WO2019044132A1 - Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER MAGNETIC CORE, ELECTRIC/ELECTRONIC-RELATED COMPONENT, AND DEVICE - Google Patents

Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER MAGNETIC CORE, ELECTRIC/ELECTRONIC-RELATED COMPONENT, AND DEVICE Download PDF

Info

Publication number
WO2019044132A1
WO2019044132A1 PCT/JP2018/023572 JP2018023572W WO2019044132A1 WO 2019044132 A1 WO2019044132 A1 WO 2019044132A1 JP 2018023572 W JP2018023572 W JP 2018023572W WO 2019044132 A1 WO2019044132 A1 WO 2019044132A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
based alloy
soft magnetic
magnetic material
alloy composition
Prior art date
Application number
PCT/JP2018/023572
Other languages
French (fr)
Japanese (ja)
Inventor
景子 土屋
祐輔 佐藤
岡本 淳
寿人 小柴
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2019044132A1 publication Critical patent/WO2019044132A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Definitions

  • the present invention relates to an Fe-based alloy composition, a soft magnetic material formed from the Fe-based alloy composition, a dust core containing magnetic powder of the soft magnetic material, an electric / electronic related component including the dust core, The invention also relates to a device provided with this electric / electronic related component.
  • Patent Document 1 discloses a dust core obtained by compression molding and heat treating a mixture having a soft magnetic powder and an insulating binder, wherein the insulating binder is a binder.
  • a dust core is described which comprises a resin and glass, and the glass transition temperature (Tg) of the glass is lower than the temperature of the heat treatment.
  • the present invention provides a dust core excellent in the thermal stability (also referred to as “heat resistance” in the present specification) of the magnetic characteristics by an approach different from the invention described in Patent Document 1, and such a pressure
  • An object of the present invention is to provide a soft magnetic material suitable as a constituent material of a powder core and an Fe-based alloy composition capable of forming this material.
  • Another object of the present invention is to provide an electrical / electronic related component including the above-described dust core and an apparatus including the electronic / electrical related component.
  • an Fe-based alloy composition capable of forming a soft magnetic material containing an amorphous phase having a glass transition temperature Tg, wherein the composition formula is Fe 1-a T a) 100 atomic% - (represented by x + y + z + b + c + d) M x B b C c Si d P y Cr z, T is one or two elements selected from Co and Ni be any additive element
  • M is an optional additive element, and is made of one or more selected from the group consisting of Ti, V, Zr, Nb, Mo, Hf, Ta, W and Al, and the following conditions are satisfied: It is a Fe-based alloy composition that is characterized.
  • the heat resistance of the dust core is enhanced by enhancing the heat resistance of the binder contained in the dust core.
  • the heat resistance of the dust core is enhanced by enhancing the heat resistance of the magnetic powder contained in the dust core.
  • the addition amount of P is set relatively low for the Fe-based alloy composition for forming the magnetic powder, and the oxidation resistance of the magnetic powder formed from the Fe-based alloy composition is improved.
  • a dust core containing a magnetic powder with improved oxidation resistance has a large coercive force Hc, which has a great influence on the magnetic properties, particularly the core loss Pcv and the magnetic permeability ⁇ , even when placed in a high temperature environment for a long time. Hateful.
  • z be 1.5 atomic% or more.
  • y may be preferably 6.0 atomic percent or less, and may be more preferably 4.8 atomic percent or less.
  • d be 1.2 atomic percent or more and 3.2 atomic percent or less.
  • the present invention provides a soft magnetic material characterized by containing an amorphous phase having the composition of the Fe-based alloy composition described above and having a glass transition temperature Tg.
  • the supercooled liquid region ⁇ Tx which is the temperature difference (Tx-Tg) between the crystallization start temperature Tx of the soft magnetic material and the glass transition temperature Tg, may be preferably 24 K or more, and is preferably 27 K or more May be more preferable, and 32 K or more may be particularly preferable. It may be preferable that the glass transition temperature Tg is 800 K or less.
  • the coercivity Hc measured after a heat resistance test in which the soft magnetic material is left in an environment of 250 ° C. for 1000 hours may preferably be 20.7 A / m or less.
  • the rate of change of the coercive force Hc measured after the heat resistance test in which the soft magnetic material is left in an environment of 250 ° C. for 1000 hours with respect to the coercive force Hc of the soft magnetic material before the heat resistance test is 5.2 or less May be preferred.
  • the present invention provides, in another aspect, a dust core containing a magnetic powder of the soft magnetic material described above. Furthermore, the present invention provides, as yet another aspect, an electric / electronic related component including the above-described dust core and an apparatus including the above electric / electronic related component.
  • a dust core having excellent thermal stability of magnetic properties a soft magnetic material suitable as a constituent material of the dust core, and an Fe-based alloy composition capable of forming the soft magnetic material are provided.
  • an electric / electronic related component including the above-described dust core and an apparatus including such an electronic / electric related component.
  • the relationship between the rate of change of the coercive force Hc and the P content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 74.3 atomic% prepared in the example It is a graph which shows (The total of the addition amount of P and the addition amount of B is fixed).
  • the relationship between the rate of change of the coercive force Hc and the Si content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 74.3 atomic% prepared in the example It is a graph which shows (The total of the addition amount of Si and the addition amount of B is fixed).
  • the relationship between the rate of change of the coercive force Hc and the P content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 76.4 atomic% prepared in the examples It is a graph which shows (The total of the addition amount of P and the addition amount of C is fixed).
  • the relationship between the rate of change of the coercive force Hc and the Si content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 76.4 atomic% prepared in the example It is a graph which shows (The total of the addition amount of Si and the addition amount of B is fixed).
  • Based on the surface analysis of the ribbon samples produced in the Examples is a graph showing the relationship between the existing ratio of Fe 2 O 3 in the coercive force Hc and the surface of the ribbon-like sample.
  • An Fe-based alloy composition according to an embodiment of the present invention is an Fe-based alloy composition capable of forming a soft magnetic material containing an amorphous phase having a glass transition temperature Tg, and has a composition formula (Fe 1-a T a ) 100 atomic%-(x + y + z + b + c + d ) M x B b C c Si d P y C r z , which satisfies the condition defined by the following formula.
  • T is an optional additive element and is one or two selected from Co and Ni
  • M is an optional additive element and is composed of Ti, V, Zr, Nb, Mo, Hf, Ta, W and Al It consists of 1 type, or 2 or more types chosen from a group.
  • the Fe-based alloy composition according to one embodiment of the present invention may contain unavoidable impurities in addition to the following components.
  • the addition amount b of B in the Fe-based alloy composition is 4 atomic% or more.
  • the melting point Tm of the alloy may be high, and it may be difficult to form an amorphous. Therefore, the addition amount b of B in the Fe-based alloy composition is 14 atomic% or less.
  • the additive amount b of B in the Fe-based alloy composition is set to 4.2 atomic% or more and 13.6 atomic% or less It is preferable to set it as 7.6 atomic% or more and 11.6 atomic% or less.
  • the addition amount c of C is 0.5 atomic% or more.
  • the addition amount c of C may preferably be 2.0 atomic% or more, and may be more preferably 2.2 atomic% or more. In some cases, it is particularly preferable to set the content to 2.6 atomic% or more.
  • alloying may be difficult.
  • the addition amount c of C in the Fe-based alloy composition is 7 atomic% or less. From the viewpoint of more stably lowering the melting point Tm of the Fe-based alloy composition or generating the glass transition temperature Tg of the soft magnetic material in an appropriate temperature range, the addition amount c of C in the Fe-based alloy composition It may be preferable that the content be 6.6 atomic% or less, and it may be more preferable that the content be 6.2 atomic% or less.
  • Si enhances the thermal stability of the Fe-based alloy composition and has excellent amorphous formation ability.
  • the addition amount d of Si in the Fe-based alloy composition is increased, the crystallization start temperature Tx is preferentially raised over the glass transition temperature Tg for the soft magnetic material formed from the Fe-based alloy composition, The cooling liquid area ⁇ Tx can be expanded.
  • the melting point Tm of the Fe-based alloy composition can be decreased, and the workability using a molten metal can be improved.
  • the Fe-based alloy composition according to an embodiment of the present invention contains Si, and the addition amount d of Si is set to 0.5 atomic% or more, 1.2 atomic%. It may be preferable to set it as above, it may be more preferable to set it to 2.0 atomic% or more, and it may be particularly preferable to set it to 2.4 atomic% or more.
  • the glass transition temperature Tg of the soft magnetic material formed from the Fe-based alloy composition rapidly increases, and it is difficult to widen the subcooled liquid region ⁇ Tx. Become.
  • the addition amount d of Si in the Fe-based alloy composition may be 5.3 atomic% or less, and may be preferably 5.2 atomic% or less, and more preferably 4.4 atomic% or less In some cases, it may be particularly preferable to set the content to 3.2 atomic% or less.
  • the addition of P into the Fe-based alloy composition facilitates the formation of a soft magnetic material from the Fe-based alloy composition. Further, by adding P into the Fe-based alloy composition, the glass transition temperature Tg is easily expressed in the soft magnetic material formed from the Fe-based alloy composition. Therefore, the addition amount y of P in the Fe-based alloy composition is preferably 4 atomic% or more, more preferably 4.8 atomic% or more, and more preferably 6.0 atomic% or more to achieve the glass transition temperature Tg more stably. It becomes possible to make it express. On the other hand, P may lower the oxidation resistance of the soft magnetic material formed from the Fe-based alloy composition.
  • the soft magnetic material formed from the Fe-based alloy composition with appropriate oxidation resistance.
  • that the soft magnetic material has appropriate oxidation resistance means that the coercive force Hc can be kept low even when the dust core containing the magnetic powder of the soft magnetic material is placed in a high temperature environment or It contributes to the ability to maintain the permeability ⁇ high.
  • P is easily oxidized and easily precipitated as an oxide, so the composition stability is relatively low, and the possibility of impurities mixing from the raw material of P is also relatively High.
  • the addition amount y of P in the Fe-based alloy composition is 7.8 It may be preferable to set it to atomic% or less, it may be more preferable to set it to 6.8 atomic% or less, and it may be particularly preferable to set it to 6.0 atomic% or less.
  • the Cr can promote the formation of a passivation layer on the surface of the magnetic powder of the soft magnetic material formed from the Fe-based alloy composition, and the corrosion resistance of the Fe-based amorphous alloy is improved.
  • the additive amount z of Cr in the Fe-based alloy composition is 0.5 atomic% or more.
  • Cr also suppresses the oxidation of the amorphizing elements (B, C, Si, P, etc.) contained in the Fe-based alloy composition.
  • the Fe-based alloy composition contains 1.5 atomic% or more of Cr, these amorphizing elements act stably in the soft magnetic material formed from the Fe-based alloy composition, and the soft magnetic material It is more stably realized that the material has a glass transition temperature Tg.
  • the addition amount of Cr in the Fe-based alloy composition is 8 atomic% or less, and it is effective to suppress the addition amount to the necessary minimum (for example, 2.5 atomic% or less).
  • an element composed of one or two or more kinds selected from Co and Ni Optional additional element) T may be added.
  • Ni and Co are elements which exhibit ferromagnetism at room temperature as well as Fe.
  • the element T is preferably substituted by about 3/10 or less with respect to the addition amount (unit: atomic%) of Fe.
  • substitution by about 2/10 with respect to the addition amount of Fe (unit: atomic%) increases the saturation magnetic flux density Bs.
  • the substitution amount of the element T is more preferably 2/10 or less with respect to the addition amount (unit: atomic%) of Fe.
  • the Fe-based alloy composition in addition to the above-described additive elements (B, C, Si, P, Cr). And optionally, one or more elements selected from the group consisting of Al and Al may be added. These elements function as substitution elements for Fe or function as amorphizing elements.
  • the addition amount x of the optional additional element M in the Fe-based alloy composition is excessively high, the addition amount of the above additional elements (B, C, Si, P, Cr) and the addition amount of Fe relatively decrease As a result, it may be difficult to enjoy the benefits based on the addition of these elements.
  • the upper limit of the additive amount x of the optional additional element M is 4 atomic% or less in consideration of this point.
  • the contents of the Fe-based alloy composition other than the above-mentioned additional elements (B, C, Si, P, Cr) and the optional additional element M are represented by 100 atomic%-(x + y + z + b + c + d).
  • this content is also referred to as ⁇ .
  • the content ⁇ means the sum of the content of Fe and the content of the element T.
  • the higher the content ⁇ the easier it is to improve the magnetic properties of the soft magnetic material formed from the Fe-based alloy composition.
  • the content ⁇ is excessively high, the amorphous material is changed from the Fe-based alloy composition. It becomes difficult to form.
  • the content ⁇ is 70 atomic% or more and 79 atomic% or less Do.
  • the soft magnetic material according to an embodiment of the present invention is a soft magnetic material having the composition of the Fe-based alloy composition according to an embodiment of the present invention described above and containing an amorphous phase having a glass transition temperature Tg. .
  • the amorphous phase in the soft magnetic material according to one embodiment of the present invention is preferably the main phase of the soft magnetic material.
  • main phase means the phase with the highest volume fraction in the soft magnetic material tissue.
  • the soft magnetic material according to an embodiment of the present invention substantially consists of an amorphous phase.
  • "consisting essentially of an amorphous phase” means that no distinctive peak is observed in the X-ray diffraction spectrum obtained by X-ray diffraction measurement of the soft magnetic material.
  • the method of manufacturing the soft magnetic material according to an embodiment of the present invention from the Fe-based alloy composition according to an embodiment of the present invention is not limited. From the viewpoint of facilitating obtaining a soft magnetic material in which the main phase is amorphous or a soft magnetic material substantially consisting of an amorphous phase, a quenched ribbon method such as a single roll method or a twin roll method, a gas atomization method, water It is preferable to manufacture by atomizing methods, such as the atomizing method. In the case of production by the water atomization method, since the molten metal of the Fe-based alloy composition contacts water, the possibility of oxidation occurring in the produced soft magnetic material is relatively high.
  • the Fe-based alloy composition according to one embodiment of the present invention suitably contains Cr and Si that contribute to the improvement of oxidation resistance as additive elements, while the oxidation resistance is lowered.
  • the addition amount of P is appropriately set so that the occurrence of.
  • the soft magnetic material formed from the Fe-based alloy composition according to one embodiment of the present invention is excellent in oxidation resistance, and even when it is formed by a water atomization method, a failure due to oxidation occurs. Hateful.
  • the obtained soft magnetic material has a band-like shape.
  • a soft magnetic material having a powder shape can be obtained.
  • the obtained soft magnetic material has a powder shape.
  • the Curie temperature Tc, the glass transition temperature Tg, and the crystallization start temperature Tx which are thermal characteristics of the soft magnetic material, are differential scanning calorific values with a heating rate of 40 K / min for the soft magnetic material. It is set based on a DSC chart obtained by performing measurement (as a measurement device, “Thermo Plus DSC 8270” manufactured by Rigaku is exemplified).
  • the supercooled liquid region ⁇ Tx is a temperature difference (Tx ⁇ Tg) between the crystallization start temperature Tx and the glass transition temperature Tg.
  • the supercooled liquid region ⁇ Tx in the soft magnetic material according to one embodiment of the present invention is preferably 24 K or more, and preferably 27 K or more from the viewpoint of facilitating the heat treatment of the magnetic member containing such soft magnetic material. Is more preferable, and 32 K or more is more preferable.
  • the glass transition temperature Tg When the glass transition temperature Tg is excessively high, the above-described supercooled liquid region ⁇ Tx tends to be narrow.
  • distortion may be applied to the magnetic powder in the manufacturing process (for example, pressure molding). In this case, the dust core is annealed to relieve the stress due to the applied strain.
  • the annealing temperature When the glass transition temperature Tg is high, the annealing temperature tends to be high. The high annealing temperature lowers the freedom of selection of the resin-based material used to form the dust core. Therefore, it may be preferable that glass transition temperature Tg is 800 K or less.
  • the Curie temperature Tc of the soft magnetic material according to an embodiment of the present invention is preferably 500 K or more, and more preferably 600 K or more. It is preferable that the Curie temperature Tc is high because it raises the operation guarantee temperature of the electric / electronic related parts including the dust core containing the magnetic powder of the soft magnetic material according to the embodiment of the present invention.
  • a dust core according to an embodiment of the present invention contains magnetic powder of a soft magnetic material according to the above-described embodiment of the present invention.
  • the specific shape and manufacturing method of the dust core according to an embodiment of the present invention are not limited.
  • powder compacting of a powder material containing a magnetic powder of a soft magnetic material according to an embodiment of the present invention described above can be mentioned.
  • FIG. 1 shows a toroidal core 1 having a ring shape as an example of such a magnetic core.
  • Another example of a dust core according to an embodiment of the present invention is a coil embedded core in which a coil is embedded.
  • the magnetic characteristics of the electronic components may be reduced.
  • the dust core is subjected to an annealing treatment to relieve the stress based on the strain in the dust core, thereby suppressing the deterioration of the magnetic characteristics of the electric / electronic related parts provided with the dust core. It is commonly done.
  • the soft magnetic material contained therein contains an amorphous phase having a glass transition temperature Tg, and in a preferred example, the supercooled liquid region ⁇ Tx is 24 K or more. Can be done easily. From the viewpoint of preventing the annealing temperature from becoming excessively high, the glass transition temperature Tg is preferably 800 K or less. Therefore, the electric / electronic related component provided with the dust core according to an embodiment of the present invention can have excellent magnetic properties.
  • An inductor, a motor, a transformer, an electromagnetic interference suppression member etc. are mentioned as a specific example of the electric and electronic related components which concern on one Embodiment of such this invention.
  • An apparatus includes the electric / electronic related components according to the above-described embodiment of the present invention.
  • Specific examples of such devices include portable electronic devices such as smartphones, notebook computers and tablet terminals; electronic computers such as personal computers and servers; transport devices such as automobiles and two-wheelers; electricity-related devices such as power generation facilities, transformers, and storage facilities Is illustrated.
  • Fe-based alloy compositions having the compositions shown in Tables 1 to 3 were prepared. Specifically, predetermined amounts of raw material substances of the respective elements constituting the Fe-based alloy composition are weighed and placed in a crucible, and these raw material substances are melted by a high frequency induction heating device under a reduced pressure argon atmosphere and desired The composition of In addition, although the numerical value of each element shown in Table 1 to Table 3 is the addition amount (unit: atomic%) of the raw material when preparing the alloy, the composition change in the process of preparation is slight, The composition based on this addition amount is substantially equal to the composition of the content (unit: atomic%) of the soft magnetic material formed from the Fe-based alloy composition.
  • a ribbon-like sample obtained by the liquid quenching method (single roll method) from the prepared Fe-based alloy composition was subjected to X-ray diffraction measurement (ray source: CoK ⁇ ) by a Rigaku “RINT-2500” XRD apparatus.
  • X-ray diffraction measurement ray source: CoK ⁇
  • Rigaku “RINT-2500” XRD apparatus A line diffraction spectrum was obtained. From these spectra, the tissue of the ribbon-like sample according to each example was classified. The results are shown in Tables 4 to 6. The meanings of the symbols in these tables are as follows.
  • the mass magnetization ⁇ s (unit: Wbm / kg) of the ribbon sample according to each example was measured with a VSM (vibrating sample magnetometer: “BHV-30” manufactured by Riken Denshi Co., Ltd.) with an applied magnetic field of 10 kOe.
  • VSM vibrating sample magnetometer: “BHV-30” manufactured by Riken Denshi Co., Ltd.
  • the ribbon-like sample according to each example was subjected to an annealing treatment in which the temperature was raised from room temperature at 40 K / min in a nitrogen atmosphere, and held at a holding temperature of 390 ° C. for 60 minutes. The stress due to strain was relaxed.
  • FIG. 2 shows the change rate (Hc change rate) of the coercive force Hc for the samples of Example 21, Example 22, Example 25, Example 51 and Example 53 in which the additive amount of Fe is 74.3 atomic%. It is a graph which shows the relationship between and P addition amount of a Fe-based alloy composition.
  • the addition amounts of Fe, Cr, C and Si are fixed, the sum of the addition amounts of P and B is fixed to 16.4 atomic%, and the addition amount of P is changed.
  • the rate of change of the coercive force Hc (rate of change of Hc) is shown.
  • FIG. 3 shows the rate of change of coercive force Hc (the rate of change of Hc) for the samples of Example 21, Example 23, Example 26, Example 52 and Example 54 in which the additive amount of Fe is 74.3 atomic%. It is a graph which shows the relationship between and P addition amount of a Fe-based alloy composition. In FIG. 3, the addition amounts of Fe, Cr, B and Si are fixed, the sum of the addition amounts of P and C is fixed at 11.4 atomic%, and the addition amount of P is changed. The rate of change of the coercive force Hc (rate of change of Hc) is shown.
  • FIG. 4 shows the change rate (Hc change rate) of the coercive force Hc and the Fe-based alloy for the samples of Example 22, Example 55, Example 56 and Example 61 in which the additive amount of Fe is 74.3 atomic%. It is a graph which shows a relationship with Si addition amount of a composition.
  • the addition amounts of Fe, Cr, P and C are fixed, and the sum of the addition amounts of B and Si is fixed to 14.8 atomic%, and the addition amount of Si is changed.
  • the rate of change of the coercive force Hc (rate of change of Hc) is shown.
  • FIG. 5 shows the change in coercive force Hc for the samples of Example 27, Example 29, Example 32, Example 35, Example 58, and Example 59 in which the additive amount of Fe is 76.4 atomic%. It is a graph which shows the relationship between (Hc change rate) and P addition amount of Fe base alloy composition.
  • the addition amounts of Fe, Cr, C, and Si are fixed, and the sum of the addition amounts of P and B is fixed to 15.0 atomic%, and the addition amount of P is changed.
  • the rate of change of the coercive force Hc (rate of change of Hc) is shown.
  • FIG. 6 shows the change rate (Hc change rate) of the coercive force Hc and the Fe-based alloy for the samples of Examples 27, 30, 57 and 60 in which the additive amount of Fe is 76.4 atomic%. It is a graph which shows the relationship with P addition amount of a composition. In FIG. 3, the addition amounts of Fe, Cr, B and Si are fixed, and the sum of the addition amounts of P and C is fixed to 13.0 atomic%, and the addition amount of P is changed. The rate of change of the coercive force Hc (rate of change of Hc) is shown.
  • FIG. 7 shows the change rate (Hc change rate) of the coercive force Hc and the Fe-based alloy for the samples of Example 28, Example 29, Example 33 and Example 34 in which the additive amount of Fe is 76.4 atomic%. It is a graph which shows a relationship with Si addition amount of a composition.
  • the Hc change rate tends to be 15 or more when the addition amount of P exceeds 8 atomic%, and the heat resistance test The increase of the magnetic force Hc becomes remarkable.
  • the addition amount of Fe is 76.4 atomic%
  • the Hc change rate tends to be 5 or more when the addition amount of P exceeds 8 atomic%, and also according to the heat resistance test
  • the increase in coercivity Hc becomes remarkable.
  • the addition amount of P is 7.8 atomic% or less from the viewpoint of stably suppressing that the Hc change rate becomes excessive, as shown in FIG. 2 and FIG. 3 and FIG. 5 and FIG. It is understood from.
  • the additive amount of P is 6 atomic% or less or 4.8 atomic% or less, it is also stably realized that the Hc change rate is approximately 2 or less. It can be understood from FIGS. 5 and 6.
  • the rate of change decreases when the amount of Si added is 2 to 5.3 atomic percent, and the Hc change rate tends to increase outside this range.
  • the addition amount of Si is 5.5 atomic% or more, the increasing tendency of the Hc change rate becomes remarkable. Therefore, the Hc change rate can be stably lowered by setting the addition amount of Si to 5.3 atomic%.
  • Example 10 About the ribbon-shaped sample which concerns on Example 1 to Example 5, Example 9, and Example 10, the composition analysis of the surface and its vicinity was performed combining Auger electron spectroscopy measurement and sputtering. The measurement was performed on the sample before the heat resistance test and the sample after the heat resistance test to evaluate the influence of the heat resistance test.
  • composition analysis in the vicinity of the surface was performed to measure the depth (unit: nm) at which the peak based on oxygen was substantially undetectable.
  • the relationship between the depth (detection depth) and the coercive force Hc is shown in FIG.
  • the detection depth was 10 nm or less before the heat resistance test, and only the very surface layer of the sample was oxidized, but after the heat resistance test, the oxidation was in a region deeper than 10 nm In some cases, oxidation proceeds to 100 nm or more.
  • a positive correlation was basically found between the detection depth and the coercivity Hc, and it was found that the coercivity Hc tends to increase as the oxidation progresses.
  • composition analysis of the surface was performed to determine the presence ratio of Fe oxides, specifically, Fe 2 O 3 and FeO on the surface (unit: atomic%).
  • the relationship between the result and the coercive force Hc is shown in FIG. 9 and FIG.
  • the existence ratio of Fe oxides on the surface is higher after the heat resistance test than before the heat resistance test, and it is basically positive between the existence ratio and the coercive force Hc for both Fe 2 O 3 and FeO.
  • a correlation was recognized, and also from these results, it was recognized that the coercivity Hc tends to increase as the oxidation progresses on the surface.
  • the inventive example was only Example 9, and the coercive force Hc was the lowest both before and after the test. Accordingly, of the white circles “ ⁇ ⁇ ” and the black circles “ ⁇ ” in FIGS. 8 to 10, the one with the lowest coercivity Hc indicates the result of Example 9. From these results, the soft magnetic material according to the present invention has a shallow detection depth of oxygen after the heat resistance test although the detection depth of oxygen before the heat resistance test is not particularly shallow (FIG. 8), And although the presence ratio of Fe oxide is not remarkably small before heat resistance test, it is confirmed that the presence ratio of Fe oxide is obviously low after heat resistance test (FIG. 9 and FIG. 10) It was done.
  • Magnetic powders were obtained from the Fe-based alloy compositions according to Example 9, Example 21 and Example 27 by water atomization.
  • the particle size distribution of the obtained magnetic powder was measured by volume distribution using a “Microtrack particle size distribution measuring device MT3300EX” manufactured by Nikkiso Co., Ltd. based on a laser diffraction / scattering method.
  • Particle size (unit: ⁇ m, D50) corresponding to 50% by volume of integrated value (cumulative frequency) in particle size distribution of magnetic powder obtained, particle size (unit: ⁇ m) corresponding to 10% by volume of integrated value (cumulative frequency) , D10) and the particle size (unit: ⁇ m, D90) corresponding to 90% by volume of cumulative value (cumulative frequency) were as shown in Table 10.
  • the obtained granulated powder is filled in a mold and pressed at a pressure of 20 t / cm 2 (about 2 GPa) to form a ring-shaped formed product (outer diameter: 20 mm, inner diameter: 12 mm ⁇ , thickness) : 6 mm).
  • Annealing treatment atmosphere: N 2 , temperature rising rate: 40 K / min, holding temperature: 400 to 450 ° C., holding time: 60 minutes
  • the toroidal core 1 was obtained.
  • the toroidal core 1 was wound with a copper wire, and the permeability ⁇ at a frequency of 100 kHz was measured using an impedance analyzer ("4192A LF" manufactured by HP).
  • an impedance analyzer 4192A LF manufactured by HP.
  • a heat resistance test was performed in which the toroidal core 1 whose permeability ⁇ was measured was left in an environment of 250 ° C. for a maximum of 1000 hours.
  • the permeability ⁇ after the heat resistance test was measured, and the change rate of the permeability ⁇ ( ⁇ change rate, after ⁇ test / before ⁇ test) before and after the test was compared.
  • Table 10 and FIG. 10 The measurement results are shown in Table 10 and FIG.
  • the upper part in the row of each example is a measured value of the magnetic permeability ⁇
  • the lower part is a value ( ⁇ change rate) normalized by the magnetic permeability ⁇ before the heat resistance test.
  • Table 10 and FIG. 11 in the toroidal core 1 (dust magnetic core) according to Example 9 (invention example) having a P addition amount of 6.0 atomic%, even when placed under a high temperature environment It was confirmed that the permeability ⁇ hardly changes with time, and has heat resistance.
  • a dust core containing a magnetic powder of a soft magnetic material formed from the Fe-based alloy composition according to an embodiment of the present invention is excellent in heat resistance, so electric / electronic parts provided with such dust core are a hybrid. It can be suitably used as a booster circuit of a car or the like, a reactor used for power generation or transformation equipment, a transformer, a choke coil or the like.

Abstract

The Fe-based alloy composition according to the present invention, the compositional formula thereof being (Fe1-aTa)100 atomic%-(x+y+z+b+c+d)MxBbCcSidPyCrz, T being one or more arbitrary additional elements selected from Co and Ni, M being one or more arbitrary additional elements selected from the group consisting of Ti, V, Zr, Nb, Mo, Hf, Ta, W, and Al, and the Fe-based alloy composition satisfying the conditions below, can be used to form a soft magnetic material containing an amorphous phase having a glass transition temperature Tg, and can be used to form a magnetic powder suitable for a powder magnetic core having excellent heat resistance. 0 ≤ a ≤ 0.3, 4 atomic% ≤ b ≤ 14 atomic%, 0.5 atomic% ≤ c ≤ 7 atomic%, 0.5 atomic% ≤ d ≤ 5.3 atomic%, 0 atomic% ≤ x ≤ 4 atomic%, 4 atomic% ≤ y ≤ 8 atomic%, 0.5 atomic% ≤ z ≤ 8 atomic%, and 70 atomic% ≤ 100 atomic% - (x + y + z + b + c + d) ≤ 79 atomic%.

Description

Fe基合金組成物、軟磁性材料、圧粉磁心、電気・電子関連部品および機器Fe-based alloy composition, soft magnetic material, dust core, electric / electronic related parts and devices
 本発明は、Fe基合金組成物、このFe基合金組成物から形成された軟磁性材料、この軟磁性材料の磁性粉末を含有する圧粉磁心、この圧粉磁心を備える電気・電子関連部品、およびこの電気・電子関連部品を備える機器に関する。 The present invention relates to an Fe-based alloy composition, a soft magnetic material formed from the Fe-based alloy composition, a dust core containing magnetic powder of the soft magnetic material, an electric / electronic related component including the dust core, The invention also relates to a device provided with this electric / electronic related component.
 ハイブリッド自動車等の昇圧回路や、発電、変電設備に用いられるリアクトル、トランスやチョークコイル等に使用される圧粉磁心は、長時間の高温状態におかれる環境下を想定して、磁気特性の熱安定性が求められる。かかる要請に応えるべく、特許文献1には、軟磁性粉末及び絶縁性結着材を有する混合物を圧縮成形し、熱処理して得られる圧粉磁心であって、前記絶縁性結着材は、バインダー樹脂と、ガラスとを有してなり、前記ガラスのガラス転移温度(Tg)は前記熱処理の温度よりも低いことを特徴とする圧粉磁心が記載されている。 The powder magnetic core used for the booster circuit of hybrid vehicles etc., the reactor used for power generation, transformation equipment, transformer, choke coil etc. assumes the environment where it will be in the high temperature state for a long time, the thermal characteristic of the magnetic property Stability is required. In order to meet such a demand, Patent Document 1 discloses a dust core obtained by compression molding and heat treating a mixture having a soft magnetic powder and an insulating binder, wherein the insulating binder is a binder. A dust core is described which comprises a resin and glass, and the glass transition temperature (Tg) of the glass is lower than the temperature of the heat treatment.
特開2012-212853号公報JP, 2012-212853, A
 本発明は、特許文献1に記載される発明とは異なるアプローチで、磁気特性の熱安定性(本明細書において「耐熱性」ともいう。)に優れる圧粉磁心を提供すること、およびかかる圧粉磁心の構成材料に適した軟磁性材料およびこの材料を形成可能なFe基合金組成物を提供することを目的とする。本発明は、上記の圧粉磁心を備える電気・電子関連部品、およびかかる電子・電気関連部品を備える機器を提供することをも目的とする。 The present invention provides a dust core excellent in the thermal stability (also referred to as “heat resistance” in the present specification) of the magnetic characteristics by an approach different from the invention described in Patent Document 1, and such a pressure An object of the present invention is to provide a soft magnetic material suitable as a constituent material of a powder core and an Fe-based alloy composition capable of forming this material. Another object of the present invention is to provide an electrical / electronic related component including the above-described dust core and an apparatus including the electronic / electrical related component.
 上記の課題を解決するために提供される本発明は、一態様において、ガラス転移温度Tgを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、組成式が(Fe1-a100原子%-(x+y+z+b+c+d)SiCrで表され、Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなり、下記の条件を満たすことを特徴とするFe基合金組成物である。
  0≦a≦0.3、
  4原子%≦b≦14原子%、
  0.5原子%≦c≦7原子%、
  0.5原子%≦d≦5.3原子%、
  0原子%≦x≦4原子%、
  4原子%≦y≦8原子%、
  0.5原子%≦z≦8原子%、かつ
  70原子%≦100原子%-(x+y+z+b+c+d)≦79原子%
The present invention provided to solve the above problems is, in one aspect, an Fe-based alloy composition capable of forming a soft magnetic material containing an amorphous phase having a glass transition temperature Tg, wherein the composition formula is Fe 1-a T a) 100 atomic% - (represented by x + y + z + b + c + d) M x B b C c Si d P y Cr z, T is one or two elements selected from Co and Ni be any additive element And M is an optional additive element, and is made of one or more selected from the group consisting of Ti, V, Zr, Nb, Mo, Hf, Ta, W and Al, and the following conditions are satisfied: It is a Fe-based alloy composition that is characterized.
0 ≦ a ≦ 0.3,
4 atomic% ≦ b ≦ 14 atomic%,
0.5 atomic% ≦ c ≦ 7 atomic%,
0.5 atomic% ≦ d ≦ 5.3 atomic%,
0 atomic% ≦ x ≦ 4 atomic%,
4 atomic% ≦ y ≦ 8 atomic%,
0.5 atomic% ≦ z ≦ 8 atomic% and 70 atomic% ≦ 100 atomic%-(x + y + z + b + c + d) ≦ 79 atomic%
 特許文献1に記載される圧粉磁心では、圧粉磁心に含まれるバインダの耐熱性を高めることにより、圧粉磁心の耐熱性を高めている。これに対し、本発明では、圧粉磁心に含まれる磁性粉末の耐熱性を高めることにより、圧粉磁心の耐熱性を高めることとしている。具体的には、磁性粉末を形成するためのFe基合金組成物についてPの添加量を比較的低めに設定して、Fe基合金組成物から形成された磁性粉末の耐酸化性を向上させる。このように耐酸化性が向上した磁性粉末を含む圧粉磁心は、高温環境下に長時間置かれても、磁気特性、特にコアロスPcvや透磁率μに与える影響が大きい保磁力Hcが大きくなりにくい。 In the dust core described in Patent Document 1, the heat resistance of the dust core is enhanced by enhancing the heat resistance of the binder contained in the dust core. On the other hand, in the present invention, the heat resistance of the dust core is enhanced by enhancing the heat resistance of the magnetic powder contained in the dust core. Specifically, the addition amount of P is set relatively low for the Fe-based alloy composition for forming the magnetic powder, and the oxidation resistance of the magnetic powder formed from the Fe-based alloy composition is improved. As described above, a dust core containing a magnetic powder with improved oxidation resistance has a large coercive force Hc, which has a great influence on the magnetic properties, particularly the core loss Pcv and the magnetic permeability μ, even when placed in a high temperature environment for a long time. Hateful.
 前記組成式において、zが1.5原子%以上であることが好ましい場合がある。 In the above composition formula, it may be preferable that z be 1.5 atomic% or more.
 前記組成式において、yが6.0原子%以下であることが好ましい場合があり、4.8原子%以下であることがより好ましい場合がある。 In the composition formula, y may be preferably 6.0 atomic percent or less, and may be more preferably 4.8 atomic percent or less.
 前記組成式において、dが1.2原子%以上3.2原子%以下であることが好ましい場合がある。 In the composition formula, it may be preferable that d be 1.2 atomic percent or more and 3.2 atomic percent or less.
 本発明は、他の一態様として、上記のFe基合金組成物の組成を有し、ガラス転移温度Tgを有するアモルファス相を含有することを特徴とする軟磁性材料を提供する。前記軟磁性材料の結晶化開始温度Txと前記ガラス転移温度Tgとの温度差(Tx-Tg)である過冷却液体領域ΔTxは、24K以上であることが好ましい場合があり、27K以上であることがより好ましい場合があり、32K以上であることが特に好ましい場合がある。前記ガラス転移温度Tgは800K以下であることが好ましい場合がある。前記軟磁性材料を250℃の環境に1000時間放置する耐熱試験後に測定された保磁力Hcは、20.7A/m以下であることが好ましい場合がある。前記軟磁性材料を250℃の環境に1000時間放置する耐熱試験後に測定された保磁力Hcの、前記耐熱試験前の前記軟磁性材料の保磁力Hcに対する変化率は、5.2以下であることが好ましい場合がある。 In another aspect, the present invention provides a soft magnetic material characterized by containing an amorphous phase having the composition of the Fe-based alloy composition described above and having a glass transition temperature Tg. The supercooled liquid region ΔTx, which is the temperature difference (Tx-Tg) between the crystallization start temperature Tx of the soft magnetic material and the glass transition temperature Tg, may be preferably 24 K or more, and is preferably 27 K or more May be more preferable, and 32 K or more may be particularly preferable. It may be preferable that the glass transition temperature Tg is 800 K or less. The coercivity Hc measured after a heat resistance test in which the soft magnetic material is left in an environment of 250 ° C. for 1000 hours may preferably be 20.7 A / m or less. The rate of change of the coercive force Hc measured after the heat resistance test in which the soft magnetic material is left in an environment of 250 ° C. for 1000 hours with respect to the coercive force Hc of the soft magnetic material before the heat resistance test is 5.2 or less May be preferred.
 本発明は、別の一態様として、上記の軟磁性材料の磁性粉末を含有する圧粉磁心を提供する。また、本発明は、さらに別の態様として、上記の圧粉磁心を備える電気・電子関連部品、および上記の電気・電子関連部品を備える機器を提供する。 The present invention provides, in another aspect, a dust core containing a magnetic powder of the soft magnetic material described above. Furthermore, the present invention provides, as yet another aspect, an electric / electronic related component including the above-described dust core and an apparatus including the above electric / electronic related component.
 本発明によれば、磁気特性の熱安定性に優れる圧粉磁心、この圧粉磁心の構成材料として適した軟磁性材料、およびこの軟磁性材料を形成可能なFe基合金組成物が提供される。本発明によれば、上記の圧粉磁心を備える電気・電子関連部品、およびかかる電子・電気関連部品を備える機器も提供される。 According to the present invention, a dust core having excellent thermal stability of magnetic properties, a soft magnetic material suitable as a constituent material of the dust core, and an Fe-based alloy composition capable of forming the soft magnetic material are provided. . According to the present invention, there is also provided an electric / electronic related component including the above-described dust core and an apparatus including such an electronic / electric related component.
本発明の一実施形態に係るトロイダルコアを示す斜視図である。It is a perspective view showing a toroidal core concerning one embodiment of the present invention. 実施例において調製したFeの含有量が74.3原子%であるFe基合金組成物から形成されたリボン状試料について、保磁力Hcの変化率とFe基合金組成物のP添加量との関係(P添加量とB添加量との総和を固定)を示すグラフである。The relationship between the rate of change of the coercive force Hc and the P content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 74.3 atomic% prepared in the example It is a graph which shows (The total of the addition amount of P and the addition amount of B is fixed). 実施例において調製したFeの含有量が74.3原子%であるFe基合金組成物から形成されたリボン状試料について、保磁力Hcの変化率とFe基合金組成物のP添加量との関係(P添加量とC添加量との総和を固定)を示すグラフである。The relationship between the rate of change of the coercive force Hc and the P content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 74.3 atomic% prepared in the example It is a graph which shows (The total of the addition amount of P and the addition amount of C is fixed). 実施例において調製したFeの含有量が74.3原子%であるFe基合金組成物から形成されたリボン状試料について、保磁力Hcの変化率とFe基合金組成物のSi添加量との関係(Si添加量とB添加量との総和を固定)を示すグラフである。The relationship between the rate of change of the coercive force Hc and the Si content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 74.3 atomic% prepared in the example It is a graph which shows (The total of the addition amount of Si and the addition amount of B is fixed). 実施例において調製したFeの含有量が76.4原子%であるFe基合金組成物から形成されたリボン状試料について、保磁力Hcの変化率とFe基合金組成物のP添加量との関係(P添加量とB添加量との総和を固定)を示すグラフである。The relationship between the rate of change of the coercive force Hc and the P content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 76.4 atomic% prepared in the examples It is a graph which shows (The total of the addition amount of P and the addition amount of B is fixed). 実施例において調製したFeの含有量が76.4原子%であるFe基合金組成物から形成されたリボン状試料について、保磁力Hcの変化率とFe基合金組成物のP添加量との関係(P添加量とC添加量との総和を固定)を示すグラフである。The relationship between the rate of change of the coercive force Hc and the P content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 76.4 atomic% prepared in the examples It is a graph which shows (The total of the addition amount of P and the addition amount of C is fixed). 実施例において調製したFeの含有量が76.4原子%であるFe基合金組成物から形成されたリボン状試料について、保磁力Hcの変化率とFe基合金組成物のSi添加量との関係(Si添加量とB添加量との総和を固定)を示すグラフである。The relationship between the rate of change of the coercive force Hc and the Si content of the Fe-based alloy composition for a ribbon-like sample formed from the Fe-based alloy composition having an Fe content of 76.4 atomic% prepared in the example It is a graph which shows (The total of the addition amount of Si and the addition amount of B is fixed). 実施例において作製したリボン状試料の表面分析に基づく、リボン状試料の保磁力Hcと試料の酸素の検出深さとの関係を示すグラフである。It is a graph which shows the relationship between the coercive force Hc of a ribbon-like sample, and the detection depth of oxygen of a sample based on the surface analysis of the ribbon-like sample produced in the Example. 実施例において作製したリボン状試料の表面分析に基づく、リボン状試料の保磁力Hcと表面におけるFeの存在割合との関係を示すグラフである。Based on the surface analysis of the ribbon samples produced in the Examples is a graph showing the relationship between the existing ratio of Fe 2 O 3 in the coercive force Hc and the surface of the ribbon-like sample. 実施例において作製したリボン状試料の表面分析に基づく、リボン状試料の保磁力Hcと表面におけるFeOの存在割合との関係を示すグラフである。It is a graph which shows the relationship between the coercive force Hc of a ribbon-like sample, and the abundance ratio of FeO on the surface based on the surface analysis of the ribbon-like sample produced in the Example. 実施例において作製したトロイダルコアの透磁率の変化率(耐熱試験後/耐熱試験前)を示すグラフである。It is a graph which shows the change rate (after a heat test / before a heat test) of the permeability of the toroidal core produced in the Example.
 以下、本発明の実施形態について詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の一実施形態に係るFe基合金組成物は、ガラス転移温度Tgを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、組成式が(Fe1-a100原子%-(x+y+z+b+c+d)MSiCrで表され、下記式により規定される条件を満たす。Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなる。
  0≦a≦0.3、
  4原子%≦b≦14原子%、
  0.5原子%≦c≦7原子%、
  0.5原子%≦d≦5.3原子%、
  0原子%≦x≦4原子%、
  4原子%≦y≦8原子%、
  0.5原子%≦z≦8原子%、かつ
  70原子%≦100原子%-(x+y+z+b+c+d)≦79原子%
An Fe-based alloy composition according to an embodiment of the present invention is an Fe-based alloy composition capable of forming a soft magnetic material containing an amorphous phase having a glass transition temperature Tg, and has a composition formula (Fe 1-a T a ) 100 atomic%-(x + y + z + b + c + d ) M x B b C c Si d P y C r z , which satisfies the condition defined by the following formula. T is an optional additive element and is one or two selected from Co and Ni, and M is an optional additive element and is composed of Ti, V, Zr, Nb, Mo, Hf, Ta, W and Al It consists of 1 type, or 2 or more types chosen from a group.
0 ≦ a ≦ 0.3,
4 atomic% ≦ b ≦ 14 atomic%,
0.5 atomic% ≦ c ≦ 7 atomic%,
0.5 atomic% ≦ d ≦ 5.3 atomic%,
0 atomic% ≦ x ≦ 4 atomic%,
4 atomic% ≦ y ≦ 8 atomic%,
0.5 atomic% ≦ z ≦ 8 atomic% and 70 atomic% ≦ 100 atomic%-(x + y + z + b + c + d) ≦ 79 atomic%
 以下、各成分元素について説明する。本発明の一実施形態に係るFe基合金組成物は、下記の成分以外に、不可避的不純物を含有していてもよい。 Each component element will be described below. The Fe-based alloy composition according to one embodiment of the present invention may contain unavoidable impurities in addition to the following components.
 Bは優れたアモルファス形成能を有する。したがって、Fe基合金組成物におけるBの添加量bは4原子%以上とされる。しかしながら、Fe基合金組成物内にBを過度に添加させると、合金の融点Tmが高くなり、アモルファス形成が難しくなる場合がある。したがって、Fe基合金組成物におけるBの添加量bは、14原子%以下とされる。Fe基合金組成物から形成された軟磁性材料の磁気特性をより安定的に高める観点から、Fe基合金組成物におけるBの添加量bを、4.2原子%以上13.6原子%以下とすることが好ましく、7.6原子%以上11.6原子%以下とすることがより好ましい。 B has excellent ability to form an amorphous. Therefore, the addition amount b of B in the Fe-based alloy composition is 4 atomic% or more. However, when B is excessively added into the Fe-based alloy composition, the melting point Tm of the alloy may be high, and it may be difficult to form an amorphous. Therefore, the addition amount b of B in the Fe-based alloy composition is 14 atomic% or less. From the viewpoint of more stably improving the magnetic properties of the soft magnetic material formed from the Fe-based alloy composition, the additive amount b of B in the Fe-based alloy composition is set to 4.2 atomic% or more and 13.6 atomic% or less It is preferable to set it as 7.6 atomic% or more and 11.6 atomic% or less.
 Cは、Fe基合金組成物の熱的安定性を高め、優れたアモルファス形成能を有する。したがって、本発明の一実施形態に係るFe基合金組成物ではCの添加量cは0.5原子%以上とされる。Fe基合金組成物のアモルファス形成能を高める観点から、Cの添加量cは、2.0原子%以上とすることが好ましい場合があり、2.2原子%以上とすることがより好ましい場合があり、2.6原子%以上とすることが特に好ましい場合がある。一方、Fe基合金組成物内にCを過度に添加させると、合金化が難しい場合がある。また、Cの添加量cが増えるとFe基合金組成物から形成された軟磁性材料のガラス転移温度Tgが上昇しやすくなり、Cの添加量cが過度に高い場合には、ガラス転移温度Tgが消失する場合もある。したがって、Fe基合金組成物におけるCの添加量cは、7原子%以下とされる。Fe基合金組成物の融点Tmをより安定的に低くしたり、軟磁性材料のガラス転移温度Tgを適切な温度域に発生させたりする観点から、Fe基合金組成物におけるCの添加量cを、6.6原子%以下とすることが好ましい場合があり、6.2原子%以下とすることがより好ましい場合がある。 C enhances the thermal stability of the Fe-based alloy composition and has an excellent ability to form an amorphous. Therefore, in the Fe-based alloy composition according to one embodiment of the present invention, the addition amount c of C is 0.5 atomic% or more. From the viewpoint of enhancing the amorphous formation ability of the Fe-based alloy composition, the addition amount c of C may preferably be 2.0 atomic% or more, and may be more preferably 2.2 atomic% or more. In some cases, it is particularly preferable to set the content to 2.6 atomic% or more. On the other hand, when C is excessively added in the Fe-based alloy composition, alloying may be difficult. In addition, when the addition amount c of C increases, the glass transition temperature Tg of the soft magnetic material formed from the Fe-based alloy composition tends to increase, and when the addition amount c of C is excessively high, the glass transition temperature Tg May disappear. Therefore, the addition amount c of C in the Fe-based alloy composition is 7 atomic% or less. From the viewpoint of more stably lowering the melting point Tm of the Fe-based alloy composition or generating the glass transition temperature Tg of the soft magnetic material in an appropriate temperature range, the addition amount c of C in the Fe-based alloy composition It may be preferable that the content be 6.6 atomic% or less, and it may be more preferable that the content be 6.2 atomic% or less.
 Siは、Fe基合金組成物の熱的安定性を高め、優れたアモルファス形成能を有する。また、Fe基合金組成物におけるSiの添加量dを増大させると、Fe基合金組成物から形成された軟磁性材料について、ガラス転移温度Tgよりも結晶化開始温度Txを優先的に高め、過冷却液体領域ΔTxを広げることができる。また、Fe基合金組成物におけるSiの添加量dを増大させると、Fe基合金組成物から形成された軟磁性材料のキュリー温度Tcを高めることが可能である。さらに、Fe基合金組成物におけるSiの添加量dを増大させることによりFe基合金組成物の融点Tmを低下させ、溶湯を用いた作業性を向上させることができる。加えて、Siは、Fe基合金組成物から形成された軟磁性材料の耐酸化性を向上させることにも寄与する。軟磁性材料が適切な耐酸化性を有していない場合には、軟磁性材料の磁性粉末を含む圧粉磁心が高温環境下に長時間置かれた際に、保磁力Hcが高まりやすくなってしまう。この保磁力Hcを低くする観点から、本発明の一実施形態に係るFe基合金組成物はSiを含有し、Siの添加量dは、0.5原子%以上とされ、1.2原子%以上とすることが好ましい場合があり、2.0原子%以上とすることがより好ましい場合があり、2.4原子%以上とすることが特に好ましい場合がある。 Si enhances the thermal stability of the Fe-based alloy composition and has excellent amorphous formation ability. In addition, when the addition amount d of Si in the Fe-based alloy composition is increased, the crystallization start temperature Tx is preferentially raised over the glass transition temperature Tg for the soft magnetic material formed from the Fe-based alloy composition, The cooling liquid area ΔTx can be expanded. In addition, it is possible to increase the Curie temperature Tc of the soft magnetic material formed from the Fe-based alloy composition by increasing the addition amount d of Si in the Fe-based alloy composition. Furthermore, by increasing the addition amount d of Si in the Fe-based alloy composition, the melting point Tm of the Fe-based alloy composition can be decreased, and the workability using a molten metal can be improved. In addition, Si also contributes to improving the oxidation resistance of the soft magnetic material formed from the Fe-based alloy composition. When the soft magnetic material does not have appropriate oxidation resistance, the coercive force Hc tends to increase when the dust core containing the magnetic powder of the soft magnetic material is placed in a high temperature environment for a long time I will. From the viewpoint of lowering the coercive force Hc, the Fe-based alloy composition according to an embodiment of the present invention contains Si, and the addition amount d of Si is set to 0.5 atomic% or more, 1.2 atomic%. It may be preferable to set it as above, it may be more preferable to set it to 2.0 atomic% or more, and it may be particularly preferable to set it to 2.4 atomic% or more.
 しかしながら、Fe基合金組成物内にSiを過度に添加すると、Fe基合金組成物から形成された軟磁性材料のガラス転移温度Tgが急激に上昇し、過冷却液体領域ΔTxを広げることが困難となる。また、Fe基合金組成物内にSiを過度に添加すると、Fe基合金組成物から形成された軟磁性材料の耐酸化性が逆に低くなる傾向を示す場合もある。したがって、Fe基合金組成物におけるSiの添加量dは5.3原子%以下とされ、5.2原子%以下とすることが好ましい場合があり、4.4原子%以下とすることがより好ましい場合があり、3.2原子%以下とすることが特に好ましい場合がある。 However, when Si is excessively added to the Fe-based alloy composition, the glass transition temperature Tg of the soft magnetic material formed from the Fe-based alloy composition rapidly increases, and it is difficult to widen the subcooled liquid region ΔTx. Become. In addition, when Si is excessively added into the Fe-based alloy composition, the oxidation resistance of the soft magnetic material formed from the Fe-based alloy composition may tend to be low. Therefore, the addition amount d of Si in the Fe-based alloy composition may be 5.3 atomic% or less, and may be preferably 5.2 atomic% or less, and more preferably 4.4 atomic% or less In some cases, it may be particularly preferable to set the content to 3.2 atomic% or less.
 Pは、上記のB,CおよびSiと同様にアモルファス形成能を有するため、Fe基合金組成物内にPを添加すると、Fe基合金組成物から軟磁性材料を形成することが容易となる。また、Fe基合金組成物内にPを添加することにより、Fe基合金組成物から形成された軟磁性材料にガラス転移温度Tgが発現しやすくなる。したがって、Fe基合金組成物におけるPの添加量yは4原子%以上が好ましく、4.8原子%以上がさらに好ましく、6.0原子%以上とすることでより安定的にガラス転移温度Tgを発現させることが可能となる。一方、PはFe基合金組成物から形成された軟磁性材料の耐酸化性を低下させる場合がある。そこで、Fe基合金組成物におけるPの添加量yを8原子%以下とすることにより、Fe基合金組成物から形成された軟磁性材料に適切な耐酸化性を付与することが可能となる。上記のとおり、軟磁性材料が適切な耐酸化性を有していることは、軟磁性材料の磁性粉末を含む圧粉磁心が高温環境下におかれた場合でも保磁力Hcを低く維持できることや透磁率μを高く維持できることに寄与する。また、Fe基合金組成物を構成する元素の中で、Pは酸化しやすく酸化物として析出しやすいことから組成安定性が相対的に低く、Pの原料からの不純物混入の可能性も相対的に高い。したがって、Fe基合金組成物の組成の安定性を高める観点からも、P含有量を低くすることが好ましい。Fe基合金組成物の組成安定性をより高める観点や軟磁性材料の高温環境下での磁気特性をより安定的に高める観点から、Fe基合金組成物におけるPの添加量yは、7.8原子%以下とすることが好ましい場合があり、6.8原子%以下とすることがより好ましい場合があり、6.0原子%以下とすることが特に好ましい場合がある。 Since P has the ability to form an amorphous as in the case of B, C and Si described above, the addition of P into the Fe-based alloy composition facilitates the formation of a soft magnetic material from the Fe-based alloy composition. Further, by adding P into the Fe-based alloy composition, the glass transition temperature Tg is easily expressed in the soft magnetic material formed from the Fe-based alloy composition. Therefore, the addition amount y of P in the Fe-based alloy composition is preferably 4 atomic% or more, more preferably 4.8 atomic% or more, and more preferably 6.0 atomic% or more to achieve the glass transition temperature Tg more stably. It becomes possible to make it express. On the other hand, P may lower the oxidation resistance of the soft magnetic material formed from the Fe-based alloy composition. Therefore, by setting the addition amount y of P in the Fe-based alloy composition to 8 atomic% or less, it is possible to provide the soft magnetic material formed from the Fe-based alloy composition with appropriate oxidation resistance. As described above, that the soft magnetic material has appropriate oxidation resistance means that the coercive force Hc can be kept low even when the dust core containing the magnetic powder of the soft magnetic material is placed in a high temperature environment or It contributes to the ability to maintain the permeability μ high. Further, among the elements constituting the Fe-based alloy composition, P is easily oxidized and easily precipitated as an oxide, so the composition stability is relatively low, and the possibility of impurities mixing from the raw material of P is also relatively High. Therefore, from the viewpoint of enhancing the stability of the composition of the Fe-based alloy composition, it is preferable to lower the P content. From the viewpoint of further enhancing the compositional stability of the Fe-based alloy composition and the viewpoint of more stably enhancing the magnetic properties of the soft magnetic material in a high temperature environment, the addition amount y of P in the Fe-based alloy composition is 7.8 It may be preferable to set it to atomic% or less, it may be more preferable to set it to 6.8 atomic% or less, and it may be particularly preferable to set it to 6.0 atomic% or less.
 Crは、Fe基合金組成物から形成された軟磁性材料の磁性粉末の表面に不動態層の形成を促進でき、Fe基非晶質合金の耐食性が向上する。例えば、水アトマイズ法を用いて磁性粉末を作製する際において、Fe基合金組成物の溶湯が直接水に触れたとき、さらには水アトマイズ後の粉末形状に成形された軟磁性材料の磁性粉末の乾燥工程における腐食の発生を防ぐことができる。したがって、Fe基合金組成物におけるCrの添加量zは0.5原子%以上とされる。また、CrはFe基合金組成物に含有されるアモルファス化元素(B,C,Si,Pなど)の酸化をも抑制する。このため、Fe基合金組成物がCrを1.5原子%以上含有することにより、Fe基合金組成物から形成される軟磁性材料においてこれらのアモルファス化元素が安定的に作用して、軟磁性材料がガラス転移温度Tgを有することがより安定的に実現される。 Cr can promote the formation of a passivation layer on the surface of the magnetic powder of the soft magnetic material formed from the Fe-based alloy composition, and the corrosion resistance of the Fe-based amorphous alloy is improved. For example, when producing a magnetic powder using a water atomization method, when the molten metal of the Fe-based alloy composition directly touches water, a magnetic powder of a soft magnetic material formed into a powder shape after water atomization. It is possible to prevent the occurrence of corrosion in the drying process. Therefore, the additive amount z of Cr in the Fe-based alloy composition is 0.5 atomic% or more. Further, Cr also suppresses the oxidation of the amorphizing elements (B, C, Si, P, etc.) contained in the Fe-based alloy composition. Therefore, when the Fe-based alloy composition contains 1.5 atomic% or more of Cr, these amorphizing elements act stably in the soft magnetic material formed from the Fe-based alloy composition, and the soft magnetic material It is more stably realized that the material has a glass transition temperature Tg.
 一方、Fe基合金組成物にCrを添加することにより、Fe基合金組成物から形成された軟磁性材料の飽和磁束密度Bsが低下しやすくなり、また軟磁性材料のガラス転移温度Tgが高くなりやすい。したがって、Fe基合金組成物におけるCrの添加量は8原子%以下とされ、その添加量は必要最小限(例えば2.5原子%以下)に抑えることが効果的である。 On the other hand, by adding Cr to the Fe-based alloy composition, the saturation magnetic flux density Bs of the soft magnetic material formed from the Fe-based alloy composition tends to decrease, and the glass transition temperature Tg of the soft magnetic material increases. Cheap. Therefore, the addition amount of Cr in the Fe-based alloy composition is 8 atomic% or less, and it is effective to suppress the addition amount to the necessary minimum (for example, 2.5 atomic% or less).
 本発明の一実施形態に係るFe基合金組成物には、上記の添加元素(B,C,Si,P,Cr)に加えて、CoおよびNiより選ばれる1種または2種からなる元素(任意添加元素)Tを添加してもよい。NiおよびCoはFeと同様に室温で強磁性を示す元素である。Feの一部をCoやNiに置換することにより、Fe基合金組成物から形成された軟磁性材料の磁気特性を調整することができる。元素TはFeの添加量(単位:原子%)に対して3/10以下程度置換するのが好ましい。元素TがCoの場合、Feの添加量(単位:原子%)に対して2/10程度置換すると飽和磁束密度Bsも大きくなるが、Coは高価であるためあまり多く置換するのは好ましくない。また、元素TがNiの場合、置換量を増加させると融点Tmが下がるため好ましいが、置換量を多くすると飽和磁化が小さくなるため好ましくない。この観点からFeの添加量(単位:原子%)に対して元素Tの置換量は2/10以下がより好ましい。 In the Fe-based alloy composition according to one embodiment of the present invention, in addition to the above-described additive elements (B, C, Si, P, Cr), an element composed of one or two or more kinds selected from Co and Ni Optional additional element) T may be added. Ni and Co are elements which exhibit ferromagnetism at room temperature as well as Fe. By replacing a part of Fe with Co or Ni, the magnetic properties of the soft magnetic material formed from the Fe-based alloy composition can be adjusted. The element T is preferably substituted by about 3/10 or less with respect to the addition amount (unit: atomic%) of Fe. When the element T is Co, substitution by about 2/10 with respect to the addition amount of Fe (unit: atomic%) increases the saturation magnetic flux density Bs. However, since Co is expensive, it is not preferable to substitute too much. When the element T is Ni, it is preferable to increase the substitution amount because the melting point Tm is lowered, but increasing the substitution amount is not preferable because saturation magnetization is reduced. From this viewpoint, the substitution amount of the element T is more preferably 2/10 or less with respect to the addition amount (unit: atomic%) of Fe.
 本発明の一実施形態に係るFe基合金組成物には、上記の添加元素(B,C,Si,P,Cr)に加えて、Ti,V,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなる任意添加元素Mを添加してもよい。これらの元素は、Feの置換元素として機能したり、アモルファス化元素として機能したりする。Fe基合金組成物における任意添加元素Mの添加量xが過度に高い場合には、上記の添加元素(B,C,Si,P,Cr)の添加量やFeの添加量が相対的に低下して、これらの元素を添加したことに基づく利益を享受しにくくなることもある。任意添加元素Mの添加量xの上限は、この点を考慮して4原子%以下とされる。 In the Fe-based alloy composition according to one embodiment of the present invention, Ti, V, Zr, Nb, Mo, Hf, Ta, W, in addition to the above-described additive elements (B, C, Si, P, Cr). And optionally, one or more elements selected from the group consisting of Al and Al may be added. These elements function as substitution elements for Fe or function as amorphizing elements. When the addition amount x of the optional additional element M in the Fe-based alloy composition is excessively high, the addition amount of the above additional elements (B, C, Si, P, Cr) and the addition amount of Fe relatively decrease As a result, it may be difficult to enjoy the benefits based on the addition of these elements. The upper limit of the additive amount x of the optional additional element M is 4 atomic% or less in consideration of this point.
 Fe基合金組成物における上記の添加元素(B,C,Si,P,Cr)および任意添加元素M以外の含有量は、100原子%-(x+y+z+b+c+d)で表される。以下、この含有量をαともいう。含有量αは、Feの含有量および元素Tの含有量の総和を意味する。含有量αが高いほどFe基合金組成物から形成された軟磁性材料の磁気特性を高めることが容易になるが、含有量αが過度に高い場合には、Fe基合金組成物からアモルファス材料を形成することが困難となる。Fe基合金組成物から軟磁性材料を形成することを容易とするとともに、形成された軟磁性材料の磁気特性を可能な限り高める観点から、含有量αを、70原子%以上79原子%以下とする。 The contents of the Fe-based alloy composition other than the above-mentioned additional elements (B, C, Si, P, Cr) and the optional additional element M are represented by 100 atomic%-(x + y + z + b + c + d). Hereinafter, this content is also referred to as α. The content α means the sum of the content of Fe and the content of the element T. The higher the content α, the easier it is to improve the magnetic properties of the soft magnetic material formed from the Fe-based alloy composition. However, when the content α is excessively high, the amorphous material is changed from the Fe-based alloy composition. It becomes difficult to form. From the viewpoint of facilitating formation of the soft magnetic material from the Fe-based alloy composition and enhancing the magnetic properties of the formed soft magnetic material as much as possible, the content α is 70 atomic% or more and 79 atomic% or less Do.
 本発明の一実施形態に係る軟磁性材料は、上記の本発明の一実施形態に係るFe基合金組成物の組成を有し、ガラス転移温度Tgを有するアモルファス相を含有する軟磁性材料である。本発明の一実施形態に係る軟磁性材料におけるアモルファス相は軟磁性材料の主相であることが好ましい。本明細書において、「主相」とは、軟磁性材料の組織において、最も体積分率が高い相を意味する。本発明の一実施形態に係る軟磁性材料は、実質的にアモルファス相からなることがより好ましい。本明細書において、「実質的にアモルファス相からなる」とは、軟磁性材料のX線回折測定により得られたX線回折スペクトルに際立ったピークが認められないことを意味する。 The soft magnetic material according to an embodiment of the present invention is a soft magnetic material having the composition of the Fe-based alloy composition according to an embodiment of the present invention described above and containing an amorphous phase having a glass transition temperature Tg. . The amorphous phase in the soft magnetic material according to one embodiment of the present invention is preferably the main phase of the soft magnetic material. As used herein, “main phase” means the phase with the highest volume fraction in the soft magnetic material tissue. More preferably, the soft magnetic material according to an embodiment of the present invention substantially consists of an amorphous phase. In the present specification, "consisting essentially of an amorphous phase" means that no distinctive peak is observed in the X-ray diffraction spectrum obtained by X-ray diffraction measurement of the soft magnetic material.
 本発明の一実施形態に係るFe基合金組成物から本発明の一実施形態に係る軟磁性材料を製造する方法は限定されない。主相がアモルファスである軟磁性材料、あるいは、実質的にアモルファス相からなる軟磁性材料を得ることを容易にする観点から、単ロール法、双ロール法等の急冷薄帯法、ガスアトマイズ法、水アトマイズ法等のアトマイズ法などにより製造することが好ましい。水アトマイズ法により製造する場合には、Fe基合金組成物の溶湯が水に接触するため、製造された軟磁性材料に酸化が生じる可能性が相対的に高い。しかしながら、前述のように、本発明の一実施形態に係るFe基合金組成物は、添加元素として、耐酸化性の向上に寄与するCrおよびSiを適切に含み、その一方で耐酸化性の低下が生じにくくなるようにPの添加量が適切に設定されている。このため、本発明の一実施形態に係るFe基合金組成物から形成された軟磁性材料は耐酸化性に優れ、水アトマイズ法によって形成された場合であっても、酸化に起因する不具合が生じにくい。 The method of manufacturing the soft magnetic material according to an embodiment of the present invention from the Fe-based alloy composition according to an embodiment of the present invention is not limited. From the viewpoint of facilitating obtaining a soft magnetic material in which the main phase is amorphous or a soft magnetic material substantially consisting of an amorphous phase, a quenched ribbon method such as a single roll method or a twin roll method, a gas atomization method, water It is preferable to manufacture by atomizing methods, such as the atomizing method. In the case of production by the water atomization method, since the molten metal of the Fe-based alloy composition contacts water, the possibility of oxidation occurring in the produced soft magnetic material is relatively high. However, as described above, the Fe-based alloy composition according to one embodiment of the present invention suitably contains Cr and Si that contribute to the improvement of oxidation resistance as additive elements, while the oxidation resistance is lowered. The addition amount of P is appropriately set so that the occurrence of. For this reason, the soft magnetic material formed from the Fe-based alloy composition according to one embodiment of the present invention is excellent in oxidation resistance, and even when it is formed by a water atomization method, a failure due to oxidation occurs. Hateful.
 本発明の一実施形態に係る軟磁性材料を製造する方法として液体急冷法を用いた場合には、得られた軟磁性材料は帯型の形状を有する。この帯型の形状を有する軟磁性材料を粉砕することにより、粉体の形状を有する軟磁性材料を得ることができる。本発明の一実施形態に係る軟磁性材料を製造する方法としてアトマイズ法を用いた場合には、得られた軟磁性材料は粉体の形状を有する。 When the liquid quenching method is used as a method of producing the soft magnetic material according to an embodiment of the present invention, the obtained soft magnetic material has a band-like shape. By crushing the soft magnetic material having the band shape, a soft magnetic material having a powder shape can be obtained. When the atomizing method is used as a method of manufacturing a soft magnetic material according to an embodiment of the present invention, the obtained soft magnetic material has a powder shape.
 本明細書において、軟磁性材料の熱的特性であるキュリー温度Tc、ガラス転移温度Tgおよび結晶化開始温度Txは、軟磁性材料を測定対象として、昇温速度を40K/分とする示差走査熱量測定(測定装置として、リガク製「Thermo Plus DSC8270」が例示される。)を行うことにより得られたDSCチャートに基づいて設定される。過冷却液体領域ΔTxは、上記の結晶化開始温度Txのガラス転移温度Tgとの温度差(Tx-Tg)である。 In the present specification, the Curie temperature Tc, the glass transition temperature Tg, and the crystallization start temperature Tx, which are thermal characteristics of the soft magnetic material, are differential scanning calorific values with a heating rate of 40 K / min for the soft magnetic material. It is set based on a DSC chart obtained by performing measurement (as a measurement device, “Thermo Plus DSC 8270” manufactured by Rigaku is exemplified). The supercooled liquid region ΔTx is a temperature difference (Tx−Tg) between the crystallization start temperature Tx and the glass transition temperature Tg.
 本発明の一実施形態に係る軟磁性材料における過冷却液体領域ΔTxは、かかる軟磁性材料を含有する磁性部材の熱処理を容易にする観点から、24K以上であることが好ましく、27K以上であることがより好ましく、32K以上であることがさらに好ましい。 The supercooled liquid region ΔTx in the soft magnetic material according to one embodiment of the present invention is preferably 24 K or more, and preferably 27 K or more from the viewpoint of facilitating the heat treatment of the magnetic member containing such soft magnetic material. Is more preferable, and 32 K or more is more preferable.
 ガラス転移温度Tgが過度に高い場合には上記の過冷却液体領域ΔTxが狭くなりやすい。本発明の一実施形態に係る軟磁性材料の磁性粉末を含有する圧粉磁心は、その製造過程(例えば加圧成形)において磁性粉末に歪が加えられる場合がある。この場合には、加えられた歪に基づく応力を緩和させるために圧粉磁心はアニール処理される。ガラス転移温度Tgが高いと、このアニール処理温度が高くなる傾向がある。アニール処理温度が高いことは圧粉磁心を形成するために用いられる樹脂系材料の選択自由度を下げる。したがって、ガラス転移温度Tgは800K以下であることが好ましい場合がある。 When the glass transition temperature Tg is excessively high, the above-described supercooled liquid region ΔTx tends to be narrow. In a dust core containing a magnetic powder of a soft magnetic material according to an embodiment of the present invention, distortion may be applied to the magnetic powder in the manufacturing process (for example, pressure molding). In this case, the dust core is annealed to relieve the stress due to the applied strain. When the glass transition temperature Tg is high, the annealing temperature tends to be high. The high annealing temperature lowers the freedom of selection of the resin-based material used to form the dust core. Therefore, it may be preferable that glass transition temperature Tg is 800 K or less.
 本発明の一実施形態に係る軟磁性材料におけるキュリー温度Tcは、500K以上であることが好ましく、600K以上であることがより好ましい。キュリー温度Tcが高いことは、本発明の一実施形態に係る軟磁性材料の磁性粉末を含有する圧粉磁心を備える電気・電子関連部品の動作保障温度を高めることになり、好ましい。 The Curie temperature Tc of the soft magnetic material according to an embodiment of the present invention is preferably 500 K or more, and more preferably 600 K or more. It is preferable that the Curie temperature Tc is high because it raises the operation guarantee temperature of the electric / electronic related parts including the dust core containing the magnetic powder of the soft magnetic material according to the embodiment of the present invention.
 本発明の一実施形態に係る圧粉磁心は、上記の本発明の一実施形態に係る軟磁性材料の磁性粉末を含有する。本発明の一実施形態に係る圧粉磁心の具体的な形状および製造方法は限定されない。本発明の一実施形態に係る圧粉磁心の製造方法の一例として、上記の本発明の一実施形態に係る軟磁性材料の磁性粉末を含む粉体材料を圧粉成形することが挙げられる。図1にはそのような磁性コアの一例として、リング形状を有するトロイダルコア1を示した。本発明の一実施形態に係る圧粉磁心の他の例として、コイルが埋設されたコイル埋設コアが挙げられる。 A dust core according to an embodiment of the present invention contains magnetic powder of a soft magnetic material according to the above-described embodiment of the present invention. The specific shape and manufacturing method of the dust core according to an embodiment of the present invention are not limited. As an example of a method of manufacturing a dust core according to an embodiment of the present invention, powder compacting of a powder material containing a magnetic powder of a soft magnetic material according to an embodiment of the present invention described above can be mentioned. FIG. 1 shows a toroidal core 1 having a ring shape as an example of such a magnetic core. Another example of a dust core according to an embodiment of the present invention is a coil embedded core in which a coil is embedded.
 軟磁性材料の調製過程(例えば粉砕)や、圧粉磁心の製造過程(例えば圧粉成形)などによって、圧粉磁心内の軟磁性材料に歪が蓄積されると、圧粉磁心を備える電気・電子関連部品の磁気特性(鉄損、直流重畳特性などが具体例として挙げられる。)の低下をもたらす場合がある。このような場合には、圧粉磁心に対してアニール処理を行って、圧粉磁心内の歪に基づく応力を緩和して、圧粉磁心を備える電気・電子関連部品の磁気特性の低下を抑制することが一般的に行われる。 When strain is accumulated in the soft magnetic material in the dust core by the preparation process of soft magnetic material (for example, grinding) or the production process of dust core (for example, powder compacting), electricity, In some cases, the magnetic characteristics of the electronic components (such as iron loss and DC bias characteristics) may be reduced. In such a case, the dust core is subjected to an annealing treatment to relieve the stress based on the strain in the dust core, thereby suppressing the deterioration of the magnetic characteristics of the electric / electronic related parts provided with the dust core. It is commonly done.
 本発明の一実施形態に係る圧粉磁心は、これに含有される軟磁性材料がガラス転移温度Tgを有するアモルファス相を含み、好ましい一例では過冷却液体領域ΔTxが24K以上であるため、アニール処理を容易に行うことができる。アニール処理温度が過度に高くなることを防ぐ観点から、ガラス転移温度Tgは800K以下であることが好ましい。したがって、本発明の一実施形態に係る圧粉磁心を備える電気・電子関連部品は、優れた磁気特性を有することができる。そのような本発明の一実施形態に係る電気・電子関連部品の具体例として、インダクタ、モータ、トランス、電磁干渉抑制部材などが挙げられる。 In the dust core according to one embodiment of the present invention, the soft magnetic material contained therein contains an amorphous phase having a glass transition temperature Tg, and in a preferred example, the supercooled liquid region ΔTx is 24 K or more. Can be done easily. From the viewpoint of preventing the annealing temperature from becoming excessively high, the glass transition temperature Tg is preferably 800 K or less. Therefore, the electric / electronic related component provided with the dust core according to an embodiment of the present invention can have excellent magnetic properties. An inductor, a motor, a transformer, an electromagnetic interference suppression member etc. are mentioned as a specific example of the electric and electronic related components which concern on one Embodiment of such this invention.
 本発明の一実施形態に係る機器は、上記の本発明の一実施形態に係る電気・電子関連部品を備える。かかる機器の具体例として、スマートフォン、ノートパソコン、タブレット端末等の携帯電子機器;パーソナルコンピューター、サーバー等の電子計算機;自動車、二輪車等の輸送機器;発電設備、トランス、蓄電設備等の電気関連機器などが例示される。 An apparatus according to an embodiment of the present invention includes the electric / electronic related components according to the above-described embodiment of the present invention. Specific examples of such devices include portable electronic devices such as smartphones, notebook computers and tablet terminals; electronic computers such as personal computers and servers; transport devices such as automobiles and two-wheelers; electricity-related devices such as power generation facilities, transformers, and storage facilities Is illustrated.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described to facilitate the understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents that fall within the technical scope of the present invention.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples and the like, but the scope of the present invention is not limited to these examples and the like.
 表1から表3に示される組成のFe基合金組成物を調製した。具体的には、Fe基合金組成物を構成するそれぞれの元素の原料物質を所定量秤量してるつぼに入れ、減圧したアルゴン雰囲気下において、これらの原料物質を高周波誘導加熱装置で溶解して所望の組成物を作製した。なお、表1から表3に示される各元素の数値は、合金を調製する際の原料物質の添加量(単位:原子%)であるが、調製の過程での組成変化はわずかであるから、この添加量に基づく組成は、実質的に、Fe基合金組成物から形成された軟磁性材料の含有量(単位:原子%)の組成に等しい。 Fe-based alloy compositions having the compositions shown in Tables 1 to 3 were prepared. Specifically, predetermined amounts of raw material substances of the respective elements constituting the Fe-based alloy composition are weighed and placed in a crucible, and these raw material substances are melted by a high frequency induction heating device under a reduced pressure argon atmosphere and desired The composition of In addition, although the numerical value of each element shown in Table 1 to Table 3 is the addition amount (unit: atomic%) of the raw material when preparing the alloy, the composition change in the process of preparation is slight, The composition based on this addition amount is substantially equal to the composition of the content (unit: atomic%) of the soft magnetic material formed from the Fe-based alloy composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 調製したFe基合金組成物から、液体急冷法(単ロール法)により得たリボン状の試料について、リガク製「RINT-2500」XRD装置によりX線回折測定(線源:CoKα)を行い、X線回折スペクトルを得た。これらのスペクトルから、各実施例に係るリボン状試料の組織を分類した。その結果を表4から表6に示す。これらの表における記号の意味は次のとおりである。
  A:アモルファス
  B:アモルファス+結晶
  C:結晶
A ribbon-like sample obtained by the liquid quenching method (single roll method) from the prepared Fe-based alloy composition was subjected to X-ray diffraction measurement (ray source: CoKα) by a Rigaku “RINT-2500” XRD apparatus. A line diffraction spectrum was obtained. From these spectra, the tissue of the ribbon-like sample according to each example was classified. The results are shown in Tables 4 to 6. The meanings of the symbols in these tables are as follows.
A: amorphous B: amorphous + crystal C: crystal
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 また、得られた各実施例に係るリボン状試料について、示差走査熱量計(DSC:リガク製「Thermo Plus DSC8270」)を用いて、キュリー温度Tc(単位:K)、ガラス転移温度Tg(単位:K)、結晶化開始温度Tx(単位:K)および融点Tm(単位:K)を測定した。測定雰囲気はアルゴンフローであり、昇温速度は40K/分(ただし、融点Tmについては20K/分)であった。得られたDSCチャートに基づいて、過冷却液体領域ΔTx(単位:K)を算出した。結果を表4から表6に示した。表4から表6には、Tg/TmおよびTx/Tmの算出結果も示した。なお、表4から表6における空欄は未測定であることを示している。また、表4から表6においてTgが測定されなかった場合には、その欄を「-」で示した。Tgが測定されなかった場合には、ΔTxおよびTg/Tmについても欄を「-」で示した。 Moreover, about the ribbon-like sample which concerns on each obtained Example, Curie temperature Tc (unit: K), glass transition temperature Tg (unit: using a differential scanning calorimeter (DSC: "Thermo Plus DSC 8270" made by Rigaku) K), crystallization onset temperature Tx (unit: K) and melting point Tm (unit: K) were measured. The measurement atmosphere was an argon flow, and the temperature rising rate was 40 K / min (however, 20 K / min for the melting point Tm). The supercooled liquid region ΔTx (unit: K) was calculated based on the obtained DSC chart. The results are shown in Tables 4 to 6. Tables 4 to 6 also show calculation results of Tg / Tm and Tx / Tm. In addition, the blank in Table 4 to Table 6 has shown that it has not measured. In addition, when Tg was not measured in Tables 4 to 6, the column was indicated by “-”. When Tg was not measured, the column was also shown by "-" for .DELTA.Tx and Tg / Tm.
 各実施例に係るリボン状試料について、質量磁化σs(単位:Wbm/kg)をVSM(振動試料型磁力計:理研電子製「BHV-30」)にて印加磁界10kOeで測定した。また、各実施例に係るリボン状の試料について、窒素雰囲気で室温から40K/分で昇温し、保持温度390℃で60分間保持するアニール処理を実施して、リボン状試料の作製時に生じた歪に基づく応力を緩和させた。その後、各リボン状試料について直流B-Hアナライザー(電子磁気工業製「BH-550」)を用いてB-H曲線を得て、このB-H曲線から保磁力Hc(単位:Am-1)を測定した。さらに、各実施例に係るリボン状試料について250℃の環境下に1000時間放置する耐熱試験を実施し、耐熱試験後のリボン状試料について保磁力Hcを測定した。表7から表9にこれらの測定結果および耐熱試験後の保磁力Hcの耐熱試験前の保磁力Hcに対する比(試験後/試験前)をHc変化率として示した。なお、表7から表9における空欄は未測定であることを示している。 The mass magnetization σs (unit: Wbm / kg) of the ribbon sample according to each example was measured with a VSM (vibrating sample magnetometer: “BHV-30” manufactured by Riken Denshi Co., Ltd.) with an applied magnetic field of 10 kOe. In addition, the ribbon-like sample according to each example was subjected to an annealing treatment in which the temperature was raised from room temperature at 40 K / min in a nitrogen atmosphere, and held at a holding temperature of 390 ° C. for 60 minutes. The stress due to strain was relaxed. Thereafter, a BH curve is obtained for each ribbon sample using a direct current BH analyzer ("BH-550" manufactured by Electron Magnetics Co., Ltd.), and the coercive force Hc (unit: Am- 1 ) is obtained from this BH curve. Was measured. Furthermore, the heat resistance test which left the ribbon-like sample which concerns on each Example under a 250 degreeC environment for 1000 hours was implemented, and the coercive force Hc was measured about the ribbon-like sample after a heat test. Tables 7 to 9 show the measurement results and the ratio of the coercive force Hc after the heat resistance test to the coercive force Hc before the heat resistance test (after the test / before the test) as the Hc change rate. In addition, the blank in Table 7-Table 9 has shown that it has not measured.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図2は、Feの添加量が74.3原子%である実施例21、実施例22、実施例25、実施例51および実施例53の試料について、保磁力Hcの変化率(Hc変化率)とFe基合金組成物のP添加量との関係を示すグラフである。図2では、Fe、Cr、CおよびSiの添加量を固定し、Pの添加量とBの添加量の総和を16.4原子%に固定して、Pの添加量を変化させた場合の保磁力Hcの変化率(Hc変化率)が示されている。 FIG. 2 shows the change rate (Hc change rate) of the coercive force Hc for the samples of Example 21, Example 22, Example 25, Example 51 and Example 53 in which the additive amount of Fe is 74.3 atomic%. It is a graph which shows the relationship between and P addition amount of a Fe-based alloy composition. In FIG. 2, the addition amounts of Fe, Cr, C and Si are fixed, the sum of the addition amounts of P and B is fixed to 16.4 atomic%, and the addition amount of P is changed. The rate of change of the coercive force Hc (rate of change of Hc) is shown.
 図3は、Feの添加量が74.3原子%である実施例21、実施例23、実施例26、実施例52および実施例54の試料について、保磁力Hcの変化率(Hc変化率)とFe基合金組成物のP添加量との関係を示すグラフである。図3では、Fe、Cr、BおよびSiの添加量を固定し、Pの添加量とCの添加量の総和を11.4原子%に固定して、Pの添加量を変化させた場合の保磁力Hcの変化率(Hc変化率)が示されている。 FIG. 3 shows the rate of change of coercive force Hc (the rate of change of Hc) for the samples of Example 21, Example 23, Example 26, Example 52 and Example 54 in which the additive amount of Fe is 74.3 atomic%. It is a graph which shows the relationship between and P addition amount of a Fe-based alloy composition. In FIG. 3, the addition amounts of Fe, Cr, B and Si are fixed, the sum of the addition amounts of P and C is fixed at 11.4 atomic%, and the addition amount of P is changed. The rate of change of the coercive force Hc (rate of change of Hc) is shown.
 図4は、Feの添加量が74.3原子%である実施例22、実施例55、実施例56および実施例61の試料について、保磁力Hcの変化率(Hc変化率)とFe基合金組成物のSi添加量との関係を示すグラフである。図4では、Fe、Cr、PおよびCの添加量を固定し、Bの添加量とSiの添加量の総和を14.8原子%に固定して、Siの添加量を変化させた場合の保磁力Hcの変化率(Hc変化率)が示されている。 FIG. 4 shows the change rate (Hc change rate) of the coercive force Hc and the Fe-based alloy for the samples of Example 22, Example 55, Example 56 and Example 61 in which the additive amount of Fe is 74.3 atomic%. It is a graph which shows a relationship with Si addition amount of a composition. In FIG. 4, the addition amounts of Fe, Cr, P and C are fixed, and the sum of the addition amounts of B and Si is fixed to 14.8 atomic%, and the addition amount of Si is changed. The rate of change of the coercive force Hc (rate of change of Hc) is shown.
 図5は、Feの添加量が76.4原子%である実施例27、実施例29、実施例32、実施例35、実施例58、および実施例59の試料について、保磁力Hcの変化率(Hc変化率)とFe基合金組成物のP添加量との関係を示すグラフである。図5では、Fe、Cr、CおよびSiの添加量を固定し、Pの添加量とBの添加量の総和を15.0原子%に固定して、Pの添加量を変化させた場合の保磁力Hcの変化率(Hc変化率)が示されている。 FIG. 5 shows the change in coercive force Hc for the samples of Example 27, Example 29, Example 32, Example 35, Example 58, and Example 59 in which the additive amount of Fe is 76.4 atomic%. It is a graph which shows the relationship between (Hc change rate) and P addition amount of Fe base alloy composition. In FIG. 5, the addition amounts of Fe, Cr, C, and Si are fixed, and the sum of the addition amounts of P and B is fixed to 15.0 atomic%, and the addition amount of P is changed. The rate of change of the coercive force Hc (rate of change of Hc) is shown.
 図6は、Feの添加量が76.4原子%である実施例27、実施例30、実施例57および実施例60の試料について、保磁力Hcの変化率(Hc変化率)とFe基合金組成物のP添加量との関係を示すグラフである。図3では、Fe、Cr、BおよびSiの添加量を固定し、Pの添加量とCの添加量の総和を13.0原子%に固定して、Pの添加量を変化させた場合の保磁力Hcの変化率(Hc変化率)が示されている。 FIG. 6 shows the change rate (Hc change rate) of the coercive force Hc and the Fe-based alloy for the samples of Examples 27, 30, 57 and 60 in which the additive amount of Fe is 76.4 atomic%. It is a graph which shows the relationship with P addition amount of a composition. In FIG. 3, the addition amounts of Fe, Cr, B and Si are fixed, and the sum of the addition amounts of P and C is fixed to 13.0 atomic%, and the addition amount of P is changed. The rate of change of the coercive force Hc (rate of change of Hc) is shown.
 図7は、Feの添加量が76.4原子%である実施例28、実施例29、実施例33および実施例34の試料について、保磁力Hcの変化率(Hc変化率)とFe基合金組成物のSi添加量との関係を示すグラフである。図4では、Fe、Cr、PおよびCの添加量を固定し、Bの添加量とSiの添加量の総和を12.6原子%として、Siの添加量を変化させた場合の保磁力Hcの変化率(Hc変化率)が示されている。 FIG. 7 shows the change rate (Hc change rate) of the coercive force Hc and the Fe-based alloy for the samples of Example 28, Example 29, Example 33 and Example 34 in which the additive amount of Fe is 76.4 atomic%. It is a graph which shows a relationship with Si addition amount of a composition. In FIG. 4, the coercivity Hc when the addition amounts of Fe, Cr, P and C are fixed and the addition amount of Si is changed with the sum of the addition amounts of B and Si being 12.6 atomic%. Rate of change (rate of change of Hc) is shown.
 図2および図3に示されるように、Feの添加量が74.3原子%の場合には、Pの添加量が8原子%を超えるとHc変化率は15以上となりやすく、耐熱試験による保磁力Hcの増加が顕著となってしまう。図5および図6に示されるように、Feの添加量が76.4原子%の場合には、Pの添加量が8原子%を超えるとHc変化率は5以上となりやすく、やはり耐熱試験による保磁力Hcの増加が顕著となってしまう。Hc変化率が過大になることを安定的に抑制する観点から、Pの添加量は、7.8原子%以下であることが好ましいことが、これらの図2および図3ならびに図5および図6から理解される。また、Pの添加量が6原子%以下あるいは4.8原子%以下である場合には、Hc変化率をおおむね2以下にすることが安定的に実現されることも、図2および図3ならびに図5および図6から理解される。 As shown in FIG. 2 and FIG. 3, when the addition amount of Fe is 74.3 atomic%, the Hc change rate tends to be 15 or more when the addition amount of P exceeds 8 atomic%, and the heat resistance test The increase of the magnetic force Hc becomes remarkable. As shown in FIG. 5 and FIG. 6, when the addition amount of Fe is 76.4 atomic%, the Hc change rate tends to be 5 or more when the addition amount of P exceeds 8 atomic%, and also according to the heat resistance test The increase in coercivity Hc becomes remarkable. It is preferable that the addition amount of P is 7.8 atomic% or less from the viewpoint of stably suppressing that the Hc change rate becomes excessive, as shown in FIG. 2 and FIG. 3 and FIG. 5 and FIG. It is understood from. In addition, when the additive amount of P is 6 atomic% or less or 4.8 atomic% or less, it is also stably realized that the Hc change rate is approximately 2 or less. It can be understood from FIGS. 5 and 6.
 図4および図7に示されるように、Siの添加量が2~5.3原子%で変化率が小さくなり、この範囲外であるとHc変化率が大きくなる傾向が見られる。特に、Siの添加量が5.5原子%以上となると、Hc変化率の増大傾向が顕著となる。したがって、Siの添加量を5.3原子%とすることにより、Hc変化率を安定的に低くすることができる。 As shown in FIGS. 4 and 7, the rate of change decreases when the amount of Si added is 2 to 5.3 atomic percent, and the Hc change rate tends to increase outside this range. In particular, when the addition amount of Si is 5.5 atomic% or more, the increasing tendency of the Hc change rate becomes remarkable. Therefore, the Hc change rate can be stably lowered by setting the addition amount of Si to 5.3 atomic%.
 実施例1から実施例5、実施例9および実施例10に係るリボン状試料について、オージェ電子分光測定およびスパッタリングを組み合わせて、表面およびその近傍の組成分析を行った。測定は耐熱試験前の試料および耐熱試験後の試料について行い、耐熱試験の影響を評価した。 About the ribbon-shaped sample which concerns on Example 1 to Example 5, Example 9, and Example 10, the composition analysis of the surface and its vicinity was performed combining Auger electron spectroscopy measurement and sputtering. The measurement was performed on the sample before the heat resistance test and the sample after the heat resistance test to evaluate the influence of the heat resistance test.
 まず、表面近傍の組成分析を行い、酸素に基づくピークが実質的に検出されなくなる深さ(単位:nm)を測定した。その深さ(検出深さ)と保磁力Hcとの関係を図8に示した。図8に示されるように、耐熱試験前は、検出深さは10nm以下であり、試料のごく表層だけが酸化された状態であったが、耐熱試験後は、酸化が10nmよりも深い領域にまで及び、100nm以上まで酸化が進行する場合もあった。また、検出深さと保磁力Hcとの間には基本的に正の相関が認められ、酸化が進行するほど保磁力Hcが増加する傾向にあることが認められた。 First, composition analysis in the vicinity of the surface was performed to measure the depth (unit: nm) at which the peak based on oxygen was substantially undetectable. The relationship between the depth (detection depth) and the coercive force Hc is shown in FIG. As shown in FIG. 8, the detection depth was 10 nm or less before the heat resistance test, and only the very surface layer of the sample was oxidized, but after the heat resistance test, the oxidation was in a region deeper than 10 nm In some cases, oxidation proceeds to 100 nm or more. In addition, a positive correlation was basically found between the detection depth and the coercivity Hc, and it was found that the coercivity Hc tends to increase as the oxidation progresses.
 また、表面の組成分析を行い、表面におけるFeの酸化物、具体的にはFeおよびFeOの存在割合を測定した(単位:原子%)。その結果と保磁力Hcとの関係を図9および図10に示した。耐熱試験前よりも耐熱試験後の方が表面におけるFeの酸化物の存在割合が高く、FeおよびFeOのいずれについても、存在割合と保磁力Hcとの間には基本的に正の相関が認められ、これらの結果からも、表面において酸化が進行するほど保磁力Hcが増加する傾向にあることが認められた。 In addition, composition analysis of the surface was performed to determine the presence ratio of Fe oxides, specifically, Fe 2 O 3 and FeO on the surface (unit: atomic%). The relationship between the result and the coercive force Hc is shown in FIG. 9 and FIG. The existence ratio of Fe oxides on the surface is higher after the heat resistance test than before the heat resistance test, and it is basically positive between the existence ratio and the coercive force Hc for both Fe 2 O 3 and FeO. A correlation was recognized, and also from these results, it was recognized that the coercivity Hc tends to increase as the oxidation progresses on the surface.
 この表面分析において本発明例は実施例9のみであり、試験前および試験後のいずれについても、保磁力Hcが最低であった。したがって、図8から図10における白丸「○」および黒丸「●」のうち保磁力Hcが最も低いものが実施例9の結果を示している。これらの結果から、本発明に係る軟磁性材料は、耐熱試験前の酸素の検出深さが際立って浅いとはいえないものの、耐熱試験後の酸素の検出深さが浅いこと(図8)、および耐熱試験前についてはFeの酸化物の存在割合が際立って少ないとはいえないものの、耐熱試験後についてはFeの酸化物の存在割合が明らかに少ないこと(図9および図10)が、確認された。 In this surface analysis, the inventive example was only Example 9, and the coercive force Hc was the lowest both before and after the test. Accordingly, of the white circles “低 い” and the black circles “●” in FIGS. 8 to 10, the one with the lowest coercivity Hc indicates the result of Example 9. From these results, the soft magnetic material according to the present invention has a shallow detection depth of oxygen after the heat resistance test although the detection depth of oxygen before the heat resistance test is not particularly shallow (FIG. 8), And although the presence ratio of Fe oxide is not remarkably small before heat resistance test, it is confirmed that the presence ratio of Fe oxide is obviously low after heat resistance test (FIG. 9 and FIG. 10) It was done.
 実施例9、実施例21および実施例27に係るFe基合金組成物から、水アトマイズ法により、磁性粉末を得た。得られた磁性粉末の粒度分布は、レーザー回折・散乱法に基づき、日機装製「マイクロトラック粒度分布測定装置 MT3300EX」を用いて体積分布で測定した。得られた磁性粉末の粒度分布における、積算値(累積頻度)50体積%に対応する粒径(単位:μm、D50)、積算値(累積頻度)10体積%に対応する粒径(単位:μm、D10)および積算値(累積頻度)90体積%に対応する粒径(単位:μm、D90)は、表10に示すとおりであった。 Magnetic powders were obtained from the Fe-based alloy compositions according to Example 9, Example 21 and Example 27 by water atomization. The particle size distribution of the obtained magnetic powder was measured by volume distribution using a “Microtrack particle size distribution measuring device MT3300EX” manufactured by Nikkiso Co., Ltd. based on a laser diffraction / scattering method. Particle size (unit: μm, D50) corresponding to 50% by volume of integrated value (cumulative frequency) in particle size distribution of magnetic powder obtained, particle size (unit: μm) corresponding to 10% by volume of integrated value (cumulative frequency) , D10) and the particle size (unit: μm, D90) corresponding to 90% by volume of cumulative value (cumulative frequency) were as shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 磁性粉末を97.2質量%、アクリル樹脂およびフェノール樹脂からなる絶縁結着材を2~3質量%、およびステアリン酸亜鉛からなる潤滑材を0~0.5質量%含有する混合物を用意し、この混合物を分散媒としての水に混合してスラリーを得た。得られたスラリーを乾燥・解砕して造粒粉を得た。 Prepare a mixture containing 97.2% by mass of magnetic powder, 2 to 3% by mass of an insulating binder consisting of an acrylic resin and a phenol resin, and 0 to 0.5% by mass of a lubricant consisting of zinc stearate, This mixture was mixed with water as a dispersion medium to obtain a slurry. The obtained slurry was dried and crushed to obtain granulated powder.
 得られた造粒粉を金型に充填してプレス圧:20t/cm(約2GPa)で加圧成形して、リング状の成形製造物(外径:20mm、内径:12mm×、厚さ:6mm)を得た。得られた成形製造物について、加圧成形時の応力を緩和させるために、アニール処理(雰囲気:N、昇温速度:40K/分、保持温度:400~450℃、保持時間:60分間)を施した。こうしてトロイダルコア1を得た。 The obtained granulated powder is filled in a mold and pressed at a pressure of 20 t / cm 2 (about 2 GPa) to form a ring-shaped formed product (outer diameter: 20 mm, inner diameter: 12 mm ×, thickness) : 6 mm). Annealing treatment (atmosphere: N 2 , temperature rising rate: 40 K / min, holding temperature: 400 to 450 ° C., holding time: 60 minutes) to relieve stress during pressure molding of the obtained molded product Applied. Thus, the toroidal core 1 was obtained.
 トロイダルコア1に銅線の巻き線を施し、インピーダンスアナライザー(HP製「4192A LF」)を用いて周波数100kHzでの透磁率μを測定した。耐熱信頼性を評価するため、透磁率μを測定したトロイダルコア1を250℃の環境下に最長1000時間放置する耐熱試験を行った。耐熱試験後の透磁率μを測定して、試験前後での透磁率μの変化率(μ変化率、μ試験後/μ試験前)を比較した。 The toroidal core 1 was wound with a copper wire, and the permeability μ at a frequency of 100 kHz was measured using an impedance analyzer ("4192A LF" manufactured by HP). In order to evaluate the heat resistance reliability, a heat resistance test was performed in which the toroidal core 1 whose permeability μ was measured was left in an environment of 250 ° C. for a maximum of 1000 hours. The permeability μ after the heat resistance test was measured, and the change rate of the permeability μ (μ change rate, after μ test / before μ test) before and after the test was compared.
 測定結果を表10および図11に示す。表10において、各実施例の列における上段は透磁率μの測定値であり、下段は耐熱試験前の透磁率μで規格化した値(μ変化率)である。表10および図11に示されるように、P添加量が6.0原子%である実施例9(本発明例)に係るトロイダルコア1(圧粉磁心)では、高温環境下に置かれても透磁率μは経時変化しにくく、耐熱性を有していることが確認された。その一方で、P添加量がそれぞれ8.8原子%、10.8原子%である実施例21および実施例27(いずれも比較例)に係るトロイダルコア1(圧粉磁心)では、高温環境下に置かれると透磁率μは経時的に低下し、1000時間後には試験前の透磁率μの約70%またはそれ以下となることが確認された。 The measurement results are shown in Table 10 and FIG. In Table 10, the upper part in the row of each example is a measured value of the magnetic permeability μ, and the lower part is a value (μ change rate) normalized by the magnetic permeability μ before the heat resistance test. As shown in Table 10 and FIG. 11, in the toroidal core 1 (dust magnetic core) according to Example 9 (invention example) having a P addition amount of 6.0 atomic%, even when placed under a high temperature environment It was confirmed that the permeability μ hardly changes with time, and has heat resistance. On the other hand, in the toroidal core 1 (dust magnetic core) according to Example 21 and Example 27 (all of which are comparative examples) in which the P addition amounts are 8.8 atomic% and 10.8 atomic%, respectively, under high temperature environment It was confirmed that the permeability μ decreased with time when it was placed in the space, and after 1000 hours, it became about 70% or less of the permeability μ before the test.
 本発明の一実施形態に係るFe基合金組成物から形成された軟磁性材料の磁性粉末を含む圧粉磁心は、耐熱性に優れるため、かかる圧粉磁心を備えた電気・電子部品は、ハイブリッド自動車等の昇圧回路や、発電、変電設備に用いられるリアクトル、トランスやチョークコイル等として好適に使用されうる。 A dust core containing a magnetic powder of a soft magnetic material formed from the Fe-based alloy composition according to an embodiment of the present invention is excellent in heat resistance, so electric / electronic parts provided with such dust core are a hybrid. It can be suitably used as a booster circuit of a car or the like, a reactor used for power generation or transformation equipment, a transformer, a choke coil or the like.
1  トロイダルコア
 
 
1 Toroidal core

Claims (12)

  1.  ガラス転移温度Tgを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、
     組成式が(Fe1-a100原子%-(x+y+z+b+c+d)SiCrで表され、
     Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなり、
     下記の条件を満たすことを特徴とするFe基合金組成物。
      0≦a≦0.3、
      4原子%≦b≦14原子%、
      0.5原子%≦c≦7原子%、
      0.5原子%≦d≦5.3原子%、
      0原子%≦x≦4原子%、
      4原子%≦y≦8原子%、
      0.5原子%≦z≦8原子%、かつ
      70原子%≦100原子%-(x+y+z+b+c+d)≦79原子%
    An Fe-based alloy composition capable of forming a soft magnetic material containing an amorphous phase having a glass transition temperature Tg,
    The compositional formula is represented by (Fe 1 -a T a ) 100 at%, (x + y + z + b + c + d) M x B b C c Si d P y C r z
    T is an optional additive element and is one or two selected from Co and Ni, and M is an optional additive element and is composed of Ti, V, Zr, Nb, Mo, Hf, Ta, W and Al Consisting of one or more selected from the group
    An Fe-based alloy composition characterized by satisfying the following conditions.
    0 ≦ a ≦ 0.3,
    4 atomic% ≦ b ≦ 14 atomic%,
    0.5 atomic% ≦ c ≦ 7 atomic%,
    0.5 atomic% ≦ d ≦ 5.3 atomic%,
    0 atomic% ≦ x ≦ 4 atomic%,
    4 atomic% ≦ y ≦ 8 atomic%,
    0.5 atomic% ≦ z ≦ 8 atomic% and 70 atomic% ≦ 100 atomic%-(x + y + z + b + c + d) ≦ 79 atomic%
  2.  前記組成式において、zが1.5原子%以上である、請求項1に記載のFe基合金組成物。 The Fe-based alloy composition according to claim 1, wherein z is 1.5 atomic% or more in the composition formula.
  3.  前記組成式において、yが6.0原子%以下である、請求項1または請求項2に記載のFe基合金組成物。 The Fe-based alloy composition according to claim 1, wherein y is 6.0 atomic% or less in the composition formula.
  4.  前記組成式において、dが1.2原子%以上3.2原子%以下である、請求項1から請求項3のいずれか一項に記載のFe基合金組成物。 The Fe-based alloy composition according to any one of claims 1 to 3, wherein d is 1.2 atomic% or more and 3.2 atomic% or less in the composition formula.
  5.  請求項1から請求項4のいずれか一項に記載されるFe基合金組成物の組成を有し、ガラス転移温度Tgを有するアモルファス相を含有することを特徴とする軟磁性材料。 A soft magnetic material comprising an amorphous phase having a composition of the Fe-based alloy composition according to any one of claims 1 to 4 and having a glass transition temperature Tg.
  6.  前記軟磁性材料の結晶化開始温度Txと前記ガラス転移温度Tgとの温度差(Tx-Tg)である過冷却液体領域ΔTxは、24K以上である、請求項5に記載の軟磁性材料。 The soft magnetic material according to claim 5, wherein a supercooled liquid region? Tx which is a temperature difference (Tx-Tg) between a crystallization start temperature Tx of the soft magnetic material and the glass transition temperature Tg is 24 K or more.
  7.  前記ガラス転移温度Tgが800K以下である、請求項5または請求項6に記載の軟磁性材料。 The soft magnetic material according to claim 5, wherein the glass transition temperature Tg is 800 K or less.
  8.  前記軟磁性材料を250℃の環境に1000時間放置する耐熱試験後に測定された保磁力Hcが20.7A/m以下である、請求項5から請求項7のいずれか一項に記載の軟磁性材料。 The soft magnetic material according to any one of claims 5 to 7, wherein a coercive force Hc measured after a heat resistance test in which the soft magnetic material is left in an environment of 250 ° C for 1000 hours is 20.7 A / m or less. material.
  9.  前記軟磁性材料を250℃の環境に1000時間放置する耐熱試験後に測定された保磁力Hcの、前記耐熱試験前の前記軟磁性材料の保磁力Hcに対する変化率が、5.2以下である、請求項5から請求項8のいずれか一項に記載の軟磁性材料。 The rate of change of the coercive force Hc measured after the heat resistance test in which the soft magnetic material is left in an environment at 250 ° C. for 1000 hours with respect to the coercive force Hc of the soft magnetic material before the heat resistance test is 5.2 or less. The soft magnetic material according to any one of claims 5 to 8.
  10.  請求項5から請求項9のいずれか一項に記載される軟磁性材料の磁性粉末を含有することを特徴とする圧粉磁心。 A dust core comprising the magnetic powder of the soft magnetic material according to any one of claims 5 to 9.
  11.  請求項10に記載される圧粉磁心を備える電気・電子関連部品。 An electric / electronic related component comprising the dust core according to claim 10.
  12.  請求項11に記載される電気・電子関連部品を備える機器。 An apparatus comprising the electrical and electronic components according to claim 11.
PCT/JP2018/023572 2017-08-31 2018-06-21 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER MAGNETIC CORE, ELECTRIC/ELECTRONIC-RELATED COMPONENT, AND DEVICE WO2019044132A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017167295A JP2020204049A (en) 2017-08-31 2017-08-31 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER-COMPACTED MAGNETIC CORE, ELECTRIC-ELECTRONIC RELATED COMPONENT AND DEVICE
JP2017-167295 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044132A1 true WO2019044132A1 (en) 2019-03-07

Family

ID=65527563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023572 WO2019044132A1 (en) 2017-08-31 2018-06-21 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER MAGNETIC CORE, ELECTRIC/ELECTRONIC-RELATED COMPONENT, AND DEVICE

Country Status (2)

Country Link
JP (1) JP2020204049A (en)
WO (1) WO2019044132A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379578A (en) * 2019-05-30 2019-10-25 宁波金科磁业有限公司 It is a kind of inexpensive without rareearth magnetic material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307291A (en) * 2004-04-22 2005-11-04 Alps Electric Co Ltd Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it
JP2010010668A (en) * 2008-05-26 2010-01-14 Topy Ind Ltd Soft magnetic body
WO2010084900A1 (en) * 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
WO2013015361A1 (en) * 2011-07-28 2013-01-31 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY, AND DUST CORE OBTAINED USING Fe-BASED AMORPHOUS ALLOY POWDER
CN103060724A (en) * 2013-01-04 2013-04-24 大连理工大学 Iron-based bulk metallic glass alloy with large supercooled liquid phase region
US20130146185A1 (en) * 2010-08-20 2013-06-13 Posco High-Carbon Iron-Based Amorphous Alloy Using Molten Pig Iron and Method of Manufacturing the Same
JP2016023340A (en) * 2014-07-22 2016-02-08 アルプス・グリーンデバイス株式会社 Fe-BASED ALLOY COMPOSITION, MOLDING MEMBER, MANUFACTURING METHOD OF MOLDING MEMBER, DUST CORE, ELECTRONIC COMPONENT, MAGNETIC SHEET, COMMUNICATION MEMBER, COMMUNICATION EQUIPMENT AND ELECTROMAGNETIC INTERFERENCE INHIBITION MEMBER
JP2016145410A (en) * 2015-01-29 2016-08-12 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY, MAGNETIC METAL POWDER, MAGNETIC MEMBER, MAGNETIC COMPONENT AND ELECTRICAL AND ELECTRONIC EQUIPMENT

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307291A (en) * 2004-04-22 2005-11-04 Alps Electric Co Ltd Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it
JP2010010668A (en) * 2008-05-26 2010-01-14 Topy Ind Ltd Soft magnetic body
WO2010084900A1 (en) * 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
US20130146185A1 (en) * 2010-08-20 2013-06-13 Posco High-Carbon Iron-Based Amorphous Alloy Using Molten Pig Iron and Method of Manufacturing the Same
WO2013015361A1 (en) * 2011-07-28 2013-01-31 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY, AND DUST CORE OBTAINED USING Fe-BASED AMORPHOUS ALLOY POWDER
CN103060724A (en) * 2013-01-04 2013-04-24 大连理工大学 Iron-based bulk metallic glass alloy with large supercooled liquid phase region
JP2016023340A (en) * 2014-07-22 2016-02-08 アルプス・グリーンデバイス株式会社 Fe-BASED ALLOY COMPOSITION, MOLDING MEMBER, MANUFACTURING METHOD OF MOLDING MEMBER, DUST CORE, ELECTRONIC COMPONENT, MAGNETIC SHEET, COMMUNICATION MEMBER, COMMUNICATION EQUIPMENT AND ELECTROMAGNETIC INTERFERENCE INHIBITION MEMBER
JP2016145410A (en) * 2015-01-29 2016-08-12 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY, MAGNETIC METAL POWDER, MAGNETIC MEMBER, MAGNETIC COMPONENT AND ELECTRICAL AND ELECTRONIC EQUIPMENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379578A (en) * 2019-05-30 2019-10-25 宁波金科磁业有限公司 It is a kind of inexpensive without rareearth magnetic material and preparation method thereof
CN110379578B (en) * 2019-05-30 2021-03-12 宁波金科磁业有限公司 Low-cost rare earth-free magnetic material and preparation method thereof

Also Published As

Publication number Publication date
JP2020204049A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP6662436B2 (en) Manufacturing method of dust core
KR102259446B1 (en) Soft magnetic powder, Fe-based nanocrystal alloy powder, magnetic parts and powdered magnetic core
WO2018150952A1 (en) Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP5739348B2 (en) Reactor and manufacturing method thereof
JP7132231B2 (en) Powder magnetic core manufacturing method, powder magnetic core and inductor
KR101470513B1 (en) Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
JP5419302B2 (en) Fe-based amorphous alloy, dust core using the Fe-based amorphous alloy, and coil-filled dust core
JP6358491B2 (en) Dust core, coil component using the same, and method for manufacturing dust core
KR20130111357A (en) Soft magnetic powder, dust core, and magnetic device
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JPS63304603A (en) Green compact of fe soft-magnetic alloy and manufacture thereof
JP6548059B2 (en) Fe-based alloy composition, soft magnetic material, magnetic member, electric / electronic related parts and devices
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
JP2012222062A (en) Composite magnetic material
WO2019044132A1 (en) Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER MAGNETIC CORE, ELECTRIC/ELECTRONIC-RELATED COMPONENT, AND DEVICE
JP6168382B2 (en) Manufacturing method of dust core
JP7074927B2 (en) Powder magnetic core and its manufacturing method
WO2022201964A1 (en) Soft magnetic powder, dust core containing same, and method for producing soft magnetic powder
JP2004146563A (en) Compound magnetic material
JP2021086941A (en) Fe-BASED SOFT MAGNETIC ALLOY, THIN STRIP, POWDER, MAGNETIC CORE, AND COIL COMPONENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP