WO2019045100A1 - Soft magnetic powder, method for producing fe powder or alloy powder containing fe, soft magnetic material, and method for producing dust core - Google Patents

Soft magnetic powder, method for producing fe powder or alloy powder containing fe, soft magnetic material, and method for producing dust core Download PDF

Info

Publication number
WO2019045100A1
WO2019045100A1 PCT/JP2018/032625 JP2018032625W WO2019045100A1 WO 2019045100 A1 WO2019045100 A1 WO 2019045100A1 JP 2018032625 W JP2018032625 W JP 2018032625W WO 2019045100 A1 WO2019045100 A1 WO 2019045100A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
mass
soft magnetic
producing
alloy powder
Prior art date
Application number
PCT/JP2018/032625
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 昌弘
良幸 道明
井上 健一
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018013786A external-priority patent/JP6490259B2/en
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to US16/644,245 priority Critical patent/US20210046549A1/en
Priority to CN201880054603.6A priority patent/CN110997184B/en
Priority to KR1020207003968A priority patent/KR102428560B1/en
Publication of WO2019045100A1 publication Critical patent/WO2019045100A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties

Definitions

  • the present invention relates to a method of manufacturing soft magnetic powder, Fe powder or an alloy powder containing Fe, a soft magnetic material, and a method of manufacturing a dust core.
  • the electronic device is attached with a magnetic component having a dust core, such as an inductor.
  • a magnetic component having a dust core such as an inductor.
  • the frequency is increased for higher performance and miniaturization, and accordingly, the powder magnetic core constituting the magnetic component is also required to cope with the frequency increase.
  • Dust cores are generally manufactured by compressing and molding soft magnetic powder with a binder such as resin if necessary, but the dust core (soft magnetic powder) has a high frequency side.
  • the core loss (magnetic loss) tends to increase as the For this reason, it is desirable to use a soft magnetic powder having a low coercivity and a high permeability (and hence a low hysteresis loss).
  • a soft magnetic powder an FeSi alloy powder containing Si has been proposed because a high magnetic permeability can be obtained (see, for example, Patent Document 1).
  • Patent Document 1 describes that soft magnetic properties can be improved by blending 5% by mass to 7% by mass of Si.
  • the core loss in a dust core becomes so large that it becomes high frequency.
  • the loss due to the eddy current generated by the magnetic field eddy current loss
  • the increase of the loss due to the high frequency becomes remarkable. Therefore, it is conceivable to reduce the particle diameter of the soft magnetic powder used for the formation from the viewpoint of reducing the core loss by reducing the eddy current loss in the powder magnetic core (especially used in a high frequency region).
  • the particle size of the soft magnetic powder is reduced to reduce the eddy current loss of the dust core, the amount of oxygen increases and the magnetic permeability decreases (hysteresis loss is large And core loss can not be reduced sufficiently.
  • a water atomization method is mentioned as a method conventionally employ
  • a molten metal is prepared in a furnace, dropped from a nozzle of the furnace, and the molten metal is crushed and solidified into a powder by spraying water at a high pressure, and the powder is dispersed in the water.
  • a slurry is obtained, this slurry is solid-liquid separated and dried to obtain a soft magnetic powder.
  • the soft magnetic powder contains Fe (iron) as a main constituent element, and iron is easily oxidized. Therefore, in order to prevent this, the soft magnetic powder obtained by the above-mentioned drying is subjected to gradual oxidation.
  • the gradual oxidation is a treatment for oxidizing the particle surface of the powder to form a surface oxide film that functions as a protective film against oxidation, for the purpose of suppressing excessive oxidation of the soft magnetic powder, for example,
  • the above-mentioned dried soft magnetic powder placed in a non-oxidizing atmosphere is gradually oxidized by gradually increasing the oxygen concentration in the atmosphere.
  • the present inventors further studied each step.
  • the high temperature such as 100 ° C. or higher in order to quickly dry in non-oxidizing atmosphere or vacuum to prevent oxidation of soft magnetic powder and in terms of productivity Drying has been carried out.
  • the present inventors have found that performing this drying at a high temperature affects the high oxygen content of the soft magnetic powder produced through steps such as subsequent gradual oxidation.
  • the present inventors can provide a soft magnetic powder having a reduced oxygen content as compared to the prior art without performing the gradual oxidation process.
  • the 50% cumulative particle diameter [ ⁇ m] of the soft magnetic powder measured with a laser diffraction type particle size distribution analyzer is D50 and the oxygen content [mass%] is [O]
  • the product of these products It was found that if (D50 ⁇ [O]) is 3.0 [ ⁇ m ⁇ mass%] or less, a powder magnetic core having high magnetic permeability can be formed even if the particle size of the soft magnetic powder is small.
  • the soft magnetic powder provided by the present invention even when the particle diameter is reduced, the content of oxygen can be suppressed low, and a high magnetic permeability can be achieved in the dust core. As described above, the present inventors have completed the present invention.
  • the first aspect of the present invention is Soft magnetic powder composed of Fe alloy containing Si,
  • the soft magnetic powder contains 0.1% by mass to 15% by mass of Si,
  • the product of these soft magnetic powders assuming that the cumulative 50% particle size [ ⁇ m] of the volume basis measured by a laser diffraction type particle size distribution analyzer is D50 and the oxygen content [mass%] is [O] D50 ⁇ [O]) is 3.0 [ ⁇ m ⁇ mass%] or less, Soft magnetic powder is provided.
  • the D50 is 0.5 ⁇ m to 10 ⁇ m.
  • Said [O] is 0.75 mass% or less.
  • the product of D50 and [O] (D50 ⁇ [O]) is 0.5 [ ⁇ m ⁇ mass%] to 2.6 [ ⁇ m ⁇ mass%].
  • the soft magnetic powder of the first to fourth aspects It contains 84% by mass to 99.7% by mass of Fe.
  • a sixth aspect of the present invention is the soft magnetic powder according to the first to fifth aspects, wherein It contains 2.0% by mass to 3.5% by mass of Si.
  • 0.2 to 0.5 mass% of Si is included.
  • the soft magnetic powder of the first to seventh aspects in the soft magnetic powder of the first to seventh aspects, the above [O] is 0.10 mass% to 0.60 mass%.
  • the ninth aspect of the present invention is A method for producing Fe powder or alloy powder containing Fe, A melt preparation step of preparing a melt containing Fe; An atomizing step of forming a Fe powder or an alloy powder containing Fe by spraying water onto the molten metal while dropping the molten metal, thereby forming an Fe powder or an alloy powder containing Fe, and obtaining a slurry containing the Fe powder or the alloy powder and water; Solid-liquid separation step of solid-liquid separating said slurry and recovering said Fe powder or alloy powder; There is provided a method for producing Fe powder or Fe-containing alloy powder, comprising a drying step of drying the Fe powder or alloy powder obtained in the solid-liquid separation step at 80 ° C. or less.
  • a method of producing Fe powder of the ninth aspect or alloy powder containing Fe In the drying step, drying is performed at 60 ° C. or less.
  • an Fe powder of the ninth or tenth aspect or a method of producing an Fe-containing alloy powder The drying step is performed in a reduced pressure environment.
  • a method of producing Fe powder or Fe-containing alloy powder according to the ninth to eleventh aspects is provided a method of producing Fe powder or Fe-containing alloy powder according to the ninth to eleventh aspects, The drying step is performed in a vacuum environment.
  • a method of producing Fe powder or Fe-containing alloy powder according to the ninth to twelfth aspects, The pH of water used in the atomizing step is 9 to 13.
  • a fourteenth aspect of the present invention there is provided a method of producing Fe powder or Fe-containing alloy powder according to the ninth to twelfth aspects,
  • the pH of water used in the atomizing step is 11 to 13.
  • a fifteenth aspect of the present invention there is provided a method of producing Fe powder or Fe-containing alloy powder according to the ninth to fourteenth aspects,
  • the potential of water used in the atomizing step is -0.4V to 0.4V.
  • a sixteenth aspect of the present invention there is provided a method of producing Fe powder or Fe-containing alloy powder of the ninth to fifteenth aspects,
  • the molten metal contains Fe and 0.1% by mass to 15% by mass of Si.
  • a seventeenth aspect of the present invention there is provided a method of producing an Fe-containing alloy powder according to the sixteenth aspect,
  • the molten metal contains 84% by mass to 99.7% by mass of Fe.
  • An eighteenth aspect of the present invention is there is provided a soft magnetic material comprising the soft magnetic powder according to any of the first to eighth aspects and a binder.
  • the nineteenth aspect of the present invention is there is provided a method of manufacturing a dust core, wherein the soft magnetic material of the eighteenth aspect is molded into a predetermined shape, and the resulting molded product is heated to obtain a dust core.
  • a soft magnetic powder capable of forming a powder magnetic core having a high permeability, which has a small particle size but a low amount of oxygen, and the related art.
  • the soft magnetic powder of the present embodiment is composed of Fe (iron) alloy containing Si (silicon).
  • the soft magnetic powder contains Si in a range of 0.1% by mass to 15% by mass, and preferably contains Fe as a main component.
  • Fe is an element that contributes to the magnetic properties and mechanical properties of the soft magnetic powder.
  • Si is an element that enhances the permeability of the soft magnetic powder.
  • the content of Si is in the above range from the viewpoint of improving the magnetic permeability without impairing the magnetic properties and mechanical properties by Fe, and is preferably 0.2% by mass to 7% by mass.
  • the content of Si may be appropriately changed according to the characteristics required for the soft magnetic powder.
  • the said main component shows the thing with the highest content rate among the elements which comprise soft-magnetic powder.
  • the amount of Fe in the soft magnetic powder of the present embodiment is preferably 84% by mass to 99.7% by mass, more preferably 92% by mass to 99.6% by mass from the viewpoint of magnetic properties and mechanical properties. is there.
  • the total amount of Fe and Si in the soft magnetic powder is preferably 98% by mass or more from the viewpoint of suppressing the deterioration of the magnetic properties due to the inclusion of the impurities.
  • the soft magnetic powder of the present embodiment oxidation in the manufacturing process is suppressed, and the content of oxygen is small even when the particle diameter is small.
  • the cumulative 50% particle diameter [ ⁇ m] of volume basis measured by a laser diffraction type particle size distribution measuring device is D50
  • the content [mass%] of oxygen is [O]
  • the product (D50 ⁇ [O]) thereof is 3.0 [ ⁇ m ⁇ mass%] or less.
  • W O / S is the weight of oxygen in the particle W O divided by the surface area S of the particle, and oxygen per unit area on the surface of the particle (adhered to the surface) Indicates the weight of Therefore, the smaller the proportion D50 ⁇ [O], the smaller the amount of oxygen per unit surface area of the soft magnetic powder.
  • the soft magnetic powder of the present embodiment has a D50 ⁇ [O] of 3.0 [ ⁇ m ⁇ mass%] or less, and (the oxidation in the production process of the powder is suppressed) particles Even if the diameter is small, high permeability is exhibited on the high frequency side.
  • the D50 ⁇ [O] is preferably 0.5 [ ⁇ m ⁇ mass%] to 2.6 [ ⁇ m ⁇ mass%], more preferably 0.5 [ ⁇ m ⁇ mass%] to It is 1.9 [ ⁇ m ⁇ mass%].
  • D50 of the soft magnetic powder of the present embodiment is not particularly limited, but is preferably small from the viewpoint of reducing eddy current loss. Specifically, 0.5 ⁇ m to 10 ⁇ m is preferable, and 1 ⁇ m to 5 ⁇ m is more preferable.
  • the content [O] of oxygen contained in the soft magnetic powder of the present embodiment is preferably 0.75 mass% or less from the viewpoint of magnetic permeability ([O] is usually 0.05 mass% or more) . From the same viewpoint, [O] is 0.10% by mass to 0.60% by mass.
  • the soft magnetic powder of this embodiment contains, in addition to Fe, Si and O, trace amounts of unavoidable impurities due to the influence of the raw materials and devices and materials used in the manufacturing process, and the like.
  • the unavoidable impurities include trace additive elements contained in the soft magnetic powder at a level of about 1000 ppm or less, preferably 100 ppm to 800 ppm, in order to achieve a given purpose.
  • one form of the soft-magnetic powder of this embodiment consists of Si, O, balance Fe, and an unavoidable impurity.
  • the shape of the soft magnetic powder according to the present embodiment is not particularly limited, and may be spherical or substantially spherical, and may be granular, flaky (flaky), or distorted (indeterminate). .
  • the content [C] of carbon in the soft magnetic powder of the present embodiment is preferably 0.01% by mass to 0.30% by mass, and more preferably 0.01% by mass from the viewpoint of suppressing an adverse effect on the magnetic properties. % By mass to 0.05% by mass.
  • the specific surface area (BET specific surface area) measured by the BET one-point method of the soft magnetic powder of the present embodiment is preferably 0.15 m from the viewpoint of suppressing generation of oxides on the powder surface and exhibiting a good magnetic permeability.
  • the tap density of the soft magnetic powder of the present embodiment is preferably 2.5 to 7.5 g / cm 3 , more preferably 3.0, from the viewpoint of enhancing the packing density of the powder and exhibiting a good magnetic permeability. It is ⁇ 6.5 g / cm 3 .
  • the method of producing Fe powder or alloy powder containing Fe is an improvement of the conventional method of producing by water atomization, and includes a melt preparation step, an atomizing step, a solid-liquid separation step, and a drying step. . Each step will be described in detail below.
  • a molten metal containing Fe is prepared. Specifically, for example, an Fe raw material such as electrolytic iron or pure iron or, if necessary, this and other metal raw materials (including Si raw materials such as silicon metal) are melted in a furnace to prepare a molten metal. Do.
  • the heating temperature (temperature of the molten metal) at this time is, for example, 1536 ° C. to 2000 ° C., and preferably 1600 to 1900 ° C.
  • the molten metal is not particularly limited as long as it contains Fe, but in the present embodiment, even if Fe that is easily oxidized is used, a metal powder having a low content of oxygen can be obtained. It is preferable to set the preparation amount of Fe in preparation of 14% by mass to 99.7% by mass, more preferably 49% by mass to 99.7% by mass, and 84% by mass to 99.7% by mass. % Is more preferable, and 84% by mass to 99.6% by mass is particularly preferable.
  • the other elements to be charged together with Fe during preparation of the molten metal are not particularly limited, and examples thereof include Si, Cr, Ni, B, C, Mo, Co and Cu.
  • Si, Cr, Ni, B and C are preferable as other elements, and Si is particularly preferable in that it can be a soft magnetic powder having a lower coercive force.
  • the content of the other element in the molten metal is preferably 0.1% by mass to 85% by mass, more preferably 0.1% by mass to 50% by mass More preferably, it is 0.1% by mass to 15% by mass, and particularly preferably 0.3% by mass to 15% by mass.
  • the content in the molten metal is preferably 0.1% by mass to 15% by mass, and more preferably 0.2% by mass to 7% by mass.
  • a trace element such as P may be added to the molten metal so that the content in the Fe powder or the powder containing Fe is 100 ppm to 800 ppm (0.01 mass% to 0.08 mass%).
  • P the soft magnetic powder to be produced can be made more spherical. That is, the tap density is improved to enable high density filling. Therefore, the permeability can be improved when molded into a dust core.
  • the melt is prepared in a non-oxidizing gas (inert gas such as He, Ar or N 2 , reducing gas such as H 2 or CO) atmosphere from the viewpoint of suppressing the mixing of oxygen into the melt. It is preferable to do. Further, various minute addition elements may be added to the molten metal for a predetermined purpose. Moreover, you may add these to a molten metal as an alloy with Fe.
  • a non-oxidizing gas inert gas such as He, Ar or N 2 , reducing gas such as H 2 or CO
  • the atomizing step it is preferable to spray water on the molten alloy in a non-oxidizing gas atmosphere from the viewpoint of suppressing the oxidation of the molten metal.
  • a non-oxidizing gas atmosphere include inert gases such as He, Ar and N 2 , and reducing gases such as H 2 and CO.
  • the pH of water sprayed to the molten metal is not particularly limited, but in order to obtain Fe powder with a reduced amount of oxygen or a metal powder containing Fe, the pH is preferably 9 to 13, preferably pH 13 11 to 13 is particularly preferable.
  • the potential of water is preferably -0.4 V to 0.4 V in standard electrode potential, and particularly preferably -0.3 V to 0.4 V. These points will be described in more detail in the description of the drying step.
  • various alkali substances may be added to water, and examples thereof include sodium hydroxide, ammonia, sodium phosphate, calcium hydroxide and hydrazine. .
  • the potential of the so pH-adjusted water is approximately in the above range.
  • the pressure (water pressure) at which water is sprayed in the atomizing step is not particularly limited, but may be, for example, 90 MPa to 180 MPa. When the water pressure is increased, it is possible to produce Fe powder with a small particle size or an alloy powder containing Fe.
  • Solid-liquid separation process Fe powder or Fe-containing alloy powder is recovered by solid-liquid separation of the slurry obtained in the atomizing step.
  • the recovered metal powder may be washed.
  • a method of solid-liquid separation a conventionally known one can be adopted without particular limitation, and for example, the slurry may be subjected to pressure filtration using a filter press or the like.
  • the metal powder obtained in the solid-liquid separation step is dried.
  • the drying temperature is set to 80 ° C. or less in order to suppress the oxygen content in the metal powder to a low level. . From the viewpoint of further reducing the oxygen content, it is preferable to set the drying temperature to 60 ° C. or less.
  • the drying temperature is preferably room temperature (25 ° C.) or higher, and more preferably 30 ° C. or higher.
  • drying in order to carry out drying at a lower temperature than in the past as described above, drying is carried out in a reduced pressure environment of -0.05 MPa or less with respect to atmospheric pressure from the viewpoint of improving the drying speed. It is preferable to carry out the drying in a vacuum environment (-0.095 MPa or less).
  • the oxygen on the particle surface of the metal powder thermally diffuses to the inside in the drying step and functions as an oxidation protection film on the particle surface. It is believed that the reduction of the oxide film is avoided, which also makes the subsequent step of gradual oxidation unnecessary.
  • the oxygen content of the obtained metal powder can be reduced, but in particular, the pH It was found that the content of oxygen in the metal powder can be particularly suitably reduced by setting it as a strong alkaline region of ⁇ 13.
  • the oxide film of the present invention functions as a particularly suitable oxide protective film.
  • the particle size may be controlled by crushing the produced Fe powder or Fe-containing alloy powder, classifying it by sieving, air classification, and the like. For example, classification may be performed such that D50 of Fe powder or alloy powder containing Fe is 0.5 ⁇ m to 10 ⁇ m. Furthermore, the particle shape of the powder may be changed (such as flake shape) by performing flattening treatment on these powders.
  • the soft magnetic powder of the present embodiment described above has low coercivity and high permeability.
  • the powder can reduce the content of oxygen even if the particle size is small, the powder is excellent in permeability even in a high frequency region.
  • the coercive force (Hc) measured under the conditions of the examples described later is preferably 5 to 25 Oe.
  • the relative magnetic permeability ( ⁇ ′) at a measurement frequency of 10 MHz measured under the condition 1 of measurement of the magnetic characteristics in the examples described later is preferably 8.90 or more, more preferably 9.00 to
  • the relative permeability ( ⁇ ′) at a measurement frequency of 100 MHz is preferably 14.00, and is preferably 8.90 or more, more preferably 9.00 to 14.00.
  • the relative permeability ( ⁇ ′) at a measurement frequency of 10 MHz measured under the condition 2 of measurement of magnetic characteristics in the examples described later is preferably 17.00 or more, more preferably 21.00 to 30.00.
  • the relative permeability ( ⁇ ′) at a measurement frequency of 100 MHz is preferably 17.00 or more, and more preferably 19.50 to 28.50.
  • the soft magnetic powder of the present embodiment can be suitably applied to a soft magnetic material.
  • a granular composite powder can be obtained by mixing the soft magnetic powder with a binder (insulating resin and / or inorganic binder) and granulating.
  • the content of the soft magnetic powder in the soft magnetic material is preferably 80% by mass to 99.9% by mass from the viewpoint of achieving good magnetic permeability.
  • the content of the binder in the soft magnetic material is preferably 0.1% by mass to 20% by mass.
  • the insulating resin include (meth) acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin.
  • a silica binder and an alumina binder are mentioned as a specific example of the said inorganic binder.
  • the soft magnetic material may optionally contain other components such as wax and lubricant.
  • Powder dust core A powder magnetic core can be manufactured by shape
  • a powder magnetic core is obtained by putting the soft magnetic material of the present embodiment into a mold of a predetermined shape, pressing and heating. Since the powder magnetic core is excellent in the magnetic permeability even in the high frequency region as described above, the magnetic component having the dust core can be attached to an electronic device such as an inductor operating in the high frequency region.
  • the slurry obtained by the atomizing step is subjected to solid-liquid separation, and the collected Fe powder or Fe alloy powder is dried at a drying temperature of 80 ° C. or less.
  • the drying temperature is 30 ° C to 60 ° C.
  • drying temperature 80 ° C. or less, it is possible to omit the gradual oxidation which has conventionally been required. This is considered to be because, as described above, the thermal diffusion of oxygen can be suppressed during drying to maintain the oxygen content of the particle surface within a certain range, so that sufficient oxidation resistance can be secured.
  • the metal powder is preferably dried in a reduced pressure environment, more preferably in a vacuum environment.
  • the drying speed can be improved without heating the metal powder.
  • the production efficiency of the metal powder can be enhanced.
  • the soft magnetic powder of the present embodiment contains 0.1% by mass to 15% by mass of Si, and D50 ⁇ [O] is 3.0 [ ⁇ m ⁇ mass%] or less. Therefore, even if the particle diameter D50 is reduced to 0.5 ⁇ m to 10 ⁇ m, for example, the soft magnetic powder is configured to have a low oxygen content per unit area on the particle surface. According to such a soft magnetic powder, even when the particle size of the soft magnetic powder is reduced in order to reduce the eddy current loss of the dust core, the increase of the oxygen amount is suppressed to prevent the decrease of the magnetic permeability. Core loss can be kept low. Moreover, high permeability can be obtained particularly on the high frequency side.
  • the relative permeability ⁇ 'at 10 MHz is 8.90 or more
  • the relative permeability ⁇ ' at 100 MHz is 8.90 or more, which is measured by the method 1 of measurement of magnetic characteristics in the examples described later. be able to.
  • the characteristics of the soft magnetic powder differ depending on the content of Si, and by setting the content of Si to 2.0 mass% to 3.5 mass% (in this case, the amount of Fe in the soft magnetic powder is preferably 96.0) And the permeability can be further improved.
  • the relative magnetic permeability ⁇ 'at 10 MHz is 21.00 to 30.00
  • the relative magnetic permeability ⁇ ' at 100 MHz is 21.00, which is measured by the method 2 of measurement of magnetic characteristics in the examples described later. It can be set to 28.50.
  • the content of Si is 0.2% by mass to 0.5% by mass (in this case, the amount of Fe in the soft magnetic powder is preferably 99.2% by mass or more)
  • Fe contained in the soft magnetic powder Higher saturation magnetization while obtaining a desired permeability.
  • the relative permeability ⁇ ′ at 10 MHz is 17.00 to 26.00
  • the relative permeability ⁇ ′ at 100 MHz is 17.00, which are measured by the method 2 of measurement of magnetic characteristics in the examples described later.
  • the saturation magnetization can be set to a value of 205 emu / g or more (usually less than 218 emu / g) while setting to 26.00.
  • Comparative Example 1 In a Tundish furnace, a molten metal obtained by heating 14 kg of electrolytic iron (purity: 99.95 mass% or more) and 1.01 kg of silicon metal (purity: 99 mass% or more) to 1700 ° C. in a nitrogen atmosphere, The slurry obtained is sprayed and solidified with high pressure water (pH 10.3, potential 284 mV) at a water pressure of 150 MPa and a water amount of 160 L / min while dropping from the bottom of a tundish furnace under nitrogen atmosphere (oxygen concentration 300 ppm or less) The solid was separated and the solid was washed with water and dried at 120 ° C. for 10 hours under a nitrogen atmosphere.
  • the standard substance at the time of pH measurement of high pressure water is as follows. pH 4.01 (25 ° C.): Phthalate pH standard solution pH 6.86 (25 ° C.): Neutral phosphate pH standard solution pH 9.18 (25 ° C.): Borate pH standard solution
  • the dried solid substance is put into a drier, and the inside of the drier is made nitrogen atmosphere over 1 hour, heated to 40 ° C. and maintained, and then oxygen is supplied to the drier at 40 ° C. Was gradually increased from 1% by mass to 21% by mass, by holding at each oxygen concentration for a predetermined time. In this gradual oxidation, oxygen concentration is 1 mass% for 30 minutes, 2 mass% for 45 minutes, 4 mass% for 100 minutes, 5 mass% for 60 minutes, 8 mass% for 60 minutes, 16 mass% for 30 minutes , 21 mass% hold for 5 minutes.
  • the obtained dried powder was crushed and classified by air classification to obtain an alloy powder according to Comparative Example 1.
  • the BET specific surface area, the tap density, the oxygen content, the carbon content, the particle size distribution, the composition and the magnetic properties were determined for the alloy powder thus obtained. The results are shown in Tables 2 and 3 below.
  • the BET specific surface area is deaerated by flowing nitrogen gas at 105 ° C. for 20 minutes in the measuring device using a BET specific surface area measuring device (4 sorb US manufactured by Yuasa Ionics Co., Ltd.), and then nitrogen and helium mixed gas (N 2: 30 vol%, the He: 70% by volume) while flowing was measured by BET1 point method.
  • Tap density is prepared by filling alloy powder to a bottomed cylindrical die with an inner diameter of 6 mm and a height of 11.9 mm to 80% of the volume in the same manner as the method described in JP-A-2007-263860. After forming an alloy powder layer, uniformly applying a pressure of 0.160 N / m 2 to the upper surface of the alloy powder layer, and compressing the alloy powder layer until the alloy powder can not be densely packed at this pressure, The height of the alloy powder layer was measured, and the density of the alloy powder was determined from the measured value of the height of the alloy powder layer and the weight of the filled alloy powder, and this was used as the tap density of the alloy powder.
  • the oxygen content was measured by an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by Horiba, Ltd.).
  • the carbon content was measured by a carbon / sulfur analyzer (EMIA-220V manufactured by Horiba, Ltd.).
  • the particle size distribution was measured at a dispersion pressure of 5 bar by means of a laser diffraction particle size distribution measuring apparatus (a loss particle size distribution measuring apparatus (HELOS & RODOS (air flow type drying module) manufactured by SYMPATEC).
  • a laser diffraction particle size distribution measuring apparatus a loss particle size distribution measuring apparatus (HELOS & RODOS (air flow type drying module) manufactured by SYMPATEC).
  • Fe was analyzed by the titration method as follows in accordance with JIS M 8263 (chrome ore-iron determination method). First, sulfuric acid and hydrochloric acid were added to 0.1 g of a sample (alloy powder), the mixture was thermally decomposed, and heated until white smoke of sulfuric acid was generated. After cooling, water and hydrochloric acid were added and the mixture was heated to dissolve soluble salts. Then, warm water is added to the obtained sample solution to make the solution volume about 120 to 130 mL, the solution temperature is made about 90 to 95 ° C., several drops of indigo carmine solution are added, and the titanium (III) chloride solution is used as a sample solution.
  • JIS M 8263 chrome ore-iron determination method
  • Si was analyzed by gravimetric method as follows. First, hydrochloric acid and perchloric acid were added to a sample (alloy powder), the mixture was heated and decomposed, and heated until white smoke of perchloric acid was generated. It was subsequently heated to dryness. After cooling, water and hydrochloric acid were added and the mixture was heated to dissolve soluble salts. Subsequently, the undissolved residue was filtered using filter paper, and the residue was transferred to a crucible with the filter paper, dried and incinerated. After cooling, the whole crucible was weighed. A small amount of sulfuric acid and hydrofluoric acid were added, heated to dryness and ignited. After cooling, the whole crucible was weighed. Then, the second measurement value was subtracted from the first measurement value, and the weight difference was calculated as SiO 2 to obtain the Si amount.
  • ICP emission analyzer SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.
  • Comparative Examples 2 to 6 and Examples 1 to 8 Alloys of Comparative Examples 2 to 6 in the same manner as Comparative Example 1 except that the atmosphere in water atomization, the pH and potential of high pressure water used for water atomization, and the temperature at the time of gradual oxidation were changed as shown in Table 1 below. Produced flour. In Comparative Example 2, the wind power classification conditions were changed.
  • Example 4 the pH and potential of high-pressure water used for water atomization, the charge amount of the molten metal material, and the drying conditions (atmosphere, temperature and time) of the solid washed with water were changed as shown in Table 1 below (the vacuum atmosphere was large)
  • the alloy powders of Examples 1 to 8 were produced in the same manner as in Comparative Example 1 except that gradual oxidation was not further performed, and the pressure was -0.095 MPa or less.
  • Example 4 the air classification condition was changed, and in Examples 5 to 8, pure iron (purity: 99% by mass or more) was used as an iron raw material.
  • Table 1 for Examples 1 to 8 the row of the gradual oxidation temperature is described as "none".
  • P used in Examples 6 and 7 was charged in a tundish furnace as an FeP alloy (as the addition amount as P becomes as described in Table 1).
  • the oxygen content of the obtained alloy powder can be reduced by making the atmosphere in water atomization into a nitrogen atmosphere from comparison with the comparative examples 4 and 5 from the air
  • Example 1 Furthermore, by setting the pH of high pressure water used for water atomization to a strong alkaline region of 12.0 under the conditions of Example 1, the oxygen content of the obtained alloy powder is further reduced, and the relative permeability ( ⁇ ′ When the measurement frequency is 10 MHz and 100 MHz, the result is better than 8.90 (Examples 2 to 8).
  • Example 8 water atomization and drying are performed under the conditions of Examples 1 to 8 A soft magnetic powder having a low oxygen content and a relative magnetic permeability ( ⁇ ′) of more than 8.90 at measurement frequencies of 10 MHz and 100 MHz could be obtained.
  • ⁇ ′ relative magnetic permeability
  • FIG. 1 The relationship between the relative permeability ( ⁇ ′) and the product (D50 ⁇ [O]) of the oxygen content of the alloy powder and D50 is shown in FIG. 1 (measurement frequency: 10 MHz) and FIG. Measurement frequency: 100 MHz).
  • Example 9 to 19 The charge ratio of molten metal, atmosphere in water atomization, pH and potential of high pressure water used for water atomization, drying condition and presence or absence of gradual oxidation are set as shown in Table 4 below, and the conditions of air classification are changed. In the same manner as in Comparative Example 1, alloy powders of Examples 9 to 19 were produced. In addition, P used in Examples 14 and 15 was charged in a tundish furnace as an FeP alloy (as the addition amount as P becomes as described in Table 1).
  • the BET specific surface area, the tap density, the oxygen content, the carbon content, the particle size distribution and the composition of the alloy powders of Examples 9 to 19 were determined in the same manner as in Comparative Example 1. The results are shown in Table 5 below.
  • the complex powder is used to measure the real part ⁇ ′ and the imaginary part ⁇ ′ ′ of the complex relative permeability at 10 MHz and 100 MHz in the same manner as in the case of the measurement 1 of the magnetic characteristics, and the loss of the complex relative permeability
  • the saturation magnetization ⁇ s and the coercive force Hc of the alloy powder were determined in the same manner as in the case of the measurement 1 of the magnetic characteristics.
  • the real part ⁇ ′ and the imaginary part ⁇ ′ ′ of the complex relative magnetic permeability at 10 MHz and 100 MHz were measured by the same method. Show.
  • the amount of Si is set to about 0.3% by mass, and the amount of Si is further reduced than in Examples 8, 10, 16 and 17, thereby maintaining a high magnetic permeability to some extent.
  • saturation magnetization higher than 205 emu / g and higher than those of Examples 8, 10, 16 and 17 could be obtained.
  • the soft magnetic powder by drying the soft magnetic powder at 80 ° C. or less, the soft magnetic powder can be configured to have D50 ⁇ [O] ⁇ 3.0, and the particle diameter D50 is reduced. Even in this case, the oxygen content can be reduced. According to such soft magnetic powder, when formed into a dust core, high permeability can be realized on the high frequency side, and eddy current loss can be suppressed to reduce core loss.
  • the soft magnetic powder of the present invention can achieve high magnetic permeability even with a small particle diameter, so it can be suitably used for applications such as dust cores, electromagnetic wave shields, electromagnetic wave absorbers, magnetic shields, and laminated inductors. .

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Provided is a soft magnetic powder which is decreased in the oxygen content even if the particle diameter thereof is small, and which is capable of forming a dust core that has high magnetic permeability. A soft magnetic powder which is configured from an Fe alloy containing Si and contains from 0.1 mass% to 15 mass% of Si, and wherein if D50 is the 50% cumulative particle diameter (μm) of the soft magnetic powder on the volume basis as determined by a laser diffraction particle size distribution measuring instrument, and (O) is the oxygen content (mass%), the product of D50 and (O) (namely, D50 × (O)) is 3.0 (μm·mass%) or less.

Description

軟磁性粉末、Fe粉末又はFeを含む合金粉末の製造方法、軟磁性材料、並びに圧粉磁心の製造方法Soft magnetic powder, method of producing Fe powder or alloy powder containing Fe, soft magnetic material, and method of producing dust core
 本発明は、軟磁性粉末、Fe粉末又はFeを含む合金粉末の製造方法、軟磁性材料、並びに圧粉磁心の製造方法に関する。 The present invention relates to a method of manufacturing soft magnetic powder, Fe powder or an alloy powder containing Fe, a soft magnetic material, and a method of manufacturing a dust core.
 電子機器には、例えばインダクタなどの、圧粉磁心を有する磁性部品が取り付けられている。電子機器では、高性能化および小型化のために高周波化が図られており、それに伴って磁性部品を構成する圧粉磁心にも高周波化への対応が求められている。 The electronic device is attached with a magnetic component having a dust core, such as an inductor. In the electronic device, the frequency is increased for higher performance and miniaturization, and accordingly, the powder magnetic core constituting the magnetic component is also required to cope with the frequency increase.
 圧粉磁心は一般的に、軟磁性粉末を必要に応じて樹脂などの結合材と複合化したうえで圧縮成型することで製造されているが、圧粉磁心(軟磁性粉末)は、高周波側ほどコアロス(磁気損失)が大きくなりやすい。このため保磁力が小さく、かつ透磁率の大きな(それゆえヒステリシス損失の小さい)軟磁性粉末を使用することが望ましい。軟磁性粉末としては、高い透磁率を得られることから、Siを含むFeSi合金粉末が提案されている(例えば、特許文献1を参照)。特許文献1では、Siを5質量%~7質量%配合することで、軟磁気特性を向上できることが記載されている。 Dust cores are generally manufactured by compressing and molding soft magnetic powder with a binder such as resin if necessary, but the dust core (soft magnetic powder) has a high frequency side. The core loss (magnetic loss) tends to increase as the For this reason, it is desirable to use a soft magnetic powder having a low coercivity and a high permeability (and hence a low hysteresis loss). As a soft magnetic powder, an FeSi alloy powder containing Si has been proposed because a high magnetic permeability can be obtained (see, for example, Patent Document 1). Patent Document 1 describes that soft magnetic properties can be improved by blending 5% by mass to 7% by mass of Si.
特開2016-171167号公報JP, 2016-171167, A
 以上説明したように、圧粉磁心においては、高い透磁率が求められる。
 ところで、圧粉磁心におけるコアロスは、高周波となるほど大きくなる。特に磁界によって生じる渦電流による損失(渦電流損失)は周波数の2乗に比例するため、高周波になることによる損失の増大が著しい。そこで、(特に高周波領域で使用される)圧粉磁心において渦電流損失を低減してコアロスを低く制御する観点から、その形成に使用される軟磁性粉末の粒子径を小さくすることが考えられる。
As explained above, in the dust core, high permeability is required.
By the way, the core loss in a dust core becomes so large that it becomes high frequency. In particular, the loss due to the eddy current generated by the magnetic field (eddy current loss) is proportional to the square of the frequency, so the increase of the loss due to the high frequency becomes remarkable. Therefore, it is conceivable to reduce the particle diameter of the soft magnetic powder used for the formation from the viewpoint of reducing the core loss by reducing the eddy current loss in the powder magnetic core (especially used in a high frequency region).
 しかし、本発明者が検討したところ、圧粉磁心の渦電流損失を低減すべく軟磁性粉末の粒子径を小さくすると、酸素量が増加して透磁率が低下してしまうため(ヒステリシス損失が大きくなる)、コアロスを十分に低減させることができないことがわかった。 However, according to the inventors of the present invention, if the particle size of the soft magnetic powder is reduced to reduce the eddy current loss of the dust core, the amount of oxygen increases and the magnetic permeability decreases (hysteresis loss is large And core loss can not be reduced sufficiently.
 以上から本発明は、粒子径が小さくとも酸素量を低くした、高い透磁率の圧粉磁心を形成可能な軟磁性粉末及びその関連技術を提供することを目的とする。 From the above, it is an object of the present invention to provide a soft magnetic powder capable of forming a powder magnetic core of high permeability, which has a low particle size and a low amount of oxygen, and a related technology.
 軟磁性粉末を製造する方法として従来採用されている方法として、水アトマイズ法が挙げられる。この方法においては、炉において溶湯を調製し、これを炉のノズルから落下させ、これに水を高圧で吹き付けることによって溶湯を粉砕しかつ凝固させて粉末とし、この粉末が前記の水中に分散したスラリーを得て、このスラリーを固液分離、乾燥して軟磁性粉末を得る。軟磁性粉末はFe(鉄)を主要構成元素としており、鉄は酸化されやすいため、これを防ぐ目的で、前記の乾燥で得られた軟磁性粉末に対して徐酸化が行われている。具体的には徐酸化とは、軟磁性粉末の過度な酸化を抑制する目的であえて粉末の粒子表面を酸化して、酸化に対する保護膜として機能する表面酸化膜を形成させる処理であり、例えば、非酸化性雰囲気中に置かれた、上記の乾燥を経た軟磁性粉末について、その雰囲気における酸素濃度を徐々に高めて徐々に酸化させるものである。 A water atomization method is mentioned as a method conventionally employ | adopted as a method of manufacturing soft-magnetic powder. In this method, a molten metal is prepared in a furnace, dropped from a nozzle of the furnace, and the molten metal is crushed and solidified into a powder by spraying water at a high pressure, and the powder is dispersed in the water. A slurry is obtained, this slurry is solid-liquid separated and dried to obtain a soft magnetic powder. The soft magnetic powder contains Fe (iron) as a main constituent element, and iron is easily oxidized. Therefore, in order to prevent this, the soft magnetic powder obtained by the above-mentioned drying is subjected to gradual oxidation. Specifically, the gradual oxidation is a treatment for oxidizing the particle surface of the powder to form a surface oxide film that functions as a protective film against oxidation, for the purpose of suppressing excessive oxidation of the soft magnetic powder, for example, The above-mentioned dried soft magnetic powder placed in a non-oxidizing atmosphere is gradually oxidized by gradually increasing the oxygen concentration in the atmosphere.
 本発明者らの検討によると、このような工程で軟磁性粉末を製造する場合、粉末の酸素含有量が高くなり、これにより透磁率が低下してしまうことが確認された。 According to the study of the present inventors, it has been confirmed that when the soft magnetic powder is produced in such a process, the oxygen content of the powder becomes high, and thereby the permeability decreases.
 酸素含有量の増加の原因としては徐酸化以外にも考えられることから、本発明者らは各工程についてさらに検討を行った。従来の軟磁性粉末の水アトマイズ法による製造における乾燥工程では、軟磁性粉末の酸化を防ぐために非酸化性雰囲気下または真空下で、かつ生産性の点から早く乾燥させるために100℃以上といった高温で乾燥が行われている。本発明者らは、この乾燥を高温で行うことが、その後の徐酸化などの工程を経て製造される軟磁性粉末の高い酸素含有量に影響していることを見出した。 Since the cause of the increase in the oxygen content is considered to be other than gradual oxidation, the present inventors further studied each step. In the drying step in the conventional water atomizing method of soft magnetic powder, the high temperature such as 100 ° C. or higher in order to quickly dry in non-oxidizing atmosphere or vacuum to prevent oxidation of soft magnetic powder and in terms of productivity Drying has been carried out. The present inventors have found that performing this drying at a high temperature affects the high oxygen content of the soft magnetic powder produced through steps such as subsequent gradual oxidation.
 このメカニズムは明らかではないが、以下のように推測される。
 水アトマイズ法における固液分離工程を経た軟磁性粉末は、それまでの工程や、次の乾燥工程に移送される際に大気に曝されることで、表面が一定程度酸化された状態となる。このような軟磁性粉末を高温で乾燥させると、粒子表面に存在する酸素(それ以上の酸化を防止する表面酸化膜として存在すると考えられる)が熱により粒子内部へと熱拡散すると考えられる。この結果、粒子表面に形成されていた酸化膜の厚さが薄くなるものと考えられる。このような軟磁性粉末を徐酸化すると、酸化されやすくなった粒子表面において過度な酸化が起こるものと考えられる。この考えに従えば、乾燥工程において酸素が軟磁性粉末の内部へと熱拡散しなければ、粒子表面の酸化膜は保持されて、徐酸化工程において過度な酸化が防止されるものと期待される。
Although this mechanism is not clear, it is guessed as follows.
The soft magnetic powder that has undergone the solid-liquid separation step in the water atomization method is exposed to the atmosphere when it is transferred to the previous step or the next drying step, and the surface is oxidized to a certain extent. When such soft magnetic powder is dried at a high temperature, it is thought that the oxygen present on the particle surface (which is considered to be present as a surface oxide film to prevent further oxidation) thermally diffuses to the inside of the particle by heat. As a result, it is considered that the thickness of the oxide film formed on the particle surface is reduced. When such soft magnetic powder is gradually oxidized, it is considered that excessive oxidation occurs on the surface of the particles that are susceptible to oxidation. According to this idea, it is expected that the oxide film on the surface of the particles will be retained if oxygen is not thermally diffused into the soft magnetic powder in the drying step, and excessive oxidation is prevented in the gradual oxidation step. .
 このことから、本発明者らは、軟磁性粉末の作製において乾燥温度を低くしたところ、徐酸化工程を行わずとも従来に比べて酸素の含有量を低減した軟磁性粉末を提供することができた。そして、軟磁性粉末の、レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径[μm]をD50、酸素の含有量[質量%]を[O]としたとき、これらの積(D50×[O])が3.0[μm・質量%]以下であれば、軟磁性粉末の粒子径が小さくとも、高い透磁率を有する圧粉磁心を形成可能であることが見出された。 From this, when the drying temperature is lowered in the preparation of the soft magnetic powder, the present inventors can provide a soft magnetic powder having a reduced oxygen content as compared to the prior art without performing the gradual oxidation process. The When the 50% cumulative particle diameter [μm] of the soft magnetic powder measured with a laser diffraction type particle size distribution analyzer is D50 and the oxygen content [mass%] is [O], the product of these products It was found that if (D50 × [O]) is 3.0 [μm · mass%] or less, a powder magnetic core having high magnetic permeability can be formed even if the particle size of the soft magnetic powder is small. The
 さらに水アトマイズ法におけるアトマイズ工程において、所定の強アルカリpHの水を使用することで、特に酸素の含有量を低減した、高い透磁率の圧粉磁心を形成可能な軟磁性粉末を製造することができた。 Furthermore, in the atomizing step in the water atomizing method, by using water of a predetermined strong alkali pH, it is possible to manufacture a soft magnetic powder capable of forming a powder magnetic core of high permeability, in particular with reduced oxygen content. did it.
 これらの本発明で提供される軟磁性粉末では、粒子径を小さくした場合でも酸素の含有量を低く抑え、圧粉磁心において高い透磁率を達成することができる。
 以上のようにして本発明者らは、本発明を完成させるに至った。
In the soft magnetic powder provided by the present invention, even when the particle diameter is reduced, the content of oxygen can be suppressed low, and a high magnetic permeability can be achieved in the dust core.
As described above, the present inventors have completed the present invention.
 本発明の第1の態様は、
 Siを含むFe合金で構成される軟磁性粉末であって、
 前記軟磁性粉末は、Siを0.1質量%~15質量%含み、
 前記軟磁性粉末の、レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径[μm]をD50、酸素の含有量[質量%]を[O]としたとき、これらの積(D50×[O])が3.0[μm・質量%]以下である、
軟磁性粉末が提供される。
The first aspect of the present invention is
Soft magnetic powder composed of Fe alloy containing Si,
The soft magnetic powder contains 0.1% by mass to 15% by mass of Si,
The product of these soft magnetic powders, assuming that the cumulative 50% particle size [μm] of the volume basis measured by a laser diffraction type particle size distribution analyzer is D50 and the oxygen content [mass%] is [O] D50 × [O]) is 3.0 [μm · mass%] or less,
Soft magnetic powder is provided.
 本発明の第2の態様は、第1の態様の軟磁性粉末において、
 前記D50が0.5μm~10μmである。
According to a second aspect of the present invention, in the soft magnetic powder of the first aspect,
The D50 is 0.5 μm to 10 μm.
 本発明の第3の態様は、第1又は2の態様の軟磁性粉末において、
 前記[O]が0.75質量%以下である。
According to a third aspect of the present invention, in the soft magnetic powder of the first or second aspect,
Said [O] is 0.75 mass% or less.
 本発明の第4の態様は、第1~3の態様の軟磁性粉末において、
 前記D50及び[O]の積(D50×[O])が0.5[μm・質量%]~2.6[μm・質量%]である。
According to a fourth aspect of the present invention, in the soft magnetic powder of the first to third aspects,
The product of D50 and [O] (D50 × [O]) is 0.5 [μm · mass%] to 2.6 [μm · mass%].
 本発明の第5の態様は、第1~4の態様の軟磁性粉末において、
 Feを84質量%~99.7質量%含む。
According to a fifth aspect of the present invention, in the soft magnetic powder of the first to fourth aspects,
It contains 84% by mass to 99.7% by mass of Fe.
 本発明の第6の態様は、第1~5の態様の軟磁性粉末において、
 Siを2.0質量%~3.5質量%含む。
A sixth aspect of the present invention is the soft magnetic powder according to the first to fifth aspects, wherein
It contains 2.0% by mass to 3.5% by mass of Si.
 本発明の第7の態様は、第1~5の態様の軟磁性粉末において、
 Siを0.2質量%~0.5質量%含む。
According to a seventh aspect of the present invention, in the soft magnetic powder of the first to fifth aspects,
0.2 to 0.5 mass% of Si is included.
 本発明の第8の態様は、第1~7の態様の軟磁性粉末において、
 前記[O]が0.10質量%~0.60質量%である。
According to an eighth aspect of the present invention, in the soft magnetic powder of the first to seventh aspects,
The above [O] is 0.10 mass% to 0.60 mass%.
 本発明の第9の態様は、
 Fe粉末又はFeを含む合金粉末の製造方法であって、
 Feを含む溶湯を調製する溶湯調製工程と、
 前記溶湯を落下させながら、これに水を吹き付けて粉砕・凝固させることで、Fe粉末又はFeを含む合金粉末を形成し、このFe粉末又は合金粉末と水とを含むスラリーを得るアトマイズ工程と、
 前記スラリーを固液分離し、前記Fe粉末又は合金粉末を回収する固液分離工程と、
 前記固液分離工程で得られたFe粉末又は合金粉末を80℃以下で乾燥させる乾燥工程と
を有する、Fe粉末又はFeを含む合金粉末の製造方法が提供される。
The ninth aspect of the present invention is
A method for producing Fe powder or alloy powder containing Fe,
A melt preparation step of preparing a melt containing Fe;
An atomizing step of forming a Fe powder or an alloy powder containing Fe by spraying water onto the molten metal while dropping the molten metal, thereby forming an Fe powder or an alloy powder containing Fe, and obtaining a slurry containing the Fe powder or the alloy powder and water;
Solid-liquid separation step of solid-liquid separating said slurry and recovering said Fe powder or alloy powder;
There is provided a method for producing Fe powder or Fe-containing alloy powder, comprising a drying step of drying the Fe powder or alloy powder obtained in the solid-liquid separation step at 80 ° C. or less.
 本発明の第10の態様は、第9の態様のFe粉末又はFeを含む合金粉末の製造方法において、
 前記乾燥工程では、60℃以下で乾燥を行う。
According to a tenth aspect of the present invention, there is provided a method of producing Fe powder of the ninth aspect or alloy powder containing Fe,
In the drying step, drying is performed at 60 ° C. or less.
 本発明の第11の態様は、第9又は10の態様のFe粉末又はFeを含む合金粉末の製造方法において、
 前記乾燥工程を減圧環境で行う。
According to an eleventh aspect of the present invention, there is provided an Fe powder of the ninth or tenth aspect or a method of producing an Fe-containing alloy powder,
The drying step is performed in a reduced pressure environment.
 本発明の第12の態様は、第9~11の態様のFe粉末又はFeを含む合金粉末の製造方法において、
 前記乾燥工程を真空環境で行う。
According to a twelfth aspect of the present invention, there is provided a method of producing Fe powder or Fe-containing alloy powder according to the ninth to eleventh aspects,
The drying step is performed in a vacuum environment.
 本発明の第13の態様は、第9~12の態様のFe粉末又はFeを含む合金粉末の製造方法において、
 前記アトマイズ工程にて使用される水のpHが9~13である。
According to a thirteenth aspect of the present invention, there is provided a method of producing Fe powder or Fe-containing alloy powder according to the ninth to twelfth aspects,
The pH of water used in the atomizing step is 9 to 13.
 本発明の第14の態様は、第9~12の態様のFe粉末又はFeを含む合金粉末の製造方法において、
 前記アトマイズ工程にて使用される水のpHが11~13である。
According to a fourteenth aspect of the present invention, there is provided a method of producing Fe powder or Fe-containing alloy powder according to the ninth to twelfth aspects,
The pH of water used in the atomizing step is 11 to 13.
 本発明の第15の態様は、第9~14態様のFe粉末又はFeを含む合金粉末の製造方法において、
 前記アトマイズ工程にて使用される水の電位が-0.4V~0.4Vである。
According to a fifteenth aspect of the present invention, there is provided a method of producing Fe powder or Fe-containing alloy powder according to the ninth to fourteenth aspects,
The potential of water used in the atomizing step is -0.4V to 0.4V.
 本発明の第16の態様は、第9~15の態様のFe粉末又はFeを含む合金粉末の製造方法において、
 前記溶湯がFeおよび0.1質量%~15質量%のSiを含む。
According to a sixteenth aspect of the present invention, there is provided a method of producing Fe powder or Fe-containing alloy powder of the ninth to fifteenth aspects,
The molten metal contains Fe and 0.1% by mass to 15% by mass of Si.
 本発明の第17の態様は、第16の態様のFeを含む合金粉末の製造方法において、
 前記溶湯がFeを84質量%~99.7質量%含む。
According to a seventeenth aspect of the present invention, there is provided a method of producing an Fe-containing alloy powder according to the sixteenth aspect,
The molten metal contains 84% by mass to 99.7% by mass of Fe.
 本発明の第18の態様は、
 第1~8の態様のいずれかの軟磁性粉末とバインダとを含む軟磁性材料が提供される。
An eighteenth aspect of the present invention is
There is provided a soft magnetic material comprising the soft magnetic powder according to any of the first to eighth aspects and a binder.
 本発明の第19の態様は、
 第18の態様の軟磁性材料を所定の形状に成型し、得られた成型物を加熱して圧粉磁心を得る、圧粉磁心の製造方法が提供される。
The nineteenth aspect of the present invention is
There is provided a method of manufacturing a dust core, wherein the soft magnetic material of the eighteenth aspect is molded into a predetermined shape, and the resulting molded product is heated to obtain a dust core.
 本発明によれば、粒子径が小さくとも酸素量を低くした、透磁率の高い圧粉磁心を形成可能な軟磁性粉末、及びその関連技術が提供される。 According to the present invention, there is provided a soft magnetic powder capable of forming a powder magnetic core having a high permeability, which has a small particle size but a low amount of oxygen, and the related art.
実施例1~8及び比較例1~6で製造した合金粉についての、D50×[O]と測定周波数10MHzでの比透磁率との関係を示す図である。It is a figure which shows the relationship of D50x [O] and the relative magnetic permeability in 10 MHz of measurement frequencies about the alloy powder manufactured by Examples 1-8 and Comparative Examples 1-6. 実施例1~8及び比較例1~6で製造した合金粉についての、D50×[O]と測定周波数100MHzでの比透磁率との関係を示す図である。It is a figure which shows the relationship of D50x [O] and the relative magnetic permeability in 100 MHz of measurement frequencies about the alloy powder manufactured by Examples 1-8 and Comparative Examples 1-6.
 以下、本発明の一実施形態にかかる軟磁性粉末、Fe粉末又はFeを含む合金粉末の製造方法、軟磁性材料及び圧粉磁心の製造方法について説明する。 Hereinafter, a method of manufacturing soft magnetic powder, Fe powder, or an alloy powder containing Fe, a soft magnetic material, and a method of manufacturing a dust core according to an embodiment of the present invention will be described.
<軟磁性粉末>
 本実施形態の軟磁性粉末は、Si(ケイ素)を含むFe(鉄)合金で構成される。
<Soft magnetic powder>
The soft magnetic powder of the present embodiment is composed of Fe (iron) alloy containing Si (silicon).
 前記軟磁性粉末は、Siを0.1質量%~15質量%の範囲で含み、好ましくは主成分としてFeを含む。Feは軟磁性粉末の磁気特性や機械的特性に寄与する元素である。Siは軟磁性粉末の透磁率を高める元素である。Siの含有量は、Feによる磁気特性や機械的特性を損なうことなく、透磁率を向上させる観点から上記の範囲とされ、好ましくは0.2質量%~7質量%である。特に、より高い透磁率を得る観点からは、Siを2.0質量%~3.5質量%とすることが好ましく、所望の透磁率を得ながらも、より高い飽和磁化を得る観点からは0.2質量%~0.5質量%とすることが好ましい。Siの含有量は、軟磁性粉末に要求される特性に応じて適宜変更するとよい。なお、上記主成分とは、軟磁性粉末を構成する元素の中で最も含有率の高いものを示す。本実施形態の軟磁性粉末におけるFeの量は、磁気特性や機械的特性の観点から、好ましくは84質量%~99.7質量%であり、より好ましくは92質量%~99.6質量%である。また、軟磁性粉末におけるFe及びSiの合計量は、不純物の含有による磁気特性の悪化を抑制する観点から、好ましくは98質量%以上である。 The soft magnetic powder contains Si in a range of 0.1% by mass to 15% by mass, and preferably contains Fe as a main component. Fe is an element that contributes to the magnetic properties and mechanical properties of the soft magnetic powder. Si is an element that enhances the permeability of the soft magnetic powder. The content of Si is in the above range from the viewpoint of improving the magnetic permeability without impairing the magnetic properties and mechanical properties by Fe, and is preferably 0.2% by mass to 7% by mass. In particular, from the viewpoint of obtaining higher permeability, it is preferable to set Si to 2.0% by mass to 3.5% by mass, and from the viewpoint of obtaining higher saturation magnetization while obtaining desired permeability, It is preferable to set 2% by mass to 0.5% by mass. The content of Si may be appropriately changed according to the characteristics required for the soft magnetic powder. In addition, the said main component shows the thing with the highest content rate among the elements which comprise soft-magnetic powder. The amount of Fe in the soft magnetic powder of the present embodiment is preferably 84% by mass to 99.7% by mass, more preferably 92% by mass to 99.6% by mass from the viewpoint of magnetic properties and mechanical properties. is there. The total amount of Fe and Si in the soft magnetic powder is preferably 98% by mass or more from the viewpoint of suppressing the deterioration of the magnetic properties due to the inclusion of the impurities.
 本実施形態の軟磁性粉末は、製造過程での酸化が抑制されており、粒子径が小さくなるような場合でも、酸素の含有量が少ない。具体的には、本実施形態の軟磁性粉末の、レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径[μm]をD50、酸素の含有量[質量%]を[O]としたとき、これらの積(D50×[O])が3.0[μm・質量%]以下である。 In the soft magnetic powder of the present embodiment, oxidation in the manufacturing process is suppressed, and the content of oxygen is small even when the particle diameter is small. Specifically, of the soft magnetic powder of the present embodiment, the cumulative 50% particle diameter [μm] of volume basis measured by a laser diffraction type particle size distribution measuring device is D50, and the content [mass%] of oxygen is [O] And the product (D50 × [O]) thereof is 3.0 [μm · mass%] or less.
 ここで、前記積(D50×[O])について説明する。 Here, the product (D50 × [O]) will be described.
 軟磁性粉末において、その体積をV[m]、表面積をS[m]、酸素の含有量を[O][質量%]とすると、D50との間で以下の関係式(1)が成り立つ。なお、関係式(1)中、括弧内は各値の次元を示す。また前提として、軟磁性粉末の形状を球形とし、D50は一次粒子径とみなす。なおこれらの前提から外れたとしても、おおよそ関係式(1)の傾向が成り立つ。 In the soft magnetic powder, assuming that the volume is V [m 3 ], the surface area is S [m 2 ], and the oxygen content is [O] [mass%], the following relational expression (1) with D50 is It holds. In the relational expression (1), the parentheses indicate the dimension of each value. As a premise, the shape of the soft magnetic powder is spherical, and D50 is regarded as the primary particle diameter. In addition, even if it deviates from these premise, the tendency of a relational expression (1) is generally realized.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 粒子に含まれる酸素の重量をW[g]、粒子の重さをW[g]、粒子の密度をρ[g/cm]とすると、以下の関係式(2)が成り立つ。なお、関係式(2)中、括弧内は各値の次元を示す。 Assuming that the weight of oxygen contained in the particle is W 2 O [g], the weight of the particle is W [g], and the density of the particle is / [g / cm 3 ], the following relational expression (2) holds. In the relational expression (2), the parentheses indicate the dimension of each value.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 関係式(2)中、粒子の密度ρはその[O]により変わるが、[O]の変化は粒子全体の量からみれば微量で無視できる程度であるので、ρを定数とすると、関係式(1)および(2)から下記関係式(3)が導出される。なお、関係式(3)中、括弧内は各値の次元を示す。 In the relational expression (2), although the density 粒子 of the particle changes depending on the [O], the change of [O] is negligible in view of the amount of the whole particle, so if を is a constant, the relational expression The following relational expression (3) is derived from (1) and (2). In the relational expression (3), the parentheses indicate the dimension of each value.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 軟磁性粉末の酸化は、主に粒子表面で起こるため、粒子に含まれる酸素の大部分は表面に存在すると推測される(特に本実施形態では乾燥工程による酸素の拡散が抑制されているため、なおのこと酸素の大部分が粒子表面に存在すると推測される)。関係式(3)において、W/Sは、粒子中の酸素重量Wを粒子の表面積Sで除したものであり、おおよそ粒子表面における単位面積あたりの(その表面に付着している)酸素の重量を示す。従って、これに比例するD50×[O]が小さいほど、軟磁性粉末の単位表面積あたりの酸素量が少ないことになる。本発明者らの検討によると、本実施形態の軟磁性粉末はD50×[O]が3.0[μm・質量%]以下であり、(粉末の製造工程における酸化が抑制されており)粒子径が小さな場合であっても、高周波側において高い透磁率を示す。このような観点から、前記D50×[O]は好ましくは0.5[μm・質量%]~2.6[μm・質量%]であり、より好ましくは0.5[μm・質量%]~1.9[μm・質量%]である。 Since oxidation of the soft magnetic powder mainly occurs on the particle surface, it is presumed that most of the oxygen contained in the particles is present on the surface (in particular, in the present embodiment, the diffusion of oxygen due to the drying process is suppressed) Most of the oxygen is assumed to be present on the particle surface). In the relational expression (3), W O / S is the weight of oxygen in the particle W O divided by the surface area S of the particle, and oxygen per unit area on the surface of the particle (adhered to the surface) Indicates the weight of Therefore, the smaller the proportion D50 × [O], the smaller the amount of oxygen per unit surface area of the soft magnetic powder. According to the study of the present inventors, the soft magnetic powder of the present embodiment has a D50 × [O] of 3.0 [μm · mass%] or less, and (the oxidation in the production process of the powder is suppressed) particles Even if the diameter is small, high permeability is exhibited on the high frequency side. From such a viewpoint, the D50 × [O] is preferably 0.5 [μm · mass%] to 2.6 [μm · mass%], more preferably 0.5 [μm · mass%] to It is 1.9 [μm · mass%].
 本実施形態の軟磁性粉末のD50は、特に限定されないが、渦電流損失を低減させる観点からは小さいことが好ましい。具体的には、0.5μm~10μmが好ましく、1μm~5μmがより好ましい。 D50 of the soft magnetic powder of the present embodiment is not particularly limited, but is preferably small from the viewpoint of reducing eddy current loss. Specifically, 0.5 μm to 10 μm is preferable, and 1 μm to 5 μm is more preferable.
 本実施形態の軟磁性粉末に含まれる酸素の含有量[O]は、透磁率の観点から0.75質量%以下であることが好ましい([O]は通常0.05質量%以上である)。同様な観点から、[O]は0.10質量%~0.60質量%である。 The content [O] of oxygen contained in the soft magnetic powder of the present embodiment is preferably 0.75 mass% or less from the viewpoint of magnetic permeability ([O] is usually 0.05 mass% or more) . From the same viewpoint, [O] is 0.10% by mass to 0.60% by mass.
 なお、本実施形態の軟磁性粉末は、Fe、SiおよびO以外に、その製造原料や製造工程に使用される装置・物質の影響などで微量の不可避不純物を含むが、その例としては、Na(ナトリウム)、K(カリウム)、Ca(カルシウム)、Pd(パラジウム)、Mg(マグネシウム)、Cr(クロム)、Co(コバルト)、Mo(モリブデン)、Zr(ジルコニウム)、C(炭素)、N(窒素)、P(リン)、Cl(塩素)、Mn(マンガン)、Ni(ニッケル)、Cu(銅)、S(硫黄)、As(砒素)、B(硼素)、Sn(スズ)、Ti(チタン)、V(バナジウム)、Al(アルミニウム)が挙げられる。なお前記不可避不純物は、所与の目的を達成するために1000ppm以下程度のレベル、好ましくは100ppm~800ppmで軟磁性粉末中に含有させられる微量添加元素を包含するものとする。以上から、本実施形態の軟磁性粉末の一形態は、Si、O、残部Fe及び不可避不純物からなる。 The soft magnetic powder of this embodiment contains, in addition to Fe, Si and O, trace amounts of unavoidable impurities due to the influence of the raw materials and devices and materials used in the manufacturing process, and the like. (Sodium), K (potassium), Ca (calcium), Pd (palladium), Mg (magnesium), Cr (chromium), Co (cobalt), Mo (molybdenum), Zr (zirconium), C (carbon), N (Nitrogen), P (phosphorus), Cl (chlorine), Mn (manganese), Ni (nickel), Cu (copper), S (sulfur), As (arsenic), B (boron), Sn (tin), Ti (Titanium), V (vanadium), Al (aluminum) can be mentioned. The unavoidable impurities include trace additive elements contained in the soft magnetic powder at a level of about 1000 ppm or less, preferably 100 ppm to 800 ppm, in order to achieve a given purpose. As mentioned above, one form of the soft-magnetic powder of this embodiment consists of Si, O, balance Fe, and an unavoidable impurity.
 また、本実施形態の軟磁性粉末の形状は、特に限定されず、球状や略球状であってもよく、粒状や薄片状(フレーク状)、あるいは歪な形状(不定形)であってもよい。 Further, the shape of the soft magnetic powder according to the present embodiment is not particularly limited, and may be spherical or substantially spherical, and may be granular, flaky (flaky), or distorted (indeterminate). .
 本実施形態の軟磁性粉末の炭素の含有量[C]は、磁気特性への悪影響を抑制する観点から、好ましくは0.01質量%~0.30質量%であり、より好ましくは0.01質量%~0.05質量%である。 The content [C] of carbon in the soft magnetic powder of the present embodiment is preferably 0.01% by mass to 0.30% by mass, and more preferably 0.01% by mass from the viewpoint of suppressing an adverse effect on the magnetic properties. % By mass to 0.05% by mass.
 本実施形態の軟磁性粉末のBET1点法により測定した比表面積(BET比表面積)は、粉末表面への酸化物の発生を抑制して良好な透磁率を発揮する観点から、好ましくは0.15m/g~3.00m/gであり、より好ましくは0.20m/g~2.50m/gである。 The specific surface area (BET specific surface area) measured by the BET one-point method of the soft magnetic powder of the present embodiment is preferably 0.15 m from the viewpoint of suppressing generation of oxides on the powder surface and exhibiting a good magnetic permeability. a 2 /g~3.00m 2 / g, more preferably 0.20m 2 /g~2.50m 2 / g.
 本実施形態の軟磁性粉末のタップ密度は、粉末の充填密度を高めて良好な透磁率を発揮する観点から、好ましくは2.5~7.5g/cmであり、より好ましくは3.0~6.5g/cmである。 The tap density of the soft magnetic powder of the present embodiment is preferably 2.5 to 7.5 g / cm 3 , more preferably 3.0, from the viewpoint of enhancing the packing density of the powder and exhibiting a good magnetic permeability. It is ̃6.5 g / cm 3 .
<Fe粉末又はFeを含む合金粉末の製造方法>
 次に、上述した軟磁性粉末を製造する方法について説明するが、本方法は、酸化されやすいFeを含む金属粉末(Fe粉末又はFeを含む合金粉末)の製造に広く適用可能である。本実施形態のFe粉末又はFeを含む合金粉末の製造方法は従来の水アトマイズによる製造方法を改良したものであり、溶湯調製工程と、アトマイズ工程と、固液分離工程と、乾燥工程とを有する。以下、各工程について詳述する。
<Method of producing Fe powder or alloy powder containing Fe>
Next, although the method of producing the soft magnetic powder described above will be described, the method is widely applicable to the production of metal powder containing Fe (Fe powder or alloy powder containing Fe) which is easily oxidized. The method of producing Fe powder or alloy powder containing Fe according to the present embodiment is an improvement of the conventional method of producing by water atomization, and includes a melt preparation step, an atomizing step, a solid-liquid separation step, and a drying step. . Each step will be described in detail below.
(溶湯調製工程)
 まず、Feを含む溶湯を調製する。これは具体的には、例えば、電解鉄や純鉄などのFe原料、又は必要に応じてこれと他の金属原料(シリコンメタルなどのSi原料を含む)を炉中で溶解させ、溶湯を調製する。この際の加熱温度(溶湯の温度)は、例えば1536℃~2000℃であり、好ましくは1600~1900℃である。
(Melt preparation process)
First, a molten metal containing Fe is prepared. Specifically, for example, an Fe raw material such as electrolytic iron or pure iron or, if necessary, this and other metal raw materials (including Si raw materials such as silicon metal) are melted in a furnace to prepare a molten metal. Do. The heating temperature (temperature of the molten metal) at this time is, for example, 1536 ° C. to 2000 ° C., and preferably 1600 to 1900 ° C.
 溶湯はFeを含むものであれば特に限定されないが、本実施形態では、酸化されやすいFeを使用しても、酸素の含有量が低い金属粉末が得られるので、溶湯におけるFeの含有量(溶湯を調製する際のFeの仕込み量)を14質量%~99.7質量%とすることが好ましく、49質量%~99.7質量%とすることがより好ましく、84質量%~99.7質量%とすることがさらに好ましく、84質量%~99.6質量%とすることが特に好ましい。 The molten metal is not particularly limited as long as it contains Fe, but in the present embodiment, even if Fe that is easily oxidized is used, a metal powder having a low content of oxygen can be obtained. It is preferable to set the preparation amount of Fe in preparation of 14% by mass to 99.7% by mass, more preferably 49% by mass to 99.7% by mass, and 84% by mass to 99.7% by mass. % Is more preferable, and 84% by mass to 99.6% by mass is particularly preferable.
 溶湯の調製の際にFeとともに仕込む他の元素は、特に限定されるものではないが、その例としてはSi、Cr、Ni、B、C、Mo、Co、Cuが挙げられる。これらの中でも、軟磁性粉末を製造する場合には、他の元素としてSi、Cr、Ni、B、Cが好ましく、より低保磁力な軟磁性粉末とすることができる点からSiが特に好ましい。溶湯における他の元素の含有量(溶湯を調製する際の他の元素の仕込み量)は、好ましくは0.1質量%~85質量%であり、より好ましくは0.1質量%~50質量%であり、さらに好ましくは0.1質量%~15質量%であり、特に好ましくは0.3質量%~15質量%である。特に他の金属がSiである場合には、その溶湯における含有量は、0.1質量%~15質量%であることが好ましく、0.2質量%~7質量%であることがより好ましい。
 さらに溶湯には、Pなどの微量元素を、Fe粉末又はFeを含む粉末における含有量が100ppm~800ppm(0.01質量%~0.08質量%)となるように、添加してもよい。Pの添加によれば、製造される軟磁性粉末をより球状化させることができる。つまり、タップ密度を向上させて、高密度での充填を可能にする。そのため、圧粉磁心に成型したときに、透磁率を向上させることができる。
The other elements to be charged together with Fe during preparation of the molten metal are not particularly limited, and examples thereof include Si, Cr, Ni, B, C, Mo, Co and Cu. Among these, in the case of producing a soft magnetic powder, Si, Cr, Ni, B and C are preferable as other elements, and Si is particularly preferable in that it can be a soft magnetic powder having a lower coercive force. The content of the other element in the molten metal (the preparation amount of the other element when preparing the molten metal) is preferably 0.1% by mass to 85% by mass, more preferably 0.1% by mass to 50% by mass More preferably, it is 0.1% by mass to 15% by mass, and particularly preferably 0.3% by mass to 15% by mass. In particular, when the other metal is Si, the content in the molten metal is preferably 0.1% by mass to 15% by mass, and more preferably 0.2% by mass to 7% by mass.
Furthermore, a trace element such as P may be added to the molten metal so that the content in the Fe powder or the powder containing Fe is 100 ppm to 800 ppm (0.01 mass% to 0.08 mass%). By the addition of P, the soft magnetic powder to be produced can be made more spherical. That is, the tap density is improved to enable high density filling. Therefore, the permeability can be improved when molded into a dust core.
 溶湯調製工程では、溶湯への酸素の混入を抑制する観点から、非酸化性ガス(He、ArやNなどの不活性ガス、HやCOなどの還元性ガス)雰囲気下で溶湯を調製することが好ましい。また、溶湯には所定の目的で種々の微量添加元素を添加してもよい。またこれらはFeとの合金として溶湯に添加してもよい。 In the melt preparation step, the melt is prepared in a non-oxidizing gas (inert gas such as He, Ar or N 2 , reducing gas such as H 2 or CO) atmosphere from the viewpoint of suppressing the mixing of oxygen into the melt. It is preferable to do. Further, various minute addition elements may be added to the molten metal for a predetermined purpose. Moreover, you may add these to a molten metal as an alloy with Fe.
(アトマイズ工程)
 続いて、溶湯調製工程で調製した溶湯に冷却媒体である水を吹き付ける。例えば、炉の底部に設けられた所定径のノズルから溶湯を出湯し、出湯によりできる溶湯の流れに水を吹き付ける。これにより、溶湯に水が衝突して溶湯は粉砕されかつ冷却凝固して粉末となり、Fe粉末又はFeを含む合金粉末が(溶湯の流れに吹き付けた)水中に分散したスラリーが得られる。
(Atomizing process)
Subsequently, water as a cooling medium is sprayed on the molten metal prepared in the molten metal preparation step. For example, the molten metal is poured from a nozzle of a predetermined diameter provided at the bottom of the furnace, and water is sprayed to the flow of the molten metal produced by the tapping. As a result, water collides with the molten metal, and the molten metal is crushed and solidified by cooling to form a powder, and a slurry is obtained in which Fe powder or alloy powder containing Fe is dispersed in water (sprayed on the flow of the molten metal).
 アトマイズ工程では、溶湯の酸化を抑制する観点から、非酸化性ガス雰囲気下で合金溶湯に水を吹き付けることが好ましい。非酸化性ガス雰囲気としては、例えば、He、ArやNなどの不活性ガス、HやCOなどの還元性ガスが挙げられる。 In the atomizing step, it is preferable to spray water on the molten alloy in a non-oxidizing gas atmosphere from the viewpoint of suppressing the oxidation of the molten metal. Examples of the non-oxidizing gas atmosphere include inert gases such as He, Ar and N 2 , and reducing gases such as H 2 and CO.
 また、溶湯に吹き付ける水のpHは特に限定されるものではないが、より酸素量の低減したFe粉末又はFeを含む金属粉末を得るために、pHが9~13であることが好ましく、pHが11~13であることが特に好ましい。また、水の電位は標準電極電位で-0.4V~0.4Vであることが好ましく、-0.3V~0.4Vであることが特に好ましい。これらの点については乾燥工程の説明においてさらに詳述する。なお、水のpHを前記の範囲に調整するには、水に種々のアルカリ物質を添加すればよく、その例としては、水酸化ナトリウム、アンモニア、リン酸ナトリウム、水酸化カルシウム、ヒドラジンが挙げられる。そのようにしてpH調整された水の電位は、おおよそ上記の範囲にある。 Further, the pH of water sprayed to the molten metal is not particularly limited, but in order to obtain Fe powder with a reduced amount of oxygen or a metal powder containing Fe, the pH is preferably 9 to 13, preferably pH 13 11 to 13 is particularly preferable. The potential of water is preferably -0.4 V to 0.4 V in standard electrode potential, and particularly preferably -0.3 V to 0.4 V. These points will be described in more detail in the description of the drying step. In order to adjust the pH of water to the above range, various alkali substances may be added to water, and examples thereof include sodium hydroxide, ammonia, sodium phosphate, calcium hydroxide and hydrazine. . The potential of the so pH-adjusted water is approximately in the above range.
 アトマイズ工程において水を吹き付けるときの圧力(水圧)は、特に限定されないが、例えば90MPa~180MPaとするとよい。水圧を高くすると、粒子径の小さなFe粉末又はFeを含む合金粉末を製造することができる。 The pressure (water pressure) at which water is sprayed in the atomizing step is not particularly limited, but may be, for example, 90 MPa to 180 MPa. When the water pressure is increased, it is possible to produce Fe powder with a small particle size or an alloy powder containing Fe.
(固液分離工程)
 続いて、アトマイズ工程で得られたスラリーを固液分離することにより、Fe粉末又はFeを含む合金粉末を回収する。回収した金属粉末は洗浄してもよい。固液分離の手法としては従来公知のものを特に制限なく採用することができ、例えばフィルタープレスなどを用いて前記スラリーを加圧ろ過すればよい。
(Solid-liquid separation process)
Subsequently, Fe powder or Fe-containing alloy powder is recovered by solid-liquid separation of the slurry obtained in the atomizing step. The recovered metal powder may be washed. As a method of solid-liquid separation, a conventionally known one can be adopted without particular limitation, and for example, the slurry may be subjected to pressure filtration using a filter press or the like.
(乾燥工程)
 続いて、固液分離工程で得られた金属粉末を乾燥させる。従来は早く乾燥させるために高温(かつ真空下)での乾燥が行われていたが、本実施形態では、金属粉末における酸素の含有量を低く抑制するために、乾燥温度を80℃以下とする。酸素含有量をより低減させる観点からは乾燥温度を60℃以下とすることが好ましい。一方、金属粉末を乾燥させるまでの時間を短縮させる観点からは、乾燥温度は室温(25℃)以上とすることが好ましく、30℃以上とすることがより好ましい。
(Drying process)
Subsequently, the metal powder obtained in the solid-liquid separation step is dried. In the past, drying at a high temperature (and under vacuum) was performed to quickly dry, but in the present embodiment, the drying temperature is set to 80 ° C. or less in order to suppress the oxygen content in the metal powder to a low level. . From the viewpoint of further reducing the oxygen content, it is preferable to set the drying temperature to 60 ° C. or less. On the other hand, from the viewpoint of shortening the time to dry the metal powder, the drying temperature is preferably room temperature (25 ° C.) or higher, and more preferably 30 ° C. or higher.
 本実施形態における乾燥工程では、上記のように従来よりも低温での乾燥を実施するため、乾燥速度を向上させる観点から、大気圧に対して-0.05MPa以下の減圧環境で乾燥を実施することが好ましく、真空環境(-0.095MPa以下)で乾燥を実施することがより好ましい。 In the drying step in the present embodiment, in order to carry out drying at a lower temperature than in the past as described above, drying is carried out in a reduced pressure environment of -0.05 MPa or less with respect to atmospheric pressure from the viewpoint of improving the drying speed. It is preferable to carry out the drying in a vacuum environment (-0.095 MPa or less).
 本実施形態におけるように乾燥工程を従来に比較して低温の環境で実施することで、乾燥工程において金属粉末の粒子表面の酸素が内部へ熱拡散して粒子表面の酸化保護膜として機能する表面酸化膜が減少することが回避されると考えられ、これによりその後の徐酸化の工程も不要になった。さらに、アトマイズ工程の説明にて述べた通り、この工程で使用する水のpHをアルカリ性領域にすることで、得られる金属粉末の酸素の含有量を低減することができるが、特に、pHを11~13という強アルカリ性領域とすることで、金属粉末の酸素の含有量を特に好適に低減できることがわかった。これは、鉄(磁気特性に大きく影響する)の電位-pH図において、鉄は幅広いpH範囲で不動態を形成するが、前記の強アルカリ性領域の不動態形成で形成された金属粉末の粒子表面の酸化膜は、特に好適な酸化保護膜として機能するためではないかと推察される。 As in the present embodiment, by performing the drying step in a low temperature environment as compared with the prior art, the oxygen on the particle surface of the metal powder thermally diffuses to the inside in the drying step and functions as an oxidation protection film on the particle surface. It is believed that the reduction of the oxide film is avoided, which also makes the subsequent step of gradual oxidation unnecessary. Furthermore, as described in the explanation of the atomizing step, by setting the pH of water used in this step to an alkaline region, the oxygen content of the obtained metal powder can be reduced, but in particular, the pH It was found that the content of oxygen in the metal powder can be particularly suitably reduced by setting it as a strong alkaline region of ̃13. This is that in the potential-pH diagram of iron (which greatly affects the magnetic properties), iron forms a passivity in a wide pH range, but the particle surface of the metal powder formed by the passivity formation of the strong alkaline region. It is speculated that the oxide film of the present invention functions as a particularly suitable oxide protective film.
 以上の各工程を実施することで、酸素の含有量が低減されたFe粉末又はFeを含む合金粉末を製造することができる。 By carrying out each of the above steps, it is possible to produce Fe powder in which the content of oxygen is reduced or an alloy powder containing Fe.
 なお、製造されたFe粉末又はFeを含む合金粉末について、解砕したり、篩分けや風力分級などの分級を行い、粒子径(粒度分布)を制御してもよい。例えば、Fe粉末又はFeを含む合金粉末のD50が0.5μm~10μmとなるように分級を行うとよい。さらに、これらの粉末に対して扁平化処理を行うなどして、粉末の粒子形状を(フレーク形状などに)変えてもよい。 The particle size (particle size distribution) may be controlled by crushing the produced Fe powder or Fe-containing alloy powder, classifying it by sieving, air classification, and the like. For example, classification may be performed such that D50 of Fe powder or alloy powder containing Fe is 0.5 μm to 10 μm. Furthermore, the particle shape of the powder may be changed (such as flake shape) by performing flattening treatment on these powders.
<軟磁性材料>
 以上説明した本実施形態の軟磁性粉末は、保持力が低く透磁率が高い。特に前記粉末は粒子径が小さくても酸素の含有量を低くすることが可能なものであるので、高周波領域でも透磁率に優れる。具体的には、後述の実施例の条件で測定した保持力(Hc)が、好ましくは5~25Oeである。また透磁率については、後述の実施例における磁気特性の測定1の条件で測定した測定周波数10MHzにおける比透磁率(μ’)は、好ましくは8.90以上であり、より好ましくは9.00~14.00であり、測定周波数100MHzにおける比透磁率(μ’)は、好ましくは8.90以上であり、より好ましくは9.00~14.00である。そして後述の実施例における磁気特性の測定2の条件で測定した測定周波数10MHzにおける比透磁率(μ’)は、好ましくは17.00以上であり、より好ましくは21.00~30.00であり、測定周波数100MHzにおける比透磁率(μ’)は、好ましくは17.00以上であり、より好ましくは19.50~28.50である。
<Soft magnetic material>
The soft magnetic powder of the present embodiment described above has low coercivity and high permeability. In particular, since the powder can reduce the content of oxygen even if the particle size is small, the powder is excellent in permeability even in a high frequency region. Specifically, the coercive force (Hc) measured under the conditions of the examples described later is preferably 5 to 25 Oe. With regard to the magnetic permeability, the relative magnetic permeability (μ ′) at a measurement frequency of 10 MHz measured under the condition 1 of measurement of the magnetic characteristics in the examples described later is preferably 8.90 or more, more preferably 9.00 to The relative permeability (μ ′) at a measurement frequency of 100 MHz is preferably 14.00, and is preferably 8.90 or more, more preferably 9.00 to 14.00. The relative permeability (μ ′) at a measurement frequency of 10 MHz measured under the condition 2 of measurement of magnetic characteristics in the examples described later is preferably 17.00 or more, more preferably 21.00 to 30.00. The relative permeability (μ ′) at a measurement frequency of 100 MHz is preferably 17.00 or more, and more preferably 19.50 to 28.50.
 このような特性から、本実施形態の軟磁性粉末は軟磁性材料に好適に適用することができる。例えば前記軟磁性粉末をバインダ(絶縁樹脂及び/又は無機バインダ)と混合し、造粒することで、粒状の複合体粉末(軟磁性材料)を得ることができる。軟磁性材料における軟磁性粉末の含有量は、良好な透磁率を達成する観点から、80質量%~99.9質量%であることが好ましい。同様な観点から、前記バインダの前記軟磁性材料における含有量は、0.1質量%~20質量%であることが好ましい。 Due to such characteristics, the soft magnetic powder of the present embodiment can be suitably applied to a soft magnetic material. For example, a granular composite powder (soft magnetic material) can be obtained by mixing the soft magnetic powder with a binder (insulating resin and / or inorganic binder) and granulating. The content of the soft magnetic powder in the soft magnetic material is preferably 80% by mass to 99.9% by mass from the viewpoint of achieving good magnetic permeability. From the same viewpoint, the content of the binder in the soft magnetic material is preferably 0.1% by mass to 20% by mass.
 前記絶縁樹脂の具体例としては、(メタ)アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂が挙げられる。前記無機バインダの具体例としては、シリカバインダー、アルミナバインダーが挙げられる。さらに、前記軟磁性材料は必要に応じてワックス、滑剤などのその他の成分を含んでもよい。 Specific examples of the insulating resin include (meth) acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin. A silica binder and an alumina binder are mentioned as a specific example of the said inorganic binder. In addition, the soft magnetic material may optionally contain other components such as wax and lubricant.
<圧粉磁心>
 本実施形態の軟磁性材料を所定の形状に成型して加熱することで、圧粉磁心を製造することができる。
Powder dust core
A powder magnetic core can be manufactured by shape | molding and heating the soft-magnetic material of this embodiment to a predetermined | prescribed shape.
 より具体的には、本実施形態の軟磁性材料を所定形状の金型に入れ、加圧し加熱することで圧粉磁心を得る。当該圧粉磁心は上記の通り高周波領域でも透磁率に優れるため、この圧粉磁心を有する磁性部品を、高周波領域で動作するインダクタなどの電子機器に取り付けることができる。 More specifically, a powder magnetic core is obtained by putting the soft magnetic material of the present embodiment into a mold of a predetermined shape, pressing and heating. Since the powder magnetic core is excellent in the magnetic permeability even in the high frequency region as described above, the magnetic component having the dust core can be attached to an electronic device such as an inductor operating in the high frequency region.
<本実施形態にかかる効果>
 本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
<Effect of this embodiment>
According to this embodiment, one or more of the following effects can be obtained.
 本実施形態では、アトマイズ工程により得られたスラリーを固液分離し、採取されたFe粉末又はFe合金粉末を乾燥温度80℃以下で乾燥させている。好ましくは、乾燥温度を30℃~60℃としている。これにより、最終的に得られる金属粉末の酸素含有量を低減することができる。これは、金属粉末の乾燥の際に、金属粉末での酸素の熱拡散を抑制して、粒子表面の酸素含有量をある程度維持し、さらなる酸化による酸素の取り込みを低減できたためと考えられる。 In the present embodiment, the slurry obtained by the atomizing step is subjected to solid-liquid separation, and the collected Fe powder or Fe alloy powder is dried at a drying temperature of 80 ° C. or less. Preferably, the drying temperature is 30 ° C to 60 ° C. Thereby, the oxygen content of the metal powder finally obtained can be reduced. This is considered to be because the thermal diffusion of oxygen in the metal powder was suppressed during the drying of the metal powder, the oxygen content on the particle surface was maintained to some extent, and the oxygen uptake due to further oxidation was reduced.
 また、乾燥温度を80℃以下とすることで、従来必要とされた徐酸化を省略することができる。これは、上述したように、乾燥の際に酸素の熱拡散を抑制して、粒子表面の酸素含有量をある程度の範囲に維持できるので、十分な耐酸化性を確保できるためと考えられる。 Further, by setting the drying temperature to 80 ° C. or less, it is possible to omit the gradual oxidation which has conventionally been required. This is considered to be because, as described above, the thermal diffusion of oxygen can be suppressed during drying to maintain the oxygen content of the particle surface within a certain range, so that sufficient oxidation resistance can be secured.
 また、乾燥工程では、金属粉末の乾燥を減圧環境で行うことが好ましく、真空環境で行うことがより好ましい。これにより、金属粉末を加熱することなく、乾燥速度を向上させることができる。この結果、金属粉末の製造効率を高めることができる。 In the drying step, the metal powder is preferably dried in a reduced pressure environment, more preferably in a vacuum environment. Thereby, the drying speed can be improved without heating the metal powder. As a result, the production efficiency of the metal powder can be enhanced.
 本実施形態の軟磁性粉末は、Siを0.1質量%~15質量%含み、D50×[O]が3.0[μm・質量%]以下である。そのため、この軟磁性粉末は、例えば粒子径D50を0.5μm~10μmと小さくした場合であっても、粒子表面における単位面積あたりの酸素含有量が少なく構成されている。このような軟磁性粉末によれば、圧粉磁心の渦電流損失を低減すべく軟磁性粉末の粒子径を小さくした場合であっても、酸素量の増加を抑制して透磁率の低下を防ぐことができ、コアロスを低く保つことができる。しかも、特に高周波側で高い透磁率を得ることができる。具体的には、後述の実施例における磁気特性の測定1の方法で測定した、10MHzでの比透磁率μ’を8.90以上、100MHzでの比透磁率μ’を8.90以上とすることができる。 The soft magnetic powder of the present embodiment contains 0.1% by mass to 15% by mass of Si, and D50 × [O] is 3.0 [μm · mass%] or less. Therefore, even if the particle diameter D50 is reduced to 0.5 μm to 10 μm, for example, the soft magnetic powder is configured to have a low oxygen content per unit area on the particle surface. According to such a soft magnetic powder, even when the particle size of the soft magnetic powder is reduced in order to reduce the eddy current loss of the dust core, the increase of the oxygen amount is suppressed to prevent the decrease of the magnetic permeability. Core loss can be kept low. Moreover, high permeability can be obtained particularly on the high frequency side. Specifically, the relative permeability μ 'at 10 MHz is 8.90 or more, and the relative permeability μ' at 100 MHz is 8.90 or more, which is measured by the method 1 of measurement of magnetic characteristics in the examples described later. be able to.
 また、軟磁性粉末は、Siの含有量によって特性が異なり、Siを2.0質量%~3.5質量%とすることで(このとき、軟磁性粉末におけるFeの量は好ましくは96.0質量%以上である)、透磁率をより向上させることができる。具体的には、後述の実施例における磁気特性の測定2の方法で測定した、10MHzでの比透磁率μ’を21.00~30.00、100MHzでの比透磁率μ’を21.00~28.50とすることができる。一方、Siを0.2質量%~0.5質量%とすることで(このとき、軟磁性粉末におけるFeの量は好ましくは99.2質量%以上である)、軟磁性粉末に含まれるFeの比率を高くして、所望の透磁率を得ながらも、より高い飽和磁化を得ることができる。具体的には、後述の実施例における磁気特性の測定2の方法で測定した、10MHzでの比透磁率μ’を17.00~26.00、100MHzでの比透磁率μ’を17.00~26.00としながらも、飽和磁化を205emu/g以上の数値とすることができる(通常218emu/g未満)。 Also, the characteristics of the soft magnetic powder differ depending on the content of Si, and by setting the content of Si to 2.0 mass% to 3.5 mass% (in this case, the amount of Fe in the soft magnetic powder is preferably 96.0) And the permeability can be further improved. Specifically, the relative magnetic permeability μ 'at 10 MHz is 21.00 to 30.00, and the relative magnetic permeability μ' at 100 MHz is 21.00, which is measured by the method 2 of measurement of magnetic characteristics in the examples described later. It can be set to 28.50. On the other hand, when the content of Si is 0.2% by mass to 0.5% by mass (in this case, the amount of Fe in the soft magnetic powder is preferably 99.2% by mass or more), Fe contained in the soft magnetic powder Higher saturation magnetization while obtaining a desired permeability. Specifically, the relative permeability μ ′ at 10 MHz is 17.00 to 26.00, and the relative permeability μ ′ at 100 MHz is 17.00, which are measured by the method 2 of measurement of magnetic characteristics in the examples described later. The saturation magnetization can be set to a value of 205 emu / g or more (usually less than 218 emu / g) while setting to 26.00.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらにより何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
[比較例1]
 タンディッシュ炉中で、電解鉄(純度:99.95質量%以上)14kgとシリコンメタル(純度:99質量%以上)1.01kgとを窒素雰囲気下において1700℃に加熱して溶解した溶湯を、窒素雰囲気下(酸素濃度300ppm以下)においてタンディッシュ炉の底部から落下させながら、水圧150MPa、水量160L/分で高圧水(pH10.3、電位284mV)を吹き付けて急冷凝固させ、得られたスラリーを固液分離し、固形物を水洗し、窒素雰囲気下、120℃で10時間乾燥した。なお、高圧水のpH測定時の標準物質は以下の通りである。
pH4.01(25℃):フタル酸塩pH標準液
pH6.86(25℃):中性りん酸塩pH標準液
pH9.18(25℃):ほう酸塩pH標準液
Comparative Example 1
In a Tundish furnace, a molten metal obtained by heating 14 kg of electrolytic iron (purity: 99.95 mass% or more) and 1.01 kg of silicon metal (purity: 99 mass% or more) to 1700 ° C. in a nitrogen atmosphere, The slurry obtained is sprayed and solidified with high pressure water (pH 10.3, potential 284 mV) at a water pressure of 150 MPa and a water amount of 160 L / min while dropping from the bottom of a tundish furnace under nitrogen atmosphere (oxygen concentration 300 ppm or less) The solid was separated and the solid was washed with water and dried at 120 ° C. for 10 hours under a nitrogen atmosphere. In addition, the standard substance at the time of pH measurement of high pressure water is as follows.
pH 4.01 (25 ° C.): Phthalate pH standard solution pH 6.86 (25 ° C.): Neutral phosphate pH standard solution pH 9.18 (25 ° C.): Borate pH standard solution
 その後、乾燥した固形物を乾燥機に入れ、この乾燥機内を1時間かけて窒素雰囲気にし、40℃まで昇温して保持した後、40℃のままで乾燥機内に酸素を供給して酸素濃度を1質量%から21質量%まで段階的に上昇させる間に、それぞれの酸素濃度において所定時間保持することによって徐酸化を行った。なお、この徐酸化では、酸素濃度1質量%で30分間、2質量%で45分間、4質量%で100分間、5質量%で60分間、8質量%で60分間、16質量%で30分間、21質量%で5分間保持した。得られた乾燥粉を解砕し、風力分級して、比較例1に係る合金粉を得た。 After that, the dried solid substance is put into a drier, and the inside of the drier is made nitrogen atmosphere over 1 hour, heated to 40 ° C. and maintained, and then oxygen is supplied to the drier at 40 ° C. Was gradually increased from 1% by mass to 21% by mass, by holding at each oxygen concentration for a predetermined time. In this gradual oxidation, oxygen concentration is 1 mass% for 30 minutes, 2 mass% for 45 minutes, 4 mass% for 100 minutes, 5 mass% for 60 minutes, 8 mass% for 60 minutes, 16 mass% for 30 minutes , 21 mass% hold for 5 minutes. The obtained dried powder was crushed and classified by air classification to obtain an alloy powder according to Comparative Example 1.
 このようにして得られた合金粉について、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布、組成及び磁気特性を求めた。結果は下記の表2及び3に示している。 The BET specific surface area, the tap density, the oxygen content, the carbon content, the particle size distribution, the composition and the magnetic properties were determined for the alloy powder thus obtained. The results are shown in Tables 2 and 3 below.
 BET比表面積は、BET比表面積測定器(ユアサアイオニクス株式会社製の4ソーブUS)を使用して、測定器内に105℃で20分間窒素ガスを流して脱気した後、窒素とヘリウムの混合ガス(N:30体積%、He:70体積%)を流しながら、BET1点法により測定した。 The BET specific surface area is deaerated by flowing nitrogen gas at 105 ° C. for 20 minutes in the measuring device using a BET specific surface area measuring device (4 sorb US manufactured by Yuasa Ionics Co., Ltd.), and then nitrogen and helium mixed gas (N 2: 30 vol%, the He: 70% by volume) while flowing was measured by BET1 point method.
 タップ密度(TAP)は、特開2007-263860号公報に記載された方法と同様に、合金粉を内径6mm×高さ11.9mmの有底円筒形のダイに容積の80%まで充填して合金粉層を形成し、この合金粉層の上面に0.160N/mの圧力を均一に加え、この圧力で合金粉がこれ以上密に充填されなくなるまで前記合金粉層を圧縮した後、合金粉層の高さを測定し、この合金粉層の高さの測定値と、充填された合金粉の重量とから、合金粉の密度を求め、これを合金粉のタップ密度とした。 Tap density (TAP) is prepared by filling alloy powder to a bottomed cylindrical die with an inner diameter of 6 mm and a height of 11.9 mm to 80% of the volume in the same manner as the method described in JP-A-2007-263860. After forming an alloy powder layer, uniformly applying a pressure of 0.160 N / m 2 to the upper surface of the alloy powder layer, and compressing the alloy powder layer until the alloy powder can not be densely packed at this pressure, The height of the alloy powder layer was measured, and the density of the alloy powder was determined from the measured value of the height of the alloy powder layer and the weight of the filled alloy powder, and this was used as the tap density of the alloy powder.
 酸素含有量は、酸素・窒素・水素分析装置(株式会社堀場製作所製のEMGA-920)により測定した。 The oxygen content was measured by an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by Horiba, Ltd.).
 炭素含有量は、炭素・硫黄分析装置(株式会社堀場製作所製のEMIA-220V)により測定した。 The carbon content was measured by a carbon / sulfur analyzer (EMIA-220V manufactured by Horiba, Ltd.).
 粒度分布は、レーザー回折式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の乾燥モジュール)))により分散圧5barで測定した。 The particle size distribution was measured at a dispersion pressure of 5 bar by means of a laser diffraction particle size distribution measuring apparatus (a loss particle size distribution measuring apparatus (HELOS & RODOS (air flow type drying module) manufactured by SYMPATEC).
 合金粉の組成について、Fe、SiおよびPを分析した。 Fe, Si and P were analyzed for the composition of the alloy powder.
 具体的には、Feは、滴定法により、JIS M8263(クロム鉱石-鉄定量方法)に準拠して、以下のように分析を行った。まず、試料(合金粉)0.1gに硫酸と塩酸を加えて加熱分解し、硫酸の白煙が発生するまで加熱した。放冷後、水と塩酸を加えて加温して可溶性塩類を溶解させた。そして、得られた試料溶液に温水を加えて液量を120~130mL程度にし、液温を90~95℃程度にしてからインジゴカルミン溶液を数滴加え、塩化チタン(III)溶液を試料溶液の色が黄緑から青、次いで無色透明になるまで加えた。引き続き試料溶液が青色の状態を5秒間保持するまで二クロム酸カリウム溶液を加えた。この試料溶液中の鉄(II)を、自動滴定装置を用いて二クロム酸カリウム標準溶液で滴定し、Fe量を求めた。 Specifically, Fe was analyzed by the titration method as follows in accordance with JIS M 8263 (chrome ore-iron determination method). First, sulfuric acid and hydrochloric acid were added to 0.1 g of a sample (alloy powder), the mixture was thermally decomposed, and heated until white smoke of sulfuric acid was generated. After cooling, water and hydrochloric acid were added and the mixture was heated to dissolve soluble salts. Then, warm water is added to the obtained sample solution to make the solution volume about 120 to 130 mL, the solution temperature is made about 90 to 95 ° C., several drops of indigo carmine solution are added, and the titanium (III) chloride solution is used as a sample solution. The color was added from yellowish green to blue then to colorless clear. Subsequently, potassium dichromate solution was added until the sample solution remained blue for 5 seconds. The iron (II) in this sample solution was titrated with a potassium dichromate standard solution using an automatic titrator to determine the amount of Fe.
 Siは、重量法により、以下のように分析を行った。まず、試料(合金粉)に塩酸と過塩素酸を加えて加熱分解し、過塩素酸の白煙が発生するまで加熱した。引き続き加熱して乾固させた。放冷後、水と塩酸を加えて加温して可溶性塩類を溶解させた。続いて、不溶解残渣を、ろ紙を用いてろ過し、残渣をろ紙ごとるつぼに移し、乾燥、灰化させた。放冷後、るつぼごと秤量した。少量の硫酸とフッ化水素酸を加え、加熱して乾固させた後、強熱した。放冷後、るつぼごと秤量した。そして、1回目の秤量値から2回目の秤量値を差し引き、重量差をSiOとして計算してSi量を求めた。 Si was analyzed by gravimetric method as follows. First, hydrochloric acid and perchloric acid were added to a sample (alloy powder), the mixture was heated and decomposed, and heated until white smoke of perchloric acid was generated. It was subsequently heated to dryness. After cooling, water and hydrochloric acid were added and the mixture was heated to dissolve soluble salts. Subsequently, the undissolved residue was filtered using filter paper, and the residue was transferred to a crucible with the filter paper, dried and incinerated. After cooling, the whole crucible was weighed. A small amount of sulfuric acid and hydrofluoric acid were added, heated to dryness and ignited. After cooling, the whole crucible was weighed. Then, the second measurement value was subtracted from the first measurement value, and the weight difference was calculated as SiO 2 to obtain the Si amount.
 Pは、誘導結合プラズマ(ICP)発光分析装置(株式会社日立ハイテクサイエンス製のSPS3520V)によって分析した。 P was analyzed by inductively coupled plasma (ICP) emission analyzer (SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.).
[磁気特性(透磁率、磁気損失、飽和磁化及び保磁力)の測定](磁気特性の測定1)
 合金粉とビスフェノールF型エポキシ樹脂(株式会社テスク製;一液性エポキシ樹脂B-1106)を90:10の質量割合で秤量し、真空撹拌・脱泡ミキサー(EME社製;V-mini300)を用いてこれらを混練し、供試粉末がエポキシ樹脂中に分散したペーストとした。このペーストをホットプレート上で60℃、2h乾燥させて合金粉と樹脂の複合体としたのち、粉末状に解粒して、複合体粉末とした。この複合体粉末0.2gをドーナッツ状の容器内に入れて、ハンドプレス機により9800N(1Ton)の荷重をかけることにより、外径7mm、内径3mmのトロイダル形状の成形体を得た。この成形体について、RFインピーダンス/マテリアル・アナライザ(アジレント・テクノロジー社製;E4991A)とテストフィクスチャ(アジレント・テクノロジー社製;16454A)を用い、10MHz及び100MHzにおける複素比透磁率の実数部μ’および虚数部μ”を測定し、複素比透磁率の損失係数tanδ=μ”/μ’を求めた。
[Measurement of magnetic properties (permeability, magnetic loss, saturation magnetization and coercivity)] (Measurement of magnetic properties 1)
Measure alloy powder and bisphenol F-type epoxy resin (made by Tesk; one-component epoxy resin B-1106) in a mass ratio of 90:10, and use a vacuum stirring / defoaming mixer (manufactured by EME; V-mini 300). These were kneaded using these, and it was set as the paste which the test powder disperse | distributed in the epoxy resin. The paste was dried on a hot plate at 60 ° C. for 2 hours to form a composite of an alloy powder and a resin, which was then pulverized into a powder to obtain a composite powder. 0.2 g of this composite powder was placed in a donut-shaped container, and a load of 9800 N (1 Ton) was applied by a hand press to obtain a toroidal shaped molded article having an outer diameter of 7 mm and an inner diameter of 3 mm. For this molded body, using a RF impedance / material analyzer (manufactured by Agilent Technologies; E4991A) and a test fixture (manufactured by Agilent Technologies; 16454A), the real part μ 'of complex relative permeability at 10 MHz and 100 MHz The imaginary part μ ′ ′ was measured, and the loss coefficient tan δ = μ ′ ′ / μ ′ of the complex relative permeability was determined.
 また、高感度型振動試料型磁力計(東英工業株式会社製:VSM-P7-15型)を用い、印加磁界(10kOe)、M測定レンジ(50emu)、ステップビット100bit、時定数0.03sec、ウエイトタイム0.1secで合金粉の磁気特性を測定した。B-H曲線により、飽和磁化σs及び保磁力Hcを求めた。なお、処理定数はメーカー指定に従った。具体的には下記の通りである。 Also, using a high sensitivity vibration sample type magnetometer (manufactured by Toei Kogyo Co., Ltd .: VSM-P7-15 type), an applied magnetic field (10 kOe), M measurement range (50 emu), step bit 100 bit, time constant 0.03 sec The magnetic properties of the alloy powder were measured at a weight time of 0.1 sec. The saturation magnetization σs and the coercive force Hc were determined from the BH curve. In addition, the processing constant followed the maker specification. Specifically, it is as follows.
   交点検出:最小二乗法 M平均点数 0  H平均点数 0
   Ms Width:8  Mr Width:8  Hc Width:8  SFD Width:8  S.Star Width:8
      サンプリング時間(秒):90
      2点補正 P1(Oe):1000
      2点補正 P2(Oe):4500
Intersection detection: Least squares method M average score 0 H average score 0
Ms Width: 8 Mr Width: 8 Hc Width: 8 SFD Width: 8 S. Star Width: 8
Sampling time (seconds): 90
Two-point correction P1 (Oe): 1000
Two-point correction P2 (Oe): 4500
[比較例2~6及び実施例1~8]
 水アトマイズにおける雰囲気、水アトマイズに使用する高圧水のpH及び電位、並びに徐酸化時の温度を下記表1に示すように変更した以外は、比較例1と同様にして比較例2~6の合金粉を製造した。なお、比較例2においては風力分級条件を変更した。さらに、水アトマイズに使用する高圧水のpH及び電位、溶湯原料の仕込量、及び水洗した固形物の乾燥条件(雰囲気、温度及び時間)を下記表1に示すように変更し(真空雰囲気は大気圧に対して-0.095MPa以下である)、さらに徐酸化を行わなかったこと以外は、比較例1と同様にして実施例1~8の合金粉を製造した。なお、実施例4においては風力分級条件を変更し、実施例5~8においては鉄原料として純鉄(純度:99質量%以上)を使用した。また表1において実施例1~8については、徐酸化温度の列を「なし」と表記している。さらに、実施例6及び7で使用したPは、FeP合金として(Pとしての添加量が表1記載の通りになるように)タンディッシュ炉に仕込んだ。
[Comparative Examples 2 to 6 and Examples 1 to 8]
Alloys of Comparative Examples 2 to 6 in the same manner as Comparative Example 1 except that the atmosphere in water atomization, the pH and potential of high pressure water used for water atomization, and the temperature at the time of gradual oxidation were changed as shown in Table 1 below. Produced flour. In Comparative Example 2, the wind power classification conditions were changed. Furthermore, the pH and potential of high-pressure water used for water atomization, the charge amount of the molten metal material, and the drying conditions (atmosphere, temperature and time) of the solid washed with water were changed as shown in Table 1 below (the vacuum atmosphere was large) The alloy powders of Examples 1 to 8 were produced in the same manner as in Comparative Example 1 except that gradual oxidation was not further performed, and the pressure was -0.095 MPa or less. In Example 4, the air classification condition was changed, and in Examples 5 to 8, pure iron (purity: 99% by mass or more) was used as an iron raw material. Further, in Table 1, for Examples 1 to 8, the row of the gradual oxidation temperature is described as "none". Furthermore, P used in Examples 6 and 7 was charged in a tundish furnace as an FeP alloy (as the addition amount as P becomes as described in Table 1).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例2~6及び実施例1~8の合金粉について、比較例1と同様に、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布および組成を求めた。比較例1の結果とあわせて、下記表2に結果を示す。 The BET specific surface area, tap density, oxygen content, carbon content, particle size distribution, and composition of the alloy powders of Comparative Examples 2 to 6 and Examples 1 to 8 were determined in the same manner as in Comparative Example 1. The results are shown in Table 2 below together with the results of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 比較例2~6及び実施例1~8の合金粉について、比較例1と同様に、磁気特性を求めた。その結果を以下の表3に示す。 The magnetic properties of the alloy powders of Comparative Examples 2 to 6 and Examples 1 to 8 were determined in the same manner as in Comparative Example 1. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 今回の磁気特性の測定では、測定周波数10MHzにおいて複素比透磁率の虚数部μ”の測定においてノイズが生じ、数値が負になるものがあった。後述の磁気特性の測定2による測定結果においても同様である。 In the measurement of the magnetic characteristics this time, noise was generated in the measurement of the imaginary part μ ′ ′ of the complex relative permeability at a measurement frequency of 10 MHz, and the numerical value was negative. It is similar.
 比較例1と実施例1を比較することで、合金粉の乾燥温度を40℃に低下させることで(現実的な乾燥速度を確保するため、真空下で行った)、得られる合金粉の酸素の含有量及びD50×[O]が低くなることがわかる。その結果、比透磁率(μ’)が測定周波数10MHz及び100MHzの場合共に8.90を超えるまでに上昇している。 By comparing the comparative example 1 with the example 1, it is possible to reduce the drying temperature of the alloy powder to 40 ° C. (in order to ensure a realistic drying rate, it was carried out under vacuum), the oxygen of the alloy powder obtained It can be seen that the content of D50 and D50 × [O] become low. As a result, the relative permeability ([mu] ') rises to above 8.90 at both the measurement frequencies of 10 MHz and 100 MHz.
 また、比較例4と5を比較することで、水アトマイズにおける雰囲気を大気雰囲気から窒素雰囲気とすることで、得られる合金粉の酸素含有量を減らすことができることがわかる。さらに比較例1と6や比較例3と4を比較することで、水アトマイズに使用する高圧水のpHを5.8(純水)から10.3(弱アルカリ性領域)にすることで、得られる合金粉の酸素含有量を減らすことができることがわかる。実施例1~8は、このような好ましい水アトマイズ条件を採用したものである。 Moreover, it turns out that the oxygen content of the obtained alloy powder can be reduced by making the atmosphere in water atomization into a nitrogen atmosphere from comparison with the comparative examples 4 and 5 from the air | atmosphere atmosphere. Furthermore, by comparing Comparative Examples 1 and 6 and Comparative Examples 3 and 4, it is obtained by changing the pH of high pressure water used for water atomization from 5.8 (pure water) to 10.3 (weak alkaline region). It can be seen that the oxygen content of the alloy powder can be reduced. Examples 1 to 8 adopt such preferable water atomization conditions.
 さらに、実施例1の条件で、水アトマイズに使用する高圧水のpHを12.0という強アルカリ性領域にすることで、得られる合金粉の酸素含有量がさらに低下し、比透磁率(μ’)が測定周波数10MHz及び100MHzの場合共に8.90を超える良好な結果となっている(実施例2~8)。 Furthermore, by setting the pH of high pressure water used for water atomization to a strong alkaline region of 12.0 under the conditions of Example 1, the oxygen content of the obtained alloy powder is further reduced, and the relative permeability (μ ′ When the measurement frequency is 10 MHz and 100 MHz, the result is better than 8.90 (Examples 2 to 8).
 また、P(リン)を添加した場合(実施例6、7)やSi量を減らした場合(実施例8)であっても、実施例1~8の条件で水アトマイズ及び乾燥等することで、酸素含有量が低く比透磁率(μ’)が測定周波数10MHz及び100MHzの場合共に8.90を超える軟磁性粉末を得ることができた。
 また、Si量を減らした場合(実施例8)には、より高い飽和磁化を達成することができた。
Further, even when P (phosphorus) is added (Examples 6 and 7) or the amount of Si is reduced (Example 8), water atomization and drying are performed under the conditions of Examples 1 to 8 A soft magnetic powder having a low oxygen content and a relative magnetic permeability (μ ′) of more than 8.90 at measurement frequencies of 10 MHz and 100 MHz could be obtained.
In addition, when the amount of Si was reduced (Example 8), higher saturation magnetization could be achieved.
 なお実施例と比較例について、合金粉の酸素の含有量とD50との積(D50×[O])に対する比透磁率(μ’)の関係を図1(測定周波数:10MHz)及び図2(測定周波数:100MHz)に示す。 The relationship between the relative permeability (μ ′) and the product (D50 × [O]) of the oxygen content of the alloy powder and D50 is shown in FIG. 1 (measurement frequency: 10 MHz) and FIG. Measurement frequency: 100 MHz).
 D50×[O]と比透磁率との間に、おおよそ負の相関がみてとれる。なお、D50×[O]が小さいほど比透磁率が大きいという結果になっていない場合があるが(例えば実施例3及び4)、これは、磁気特性の測定において合金粉を含む複合体粉末から、これに荷重をかけて成形体を得るが、成形体において複合体粉末が密に充填されているほど透磁率は高くなり、この充填具合には合金粉の粒度分布が影響するためと考えられる。これは後述の磁気特性の測定2による測定結果においても同様である。 An approximately negative correlation can be seen between D50 × [O] and the relative permeability. In some cases, the smaller the D50 × [O], the larger the relative permeability may not be obtained (for example, Examples 3 and 4). The load is applied to this to obtain a compact, but the more densely the composite powder is packed in the compact, the higher the magnetic permeability, which is considered to be due to the influence of the particle size distribution of the alloy powder on this filling degree. . The same applies to the measurement results of measurement 2 of the magnetic characteristics described later.
[実施例9~19]
 溶湯原料の仕込割合、水アトマイズにおける雰囲気、水アトマイズに使用する高圧水のpH及び電位、乾燥条件並びに徐酸化の有無を下記表4に示すように設定し、風力分級の条件を変更した以外は、比較例1と同様にして実施例9~19の合金粉を製造した。なお、実施例14及び15で使用したPは、FeP合金として(Pとしての添加量が表1記載の通りになるように)タンディッシュ炉に仕込んだ。
[Examples 9 to 19]
The charge ratio of molten metal, atmosphere in water atomization, pH and potential of high pressure water used for water atomization, drying condition and presence or absence of gradual oxidation are set as shown in Table 4 below, and the conditions of air classification are changed. In the same manner as in Comparative Example 1, alloy powders of Examples 9 to 19 were produced. In addition, P used in Examples 14 and 15 was charged in a tundish furnace as an FeP alloy (as the addition amount as P becomes as described in Table 1).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例9~19の合金粉について、比較例1と同様に、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布および組成を求めた。下記表5に結果を示す。 The BET specific surface area, the tap density, the oxygen content, the carbon content, the particle size distribution and the composition of the alloy powders of Examples 9 to 19 were determined in the same manner as in Comparative Example 1. The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[磁気特性(透磁率、磁気損失、飽和磁化及び保磁力)の測定](磁気特性の測定2) 実施例9~19の合金粉について、以下のようにして磁気特性の測定を実施した。合金粉とビスフェノールF型エポキシ樹脂(株式会社テスク製;一液性エポキシ樹脂B-1106)を97:3の質量割合で秤量し、真空撹拌・脱泡ミキサー(EME社製;V-mini300)を用いてこれらを混練し、供試粉末がエポキシ樹脂中に分散したペーストとした。このペーストを棚型乾燥機を使用して窒素雰囲気中で60℃、2h乾燥させて合金粉と樹脂の複合体としたのち、粉末状に解粒して、複合体粉末とした。この複合体粉末を使用して、磁気特性の測定1の場合と同様の方法で、10MHz及び100MHzにおける複素比透磁率の実数部μ’および虚数部μ”を測定し、複素比透磁率の損失係数tanδ=μ”/μ’を求めた。また、磁気特性の測定1の場合と同様の方法で、合金粉の飽和磁化σs及び保磁力Hcを求めた。比較例2、実施例4及び8の合金粉についても、同様の方法で10MHz及び100MHzにおける複素比透磁率の実数部μ’および虚数部μ”を測定した。以上の結果を以下の表6に示す。 [Measurement of Magnetic Properties (Permeability, Magnetic Loss, Saturation Magnetization and Coercivity)] (Measurement of Magnetic Properties 2) The magnetic properties of the alloy powders of Examples 9 to 19 were measured as follows. Measure alloy powder and bisphenol F-type epoxy resin (made by Tesk; one-component epoxy resin B-1106) in a mass ratio of 97: 3, and use a vacuum stirring / defoaming mixer (manufactured by EME; V-mini 300). These were kneaded using these, and it was set as the paste which the test powder disperse | distributed in the epoxy resin. The paste was dried in a nitrogen atmosphere at 60 ° C. for 2 hours using a tray dryer to obtain a composite of alloy powder and resin, and then pulverized into a powder to obtain a composite powder. The complex powder is used to measure the real part μ ′ and the imaginary part μ ′ ′ of the complex relative permeability at 10 MHz and 100 MHz in the same manner as in the case of the measurement 1 of the magnetic characteristics, and the loss of the complex relative permeability The coefficient tan δ = μ ′ ′ / μ ′ was determined. Further, the saturation magnetization σs and the coercive force Hc of the alloy powder were determined in the same manner as in the case of the measurement 1 of the magnetic characteristics. Also in the alloy powders of Comparative Example 2 and Examples 4 and 8, the real part μ ′ and the imaginary part μ ′ ′ of the complex relative magnetic permeability at 10 MHz and 100 MHz were measured by the same method. Show.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表6に示すように、実施例8,10、16及び17では、Si量を2.0~3.0質量%程度にすることで、Si量を6.0質量%前後とした実施例4,9、14及び15と比べて透磁率を向上させることができ、10MHzでの比透磁率μ’および100MHzでの比透磁率μ’をともに21.00以上にできることが確認された。 As shown in Table 6, in Examples 8, 10, 16 and 17, by setting the amount of Si to about 2.0 to 3.0 mass%, the amount of Si is set to about 6.0 mass% or so. It was confirmed that the magnetic permeability can be improved as compared with 1, 9, 14 and 15, and both the relative magnetic permeability μ ′ at 10 MHz and the relative magnetic permeability μ ′ at 100 MHz can be 21.00 or more.
 また、実施例11~13及び18,19では、Si量を0.3質量%程度として、実施例8、10、16や17よりもSi量をさらに減らすことで、ある程度の高い透磁率を維持しながらも、205emu/gを超える、実施例8、10、16や17よりもさらに高い飽和磁化を得られることが確認された。 Further, in Examples 11 to 13 and 18 and 19, the amount of Si is set to about 0.3% by mass, and the amount of Si is further reduced than in Examples 8, 10, 16 and 17, thereby maintaining a high magnetic permeability to some extent. However, it was confirmed that saturation magnetization higher than 205 emu / g and higher than those of Examples 8, 10, 16 and 17 could be obtained.
 以上、本発明によれば、軟磁性粉末を80℃以下で乾燥させることにより、軟磁性粉末をD50×[O]≦3.0となるように構成することができ、粒子径D50を小さくした場合であっても酸素含有量を少なくすることができる。このような軟磁性粉末によれば、圧粉磁心に形成したときに、高周波側で高い透磁率を実現するとともに、渦電流損失を抑制してコアロスを低減することができる。 As described above, according to the present invention, by drying the soft magnetic powder at 80 ° C. or less, the soft magnetic powder can be configured to have D50 × [O] ≦ 3.0, and the particle diameter D50 is reduced. Even in this case, the oxygen content can be reduced. According to such soft magnetic powder, when formed into a dust core, high permeability can be realized on the high frequency side, and eddy current loss can be suppressed to reduce core loss.
 本発明の軟磁性粉末は粒子径が小さくとも高い透磁率を達成することができるので、圧粉磁心、電磁波シールド、電磁波吸収体、磁気シールド、積層インダクタなどの用途に好適に利用することができる。
 
The soft magnetic powder of the present invention can achieve high magnetic permeability even with a small particle diameter, so it can be suitably used for applications such as dust cores, electromagnetic wave shields, electromagnetic wave absorbers, magnetic shields, and laminated inductors. .

Claims (19)

  1.  Siを含むFe合金で構成される軟磁性粉末であって、
     前記軟磁性粉末は、Siを0.1質量%~15質量%含み、
     前記軟磁性粉末の、レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径[μm]をD50、酸素の含有量[質量%]を[O]としたとき、これらの積(D50×[O])が3.0[μm・質量%]以下である、
    軟磁性粉末。
    Soft magnetic powder composed of Fe alloy containing Si,
    The soft magnetic powder contains 0.1% by mass to 15% by mass of Si,
    The product of these soft magnetic powders, assuming that the cumulative 50% particle size [μm] of the volume basis measured by a laser diffraction type particle size distribution analyzer is D50 and the oxygen content [mass%] is [O] D50 × [O]) is 3.0 [μm · mass%] or less,
    Soft magnetic powder.
  2.  前記D50が0.5μm~10μmである、請求項1に記載の軟磁性粉末。 The soft magnetic powder according to claim 1, wherein the D50 is 0.5 μm to 10 μm.
  3.  前記[O]が0.75質量%以下である、請求項1又は2に記載の軟磁性粉末。 The soft magnetic powder according to claim 1, wherein the [O] is 0.75% by mass or less.
  4.  前記D50及び[O]の積(D50×[O])が0.5[μm・質量%]~2.6[μm・質量%]である、請求項1~3のいずれか1項に記載の軟磁性粉末。 The product (D50 × [O]) of D50 and [O] is 0.5 [μm · mass%] to 2.6 [μm · mass%] according to any one of claims 1 to 3. Soft magnetic powder.
  5.  Feを84質量%~99.7質量%含む、請求項1~4のいずれか1項に記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 4, which contains 84% by mass to 99.7% by mass of Fe.
  6.  Siを2.0質量%~3.5質量%含む、請求項1~5のいずれか1項に記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 5, which contains 2.0% by mass to 3.5% by mass of Si.
  7.  Siを0.2質量%~0.5質量%含む、請求項1~5のいずれか1項に記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 5, which contains 0.2% by mass to 0.5% by mass of Si.
  8.  前記[O]が0.10質量%~0.60質量%である、請求項1~7のいずれか1項に記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 7, wherein the [O] is 0.10% by mass to 0.60% by mass.
  9.  Fe粉末又はFeを含む合金粉末の製造方法であって、
     Feを含む溶湯を調製する溶湯調製工程と、
     前記溶湯を落下させながら、これに水を吹き付けて粉砕・凝固させることで、Fe粉末又はFeを含む合金粉末を形成し、このFe粉末又は合金粉末と水とを含むスラリーを得るアトマイズ工程と、
     前記スラリーを固液分離し、前記Fe粉末又は合金粉末を回収する固液分離工程と、
     前記固液分離工程で得られたFe粉末又は合金粉末を80℃以下で乾燥させる乾燥工程と
    を有する、Fe粉末又はFeを含む合金粉末の製造方法。
    A method for producing Fe powder or alloy powder containing Fe,
    A melt preparation step of preparing a melt containing Fe;
    An atomizing step of forming a Fe powder or an alloy powder containing Fe by spraying water onto the molten metal while dropping the molten metal, thereby forming an Fe powder or an alloy powder containing Fe, and obtaining a slurry containing the Fe powder or the alloy powder and water;
    Solid-liquid separation step of solid-liquid separating said slurry and recovering said Fe powder or alloy powder;
    And drying the Fe powder or alloy powder obtained in the solid-liquid separation step at 80 ° C. or less.
  10.  前記乾燥工程では、60℃以下で乾燥を行う、請求項9に記載のFe粉末又はFeを含む合金粉末の製造方法。 The method for producing Fe powder or Fe-containing alloy powder according to claim 9, wherein drying is performed at 60 ° C or less in the drying step.
  11.  前記乾燥工程を減圧環境で行う、請求項9又は10に記載のFe粉末又はFeを含む合金粉末の製造方法。 The method for producing Fe powder or Fe-containing alloy powder according to claim 9 or 10, wherein the drying step is performed in a reduced pressure environment.
  12.  前記乾燥工程を真空環境で行う、請求項9~11のいずれか1項に記載のFe粉末又はFeを含む合金粉末の製造方法。 The method for producing Fe powder or Fe-containing alloy powder according to any one of claims 9 to 11, wherein the drying step is performed in a vacuum environment.
  13.  前記アトマイズ工程にて使用される水のpHが9~13である、請求項9~12のいずれか1項に記載のFe粉末又はFeを含む合金粉末の製造方法。 The method for producing Fe powder or Fe-containing alloy powder according to any one of claims 9 to 12, wherein the pH of water used in the atomizing step is 9 to 13.
  14.  前記アトマイズ工程にて使用される水のpHが11~13である、請求項9~12のいずれか1項に記載のFe粉末又はFeを含む合金粉末の製造方法。 The method for producing Fe powder or Fe-containing alloy powder according to any one of claims 9 to 12, wherein the pH of water used in the atomizing step is 11 to 13.
  15.  前記アトマイズ工程にて使用される水の電位が-0.4V~0.4Vである、請求項9~14のいずれか1項に記載のFe粉末又はFeを含む合金粉末の製造方法。 The method for producing Fe powder or Fe-containing alloy powder according to any one of claims 9 to 14, wherein the potential of water used in the atomizing step is -0.4V to 0.4V.
  16.  前記溶湯がFeおよび0.1質量%~15質量%のSiを含む、請求項9~15のいずれか1項に記載のFeを含む合金粉末の製造方法。 The method for producing an Fe-containing alloy powder according to any one of claims 9 to 15, wherein the molten metal contains Fe and 0.1% by mass to 15% by mass of Si.
  17.  前記溶湯がFeを84質量%~99.7質量%含む、請求項16に記載のFeを含む合金粉末の製造方法。 The method for producing an Fe-containing alloy powder according to claim 16, wherein the molten metal contains 84% by mass to 99.7% by mass of Fe.
  18.  請求項1~8のいずれかに記載の軟磁性粉末とバインダとを含む、軟磁性材料。 A soft magnetic material comprising the soft magnetic powder according to any one of claims 1 to 8 and a binder.
  19.  請求項18に記載の軟磁性材料を所定の形状に成型し、得られた成型物を加熱して圧粉磁心を得る、圧粉磁心の製造方法。 
     
    A method of manufacturing a dust core, wherein the soft magnetic material according to claim 18 is molded into a predetermined shape, and the obtained molded product is heated to obtain a dust core.
PCT/JP2018/032625 2017-09-04 2018-09-03 Soft magnetic powder, method for producing fe powder or alloy powder containing fe, soft magnetic material, and method for producing dust core WO2019045100A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/644,245 US20210046549A1 (en) 2017-09-04 2018-09-03 SOFT MAGNETIC POWDER, METHOD FOR PRODUCING Fe POWDER OR Fe-CONTAINING ALLOY POWDER, SOFT MAGNETIC MATERIAL, AND METHOD FOR PRODUCING POWDER MAGNETIC CORE
CN201880054603.6A CN110997184B (en) 2017-09-04 2018-09-03 Soft magnetic powder, method for producing Fe powder or Fe-containing alloy powder, soft magnetic material, and method for producing dust core
KR1020207003968A KR102428560B1 (en) 2017-09-04 2018-09-03 Method for producing soft magnetic powder, Fe powder or alloy powder containing Fe, soft magnetic material, and method for producing powder core

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017169544 2017-09-04
JP2017-169544 2017-09-04
JP2018013786A JP6490259B2 (en) 2017-09-04 2018-01-30 Method for producing Fe powder or alloy powder containing Fe
JP2018-013786 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019045100A1 true WO2019045100A1 (en) 2019-03-07

Family

ID=65525573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032625 WO2019045100A1 (en) 2017-09-04 2018-09-03 Soft magnetic powder, method for producing fe powder or alloy powder containing fe, soft magnetic material, and method for producing dust core

Country Status (1)

Country Link
WO (1) WO2019045100A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242220A (en) * 2019-07-18 2021-01-19 株式会社村田制作所 Nanocrystalline soft magnetic alloy material and magnetic component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197394A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Magnetic powder for magnetic fluid, magnetic fluid and damper
JP2014120699A (en) * 2012-12-19 2014-06-30 Alps Green Devices Co Ltd Fe-BASED SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC POWDER USING Fe-BASED SOFT MAGNETIC POWDER AND POWDER MAGNETIC CORE USING COMPOSITE MAGNETIC POWDER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197394A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Magnetic powder for magnetic fluid, magnetic fluid and damper
JP2014120699A (en) * 2012-12-19 2014-06-30 Alps Green Devices Co Ltd Fe-BASED SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC POWDER USING Fe-BASED SOFT MAGNETIC POWDER AND POWDER MAGNETIC CORE USING COMPOSITE MAGNETIC POWDER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242220A (en) * 2019-07-18 2021-01-19 株式会社村田制作所 Nanocrystalline soft magnetic alloy material and magnetic component

Similar Documents

Publication Publication Date Title
JP6712655B2 (en) Soft magnetic powder, soft magnetic material, and method for manufacturing dust core
JP6851448B2 (en) Heat treatment method for soft magnetic powder
EP3689825A1 (en) Mn-zn ferrite particles, resin molded body, soft magnetic mixed powder, and magnetic core
JP2018186212A (en) Soft magnetic powder, method for manufacturing the same, soft magnetic material, and method for manufacturing powder-compact magnetic core
JP2018178254A (en) Fe-Ni-BASED ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
WO2019045100A1 (en) Soft magnetic powder, method for producing fe powder or alloy powder containing fe, soft magnetic material, and method for producing dust core
JP2019218611A (en) Method for producing phosphoric acid-surface treated soft magnetic powder, and phosphoric acid-surface treated soft magnetic powder
EP4044203A1 (en) Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
JP2022111641A (en) Amorphous alloy soft magnetic powder, powder magnetic core, magnetic element and electronic apparatus
JP7221100B2 (en) Soft magnetic powder, soft magnetic material and dust core
WO2020090849A1 (en) Soft magnetic powder, soft magnetic powder heat treatment method, soft magnetic material, dust core, and dust core manufacturing method
JP2019090103A (en) Soft magnetic metal powder, production method thereof and soft magnetic metal dust core
US20240186038A1 (en) Soft magnetic powder, metal powder, dust core, magnetic element, and electronic device
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
US10607757B1 (en) Production method of soft magnetic metal powder
WO2021241466A1 (en) Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, powder magnetic core, and method for producing powder magnetic core
JP2022068108A (en) Alloy powder, manufacturing method for alloy powder, soft magnetic material, dust core and manufacturing method for dust core
JP2024062727A (en) Soft magnetic powders, metal powders, dust cores, magnetic elements and electronic devices
JP2023133693A (en) Soft-magnetic powder, magnetic powder core, magnetic element and electronic appliance
JP2022175110A (en) Soft magnetic powder, powder magnetic core, magnetic element, electronic device, and mobile body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850966

Country of ref document: EP

Kind code of ref document: A1