WO2019044563A1 - Glass - Google Patents

Glass Download PDF

Info

Publication number
WO2019044563A1
WO2019044563A1 PCT/JP2018/030691 JP2018030691W WO2019044563A1 WO 2019044563 A1 WO2019044563 A1 WO 2019044563A1 JP 2018030691 W JP2018030691 W JP 2018030691W WO 2019044563 A1 WO2019044563 A1 WO 2019044563A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
chemical strengthening
strengthening layer
component
Prior art date
Application number
PCT/JP2018/030691
Other languages
French (fr)
Japanese (ja)
Inventor
貴尋 坂上
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019539374A priority Critical patent/JP7092135B2/en
Priority to CN201880055878.1A priority patent/CN111051262B/en
Publication of WO2019044563A1 publication Critical patent/WO2019044563A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a glass in which the variation in mechanical strength is suppressed.
  • a solid-state image sensor module using CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) used for digital still cameras etc. uses near-infrared cut filter glass using phosphate glass or fluorophosphate glass It is done.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • Patent Document 1 a method of chamfering the end face of the glass has been proposed.
  • a bending stress acts on the glass, a flaw on the glass surface becomes a starting point of the crack, and therefore the strength of the glass is enhanced by removing the flaw.
  • Patent Document 2 a method of treating a crack on the end face of a glass plate to a predetermined length or less by etching.
  • Patent Document 3 a method of cutting glass using an internally modified laser has been proposed (see, for example, Patent Document 3).
  • the in-plane strength of the glass can be measured by the breaking load.
  • the breaking load of the glass needs to have a high average value, it is also considered important that the variation of the breaking load is small. That is, when the variation in the breaking load is large, there is a possibility that the glass having a low breaking load may be mixed although the percentage is very small, and there is a risk of the glass breaking when using the device.
  • the minimum value of the breaking load can be estimated to some extent, so that it is possible to prevent the glass having an excessively low breaking load from being used for the device.
  • the present invention has been made under such circumstances, and it is an object of the present invention to provide a glass having a small variation in mechanical strength.
  • the glass of the present invention is a glass in which at least a part of the surface layer is composed of a chemical strengthening layer, and in the glass, the glass interior excluding the chemical strengthening layer is any of P, Al, Li and Na. It is characterized in that it contains an alkali metal consisting of one or both of them.
  • FIG. 1 is a cross-sectional view showing an embodiment of the glass of the present invention.
  • the surface layer including the main surfaces on both sides thereof is constituted by the chemical strengthening layer 2, and the portion excluding the chemical strengthening layer 2 is the inside 1 of the glass.
  • the structure of the chemical strengthening layer in the glass of this invention is not limited to this.
  • at least a part of the surface layer may be constituted of a chemical strengthening layer.
  • the glass interior 1 of the glass 10 contains, as essential components, each component of P (phosphorus), Al (aluminum) and an alkali metal (however, consisting of one or both of Li (lithium) and Na (sodium)). contains.
  • an alkali metal contained in any one or both of Li and Na contained in the glass interior 1 is indicated by “R” as necessary.
  • the surface layer including the main surfaces on both sides of the precursor having the same size as the glass 10 and the entire composition having the same composition as the composition 1 of the glass 10 is converted into the chemical strengthening layer 2 by ion exchange.
  • the configuration is such that a portion maintaining the composition of the precursor that has not been ion-exchanged exists as the glass interior 1 inside the surface layer. That is, in the glass of the present invention, both the chemical strengthening layer and the inside of the crow are made of glass, but the glass compositions of the two are different.
  • the precursor of the glass before ion exchange which has the same composition as the composition inside the glass as a whole, is simply referred to as "glass precursor".
  • Ion exchange specifically refers to the fact that the R component in the glass precursor is ion-exchanged to another monovalent alkali metal ion having a larger ionic radius than this R component.
  • a glass precursor of Li + ionic radius: 60 pm
  • Na + ionic radius: 95pm
  • a glass precursor Na + is K + (ionic radius: 133pm) in ion-exchanged
  • Na + ion-exchanged with Li + in the glass precursor and diffused to the glass may be ion-exchanged to K + .
  • the chemical strengthening layer has a glass composition in which the content of either Na + or K + or both is higher than the glass composition in the glass.
  • the glass of the present invention there is no difference in the composition other than the alkali metal between the glass interior and the chemical strengthening layer.
  • components common to the glass interior and the chemical strengthening layer are described as components of the glass of the present invention.
  • the glass of the present invention contains P and Al.
  • P is a network forming component and a main component necessary for vitrification.
  • Al is a modifying component of glass and is a component that suppresses crystallization and phase separation during glass production.
  • the glass of the present invention contains R inside the glass. That is, in the present invention, the glass precursor which becomes the glass of the present invention by ion exchange of the surface layer contains R for the ion exchange, and the obtained glass of the present invention contains R inside the glass.
  • the present inventor has found that when the chemical strengthening layer 2 is present on at least a part of the surface layer of the glass 10, the variation in mechanical strength of the glass 10 is reduced. The reason is considered to be due to the following mechanism.
  • the factor that the mechanical strength of the glass varies is a flaw present on the glass surface.
  • stress concentration occurs at the tip of the flaw and breakage occurs. Since the flaws on the glass surface are generated by various external factors such as the production process and handling during use, the depth of the flaws is not uniform. In particular, deep flaws are prone to stress concentration, and even with a weak tensile stress, the glass breaks, resulting in variations in the mechanical strength of the glass.
  • the glass of the present invention in the surface layer of the glass precursor, instead of the R component originally present, ions having a larger ion radius are diffused sufficiently deeply to make the surface layer a chemically strengthened layer.
  • the glass structure in the vicinity of the tip of the deep flaw expands, and the stress generated at the tip of the flaw when the tensile stress acts on the glass can be reduced.
  • the mechanical strength does not decrease even if there is a deep scratch, and the variation in mechanical strength is reduced.
  • the chemical strengthening layer 2 may be provided on the entire surface of the glass 10 or may be provided on only a part of the surface. As shown in FIG. 1, when the glass 10 has a plate shape, it is preferable to provide the chemical strengthening layer 2 on the surface layer including the main surface. When a bending stress acts on the plate-shaped glass, the amount of deformation of the main surface is large.
  • the chemical strengthening layer 2 preferably has a thickness of 1 to 100 ⁇ m from the surface of the glass 10 in the depth direction. If the thickness of the chemical strengthening layer 2 is less than 1 ⁇ m, the effect of reducing the variation in mechanical strength of the glass 10 can not be sufficiently obtained. When the thickness of the chemical strengthening layer 2 is more than 100 ⁇ m, the process for forming the chemical strengthening layer 2 takes a long time.
  • the thickness of the chemical strengthening layer 2 is more preferably 2 to 50 ⁇ m, still more preferably 3 to 30 ⁇ m, from the viewpoint of suppressing cracking due to tensile stress generated inside the glass.
  • the chemical strengthening layer 2 of the glass 10 has a content of either Na + or K + or both more than that of the glass interior 1 using an electron probe micro analyzer. It can be measured as a part.
  • the chemical strengthening layer 2 may have a compressive stress. If there is a chemical strengthening layer 2 having a compressive stress on the surface of the glass 10, the glass 10 having high mechanical strength in order to suppress the extension of cracks present on the surface of the glass 10 when a bending stress is applied to the glass 10. You can get Further, as described above, since the dispersion of the mechanical strength of the glass 10 can be reduced by having the chemical strengthening layer 2 on the surface layer of the glass 10, the glass having the same composition without the chemical strengthening layer 2, ie, a glass precursor Compared to the body, it is possible to obtain a glass having a high average breaking load and a small variation in breaking load. Such a glass 10 has a very low probability of occurrence of an excessively low breaking load, so that the risk of breakage of the glass 10 when the glass 10 is used in equipment can be reduced.
  • the compressive stress of the chemical strengthening layer 2 of the glass 10 is preferably 10 to 1000 MPa.
  • the compressive stress of the chemical strengthening layer 2 can be measured using a birefringence measuring device.
  • the glass 10 When the glass 10 is cut into small pieces, for example, according to the size of the product, it is preferable to cut using an internally modified laser.
  • an internally modified laser When the glass is cut by the internally modified laser, a modified region is formed inside the glass by laser focusing, and a crack is extended from there to cut the glass.
  • the glass piece obtained by cutting when an external stress is generated in the glass piece when the modified region reaches the end of the glass piece (the intersection of the main surface and the end face of the glass piece), the end Since the glass pieces are broken from the point of origin, the glass pieces have low mechanical strength.
  • stretching is preferable from the viewpoint of bending stress and the accuracy of the cut surface such as tape expand.
  • the chemical strengthening layer 2 having a compressive stress is present in the surface layer, a tensile stress is present in the glass interior 1 forming the modified region.
  • the output of the laser necessary for forming the modified region can be suppressed, and the modified region becomes smaller. Therefore, there is no modified region at the end of the glass piece obtained by cutting, and as a result, a glass piece with high mechanical strength can be obtained.
  • the glass of the present invention preferably has a glass transition temperature (Tg) of 600 ° C. or less.
  • Tg glass transition temperature
  • the Tg of the chemical strengthening layer and the Tg inside the glass are substantially the same and are treated as the same. That is, the Tg of the glass precursor and the Tg of the glass of the present invention obtained from the glass precursor can be treated as the same.
  • Tg is 600 degrees C or less, it is possible to produce the glass 10 which has the chemical strengthening layer 2 in surface layer from a glass precursor in a short time. Moreover, since the chemical strengthening layer 2 can be formed at a relatively low temperature, the surface of the chemical strengthening layer 2 can be prevented from being roughened, which is preferable for using the glass 10 as an optical element. In addition, when the chemical strengthening layer 2 can be formed at a low temperature for a short time, the effect of suppressing the manufacturing cost (the amount of power) of the glass 10 can also be obtained.
  • the Tg of the glass 10 is preferably 580 ° C. or less, more preferably 570 ° C. or less.
  • the Tg is preferably 300 ° C. or more. That is, the Tg of the glass 10 is preferably 300 to 570 ° C. Tg can be measured, for example, by a thermal expansion method.
  • the glass 10 is preferably a phosphate glass.
  • the phosphate glass is a glass in which P is a main component for forming a network, and in the present invention, phosphate glass, fluorophosphate glass containing fluorine, silicophosphate glass containing silicon, sulfur It is a concept including the sulfated phosphate glass contained.
  • Examples of the phosphoric acid-based glass in the present invention specifically, contain from 35 to 80% of P 2 O 5 in mass% on oxide conversion in the glass inside 1, or 20 to the P 5+ by cationic% 60 It is preferable to contain%.
  • the glass 10 preferably contains F (fluorine) as a glass component. It is known that glasses having P as a network forming component have inferior weather resistance (particularly water resistance). The glass 10 can improve heat resistance significantly by containing F as a glass component.
  • the glass 10 preferably contains Cu (copper) as a glass component.
  • Cu is known as a component that absorbs near-infrared light, for example, light with a wavelength of 700 to 1100 nm.
  • the glass 10 can be used as an optical filter glass excellent in near-infrared absorption characteristics by containing Cu.
  • glass 10 there are, for example, two embodiments of glass having the inside of the glass of the two types of compositions shown below.
  • the glass of the first embodiment is a so-called copper-containing phosphate glass, and in particular, the P component and Cu component (Cu 2+ ) in the glass substantially cut infrared rays by absorbing light in the near infrared wavelength range.
  • the inside of the glass is In mass% display of the following oxide conversion, P 2 O 5 : 35 to 80% Al 2 O 3 : 5 to 20% ⁇ R 2 O: 3 ⁇ 30% ( provided that, R 2 O is any one or more of Li 2 O and Na 2 O, ⁇ R 2 O represents these total amount.) ⁇ R′O: 3 to 35% (wherein R′O is one or more of MgO, CaO, SrO, BaO, and ZnO, and RR′O represents the total amount of these) CuO: 0.5 to 20% It is preferable to contain
  • the reason for limiting the content of each component constituting the inside of the glass as described above will be described below.
  • the content of each component is the mass% display of oxide conversion in glass inside.
  • P 2 O 5 is a main component (glass forming oxide) that forms glass, and is an essential component for enhancing near-infrared cuttability. If the content of P 2 O 5 is less than 35%, the effect is not sufficiently obtained, and if it exceeds 80%, the melting temperature rises and the transmittance in the visible region is reduced, which is not preferable.
  • the content of P 2 O 5 is preferably 38 to 77%, more preferably 40 to 75%.
  • Al 2 O 3 is an essential component for enhancing the weather resistance. If the content of Al 2 O 3 is less than 5%, the effect can not be obtained sufficiently, and if it exceeds 20%, the melting temperature of the glass becomes high, and the near infrared ray cuttability and the visible region transmittance decrease.
  • the content of Al 2 O 3 is preferably 5.5 to 17%, more preferably 6 to 15%.
  • R 2 O is an essential component for lowering the melting temperature of glass to form a chemical strengthening layer.
  • R 2 O is any one or more of Li 2 O and Na 2 O contained in the glass interior.
  • ⁇ R 2 O means the total amount of Li 2 O and Na 2 O, that is, Li 2 O + Na 2 O. If ⁇ R 2 O is less than 3%, the effect is not sufficient, and if it exceeds 30%, the glass becomes unstable.
  • the ⁇ R 2 O is preferably 5 to 28%, more preferably 6 to 25%.
  • Li 2 O is not preferable because when the content of Li 2 O having the effect of forming a chemical strengthening layer and lowering the melting temperature of the glass exceeds 15%, the glass becomes unstable.
  • the content of Li 2 O is preferably 0 to 10%, more preferably 0 to 8%.
  • Na 2 O forms a chemical strengthening layer and has the effect of lowering the melting temperature of the glass.
  • the content of Na 2 O is preferably 0 to 22%, more preferably 0 to 20%.
  • the inside of the glass may contain K 2 O as an alkali metal oxide other than R 2 O.
  • K 2 O has the effect of lowering the melting temperature of glass, which promotes the formation of a chemical strengthening layer.
  • the content of K 2 O is preferably 0 to 25%. When the content of K 2 O exceeds 25%, the glass becomes unstable, which is not preferable.
  • the content of K 2 O is preferably 0 to 20%, more preferably 0 to 15%.
  • R′O is an essential component to enhance the stability of the glass and to lower the melting temperature of the glass.
  • R′O is at least one of MgO, CaO, SrO, BaO and ZnO contained in the glass.
  • ⁇ R′O refers to the total amount of MgO, CaO, SrO, BaO and ZnO, that is, MgO + CaO + SrO + BaO + ZnO. If ⁇ R′O is less than 3%, the effect is not sufficient, and if it exceeds 35%, the glass becomes unstable.
  • the ⁇ R′O is preferably 3.5 to 32%, more preferably 4 to 30%.
  • MgO is not an essential component, it has the effect of enhancing the stability of the glass. If the content of MgO exceeds 5%, the near-infrared cuttability is unfavorably reduced.
  • the content of MgO is preferably 3% or less, more preferably 2% or less.
  • SrO is not an essential component, it has the effect of enhancing the stability of the glass. If the content of SrO exceeds 15%, the near infrared cuttability is unfavorably reduced.
  • the content of SrO is preferably 0 to 12%, more preferably 0 to 10%.
  • BaO is not an essential component, it has the effect of lowering the melting temperature of the glass. If the content of BaO exceeds 30%, the glass becomes unstable.
  • the content of BaO is preferably 0 to 27%, more preferably 0 to 25%.
  • ZnO is not an essential component, it has the effect of lowering the melting temperature of the glass.
  • the content of ZnO is preferably 8% or less, more preferably 5% or less.
  • CuO is a component for enhancing near-infrared cuttability. If the content of CuO is less than 0.5%, the effect is not sufficiently obtained, and if it exceeds 20%, the visible light transmittance is unfavorably reduced.
  • the content of CuO is preferably 0.8 to 19%, more preferably 1.0 to 18%.
  • the glass of the second embodiment is a so-called copper-containing fluorophosphate glass, and in particular, the P component and Cu component (Cu 2+ ) in the glass absorb infrared rays of wavelengths in the near-infrared range to significantly cut infrared rays.
  • the P component and Cu component (Cu 2+ ) in the glass absorb infrared rays of wavelengths in the near-infrared range to significantly cut infrared rays.
  • the inside of the glass is In cation% indication, P 5+ : 20 to 60% Al 3+ : 3 to 20% ⁇ R +: 5 ⁇ 40% (provided that, R + is a Li + and Na + or one or more, .SIGMA.R + represents these total amount.)
  • RR ′ 2+ 5 to 30% (wherein R ′ 2+ is any one or more of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ , and RR ′ 2+ represents the total amount of these.
  • Total content of Cu 2+ and Cu + 0.5 to 25% While containing In% anion, F -: 10 ⁇ 70% Is preferably contained.
  • cation% and anion% are units as follows. First, constituent components in the composition of glass are divided into a cationic component and an anionic component. And “cation%” is a unit which represented content of each cation component in percentage, when sum total content of all the cation components contained in glass is set to 100 mol%. The “anion%” is a unit in which the content of each anion component is expressed in percentage, when the total content of all the anion components contained in the glass is 100 mol%.
  • the content of each of the cationic components and the value of the total content are the value of the cation% in the glass interior, and the value of each content of the anionic components and the total content are It is a value of the anion% display in glass inside.
  • P 5+ is a main component forming glass, and is an essential component for enhancing the cuttability of the near infrared region. If the content of P 5+ is less than 20%, the effect can not be obtained sufficiently, and if it exceeds 60%, the glass becomes unstable and the weather resistance is lowered, which is not preferable.
  • the content of P 5+ is more preferably 20 to 58%, still more preferably 22 to 56%, still more preferably 24 to 54%, and particularly preferably 25 to 50%.
  • Al 3+ is an essential component for enhancing the weather resistance and the like. If the content of Al 3+ is less than 3%, the effect can not be sufficiently obtained, and if it exceeds 20%, the glass becomes unstable, and problems such as reduction in infrared ray cutability occur, which is not preferable.
  • the content of Al 3+ is more preferably 4 to 18%, still more preferably 4.5 to 15%, still more preferably 5 to 13%.
  • Al 2 O 3 or Al (OH) 3 is used as a raw material for Al 3+ , the glass becomes unstable due to the increase of melting temperature, generation of unmelted substance, and decrease of F ⁇ charge. And the like, which is not preferable because it causes problems such as, and it is preferable to use AlF 3 .
  • R + is an essential component for forming a chemical strengthening layer, lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like.
  • R + refers to any one or more of Li + and Na + contained in the glass interior.
  • RR + refers to the total amount of Li + and Na + , that is, Li + + Na + . If RR + is less than 5%, the effect can not be sufficiently obtained, and if it exceeds 40%, the glass becomes unstable.
  • the ⁇ R + is more preferably 6 to 38%, further preferably 10 to 37%, and still more preferably 15 to 36%.
  • Li + is a component for forming a chemical strengthening layer, lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like.
  • the content of Li + is preferably 5 to 40%. If it is less than 5%, the effect can not be obtained sufficiently, and if it exceeds 40%, the glass becomes unstable.
  • the content of Li + is more preferably 8 to 38%, still more preferably 10 to 35%, and still more preferably 6 to 30%.
  • Na + is a component for forming a chemical strengthening layer, lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like.
  • the content of Na + is preferably 5 to 40%. If it is less than 5%, the effect can not be obtained sufficiently, and if it exceeds 40%, the glass becomes unstable.
  • the content of Na + is more preferably 5 to 35%, still more preferably 6 to 30%.
  • K + is a component that promotes formation of a chemical strengthening layer, lowers the melting temperature of the glass, lowers the liquidus temperature of the glass, and the like.
  • the content of K + is preferably 0.1 to 30%. When K + is contained, if it is less than 0.1%, the effect is not sufficiently obtained, and if it exceeds 30%, the glass becomes unstable, which is not preferable.
  • the content of K + is more preferably 0.5 to 25%, still more preferably 0.5 to 20%.
  • R ′ 2+ is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, enhancing the strength of the glass, and the like.
  • R ′ 2+ refers to any one or more of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and Zn 2+ contained in the glass.
  • RR ′ 2+ refers to the total amount of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and Zn 2+ , ie, Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ + Zn 2+ .
  • ⁇ R ′ 2+ is less than 5%, the effect can not be obtained sufficiently, and if it exceeds 30%, the glass becomes unstable, the infrared ray cutability decreases, and the strength of the glass decreases, which is not preferable.
  • the ⁇ R ′ 2+ is more preferably 5 to 28%, still more preferably 7 to 25%, and still more preferably 9 to 23%.
  • Mg 2+ is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, enhancing the strength of the glass, and the like.
  • the content of Mg 2+ is preferably 1 to 30%. When it contains Mg 2+ , its effect can not be sufficiently obtained if it is less than 1%, and the glass becomes unstable if it exceeds 30%, which is not preferable.
  • the content of Mg 2+ is more preferably 1 to 25%, still more preferably 1 to 20%.
  • Ca 2+ is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, enhancing the strength of the glass, and the like.
  • the content of Ca 2+ is preferably 1 to 30%. When it contains Ca 2+ , its effect can not be sufficiently obtained if it is less than 1%, and the glass becomes unstable if it exceeds 30%, which is not preferable.
  • the content of Ca 2+ is more preferably 1 to 25%, still more preferably 1 to 20%.
  • Sr 2+ is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like.
  • the content of Sr 2+ is preferably 1 to 30%. When the content of Sr 2+ is less than 1%, the effect is not sufficiently obtained, and when it exceeds 30%, the glass becomes unstable. More preferably, it is 1 to 25%, and still more preferably 1 to 20%.
  • Ba 2+ is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like.
  • the content of Ba 2+ is preferably 1 to 30%. When it contains Ba 2+ , its effect can not be sufficiently obtained if it is less than 1%, and the glass becomes unstable if it exceeds 30%, which is not preferable.
  • the content of Ba 2+ is more preferably 1 to 25%, still more preferably 1 to 20%.
  • Zn 2+ is not an essential component, it has effects such as lowering the melting temperature of the glass and lowering the liquidus temperature of the glass.
  • the content of Zn 2+ is preferably 1 to 30%. When it contains Zn 2+ , its effect can not be sufficiently obtained if it is less than 1%, and the solubility of the glass is deteriorated if it exceeds 30%, which is not preferable.
  • the content of Zn 2+ is more preferably 1 to 25%, still more preferably 1 to 20%.
  • the total content of Cu 2+ and Cu + is an essential component for near infrared cut. If the total content of Cu 2+ and Cu + is less than 0.5%, the effect can not be sufficiently obtained when the thickness of the glass is reduced, and if it exceeds 25%, the visible light transmittance decreases Not desirable for
  • the total content of Cu 2+ and Cu + is more preferably 0.2 to 24%, still more preferably 0.3 to 23%, and still more preferably 0.4 to 22%.
  • Sb 3+ is not an essential component, it has the effect of enhancing the near-infrared cutting performance by enhancing the oxidation of the glass and increasing the concentration of Cu 2+ ions.
  • Sb 3+ is contained, 1% or less is preferable.
  • the content of Sb 3+ exceeds 1%, the stability of the glass is reduced, which is not preferable.
  • the content of Sb 3+ is preferably 0.01 to 8%, more preferably 0.05 to 0.5%, and still more preferably 0.1 to 0.3%.
  • O 2 ⁇ is a component for stabilizing the glass and enhancing mechanical properties such as strength, hardness and elastic modulus.
  • the content of O 2 ⁇ is preferably 30 to 90%. If the content of O 2 ⁇ is less than 30%, the effect can not be sufficiently obtained, and if it exceeds 90%, the glass becomes unstable and the weather resistance is lowered, which is not preferable.
  • the content of O 2 ⁇ is more preferably 30 to 80%, still more preferably 30 to 75%.
  • F ⁇ is a component for improving the weatherability in order to stabilize the glass. If the content of F ⁇ is less than 10%, the effect can not be obtained sufficiently, and if it exceeds 70%, mechanical properties such as strength, hardness and elastic modulus may decrease, which is not preferable.
  • the glass according to the first embodiment preferably contains substantially no PbO, As 2 O 3 , V 2 O 5 , LaY 3 , YF 3 , YbF 3 , or GdF 3 .
  • PbO is a component that lowers the viscosity of glass and improves manufacturing workability.
  • As 2 O 3 is a component that acts as an excellent fining agent capable of generating a fining gas in a wide temperature range.
  • PbO and As 2 O 3 are environmentally hazardous substances, it is desirable not to contain them as much as possible.
  • V 2 O 5 absorbs light in the visible region, the transmittance of ultraviolet light may decrease, and it is desirable that V 2 O 5 be not contained as much as possible.
  • LaY 3 , YF 3 , YbF 3 , and GdF 3 are components for stabilizing the glass, it is desirable not to contain as much as possible because the raw materials are relatively expensive and cost increases.
  • "not substantially contained” means that it is not intended to be used as a raw material, and it is considered that the raw material components and the unavoidable impurities mixed from the manufacturing process are not contained. The amount of such unavoidable impurities is, for example, 0.1% or less with respect to the entire inside of the glass.
  • the glass of the second embodiment it is possible to add a nitrate compound or a sulfate compound having a cation forming the glass in the composition of the glass as an oxidizing agent or a clarifying agent.
  • the oxidizing agent has the effect of adjusting the Cu + / total Cu amount of the Cu component in the glass to a desired range.
  • the addition amount of the nitrate compound and the sulfate compound is preferably 0.5 to 10% by mass in external addition with respect to the total amount of the raw material mixture having the above-described composition inside the glass. If the addition amount is less than 0.5% by mass, there is no effect of improving the transmittance, and if it exceeds 10% by mass, formation of glass becomes difficult.
  • the addition amount is more preferably 1 to 8% by mass, and still more preferably 3 to 6% by mass.
  • the nitrate compounds Al (NO 3) 3, LiNO 3, NaNO 3, KNO 3, Mg (NO 3) 2, Ca (NO 3) 2, Sr (NO 3) 2, Ba (NO 3) 2, Zn (NO 3 ) 2 , Cu (NO 3 ) 2 and the like.
  • As a sulfate compound Al 2 (SO 4 ) 3 .16H 2 O, Li 2 SO 4 , Na 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , MgSO 4 , CaSO 4 , SrSO 4 , BaSO 4 , ZnSO 4 , CuSO 4 Etc.
  • the glass of the second embodiment contains the F (fluorine) component as an essential component, and therefore is excellent in weathering resistance. Specifically, it is possible to suppress the deterioration of the glass surface and the reduction of the transmittance due to the reaction with the moisture in the atmosphere.
  • the evaluation of the weather resistance is, for example, using a high temperature and high humidity tank, and holding the optically polished glass sample in a high temperature and high humidity tank at 65 ° C. and 90% relative humidity for 1000 hours. Then, the burnt state of the glass surface can be visually observed and evaluated.
  • the transmittance of the glass before being introduced into the high temperature and high humidity tank can be evaluated by comparing the transmittance of the glass after being held in the high temperature and high humidity tank for 1000 hours.
  • the glass 10 can be used in any shape such as a plate shape, a lens shape (concave shape, convex shape), a tube shape, and a rod shape.
  • a plate shape a lens shape (concave shape, convex shape), a tube shape, and a rod shape.
  • the glass 10 when using the glass 10 as an optical filter, it is preferable that it is plate shape.
  • the plate thickness is preferably 0.01 to 1 mm. If the thickness of the glass 10 is less than 0.01 mm, the risk of breakage during manufacturing is large. Moreover, when it is more than 1 mm, the mass of the glass 10 is large, which may hinder the weight reduction of the device.
  • the glass 10 can be suitably used for the following applications utilizing the specific optical properties of the phosphate glass.
  • it can be suitably used for near-infrared cut filter glass which is one of optical filters.
  • the glass 10 may be provided with an optical thin film such as an antireflective film, an infrared ray cut film, an ultraviolet ray and an infrared ray cut film on the surface thereof.
  • optical thin films are formed of a single layer film or a multilayer film, and can be formed by a known method such as a vapor deposition method or a sputtering method.
  • a resin layer in which a pigment that absorbs light of a specific wavelength or metal fine particles is dispersed may be provided on the surface of the glass 10.
  • the method for producing the glass 10 is not particularly limited. Typically, a glass precursor having the same shape and size as the glass 10 can be produced, and the surface layer can be manufactured as a chemically strengthened layer by ion exchange treatment.
  • the raw materials are weighed and mixed such that the obtained glass precursor has a predetermined composition range, for example, the above-described composition inside the glass (mixing step).
  • This raw material mixture is placed in a platinum crucible, and heated and melted in an electric furnace at a temperature of 700 ° C. to 1300 ° C. (melting step). After sufficiently stirring and clarifying, it is cast into a mold or the like to form it into a predetermined shape (forming step).
  • the glass precursor is cut and polished to be processed into a predetermined shape (processing step) to obtain a glass precursor.
  • the glass precursor may be formed into a predetermined shape by an appropriate method such as press molding, reheat press molding, reconstructer molding, redraw molding, bellows molding and the like.
  • the surface layer of the obtained glass precursor is subjected to ion exchange treatment to form a chemically strengthened layer 2, and a glass 10 comprising the chemically strengthened layer 2 and the glass interior 1 not ion-exchanged is obtained (chemically reinforced layer forming step).
  • the glass may be cut again, polished, or dipped in a chemical solution (acidic or alkaline solution).
  • the chemical strengthening layer formation step is a step of ion exchange treatment of the surface layer of the glass precursor.
  • the ion exchange treatment can be performed, for example, by immersing the glass precursor in molten salt at 200 ° C. to 450 ° C. for about 1 to 50 hours.
  • the temperature of the molten salt is taken as the ion exchange treatment temperature.
  • the ion exchange treatment temperature is more preferably 215 to 400 ° C.
  • the immersion time is taken as the ion exchange treatment time.
  • the ion exchange treatment time is more preferably 2 to 30 hours.
  • the molten salt used depends on the composition of the alkali metal in the glass precursor. Ion exchange of the Li-containing glass precursor is carried out in the molten salt containing Na + and / or K + . Ion exchange of the Na-containing glass precursor is carried out in the molten salt containing K + .
  • a molten salt of sodium nitrate (NaNO 3 ) or a molten salt in which potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) are mixed at an appropriate ratio can be used.
  • the glass of the present invention has a chemical strengthening layer on the surface, and the inside of the glass contains P, Al, and an alkali metal composed of either Li or Na, or both, It is a glass with a small variation in mechanical strength.
  • the in-plane strength of the glass is measured by the breaking load, the variation of the breaking load is small.
  • the minimum value of the breaking load can be estimated to some extent, it is possible to prevent the glass having an excessively low breaking load from being used for the device.
  • Examples of the present invention and comparative examples are shown in Table 1. Examples 1 to 4 are examples of the present invention, and Example 5 is a comparative example of the present invention.
  • glass precursors consisting of glass materials all having the same composition were prepared as follows.
  • the composition of the glass material used is as follows, and Tg is 400 ° C.
  • Example 5 is the glass precursor itself in which the chemical strengthening layer is not formed.
  • each glass of the Example of this invention has a small standard deviation of a breaking load with respect to the glass of a comparative example. Therefore, it can be seen that the risk of breakage can be reduced when used in equipment or the like. Therefore, when it uses for an apparatus etc., the risk of breakage is small and it can use with thinner board thickness.
  • the glass of the present invention is a glass in which at least a part of the surface layer is composed of a chemical strengthening layer, and the inside of the glass excluding the chemical strengthening layer is made of P, Al, Li and Na, or both Since it is a structure containing the alkali metal which becomes, it is glass with a small dispersion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Provided is a glass which has a small variation in mechanical strength. A glass which is configured such that: at least a part of a surface layer is composed of a chemically toughened layer; and the interior portion of the glass excluding the chemically toughened layer contains P, Al and an alkali metal that is composed of one or both of Li and Na.

Description

ガラスGlass
 本発明は、機械的強度のばらつきが抑制されたガラスに関する。 The present invention relates to a glass in which the variation in mechanical strength is suppressed.
 デジタルスチルカメラなどに使用されるCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などを用いた固体撮像素子モジュールには、リン酸ガラスやフツリン酸ガラスを用いた近赤外線カットフィルタガラスが用いられている。近年の携帯電話やスマートフォンなどの携帯端末に搭載される固体撮像素子モジュールやデジタルスチルカメラの小型化の要請から、非常に薄い板厚のフィルタガラスが求められている。 A solid-state image sensor module using CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) used for digital still cameras etc. uses near-infrared cut filter glass using phosphate glass or fluorophosphate glass It is done. In response to the demand for downsizing of solid-state imaging device modules and digital still cameras mounted on portable terminals such as mobile phones and smart phones in recent years, filter glasses with extremely thin plate thickness are required.
 フィルタガラスを薄くする場合、例えばガラスの曲げ強度の低下が懸念される。 In the case of thinning the filter glass, for example, a decrease in the bending strength of the glass is a concern.
 従来、ガラスの曲げ強度を向上させる観点から、ガラス端面を面取加工する方法が提案されている(たとえば特許文献1参照)。該方法は、ガラスに曲げ応力が作用した際、ガラス表面の傷が割れの起点となるため、その傷を除去することでガラスの強度を高めようとする方法である。さらに、エッチングによって、ガラス板の端面のクラックを一定の長さ以下に処理する方法が提案されている(たとえば特許文献2参照)。また、内部改質型レーザーを用いてガラスを切断する方法が提案されている(たとえば特許文献3参照)。 Conventionally, in order to improve the bending strength of glass, a method of chamfering the end face of the glass has been proposed (see, for example, Patent Document 1). In this method, when a bending stress acts on the glass, a flaw on the glass surface becomes a starting point of the crack, and therefore the strength of the glass is enhanced by removing the flaw. Furthermore, there has been proposed a method of treating a crack on the end face of a glass plate to a predetermined length or less by etching (see, for example, Patent Document 2). Further, a method of cutting glass using an internally modified laser has been proposed (see, for example, Patent Document 3).
特開2000-169166号公報JP 2000-169166 A 特開2010-168262号公報JP, 2010-168262, A 国際公開第2013/027645号International Publication No. 2013/027645
 前述の各特許文献では、ガラスに曲げ応力が生じる際、ガラスの端部が割れの起点となるとの前提に基づき、特に端部の微小な欠け、クラック、傷を除去ないしは小さくすることを行っている。 In each of the above-mentioned patent documents, when bending stress occurs in the glass, removal or reduction of particularly small chips, cracks and flaws of the end is carried out on the premise that the end of the glass becomes a starting point of the crack. There is.
 しかしながら、機器の使用時におけるガラスに作用する応力状態を詳細に調べてみると、例えば機器に短時間に強い衝撃が生じる場合においては、機器内に搭載されたガラスはパッケージ等に接着剤で固定された端部よりも、固定されていない面内(ガラスの中心部)が大きくたわむことが想定される。そのため、ガラスの面内強度への配慮が重要であることがわかってきた。 However, when the stress state acting on the glass at the time of use of the device is examined in detail, for example, when strong impact occurs in the device in a short time, the glass mounted in the device is fixed to the package etc. by adhesive. It is assumed that the unfixed surface (the center of the glass) is more distorted than the end portion. Therefore, it has been understood that consideration of the in-plane strength of the glass is important.
 また、ガラスの面内強度はその程度を破壊荷重にて測定することができる。ここで、ガラスの破壊荷重は、平均値が高いことが必要であるものの、併せて破壊荷重のばらつきが小さいことも重要と考えられる。すなわち、破壊荷重のばらつきが大きい場合、割合としては非常に少ないものの破壊荷重が低いガラスが混入するおそれがあり、機器の使用時にガラスが割れるリスクを内包することになる。他方、ガラスの破壊荷重のばらつきが小さい場合、破壊荷重の最小値をある程度見積もれるため、破壊荷重が過度に低いガラスが機器に使用されるのを回避することができる。 Further, the in-plane strength of the glass can be measured by the breaking load. Here, although the breaking load of the glass needs to have a high average value, it is also considered important that the variation of the breaking load is small. That is, when the variation in the breaking load is large, there is a possibility that the glass having a low breaking load may be mixed although the percentage is very small, and there is a risk of the glass breaking when using the device. On the other hand, when the variation in the breaking load of the glass is small, the minimum value of the breaking load can be estimated to some extent, so that it is possible to prevent the glass having an excessively low breaking load from being used for the device.
 本発明は、このような背景によりなされたものであり、機械的強度のばらつきが小さいガラスの提供を目的とする。 The present invention has been made under such circumstances, and it is an object of the present invention to provide a glass having a small variation in mechanical strength.
 本発明のガラスは、表層の少なくとも一部が化学強化層で構成されるガラスであって、前記ガラスは、前記化学強化層を除くガラス内部が、Pと、Alと、LiおよびNaのいずれか一方、もしくは両方からなるアルカリ金属とを含有することを特徴とする。 The glass of the present invention is a glass in which at least a part of the surface layer is composed of a chemical strengthening layer, and in the glass, the glass interior excluding the chemical strengthening layer is any of P, Al, Li and Na. It is characterized in that it contains an alkali metal consisting of one or both of them.
 本発明によれば、機械的強度のばらつきが小さいガラスを提供することができる。 According to the present invention, it is possible to provide a glass having a small variation in mechanical strength.
本発明のガラスの一実施形態を示す断面図である。It is a sectional view showing one embodiment of glass of the present invention.
 以下、本発明を実施するための形態について説明する。なお、本発明は、これらの実施形態に限定されるものではなく、これらの実施形態を、本発明の趣旨および範囲を逸脱することなく、変更または変形することができる。 Hereinafter, modes for carrying out the present invention will be described. The present invention is not limited to these embodiments, and these embodiments can be modified or changed without departing from the spirit and scope of the present invention.
 図1は、本発明のガラスの一実施形態を示す断面図である。ガラス10は、その両側の主面を含む表層が化学強化層2で構成され、化学強化層2を除く部分がガラス内部1である。なお、本発明のガラスにおける化学強化層の構成はこれに限定されない。本発明のガラスにおいて、その表層の少なくとも一部が化学強化層で構成されていればよい。 FIG. 1 is a cross-sectional view showing an embodiment of the glass of the present invention. In the glass 10, the surface layer including the main surfaces on both sides thereof is constituted by the chemical strengthening layer 2, and the portion excluding the chemical strengthening layer 2 is the inside 1 of the glass. In addition, the structure of the chemical strengthening layer in the glass of this invention is not limited to this. In the glass of the present invention, at least a part of the surface layer may be constituted of a chemical strengthening layer.
 ガラス10のガラス内部1は、P(リン)、Al(アルミニウム)およびアルカリ金属(ただし、Li(リチウム)およびNa(ナトリウム)のいずれか一方、もしくは両方からなる。)の各成分を必須成分として含有する。以下、ガラス内部1が含有する、LiおよびNaのいずれか一方、もしくは両方からなるアルカリ金属を、必要に応じて「R」で示す。 The glass interior 1 of the glass 10 contains, as essential components, each component of P (phosphorus), Al (aluminum) and an alkali metal (however, consisting of one or both of Li (lithium) and Na (sodium)). contains. Hereinafter, an alkali metal contained in any one or both of Li and Na contained in the glass interior 1 is indicated by “R” as necessary.
 ガラス10は、例えば、大きさがガラス10と同じであり全体がガラス10のガラス内部1の組成と同じ組成の前駆体の両側の主面を含む表層がイオン交換により化学強化層2に変換され、イオン交換されなかった前駆体の組成を維持した部分が表層より内側にガラス内部1として存在する構成である。すなわち、本発明のガラスにおいて、化学強化層およびカラス内部は、ともにガラスで構成されるが、両者のガラス組成は異なる。以下、全体がガラス内部の組成と同じ組成である、イオン交換前のガラスの前駆体を単に、「ガラス前駆体」という。 In the glass 10, for example, the surface layer including the main surfaces on both sides of the precursor having the same size as the glass 10 and the entire composition having the same composition as the composition 1 of the glass 10 is converted into the chemical strengthening layer 2 by ion exchange. The configuration is such that a portion maintaining the composition of the precursor that has not been ion-exchanged exists as the glass interior 1 inside the surface layer. That is, in the glass of the present invention, both the chemical strengthening layer and the inside of the crow are made of glass, but the glass compositions of the two are different. Hereinafter, the precursor of the glass before ion exchange, which has the same composition as the composition inside the glass as a whole, is simply referred to as "glass precursor".
 イオン交換は、具体的には、ガラス前駆体中のR成分が、このR成分よりもイオン半径の大きい他の1価アルカリ金属イオンにイオン交換されることをいう。例えば、ガラス前駆体中のLi(イオン半径:60pm)がNa(イオン半径:95pm)にイオン交換される、ガラス前駆体中のNaがK(イオン半径:133pm)にイオン交換される等である。ガラス前駆体中のLiとイオン交換されガラスに拡散したNaが、Kにイオン交換されてもよい。 Ion exchange specifically refers to the fact that the R component in the glass precursor is ion-exchanged to another monovalent alkali metal ion having a larger ionic radius than this R component. For example, a glass precursor of Li + (ionic radius: 60 pm) is Na + (ionic radius: 95pm) is the ion exchange, a glass precursor Na + is K + (ionic radius: 133pm) in ion-exchanged And so on. Na + ion-exchanged with Li + in the glass precursor and diffused to the glass may be ion-exchanged to K + .
 したがって、ガラス内部のガラス組成に比べて、化学強化層においては、NaとKのいずれか一方、または両方の含有量が多いガラス組成を有する。本発明のガラスにおいて、ガラス内部と化学強化層ではアルカリ金属以外の組成に違いはない。以下の説明において、ガラス内部と化学強化層に共通する成分については、本発明のガラスの成分として説明する。 Therefore, the chemical strengthening layer has a glass composition in which the content of either Na + or K + or both is higher than the glass composition in the glass. In the glass of the present invention, there is no difference in the composition other than the alkali metal between the glass interior and the chemical strengthening layer. In the following description, components common to the glass interior and the chemical strengthening layer are described as components of the glass of the present invention.
 本発明のガラスは、PとAlを含有する。本発明のガラスにおいて、Pはネットワーク形成成分であり、ガラス化に必要な主成分である。本発明のガラスにおいて、Alはガラスの修飾成分であり、ガラス製造時の結晶化や分相を抑制する成分である。本発明のガラスは、ガラス内部がRを含有する。すなわち、本発明において、表層がイオン交換されて本発明のガラスとなるガラス前駆体は、該イオン交換のためにRを含有し、得られる本発明のガラスはガラス内部がRを含有する。 The glass of the present invention contains P and Al. In the glass of the present invention, P is a network forming component and a main component necessary for vitrification. In the glass of the present invention, Al is a modifying component of glass and is a component that suppresses crystallization and phase separation during glass production. The glass of the present invention contains R inside the glass. That is, in the present invention, the glass precursor which becomes the glass of the present invention by ion exchange of the surface layer contains R for the ion exchange, and the obtained glass of the present invention contains R inside the glass.
 本発明者は、鋭意検討を重ねた結果、ガラス10の少なくとも一部の表層に化学強化層2が存在すると、ガラス10の機械的強度のばらつきが小さくなることを見出した。その理由は、以下のメカニズムによるものと考えられる。 As a result of intensive studies, the present inventor has found that when the chemical strengthening layer 2 is present on at least a part of the surface layer of the glass 10, the variation in mechanical strength of the glass 10 is reduced. The reason is considered to be due to the following mechanism.
 ガラスの機械的強度がばらつく要因は、ガラス表面に存在する傷である。表面に傷が存在するガラスに引っ張り応力が働いた場合、その傷の先端に応力集中が起こり、破壊が起こる。ガラス表面の傷は、生産工程や使用中の取り扱いなど様々な外的要因によって発生するため、その傷の深さは一様ではない。特に深い傷は応力集中が起こりやすく、弱い引っ張り応力でもガラスが破壊するため、ガラスの機械的強度にばらつきが生じる。 The factor that the mechanical strength of the glass varies is a flaw present on the glass surface. When tensile stress is applied to the glass having a flaw on the surface, stress concentration occurs at the tip of the flaw and breakage occurs. Since the flaws on the glass surface are generated by various external factors such as the production process and handling during use, the depth of the flaws is not uniform. In particular, deep flaws are prone to stress concentration, and even with a weak tensile stress, the glass breaks, resulting in variations in the mechanical strength of the glass.
 これに対し、本発明のガラスは、ガラス前駆体の表層において、元々存在していたR成分に代えてそれよりもイオン半径の大きいイオンを十分深くまで拡散させて、該表層を化学強化層としたことで、深い傷の先端付近のガラス構造が膨張し、ガラスに引っ張り応力が働いた際に傷の先端に発生する応力を軽減することができる。その結果、本発明のガラスにおいては、深い傷が存在したとしても機械的強度が低下せず、機械的強度のばらつきが小さくなるものと考えられる。 On the other hand, in the glass of the present invention, in the surface layer of the glass precursor, instead of the R component originally present, ions having a larger ion radius are diffused sufficiently deeply to make the surface layer a chemically strengthened layer. As a result, the glass structure in the vicinity of the tip of the deep flaw expands, and the stress generated at the tip of the flaw when the tensile stress acts on the glass can be reduced. As a result, in the glass of the present invention, it is considered that the mechanical strength does not decrease even if there is a deep scratch, and the variation in mechanical strength is reduced.
 本発明のガラス10において、化学強化層2は、ガラス10の表層の全体に設けられてもよいし、表層の一部にのみ設けられてもよい。図1に示すように、ガラス10が板形状である場合、主面を含む表層に化学強化層2を備えることが好ましい。板形状のガラスに曲げ応力が作用すると、主面の変形量が大きいためである。 In the glass 10 of the present invention, the chemical strengthening layer 2 may be provided on the entire surface of the glass 10 or may be provided on only a part of the surface. As shown in FIG. 1, when the glass 10 has a plate shape, it is preferable to provide the chemical strengthening layer 2 on the surface layer including the main surface. When a bending stress acts on the plate-shaped glass, the amount of deformation of the main surface is large.
 化学強化層2は、ガラス10の表面から深さ方向に1~100μmの厚さであることが好ましい。化学強化層2の厚さが1μm未満であると、ガラス10の機械的強度のばらつきを小さくする効果が十分に得られない。化学強化層2の厚さが100μm超であると、化学強化層2を形成するための処理に長時間を要するためである。ガラス内部に発生する引張り応力による割れ抑制の観点から、化学強化層2の厚さは、より好ましくは2~50μm、さらに好ましくは3~30μmである。なお、ガラス10の化学強化層2は、電子線マイクロアナライザ(Electron Probe Micro Analyzer)を用いて、NaとKのいずれか一方、または両方の含有量が、ガラス内部1よりも多くなった部分として測定することができる。 The chemical strengthening layer 2 preferably has a thickness of 1 to 100 μm from the surface of the glass 10 in the depth direction. If the thickness of the chemical strengthening layer 2 is less than 1 μm, the effect of reducing the variation in mechanical strength of the glass 10 can not be sufficiently obtained. When the thickness of the chemical strengthening layer 2 is more than 100 μm, the process for forming the chemical strengthening layer 2 takes a long time. The thickness of the chemical strengthening layer 2 is more preferably 2 to 50 μm, still more preferably 3 to 30 μm, from the viewpoint of suppressing cracking due to tensile stress generated inside the glass. The chemical strengthening layer 2 of the glass 10 has a content of either Na + or K + or both more than that of the glass interior 1 using an electron probe micro analyzer. It can be measured as a part.
 化学強化層2は、圧縮応力を有してもよい。ガラス10の表面に圧縮応力を有する化学強化層2があると、ガラス10に曲げ応力が付加された場合、ガラス10の表面に存在するクラックの伸展を抑制するため、機械的強度の高いガラス10を得ることができる。また、前述のとおり、ガラス10の表層に化学強化層2を有することでガラス10の機械的強度のばらつきを小さくすることができるため、化学強化層2を備えない同一組成のガラス、すなわちガラス前駆体と比較し、平均破壊荷重が高く、かつ破壊荷重のばらつきの小さいガラスを得ることができる。このようなガラス10は、破壊荷重の過度に低いガラスの存在確率が非常に小さいため、ガラス10を機器に用いた際のガラス10の破損のリスクを小さくすることができる。 The chemical strengthening layer 2 may have a compressive stress. If there is a chemical strengthening layer 2 having a compressive stress on the surface of the glass 10, the glass 10 having high mechanical strength in order to suppress the extension of cracks present on the surface of the glass 10 when a bending stress is applied to the glass 10. You can get Further, as described above, since the dispersion of the mechanical strength of the glass 10 can be reduced by having the chemical strengthening layer 2 on the surface layer of the glass 10, the glass having the same composition without the chemical strengthening layer 2, ie, a glass precursor Compared to the body, it is possible to obtain a glass having a high average breaking load and a small variation in breaking load. Such a glass 10 has a very low probability of occurrence of an excessively low breaking load, so that the risk of breakage of the glass 10 when the glass 10 is used in equipment can be reduced.
 ガラス10の化学強化層2の圧縮応力は、10~1000MPaであることが好ましい。なお、化学強化層2の圧縮応力は、複屈折測定装置を用いて測定することができる。 The compressive stress of the chemical strengthening layer 2 of the glass 10 is preferably 10 to 1000 MPa. The compressive stress of the chemical strengthening layer 2 can be measured using a birefringence measuring device.
 ガラス10を、例えば、製品のサイズに合わせて小片に切断する場合、内部改質型レーザーを用いて切断することが好ましい。一般的に、内部改質型レーザーでガラスを切断する場合、レーザー集光によりガラス内部に改質領域を形成し、そこを起点にクラックを伸展させてガラスを切断する。切断して得られたガラス小片において、改質領域がガラス小片の端部(ガラス小片の主面と端面との交線)に達すると、ガラス小片に外部応力が生じた際に、その端部を起点にガラス小片が破壊されるため、機械的強度が低いガラス小片となる。外部応力としては、曲げ応力やテープエキスパンドなどの切断面の精度の観点から延伸が好ましい。 When the glass 10 is cut into small pieces, for example, according to the size of the product, it is preferable to cut using an internally modified laser. Generally, when the glass is cut by the internally modified laser, a modified region is formed inside the glass by laser focusing, and a crack is extended from there to cut the glass. In the glass piece obtained by cutting, when an external stress is generated in the glass piece when the modified region reaches the end of the glass piece (the intersection of the main surface and the end face of the glass piece), the end Since the glass pieces are broken from the point of origin, the glass pieces have low mechanical strength. As the external stress, stretching is preferable from the viewpoint of bending stress and the accuracy of the cut surface such as tape expand.
 ガラス10においては、表層に圧縮応力を有する化学強化層2が存在することから、改質領域を形成するガラス内部1に引っ張り応力が存在する。これにより、内部改質型レーザーを用いてガラス10を切断する場合、改質領域を形成するために必要なレーザーの出力を抑えることができ、且つ改質領域が小さくなる。そのため、切断して得られるガラス小片の端部に改質領域が存在することがなく、結果として機械的強度の高いガラス小片を得ることができる。 In the glass 10, since the chemical strengthening layer 2 having a compressive stress is present in the surface layer, a tensile stress is present in the glass interior 1 forming the modified region. As a result, when the glass 10 is cut using the internally modified laser, the output of the laser necessary for forming the modified region can be suppressed, and the modified region becomes smaller. Therefore, there is no modified region at the end of the glass piece obtained by cutting, and as a result, a glass piece with high mechanical strength can be obtained.
 本発明のガラスは、ガラス転移温度(Tg)が600℃以下であることが好ましい。なお、本発明のガラスにおいて化学強化層のTgとガラス内部のTgとは、略同等であり、同じものとして扱う。すなわち、ガラス前駆体のTgとガラス前駆体から得られる本発明のガラスのTgは同じものとして扱える。 The glass of the present invention preferably has a glass transition temperature (Tg) of 600 ° C. or less. In the glass of the present invention, the Tg of the chemical strengthening layer and the Tg inside the glass are substantially the same and are treated as the same. That is, the Tg of the glass precursor and the Tg of the glass of the present invention obtained from the glass precursor can be treated as the same.
 Tgが600℃以下であればガラス前駆体から、短時間で表層に化学強化層2を有するガラス10を作製することが可能である。また、比較的低い温度で化学強化層2を形成できるため、化学強化層2の表面が荒れることを抑制することができ、ガラス10を光学素子として用いるのに好ましい。また、化学強化層2を低温、短時間で形成できると、ガラス10の製造コスト(電力量)を抑制する効果も得られる。ガラス10のTgは580℃以下が好ましく、570℃以下がより好ましい。 If Tg is 600 degrees C or less, it is possible to produce the glass 10 which has the chemical strengthening layer 2 in surface layer from a glass precursor in a short time. Moreover, since the chemical strengthening layer 2 can be formed at a relatively low temperature, the surface of the chemical strengthening layer 2 can be prevented from being roughened, which is preferable for using the glass 10 as an optical element. In addition, when the chemical strengthening layer 2 can be formed at a low temperature for a short time, the effect of suppressing the manufacturing cost (the amount of power) of the glass 10 can also be obtained. The Tg of the glass 10 is preferably 580 ° C. or less, more preferably 570 ° C. or less.
 一方、Tgは低すぎると化学強化層2を有するガラス10において圧縮応力の緩和が起きやすいため300℃以上であることが好ましい。すなわち、ガラス10のTgは、好ましくは300~570℃である。Tgは、例えば熱膨張法により測定することができる。 On the other hand, when the Tg is too low, the relaxation of the compressive stress is likely to occur in the glass 10 having the chemical strengthening layer 2, and therefore, the Tg is preferably 300 ° C. or more. That is, the Tg of the glass 10 is preferably 300 to 570 ° C. Tg can be measured, for example, by a thermal expansion method.
 ガラス10は、リン酸系ガラスであることが好ましい。リン酸系ガラスとは、Pが主なネットワーク形成成分であるガラスであり、本発明においては、リン酸塩ガラス、フッ素を含有するフツリン酸塩ガラス、ケイ素を含有するケイリン酸塩ガラス、硫黄を含有する硫リン酸塩ガラスを包含する概念である。 The glass 10 is preferably a phosphate glass. The phosphate glass is a glass in which P is a main component for forming a network, and in the present invention, phosphate glass, fluorophosphate glass containing fluorine, silicophosphate glass containing silicon, sulfur It is a concept including the sulfated phosphate glass contained.
 本発明におけるリン酸系ガラスとしては、具体的には、ガラス内部1において酸化物換算の質量%表示でPを35~80%含有する、もしくはカチオン%表示でP5+を20~60%含有することが好ましい。 Examples of the phosphoric acid-based glass in the present invention, specifically, contain from 35 to 80% of P 2 O 5 in mass% on oxide conversion in the glass inside 1, or 20 to the P 5+ by cationic% 60 It is preferable to contain%.
 ガラス10は、F(フッ素)をガラス成分として含有することが好ましい。Pをネットワーク形成成分とするガラスは耐侯性(特に耐水性)が劣ることが知られている。ガラス10は、Fをガラス成分として含有することで、耐侯性を大幅に向上させることができる。 The glass 10 preferably contains F (fluorine) as a glass component. It is known that glasses having P as a network forming component have inferior weather resistance (particularly water resistance). The glass 10 can improve heat resistance significantly by containing F as a glass component.
 ガラス10は、Cu(銅)をガラス成分として含有することが好ましい。Cuは近赤外線、例えば、波長700~1100nmの光、を吸収する成分として知られている。ガラス10は、Cuを含有することで、近赤外線の吸収特性に優れた光学フィルタガラスとして用いることができる。 The glass 10 preferably contains Cu (copper) as a glass component. Cu is known as a component that absorbs near-infrared light, for example, light with a wavelength of 700 to 1100 nm. The glass 10 can be used as an optical filter glass excellent in near-infrared absorption characteristics by containing Cu.
 ガラス10としては、例えば、以下に示す2種類の組成のガラス内部をそれぞれ有する2つの実施形態のガラスがある。 As the glass 10, there are, for example, two embodiments of glass having the inside of the glass of the two types of compositions shown below.
 第1の実施形態のガラスは、いわゆる銅含有リン酸ガラスであり、特にガラス中のP成分、Cu成分(Cu2+)が近赤外域の波長の光を吸収することで、赤外線を大幅にカットする機能を備える。 The glass of the first embodiment is a so-called copper-containing phosphate glass, and in particular, the P component and Cu component (Cu 2+ ) in the glass substantially cut infrared rays by absorbing light in the near infrared wavelength range. Have the ability to
 第1の実施形態のガラスはガラス内部が、
 下記酸化物換算の質量%表示で、
 P:35~80%
 Al:5~20%
 ΣRO:3~30%(ただし、ROはLiOおよびNaOのいずれか1つ以上であり、ΣROはこれらの合量を表す。)
 ΣR´O:3~35%(ただし、R´OはMgO、CaO、SrO、BaO、およびZnOのいずれか1つ以上であり、ΣR´Oはこれらの合量を表す。)
 CuO:0.5~20%
 を含有することが好ましい。
In the glass of the first embodiment, the inside of the glass is
In mass% display of the following oxide conversion,
P 2 O 5 : 35 to 80%
Al 2 O 3 : 5 to 20%
ΣR 2 O: 3 ~ 30% ( provided that, R 2 O is any one or more of Li 2 O and Na 2 O, ΣR 2 O represents these total amount.)
ΣR′O: 3 to 35% (wherein R′O is one or more of MgO, CaO, SrO, BaO, and ZnO, and RR′O represents the total amount of these)
CuO: 0.5 to 20%
It is preferable to contain
 第1の実施形態のガラスにおいて、ガラス内部を構成する各成分の含有量を上記のように限定した理由を以下に説明する。以下の説明において、各成分の含有量はガラス内部における酸化物換算の質量%表示である。 In the glass of the first embodiment, the reason for limiting the content of each component constituting the inside of the glass as described above will be described below. In the following description, the content of each component is the mass% display of oxide conversion in glass inside.
 Pは、ガラスを形成する主成分(ガラス形成酸化物)であり、近赤外線カット性を高めるための必須成分である。Pの含有量が、35%未満ではその効果が十分得られず、80%を超えると溶融温度が上がり、可視域の透過率が低下するため好ましくない。Pの含有量は、好ましくは38~77%であり、より好ましくは40~75%である。 P 2 O 5 is a main component (glass forming oxide) that forms glass, and is an essential component for enhancing near-infrared cuttability. If the content of P 2 O 5 is less than 35%, the effect is not sufficiently obtained, and if it exceeds 80%, the melting temperature rises and the transmittance in the visible region is reduced, which is not preferable. The content of P 2 O 5 is preferably 38 to 77%, more preferably 40 to 75%.
 Alは、耐候性を高めるための必須成分である。Alの含有量が、5%未満ではその効果が十分得られず、20%を超えるとガラスの溶融温度が高くなり、近赤外線カット性および可視域透過性が低下するため好ましくない。Alの含有量は、好ましくは5.5~17%であり、より好ましくは6~15%である。 Al 2 O 3 is an essential component for enhancing the weather resistance. If the content of Al 2 O 3 is less than 5%, the effect can not be obtained sufficiently, and if it exceeds 20%, the melting temperature of the glass becomes high, and the near infrared ray cuttability and the visible region transmittance decrease. The content of Al 2 O 3 is preferably 5.5 to 17%, more preferably 6 to 15%.
 ROは、化学強化層を形成するため、ガラスの溶融温度を低くするための必須成分である。ROは、ガラス内部が含有するLiOおよびNaOのいずれか1つ以上である。ΣROは、LiOとNaOとの合量、つまり、LiO+NaOであることをいう。ΣROが、3%未満ではその効果が十分ではなく、30%を超えるとガラスが不安定になるため好ましくない。ΣROは、好ましくは5~28%であり、より好ましくは6~25%である。 R 2 O is an essential component for lowering the melting temperature of glass to form a chemical strengthening layer. R 2 O is any one or more of Li 2 O and Na 2 O contained in the glass interior. ΣR 2 O means the total amount of Li 2 O and Na 2 O, that is, Li 2 O + Na 2 O. If ΣR 2 O is less than 3%, the effect is not sufficient, and if it exceeds 30%, the glass becomes unstable. The ΣR 2 O is preferably 5 to 28%, more preferably 6 to 25%.
 LiOは、化学強化層を形成する、ガラスの溶融温度を低くする効果があるLiOの含有量が、15%を超えるとガラスが不安定になるため好ましくない。LiOの含有量は、好ましくは0~10%であり、より好ましくは0~8%である。 Li 2 O is not preferable because when the content of Li 2 O having the effect of forming a chemical strengthening layer and lowering the melting temperature of the glass exceeds 15%, the glass becomes unstable. The content of Li 2 O is preferably 0 to 10%, more preferably 0 to 8%.
 NaOは、化学強化層を形成する、ガラスの溶融温度を低くする効果がある。NaOの含有量が、25%を超えるとガラスが不安定になるため好ましくない。NaOの含有量は、好ましくは0~22%であり、より好ましくは0~20%である。 Na 2 O forms a chemical strengthening layer and has the effect of lowering the melting temperature of the glass. When the content of Na 2 O exceeds 25%, the glass becomes unstable, which is not preferable. The content of Na 2 O is preferably 0 to 22%, more preferably 0 to 20%.
 ガラス内部は、RO以外のアルカリ金属酸化物としてKOを含有してもよい。KOは、化学強化層の形成を促進する、ガラスの溶融温度を低くする効果がある。KOの含有量は、0~25%が好ましい。KOの含有量が、25%を超えるとガラスが不安定になるため好ましくない。KOの含有量は、好ましくは0~20%であり、より好ましくは0~15%である。 The inside of the glass may contain K 2 O as an alkali metal oxide other than R 2 O. K 2 O has the effect of lowering the melting temperature of glass, which promotes the formation of a chemical strengthening layer. The content of K 2 O is preferably 0 to 25%. When the content of K 2 O exceeds 25%, the glass becomes unstable, which is not preferable. The content of K 2 O is preferably 0 to 20%, more preferably 0 to 15%.
 R´Oは、ガラスの安定性を高め、ガラスの溶融温度を低くするための必須成分である。R´Oは、ガラス内部が含有するMgO、CaO、SrO、BaOおよびZnOのいずれか1つ以上である。ΣR´Oは、MgO、CaO、SrO、BaOおよびZnOの合量、つまり、MgO+CaO+SrO+BaO+ZnOであることをいう。ΣR´Oが、3%未満であるとその効果が十分ではなく、35%を超えるとガラスが不安定になるため好ましくない。ΣR´Oは、好ましくは3.5~32%であり、より好ましくは4~30%である。 R′O is an essential component to enhance the stability of the glass and to lower the melting temperature of the glass. R′O is at least one of MgO, CaO, SrO, BaO and ZnO contained in the glass. ΣR′O refers to the total amount of MgO, CaO, SrO, BaO and ZnO, that is, MgO + CaO + SrO + BaO + ZnO. If ΣR′O is less than 3%, the effect is not sufficient, and if it exceeds 35%, the glass becomes unstable. The ΣR′O is preferably 3.5 to 32%, more preferably 4 to 30%.
 MgOは、必須成分ではないものの、ガラスの安定性を高める効果がある。MgOの含有量が、5%を超えると近赤外線カット性が低下するため好ましくない。MgOの含有量は、好ましくは3%以下であり、より好ましくは2%以下である。 Although MgO is not an essential component, it has the effect of enhancing the stability of the glass. If the content of MgO exceeds 5%, the near-infrared cuttability is unfavorably reduced. The content of MgO is preferably 3% or less, more preferably 2% or less.
 CaOは、必須成分ではないものの、ガラスの安定性を高める効果がある。CaOの含有量が、10%を超えると近赤外線カット性が低下するため好ましくない。CaOの含有量は、好ましくは7%以下であり、より好ましくは5%以下である。 Although CaO is not an essential component, it has the effect of enhancing the stability of the glass. If the content of CaO exceeds 10%, the near infrared cuttability is unfavorably reduced. The content of CaO is preferably 7% or less, more preferably 5% or less.
 SrOは、必須成分ではないものの、ガラスの安定性を高める効果がある。SrOの含有量が、15%を超えると近赤外線カット性が低下するため好ましくない。SrOの含有量は、好ましくは0~12%であり、より好ましくは0~10%である。 Although SrO is not an essential component, it has the effect of enhancing the stability of the glass. If the content of SrO exceeds 15%, the near infrared cuttability is unfavorably reduced. The content of SrO is preferably 0 to 12%, more preferably 0 to 10%.
 BaOは、必須成分ではないものの、ガラスの溶融温度を低くする効果がある。BaOの含有量が、30%を超えるとガラスが不安定になるため好ましくない。BaOの含有量は、好ましくは0~27%であり、より好ましくは0~25%である。 Although BaO is not an essential component, it has the effect of lowering the melting temperature of the glass. If the content of BaO exceeds 30%, the glass becomes unstable. The content of BaO is preferably 0 to 27%, more preferably 0 to 25%.
 ZnOは、必須成分ではないものの、ガラスの溶融温度を低くする効果がある。ZnOの含有量が、10%を超えるとガラスの溶解性が悪化するため好ましくない。ZnOの含有量は、好ましくは8%以下であり、より好ましくは5%以下である。 Although ZnO is not an essential component, it has the effect of lowering the melting temperature of the glass. When the content of ZnO exceeds 10%, the solubility of the glass is deteriorated, which is not preferable. The content of ZnO is preferably 8% or less, more preferably 5% or less.
 CuOは、近赤外線カット性を高めるための成分である。CuOの含有量が、0.5%未満であるとその効果が十分に得られず、20%を超えると可視域透過率が低下するため好ましくない。CuOの含有量は、好ましくは0.8~19%であり、より好ましくは1.0~18%である。 CuO is a component for enhancing near-infrared cuttability. If the content of CuO is less than 0.5%, the effect is not sufficiently obtained, and if it exceeds 20%, the visible light transmittance is unfavorably reduced. The content of CuO is preferably 0.8 to 19%, more preferably 1.0 to 18%.
 第2の実施形態のガラスは、いわゆる銅含有フツリン酸ガラスであり、特にガラス中のP成分、Cu成分(Cu2+)が近赤外域の波長の光を吸収することで、赤外線を大幅にカットする機能を備え、かつ耐侯性に優れる。 The glass of the second embodiment is a so-called copper-containing fluorophosphate glass, and in particular, the P component and Cu component (Cu 2+ ) in the glass absorb infrared rays of wavelengths in the near-infrared range to significantly cut infrared rays. Have the ability to
 第2の実施形態のガラスはガラス内部が、
 カチオン%表示で、
 P5+:20~60%
 Al3+:3~20%
 ΣR:5~40%(ただし、RはLiおよびNaのいずれか1つ以上であり、ΣRはこれらの合量を表す。)
 ΣR´2+:5~30%(ただし、R´2+はMg2+、Ca2+、Sr2+、Ba2+、およびZn2+のいずれか1つ以上であり、ΣR´2+はこれらの合量を表す。)
 Cu2+とCuの合量:0.5~25%
 を含有すると共に、
 アニオン%表示で、
 F:10~70%
 を含有するのが好ましい。
In the glass of the second embodiment, the inside of the glass is
In cation% indication,
P 5+ : 20 to 60%
Al 3+ : 3 to 20%
ΣR +: 5 ~ 40% (provided that, R + is a Li + and Na + or one or more, .SIGMA.R + represents these total amount.)
RR ′ 2+ : 5 to 30% (wherein R ′ 2+ is any one or more of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ , and RR ′ 2+ represents the total amount of these. )
Total content of Cu 2+ and Cu + : 0.5 to 25%
While containing
In% anion,
F -: 10 ~ 70%
Is preferably contained.
 第2の実施形態のガラスにおいて、ガラス内部を構成する各成分の含有量(カチオン%、アニオン%表示)を上記のように限定した理由を以下に説明する。 In the glass of the second embodiment, the reason for limiting the content (in the cation% and the anion%) of each component constituting the inside of the glass as described above will be described below.
 本明細書において、「カチオン%」、「アニオン%」とは、以下のとおりの単位である。まず、ガラスの組成における構成成分をカチオン成分とアニオン成分とに分ける。そして、「カチオン%」とは、ガラス中に含まれる全カチオン成分の合計含有量を100モル%としたときに、各カチオン成分の含有量を百分率で表記した単位である。「アニオン%」とは、ガラス中に含まれる全アニオン成分の合計含有量を100モル%としたときに、各アニオン成分の含有量を百分率で表記した単位である。 In the present specification, "cation%" and "anion%" are units as follows. First, constituent components in the composition of glass are divided into a cationic component and an anionic component. And "cation%" is a unit which represented content of each cation component in percentage, when sum total content of all the cation components contained in glass is set to 100 mol%. The “anion%” is a unit in which the content of each anion component is expressed in percentage, when the total content of all the anion components contained in the glass is 100 mol%.
 以下の説明において、特記しない限り、カチオン成分の各含有量、および合計含有量の値は、ガラス内部におけるカチオン%表示の値であり、アニオン成分の各含有量、および合計含有量の値は、ガラス内部におけるアニオン%表示の値である。 In the following description, unless otherwise stated, the content of each of the cationic components and the value of the total content are the value of the cation% in the glass interior, and the value of each content of the anionic components and the total content are It is a value of the anion% display in glass inside.
 P5+は、ガラスを形成する主成分であり、近赤外領域のカット性を高めるための必須成分である。P5+の含有量が、20%未満ではその効果が十分得られず、60%を超えるとガラスが不安定になる、耐候性が低下する等の問題が生じるため好ましくない。P5+の含有量は、より好ましくは20~58%であり、さらに好ましくは22~56%であり、さらに一層好ましくは24~54%であり、特に好ましくは25~50%である。 P 5+ is a main component forming glass, and is an essential component for enhancing the cuttability of the near infrared region. If the content of P 5+ is less than 20%, the effect can not be obtained sufficiently, and if it exceeds 60%, the glass becomes unstable and the weather resistance is lowered, which is not preferable. The content of P 5+ is more preferably 20 to 58%, still more preferably 22 to 56%, still more preferably 24 to 54%, and particularly preferably 25 to 50%.
 Al3+は、耐候性を高めるなどのための必須成分である。Al3+の含有量が、3%未満ではその効果が十分得られず、20%を超えるとガラスが不安定になる、赤外線カット性が低下する等の問題が生じるため好ましくない。Al3+の含有量は、より好ましくは4~18%であり、さらに好ましくは4.5~15%であり、さらに一層好ましくは5~13%である。なお、Al3+の原料として、AlやAl(OH)を用いることは、溶解温度の上昇や未融物の発生、およびFの仕込み量が減少してガラスが不安定になる等の問題が生じるため好ましくなく、AlFを用いることが好ましい。 Al 3+ is an essential component for enhancing the weather resistance and the like. If the content of Al 3+ is less than 3%, the effect can not be sufficiently obtained, and if it exceeds 20%, the glass becomes unstable, and problems such as reduction in infrared ray cutability occur, which is not preferable. The content of Al 3+ is more preferably 4 to 18%, still more preferably 4.5 to 15%, still more preferably 5 to 13%. When Al 2 O 3 or Al (OH) 3 is used as a raw material for Al 3+ , the glass becomes unstable due to the increase of melting temperature, generation of unmelted substance, and decrease of F charge. And the like, which is not preferable because it causes problems such as, and it is preferable to use AlF 3 .
 Rは、化学強化層を形成する、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための必須成分である。Rは、ガラス内部が含有するLiおよびNaのいずれか1つ以上であることをいう。また、ΣRは、LiおよびNaの合量、つまりLi+Naをいう。ΣRが、5%未満ではその効果が十分得られず、40%を超えるとガラスが不安定になるため好ましくない。ΣRは、より好ましくは6~38%であり、さらに好ましくは10~37%であり、さらに一層好ましくは15~36%である。 R + is an essential component for forming a chemical strengthening layer, lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. R + refers to any one or more of Li + and Na + contained in the glass interior. Also, RR + refers to the total amount of Li + and Na + , that is, Li + + Na + . If RR + is less than 5%, the effect can not be sufficiently obtained, and if it exceeds 40%, the glass becomes unstable. The ΣR + is more preferably 6 to 38%, further preferably 10 to 37%, and still more preferably 15 to 36%.
 Liは、化学強化層を形成する、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。Liの含有量としては、5~40%が好ましい。5%未満ではその効果が十分得られず、40%を超えるとガラスが不安定になるため好ましくない。Liの含有量は、より好ましくは、8~38%であり、さらに好ましくは、10~35%であり、さらに一層好ましくは6~30%である。 Li + is a component for forming a chemical strengthening layer, lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. The content of Li + is preferably 5 to 40%. If it is less than 5%, the effect can not be obtained sufficiently, and if it exceeds 40%, the glass becomes unstable. The content of Li + is more preferably 8 to 38%, still more preferably 10 to 35%, and still more preferably 6 to 30%.
 Naは、化学強化層を形成する、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。Naの含有量としては、5~40%が好ましい。5%未満ではその効果が十分得られず、40%を超えるとガラスが不安定になるため好ましくない。Naの含有量は、より好ましくは5~35%であり、さらに好ましくは6~30%である。 Na + is a component for forming a chemical strengthening layer, lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. The content of Na + is preferably 5 to 40%. If it is less than 5%, the effect can not be obtained sufficiently, and if it exceeds 40%, the glass becomes unstable. The content of Na + is more preferably 5 to 35%, still more preferably 6 to 30%.
 Kは、化学強化層の形成を促進する、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、などの効果がある成分である。Kの含有量としては、0.1~30%が好ましい。Kを含有する場合、0.1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定になるため好ましくない。Kの含有量は、より好ましくは0.5~25%であり、さらに好ましくは0.5~20%である。 K + is a component that promotes formation of a chemical strengthening layer, lowers the melting temperature of the glass, lowers the liquidus temperature of the glass, and the like. The content of K + is preferably 0.1 to 30%. When K + is contained, if it is less than 0.1%, the effect is not sufficiently obtained, and if it exceeds 30%, the glass becomes unstable, which is not preferable. The content of K + is more preferably 0.5 to 25%, still more preferably 0.5 to 20%.
 R´2+は、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための成分である。R´2+は、ガラス内部が含有するMg2+、Ca2+、Sr2+、Ba2+およびZn2+のいずれか1つ以上をいうものである。また、ΣR´2+は、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+の合量、すなわちMg2++Ca2++Sr2++Ba2++Zn2+をいうものである。ΣR´2+が、5%未満ではその効果が十分得られず、30%を超えるとガラスが不安定になる、赤外線カット性が低下する、ガラスの強度が低下する等の問題が生じるため好ましくない。ΣR´2+は、より好ましくは5~28%であり、さらに好ましくは7~25%であり、さらに一層好ましくは9~23%である。 R ′ 2+ is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, enhancing the strength of the glass, and the like. R ′ 2+ refers to any one or more of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and Zn 2+ contained in the glass. Further, RR ′ 2+ refers to the total amount of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and Zn 2+ , ie, Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ + Zn 2+ . If ΣR ′ 2+ is less than 5%, the effect can not be obtained sufficiently, and if it exceeds 30%, the glass becomes unstable, the infrared ray cutability decreases, and the strength of the glass decreases, which is not preferable. . The ΣR ′ 2+ is more preferably 5 to 28%, still more preferably 7 to 25%, and still more preferably 9 to 23%.
 Mg2+は、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための成分である。Mg2+の含有量としては、1~30%が好ましい。Mg2+を含有する場合、1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定になるため好ましくない。Mg2+の含有量は、より好ましくは1~25%であり、さらに好ましくは1~20%である。 Although Mg 2+ is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, enhancing the strength of the glass, and the like. The content of Mg 2+ is preferably 1 to 30%. When it contains Mg 2+ , its effect can not be sufficiently obtained if it is less than 1%, and the glass becomes unstable if it exceeds 30%, which is not preferable. The content of Mg 2+ is more preferably 1 to 25%, still more preferably 1 to 20%.
 Ca2+は、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための成分である。Ca2+の含有量としては、1~30%が好ましい。Ca2+を含有する場合、1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定となるため好ましくない。Ca2+の含有量は、より好ましくは1~25%であり、さらに好ましくは1~20%である。 Although Ca 2+ is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, enhancing the strength of the glass, and the like. The content of Ca 2+ is preferably 1 to 30%. When it contains Ca 2+ , its effect can not be sufficiently obtained if it is less than 1%, and the glass becomes unstable if it exceeds 30%, which is not preferable. The content of Ca 2+ is more preferably 1 to 25%, still more preferably 1 to 20%.
 Sr2+は、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。Sr2+の含有量としては、1~30%が好ましい。Sr2+を含有する場合、1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定となるため好ましくない。より好ましくは1~25%であり、さらに好ましくは1~20%である。 Although not essential components, Sr 2+ is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. The content of Sr 2+ is preferably 1 to 30%. When the content of Sr 2+ is less than 1%, the effect is not sufficiently obtained, and when it exceeds 30%, the glass becomes unstable. More preferably, it is 1 to 25%, and still more preferably 1 to 20%.
 Ba2+は、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。Ba2+の含有量としては、1~30%が好ましい。Ba2+を含有する場合、1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定となるため好ましくない。Ba2+の含有量は、より好ましくは1~25%であり、さらに好ましくは1~20%である。 Although Ba 2+ is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. The content of Ba 2+ is preferably 1 to 30%. When it contains Ba 2+ , its effect can not be sufficiently obtained if it is less than 1%, and the glass becomes unstable if it exceeds 30%, which is not preferable. The content of Ba 2+ is more preferably 1 to 25%, still more preferably 1 to 20%.
 Zn2+は、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、などの効果がある。Zn2+の含有量としては、1~30%が好ましい。Zn2+を含有する場合、1%未満ではその効果が十分得られず、30%を超えるとガラスの溶解性が悪化するため好ましくない。Zn2+の含有量は、より好ましくは1~25%であり、さらに好ましくは1~20%である。 Although Zn 2+ is not an essential component, it has effects such as lowering the melting temperature of the glass and lowering the liquidus temperature of the glass. The content of Zn 2+ is preferably 1 to 30%. When it contains Zn 2+ , its effect can not be sufficiently obtained if it is less than 1%, and the solubility of the glass is deteriorated if it exceeds 30%, which is not preferable. The content of Zn 2+ is more preferably 1 to 25%, still more preferably 1 to 20%.
 Cu2+とCuの合計の含有量は、近赤外線カットのための必須成分である。Cu2+とCuの合計の含有量が、0.5%未満であるとガラスの肉厚を薄くした際にその効果が十分に得られず、また25%を超えると可視域透過率が低下するため好ましくない。Cu2+とCuの合計の含有量は、より好ましくは0.2~24%であり、さらに好ましくは0.3~23%であり、さらに一層好ましくは0.4~22%である。 The total content of Cu 2+ and Cu + is an essential component for near infrared cut. If the total content of Cu 2+ and Cu + is less than 0.5%, the effect can not be sufficiently obtained when the thickness of the glass is reduced, and if it exceeds 25%, the visible light transmittance decreases Not desirable for The total content of Cu 2+ and Cu + is more preferably 0.2 to 24%, still more preferably 0.3 to 23%, and still more preferably 0.4 to 22%.
 Sb3+は、必須成分ではないものの、ガラスの酸化性を高め、Cu2+イオンの濃度を増加することで、近赤外線のカット性能を高める効果がある。Sb3+が含有される場合、1%以下が好ましい。Sb3+の含有量が、1%を超えるとガラスの安定性が低下するため好ましくない。Sb3+の含有量は、好ましくは0.01~8%であり、より好ましくは0.05~0.5%であり、さらに好ましくは0.1~0.3%である。 Although Sb 3+ is not an essential component, it has the effect of enhancing the near-infrared cutting performance by enhancing the oxidation of the glass and increasing the concentration of Cu 2+ ions. When Sb 3+ is contained, 1% or less is preferable. When the content of Sb 3+ exceeds 1%, the stability of the glass is reduced, which is not preferable. The content of Sb 3+ is preferably 0.01 to 8%, more preferably 0.05 to 0.5%, and still more preferably 0.1 to 0.3%.
 O2-は、ガラスを安定化させる、強度や硬度や弾性率といった機械的特性を高めるなどのための成分である。O2-の含有量は30~90%であることが好ましい。O2-の含有量が、30%未満であるとその効果が十分得られず、90%を超えるとガラスが不安定となり、耐候性が低下するため好ましくない。O2-の含有量は、より好ましくは30~80%であり、さらに好ましくは30~75%である。 O 2− is a component for stabilizing the glass and enhancing mechanical properties such as strength, hardness and elastic modulus. The content of O 2− is preferably 30 to 90%. If the content of O 2− is less than 30%, the effect can not be sufficiently obtained, and if it exceeds 90%, the glass becomes unstable and the weather resistance is lowered, which is not preferable. The content of O 2− is more preferably 30 to 80%, still more preferably 30 to 75%.
 Fは、ガラスを安定化させるため、耐候性を向上させるための成分である。Fの含有量が、10%未満であるとその効果が十分得られず、70%を超えると強度や硬度や弾性率といった機械的特性が低下するなどのおそれがあるため好ましくない。Fの含有量は、より好ましくは10~50%であり、さらに好ましくは15~40%である。 F is a component for improving the weatherability in order to stabilize the glass. If the content of F is less than 10%, the effect can not be obtained sufficiently, and if it exceeds 70%, mechanical properties such as strength, hardness and elastic modulus may decrease, which is not preferable. F - content of, more preferably 10-50%, more preferably 15 to 40%.
 第1の実施形態のガラスは、PbO、As、V、LaY、YF、YbF、GdFを実質的に含有しないことが好ましい。PbOは、ガラスの粘度を下げ、製造作業性を向上させる成分である。また、Asは、幅広い温度域で清澄ガスを発生できる優れた清澄剤として作用する成分である。しかし、PbOおよびAsは、環境負荷物質であるため、できるだけ含有しないことが望ましい。 The glass according to the first embodiment preferably contains substantially no PbO, As 2 O 3 , V 2 O 5 , LaY 3 , YF 3 , YbF 3 , or GdF 3 . PbO is a component that lowers the viscosity of glass and improves manufacturing workability. In addition, As 2 O 3 is a component that acts as an excellent fining agent capable of generating a fining gas in a wide temperature range. However, since PbO and As 2 O 3 are environmentally hazardous substances, it is desirable not to contain them as much as possible.
 Vは、可視領域に吸収をもつため、紫外線の透過率が低下するおそれがあり、できるだけ含有しないことが望ましい。LaY、YF、YbF、GdFは、ガラスを安定化させる成分であるものの、原料が比較的高価であり、コストアップにつながるので、できるだけ含有しないことが望ましい。ここで、実質的に含有しないとは、原料として意図して用いないことを意味しており、原料成分や製造工程から混入する不可避不純物については含有していないとみなす。このような不可避不純物の量は、例えば、ガラス内部の全体に対して、0.1%以下である。 Since V 2 O 5 absorbs light in the visible region, the transmittance of ultraviolet light may decrease, and it is desirable that V 2 O 5 be not contained as much as possible. Although LaY 3 , YF 3 , YbF 3 , and GdF 3 are components for stabilizing the glass, it is desirable not to contain as much as possible because the raw materials are relatively expensive and cost increases. Here, "not substantially contained" means that it is not intended to be used as a raw material, and it is considered that the raw material components and the unavoidable impurities mixed from the manufacturing process are not contained. The amount of such unavoidable impurities is, for example, 0.1% or less with respect to the entire inside of the glass.
 第2の実施形態のガラスにおいては、ガラス内部の組成にガラスを形成する陽イオンをもった硝酸塩化合物や硫酸塩化合物を、酸化剤あるいは清澄剤として添加することができる。酸化剤は、ガラス中のCu成分のCu/全Cu量を所望の範囲に調整する効果がある。硝酸塩化合物や硫酸塩化合物の添加量は、上記したガラス内部の組成の原料混合物の合量に対し外割添加で0.5~10質量%が好ましい。添加量が0.5質量%未満では透過率改善の効果がなく、10質量%を超えるとガラスの形成が困難になる。添加量は、より好ましくは1~8質量%であり、一層好ましくは3~6質量%である。 In the glass of the second embodiment, it is possible to add a nitrate compound or a sulfate compound having a cation forming the glass in the composition of the glass as an oxidizing agent or a clarifying agent. The oxidizing agent has the effect of adjusting the Cu + / total Cu amount of the Cu component in the glass to a desired range. The addition amount of the nitrate compound and the sulfate compound is preferably 0.5 to 10% by mass in external addition with respect to the total amount of the raw material mixture having the above-described composition inside the glass. If the addition amount is less than 0.5% by mass, there is no effect of improving the transmittance, and if it exceeds 10% by mass, formation of glass becomes difficult. The addition amount is more preferably 1 to 8% by mass, and still more preferably 3 to 6% by mass.
 硝酸塩化合物としては、Al(NO、LiNO、NaNO、KNO、Mg(NO、Ca(NO、Sr(NO、Ba(NO、Zn(NO、Cu(NO等がある。硫酸塩化合物としては、Al(SO・16HO、LiSO、NaSO、KSO、MgSO、CaSO、SrSO、BaSO、ZnSO、CuSO等がある。 The nitrate compounds, Al (NO 3) 3, LiNO 3, NaNO 3, KNO 3, Mg (NO 3) 2, Ca (NO 3) 2, Sr (NO 3) 2, Ba (NO 3) 2, Zn (NO 3 ) 2 , Cu (NO 3 ) 2 and the like. As a sulfate compound, Al 2 (SO 4 ) 3 .16H 2 O, Li 2 SO 4 , Na 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , MgSO 4 , CaSO 4 , SrSO 4 , BaSO 4 , ZnSO 4 , CuSO 4 Etc.
 第2の実施形態のガラスは、F(フッ素)成分を必須成分として含有するため、耐侯性に優れている。具体的には、雰囲気中の水分との反応によるガラス表面の変質や透過率の減少を抑制することができる。耐侯性の評価は、例えば、高温高湿槽を用いて、光学研磨したガラスサンプルを65℃、相対湿度90%の高温高湿槽中に1000時間保持する。そして、ガラス表面のヤケ状態を目視観察して評価することができる。また、高温高湿槽に投入する前のガラスの透過率と高温高湿槽中に1000時間保持した後のガラスの透過率とを比較して評価することもできる。 The glass of the second embodiment contains the F (fluorine) component as an essential component, and therefore is excellent in weathering resistance. Specifically, it is possible to suppress the deterioration of the glass surface and the reduction of the transmittance due to the reaction with the moisture in the atmosphere. The evaluation of the weather resistance is, for example, using a high temperature and high humidity tank, and holding the optically polished glass sample in a high temperature and high humidity tank at 65 ° C. and 90% relative humidity for 1000 hours. Then, the burnt state of the glass surface can be visually observed and evaluated. In addition, the transmittance of the glass before being introduced into the high temperature and high humidity tank can be evaluated by comparing the transmittance of the glass after being held in the high temperature and high humidity tank for 1000 hours.
 ガラス10は、板形状やレンズ形状(凹状、凸状)、管形状、棒形状等、いずれの形状でも用いることができる。例えば、ガラス10を光学フィルタとして用いる場合、板形状であることが好ましい。 The glass 10 can be used in any shape such as a plate shape, a lens shape (concave shape, convex shape), a tube shape, and a rod shape. For example, when using the glass 10 as an optical filter, it is preferable that it is plate shape.
 ガラス10は、板形状で用いる場合、その板厚は0.01~1mmであることが好ましい。ガラス10の板厚が0.01mm未満であると、製造時に破損するリスクが大きい。また、1mm超であると、ガラス10の質量が大きく、機器の軽量化を阻害するおそれがある。 When the glass 10 is used in a plate shape, the plate thickness is preferably 0.01 to 1 mm. If the thickness of the glass 10 is less than 0.01 mm, the risk of breakage during manufacturing is large. Moreover, when it is more than 1 mm, the mass of the glass 10 is large, which may hinder the weight reduction of the device.
 ガラス10は、リン酸系ガラスの特有の光学特性を利用した以下の用途に好適に用いることができる。例えば、低屈折ガラス、低分散ガラス、異常部分分散ガラス、アサーマルガラス(分極率の温度変化が小さい特性を利用)、ファラデー回転ガラス(常磁性ガラス)、レーザーガラス(誘導放出係数の大きい特性を利用)、光学フィルタ(紫外線領域や赤外線領域に特徴的な透過,吸収を有する特性を利用)等である。特に光学フィルタの1種である近赤外線カットフィルタガラスに好適に用いることができる。 The glass 10 can be suitably used for the following applications utilizing the specific optical properties of the phosphate glass. For example, low refractive glass, low dispersion glass, anomalous partial dispersion glass, athermal glass (uses the characteristic that the temperature change of polarizability is small), Faraday rotation glass (paramagnetic glass), laser glass (the characteristic of large stimulated emission coefficient) ), Optical filters (utilizing characteristics having transmission and absorption characteristic in ultraviolet region and infrared region), and the like. In particular, it can be suitably used for near-infrared cut filter glass which is one of optical filters.
 ガラス10には、その表面上に反射防止膜や赤外線カット膜、紫外線および赤外線カット膜などの光学薄膜を設けてもよい。これらの光学薄膜は、単層膜や多層膜よりなるものであって、蒸着法やスパッタリング法などの公知の方法により形成することができる。また、ガラス10には、その表面上に特定の波長の光を吸収する色素や金属微粒子を分散した樹脂層を設けてもよい。 The glass 10 may be provided with an optical thin film such as an antireflective film, an infrared ray cut film, an ultraviolet ray and an infrared ray cut film on the surface thereof. These optical thin films are formed of a single layer film or a multilayer film, and can be formed by a known method such as a vapor deposition method or a sputtering method. Further, on the surface of the glass 10, a resin layer in which a pigment that absorbs light of a specific wavelength or metal fine particles is dispersed may be provided.
 ガラス10の製造方法は特に限定されない。典型的には、ガラス10と同じ形状、大きさのガラス前駆体を作製し、その表層をイオン交換処理により化学強化層とすることで製造できる。 The method for producing the glass 10 is not particularly limited. Typically, a glass precursor having the same shape and size as the glass 10 can be produced, and the surface layer can be manufactured as a chemically strengthened layer by ion exchange treatment.
 具体的には、得られるガラス前駆体が所定の組成範囲、例えば、上記したガラス内部の組成になるように原料を秤量、混合する(混合工程)。この原料混合物を白金ルツボに収容し、電気炉内において700℃~1300℃の温度で加熱溶解する(溶解工程)。十分に撹拌・清澄した後、金型内に鋳込む等して、所定の形状に成形する(成形工程)。次いで、切断・研磨して所定の形状に加工して(加工工程)、ガラス前駆体を得る。なお、ガラス前駆体は、プレス成形、リヒートプレス成形、ダンナー成形、リドロー成形、ベロー成形等の適宜の方法で所定の形状に成形してもよい。 Specifically, the raw materials are weighed and mixed such that the obtained glass precursor has a predetermined composition range, for example, the above-described composition inside the glass (mixing step). This raw material mixture is placed in a platinum crucible, and heated and melted in an electric furnace at a temperature of 700 ° C. to 1300 ° C. (melting step). After sufficiently stirring and clarifying, it is cast into a mold or the like to form it into a predetermined shape (forming step). Next, the glass precursor is cut and polished to be processed into a predetermined shape (processing step) to obtain a glass precursor. The glass precursor may be formed into a predetermined shape by an appropriate method such as press molding, reheat press molding, danner molding, redraw molding, bellows molding and the like.
 得られたガラス前駆体の表層をイオン交換処理することで化学強化層2とし、化学強化層2とイオン交換されていないガラス内部1とからなるガラス10を得る(化学強化層形成工程)。なお、化学強化層形成工程後に、再度ガラスを切断、研磨、薬液(酸性、アルカリ性溶液)浸漬処理してもよい。 The surface layer of the obtained glass precursor is subjected to ion exchange treatment to form a chemically strengthened layer 2, and a glass 10 comprising the chemically strengthened layer 2 and the glass interior 1 not ion-exchanged is obtained (chemically reinforced layer forming step). After the step of forming the chemical strengthening layer, the glass may be cut again, polished, or dipped in a chemical solution (acidic or alkaline solution).
 化学強化層形成工程は、ガラス前駆体の表層をイオン交換処理する工程である。イオン交換処理は、例えば、200℃~450℃の溶融塩中にガラス前駆体を1~50時間程度浸漬することで行うことができる。溶融塩の温度をイオン交換処理温度とする。イオン交換処理温度は、より好ましくは215~400℃である。浸漬時間をイオン交換処理時間とする。イオン交換処理時間は、より好ましくは2~30時間である。 The chemical strengthening layer formation step is a step of ion exchange treatment of the surface layer of the glass precursor. The ion exchange treatment can be performed, for example, by immersing the glass precursor in molten salt at 200 ° C. to 450 ° C. for about 1 to 50 hours. The temperature of the molten salt is taken as the ion exchange treatment temperature. The ion exchange treatment temperature is more preferably 215 to 400 ° C. The immersion time is taken as the ion exchange treatment time. The ion exchange treatment time is more preferably 2 to 30 hours.
 用いる溶融塩は、ガラス前駆体におけるアルカリ金属の組成による。Liを含有しているガラス前駆体のイオン交換はNaおよび/またはKを含む溶融塩中で行われる。Naを含有しているガラス前駆体のイオン交換はKを含む溶融塩中で行われる。溶融塩としては、例えば、硝酸ナトリウム(NaNO)の溶融塩や硝酸カリウム(KNO)と硝酸ナトリウム(NaNO)とを適宜の比率で混合した溶融塩を用いることができる。 The molten salt used depends on the composition of the alkali metal in the glass precursor. Ion exchange of the Li-containing glass precursor is carried out in the molten salt containing Na + and / or K + . Ion exchange of the Na-containing glass precursor is carried out in the molten salt containing K + . As the molten salt, for example, a molten salt of sodium nitrate (NaNO 3 ) or a molten salt in which potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) are mixed at an appropriate ratio can be used.
 本発明のガラスは、表層に化学強化層を有するとともに、ガラス内部は、Pと、Alと、LiおよびNaのいずれか一方、もしくは両方からなるアルカリ金属とを含有する、構成であることから、機械的強度のばらつきが小さいガラスである。例えば、板形状の本発明のガラスにおいて、ガラスの面内強度を破壊荷重にて測定した場合、破壊荷重のばらつきが小さい。これにより、破壊荷重の最小値をある程度見積もれるため、破壊荷重が過度に低いガラスが機器に使用されるのを回避することができる。 Since the glass of the present invention has a chemical strengthening layer on the surface, and the inside of the glass contains P, Al, and an alkali metal composed of either Li or Na, or both, It is a glass with a small variation in mechanical strength. For example, in the plate-shaped glass of the present invention, when the in-plane strength of the glass is measured by the breaking load, the variation of the breaking load is small. As a result, since the minimum value of the breaking load can be estimated to some extent, it is possible to prevent the glass having an excessively low breaking load from being used for the device.
 本発明の実施例と比較例とを表1に示す。例1~例4は本発明の実施例であり、例5は本発明の比較例である。 Examples of the present invention and comparative examples are shown in Table 1. Examples 1 to 4 are examples of the present invention, and Example 5 is a comparative example of the present invention.
[ガラスの作製]
 例1~例5のガラスの作製においては、まず、全て同一の組成のガラス材料からなるガラス前駆体を以下のとおり作製した。なお、用いたガラス材料の組成は以下のとおりであり、Tgは400℃である。
[Preparation of glass]
In preparation of the glasses of Examples 1 to 5, first, glass precursors consisting of glass materials all having the same composition were prepared as follows. The composition of the glass material used is as follows, and Tg is 400 ° C.
 カチオン%表示で、下記成分を含有し、
 P5+:20~60%
 Al3+:3~20%
 ΣR:5~40%(ただし、RはLi、Naのいずれか1つ以上であり、ΣRはこれらの合量を表す)
 ΣR´2+:5~30%(ただし、R´2+はMg2+、Ca2+、Sr2+、Ba2+、およびZn2+のいずれか1つ以上であり、ΣR´2+はこれらの合量を表す)
 Cu2+とCuの合量:0.5~25%
 アニオン%表示で、下記成分を含有する。
 F:10~70%
It contains the following components in cation% display,
P 5+ : 20 to 60%
Al 3+ : 3 to 20%
ΣR +: 5 ~ 40% (provided that, R + is a Li +, Na + or one or more, .SIGMA.R + represents these total amount)
RR ' 2+ : 5 to 30% (wherein R' 2+ is any one or more of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ , and RR ' 2+ represents the total amount of these)
Total content of Cu 2+ and Cu + : 0.5 to 25%
The following components are contained in terms of anion%.
F -: 10 ~ 70%
(ガラス前駆体の作製)
 上記組成のガラス材料の原料を秤量・混合し、内容積約400ccの白金ルツボ内に入れて、700~1300℃の温度で2時間溶融、清澄、撹拌後、およそ300~500℃に予熱した縦50mm×横50mm×高さ20mmの長方形のモールドに鋳込み、徐冷を行った。次いで、得られたガラス板を研磨し、縦50mm×横50mm×板厚0.2mmのガラス前駆体を得た。
(Preparation of glass precursor)
The raw materials of the glass material of the above composition are weighed and mixed, put in a platinum crucible with an inner volume of about 400 cc, melted for 2 hours at a temperature of 700 to 1300 ° C, clarified, stirred and then preheated to about 300 to 500 ° C It was cast in a 50 mm × 50 mm × 20 mm high rectangular mold and annealed. Subsequently, the obtained glass plate was grind | polished and the glass precursor of length 50 mm x width 50 mm x plate thickness 0.2 mm was obtained.
(化学強化層形成工程)
 上記で作製したガラス前駆体を表1に示す条件(溶融塩の種類と比率(質量%)、イオン交換処理温度、イオン交換処理時間)でイオン交換処理して、表層に化学強化層を形成して、例1~例4のガラスを作製した。なお、例5は、化学強化層を形成していないガラス前駆体自体である。
(Chemical strengthening layer formation process)
The glass precursor prepared above is subjected to ion exchange treatment under the conditions shown in Table 1 (type and ratio of molten salt (mass%, ion exchange treatment temperature, ion exchange treatment time) to form a chemically strengthened layer on the surface layer The glasses of Examples 1 to 4 were prepared. Example 5 is the glass precursor itself in which the chemical strengthening layer is not formed.
(評価)
(1)強度評価
 上記で得られた例1~5の実施例および比較例の各ガラスの強度評価を行った。
 強度評価は、リングオンリング試験を用い、ガラスの破壊荷重を測定した。測定方法の詳細は以下のとおりである。支持リング(リング径:30mm)の上にガラスを載置し、ガラスの上から荷重リング(リング径:15mm)を荷重速度0.5mm/分で押圧し、表1記載のサンプル数に対して、破壊荷重を測定した。破壊試験機として、エー・アンド・ディ社製テンシロン万能試験機RTF-1310を用いた。得られた破壊荷重(平均値、最大値、最小値)を表1に示す。
(Evaluation)
(1) Strength Evaluation The strength of each glass of the examples and comparative examples of Examples 1 to 5 obtained above was evaluated.
Strength evaluation measured the breaking load of glass using the ring on ring test. The details of the measurement method are as follows. Place the glass on the support ring (ring diameter: 30 mm), press the load ring (ring diameter: 15 mm) from above the glass at a loading speed of 0.5 mm / min, and for the number of samples listed in Table 1 , The breaking load was measured. As a destruction tester, A & D Tensilon universal tester RTF-1310 was used. The obtained breaking loads (average value, maximum value, minimum value) are shown in Table 1.
(2)圧縮応力の確認
 上記で得られた例1~5の実施例および比較例の各ガラスの化学強化層または例5においては表層における圧縮応力の有無を確認した。
 圧縮応力の有無の確認は、複屈折測定装置(Abrio Micro Imaging System; HINDS Instruments Inc.製)を用いた。確認方法としては、ガラスの化学強化層面に対して垂直方向の断面を鏡面研磨した後、研磨面方向から複屈折測定装置でガラスを観察する。ガラスに圧縮応力が有る場合、ガラスの表面付近に複屈折によるリタデーションが観察される。圧縮応力が無い場合、リタデーションは観察されない。測定結果を表1に示す。
(2) Confirmation of Compressive Stress In the chemically strengthened layer or the example 5 of each glass of the examples and comparative examples of Examples 1 to 5 obtained above, the presence or absence of the compressive stress in the surface layer was confirmed.
The birefringence measurement device (Abrio Micro Imaging System; manufactured by HINDS Instruments Inc.) was used to confirm the presence or absence of the compressive stress. As a confirmation method, after mirror-polishing a cross section in the direction perpendicular to the surface of the chemically strengthened layer of glass, the glass is observed with a birefringence measuring device from the direction of the polished surface. When the glass has a compressive stress, retardation due to birefringence is observed near the surface of the glass. In the absence of compressive stress, no retardation is observed. The measurement results are shown in Table 1.
(3)イオン交換状態の確認
 例1~例4において、化学強化層が形成された実施例の各ガラスの表層にけるイオン交換状態を電子線マイクロアナライザ(JEOL社製、JXA8230)を用いて測定した。具体的には、ガラス中のNaとKのいずれか一方、または両方の含有量が、ガラス内部よりも多くなった部分を化学強化層と特定し、その深さ(ガラス表面からの厚さ)およびイオン交換元素(イオン交換処理により、ガラス前駆体のアルカリ金属に代わって表層に拡散されたイオン元素)を確認した。測定結果を表1に示す。化学強化層の深さはサンプル数における平均である。
(3) Confirmation of Ion Exchange State In Examples 1 to 4, the ion exchange state in the surface layer of each glass of the embodiment in which the chemically strengthened layer is formed is measured using an electron beam microanalyzer (JXA 8230). did. Specifically, a portion where the content of either Na + or K + or both in the glass is larger than that in the glass is identified as a chemical strengthening layer, and its depth (thickness from the glass surface And ion exchange elements (ion elements diffused to the surface layer instead of the alkali metal of the glass precursor by ion exchange treatment) were confirmed. The measurement results are shown in Table 1. The depth of the chemical strengthening layer is an average in the number of samples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の実施例の各ガラスは、比較例のガラスに対し、破壊荷重の標準偏差が小さい。そのため、機器等に用いた場合に破損のリスクを小さくできることがわかる。そのため、機器等に用いた場合に破損のリスクが小さく、より薄い板厚で用いることができる。 From Table 1, each glass of the Example of this invention has a small standard deviation of a breaking load with respect to the glass of a comparative example. Therefore, it can be seen that the risk of breakage can be reduced when used in equipment or the like. Therefore, when it uses for an apparatus etc., the risk of breakage is small and it can use with thinner board thickness.
 本発明のガラスは、表層の少なくとも一部が化学強化層で構成されるガラスであって、化学強化層を除くガラス内部が、Pと、Alと、LiおよびNaのいずれか一方、もしくは両方からなるアルカリ金属とを含有する、構成であることから、機械的強度のばらつきが小さいガラスである。 The glass of the present invention is a glass in which at least a part of the surface layer is composed of a chemical strengthening layer, and the inside of the glass excluding the chemical strengthening layer is made of P, Al, Li and Na, or both Since it is a structure containing the alkali metal which becomes, it is glass with a small dispersion | variation in mechanical strength.

Claims (12)

  1.  表層の少なくとも一部が化学強化層で構成されるガラスであって、前記ガラスは、前記化学強化層を除くガラス内部が、Pと、Alと、LiおよびNaのいずれか一方、もしくは両方からなるアルカリ金属とを含有する、ガラス。 It is a glass in which at least a part of the surface layer is composed of a chemical strengthening layer, and the glass except for the chemical strengthening layer consists of P, Al, Li and / or Na, or both. Glass containing an alkali metal.
  2.  前記化学強化層の厚さは1~100μmである請求項1に記載のガラス。 The glass according to claim 1, wherein the thickness of the chemical strengthening layer is 1 to 100 μm.
  3.  前記化学強化層は、圧縮応力を有する請求項1または請求項2に記載のガラス。 The glass according to claim 1, wherein the chemical strengthening layer has a compressive stress.
  4.  前記ガラスのガラス転移温度は、600℃以下である請求項1ないし請求項3のいずれか1項に記載のガラス。 The glass according to any one of claims 1 to 3, wherein the glass transition temperature of the glass is 600 ° C or less.
  5.  前記ガラスは、ネットワーク形成成分がPである請求項1ないし請求項4のいずれか1項に記載のガラス。 The glass according to any one of claims 1 to 4, wherein the glass has a network forming component P.
  6.  前記ガラスは、Fを含有する請求項1ないし請求項5のいずれか1項に記載のガラス。 The glass according to any one of claims 1 to 5, wherein the glass contains F.
  7.  前記ガラスは、Cuを含有する請求項1ないし請求項6のいずれか1項に記載のガラス。 The glass according to any one of claims 1 to 6, wherein the glass contains Cu.
  8.  前記ガラス内部は、酸化物換算の質量%表示で
    :35~80%
    Al:5~20%
    ΣRO:3~30%(ただし、ROはLiO、NaOのいずれか1つ以上であり、ΣROはこれらの合量を表す)
    ΣR´O:3~35%(ただし、R´OはMgO、CaO、SrO、BaO、およびZnOのいずれか1つ以上であり、ΣR´Oはこれらの合量を表す)
    CuO:0.5~20%
    を含有する請求項1ないし請求項7のいずれか1項に記載のガラス。
    The glass interior, P 2 O 5 in mass% on oxide conversion: 35-80%
    Al 2 O 3 : 5 to 20%
    ΣR 2 O: 3 ~ 30% ( provided that, R 2 O is a Li 2 O, Na 2 O or one or more, .SIGMA.R 2 O represents these total amount)
    ΣR′O: 3 to 35% (wherein R′O is one or more of MgO, CaO, SrO, BaO, and ZnO, and ΣR′O represents the total amount of these)
    CuO: 0.5 to 20%
    The glass according to any one of claims 1 to 7, which contains
  9.  前記ガラス内部は、カチオン%表示で
    5+:20~60%
    Al3+:3~20%
    ΣR:5~40%(ただし、RはLi、Naのいずれか1つ以上であり、ΣRはこれらの合量を表す)
    ΣR´2+:5~30%(ただし、R´2+はMg2+、Ca2+、Sr2+、Ba2+、およびZn2+のいずれか1つ以上であり、ΣR´2+はこれらの合量を表す)
    Cu2+とCuの合量:0.5~25%
    を含有すると共に、
     アニオン%表示で、
    :10~70%
    を含有する請求項1ないし請求項7のいずれか1項に記載のガラス。
    The inside of the glass is P 5+ in terms of cation%: 20 to 60%
    Al 3+ : 3 to 20%
    ΣR +: 5 ~ 40% (provided that, R + is a Li +, Na + or one or more, .SIGMA.R + represents these total amount)
    RR ' 2+ : 5 to 30% (wherein R' 2+ is any one or more of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ , and RR ' 2+ represents the total amount of these)
    Total content of Cu 2+ and Cu + : 0.5 to 25%
    While containing
    In% anion,
    F -: 10 ~ 70%
    The glass according to any one of claims 1 to 7, which contains
  10.  前記ガラスは板形状である請求項1ないし請求項9のいずれか1項に記載のガラス。 The glass according to any one of claims 1 to 9, wherein the glass has a plate shape.
  11.  前記ガラスは、板厚が0.01mm~1mmである請求項10に記載のガラス。 The glass according to claim 10, wherein the glass has a thickness of 0.01 mm to 1 mm.
  12.  近赤外線カットフィルタガラスである請求項1ないし請求項11のいずれか1項に記載のガラス。 The glass according to any one of claims 1 to 11, which is a near infrared cut filter glass.
PCT/JP2018/030691 2017-08-31 2018-08-20 Glass WO2019044563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019539374A JP7092135B2 (en) 2017-08-31 2018-08-20 Glass
CN201880055878.1A CN111051262B (en) 2017-08-31 2018-08-20 Glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-167161 2017-08-31
JP2017167161 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044563A1 true WO2019044563A1 (en) 2019-03-07

Family

ID=65526321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030691 WO2019044563A1 (en) 2017-08-31 2018-08-20 Glass

Country Status (3)

Country Link
JP (1) JP7092135B2 (en)
CN (1) CN111051262B (en)
WO (1) WO2019044563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138299A1 (en) * 2020-12-25 2022-06-30 Agc株式会社 Fluorophosphate glass and near infrared ray cut filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538772B (en) * 2022-03-24 2022-12-02 成都光明光电股份有限公司 Glass, glass element and optical filter

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235740A (en) * 1984-04-18 1985-11-22 シヨツト グラスヴエルケ Glass for optical colored filter
JPH04104918A (en) * 1990-08-23 1992-04-07 Asahi Glass Co Ltd Near infrared absorbing glass
JPH0616451A (en) * 1991-06-18 1994-01-25 Toshiba Glass Co Ltd Filter glass for cutting near-infrared rays
JP2005320178A (en) * 2004-05-06 2005-11-17 Isuzu Seiko Glass Kk Near infrared ray cut glass
JP2006342024A (en) * 2005-06-09 2006-12-21 Asahi Techno Glass Corp Near infrared ray blocking filter glass
JP2007099604A (en) * 2005-09-06 2007-04-19 Hoya Corp Near infrared ray absorbing glass, near infrared ray absorbing element provided with the same and imaging device
JP2012148964A (en) * 2010-12-23 2012-08-09 Schott Ag Fluorophosphate glass
JP2014101255A (en) * 2012-11-21 2014-06-05 Nippon Electric Glass Co Ltd Method for producing fluorophosphate glass
JP2015078086A (en) * 2013-10-16 2015-04-23 日本電気硝子株式会社 Optical glass
WO2015080043A1 (en) * 2013-11-26 2015-06-04 旭硝子株式会社 Glass member, and glass-member production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968621A (en) * 2013-02-04 2015-10-07 旭硝子株式会社 Method for cutting glass substrate, glass substrate, near infrared ray cut filter glass and method for manufacturing glass substrate
WO2015156163A1 (en) * 2014-04-09 2015-10-15 旭硝子株式会社 Near infrared cut-off filter glass

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235740A (en) * 1984-04-18 1985-11-22 シヨツト グラスヴエルケ Glass for optical colored filter
JPH04104918A (en) * 1990-08-23 1992-04-07 Asahi Glass Co Ltd Near infrared absorbing glass
JPH0616451A (en) * 1991-06-18 1994-01-25 Toshiba Glass Co Ltd Filter glass for cutting near-infrared rays
JP2005320178A (en) * 2004-05-06 2005-11-17 Isuzu Seiko Glass Kk Near infrared ray cut glass
JP2006342024A (en) * 2005-06-09 2006-12-21 Asahi Techno Glass Corp Near infrared ray blocking filter glass
JP2007099604A (en) * 2005-09-06 2007-04-19 Hoya Corp Near infrared ray absorbing glass, near infrared ray absorbing element provided with the same and imaging device
JP2012148964A (en) * 2010-12-23 2012-08-09 Schott Ag Fluorophosphate glass
JP2014101255A (en) * 2012-11-21 2014-06-05 Nippon Electric Glass Co Ltd Method for producing fluorophosphate glass
JP2015078086A (en) * 2013-10-16 2015-04-23 日本電気硝子株式会社 Optical glass
WO2015080043A1 (en) * 2013-11-26 2015-06-04 旭硝子株式会社 Glass member, and glass-member production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138299A1 (en) * 2020-12-25 2022-06-30 Agc株式会社 Fluorophosphate glass and near infrared ray cut filter

Also Published As

Publication number Publication date
JPWO2019044563A1 (en) 2020-10-15
CN111051262A (en) 2020-04-21
JP7092135B2 (en) 2022-06-28
CN111051262B (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6879215B2 (en) Optical glass
JP6604337B2 (en) Glass substrate, laminated substrate, and method for manufacturing glass substrate
KR102564323B1 (en) glass for chemical strengthening
EP3652124B1 (en) Glass-based articles with improved stress profiles
JP6922741B2 (en) Optical glass
CN111423111A (en) Glass material
WO2010119964A1 (en) Filter glass cutting near infrared rays
CN110194589B (en) Near-infrared light absorbing glass, glass product, element and optical filter
JP2022078351A (en) Non-alkali glass substrate, laminate substrate, and manufacturing method of glass substrate
TW201834991A (en) Optical glass, preform, and optical element
JP2010208906A (en) Substrate glass for optical device
US20200325063A1 (en) Optical glass and optical member
JP7092135B2 (en) Glass
JP6075714B2 (en) Optical glass
JPWO2018025727A1 (en) Alkali-free glass substrate, laminated substrate, and method of manufacturing glass substrate
JPH0624998B2 (en) Alkali free glass
TW201837005A (en) Optical glass
US20220388893A1 (en) Ultraviolet transmission glass
KR20180041066A (en) Glass for chemical strengthening
JP2004026510A (en) Substrate glass for multilayered film filter and multilayered film filter
TWI838347B (en) Chemically strengthened glass
WO2022085403A1 (en) Optical element having compression stress layer
WO2023219023A1 (en) Glass, glass sheet, and method for producing glass sheet
TW202319361A (en) Chemically strengthened optical glass
US20230133650A1 (en) Chemically strengthened optical glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849639

Country of ref document: EP

Kind code of ref document: A1