WO2019045105A1 - 異常拍動心筋モデル及びその製造方法、異常拍動心筋モデルの形成剤並びに心疾患治療薬の薬効評価方法 - Google Patents

異常拍動心筋モデル及びその製造方法、異常拍動心筋モデルの形成剤並びに心疾患治療薬の薬効評価方法 Download PDF

Info

Publication number
WO2019045105A1
WO2019045105A1 PCT/JP2018/032643 JP2018032643W WO2019045105A1 WO 2019045105 A1 WO2019045105 A1 WO 2019045105A1 JP 2018032643 W JP2018032643 W JP 2018032643W WO 2019045105 A1 WO2019045105 A1 WO 2019045105A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
cells
model
beating
heart disease
Prior art date
Application number
PCT/JP2018/032643
Other languages
English (en)
French (fr)
Inventor
典弥 松▲崎▼
史朗 北野
新司 入江
Original Assignee
凸版印刷株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社, 国立大学法人大阪大学 filed Critical 凸版印刷株式会社
Priority to JP2019539708A priority Critical patent/JPWO2019045105A1/ja
Priority to CN201880056761.5A priority patent/CN111051501A/zh
Priority to EP18850760.2A priority patent/EP3680327A4/en
Priority to US16/644,059 priority patent/US20210063374A1/en
Publication of WO2019045105A1 publication Critical patent/WO2019045105A1/ja
Priority to JP2023139660A priority patent/JP2023155406A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5061Muscle cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6887Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids from muscle, cartilage or connective tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/326Arrhythmias, e.g. ventricular fibrillation, tachycardia, atrioventricular block, torsade de pointes

Definitions

  • the present invention relates to an abnormally beating myocardium model and a method for producing the same, a forming agent for an abnormally beating myocardium model, and a method for evaluating the efficacy of a therapeutic agent for heart disease.
  • Patent Documents 1 and 2 disclose a three-dimensional assembly of cardiomyocytes prepared using collagen as a scaffold.
  • An object of the present invention is to provide a novel abnormal beating myocardium model, a method for producing the same, and a forming agent that can be used for producing the abnormal beating myocardium model.
  • An abnormally pulsatile cardiac muscle model comprising a three-dimensional tissue containing at least a part of cells containing collagen and a cell containing cardiomyocytes and collagen.
  • the abnormally beating myocardial model according to [1] wherein the cells further contain collagen-producing cells.
  • the method for producing an abnormally pulsatile cardiac muscle model according to [6] wherein the cells further contain collagen-producing cells.
  • a forming agent of an abnormal beating myocardial model which comprises fragmented collagen
  • An agent for forming an abnormally pulsatile cardiac muscle model wherein the average length of fragmented collagen is 100 nm to 200 ⁇ m and the average diameter of fragmented collagen is 50 nm to 30 ⁇ m.
  • a method for evaluating the efficacy of a therapeutic agent for heart disease using the abnormally beating myocardial model according to any one of [1] to [5], wherein a therapeutic agent for cardiac disease is administered to the abnormally beating myocardial model A method for evaluating the efficacy of a therapeutic agent for heart disease, comprising: a process and an evaluation step for evaluating the efficacy of the treatment based on a change in beating behavior of an abnormal beating myocardial model administered with a therapeutic agent for heart disease.
  • A which shows fragmented collagen obtained by homogenizing for 2 minutes
  • B histogram which shows distribution of the length of fragmented collagen obtained by homogenizing for 5 minutes.
  • NHCF human cardiac fibroblasts
  • iPS-CM iPS cell-derived cardiomyocytes
  • NHCF human cardiac fibroblasts
  • the abnormally beating myocardium model according to the present embodiment contains a cell containing cardiomyocytes (hereinafter sometimes simply referred to as “cell” in some cases) and collagen, and at least a part of the cells adhere to collagen. Consists of three dimensional bodies.
  • abnormal beat cardiac muscle model refers to a cardiac muscle model which is composed of a three-dimensional tissue including cardiomyocytes and which has abnormal beat behavior as compared to a normal heart muscle model.
  • the behavior of the beat includes a beat interval, beat rate, beat power, contraction and / or relaxation rate, and the like.
  • the abnormal beating myocardial model may be one in which the beating behavior changes irregularly, and may be one in which the beating is enhanced or suppressed as compared with the normal myocardial model.
  • the abnormally beating myocardium model can be used as a heart disease model (for example, a heart failure model, an arrhythmia model, a myocardial infarction model, etc.) caused by an abnormal pulsation of the myocardium.
  • three-dimensional tissue is an aggregate of cells in which cells are three-dimensionally arranged via collagen such as fibrillar collagen, and is an aggregate artificially produced by cell culture. means.
  • collagen such as fibrillar collagen
  • the living tissue includes blood vessels and the like, and the configuration is more complicated than the three-dimensional tissue. Therefore, the three-dimensional tissue and the living tissue can be easily distinguished.
  • cardiomyocytes examples of animal species to be derived from include human, pig, cow, mouse and the like.
  • cardiomyocytes may be human iPS cell-derived cardiomyocytes (iPS-CM), mouse iPS-derived cardiomyocytes, or ES cell-derived cardiomyocytes.
  • iPS-CM human iPS cell-derived cardiomyocytes
  • mouse iPS-derived cardiomyocytes mouse iPS-derived cardiomyocytes
  • ES cell-derived cardiomyocytes iPS cell-derived cardiomyocytes
  • human iPS cell-derived cardiomyocytes for example, those obtained by Riken Cell Bank, Takara Bio, etc. can be used.
  • reagents to be initialized can be purchased from reprocell etc., iPS cells may be produced by themselves.
  • the cardiomyocyte content may be 5 to 95% by mass, and 25% to 75% by mass, based on the three-dimensional tissue.
  • the cells comprising cardiomyocytes may further comprise collagen producing cells. That is, the three-dimensional tissue may contain endogenous collagen.
  • collagen producing cells means cells that secrete collagen such as fibrillar collagen.
  • examples of animal species derived from collagen-producing cells include, for example, humans, pigs, cattle, mice and the like, fibroblasts (eg, human skin-derived fibroblasts (NHDF), human heart) Mention may be made of mesenchymal cells such as fibroblasts (NHCF), human myofibroblasts), chondrocytes, osteoblasts and the like, preferably fibroblasts.
  • fibroblasts include, for example, human cardiac fibroblasts (NHCF) or human myofibroblasts.
  • endogenous collagen means collagen produced by collagen-producing cells.
  • the endogenous collagen may be fibrillar collagen or non-fibrillar collagen.
  • the three-dimensional tissue contains collagen.
  • Collagen includes, for example, fibrillar collagen or non-fibrillar collagen.
  • the fibrillar collagen means collagen which is a main component of collagen fibers, and specific examples include type I collagen, type II collagen, type III collagen and the like.
  • Non-fibrillar collagen includes, for example, type IV collagen.
  • At least a part of cells including cardiomyocytes adhere to collagen.
  • the collagen contained in the three-dimensional tissue may include exogenous collagen.
  • the collagen preferably comprises fragmented collagen derived from exogenous collagen.
  • exogenous collagen refers to externally supplied collagen, and specifically includes fibrillar collagen, non-fibrillar collagen and the like.
  • exogenous collagen the animal species from which it is derived may be the same as or different from endogenous collagen. Examples of animal species from which exogenous collagen is derived include humans, pigs, cattle and the like. Alternatively, the exogenous collagen may be artificial collagen.
  • the exogenous collagen is preferably fibrillar collagen. Examples of the fibrillar collagen include, for example, type I collagen, type II collagen and type III collagen, and preferably type I collagen.
  • fibrillar collagen As the above-mentioned fibrillar collagen, commercially available collagen may be used, and as a specific example thereof, a pig skin-derived type I collagen freeze-dried product manufactured by Nippon Ham Co., Ltd. can be mentioned. Exogenous non-fibrillar collagen includes, for example, type IV collagen.
  • exogenous collagen the animal species from which it is derived may be different from cardiomyocytes and cells containing them.
  • the animal species derived from exogenous collagen may be different from collagen-producing cells. That is, the exogenous collagen may be heterologous collagen.
  • fragment collagen refers to a fragment of collagen such as fibrillar collagen, which maintains a triple helical structure.
  • One type of collagen from which fragmented collagen is derived may be used, or two or more types of collagen may be used in combination.
  • collagen such as fibrillar collagen was dissolved in an acidic aqueous solution or the like, but the concentration was about 0.1 to 0.3% by weight and could not be dissolved much. Therefore, it has been difficult to increase the amount of collagen such as fibrillar collagen in the three-dimensional tissue by the conventional method.
  • Fragmented collagen is hardly soluble in water, but it is speculated that dispersion in an aqueous medium facilitates contact with cells in the aqueous medium and promotes formation of a three-dimensional organized body.
  • the average length of the fragmented collagen is preferably 100 nm to 200 ⁇ m, more preferably 22 ⁇ m to 200 ⁇ m, and still more preferably 100 ⁇ m to 200 ⁇ m.
  • the average diameter of the fragmented collagen is preferably 50 nm to 30 ⁇ m, more preferably 4 ⁇ m to 30 ⁇ m, and still more preferably 20 ⁇ m to 30 ⁇ m.
  • the method of fragmenting collagen such as fibrillar collagen is not particularly limited, and for example, fragmentation of collagen such as fibrillar collagen using a homogenizer such as an ultrasonic homogenizer, a stirring homogenizer, and a high pressure homogenizer is also possible. Good.
  • a homogenizer such as an ultrasonic homogenizer, a stirring homogenizer, and a high pressure homogenizer is also possible.
  • collagen such as fibrillar collagen may be homogenized as it is or may be homogenized in an aqueous medium such as physiological saline.
  • the diameter and length of fragmented collagen can be determined by analyzing the individual fragmented collagen by electron microscopy.
  • the content of collagen in the three-dimensional tissue may be 0.01 to 90% by weight, preferably 10 to 90% by weight, more preferably 1 to 50% by weight based on the three-dimensional tissue. More preferably, it is 10 to 40% by weight, and may be 10 to 30% by weight.
  • collagen in a three-dimensional organized body means collagen constituting the three-dimensional organized body, which may be endogenous collagen or exogenous collagen. That is, the concentration of collagen constituting the three-dimensional tissue means the combined concentration of endogenous collagen and exogenous collagen.
  • the concentration of collagen in the three-dimensional tissue can be calculated from the volume of the obtained three-dimensional tissue and the mass of the decellularized three-dimensional tissue.
  • the content of collagen in a three-dimensional tissue can also be measured by a method using an antigen-antibody reaction such as ELISA or a chemical detection method such as QuickZyme.
  • the three-dimensional structure preferably has a remaining rate of 70% or more after treatment with trypsin at a concentration of 0.25% of trypsin, a temperature of 37 ° C., pH 7.4, and a reaction time of 15 minutes, and is 80% or more It is more preferable that the content be 90% or more.
  • the residual rate can be calculated, for example, from the mass of the three-dimensional tissue before and after trypsin treatment.
  • the three-dimensional structure preferably has a survival rate of 70% or more after collagenase treatment with a collagenase concentration of 0.25%, a temperature of 37 ° C., pH 7.4, and a reaction time of 15 minutes, and is 80% or more Some are more preferable, and 90% or more is even more preferable.
  • a three-dimensional assembly is stable because it is resistant to degradation by enzymes during or after culture.
  • the three-dimensional structure preferably has a thickness of 10 ⁇ m or more, more preferably 100 ⁇ m or more, and still more preferably 1000 ⁇ m or more.
  • a three-dimensional tissue body is a structure closer to a living tissue, and is suitable as a substitute for experimental animals and the like.
  • the upper limit of the thickness is not particularly limited, but may be, for example, 10 mm or less, 3 mm or less, 2 mm or less, or 1.5 mm or less. , 1 mm or less.
  • the thickness of the three-dimensional tissue body means the distance between both ends in the direction perpendicular to the main surface when the three-dimensional tissue body is in the form of a sheet or a rectangular parallelepiped.
  • the thickness means the distance at the thinnest portion of the main surface.
  • the three-dimensional tissue is spherical, it means its diameter.
  • the three-dimensional structure is an ellipsoid, it means its minor axis.
  • the thickness is the distance between two points at which the surface intersects a straight line passing through the center of gravity of the three-dimensional structure. Means the shortest distance.
  • the cells constituting the three-dimensional tissue may further include one or more other cells other than cardiomyocytes and collagen-producing cells.
  • the three-dimensional tissue may contain cells including cardiomyocytes and components other than collagen (other components).
  • Other components include, for example, elastin, collagen, proteoglycan, fibronectin, laminin and the like.
  • An abnormally pulsating myocardial model consisting of a three-dimensional tissue body can be applied as a substitute for experimental animals (eg, a heart disease model caused by abnormal pulsation of the myocardium), a myocardial infarction model, a myocardial fibrosis model, etc. is there.
  • the method for producing an abnormally beating cardiac muscle model comprises the steps of: contacting cells containing cardiomyocytes (hereinafter sometimes also simply referred to as “cells”) with exogenous collagen in an aqueous medium; And a culture step of culturing cells in contact with exogenous collagen, wherein the amount of exogenous collagen used in the contact step is 0 with respect to cells of 1.0 ⁇ 10 5 to 10.0 ⁇ 10 5 cells. .1 mg or more.
  • Aqueous medium means a liquid containing water as an essential component.
  • the aqueous medium is not particularly limited as long as exogenous collagen and cells can be stably present.
  • liquid medium such as physiological saline such as phosphate buffered saline (PBS), Dulbecco's Modified Eagle's medium (DMEM), culture medium for vascular endothelial cells (EGM 2), etc. may be mentioned.
  • the liquid medium may be a mixed medium in which two types of medium are mixed. From the viewpoint of reducing the load on cells, the aqueous medium is preferably a liquid medium.
  • Contact process There is no particular limitation on the method of bringing the cells including cardiomyocytes into contact with the exogenous collagen in an aqueous medium.
  • a method of adding a dispersion of exogenous collagen to a culture solution containing cardiomyocytes a method of adding cells to a medium dispersion of exogenous collagen, or adding exogenous collagen and cardiomyocytes to an aqueous medium prepared in advance. The method is mentioned.
  • the cells may further contain collagen-producing cells.
  • the resulting three-dimensional tissue will be more stable and cells will be more uniformly distributed.
  • the details of the mechanism by which such a three-dimensional organization can be obtained are unknown, but are presumed as follows. First, cells contact and adhere to exogenous collagen. The cells then produce proteins (eg, collagen such as fibrillar collagen) which themselves constitute the extracellular matrix (ECM). The produced protein contacts and adheres on the exogenous collagen, thereby acting as a crosslinker between the exogenous collagens, and the structuring of fibrillar collagen and the like proceeds in an environment in which cells are uniformly present. As a result, a three-dimensional tissue structure which is stable and in which cells are uniformly distributed is obtained.
  • the above estimation does not limit the present invention.
  • fragmented collagen derived from exogenous collagen may be included as exogenous collagen.
  • exogenous collagen and the fragmented collagen those described above can be used.
  • the concentration of exogenous collagen in the aqueous medium in the contacting step can be appropriately determined in accordance with the shape, thickness, incubator size, etc. of the target three-dimensional tissue (abnormally pulsed myocardial model).
  • the concentration of exogenous collagen in the aqueous medium in the contacting step may be 0.1 to 90% by weight, or 1 to 30% by weight.
  • the amount of exogenous collagen used in the contacting step may be at least 0.1 mg per cell of 1.0 ⁇ 10 5 to 10.0 ⁇ 10 5 cells (cell count), 0.5 mg or more, 1 .0 mg or more, 2.0 mg or more, or 3.0 mg or more, 100 mg or less, or 50 mg or less.
  • the exogenous collagen has the above range and the above range with respect to 2.0 ⁇ 10 5 to 8.0 ⁇ 10 5 cells, 3.0 ⁇ 10 5 to 6.0 ⁇ 10 5 cells, or 5 ⁇ 10 5 cells. It may be added as follows.
  • the mass ratio of exogenous collagen to cells in the contacting step is preferably 1000: 1 to 1: 1, more preferably 900: 1 to 9: 1, and 500 It is even more preferable that it is from 1 to 10: 1.
  • the ratio of cardiomyocytes to collagen-producing cells (cell number) in the contacting step may be 99: 1 to 9: 1, or 80:20 to 50: It may be fifty.
  • the method may further include the step of settling the fragmented collagen and the cells together in an aqueous medium (precipitation step) during the contacting step or the culture step.
  • a specific method is not particularly limited, for example, a method of centrifuging a culture solution containing fragmented collagen and cells containing cardiac muscle cells can be mentioned.
  • the method for culturing the cells in contact with the fragmented collagen is not particularly limited, and can be carried out by a suitable culture method depending on the type of cells to be cultured.
  • the culture temperature may be 20 ° C to 40 ° C, or 30 ° C to 37 ° C.
  • the pH of the culture medium may be 6 to 8, or 7.2 to 7.4.
  • the culture time may be 1 day to 2 weeks, or 1 week to 2 weeks.
  • the medium is not particularly limited, and a suitable medium can be selected according to the type of cells to be cultured.
  • the medium include Eagle's MEM medium, DMEM, Modified Eagle medium (MEM), Minimum Essential medium, RPMI, and GlutaMax medium.
  • the medium may be a medium to which serum has been added, or may be a serum-free medium.
  • the culture medium may be a mixed culture medium in which two types of culture media are mixed.
  • the cell density in the culture medium in the culture step can be appropriately determined according to the shape, thickness, size of the incubator, etc. of the target abnormal beating myocardial model.
  • the cell density in the culture medium in the culture step may be 1 to 10 8 cells / ml, or 10 3 to 10 7 cells / ml.
  • the cell density in the culture medium in the culture step may be the same as the cell density in the aqueous medium in the contact step.
  • the contraction rate during culture of the three-dimensional tissue is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less.
  • the contraction rate can be calculated, for example, by the following equation.
  • L 1 represents the length of the longest part of the abnormal beating myocardium model on day 1 after culture
  • L 3 represents the length of the corresponding part in the three-dimensional tissue body on day 3 after culture .
  • Shrinkage rate (%) ⁇ (L 1 ⁇ L 3 ) / L 1 ⁇ ⁇ 100
  • the agent for forming an abnormally beating myocardium model is a forming agent for an abnormal beating model including fragmented collagen, and the average length of fragmented collagen is 100 nm to 200 ⁇ m, and the average of fragmented collagen is The diameter is 50 nm to 30 ⁇ m.
  • 95% of the total amount of fragmented collagen may be in the range of 100 nm to 200 ⁇ m.
  • 95% of the total amount of fragmented collagen may be in the range of 50 nm to 30 ⁇ m.
  • forming agent of an abnormal pulsatile cardiac muscle model is meant a reagent for producing an abnormal pulsatile cardiac muscle model.
  • the agent for forming the abnormal beating myocardium model may be in the form of powder, or may be in the form of a dispersion in which fragmented collagen is dispersed in an aqueous medium.
  • a method of producing fragmented collagen and a method of using the above-mentioned forming agent the same method as the method shown in the above (Method of producing an abnormal beating myocardium model) can be mentioned.
  • a method for evaluating the efficacy of a therapeutic agent for heart disease using an abnormally pulsatile cardiac muscle model comprising: administering a cardiac disease therapeutic agent to the abnormal pulsatile cardiac muscle model;
  • a method for evaluating the efficacy of a therapeutic agent for heart disease comprising: an evaluation step of evaluating the efficacy by the change in beating behavior of the administered abnormal heartbeat myocardial model.
  • a therapeutic agent for heart disease is administered to an abnormally beating myocardial model.
  • the heart disease therapeutic agent include heart failure therapeutic agents such as isoproterenol, ⁇ blockers, myocardial infarction therapeutic agents such as nitrates, and antiarrhythmics such as amiodarone.
  • Administration of the heart disease therapeutic agent may be carried out by using a medium containing the heart disease therapeutic agent as a culture medium for culturing the three-dimensional tissue, and the heart disease therapeutic agent is added to the culture medium for culturing the three-dimensional tissue. You may carry out by
  • the abnormally beating myocardium model to which a therapeutic agent for heart disease is administered may consist of a three-dimensional tissue cultured for one or more days, and may consist of a three-dimensional tissue cultured for five days or more, It may consist of a three-dimensional tissue cultured for six or more days, and may consist of a three-dimensional tissue cultured for more days.
  • the drug effect is evaluated by the change in the beating behavior of the abnormally beating myocardium model administered with a therapeutic agent for heart disease.
  • Efficacy can be evaluated using the behavior of pulsation as an index.
  • the behavior of the beat includes the beat interval, the beat rate, the beat power, the contraction and / or the relaxation rate, and the like.
  • the change in the behavior of the beat may be, for example, a change in the number of beats per unit time and / or a change in the beat interval (time between beats).
  • Efficacy may be evaluated based on a change in only one of the above-mentioned indicators, or may be evaluated on the basis of two or more of the above-mentioned indicators.
  • Evaluation of drug efficacy includes, for example, the beating behavior of an abnormally pulsating myocardial model consisting of a three-dimensional tissue body administered a therapeutic agent for heart disease, and an abnormal pulsation comprising a three-dimensional tissue body not receiving a therapeutic agent for cardiac disease It can be performed by comparing the behavior of pulsation with that in the absence of myocardial model administration.
  • the evaluation step may be performed multiple times. That is, evaluation of efficacy may be performed multiple times at predetermined intervals after administration of a therapeutic agent.
  • the beat per unit time of the abnormal pulsation myocardium model receiving the treatment for heart disease If the number is high, it may be evaluated as effective as a drug for treating heart failure, as compared with the number of beats per unit time of an abnormally beating myocardial model in which no drug for treating heart disease was administered. If the number of beats per unit time of the abnormally beating myocardial model in which the therapeutic agent is administered is low, it may be evaluated that it is not effective as a therapeutic agent for heart failure.
  • CMF fragmented collagen
  • Lyophilized pig skin-derived type I collagen manufactured by Nippon Ham Co., Ltd. is dispersed in 10-fold concentration phosphate buffered saline (X10 PBS), and homogenized for 2 minutes using a homogenizer to a diameter of about 20 ⁇ Fragmented collagen having a size of 30 ⁇ m and a length of about 100 to 200 ⁇ m was obtained ((A) in FIG. 1).
  • the diameter and length of fragmented collagen were determined by analyzing each fragmented collagen by electron microscopy.
  • the obtained fragmented collagen was washed with serum-free medium (DMEM) to obtain a medium dispersion of fragmented collagen.
  • DMEM serum-free medium
  • the obtained medium dispersion of fragmented collagen could be stored at room temperature for one week.
  • fragmented collagen obtained by the same method was used. Also, in the above method, when the homogenizing time is changed to 5 minutes, fragmented collagen having a diameter of about 950 nm to 16.8 ⁇ m and a length of about 9.9 ⁇ m to 78.6 ⁇ m was obtained (Table 1, (B) in FIG. From this result, it was found that the size of fragmented collagen can be controlled by adjusting the homogenization time.
  • Fragmented collagen was dispersed in a medium (DMEM) containing serum so that the concentration was 10 mg / ml, to prepare a dispersion containing fragmented collagen.
  • DMEM medium containing serum
  • Example 1 The three-dimensional structure was manufactured as shown in the schematic view shown in FIG. That is, the dispersion containing the above fragmented collagen, human cardiac fibroblasts (NHCF) and human iPS cell-derived cardiomyocytes (iPS-CM) (hereinafter, NHCF and iPS-CM are collectively referred to as “cells”. ) was added to a nonadherent 96 well round bottom plate to bring fragmented collagen into contact with cells (contacting step). The dispersion containing fragmented collagen was added so that the addition amount of fragmented collagen was 0.5 mg. NHCF and iPS-CM were mixed at a ratio of 25:75, and added so that the total number of cells was 5 ⁇ 10 5 cells.
  • FIG.2 Three-dimensional tissue 1 was spherical and had a diameter of about 1.0 mm after 21 days of culture.
  • a dark colored part indicates collagen fiber
  • a weak colored part indicates cytoplasm (hereinafter referred to as FIG. 2 (B), (D) and (E). The same applies to the above.
  • Example 2 A three-dimensional organized body 2 was produced in the same manner as in Example 1 except that the dispersion containing fragmented collagen was added so that the addition amount of fragmented collagen was 1.0 mg.
  • the observation result of the Masson's trichrome stained three-dimensional tissue 2 with a phase contrast microscope is shown in FIG. 2 (D).
  • the three-dimensional tissue 2 was spherical, and the diameter after 21 days of culture was about 1.2 mm.
  • Example 3 A three-dimensional organized body 3 was obtained in the same manner as in Example 1 except that the dispersion containing fragmented collagen was added so that the addition amount of fragmented collagen was 1.5 mg.
  • the observation result of the three-dimensional tissue body 3 stained with Masson's trichrome with a phase contrast microscope is shown in FIG. 2 (E).
  • the three-dimensional tissue 3 was spherical, and the diameter after 21 days of culture was about 1.6 mm.
  • Example 4 A three-dimensional organized body 4 was obtained in the same manner as in Example 1 except that the dispersion containing fragmented collagen was added so that the addition amount of fragmented collagen was 3.0 mg.
  • the diameter of the three-dimensional tissue 4 after 7 days of culture was about 4 mm.
  • Example 5 A three-dimensional organized body 5 was obtained in the same manner as Example 1, except that the dispersion containing fragmented collagen was added so that the addition amount of fragmented collagen was 5.0 mg.
  • the diameter of the three-dimensional construct 5 after 7 days of culture was about 5 mm.
  • Comparative three-dimensional tissue 1 was obtained in the same manner as in Example 1 except that the dispersion containing fragmented collagen was not added. The observation result of the comparison three-dimensional tissue 1 stained with Masson's trichrome by a phase contrast microscope is shown in FIG. 2 (B). Comparative three-dimensional tissue 1 was spherical and had a diameter of about 0.9 mm after 21 days of culture.
  • FIG. 3 is a diagram for explaining the evaluation method of the pulsation interval and the pulsation power of the myocardial model.
  • the center of gravity of the myocardial model moves in response to the beat.
  • the moving distance of the center of gravity when the cardiac muscle model contracts (the distance from the center of gravity shown in FIG. 3A to the center of gravity shown in FIG. 3B) and the moving distance of the center of gravity when the cardiac muscle model relaxes after contracting (FIG. 3) Evaluation was performed by measuring the distance from the center of gravity shown in (B) to the center of gravity shown in (C). The results are shown in FIGS.
  • FIG. 4 (A) shows the beating behavior of the myocardial model of Example 2 obtained by adding 1.0 mg of fragmented collagen.
  • FIG. 4 (B) shows the observation start time (0 second), contraction time (0.67 time) and relaxation time (1.27 second time).
  • FIG. 5 (B) shows the beating behavior of a myocardial model obtained by adding 0 mg, 1.0 mg and 2.0 mg of fragmented collagen.
  • the beat (pulse time interval and beat power) of the obtained myocardial model changes irregularly as compared with the case where it is not added.
  • the beat power of the obtained myocardial model was reduced when collagen was added.
  • FIG. 5 (A) in the myocardial model which did not add collagen, the behavior of pulsation was close to normal.
  • FIGS. 6 and 8 show the beating behavior of the myocardial model in which the amount of fragmented collagen used is 0, 1, 3 and 5 mg, respectively.
  • FIG. 7A shows the interval between the broken lines shown in FIGS. 6A to 6D (that is, the difference between one contraction-relaxation completion to the next contraction-relaxation completion time) (unit: second) The result of the average beating interval calculated from is shown.
  • FIG. 7 (B) shows the average of standard deviations (S.D.) from 4 to 7 days of culture period (an indicator of pulsation irregularity).
  • FIG. 9 shows the interval between contraction and relaxation of the myocardial model calculated from the interval shown by the arrows in FIG.
  • FIG. 10 shows the results of measurement of the beating interval according to the number of days of culture, for myocardial models in which the amount of fragmented collagen used is 0, 1, 3, and 5 mg.
  • the myocardial model obtained by adding the fragmented collagen had a short mean beat interval (ie, a greater number of beats per unit time).
  • FIG. 7 (B) when 1 mg or 5 mg of fragmented collagen was added, the time interval of beats changed more irregularly.
  • FIG. 9 in the myocardial model obtained by adding the fragmented collagen, the time required for one contraction and relaxation became longer (ie, the pulsation rate per one time decreased).
  • the myocardial model manufactured by adding fragmented collagen is similar to the model which developed the disease. The pulsation behavior for each collagen amount is shown in FIG. In FIG.
  • CMF fragmented collagen
  • CMF concentration 9.8 mg / mL
  • the dispersion was weighed from CMF dispersion medium to CMF 0, 1, 2, 3 mg, mixed with 5 ⁇ 10 5 cells of iPS-CM 75% / NHCF 25%, and seeded on a 96-well round bottom non-adherent plate (medium volume 300 ⁇ L) ). Then, it was centrifuged at 1100 g for 5 minutes to precipitate CMF and cells. After centrifugation, the cells were cultured in a 37 ° C. incubator. Medium change was performed by removing old medium once every two days and adding 300 ⁇ L of fresh medium.
  • the above kit is a commercially available kit including DNeasy Mini Spin Column, collection tube, Buffer ATL, Buffer AL, Buffer AW1, Buffer AW2, Buffer AE, Proteinase K, etc. DNA was measured according to the following procedure.
  • the sample to be measured was placed in a 1.5 mL Eppendorf tube, and 180 ⁇ L of Buffer ATL was placed. To this, 20 ⁇ L of proteinase K was added, vortexed and incubated at 56 ° C. until the tissue was completely dissolved (overnight). Then, the mixture was vortexed for 15 seconds, Buffer AL and ethanol were mixed in equal amounts, 400 ⁇ L was added to one sample, and vortexing was performed. The solution was added into a DNeasy Mini Spin Column (hereinafter sometimes simply referred to as a column), and centrifuged at 8000 rpm for 1 min.
  • DNeasy Mini Spin Column hereinafter sometimes simply referred to as a column
  • the filtrate and collection tube were discarded, the column was transferred to a new collection tube, and 500 ⁇ L of Buffer AW1 was added. Thereafter, it was centrifuged at 8000 rpm for 1 min. The filtrate and collection tube were discarded, the column was transferred to a new collection tube and 500 ⁇ L of Buffer AW2 was added. After centrifugation at 14000 rpm for 3 min, the DNeasy membrane was completely dried. The filtrate and collection tube were discarded, the column was transferred to an Eppendorf tube (step 1), 200 ⁇ L of Buffer AE was added directly onto the DNeasy membrane (step 2) and incubated for 1 min at room temperature (step 3). Then, it centrifuged at 8000 rpm and 1 min conditions (operation 4). After repeating the steps 1 to 4, the collected filtrate was combined to 400 ⁇ L. This was measured by Nanodrop.
  • the results of the rate of change in the amount of DNA are shown in FIG.
  • FIG. 11 As a result of culturing for 7 days, the number of cells in the three-dimensional tissue using CMF increased more than that in the case where CMF was not used. By adding CMF and culturing, it is considered that more cells were alive or cells were alive longer. From the results in FIGS. 10 and 11, the three-dimensional tissue using CMF exhibits beating behavior similar to that at the initial stage of culture, even in the case of a long period (at least 7 days), and the cell survival rate is also CMF. Was higher compared to the construct (spheroid) that did not use. As a result, the myocardial model consisting of a three-dimensional tissue using CMF can be evaluated for efficacy over a long period of time due to the large number of cells or long survival.
  • the beats of the tissue after culture for 5 to 6 days were photographed using a SONY Motion analyzer, and the number of beats was measured.
  • the inside of the microscope was kept at 37 ° C. and photographed for 15 to 20 seconds.
  • the plate was once removed from the microscope to remove the medium, and 300 ⁇ L of DMEM (drug-free tissue) or 300 ⁇ L of 100 nM isoproterenol mixed DMEM was added, respectively, and returned to the microscope again and incubated at 37 ° C.
  • DMEM drug-free tissue
  • 300 ⁇ L of 100 nM isoproterenol mixed DMEM was added, respectively, and returned to the microscope again and incubated at 37 ° C.
  • Each beat was similarly photographed after incubation for 30, 60 and 80 minutes, and the number of beats was counted.
  • Rate of change in pulse rate (%) (beat rate after each time of drug-added tissue / pulse rate before drug addition of drug-added tissue) / (beat rate after each time of drug-free tissue / Number of beats before medium change of tissue without drug addition) ⁇ 100
  • FIG. 12 shows the results of the rate of change in pulse rate.
  • the amount of CMF used was 0 mg, the drug responsiveness was bad, and when the amount of CMF used was 1 mg and 3 mg, the drug responsiveness was shown.
  • the myocardial model in which CMF was used at 1 mg showed better drug responsiveness.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cardiology (AREA)
  • Rheumatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は心筋細胞を含む細胞と、コラーゲンと、を含有し、細胞の少なくとも一部がコラーゲンに接着している三次元組織体からなる、異常拍動心筋モデルに関する。

Description

異常拍動心筋モデル及びその製造方法、異常拍動心筋モデルの形成剤並びに心疾患治療薬の薬効評価方法
 本発明は、異常拍動心筋モデル及びその製造方法、異常拍動心筋モデルの形成剤並びに心疾患治療薬の薬効評価方法に関する。
 近年、生体外で細胞の三次元組織体を構築する技術が開発されている。このような三次元組織体は、実験動物の代替品として利用可能な生体組織モデル等に適用することができる。特許文献1及び2には、コラーゲンを足場として用いて作製された心筋細胞の三次元組織体が開示されている。
Artif Organs,2012,Vol.36,No.9,pp.816-819 J.of Cardiovasc. Trans. Res.,2017,10,pp.116-127
 本発明は、新規な異常拍動心筋モデル及びその製造方法、並びに、当該異常拍動心筋モデルの製造に用いることができる形成剤を提供することを目的とする。
 本発明者らは鋭意研究を重ねた結果、以下に示す発明によって、上記課題が解決できることを見出した。
[1]心筋細胞を含む細胞と、コラーゲンと、を含有し、当該細胞の少なくとも一部がコラーゲンに接着している三次元組織体からなる、異常拍動心筋モデル。
[2]細胞が、コラーゲン産生細胞を更に含有する、[1]に記載の異常拍動心筋モデル。
[3]コラーゲンの含有率が、三次元組織体を基準として10重量%~30重量%である、[1]又は[2]に記載の異常拍動心筋モデル。
[4]コラーゲンが外因性コラーゲンを含む、[1]~[3]のいずれかに記載の異常拍動心筋モデル。
[5]コラーゲンが外因性コラーゲンに由来する断片化コラーゲンを含む、[1]~[4]のいずれかに記載の異常拍動心筋モデル。
[6]水性媒体中において、心筋細胞を含む細胞と外因性コラーゲンとを接触させる接触工程、及び
 外因性コラーゲンが接触した上記細胞を培養する培養工程、を含み、
 接触工程における外因性コラーゲンの使用量が、1.0×10~10.0×10cellsの細胞に対して、0.1mg以上である、異常拍動心筋モデルの製造方法。
[7]上記細胞が、コラーゲン産生細胞を更に含む、[6]に記載の異常拍動心筋モデルの製造方法。
[8]外因性コラーゲンとして、断片化コラーゲンを含有する、[7]に記載の製造方法。
[9]断片化コラーゲンの平均長が100nm~200μmである、[8]に記載の製造方法。
[10]断片化コラーゲンの平均径が50nm~30μmである、[8]又は[9]に記載の製造方法。
[11]接触工程又は培養工程の間に、水性媒体中における外因性コラーゲンと細胞とを共に沈降させる工程を更に含む、[6]~[10]のいずれかに記載の製造方法。
[12]外因性コラーゲンと、上記細胞との質量比が、900:1~9:1である、[6]~[11]のいずれかに記載の製造方法。
[13]断片化コラーゲンを含む、異常拍動心筋モデルの形成剤であって、
 断片化コラーゲンの平均長が100nm~200μmであり、断片化コラーゲンの平均径が50nm~30μmである、異常拍動心筋モデルの形成剤。
[14][1]~[5]のいずれかに記載の異常拍動心筋モデルを用いた心疾患治療薬の薬効評価方法であって、心疾患治療薬を異常拍動心筋モデルに投与する投与工程と、心疾患治療薬を投与した異常拍動心筋モデルの拍動の挙動の変化により薬効を評価する評価工程と、を含む、心疾患治療薬の薬効評価方法。
[15]評価工程において、心疾患治療薬を投与しなかった異常拍動心筋モデルの単位時間あたりの拍動数と比較して、心疾患治療薬を投与した異常拍動心筋モデルの単位時間あたりの拍動数が多かった場合には、心不全治療薬として効果があると評価し、心疾患治療薬を投与しなかった異常拍動心筋モデルの単位時間あたりの拍動数と比較して、心疾患治療薬を投与した異常拍動心筋モデルの単位時間あたりの拍動数が少なかった場合には、心不全治療薬として効果がないと評価する、[14]に記載の心疾患治療薬の薬効評価方法。
[16]評価工程が複数回行われる、[14]又は[15]に記載の心疾患治療薬の薬効評価方法。
 本発明によれば、新規な異常拍動心筋モデル及びその製造方法、並びに、当該異常拍動心筋モデルの製造に用いることができる形成剤を提供することが可能になる。
2分間ホモジナイズすることで得られた断片化コラーゲンを示す写真(A)、及び5分間ホモジナイズすることで得られた断片化コラーゲンの長さの分布を示すヒストグラム(B)である。 断片化コラーゲン、ヒト心臓線維芽細胞(NHCF)及びiPS細胞由来心筋細胞(iPS-CM)を含む心筋モデル(三次元組織体)の製造工程を示す模式図と、ヒト心臓線維芽細胞(NHCF)及びiPS細胞由来心筋細胞(iPS-CM)を含む三次元組織体をマッソントリクローム染色した写真である。 心筋モデルの評価方法を説明するための写真及びグラフである。 心筋モデルの拍動挙動の評価結果を示すグラフ及び写真である。 心筋モデルの拍動挙動の評価結果を示すグラフである。 心筋モデルの拍動挙動の評価結果を示すグラフである。 心筋モデルの拍動挙動の評価結果を示すグラフである。 心筋モデルの拍動挙動の評価結果を示すグラフである。 心筋モデルの拍動挙動の評価結果を示すグラフである。 心筋モデルの拍動挙動の評価結果を示すグラフである。 断片化コラーゲン量に対する細胞生存率の変化の評価結果を示すグラフである。 イソプロテレノール添加後の心筋モデルの拍動数変化の評価結果を示すグラフである。
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
<異常拍動心筋モデル>
 本実施形態に係る異常拍動心筋モデルは、心筋細胞を含む細胞(以下、場合により、単に「細胞」ともいう。)と、コラーゲンと、を含有し、細胞の少なくとも一部がコラーゲンに接着している三次元組織体からなる。
 「異常拍動心筋モデル」とは、心筋細胞を含む、三次元組織体からなり、正常な心筋モデルと比較して、拍動の挙動が異常である心筋モデルをいう。拍動の挙動としては、拍動間隔、拍動数、拍動力、収縮及び/又は弛緩速度、等が挙げられる。異常拍動心筋モデルは、拍動の挙動が不規則に変化するものであってもよく、正常な心筋モデルと比べ、拍動が亢進、又は抑制されているものであってよい。異常拍動心筋モデルは、心筋の異常拍動に起因する心疾患モデル(例えば、心不全モデル、不整脈モデル、心筋梗塞モデル等)として用いることができる。
 ここで、「三次元組織体」とは、線維性コラーゲン等のコラーゲンを介して細胞が三次元的に配置されている細胞の集合体であって、細胞培養によって人工的に作られる集合体を意味する。三次元組織体の形状には特に制限はなく、例えば、シート状、球体状、楕円体状、直方体状等が挙げられる。ここで、生体組織は、血管等を含み、構成が三次元組織体より複雑である。そのため、三次元組織体と生体組織とは容易に区別可能である。
 三次元組織体は、心筋細胞を含む細胞を含有する。心筋細胞において、由来とする動物種としては、ヒト、ブタ、ウシ、マウス等が挙げられる。例えば、心筋細胞は、ヒトiPS細胞由来心筋細胞(iPS-CM)、マウスiPS由来心筋細胞、又は、ES細胞由来心筋細胞であってよい。ヒトiPS細胞由来心筋細胞は、例えば、理研セルバンク、タカラバイオなどにより入手したものを用いることができる。また、初期化させる試薬は、リプロセル等からも購入できるため、iPS細胞を自作してもよい。
 心筋細胞の含有率は、三次元組織体を基準として、5~95質量%であってよく、25%~75質量%であってよい。
 心筋細胞を含む細胞は、コラーゲン産生細胞を更に含んでいてよい。つまり、三次元組織体は、内因性コラーゲンを含んでいてよい。
 ここで、「コラーゲン産生細胞」とは、線維性コラーゲン等のコラーゲンを分泌する細胞を意味する。コラーゲン産生細胞において、由来とする動物種としては、例えば、ヒト、ブタ、ウシ、マウス等が挙げられるコラーゲン産生細胞としては、線維芽細胞(例えば、ヒト皮膚由来線維芽細胞(NHDF)、ヒト心臓線維芽細胞(NHCF)、ヒト筋線維芽細胞)、軟骨細胞、骨芽細胞等の間葉系細胞が挙げられ、好ましくは、線維芽細胞である。好ましい線維芽細胞としては、例えば、ヒト心臓線維芽細胞(NHCF)又はヒト筋線維芽細胞が挙げられる。
 なお、「内因性コラーゲン」とは、コラーゲン産生細胞が産生するコラーゲンを意味する。内因性コラーゲンは、線維性コラーゲンであってもよいし、非線維性コラーゲンであってもよい。
 三次元組織体は、コラーゲンを含有する。コラーゲンとしては、例えば、線維性コラーゲン又は非線維性コラーゲンが挙げられる。線維性コラーゲンとは、コラーゲン線維の主成分となるコラーゲンを意味し、具体的には、I型コラーゲン、II型コラーゲン、III型コラーゲン等が挙げられる。非線維性コラーゲンとしては、例えば、IV型コラーゲンが挙げられる。
 三次元組織体は、心筋細胞を含む細胞の少なくとも一部がコラーゲンに接着している。
 三次元組織体に含まれるコラーゲンは、外因性コラーゲンを含んでいてよい。コラーゲンは、好ましくは、外因性コラーゲンに由来する断片化コラーゲンを含む。
 「外因性コラーゲン」とは、外部から供給されるコラーゲンを意味し、具体的には、線維性コラーゲン、非線維性コラーゲン等が挙げられる。外因性コラーゲンにおいて、由来となる動物種は、内因性コラーゲンと同じであっても異なっていてもよい。外因性コラーゲンにおいて、由来となる動物種としては、例えば、ヒト、ブタ、ウシ等が挙げられる。また、外因性コラーゲンは、人工のコラーゲンであってもよい。外因性コラーゲンは、線維性コラーゲンであることが好ましい。上記線維性コラーゲンとしては、例えば、I型コラーゲン、II型コラーゲン、III型コラーゲンが挙げられ、好ましくはI型コラーゲンである。上記線維性コラーゲンは、市販されているコラーゲンを用いてもよく、その具体例としては、日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体が挙げられる。外因性の非線維性コラーゲンとしては、例えば、IV型コラーゲンが挙げられる。
 外因性コラーゲンにおいて、由来する動物種は、心筋細胞及びこれを含む細胞とは異なっていてよい。また、心筋細胞を含む細胞が、コラーゲン産生細胞を含む場合、外因性コラーゲンにおいて、由来する動物種は、コラーゲン産生細胞とは異なっていてよい。つまり、外因性コラーゲンは、異種コラーゲンであってよい。
 「断片化コラーゲン」とは、線維性コラーゲン等のコラーゲンを断片化したものであって、三重らせん構造を維持しているものを意味する。断片化コラーゲンの由来となるコラーゲンは、一種類であってもよいし、複数種のコラーゲンを併用してもよい。従来、線維性コラーゲン等のコラーゲンは酸性の水溶液等に溶かしていたが、濃度は0.1~0.3重量%程度であり多く溶かすことはできなかった。そのため従来の方法では三次元組織体における線維性コラーゲン等のコラーゲンの量を多くすることが困難であった。断片化コラーゲンは水にほとんど溶解しないが、水性媒体に分散することにより、水性媒体中で細胞と接触しやすくなり、三次元組織体の形成を促進すると推測される。
 断片化コラーゲンの平均長は、100nm~200μmであることが好ましく、22μm~200μmであることがより好ましく、100μm~200μmであることがさらに好ましい。断片化コラーゲンの平均径は、50nm~30μmであることが好ましく、4μm~30μmであることがより好ましく、20μm~30μmであることがさらに好ましい。
 線維性コラーゲン等のコラーゲンを断片化する方法は、特に制限はなく、例えば、超音波式ホモジナイザー、撹拌式ホモジナイザー、及び高圧式ホモジナイザー等のホモジナイザーを用いて線維性コラーゲン等のコラーゲンを断片化してもよい。撹拌式ホモジナイザーを用いる場合、線維性コラーゲン等のコラーゲンをそのままホモジナイズしてもよいし、生理食塩水等の水性媒体中でホモジナイズしてもよい。また、ホモジナイズする時間、回数等を調整することでミリメートルサイズ、ナノメートルサイズの断片化コラーゲンを得ることも可能である。
 断片化コラーゲンの直径及び長さは、電子顕微鏡によって個々の断片化コラーゲンを解析することによって求めることが可能である。
 三次元組織体におけるコラーゲンの含有率は、三次元組織体を基準として0.01~90重量%であってよく、好ましくは10~90重量%であり、より好ましくは1~50重量%であり、更に好ましくは10~40重量%であり、10~30重量%であってよい。ここで、「三次元組織体におけるコラーゲン」とは、三次元組織体を構成するコラーゲンを意味し、内因性コラーゲンであってもよいし、外因性コラーゲンであってもよい。すなわち、三次元組織体を構成するコラーゲンの濃度は、内因性コラーゲン及び外因性コラーゲンを合わせた濃度を意味する。三次元組織体におけるコラーゲンの濃度は、得られた三次元組織体の体積、及び脱細胞化した三次元組織体の質量から算出することが可能である。また、三次元組織体におけるコラーゲンの含有率は、ELISA等の抗原抗体反応を利用した方法又はQuickZyme等の化学的検出方法により測定することもできる。
 三次元組織体は、トリプシンの濃度0.25%、温度37℃、pH7.4、反応時間15分でトリプシン処理を行った後の残存率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。このような三次元組織体は、培養中又は培養後において酵素による分解が起きにくく、安定である。上記残存率は、例えば、トリプシン処理の前後における三次元組織体の質量から算出できる。
 三次元組織体は、コラゲナーゼの濃度0.25%、温度37℃、pH7.4、反応時間15分でコラゲナーゼ処理を行った後の残存率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更により好ましい。このような三次元組織体は、培養中又は培養後における酵素による分解が起きにくく、安定である。
 三次元組織体は、厚さが10μm以上であることが好ましく、100μm以上であることがより好ましく、1000μm以上であることが更に好ましい。このような三次元組織体は、生体組織により近い構造であり、実験動物の代替品等として好適なものとなる。厚さの上限は、特に制限されないが、例えば、10mm以下であってもよいし、3mm以下であってもよいし、2mm以下であってもよいし、1.5mm以下であってもよいし、1mm以下であってもよい。
 ここで、「三次元組織体の厚さ」とは三次元組織体がシート状、又は直方体状である場合、主面に垂直な方向における両端の距離を意味する。上記主面に凹凸がある場合、厚さは上記主面の最も薄い部分における距離を意味する。
 また、三次元組織体が球体状である場合、その直径を意味する。さらにまた、三次元組織体が楕円体状である場合、その短径を意味する。三次元組織体が略球体状又は略楕円体状であって表面に凹凸がある場合、厚さは、三次元組織体の重心を通る直線と上記表面とが交差する2点間の距離であって最短の距離を意味する。
 三次元組織体を構成する細胞は、心筋細胞及びコラーゲン産生細胞以外の、一種又は複数種の他の細胞を更に含んでもよい。
 三次元組織体は、心筋細胞を含む細胞、及びコラーゲン以外の成分(他の成分)含んでいてよい。他の成分としては、例えば、エラスチン、コラーゲン、プロテオグリカン、フィブロネクチン、ラミニン等が挙げられる。
 三次元組織体からなる異常拍動心筋モデルは、実験動物の代替品(例えば、心筋の異常拍動に起因する心疾患モデル)、心筋梗塞モデル、心筋線維症モデル等として適用することが可能である。
<異常拍動心筋モデルの製造方法>
 本実施形態に係る異常拍動心筋モデルの製造方法は、水性媒体中において、心筋細胞を含む細胞(以下、場合により、単に「細胞」ともいう。)と外因性コラーゲンとを接触させる接触工程、及び、外因性コラーゲンが接触した細胞を培養する培養工程、を含み、接触工程における外因性コラーゲンの使用量が、1.0×10~10.0×10cellsの細胞に対して、0.1mg以上である。
 「水性媒体」とは、水を必須構成成分とする液体を意味する。水性媒体としては、外因性コラーゲン及び細胞が安定に存在できるものであれば、特に制限はない。例えば、リン酸緩衝生理食塩水(PBS)等の生理食塩水、Dulbecco’s Modified Eagle培地(DMEM)、血管内皮細胞専用培地(EGM2)等の液体培地が挙げられる。液体培地は、二種類の培地を混合した混合培地であってもよい。細胞に対する負荷を軽減する観点から、水性媒体は液体培地であることが好ましい。
(接触工程)
 水性媒体中において、心筋細胞を含む細胞と、外因性コラーゲンとを接触させる方法としては、特に制限はない。例えば、心筋細胞を含む培養液に、外因性コラーゲンの分散液を加える方法、外因性コラーゲンの培地分散液に細胞を加える方法、又は予め用意した水性媒体に、外因性コラーゲン及び心筋細胞をそれぞれ加える方法が挙げられる。
 接触工程においては、細胞がコラーゲン産生細胞を更に含んでいてよい。この場合、得られる三次元組織体がより安定になり、細胞がより均一に分布することとなる。このような三次元組織体が得られるメカニズムの詳細は不明であるが、以下のように推測される。まず細胞が外因性コラーゲン上に接触して接着する。その後、細胞は自分自身で細胞外マトリックス(ECM)を構成するタンパク質(例えば、線維性コラーゲン等のコラーゲン)を産生する。産生されたタンパク質は外因性コラーゲン上に接触して接着することで、外因性コラーゲン間の架橋剤として働き、細胞が均一に存在する環境下で線維性コラーゲン等の構造化が進む。その結果、安定で、細胞が均一に分布している三次元組織体が得られる。ただし、上記推測は本発明を限定するものではない。
 接触工程では、外因性コラーゲンとして、外因性コラーゲンに由来する断片化コラーゲンを含んでいてよい。外因性コラーゲン及び断片化コラーゲンとしては、上述のものを用いることができる。
 接触工程における水性媒体中の外因性コラーゲンの濃度は、目的とする三次元組織体(異常拍動心筋モデル)の形状、厚さ、培養器のサイズ等に応じて適宜決定できる。例えば、接触工程における水性媒体中の外因性コラーゲンの濃度は、0.1~90重量%であってもよいし、1~30重量%であってもよい。
 接触工程における外因性コラーゲンの使用量は、1.0×10~10.0×10cells(細胞数)の細胞に対して、0.1mg以上であればよく、0.5mg以上、1.0mg以上、2.0mg以上又は3.0mg以上であってもよいし、100mg以下、又は、50mg以下であってもよい。外因性コラーゲンは、2.0×10~8.0×10cells、3.0×10~6.0×10cells、又は5×10cellsの細胞に対して、上記範囲となるように添加してもよい。
 接触工程における外因性コラーゲンと、細胞との質量比(外因性コラーゲン:細胞)が、1000:1~1:1であることが好ましく、900:1~9:1であることがより好ましく、500:1~10:1であることが更により好ましい。
 心筋細胞とコラーゲン産生細胞とを共に用いる場合、接触工程における、心筋細胞:コラーゲン産生細胞の比(細胞数)は、99:1~9:1であってもよいし、80:20~50:50であってもよい。
 接触工程又は培養工程の間に、水性媒体中における断片化コラーゲンと細胞とを共に沈降させる工程(沈降工程)を更に含んでもよい。このような工程を行うことで、三次元組織体における外因性コラーゲン及び細胞の分布が、より均一になる。具体的な方法としては、特に制限はないが、例えば、断片化コラーゲンと心筋細胞を含む細胞とを含有する培養液を遠心操作する方法が挙げられる。
(培養工程)
 断片化コラーゲンが接触した細胞を培養する方法は、特に制限はなく、培養する細胞の種類に応じて好適な培養方法で行うことができる。例えば、培養温度は20℃~40℃であってもよく、30℃~37℃であってもよい。培地のpHは、6~8であってもよく、7.2~7.4であってもよい。培養時間は、1日~2週間であってもよく、1週間~2週間であってもよい。
 培地は特に制限はなく、培養する細胞の種類に応じて好適な培地を選択できる。培地としては、例えば、Eagle’s MEM培地、DMEM、Modified Eagle培地(MEM)、Minimum Essential培地、RPMI、及びGlutaMax培地等が挙げられる。培地は、血清を添加した培地であってもよいし、無血清培地であってもよい。培地は、二種類の培地を混合した混合培地であってもよい。
 培養工程における培地中の細胞密度は、目的とする異常拍動心筋モデルの形状、厚さ、培養器のサイズ等に応じて適宜決定できる。例えば、培養工程における培地中の細胞密度は、1~10cells/mlであってもよいし、10~10cells/mlであってもよい。また、培養工程における培地中の細胞密度は、接触工程における水性媒体中の細胞密度と同じであってもよい。
 三次元組織体は、培養中の収縮率が20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。上記収縮率は、例えば、以下の式で算出できる。式中Lは、培養後1日目の異常拍動心筋モデルのもっとも長い部分の長さを示し、Lは、培養後3日目の三次元組織体における対応する部分の長さを示す。
 収縮率(%)={(L―L)/L}×100
<異常拍動心筋モデルの形成剤>
 本実施形態に係る異常拍動心筋モデルの形成剤は、断片化コラーゲンを含む、異常拍動モデルの形成剤であって、断片化コラーゲンの平均長が100nm~200μmであり、断片化コラーゲンの平均径が50nm~30μmである。また、断片化コラーゲンの長さについて、断片化コラーゲン全体のうち95%が100nm~200μmの範囲にあってもよい。さらに、断片化コラーゲンの直径について、断片化コラーゲン全体のうち95%が50nm~30μmの範囲にあってもよい。
 「異常拍動心筋モデルの形成剤」とは、異常拍動心筋モデルを製造するための試薬を意味する。異常拍動心筋モデルの形成剤は、粉末の状態であってもよいし、水性媒体に断片化コラーゲンが分散した分散液の状態であってもよい。断片化コラーゲンの製造方法及び上記形成剤の使用方法としては、上記(異常拍動心筋モデルの製造方法)において示されている方法と同様の方法が挙げられる。
<心疾患治療薬の薬効評価方法>
 本発明の一実施形態として、異常拍動心筋モデルを用いた心疾患治療薬の薬効評価方法であって、心疾患治療薬を異常拍動心筋モデルに投与する投与工程と、心疾患治療薬を投与した異常拍動心筋モデルの拍動の挙動の変化により薬効を評価する評価工程と、を含む、心疾患治療薬の薬効評価方法が提供される。本実施形態によれば、心筋細胞の拍動に影響を与える心疾患治療薬の薬効を効果的に評価することができる。
 投与工程では、心疾患治療薬を異常拍動心筋モデルに投与する。心疾患治療薬としては、例えば、イソプロテレノール等の心不全治療薬、β遮断薬、硝酸薬等の心筋梗塞治療薬、アミオダロン等の抗不整脈等が挙げられる。
 心疾患治療薬の投与は、三次元組織体を培養する培地として心疾患治療薬を含有する培地を用いることにより実施してもよく、三次元組織体を培養する培地に心疾患治療薬を添加することにより実施してもよい
 心疾患治療薬を投与する異常拍動心筋モデルは、1日以上培養された三次元組織体からなるものであってよく、5日以上培養された三次元組織体からなるものであってよく、6日以上培養された三次元組織体からなるものであってよく、それ以上の日数培養された三次元組織体からなるものであってよい。
 評価工程では、心疾患治療薬を投与した異常拍動心筋モデルの拍動の挙動の変化により薬効を評価する。薬効は、拍動の挙動を指標として評価することができる。拍動の挙動としては、拍動間隔、拍動数、拍動力、収縮及び/又は弛緩速度等が挙げられる。拍動の挙動の変化は、例えば、単位時間当たりの拍動数の変化及び/又は拍動間隔(拍動間の時間)の変化であってよい。薬効は、上記指標1種のみの変化に基づいて評価してもよいし、上記指標の2種以上に基づいて評価してもよい。
 薬効の評価は、例えば、心疾患治療薬を投与した三次元組織体からなる異常拍動心筋モデルの拍動の挙動と、心疾患治療薬を投与しなかった三次元組織体からなる異常拍動心筋モデル投与しなかった場合との拍動の挙動を比較することにより、行うことができる。
 評価工程は、複数回行われてよい。すなわち、薬効の評価は、治療薬の投与後、所定の間隔ごとに複数回行われてもよい。
 評価工程では、心疾患治療薬を投与しなかった異常拍動心筋モデルの単位時間あたりの拍動数と比較して、心疾患治療薬を投与した異常拍動心筋モデルの単位時間あたりの拍動数が多かった場合には、心不全治療薬として効果があると評価してよく、心疾患治療薬を投与しなかった異常拍動心筋モデルの単位時間あたりの拍動数と比較して、心疾患治療薬を投与した異常拍動心筋モデルの単位時間あたりの拍動数が少なかった場合には、心不全治療薬として効果がないと評価してよい。
<I型コラーゲンを用いた断片化コラーゲン(CMF)の製造>
 日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体を10倍濃度のリン酸緩衝生理食塩水(X10 PBS)に分散し、ホモジナイザーを用いて2分間ホモジナイズすることで、直径が約20~30μmであり、長さが約100~200μmである断片化コラーゲンを得た(図1の(A))。断片化コラーゲンの直径及び長さは電子顕微鏡によって個々の断片化コラーゲンを解析することで求めた。得られた断片化コラーゲンを無血清培地(DMEM)で洗浄し、断片化コラーゲンの培地分散液を得た。得られた断片化コラーゲンの培地分散液は、室温で1週間保存できた。後述する各異常拍動心筋モデル(三次元組織体)の製造においては、同様の方法で得られた断片化コラーゲンを用いた。
 また、上記方法において、ホモジナイズする時間を5分間に変更した場合、直径が約950nm~16.8μmであり、長さが約9.9μm~78.6μmである断片化コラーゲンが得られた(表1、図1の(B))。この結果から、ホモジナイズする時間を調整することで、断片化コラーゲンのサイズを制御できることが分かった。
Figure JPOXMLDOC01-appb-T000001
<三次元組織体の製造>
 血清を含む培地(DMEM)にて濃度が10mg/mlとなるように断片化コラーゲンを分散させ、断片化コラーゲンを含む分散液を準備した。
(実施例1)
 三次元組織体は、図2(A)に示す模式図のとおりに製造した。すなわち、上記の断片化コラーゲンを含む分散液、ヒト心臓線維芽細胞(NHCF)及びヒトiPS細胞由来心筋細胞(iPS-CM)(以下、NHCF及びiPS-CMをまとめて、「細胞」ともいう。)を、非接着96ウェル丸底プレートに添加し、断片化コラーゲンと細胞とを接触させた(接触工程)。断片化コラーゲンを含む分散液は、断片化コラーゲンの添加量が0.5mgとなるように添加した。NHCFと、iPS-CMとは、25:75の割合で混合し、合計細胞数が、5×10cellsとなるように添加した。その後、所定期間培養し(培養工程)、三次元組織体1を製造した。三次元組織体1は、21日間培養後にマッソントリクローム染色(Masson trichrome stain)した。三次元組織体1の位相差顕微鏡による写真を図2(C)に示す。三次元組織体1は、球体状であり、21日間培養後における直径は約1.0mmであった。なお、図2(C)の左側及び中央の図において、着色が濃い箇所は、コラーゲン繊維を示し、着色の薄い箇所は、細胞質を示す(以下、図2(B)、(D)及び(E)においても同様である。)。
(実施例2)
 断片化コラーゲンを含む分散液を、断片化コラーゲンの添加量が1.0mgとなるように添加すること以外は、実施例1と同様にして三次元組織体2を製造した。マッソントリクローム染色した三次元組織体2の、位相差顕微鏡による観察結果を図2(D)に示す。三次元組織体2は、球体状であり、21日間培養後における直径は、約1.2mmであった。
(実施例3)
 断片化コラーゲンを含む分散液を、断片化コラーゲンの添加量が1.5mgとなるように添加すること以外は、実施例1と同様にして三次元組織体3を得た。マッソントリクローム染色した三次元組織体3の、位相差顕微鏡による観察結果を図2(E)に示す。三次元組織体3は、球体状であり、21日間培養後における直径は、約1.6mmであった。
(実施例4)
 断片化コラーゲンを含む分散液を、断片化コラーゲンの添加量が3.0mgとなるように添加すること以外は、実施例1と同様にして三次元組織体4を得た。三次元組織体4の7日間培養後における直径は、約4mmであった。
(実施例5)
 断片化コラーゲンを含む分散液を、断片化コラーゲンの添加量が5.0mgとなるように添加すること以外は、実施例1と同様にして三次元組織体5を得た。三次元組織体5の7日間培養後における直径は、約5mmであった。
(比較例1)
 断片化コラーゲンを含む分散液を添加しなかったこと以外は、実施例1と同様にして比較三次元組織体1を得た。マッソントリクローム染色した比較三次元組織体1の、位相差顕微鏡による観察結果を図2(B)に示す。比較三次元組織体1は、球体状であり、21日間培養後における直径は、約0.9mmであった。
<評価>
(心筋モデルの拍動間隔及び拍動力)
 上記の方法で得られた三次元組織体1~5及び比較三次元組織体1をそれぞれ、実施例1~5及び比較例1の心筋モデルとした。心筋モデルの拍動間隔及び拍動力は、7日間培養後の心筋モデルの拍動を倒立顕微鏡で動画を撮影、それを画像解析(イメージpro)を用いて観察することにより、評価した。具体的には、心筋モデルが拍動する際に移動する重心の移動距離及び拍動の時間間隔に基づいて評価した。図3は、心筋モデルの拍動間隔及び拍動力の評価方法を説明する図である。心筋モデルの重心は、拍動に応じて、移動する。心筋モデルが収縮した際の重心の移動距離(図3(A)に示す重心から、(B)に示す重心までの距離)と、収縮後に心筋モデルが弛緩した際の重心の移動距離(図3(B)に示す重心から、(C)に示す重心までの距離)とを測定することにより評価を行った。結果を図4~10に示す。
 図4(A)は、断片化コラーゲンを1.0mg添加して得た、実施例2の心筋モデルの拍動挙動を示す。図4(B)は、観察開始時点(0秒)、収縮した時点(0.67経過時点)及び弛緩した時点(1.27秒経過時点)を示す。図5(B)は、断片化コラーゲンを0mg、1.0mg、2.0mg添加して得た、心筋モデルの拍動挙動を示す。
 図4及び5に示すとおり、断片化コラーゲンを添加した場合、添加しなかった場合と比べ、得られる心筋モデルの拍動(拍動の時間間隔及び拍動力)が不規則に変化するようになった。また、コラーゲンを添加しなかった場合と比べて、コラーゲンを添加した場合では、得られる心筋モデルの拍動力が低下した。なお、図5(A)に示すとおり、コラーゲンを添加しなかった、心筋モデルでは、拍動の挙動が正常に近かった。
 図6及び8の(A)~(D)は、それぞれ、断片化コラーゲンの使用量が、0、1、3、及び5mgである心筋モデルの拍動挙動を示す。図7(A)は、図6(A)~(D)に示す破線間の間隔(つまり、1回の収縮-弛緩完了した時点から次の収縮-弛緩完了時点の差)(単位:秒)から算出した平均拍動間隔(average of beating interval)の結果を示す。図7(B)は、培養期間4日から7日までの標準偏差(S.D.)の平均(拍動の不規則性の指標)を示す。図9は、図8(A)~(D)の矢印で示す間隔(つまり、1回の収縮-弛緩に要する時間)(単位:秒)から算出した、心筋モデルの収縮と弛緩との間の時間(単位:秒)を示す。図10は、断片化コラーゲンの使用量が、0、1、3、及び5mgである心筋モデルの、培養日数に応じた拍動間隔(beating interval)の測定結果を示す。
 図7(A)に示すとおり、断片化コラーゲンを添加して得た心筋モデルは、平均拍動間隔が短かった(すなわち、単位時間当たりの拍動数がより多かった。)。図7(B)に示すとおり、1mg又は5mgの断片化コラーゲンを添加した場合、より拍動の時間間隔が不規則に変化するようになった。図9に示すとおり、断片化コラーゲンを添加して得た心筋モデルでは、1回の収縮及び弛緩に要する時間がより長くなった(すなわち、1回あたりの拍動速度が低下した。)。以上のとおり、断片化コラーゲンを添加して製造した心筋モデルは、疾患を発症したモデルに近似していることが示唆された。図8にコラーゲン量毎の拍動挙動を示す。図9では、図8の結果から1回の収縮-弛緩にかかる時間を算出し、コラーゲンの影響を調べた。その結果、拍動に要する時間は、1mg、3mgとコラーゲン量(添加量)依存的に、有意差をもって遅延していく傾向にあったが、コラーゲン量(添加量)が5mgの場合では、拍動に要する時間は、1mgとほぼ同様であった。拍動そのものの時間についてもコラーゲン量により制御できる可能性が示唆された。図10に示すとおり、断片化コラーゲンを添加して得た心筋モデルは、培養期間をとおして、拍動間隔がより短く、より拍動数が多かった。
<細胞生存率の測定>
(三次元組織体の構築)
 50mgのブタ皮膚由来I型コラーゲン(日本ハム株式会社提供)に5mLの10xリン酸緩衝生理食塩水(PBS)を加え、ホモジナイザーで6分間ホモジナイズした。その後10000rpmで3分間遠心分離し、上澄み液を除去した。ここに5mLの無血清DMEMを加え、1分間ピペッティングにより洗浄した。洗浄後、10000rpmで3分間遠心分離し、上澄み液を除去した。ここに5mLの血清入りDMEMを加えてピペッティングし、断片化コラーゲン(CMF)分散培地(CMF濃度9.8mg/mL)を得た。CMF分散培地からCMF0,1,2,3mgとなるよう分散液をはかり取り、5x10cellsのiPS-CM75%/NHCF25%と混合し、96wellの丸底非接着プレートに播種した(培地量は300μL)。その後、1100gで5分間遠心分離し、CMFと細胞を沈殿させた。遠心後、37℃のインキュベーター内で培養した。培地交換は2日に1回、古い培地を除去し、300μLの新しい培地を加えることで行った。
(DNA量の測定)
 用いたキット:DNeasy Blood & Tissue Kit (50)(69504,QIAGEN)
 5x10cellsのiPS-CM75%/NHCF25%のDNA量を、上記キットを用いて測定した。この時のDNA量を基準(100%)とした。7日間培養後の各CMF量の三次元組織体中のDNA量を、上記キットを用いて測定した。下記の式を用いて三次元組織体中の細胞生存率(DNA量の変化率(change of DNA amount))を算出した。
 DNA量の変化率(%)=(7日間培養後の三次元組織体のDNA量)/(5×10cellsのiPS-CM75%/NHCF25%のDNA量)×100
 なお、上記キットは、DNeasy Mini Spin Column、コレクションチューブ、Buffer ATL、Buffer AL、Buffer AW1、Buffer AW2、Buffer AE、Proteinase K等を含む市販のキットであり、DNA測定は、下記手順に従い実施した。
 測定するサンプルを1.5mLエッペンチューブに入れ、Buffer ATL 180 μLを入れた。これにProteinase K 20μL添加し、ボルテックスを行って、組織が完全に溶解するまで56℃でインキュベートした(一晩)。その後、15秒間ボルテックスし、Buffer ALとエタノールを等量で混ぜ、1サンプルに400 μL添加し、ボルテックスを行った。溶液をDNeasy Mini Spin Column(以下、単にカラムと記載することがある。)内に添加し、8000 rpm、1 minの条件で遠心分離した。濾液およびコレクションチューブを捨て、カラムを新しいコレクションチューブに移し、Buffer AW1 500 μLを添加した。その後、8000 rpm、1 minの条件で遠心分離した。濾液およびコレクションチューブを捨て、カラムを新しいコレクションチューブに移し、Buffer AW2 500 μLを添加した。14000 rpm、3 minの条件で遠心後、DNeasyメンブレンを完全に乾燥させた。濾液およびコレクションチューブを捨て、カラムをエッペンチューブに移し(操作1)、200μLのBuffer AEをDNeasyメンブレン上に直接添加し(操作2)、室温で1 minインキュベートした(操作3)。その後、8000 rpm、1 minの条件で遠心分離した(操作4)。操作1~4を繰り返した後、回収した濾液をまとめて400μLとした。これをNanodropで測定した。
 DNA量の変化率の結果を図11に示す。図11に示すとおり、7日間培養した結果、CMFを使用した三次元組織体の細胞数は、CMFを使用しなかった組織体と比べてより増加した。CMFを加えて培養することにより、より多くの細胞が生存していたか、または、細胞がより長期間生存していたと考えられる。図10及び11の結果から、CMFを使用した三次元組織体は、長期間(少なくとも7日間)した場合であっても、培養初期と同程度の拍動挙動を示し、細胞の生存率もCMFを使用しなかった組織体(スフェロイド)と比較して高かった。これにより、CMFを使用した三次元組織体からなる心筋モデルは、細胞が多く生存、または長く生存していることによって、薬効評価を長期間に渡って行うことができる。
<イソプロテレノールに対する薬剤応答性の評価>
(三次元組織体の構築)
 用いたキット:Total Collagen Assay Kit(QZBTOTCOL1,QuickZyme Biosciences)
 三次元組織体は、上記同様にして構築した。CMFを1mg使用して構築した三次元組織体において、1日培養後のコラーゲンの含有率は、凍結乾燥した三次元組織体を基準として、34重量%であった。三次元組織体におけるコラーゲンの含有量は、上記キットを用いて、上記キットの標準プロトコルにより測定した。
(薬剤応答性の評価)
 5~6日間培養後の組織体の拍動を、SONY Motion analyzerを用いて撮影し、拍動数を計測した。撮影時は顕微鏡内を37℃に保ち、15~20秒間撮影した。撮影後、一度プレートを顕微鏡から取り出して培地を除去し、300μLのDMEM(薬剤未添加組織)、又は300μLの100nMイソプロテレノール混合DMEMをそれぞれ加え、再び顕微鏡に戻して37℃でインキュベートした。30分、60分、80分インキュベート後にそれぞれの拍動を同様に撮影し、拍動数を計測した。計測結果からイソプロテレノール添加による拍動数の変化率(change rate of beating)を下記の式で算出した。結果は、単位時間当たりの拍動数が増加したことをもって、イソプロテレノールへの応答性が良好であったとした。
 拍動数の変化率(%)=(薬剤添加組織の各時間後の拍動数/薬剤添加組織の薬剤添加前の拍動数)/(薬剤未添加組織の各時間後の拍動数/薬剤未添加組織の培地交換前の拍動数)×100
 なお、上段の式でイソプロテレノール添加による拍動数の変化率を求め、この値を下段の未添加時の拍動数の変化率(=培地交換による拍動数の変化)で割ることで補正している。
 図12は、拍動数の変化率の結果を示す。心筋モデルにおいて、CMF使用量0mgの場合は、薬剤応答性が悪く、CMF使用量1mg及び3mgの場合は、薬剤応答性を示した。CMF使用量1mgであった心筋モデルは、より良好な薬剤応答性を示した。
 CMFを用いた三次元組織体からなる心筋モデルを用いた薬効評価結果は、イソプロテレノールの心筋のアドレナリン受容体に作用して収縮力を増強する効果の知見と一致しており、CMFを用いた三次元組織体からなる心筋モデルにより心不全治療薬の効果を正しく評価可能であることが示された。
 本発明によれば、新規な異常拍動心筋モデルの提供が可能となり、例えば、心臓の異常拍動に起因する疾患等に有効な薬剤開発への応用が期待される。

Claims (16)

  1.  心筋細胞を含む細胞と、コラーゲンと、を含有し、前記細胞の少なくとも一部が前記コラーゲンに接着している三次元組織体からなる、異常拍動心筋モデル。
  2.  前記細胞が、コラーゲン産生細胞を更に含有する、請求項1に記載の異常拍動心筋モデル。
  3.  前記コラーゲンの含有率が、前記三次元組織体を基準として10~30重量%である、請求項1又は2に記載の異常拍動心筋モデル。
  4.  前記コラーゲンが外因性コラーゲンを含む、請求項1~3のいずれか一項に記載の異常拍動心筋モデル。
  5.  前記コラーゲンが外因性コラーゲンに由来する断片化コラーゲンを含む、請求項1~4のいずれか一項に記載の異常拍動心筋モデル。
  6.  水性媒体中において、心筋細胞を含む細胞と外因性コラーゲンとを接触させる接触工程、及び
     前記外因性コラーゲンが接触した前記細胞を培養する培養工程、を含み、
     前記接触工程における前記外因性コラーゲンの使用量が、1.0×10~10.0×10cellsの細胞に対して、0.1mg以上である、異常拍動心筋モデルの製造方法。
  7.  前記細胞が、コラーゲン産生細胞を更に含む、請求項6に記載の異常拍動心筋モデルの製造方法。
  8.  前記外因性コラーゲンとして、断片化コラーゲンを含有する、請求項6又は7に記載の製造方法。
  9.  前記断片化コラーゲンの平均長が100nm~200μmである、請求項8に記載の製造方法。
  10.  前記断片化コラーゲンの平均径が50nm~30μmである、請求項8又は9に記載の製造方法。
  11.  前記接触工程又は前記培養工程の間に、前記水性媒体中における前記外因性コラーゲンと前記細胞とを共に沈降させる工程を更に含む、請求項6~10のいずれか一項に記載の製造方法。
  12.  前記外因性コラーゲンと、前記細胞との質量比が、900:1~9:1である、請求項6~11のいずれか一項に記載の製造方法。
  13.  断片化コラーゲンを含む、異常拍動心筋モデルの形成剤であって、
     前記断片化コラーゲンの平均長が100nm~200μmであり、前記断片化コラーゲンの平均径が50nm~30μmである、異常拍動心筋モデルの形成剤。
  14.  請求項1~5のいずれか一項に記載の異常拍動心筋モデルを用いた心疾患治療薬の薬効評価方法であって、
     前記心疾患治療薬を前記異常拍動心筋モデルに投与する投与工程と、
     前記心疾患治療薬を投与した前記異常拍動心筋モデルの拍動の挙動の変化により薬効を評価する評価工程と、を含む、心疾患治療薬の薬効評価方法。
  15.  前記評価工程において、
     前記心疾患治療薬を投与しなかった前記異常拍動心筋モデルの単位時間あたりの拍動数と比較して、前記心疾患治療薬を投与した前記異常拍動心筋モデルの単位時間あたりの拍動数が多かった場合には、心不全治療薬として効果があると評価し、
     前記心疾患治療薬を投与しなかった前記異常拍動心筋モデルの単位時間あたりの拍動数と比較して、前記心疾患治療薬を投与した前記異常拍動心筋モデルの単位時間あたりの拍動数が少なかった場合には、心不全治療薬として効果がないと評価する、請求項14に記載の心疾患治療薬の薬効評価方法。
  16.  前記評価工程が複数回行われる、請求項14又は15に記載の心疾患治療薬の薬効評価方法。
PCT/JP2018/032643 2017-09-04 2018-09-03 異常拍動心筋モデル及びその製造方法、異常拍動心筋モデルの形成剤並びに心疾患治療薬の薬効評価方法 WO2019045105A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019539708A JPWO2019045105A1 (ja) 2017-09-04 2018-09-03 異常拍動心筋モデル及びその製造方法、異常拍動心筋モデルの形成剤並びに心疾患治療薬の薬効評価方法
CN201880056761.5A CN111051501A (zh) 2017-09-04 2018-09-03 异常跳动心肌模型及其制造方法、异常跳动心肌模型的造模剂以及心脏病治疗药的药效评价方法
EP18850760.2A EP3680327A4 (en) 2017-09-04 2018-09-03 MYOCARDIAL MODEL OF ABNORMAL HEARTHYTHM AND METHOD FOR MANUFACTURING THEREOF, MEANS FOR MOLDING MYOCARDIAL MODEL OF ABNORMAL CARDIAC ARHYTHM AND METHOD FOR EVALUATING DRUG EFFICIENCY OF HEART DISEASE
US16/644,059 US20210063374A1 (en) 2017-09-04 2018-09-03 Abnormal cardiac rhythm myocardial model and method for producing same, agent for forming abnormal cardiac rhythm myocardial model, and method for evaluating drug efficacy of heart disease therapeutic
JP2023139660A JP2023155406A (ja) 2017-09-04 2023-08-30 異常拍動心筋モデル及びその製造方法、異常拍動心筋モデルの形成剤並びに心疾患治療薬の薬効評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-169688 2017-09-04
JP2017169688 2017-09-04

Publications (1)

Publication Number Publication Date
WO2019045105A1 true WO2019045105A1 (ja) 2019-03-07

Family

ID=65525798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032643 WO2019045105A1 (ja) 2017-09-04 2018-09-03 異常拍動心筋モデル及びその製造方法、異常拍動心筋モデルの形成剤並びに心疾患治療薬の薬効評価方法

Country Status (5)

Country Link
US (1) US20210063374A1 (ja)
EP (1) EP3680327A4 (ja)
JP (2) JPWO2019045105A1 (ja)
CN (1) CN111051501A (ja)
WO (1) WO2019045105A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177407A1 (ja) * 2020-03-05 2021-09-10 国立大学法人大阪大学 三次元組織体のヤング率を制御する方法、三次元組織体の製造方法、及び三次元組織体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690596A (zh) * 2020-06-17 2020-09-22 广东源心再生医学有限公司 一种人源iPS分化的心肌细胞用的新型3D培养基及其配制方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143286A1 (ja) * 2017-01-31 2018-08-09 凸版印刷株式会社 三次元組織体及びその製造方法、並びに、三次元組織体の形成剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009319A1 (fr) * 1999-07-29 2001-02-08 Helix Research Institute Gene exprime specifiquement dans le muscle cardiaque foetal humain
WO2001083705A1 (fr) * 2000-04-27 2001-11-08 Kyowa Hakko Kogyo Co., Ltd. Genes associes a la proliferation de cellules myocardiques
KR101389850B1 (ko) * 2012-05-04 2014-04-29 이화여자대학교 산학협력단 심장전구세포의 배양방법 및 그 용도
EP2840132B1 (en) * 2013-08-22 2016-11-30 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Universitätsmedizin Method for producing Engineered Heart Muscle (EHM)
JP6608281B2 (ja) * 2013-08-23 2019-11-20 国立大学法人大阪大学 薬剤候補化合物のスクリーニングに用いる心筋組織チップの製造方法
US10183097B2 (en) * 2013-11-27 2019-01-22 The Johns Hopkins University Engineered cardiac derived compositions and methods of use
WO2016183143A1 (en) * 2015-05-11 2016-11-17 The Trustees Of Columbia University Inthe City Of New York Engineered adult-like human heart tissue
JP2017015958A (ja) * 2015-07-02 2017-01-19 富士ゼロックス株式会社 定着装置および画像形成装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143286A1 (ja) * 2017-01-31 2018-08-09 凸版印刷株式会社 三次元組織体及びその製造方法、並びに、三次元組織体の形成剤

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ARTIF ORGANS, vol. 36, no. 9, 2012, pages 816 - 819
CHUN-YEN LIU; MATSUSAKI MICHIYA; AKASHI MITSURU: "he construction of cell-density controlled three-dimensional tissues by coating micrometer-sized collagen fiber matrices on single cell surfaces", RSC ADVANCES, vol. 4, no. 86, 30 September 2014 (2014-09-30), pages 46141 - 46144, XP055674593, ISSN: 2046-2069, DOI: 10.1039/C4RA09085C *
HIURA AYAMI , ISHIMA FUMIAKI , MATSUSAKI MICHIYA , AKASHI MITSURU: "1Ph120: Construction of 3D cardiac tissues by iPS cell-derived cardiomyocytes employing coating method and introduction of blood vessel structures", POLYMER PREPRINTS , vol. 65, no. 1, 10 May 2016 (2016-05-10), pages 1 - 4, XP009519274 *
J. OF CARDIOVASC. TRANS. RES., vol. 10, 2017, pages 116 - 127
KOKI NISHI , MISAKI KOMEDA , MICHIYA MATASUKAKI: "2H10: Construction of iPS cell-derived cardiac fibrosis models using collagen microfibers and control of fibrosis", POLYMER PREPRINTS, JAPAN, vol. 67, no. 1, 8 May 2018 (2018-05-08), JAPAN, pages 1 - 3, XP009519271 *
KOKI NISHI , MISAKI KOMEDA , MICHIYA MATASUKAKI: "2Pa097: Construction of iPS-derived cardiac muscle tissues using collagen microfibers", POLYMER PREPRINTS JAPAN, vol. 66, no. 1, 15 May 2017 (2017-05-15), JAPAN, pages 1 - 3, XP009519273 *
KOKI NISHI , MISAKI KOMEDA , MICHIYA MATASUKAKI: "3N03 Construction of iPS derived myocardiac fibrosis model using collagen microfibers", POLYMER PREPRINTS JAPAN , vol. 66, no. 2, 6 September 2017 (2017-09-06), JAPAN, pages 1 - 4, XP009519272 *
YUTO AMANO, AKIHIRO NISHIGUCHI, MICHIYA MATSUSAKI, HIROKO ISEOKA, SHIGERU MIYAGAWA, YOSHIKI SAWA, MANABU SEO, TAKASHI YAMAGUCHI, M: "Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration Layer-by-Layer technique and their application for pharmaceutical assays", ACTA BIOMATERIALIA, vol. 33, 31 March 2016 (2016-03-31), AMSTERDAM, NL, pages 110 - 121, XP055602027, ISSN: 1742-7061, DOI: 10.1016/j.actbio.2016.01.033 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177407A1 (ja) * 2020-03-05 2021-09-10 国立大学法人大阪大学 三次元組織体のヤング率を制御する方法、三次元組織体の製造方法、及び三次元組織体
CN115298304A (zh) * 2020-03-05 2022-11-04 国立大学法人大阪大学 控制三维组织体的杨氏模量的方法、三维组织体的制造方法以及三维组织体

Also Published As

Publication number Publication date
EP3680327A4 (en) 2021-04-14
JP2023155406A (ja) 2023-10-20
US20210063374A1 (en) 2021-03-04
JPWO2019045105A1 (ja) 2020-08-20
EP3680327A1 (en) 2020-07-15
CN111051501A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
Ge et al. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration
JP6775157B2 (ja) 三次元組織体及びその製造方法、並びに、三次元組織体の形成剤
Faulk et al. Role of the extracellular matrix in whole organ engineering
JP2023155406A (ja) 異常拍動心筋モデル及びその製造方法、異常拍動心筋モデルの形成剤並びに心疾患治療薬の薬効評価方法
JP7340194B2 (ja) 細胞外マトリックス含有組成物、三次元組織体形成用仮足場材及び三次元組織体形成剤並びに三次元組織体から細胞を回収する方法
WO2020203369A1 (ja) 細胞構造体及び細胞構造体の製造方法
JP6903299B2 (ja) 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体、三次元組織体形成剤
Mahoney et al. Adipose derived delivery vehicle for encapsulated adipogenic factors
US20230348859A1 (en) Decellularized mammalian extracellular matrix morsels, methods making and methods of using same
Maiborodin et al. Angiogenesis in Rat Uterine Scar after Introduction af Autological Mesenchymal Stem Cells of Bone Marrow Origin
JP7241355B2 (ja) 造影用の複合粒子、複合粒子の製造方法、細胞、細胞構造体および混合分散液
US20180022789A1 (en) Gelatin particles, method for producing gelatin particles, gelatin-particlecontaining cells, method for producing gelatin-particle-containing cells, and cellular structure
JP2023520621A (ja) 心臓オルガノイド培養及び移植のための脱細胞心臓組織由来支持体及びその製造方法
JP7498454B2 (ja) 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体及びその製造方法
WO2022091822A1 (ja) 細胞構造体の凍結方法
WO2022113540A1 (ja) 組織体の製造方法、及び脂肪由来幹細胞の分化促進方法
WO2021054079A1 (ja) 細胞構造体及びその製造方法
Saraswat Novel Micropatterned Biphasic Platform for Maintaining Chondrocyte Phenotype
Ketabat et al. Cardiac Tissue Engineering: A Journey from Scaffold Fabrication to In Vitro Characterization
Kuneev et al. Development of a Method for Three-Dimensional Culturing of Human Mesenchymal Stem (Stromal) Cells Using a Cellulose Matrix
Porter Evaluation of Fetal Cardiac Extracellular Matrix Peptides for Repair and Regeneration of the Right Ventricular Outflow Tract
Park The Potential Role of Pericytes and Genetic Regulation of Fibroblasts in Cardiac Fibrosis
JP2022036357A (ja) 細胞構造体及び細胞構造体の製造方法
Douglas-Byrd The Effect of Magnesium on Angiogenesis Evaluated Utilizing the Chick Chorioallantoic Membrane Assay
JP2021176287A (ja) 細胞構造体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850760

Country of ref document: EP

Effective date: 20200406