,该特定物体所在区域为特定扫描区域。
通常特定物体并不一定是规则的物体,所以特定扫描区域可以以特定物体为中心的一个区域。
考虑到特定物体可能是移动的物体,还可以设定一定的冗余量。
如图2所示,物体201所在的区域取可包围物体201的长方形区域为特定区域202。如果考虑到一定的冗余量,比如10%的冗余量,则可以将包围物体201且包含一定冗余量的长方形区域作为特定区域203。
本发明其他实施例中,步骤S110中,所述确定激光雷达的特定扫描区域包括:
根据所述激光雷达的移动方向,确定所述特定扫描区域。
本发明实施例中,激光雷达可以安装在无人驾驶汽车上,或者其他可字形移动的设备、装置上。
无人驾驶汽车或可移动设备的移动方向是可以确定的,本发明实施例中,可以根据激光雷达的移动方向,即无人驾驶汽车、可移动设备的移动方向来确定特定扫描区域。
下面以无人驾驶汽车为例进行说明,无人驾驶汽车的前进方向上如果有障碍物,例如路障、行人、其他汽车等,会对该无人驾驶汽车的行进产生巨大的影响。图3所示为本发明实施例的特定扫描区域的示意图,如图3所示,无人驾驶汽车的移动方向,即激光雷达300前进方向为自下而上的移动方向301,以该移动方向301作为中心线,取角度为预设角度的扇形区域302作为特定扫描区域,图3中,该扇形区域302的外沿线以虚线表示。
预设角度可以根据经验来设定。
本发明实施例中,步骤S120中,所述调节激光雷达,以使激光雷达对特定扫描区域进行重点扫描,包括:
若所述激光雷达对特定扫描区域进行扫描,则增加所述激光雷达的激光发射器的功率。
激光雷达发射的激光是由激光发射器发出的,发射激光和反射激光会随着探测距离的增大而被削弱,当反射激光被削弱到一定程度后,激光雷达的接收器就无法接收到该反射激光,因此,激光雷达的有效探测距离是有限的。当增加激光雷达的激光发射器的功率,可以增加激光雷达的有效探测距离。对于特定扫描区域,即想要重点探测的区域,有效探测距离的增加,有助于获取更多的有效激光点云,则对该区域的扫描精度就更高。
本发明实施例中,步骤S120中,所述调节激光雷达,以使激光雷达对特定扫描区域进行重点扫描,包括:
若所述激光雷达对特定扫描区域进行扫描,则调节所述激光雷达的扫描速度。
本发明实施例中,调节激光雷达的扫描速度是降低激光雷达的扫描速度。正常情况下,激光雷达扫描一定角度耗费时间是N秒,调节激光雷达的扫描速度后,扫描相同角度耗费的时间是M秒,M秒大于N秒。
激光雷达的激光发射器是以脉冲的方式发射激光的,其发射过程为“蓄能”-“发射”-“蓄能”,蓄能时间越长,发射功率越大,即发射功率和时间有一定的关系。激光雷达对于特定扫描区域进行扫描的时候,为了保证激光发射功率较大,蓄能时间就要较长,此时,单位时间内发送的激光脉冲的数量就较小,因此降低激光雷达的扫描速度,就可以保证单位时间内发送的脉冲的数量与原来相等。
此外,若保持激光雷达的激光发射器的蓄能时间不变,降低激光雷达的扫描速度可以增加单位时间内发送的激光脉冲的数量,则对于特定扫描区域的扫描会更加精细,精确度也会更高。
同时,激光发射器功率提高,可扫描距离增加,相应的发射激光与发射激光之间的时间间隔也增加,所以调节激光雷达的扫描速度也有利于反射激光的接收,可以提高激光雷达的精确度。
本发明实施例的激光雷达可以是固态激光雷达,固态激光雷达的探测范围通常是120度的扇形,固态激光雷达的扫描速度是可以调节的,通常视固态激光雷达结构的不同而调节方法也不同,可以是调节MEMS(Micro-Electro-Mechanical System,微机电***)振镜或其他类型振镜的转动速度,或可以调节OPA(Optical phased array,光学相控阵)的速度,或可以调节其他机械式结构的移动速度。
本发明的一个实施例中,在步骤S120中,所述调节激光雷达,以使激光雷达对特定扫描区域进行重点扫描,包括:
若所述激光雷达对特定扫描区域进行扫描,则调节所述激光雷达的算法。
激光雷达的激光发射功率和/或扫描速度调节后,发射激光的接收不同于原本的激光雷达,因此需要对激光雷达的算法做相应的调节。
本发明实施例中,先确定激光雷达的特定扫描区域,然后调节激光雷达,使所述激光雷达对特定扫描区域进行重点扫描,因此,本发明实施例的激光雷达可以对特定扫描区域进行重点扫描,提高了对物体的识别精确度,提高了激光雷达的可靠性;同时,本发明实施例的激光雷达对于特定扫描区域以 外的区域不做重点扫描,可以合理利用激光雷达的资源,节约成本。
本发明的实施例中公开了一种激光雷达,所述激光雷达包括:
控制器,用于确定激光雷达的特定扫描区域;
所述控制器还用于调节所述激光雷达,以使所述激光雷达对特定扫描区域进行重点扫描。
本发明实施例中,所述控制器还用于:
对所述激光雷达采集到的前一帧数据进行分析,获取特定物体;
将所述特定物体所在的区域作为所述特定扫描区域。
本发明实施例中,所述控制器还用于:
根据所述激光雷达的移动方向,确定所述特定扫描区域。
本发明实施例中,所述控制器还用于:
以所述激光雷达的移动方向为中心线,角度为预设角度的扇形区域作为所述特定扫描区域。
本发明实施例中,所述控制器还用于:
若所述激光雷达对特定扫描区域进行扫描,则增加所述激光雷达的激光发射器的功率。
本发明实施例中,所述控制器还用于:
若所述激光雷达对特定扫描区域进行扫描,则调节所述激光雷达的扫描速度。
本发明实施例中,所述控制器还用于:
若所述激光雷达对特定扫描区域进行扫描,则调节所述激光雷达的算法。
本发明实施例的激光雷达可以对特定扫描区域进行重点扫描,提高了对物体的识别精确度,提高了激光雷达的可靠性;同时,本发明实施例的激光雷达对于特定扫描区域以外的区域不做重点扫描,可以合理利用激光雷达的资源,节约成本。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件的方式来实现,通用硬件包括通用集成电路、通用CPU、 通用存储器、通用元器件等,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种激光雷达控制方法,包括:
    确定激光雷达的特定扫描区域;及
    调节所述激光雷达,以使所述激光雷达对特定扫描区域进行重点扫描。
  2. 根据权利要求1所述的方法,其特征在于,所述确定激光雷达的特定扫描区域的步骤包括:
    对所述激光雷达采集到的前一帧数据进行分析,获取特定物体;及
    将所述特定物体所在的区域作为所述特定扫描区域。
  3. 根据权利要求1所述的方法,其特征在于,所述确定激光雷达的特定扫描区域的步骤包括:
    根据所述激光雷达的移动方向,确定所述特定扫描区域。
  4. 根据权利要求3所述的方法,其特征在于,所述根据激光雷达的移动方向,确定特定扫描区域的步骤包括:
    以所述激光雷达的移动方向为中心线,角度为预设角度的扇形区域作为所述特定扫描区域。
  5. 根据权利要求1所述的方法,其特征在于,所述调节激光雷达,以使激光雷达对特定扫描区域进行重点扫描的步骤包括:
    若所述激光雷达对特定扫描区域进行扫描,则增加所述激光雷达的激光发射器的功率。
  6. 根据权利要求1所述的方法,其特征在于,所述调节激光雷达,以使激光雷达对特定扫描区域进行重点扫描的步骤包括:
    若所述激光雷达对特定扫描区域进行扫描,则调节所述激光雷达的扫描速度。
  7. 根据权利要求1所述的方法,其特征在于,所述调节激光雷达,以使激光雷达对特定扫描区域进行重点扫描的步骤包括:
    若所述激光雷达对特定扫描区域进行扫描,则调节所述激光雷达的算法。
  8. 根据权利要求6所述的方法,其特征在于,所述调节激光雷达的扫描 速度的步骤为降低激光雷达的扫描速度。
  9. 一种激光雷达,所述激光雷达包括:
    控制器,用于确定激光雷达的特定扫描区域;
    所述控制器还用于调节所述激光雷达,以使所述激光雷达对特定扫描区域进行重点扫描。
  10. 根据权利要求9所述的激光雷达,其特征在于,所述控制器用于对所述激光雷达采集到的前一帧数据进行分析,获取特定物体,及将所述特定物体所在的区域作为所述特定扫描区域。
  11. 根据权利要求10所述的激光雷达,其特征在于,所述激光雷达采集到的前一帧数据是点云数据。
  12. 根据权利要求9所述的激光雷达,其特征在于,所述控制器用于根据所述激光雷达的移动方向,确定所述特定扫描区域。
  13. 根据权利要求9所述的激光雷达,其特征在于,所述激光雷达包括固态激光雷达。
  14. 根据权利要求9所述的激光雷达,其特征在于,所述激光雷达还包括激光发射器。
  15. 根据权利要求14所述的激光雷达,其特征在于,所述激光发射器以脉冲的方式发射激光。
PCT/CN2017/113354 2017-09-08 2017-11-28 激光雷达控制方法及激光雷达 WO2019047389A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710804472.6A CN107632296A (zh) 2017-09-08 2017-09-08 激光雷达控制方法及激光雷达
CN201710804472.6 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019047389A1 true WO2019047389A1 (zh) 2019-03-14

Family

ID=61100073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113354 WO2019047389A1 (zh) 2017-09-08 2017-11-28 激光雷达控制方法及激光雷达

Country Status (2)

Country Link
CN (1) CN107632296A (zh)
WO (1) WO2019047389A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731355A (zh) * 2020-12-25 2021-04-30 深圳优地科技有限公司 计算激光雷达安装角度偏差的方法、装置、终端和介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728131B (zh) * 2017-11-10 2020-04-28 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN110333499A (zh) * 2018-10-12 2019-10-15 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN109239691A (zh) * 2018-11-08 2019-01-18 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN110398752A (zh) * 2019-08-05 2019-11-01 昂纳信息技术(深圳)有限公司 一种多视场的激光雷达***
CN112789521B (zh) * 2020-01-22 2024-04-26 深圳市速腾聚创科技有限公司 感知区域的确定方法、装置、存储介质及车辆
CN116529630A (zh) * 2021-04-14 2023-08-01 深圳市大疆创新科技有限公司 探测方法、装置、可移动平台及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314775A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 距離測定装置
JP2007139594A (ja) * 2005-11-18 2007-06-07 Omron Corp 物体検出装置
US7453552B1 (en) * 2004-07-16 2008-11-18 Lockheed Martin Corporation Laser amplification methods and apparatuses
CN103969637A (zh) * 2013-01-30 2014-08-06 株式会社理光 目标探测器
CN104793215A (zh) * 2014-01-17 2015-07-22 欧姆龙汽车电子株式会社 激光雷达装置、物体检测方法
CN107271984A (zh) * 2017-06-16 2017-10-20 陈明 一种全固态激光雷达的扫描方法
CN206832985U (zh) * 2017-06-16 2018-01-02 陈明 一种全固态激光雷达装置
CN107678012A (zh) * 2017-11-10 2018-02-09 深圳市速腾聚创科技有限公司 激光雷达闭环控制***、激光雷达及激光雷达控制方法
CN107728131A (zh) * 2017-11-10 2018-02-23 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314775A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 距離測定装置
US7453552B1 (en) * 2004-07-16 2008-11-18 Lockheed Martin Corporation Laser amplification methods and apparatuses
JP2007139594A (ja) * 2005-11-18 2007-06-07 Omron Corp 物体検出装置
CN103969637A (zh) * 2013-01-30 2014-08-06 株式会社理光 目标探测器
CN104793215A (zh) * 2014-01-17 2015-07-22 欧姆龙汽车电子株式会社 激光雷达装置、物体检测方法
CN107271984A (zh) * 2017-06-16 2017-10-20 陈明 一种全固态激光雷达的扫描方法
CN206832985U (zh) * 2017-06-16 2018-01-02 陈明 一种全固态激光雷达装置
CN107678012A (zh) * 2017-11-10 2018-02-09 深圳市速腾聚创科技有限公司 激光雷达闭环控制***、激光雷达及激光雷达控制方法
CN107728131A (zh) * 2017-11-10 2018-02-23 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731355A (zh) * 2020-12-25 2021-04-30 深圳优地科技有限公司 计算激光雷达安装角度偏差的方法、装置、终端和介质
CN112731355B (zh) * 2020-12-25 2024-04-05 深圳优地科技有限公司 计算激光雷达安装角度偏差的方法、装置、终端和介质

Also Published As

Publication number Publication date
CN107632296A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
WO2019047389A1 (zh) 激光雷达控制方法及激光雷达
US11415675B2 (en) Lidar system with adjustable pulse period
US12025743B2 (en) Interlaced scan patterns for lidar system
JP7200378B2 (ja) レンジ曖昧性を軽減するための複数の検出器を備えるライダー受光器
US10495757B2 (en) Intelligent ladar system with low latency motion planning updates
CN107728131B (zh) 激光雷达及激光雷达控制方法
US10605924B2 (en) Method and apparatus cross segment detection in a lidar system
US11921213B2 (en) Non-line-of-sight correction for target detection and identification in point clouds
WO2022188090A1 (zh) 固态激光雷达的微振镜控制方法、装置和固态激光雷达
US20190129014A1 (en) Technology to support the coexistence of multiple independent lidar sensors
US20200193636A1 (en) Positioning Method, Positioning Apparatus of Mobile Device and Electronic Device
CN110412561B (zh) 一种基于tas精跟波束的低空高速目标快速建航方法
CN108061905A (zh) 一种路面状况探测方法及装置
US20200096617A1 (en) Lidar device and control method thereof
CN107153202B (zh) 多线激光雷达***及多线激光雷达***的控制方法
WO2022213813A1 (zh) 一种激光雷达的同步控制装置及方法
CN115482679B (zh) 一种自动驾驶盲区预警方法、装置和消息服务器
CN117607901A (zh) 一种针对雷达盲区内障碍物的避障方法和***
WO2023141782A1 (zh) 激光雷达和激光雷达的控制方法
US11808841B2 (en) Fusion of depth imager and radar system in a vehicle
US20240248209A1 (en) Target detection method and device based on laser scanning
WO2022217522A1 (zh) 目标感知方法、装置、探测***、可移动平台及存储介质
US20240230865A1 (en) Lidar ground plane detection using projected and filtered data
EP4361665A1 (en) Smart radar altimeter beam control and processing using surface database
US20230066857A1 (en) Dynamic laser emission control in light detection and ranging (lidar) systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17924405

Country of ref document: EP

Kind code of ref document: A1