WO2019042446A1 - 电气器件以及电气装置 - Google Patents

电气器件以及电气装置 Download PDF

Info

Publication number
WO2019042446A1
WO2019042446A1 PCT/CN2018/103750 CN2018103750W WO2019042446A1 WO 2019042446 A1 WO2019042446 A1 WO 2019042446A1 CN 2018103750 W CN2018103750 W CN 2018103750W WO 2019042446 A1 WO2019042446 A1 WO 2019042446A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
electrical device
switching element
conductive block
disposed
Prior art date
Application number
PCT/CN2018/103750
Other languages
English (en)
French (fr)
Inventor
曾嵘
陈政宇
刘佳鹏
周文鹏
赵彪
余占清
Original Assignee
清华大学
清华四川能源互联网研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710776469.8A external-priority patent/CN109427709B/zh
Priority claimed from CN201810827090.XA external-priority patent/CN110767643B/zh
Priority claimed from CN201810829499.5A external-priority patent/CN110767638A/zh
Priority claimed from CN201810829497.6A external-priority patent/CN110767637A/zh
Application filed by 清华大学, 清华四川能源互联网研究院 filed Critical 清华大学
Priority to EP18850023.5A priority Critical patent/EP3678173A4/en
Publication of WO2019042446A1 publication Critical patent/WO2019042446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32104Disposition relative to the bonding area, e.g. bond pad
    • H01L2224/32106Disposition relative to the bonding area, e.g. bond pad the layer connector connecting one bonding area to at least two respective bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32237Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/3301Structure
    • H01L2224/3303Layer connectors having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Definitions

  • the present disclosure relates to an electric device including a power component and an electric apparatus including the same.
  • power semiconductor components also referred to as semiconductor devices or power devices
  • the package structure of the power semiconductor component is particularly critical for good electrical connection between the semiconductor device and the external circuitry, particularly for power semiconductor components suitable for use in high voltage, high current environments.
  • turn-off current capability or commutation speed As semiconductor technology continues to evolve, higher requirements are placed on key metrics that measure the performance of power semiconductor components, such as turn-off current capability or commutation speed.
  • the turn-off current capability or commutation speed is largely affected by the stray inductance present in the commutation loop inside the semiconductor device. If the stray inductance is too large, some of the cells in the semiconductor device may not be completely commutated during the turn-off process, resulting in a failure of the turn-off process.
  • power semiconductor components often cooperate with a conduction module and/or a shutdown module.
  • the pass-through module and/or the turn-off module can be used or assisted to turn the power semiconductor components on and off.
  • a power semiconductor component (sometimes referred to as a device wafer, a device chip, or a device die) is usually placed in a separate package (also referred to as a package), and the drive module is (The turn-on module and/or turn-off module) are placed outside the package.
  • This arrangement will result in a larger area of the commutation loop, which in turn will result in a larger stray inductance in the commutation loop.
  • the mechanical stress experienced by the components of the semiconductor device during packaging or after packaging may be much greater than the pressure that the circuit components in the driving module can withstand, which may easily cause damage to the circuit components.
  • the inventors of the present application have painstakingly studied the package structure of a semiconductor device, and proposed an electric device and an electric device as disclosed in the application.
  • the electrical device according to the present disclosure has a compact structure, which can effectively reduce the commutation loop area and reduce the stray inductance of the commutation loop.
  • the electrical device and the electrical device according to the present disclosure can increase the commutation speed, increase the off current capability, and improve the reliability of the shutdown.
  • the electrical device according to the present disclosure can be prepared or assembled by crimping or press-fitting, ensuring reliable contact between components by pressure, reducing contact resistance, thereby improving coupling between components. According to the electrical device of the present disclosure, the reliability and redundancy of the connection are improved, and the probability of failure is reduced.
  • the electrical device and the electrical device according to the present disclosure can ensure that large pressures do not cause damage to the circuit components in the conduction module and/or the shutdown module. Electrical devices and electrical devices in accordance with the present disclosure may also provide good heat dissipation performance.
  • an electrical device including a semiconductor substrate on which a power semiconductor element is formed, wherein a control electrode of the power semiconductor element and a first one are disposed on one surface of the semiconductor substrate a current electrode; a printed circuit board on which is disposed a driving module for driving the power semiconductor component, the driving module including at least one first switching component, each of the first switching components including a control terminal and a current terminal; a block disposed between the substrate and the printed circuit board for providing electrical connection to the first current electrode; one or more connectors, each connector electrically isolated from the first conductive block Passing through the first conductive block and connected to a portion of the control electrode, and each connector is associated with a respective first switching element, and one or more first spring members, each first spring member Between a corresponding connector and a first switching element associated with the corresponding connector such that the current of each of the first switching elements A first current terminal is connected to the sub-control portion of the electrode through the electrically connecting member.
  • an electrical device comprising: at least one first conductive block, each of the first conductive blocks being provided with at least one groove; at least one elastic structure, the elastic structure being placed in a corresponding In the recess, one end of the elastic structure is electrically connected to the first conductive block; at least one power semiconductor element is disposed in a corresponding groove, and one electrode of the power semiconductor element is disposed in the corresponding groove The other end of the corresponding elastic structure is coupled; the circuit board, the power semiconductor component is disposed on one side of the circuit board, and at least one of the other two electrodes of each of the power semiconductor components is electrically connected to the a circuit board; and at least one second conductive block, the other side of the circuit board being attached to the at least one second conductive block, wherein each of the electrical devices is subjected to an external pressure greater than a predetermined threshold
  • the first conductive block is electrically connected to the corresponding one of the electrodes of the power semiconductor through a corresponding elastic structure.
  • an electrical device comprising: at least one first conductive block; at least one power semiconductor element, each power semiconductor element comprising a control electrode and a current electrode, wherein one of the current electrodes Provided on a first surface of the power semiconductor component and coupled to a corresponding first conductive block, the other of the current electrodes and the control electrode being disposed opposite to the first surface of the power semiconductor component a second surface; at least one control electrode connector, each comprising at least one electrically conductive base and at least one resilient conductive structure received in the electrically conductive base, one end of each of the resilient electrically conductive structures being coupled to a corresponding electrically conductive mount, and The other end of the resilient conductive structure is adapted to be coupled to a control electrode of a corresponding power semiconductor component to provide an electrical connection to the control electrode; at least one second conductive block, each comprising one or more raised portions, Each of the raised portions is coupled to the other of the current electrodes of the corresponding power semiconductor component Pick up.
  • an electrical device comprising: a power semiconductor element having a control electrode and a current electrode, the control electrode being arranged in a ring shape, the control electrode being disposed in one of the current electrodes An outer side; a driving module for driving the power semiconductor component, the driving module comprising a plurality of switching elements, the plurality of switching elements being divided into a plurality of groups; and a plurality of first conductive members disposed on the power semiconductor One side of the component for respectively providing a connection of the corresponding switching element to the one of the current electrodes, and a connection of a corresponding switching element to the control electrode, wherein the plurality of groups of switching elements At least one of the groups is electrically coupled to the control electrode of the power semiconductor component; one or more electrically conductive resilient structures, one end of each resilient structure being electrically coupled to the corresponding first conductive block and the other end being electrically coupled to the corresponding switching element.
  • the present disclosure also provides an electrical device comprising the electrical device of any of the above aspects or embodiments.
  • FIG. 1 is a circuit diagram showing an electrical device in accordance with an embodiment of the present disclosure
  • FIG. 2 is a circuit schematic showing an electrical device in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view showing an electrical device according to an embodiment of the present application.
  • Figure 4 is a schematic enlarged schematic view of a broken line portion shown in Figure 3;
  • Figure 5 illustrates a gate of a power semiconductor component in an electrical device in accordance with one embodiment of the present application
  • Figure 6 is a schematic view showing a switching element arranged in a ring shape in the electrical device shown in Figure 3;
  • Figure 7 is a schematic view showing a connector and an insulator in the electrical device shown in Figure 3;
  • FIG. 8 is a schematic structural view of an electrical device according to another embodiment of the present application.
  • FIG. 9 is a schematic view showing a passage for cooling provided in an electric device according to an embodiment of the present application.
  • FIG. 10 shows a crimp type MOSFET structure according to the prior art
  • Figure 11a shows the turn-off module of the gate drive circuit of the integrated gate commutated thyristor IGCT
  • Figure 11b shows a driver circuit for an emitter-turn-off thyristor (ETO) based on a GCT or GTO element;
  • ETO emitter-turn-off thyristor
  • Figure 12 is a schematic view showing the structure of a press-fit structure according to an embodiment of the present disclosure.
  • Figure 13 is a schematic view showing a spring structure of a press-fit structure according to an embodiment of the present disclosure
  • Figure 14 is a schematic view showing the structure of a circuit board of a press-fit structure according to an embodiment of the present disclosure
  • Figure 15 is a view showing a crimp-type MOSFET array in an annular arrangement in accordance with one embodiment of the present disclosure
  • 16 is a schematic view showing a crimp type MOSFET array in a plurality of annular arrangements according to an embodiment of the present disclosure
  • Figure 17 is a schematic illustration of a crimp-type MOSFET array in a plurality of annular arrangements in accordance with one embodiment of the present disclosure.
  • Figure 18 shows a cross-sectional view of the structure of a MOSFET die (i.e., no package);
  • FIG. 19 shows a schematic view of at least a portion of an electrical device (or electrical structure) of one embodiment of the present disclosure
  • FIG. 20 shows a schematic diagram of at least a portion of an electrical device (or electrical structure) of one embodiment of the present disclosure
  • FIG. 21 illustrates a gate connector of a crimp-type MOSFET array for annular arrangement in accordance with an embodiment of the present disclosure
  • FIG. 22 shows a schematic diagram of a matrix-arranged crimp type MOSFET array of one embodiment of the present disclosure
  • FIG. 23 shows a schematic diagram of a gate connector for a matrix crimp type MOSFET array in accordance with one embodiment of the present disclosure.
  • 24 is a schematic structural view of an electrical device in an embodiment of the present disclosure.
  • 25 is a schematic diagram showing the arrangement of power semiconductor elements in an electrical device in an embodiment of the present disclosure.
  • 26 is a schematic view showing a ring-shaped arrangement of a switching element in an embodiment of the present disclosure
  • Figure 27 is a schematic structural view of an electrical device in an embodiment of the present disclosure.
  • FIG. 28 is a schematic structural view of another electrical device in an embodiment of the present disclosure.
  • Coupled is used to mean a direct or indirect connection or connection between objects, including but not limited to mechanically and/or electrically coupled.
  • the term “electrical” is used to mean that the object it defines relates to electricity; therefore, the term “electrical” may include the meaning of “electronic” or “electric” or “power electronic.” Therefore, the term “electrical” may also be appropriately replaced with “electronic” or “electric” or “power electronic” as needed.
  • FIG. 1 shows a circuit schematic of an electrical device in accordance with an embodiment of the present disclosure.
  • the electrical device can include a drive module and a power semiconductor component 106.
  • the drive module can be used to drive the power semiconductor component 106 for switching operations.
  • the drive module may comprise a shutdown module 100 for shutting down the power semiconductor component and/or a conduction module 102 for conducting the power semiconductor component.
  • module 100 may comprise conducting a controllable current source
  • the controllable current source may include a voltage source S, an inductor L, a resistor R and a plurality of switching elements Q 1, Q 2, as shown in FIG.
  • the shutdown module 102 can include a plurality of switching elements Q G , Q E as shown in FIG.
  • the switching element may comprise DirectFet TM.
  • DirectFet TM is a type of production and sale of a metal oxide semiconductor field effect transistor (MOSFET), a metal housing which is connected by International Rectifier (International Rectifier company) to a current electrode of the MOSFET (typically drain), and which The housing can be directly coupled to an external device such as a PCB or the like.
  • MOSFET metal oxide semiconductor field effect transistor
  • the power semiconductor component 106 can have a control terminal (G) and current terminals (A and K).
  • Examples of power semiconductor component 106 may include, but are not limited to, a gate commutated thyristor (GCT), a gate turn-off thyristor (GTO), and the like.
  • GCT gate commutated thyristor
  • GTO gate turn-off thyristor
  • IGCT integrated gate commutated thyristor
  • ETO emitter turn-off thyristor
  • a gate commutated thyristor will be described below as an example of the power semiconductor element 106.
  • the gate commutated thyristor (GCT) may have a gate G as a control electrode (terminal) and an anode A and a cathode K as current electrodes (terminals) (or current carrying electrodes).
  • the pass-through module 100 injects a current I to the gate G of the gate commutated thyristor (GCT) 106 to turn on the GCT.
  • the injection current can be configured to have a higher current rate of change (dI/dt) and a larger current amplitude to ensure uniform conduction of the power semiconductor components.
  • the shutdown module 102 does not work.
  • the turn-on module When the gate commutated thyristor (GCT) is turned off, the turn-on module does not work, the switch Q G of the turn-off module 102 is turned on, the switch Q E is turned off, and the current is commutated from the cathode K of the power semiconductor element to the gate G So that the GCT is turned off.
  • GCT gate commutated thyristor
  • the electrical device shown in FIG. 2 is a circuit schematic showing an electrical device in accordance with another embodiment of the present disclosure.
  • the electrical device shown in FIG. 2 includes a pass module 200, a turn-off module 202, a package, and a power semiconductor component 206.
  • the electrical device shown in FIG. 2 has substantially the same structure as the one shown in FIG. 1 in the structure of the conduction module and the power semiconductor component, except that the module 202 is turned off.
  • the shutdown module 202 shown in FIG. 2 can include a switching element Q G , a capacitor C OFF , and a voltage source V. Voltage source V may be used to pre-charge the capacitor C OFF.
  • the turn-off module When the power semiconductor component 206 is to be turned on, the turn-off module does not operate, and the turn-on module injects a large current I into the gate G of the power semiconductor component 206 to turn on the power semiconductor component 206.
  • the turn-on module When the power semiconductor component 206 is to be turned off, the turn-on module does not operate, and the switch Q G is turned on, thereby commutating current from the cathode K to the gate G through the pre-charged capacitor C OFF , thereby turning off the power semiconductor component 206 .
  • both the conduction module and the shutdown module are outside the package (case) of the power semiconductor component, so that the area of the commutation loop when the power semiconductor component is turned off is large. , which in turn leads to a large stray inductance in the commutation loop. Therefore, it is necessary to improve the package structure of the semiconductor device and reduce the area of the commutation loop in order to reduce the stray inductance in the converter circuit.
  • FIG. 3 shows a schematic structural view of an electrical device including a power semiconductor element according to an embodiment of the present application.
  • FIG. 4 shows a schematic enlarged schematic view of a broken line portion in FIG.
  • the electrical device can include a power semiconductor component 304.
  • power semiconductor component 304 may include, but are not limited to, SCR, GCT, GTO, and the like.
  • Power semiconductor component 304 can be formed in a semiconductor substrate.
  • 304 can also be used to indicate the semiconductor substrate.
  • a gate (also referred to as a control electrode) and a current electrode (hereinafter also referred to as a first current electrode, such as a cathode K) 501 of the power semiconductor element 304 are disposed on one surface of the semiconductor substrate (see FIG. 5, FIG. Not shown in 3).
  • the electrical device may also include a printed circuit board 315 on which a drive module for driving the power semiconductor component 304 may be disposed.
  • the drive module may include a turn-off module for turning off the power semiconductor component 304 and/or a turn-on module for turning on the power semiconductor component 304, as previously described in connection with Figures 1 and 2.
  • the drive module can include at least one first switching element (eg, Q G ). It will be readily apparent to those skilled in the art that each of the first switching elements can include a control terminal and a current terminal.
  • the first switching element may include a drain terminal 311 and a source terminal 312 as current terminals (electrodes) and a gate terminal 318 as a control terminal (electrode).
  • the drain terminal 311 and the gate terminal 318 of the first switching element can be electrically connected to the printed circuit board 315.
  • drain terminal 311 and gate terminal 318 may be coupled to printed circuit board 315 by crimping, soldering, or other available connections.
  • the electrical device can also include a first conductive block 307.
  • a first conductive block 307 can be disposed between the power semiconductor component 304 and the printed circuit board 315 for providing electrical connections to the first current electrode 501 (described in more detail later).
  • an optional conductive sheet 306 disposed between the power semiconductor component 304 and the conductive block 307 is also shown in FIG.
  • the electrically conductive members that are electrically connected to one another may be provided with insulating features to provide, for example, electrical connections of a particular geometry, as desired.
  • the first conductive block 307 can be used to provide an electrical connection to the cathode of the power semiconductor component 304.
  • the first conductive block 307 may be made of a conductive metal, and preferably, the first conductive block may be a metal copper block.
  • the first conductive block 307 can be coupled to the electrodes of the power semiconductor component 304 by crimping to provide an electrical connection to the electrode.
  • a conductive strip 306 that is in direct contact with the first current electrode 501 of the power semiconductor component 304 and the conductive bump 307 may also be included between the first conductive bump 307 and the power semiconductor component 304.
  • the conductive sheet 306 may comprise a conductive material having a coefficient of thermal expansion consistent with the coefficient of thermal expansion of the power semiconductor component 304, such as molybdenum. The conductive sheet 306 can be used to reduce mechanical friction caused by contact between the conductive block and the power semiconductor component.
  • the electrical device may also include one or more connectors 309.
  • Each of the connectors 309 can be electrically isolated from the first conductive block 307 through the first conductive block 307 and connected to a portion of the gate 500.
  • the conductive block 307 can have one or more corresponding through openings to accommodate the corresponding connector 309 and the insulating member 310 that electrically isolates the connector 309 from the conductive block 307.
  • Each connector 309 can be associated with a respective first switching element.
  • the electrical device may also include one or more first spring members 308, such as a butterfly spring.
  • Each first spring member 308 can be placed between a corresponding connector 309 and a first switching element associated with a corresponding connector 309 such that a terminal of each first switching element (eg, a first current terminal) A portion of the gate 500 can be electrically connected by the first spring member 308 and the connector 309.
  • the first current terminal may be the drain terminal 318 of the first switching element.
  • the first switching element e.g., Q G
  • the first switching element can be tightly coupled to a portion of the gate 500 through the connector 309 by a press fit, but not by application to the power semiconductor component 304.
  • the large mechanical pressure causes damage to the power semiconductor element 304 (for example, an electrode on a semiconductor substrate or a semiconductor substrate, etc.), improving reliability.
  • the shutdown module shown in FIGS. 1 and 2 together with the power semiconductor components are integrated in the package (ie, the package), and the area of the commutation loop inside the semiconductor device can be remarkably reduced. Thereby, the stray inductance in the commutation loop is effectively reduced, thereby improving the commutation speed and improving the shutdown reliability.
  • FIG. 5 shows a top schematic view of a power semiconductor component in an electrical device in accordance with an embodiment of the present application.
  • a gate 500 and a first current electrode 501 may be disposed on one surface of the semiconductor substrate of the power semiconductor element 304 (for example, a lower surface of the semiconductor substrate).
  • the first current electrode 501 can be disposed to surround the gate 500.
  • the gate 500 can be arranged in a ring shape on a semiconductor substrate.
  • the inside of the gate 500 may be a part of the first current electrode 501, and the outside of the gate 500 may be another part of the first current electrode 501.
  • the first current electrode 501 can be the cathode of the power semiconductor component 304.
  • the gate 500 is arranged in a continuous circular shape on the semiconductor substrate, it should be understood that the gate 500 may also be provided on the semiconductor substrate in a continuous shape of any suitable shape. Or discontinuous rings, such as elliptical rings, square rings, regular polygonal rings, irregular polygonal rings, and the like.
  • FIG. 6 shows a schematic diagram of an arrangement of switching elements in accordance with one embodiment of the present disclosure.
  • at least one of the switching elements may be disposed on the printed circuit board 315 in an annularly distributed arrangement.
  • a first plurality of switching elements 600, a second plurality of switching elements 601, and a third plurality of switching elements 602, each arranged in an approximately concentric annular shape, are illustrated in FIG.
  • the first plurality of switching elements 600 may correspond to the switches Q G in the shutdown module 102 of the driving module shown in FIG. 1
  • the second plurality of switching elements 601 and The three or more switching elements 602 may correspond to the switches Q E in the shutdown module 102 of the drive module shown in FIG.
  • FIG. 6 shows a schematic diagram of an arrangement of switching elements in accordance with one embodiment of the present disclosure.
  • at least one of the switching elements may be disposed on the printed circuit board 315 in an annularly distributed arrangement.
  • the switching elements are arranged in a circular shape on the semiconductor substrate, it should be understood that the first switching elements may also be arranged on the semiconductor substrate in an annular shape of any other shape, for example, an elliptical shape, a square shape, Polygons, etc.
  • FIG. 7 shows a top schematic view of a portion of an electrical device in accordance with another embodiment of the present disclosure.
  • the upper surface 700 of the arcuate connector 309 configured to be separated, and the upper surface 701 of the insulator 310 surrounding the connector 309 are shown in FIG.
  • FIG 7 also shows a switching element provided on the printed circuit board 315, such as a switch Q E.
  • the switching element such as Q G
  • the electrode of the power element by press fitting or crimping to provide a reliable connection and further reduce the mechanical pressure applied to the power semiconductor element 304.
  • the possibility of damage to the power semiconductor component 304 eg, its semiconductor substrate or electrodes on a semiconductor substrate, etc.
  • the contact resistance can be reduced, the stray inductance can be reduced, the commutation speed can be increased, and the turn-off reliability can be improved.
  • the electrical device can also include a second conductive block (also referred to as a negative conductive block in some embodiments) 316.
  • the conductive block 316 can be coupled to the printed circuit board 315 by a press fit, and more specifically to a conductive member (eg, a pad or electrode, etc.) on the printed circuit board 315 to provide to the printed circuit board. Electrical connection.
  • printed circuit board 315 is shown disposed between negative conductive block 316 and first conductive block 307.
  • spacers or suitable insulating features may also be present between the conductive block 316 and the printed circuit board, if desired.
  • the conductive block 316 is also placed in intimate contact with the source terminal 312 of the switching element to provide an electrical connection to the source terminal 312. As shown in FIG. 3, the source terminal 312 and the negative electrode conductive block 316 can be brought into close contact by providing protrusions at respective positions of the negative electrode conductive block 316.
  • the first conductive block 307 can include a first opening therethrough, the first opening being adapted to connect the respective connector 309, the corresponding first switching element, and the corresponding The first spring member 308 is received therein.
  • the connector 309 can include a protruding first portion 309-2 and a second portion 309-4 having a recess. The lateral dimension of the first portion 309-2 can be less than the lateral dimension 309-4 of the second portion. Corresponding switching elements and corresponding spring members 308 are received in the second portion 309-4.
  • the second portion may include side arms 309-1 and 309-3 disposed at the edge of the recess and extending to the printed circuit board 315.
  • Side arms 309-1 and 309-3 can also be engaged with printed circuit board 315 by a press fit to provide an electrical connection.
  • the side arms 309-1 and 309-3 and the first portion 309-2 can be configured to be substantially perpendicular to the semiconductor substrate of the printed circuit board 315 and the power semiconductor component 304, as shown in FIGS. 3 and 4.
  • the connector 309 can electrically connect the gate 500 or a portion thereof to the printed circuit board 315 through the side arms 309-1 and 309-3.
  • the gate 500 or a portion thereof may be coupled to the first current terminal of the switch Q G on the printed circuit board 315 by the first spring member 308 and the connector 309, and the gate 500 or portion thereof may also pass through the connector 309
  • the side arms 309-1 and 309-3 are connected to a connection site on the printed circuit board 315 (which is substantially equipotential to the first current terminal) so as to be at the first current terminal of the gate 500 and the switch Q G
  • the first spring member 308 can be a disc spring. It should be understood, however, that the first spring member 308 can take any shape that produces a suitable resilient member, including but not limited to any suitable springs such as disc springs, compression springs, and the like.
  • Said first electrical device may further comprise one or a plurality of second switching elements (e.g., Q E).
  • the second switching element Q E may be placed on the same surface as the first switching element on the printed circuit board 315.
  • the electrical device can also include one or more second spring members 320. Each of the second spring members 320 may be disposed between the corresponding second switching element Q E and the first conductive block 307 such that the second switching element Q E passes through the first conductive block 307 and the power semiconductor element
  • the electrodes of 304 eg, first current electrode 501 are electrically connected.
  • the first current electrode 500 can be the cathode of the power semiconductor component 304, and the cathode of the power semiconductor component 304 and the second switching component Q E can pass the first conductive through the second spring component 320.
  • Block 307 is electrically connected.
  • the second spring member 320 can be a disc spring. It should be understood, however, that the second spring member 320 can take any shape of resilient conductive member capable of producing a suitable spring force, including but not limited to a spring.
  • the second switching element Q E can include a drain terminal 313, a source terminal 314, and a gate terminal 317.
  • the drain terminal 313 of the second switching element Q E can be electrically connected to the first current electrode 501 of the power semiconductor element 304 through the second spring member 320 and the first conductive block 307.
  • the plurality of second switching elements Q E may also be disposed on the printed circuit board 315 in a ring-shaped distribution.
  • two second switching elements Q E may be symmetrically arranged on at least a part of the first switching element 600, respectively.
  • a plurality of first switching elements may be arranged in a first ring 600, and a plurality of second switching elements are respectively disposed outside and inside the first ring 600.
  • a respective second switching element Q E may be arranged on each side of the first switching element.
  • the distance between the first switching element and the corresponding second switching element Q E on both sides may be set to be substantially equal.
  • the area of the commutation loop between the gate of the power semiconductor component 304 and the cathode at a different location thereof can be made substantially identical, thereby enabling the replacement of different loops.
  • the flow speed is basically the same. Thereby, the cells at different positions inside the power semiconductor element 304 can be uniformly turned off, preventing some or some of the cells from being excessively heated, thereby preventing damage of the power semiconductor element 304.
  • the second switching element Q E can be tightly connected to the first current electrode 501 through the first conductive block 307, but not excessively applied to the power semiconductor element 304 due to external application. Damaged by pressure.
  • a greater pressure needs to be applied (e.g., a 4 inch correspondence requires, for example, 36-44 kN, 6 The inch corresponds to, for example, 90-110 kN), so the arrangement of the second spring member 520 is more advantageous.
  • the switching elements such as Q G , Q E
  • the electrodes of the power element by press fitting or crimping to provide a reliable connection and further reduce the mechanical force applied to the power semiconductor element.
  • the pressure causes the possibility of damage to the power semiconductor component (for example, an electrode on its semiconductor substrate or semiconductor substrate, etc.).
  • the contact resistance can be reduced, the stray inductance can be reduced, the commutation speed can be increased, and the turn-off reliability can be improved.
  • the electrical device can also include a coaxial cable 319 that connects the printed circuit board 315 to the exterior.
  • the coaxial cable 319 can provide external connection to the gate terminal and/or source terminal of the first switching element and/or the second switching element Q E , respectively, thereby controlling the switch Q G and/or Q Turn on and off E.
  • the coaxial cable 319 can provide external connections to the gate 500 of the power semiconductor component 304 and/or the first current electrode 501, respectively, thereby controlling the turn-on and turn-off of the power semiconductor component 304.
  • the current flowing through the switching elements may be measured by coaxial cable 319 to over-current protect the switching elements.
  • the electrical device may further include a third conductive block 305, which may be used to provide electrical connection to the third current electrode of the power semiconductor component 304 disposed on the other surface of the semiconductor substrate.
  • the third current electrode can be the anode of the power semiconductor component 304 and the anode can be located on the upper surface of the semiconductor substrate.
  • a conductive pad 303 may be included between the third conductive block 305 and the power semiconductor component 304 in direct contact with the third current electrode of the power semiconductor component 304, wherein the conductive pad 303 may include and power.
  • the conductive material of the thermal expansion coefficient of the semiconductor element 304 having a uniform thermal expansion coefficient, such as molybdenum, is used to improve the bonding between the third conductive block 305 and the power semiconductor element 304, and to reduce the mechanical contact between the conductive block and the power semiconductor element. friction.
  • the electrical device can also include a package housing that can enclose the power semiconductor component 304 and the driver module with the second conductive block 316 and the third conductive block 305.
  • the package housing may include a support 301.
  • Each of the third conductive block 305 and the second conductive block 316 may have an extension extending from a side thereof.
  • the support member 301 may be disposed between the extensions of the third conductive block 305 and the second conductive block 316 to form the cavity 302.
  • a power semiconductor component 304, a printed circuit board 315, and the like may be disposed in the cavity 202.
  • the support member 301 may be formed of ceramic.
  • the outer side of the support member 301 may be provided with a protrusion (also referred to as a shed structure) as shown in FIG. 3 to increase the creepage distance and improve insulation properties.
  • the sealed cavity 302 may be filled with a gas that is stable in nature and not easily decomposable, such as nitrogen, helium, etc., to further protect the power semiconductor component 304 from external environment.
  • An opening for passing through the coaxial cable 319 may also be provided in the support member 301.
  • power semiconductor component 304 can include a gate commutated thyristor (GCT) or a gate turn-off thyristor (GTO).
  • GCT gate commutated thyristor
  • GTO gate turn-off thyristor
  • the electrical device shown in FIG. 3 may constitute an emitter turn-off thyristor (ETO).
  • FIG. 8 is a block diagram showing the electrical structure of a semiconductor device in accordance with another embodiment of the present application. Similar to FIG. 3, the electrical device can include a power semiconductor component 800, a printed circuit board 801, a drive module including one or more first switching elements disposed on the printed circuit board 801, a first conductive block 804, an A plurality of first spring members 808, one or more connectors 809.
  • the embodiment shown in FIG. 8 differs from the embodiment shown in FIG.
  • a printed circuit board 801 is disposed in an opening in the first conductive block 804; a gate terminal, a source terminal of the first switching element, and The drain terminals may each be electrically connected to the printed circuit board 801 by soldering or other available electrical connections; and the driver module disposed on the printed circuit board 801 may also include an attached to the printed circuit board 801 (in the figure at 801) Capacitor 803 of the lower surface).
  • capacitor 803 can be electrically coupled to the first switching element via printed circuit board 801.
  • power semiconductor component 800 can include GCT or GTO, while the electrical device shown in FIG. 8 can form an integrated gate commutated thyristor (IGCT).
  • IGCT integrated gate commutated thyristor
  • FIG. 9 shows a schematic diagram of an electrical device in accordance with one embodiment of the present application.
  • channels 900, 901 for cooling may be provided in the first conductive block.
  • the passage 900 can be a conduit for incoming and outgoing fluid in communication with the outside
  • the passage 901 can be a fluid passage in the first conductive block. Since the main heat generating portion of the semiconductor device is the power semiconductor element 304, and the printed circuit board 315 is usually made of a material having poor thermal conductivity, heat is easily accumulated in the first conductive block, and is provided for cooling by being disposed in the first conductive block. The channel can effectively improve the heat dissipation performance of the entire semiconductor device.
  • cooling passage 901 is illustrated as being disposed in the first conductive block, the present disclosure is not limited thereto. Cooling channels may alternatively or additionally be provided in other conductive blocks or outside the conductive blocks as needed.
  • the cooling fluid is electrically non-conductive.
  • a fluid which may be electrically conductive such as water
  • An electrical device comprising: a semiconductor substrate having a power semiconductor element thereon, wherein a control electrode of the power semiconductor element and a first current electrode are disposed on one surface of the semiconductor substrate; a printed circuit board thereon Disposed with a driving module for driving the power semiconductor element, the driving module including at least one first switching element, each of the first switching elements including a control terminal and a current terminal; a first conductive block disposed on the semiconductor substrate and Between the printed circuit boards, for providing electrical connection to the first current electrode; one or more connectors, each of the connectors electrically penetrating the first conductive block through the first conductive Blocking and connecting to a portion of the control electrode, and each connector is associated with a respective first switching element; and one or more first spring members, each first spring member being disposed with a corresponding connector and Between the first switching elements associated with the corresponding connectors, such that the first current terminals of the current terminals of each of the first switching elements Member is electrically connected to the control electrode through the connecting part.
  • control electrodes are arranged in a ring shape on a semiconductor substrate.
  • the at least one first switching element comprises a plurality of first switching elements, the plurality of first switching elements being divided into a plurality of groups, wherein at least one group corresponds to a control electrode of the power semiconductor element .
  • each of the first switching elements includes a drain terminal and a source terminal as current terminals and a gate terminal as a control terminal, and the second current terminal and the gate terminal of the first switching element are coupled To the printed circuit board, wherein the first current terminal is one of a drain terminal and a source terminal, and the second current terminal is the other of a drain terminal and a source terminal.
  • the first spring member is one of: an electrically conductive spring; and a conductive resilient structure comprising a spring and a conductive member.
  • the first conductive block includes a first opening penetrating therethrough, the first opening being adapted to receive a respective connector, a respective first switching element, and a corresponding first spring member therein .
  • the connector has a protruding first portion and a second portion having a recess, the first portion having a lateral dimension smaller than a lateral dimension of the second portion, wherein the respective first switching element and corresponding A first spring member is received in the second portion, the recess including a side arm disposed at the edge of the recess and extending to the printed circuit board.
  • the electrical device further includes an insulator disposed between the connector and the first conductive block to insulate the two from each other.
  • the first switching elements in each group are arranged in one of the following ways: a ring, a portion of a ring, or a matrix.
  • the electrical device further includes: one or more second switching elements, the second switching element being placed on the same surface of the printed circuit board as the first switching element, and one or a plurality of second spring members each disposed between the corresponding second switching element and the first conductive block such that the second switching element passes through the first conductive block and the power semiconductor element A current electrode is electrically connected, wherein the second switching element and the second spring member are disposed in a recess of the conductive block.
  • the plurality of second switching elements are distributed on the printed circuit board in an annular arrangement, and symmetrically arranged on each side of at least part of the first switching elements in a radial direction of the ring Second switching element.
  • a passage for cooling is provided in the first conductive block.
  • the first switching element comprises a DirectFet, the power semiconductor component comprising a gate commutated thyristor (GCT), a gate turn-off thyristor (GTO).
  • GCT gate commutated thyristor
  • GTO gate turn-off thyristor
  • the electrical device further includes: a second conductive block coupled to the other side of the printed circuit board; a third conductive block, and the power semiconductor component disposed on the semiconductor substrate a second current electrode coupled on the other surface; and a package housing encapsulating the power semiconductor component and the driver module with the second conductive block and the third conductive block.
  • MOSFETs for power applications are typically lateral flow through structures.
  • the gate, drain, and source are usually soldered to the board, and the heat generated by the device is mainly dissipated through the board. Due to the type of package, this MOSFET has poor heat dissipation and limits its current capacity. Therefore, a crimp type MOSFET is proposed, which is a vertical flow-through structure as shown in FIG. 10, the drain is connected to the top metal case, and the source electrode and the gate electrode are disposed at the bottom.
  • the bottom source and the gate can be soldered to the circuit board, the drains on the left and right sides are soldered to the circuit board, and the top drain is crimped to the metal connection structure to increase the heat dissipation capability.
  • the turn-off module of the gate drive circuit of an integrated gate commutated thyristor uses a large number of parallel MOSFET arrays QG and a pre-charged parallel capacitor bank Coff in series, shutting down the IGCT During this period, the IGCT cathode current is commutated to the gate by triggering the MOSFET array QG to turn on, thereby turning off the IGCT.
  • IGCT integrated gate commutated thyristor
  • two sets of parallel MOSFET arrays QG and QE are used.
  • QG is turned off and QE is turned on; when ETO is turned off, QE is turned off, QG is turned on, and current is commutated from the cathode of GCT or GTO element to the gate, thereby turning it off.
  • the molybdenum sheet needs to be crimped on both sides of the GCT or GTO and a pressure of several tens of kN or more is applied, and the single crimp type MOSFET can only withstand a pressure of 50-100 N, if the MOSFET is integrated in Within the package, there are pressure differences and coordination problems with different components.
  • a press-fit structure for a power semiconductor component eg, a crimp-type MOSFET
  • the press-fit structure can be considered an electrical device.
  • the press-fit structure includes: a first conductive block (for example, a copper block) 1, an elastic structure 2, a crimp type MOSFET 3, a circuit board 4, and a second conductive block (for example, copper) from top to bottom. Block) 5.
  • the bottom of the first copper block 1 is provided with a groove, and the elastic structure 2 and the crimp type MOSFET 3 are placed in the groove.
  • the press-fit structure may include one or more resilient structures 2 and one or more crimp-type MOSFETs 3.
  • the elastic structure 2 is in one-to-one correspondence with the crimp type MOSFET 3, but the disclosure is not limited thereto.
  • One or more grooves are provided at the bottom of the first copper block 1.
  • the elastic structure 2 and the corresponding crimp type MOSFET 3 are disposed in the corresponding grooves.
  • the spring structure 2 as shown in FIG. 13, includes a main spring 6, an electrically conductive auxiliary shrapnel 7 (two in the example of FIG. 13), and a metal base 8.
  • the metal base 8 has a groove structure.
  • the main spring 6 is preferably electrically conductive.
  • One end of the main spring 6 and the metal base 8 are disposed in the recess and coupled to the bottom of the recess to be coupled to the metal base 8.
  • One end of the auxiliary elastic piece 7 is coupled to the metal base 8.
  • the other end of the main spring 6 is coupled to the bottom groove of the first copper block 1, and the other end of the two auxiliary elastic pieces 7 corresponds to the first copper block 1 when no external pressure or external pressure is less than or equal to a predetermined threshold.
  • the bottom of the groove is slightly or not in contact. And when the external pressure is greater than the predetermined threshold, the other end of the auxiliary elastic piece is in contact with the corresponding first conductive block.
  • the auxiliary shrapnel may generate an elastic force opposite to the direction in which the other end is subjected to a force.
  • the circuit board 4 may include a substrate.
  • the substrate may be an FR4 substrate, or an aluminum substrate or a copper substrate.
  • the FR4 substrate refers to a substrate that conforms to the FR4 standard.
  • the circuit board 4 includes a top circuit layer, a first insulating thermally conductive layer, an intermediate circuit layer, a second insulating thermally conductive layer, and a copper substrate.
  • a second insulating and thermally conductive layer is disposed between the substrate and the intermediate circuit layer, the intermediate circuit layer is disposed between the first insulating layer and the second insulating layer, and the first insulating layer is disposed on the top layer Between the circuit layer and the intermediate circuit layer.
  • the elastic structure 2 and the corresponding crimp type MOSFET 3 are disposed in the grooves at the bottom of the first copper block 1.
  • the top of the resilient structure 2 is electrically connected to the inner surface of the recess.
  • the first copper block 1 is not in contact with the circuit board 4 without applying pressure, and the first copper block 1 is electrically connected only to one current electrode (for example, a drain) of the crimp type MOSFET 3 through the elastic structure 2.
  • the metal base 8 at the bottom of the elastic structure 2 is coupled to the top of the crimp type MOSFET 3.
  • one current electrode (eg, the drain) of the crimp-type MOSFET 3 is disposed at the top or electrically connected to the top case.
  • Another current electrode (for example, a source) and a control electrode (for example, a gate) at the bottom of the crimp type MOSFET 3 are electrically connected to the circuit board 4.
  • the crimp type MOSFET 3 is disposed on the circuit board 4.
  • the second copper block 5 can be rigidly attached to the underside of the circuit board 4, such as to the substrate of the circuit board. It should be understood that the present disclosure is not limited thereto.
  • the elastic structure 2 when a pressure is applied between the first copper block 1 and the second copper block 5 (for example, less than or equal to a predetermined threshold), the elastic structure 2 becomes smaller, and the first copper block 1 and the circuit board 4 are smaller. Without contact, the first copper block 1 is electrically connected only to the drain of the crimp type MOSFET 3 through the elastic structure 2.
  • the auxiliary elastic piece 7 in the elastic structure 2 may be configured to be in slight contact with or not in contact with the first copper piece in this case.
  • the auxiliary shrapnel 7 in the elastic structure 2 is used to increase the flow area and the contact area, and to reduce the flow resistance and the thermal resistance.
  • the elastic structure 2 When a pressure is applied between the first copper block 1 and the second copper block 5 (for example, greater than a threshold), the elastic structure 2 becomes larger, and the first copper block 1 is in contact with the circuit board 4.
  • the first copper block 1 can be electrically connected to the drain of the pressure-bonding MOSFET 3 through the elastic structure 2, and can also pass through the contact surface of the first copper block 1 and the circuit board 4, and the copper layer on the top circuit layer of the circuit board 4.
  • the (wiring) region is electrically connected to the drain of the crimp type MOSFET 3.
  • the flow area of the first copper block 1 and the drain of the pressure-bonding type MOSFET 3 can be increased, and the through-current resistance can be reduced.
  • the other end of the auxiliary elastic piece 7 in the elastic structure 2 is in contact with the corresponding first conductive block, and the auxiliary elastic piece generates an elastic force opposite to the direction in which the other end is subjected to the force. In this way, a reliable electrical connection can be guaranteed.
  • the auxiliary elastic piece 7 in the elastic structure 2 can increase the flow area and the contact area, and reduce the flow resistance and the thermal resistance.
  • the bottom of the metal base 8 of the elastic structure 2 is coupled to the top of the drain of the crimp type MOSFET 3.
  • the main spring 6 is used to provide pressure on the contact surface, reducing contact resistance and thermal resistance.
  • the edge of the metal case to which the drain D of the crimp type MOSFET 3 is connected is coupled to the top circuit layer of the circuit board 4.
  • the gate G of the crimp type MOSFET 3 is coupled to the intermediate circuit layer of the circuit board 4 through a via and can be connected to the gate trigger signal receiving terminal of the circuit board.
  • the source S of the crimp type MOSFET 3 is coupled to the copper substrate of the circuit board 4 through an electrically and thermally conductive member (for example, a conductive medium such as a solder paste; or a conductive block such as a copper block or the like).
  • the substrate of the circuit board 4 may be a conductive substrate or an insulating substrate.
  • a person skilled in the art can provide electrical connection or no electrical connection between the circuit board 4 and the second conductive block (copper block) 5 as needed, and different electrical connections can be set.
  • the second copper block 5 can be electrically connected to the source of the crimp type MOSFET 3 through the circuit board 4.
  • the pressure required for different applications can be applied between the top end of the first copper block 1 and the bottom end of the second copper block 5, for example, up to several tens of kN.
  • an external pressure greater than the predetermined threshold is maintained between the first conductive block and the second conductive block. In this way, a reliable electrical connection can be ensured.
  • the elastic structure 2 becomes smaller, the first copper block 1 does not contact the circuit board 4, and the second copper block 5 and the circuit The plate is in rigid contact.
  • the pressure applied between the first copper block 1 and the second copper block 5 is the sum of the pressures of the array of the crimp type MOSFET 3 and the metal base 8.
  • the first copper block 1 when the pressure applied between the first copper block 1 and the second copper block 5 is increased, the first copper block 1 is in rigid contact with the circuit board 4, and the second copper block 5 is in rigid contact with the circuit board 4,
  • the spring deformation no longer increases.
  • the parameters of the main spring 6 can be designed according to the pressure requirements (50-100N) of the metal base 8 of the elastic structure 2 and the crimp type MOSFET 3, so that the main spring 6 provides the required pressure value at the time of maximum deformation.
  • excess pressure is applied to the contact faces of the first copper block 1 and the circuit board 4, preventing the crimp type MOSFET 3 from being damaged by mechanical stress due to excessive pressure.
  • heat generated by the crimp type MOSFET 3 during the through flow can be dissipated through the upper and lower surfaces.
  • heat is dissipated through the metal base 8, the auxiliary elastic piece 7, the first copper block 1, and the heat sink connected to the first copper block 1.
  • heat dissipation can also be performed through the heat sinks connected to the ends of the drain D metal casing, the top circuit layer of the circuit board 4, the first copper block 1, and the first copper block 1.
  • heat can be dissipated through the solder paste, the copper substrate, the second copper block 5, and the heat sink connected to the second copper block 5.
  • the pressure applied between the first copper block 1 and the second copper block 5 is advantageous for improving the contact of each contact surface, reducing the thermal resistance and contact resistance of each contact surface, thereby enhancing the heat conductivity and the flow capacity.
  • the at least one power semiconductor component comprises a plurality of power semiconductor components, the plurality of power semiconductor components being divided into a plurality of groups.
  • the one electrode of the power semiconductor elements in each group is electrically connected together.
  • the at least one first conductive block includes a plurality of first conductive blocks, each of the first conductive blocks corresponding to one group, and each power semiconductor component in the corresponding group is disposed in a corresponding one of the first conductive blocks .
  • the electrical device further includes a first insulating isolation structure disposed between the conductive blocks corresponding to the adjacent two groups
  • the crimp-type MOSFET arrays may be arranged in a ring. Forming a ring, as shown in FIG. 15; or forming a plurality of rings, three rings are formed as shown in FIG. 15; or may be arranged in a matrix. In some embodiments, a set of crimp-type MOSFETs can also be arranged as part of a ring.
  • the first copper block, the second copper block, and the elastic structure should be designed according to the arrangement of the crimp type MOSFET array.
  • a plurality of first copper blocks should be designed, and an insulating ring spacer should be added between different first copper blocks, such as Figure 17 shows. If the sources of the different types of crimp-type MOSFETs are very different, similarly, a plurality of second copper blocks should be designed.
  • An electrical device comprising: at least one first conductive block, each of the first conductive blocks being provided with at least one groove; at least one elastic structure, the elastic structure being placed in a corresponding groove, the elastic structure One end is electrically connected to the first conductive block; at least one switching element is disposed in a corresponding groove, and one electrode of the switching element is coupled to the other end of the corresponding elastic structure disposed in the corresponding groove; a circuit board, the switching element is disposed on one side of the circuit board, and at least one of the other two electrodes of each of the switching elements is electrically connected to the circuit board; and at least one second conductive block, The other side of the circuit board is attached to the at least one second conductive block, wherein each of the first conductive blocks passes a corresponding elastic structure and a corresponding one in a case where the electrical device is subjected to an external pressure greater than a predetermined threshold The one electrode of the power semiconductor is electrically connected.
  • the first conductive block is substantially non-contacting the circuit board.
  • the elastic structure comprises: a metal base having a groove structure; a main spring, one end of the main spring is disposed in a groove of the metal base, and the other end of the main spring is disposed at a corresponding first conductive block is coupled to the first conductive block, and the conductive auxiliary elastic piece is disposed independently of the main spring, and one end of the auxiliary elastic piece is coupled to the metal base,
  • the external pressure is less than or equal to the preset threshold
  • the other end of the auxiliary elastic piece is substantially not in contact with the first conductive block
  • the other end of the auxiliary elastic piece corresponds to The first conductive block contacts, and the auxiliary elastic piece generates an elastic force opposite to a direction in which the other end is subjected to a force.
  • the resilient structure is configured such that a side of the metal base opposite the recess is electrically coupled to the one of the corresponding ones of the switching elements.
  • the first conductive block is formed of a metal material
  • the second conductive block is formed of a metal material
  • an external pressure greater than the predetermined threshold is maintained applied to the first conductive block and the Between the second conductive blocks.
  • the first conductive block contacts the circuit board and is electrically coupled to a selected conductive component on the circuit board when the external pressure is greater than a predetermined threshold.
  • each of the first conductive blocks is electrically connected to at least another electrode of the corresponding switching element through the circuit board when the external pressure is greater than a predetermined threshold.
  • the circuit board includes a top circuit layer, a first insulating heat conductive layer, an intermediate circuit layer, and a second insulating heat conductive layer, and a substrate, wherein the second insulating heat conductive layer is disposed on the substrate and the middle Between the circuit layers, the intermediate circuit layer is disposed between the first insulating heat conducting layer and the second insulating heat conducting layer, and the first insulating heat conducting layer is disposed between the top circuit layer and the intermediate circuit layer, the switching element Having a metal casing, the one electrode of the switching element being electrically connected to the metal casing, the metal casing being configured such that an edge thereof is electrically coupled to a top circuit layer of the circuit board, and a control electrode of the switching element passes a via is electrically coupled to an intermediate circuit layer of the circuit board, and the other electrode of the switching element is electrically coupled to the second conductive block by a conductive member, wherein the substrate is attached to the The second conductive block.
  • the at least one switching element comprises a plurality of switching elements, the plurality of switching elements being divided into a plurality of groups, the one electrodes of the switching elements in each group being electrically connected together, wherein
  • the at least one first conductive block includes a plurality of first conductive blocks, each of the first conductive blocks corresponding to one group, and each of the switching elements in the corresponding group is disposed in a corresponding one of the first conductive blocks,
  • the electrical device further includes a first insulating isolation structure disposed between the conductive blocks corresponding to the adjacent two groups.
  • the switching elements in at least one of the groups are arranged in a ring or a part of a ring shape, and at least the other group of switching elements are arranged as a central part surrounded by the ring, wherein
  • the at least one first conductive block further includes a first conductive block corresponding to the central portion, and each of the switching elements in the central portion is disposed in a corresponding one of the first conductive blocks.
  • the electrical device further includes: a second insulating isolation structure disposed between the second conductive blocks corresponding to the adjacent two groups.
  • An electrical device (or a press-fit structure) according to an embodiment of this aspect of the present disclosure has one or more of the following beneficial effects:
  • the elastic structure provides pressure to the contact surface, reduces the contact resistance, and uses the auxiliary shrapnel to increase the flow area, thereby increasing the flow capacity of the overall structure.
  • the elastic structure provides pressure to the contact surface, reduces the thermal resistance of the contact surface, and simultaneously uses a copper-based circuit board and an auxiliary shrapnel to enhance the heat dissipation capability of the overall structure.
  • the elastic structure can limit the upper limit of the pressure of the MOSFET surface, so that the pressure range applied between the first copper block and the second copper block is larger, and the application range is wider.
  • an electrical device or electrical component includes: at least one first conductive block; at least one switching element, each switching element including a control electrode and a current electrode, wherein one of the current electrodes is disposed on a first surface of the switching element and coupled And to the corresponding first conductive block, the other of the current electrodes and the control electrode are disposed on a second surface of the switching element opposite to the first surface; at least one control electrode connector, each of which includes at least a conductive base and at least one elastic conductive structure received in the conductive base, one end of each of the elastic conductive structures is coupled to a corresponding conductive base, and the other end of the elastic conductive structure is adapted to be associated with a corresponding switching element
  • Control electrodes are coupled to provide electrical connections to the control electrodes; at least one second conductive block, each of which includes one or more raised portions, each of the raised portions and the current electrode of the corresponding switching element The other electrode is coupled.
  • the control electrode is different from the current electrode.
  • the control electrode may be an electrode for controlling on/off of the switching element.
  • the current electrode can be an electrode that provides a current path when the switching element is turned on.
  • the control electrode can be a gate, and the current electrode can be a source or a drain. It should be understood that the present disclosure is not limited thereto.
  • the press-fit structure includes: a first conductive block (for example, a copper block) 41, a switching element (for example, a crimp type MOSFET) 42, a gate connection member 43, a second conductive block (copper block) 45, and an elastic conductive structure.
  • the elastic conductive structure may include an elastic structure 46 and a rod-shaped metal 47 in contact with the gate of the crimp type MOSFET 42.
  • the press-fit structure may further include an insulating medium 48 between the gate connector 43 and the second copper block 45.
  • the press-fit structure can also include a connection interface 44 that receives an external gate control signal.
  • the gate connector 43 may be disposed corresponding to the gate.
  • the gate connector can also be arranged in a ring shape.
  • the gate connectors may also be arranged in a grid shape.
  • the first copper block 41 may be configured to be equipotential, that is, electrically connected, to one current electrode (eg, a drain) of the crimp type MOSFET 42.
  • the second copper block 45 may be configured to be equipotential, that is, electrically connected, to another current electrode (eg, source) of the crimp-type MOSFET 42.
  • a certain pressure may be maintained between the first copper block 41 and the second copper block 45 for reducing the contact resistance and thermal resistance of the contact surface between the first copper block 41 and the crimp type MOSFET 42.
  • the source of the crimp type MOSFET 42 is connected to the convex portion of the second copper block 45, and can be connected by crimping or soldering.
  • the gate connector 43 is placed in the recess of the second copper block 45 and is electrically insulated from the second copper block 45.
  • the gate connection 43 is connected to the gate of the crimp type MOSFET 42 through an elastic conductive structure.
  • the elastic conductive structure includes an elastic structure and a conductive member elastically supported by the elastic structure such that the conductive member contacts a corresponding one of the gates.
  • the resilient conductive structure may comprise an elastic structure 46 and a rod-shaped metal 47.
  • the elastic structure 46 can ensure that the rod-shaped metal 47 is in reliable contact with the gate of the crimp-type MOSFET 42 and can also prevent the contact stress from being too large or too small due to the size matching problem.
  • the gate connection 43 can be coupled to the connection interface 44 to receive an external gate control signal.
  • the connection interface 44 is, for example, a coaxial cable interface to be connected to the outside through a coaxial cable.
  • the gate connection 43 can be a metal structure. Since it is placed in the recess of the second copper block 45, the insulating medium 48 is used to electrically isolate the two.
  • the gate connector 43 can also be a circuit board. In this case, the surface of the board may be provided with an electrical isolation layer as appropriate to avoid undesired electrical connections to other components.
  • the upper surface may have a recess, and the elastic conductive structure may be disposed in the recess.
  • a cylindrical structural member may be disposed in a predetermined positioning hole of the circuit board, and the elastic conductive structure may be disposed in the cylindrical structural member.
  • the switching element may be a switching element package, which may include, e.g., but not limited to, DirectFet TM.
  • the switching element 42 is a package structure and one of its current terminals (for example, a drain terminal) is connected to the upper package case
  • the second conductive portion A void e.g., a recess
  • the second conductive portion A void is provided in block 45 at a location corresponding to the edge of the upper package housing to provide electrical isolation, such as to electrically isolate the housing from the second conductive block or other component.
  • an electrical device is shown in FIG.
  • the electrical device structure is substantially similar to that shown in Figure 19, except that its switching elements are in the form of a die, i.e., are not packaged.
  • the term "die” is used to mean that it may be the entire wafer or a part of the wafer.
  • the first copper block can be the same as that of FIG. 4, using a separate type of copper block.
  • the die of the switching element such as the crimp type MOSFET is not affected by the package structure, and the pressure is not limited by 50-100 N, so that the entire first copper block 51 can be used and applied as shown in FIG. Large pressure, such as tens of kN. In this way, the scope of application can be extended and the cost can be reduced.
  • the second copper block 55 Since the drain D of the crimp-type MOSFET die 52 is above the crimp-type MOSFET die 52 with the source and gate below, the second copper block 55 only needs to be trenched according to the arrangement of the gate connector 53. There is no need to consider electrical insulation from the drain.
  • the connection structure of the gate connection 53 to the gate of the crimp-type MOSFET die 52 is similar to that of FIG. 19, and the gate connection 53 is connected to the gate of the crimp-type MOSFET die 52 via the elastic structure 56 and the rod-shaped metal 57.
  • the gate connection member 53 may be provided in a ring shape or a mesh shape, occupying only a small space of the second copper block 55, thereby saving space.
  • the elastic structure good electrical contact can be ensured.
  • the first copper block 51 is directly connected to the drain of the crimp type MOSFET die 52
  • the second copper block 55 is directly connected to the source of the crimp type MOSFET die 52, and the first copper block 51 and the second There is a certain pressure between the copper blocks 55, which shortens the heat dissipation path of the upper and lower surfaces generated by the power components (for example, MOSFETs) and reduces the thermal resistance in the path.
  • the shape of the gate connector can be designed according to the arrangement of the crimp type MOSFET array.
  • a ring-shaped crimp type MOSFET array as shown in FIG.
  • One design of the gate connector is shown in FIG. If the inner and outer ring crimp type MSOFETs are controlled using the same gate signal, the inner and outer rings of the corresponding gate connectors can be electrically connected. If different gate signals are used for control, such as intermediate loops, different gate connectors are used for the connection.
  • the matrix-shaped crimp type MOSFET array as shown in FIG. 22, if the same gate signal is used for control, a design of the gate connector is shown in FIG.
  • all of the crimp-type MSOFETs in the array are controlled using the same gate signal. If control is performed using different gate signals, a gate connection such as the aforementioned ring-shaped crimp type MOSFET array can be employed.
  • An electrical device comprising: at least one first conductive block; at least one switching element, each switching element comprising a control electrode and a current electrode, wherein one of the current electrodes is disposed on a first surface of the switching element and And coupled to the corresponding first conductive block, the other of the current electrodes and the control electrode are disposed on a second surface of the switching element opposite to the first surface; at least one control electrode connector, each Including at least one conductive base and at least one elastic conductive structure received in the conductive base, one end of each of the elastic conductive structures is coupled to a corresponding conductive base, and the other end of the elastic conductive structure is adapted to correspond to a control electrode of the switching element is coupled to provide an electrical connection to the control electrode; at least one second conductive block, each comprising one or more raised portions, each raised portion and the current electrode of a corresponding switching element The other electrode in the coupling is coupled.
  • control electrode connector is disposed in a recess of the second conductive block
  • electrical device further includes an insulating medium for connecting the control electrode connector and the second conductive block Electrical insulation.
  • a certain pressure is maintained between the first conductive block and the second conductive block.
  • the at least one switching element comprises a plurality of switching elements, the plurality of switching elements being divided into a plurality of groups.
  • the switching elements in each group are arranged in one of the following ways: a ring, a portion of a ring, or a matrix.
  • the at least one control electrode connector is configured as one of the following: the at least one control electrode connector includes only one control electrode connector to electrically connect all of the control electrode connectors The switching element; or the at least one control electrode connection comprises a plurality of control electrode connections independent of each other, each control electrode connection electrically connecting the switching elements in the respective groups.
  • the elastic conductive structure includes an elastic structure and a metal connector, and the metal connector is elastically supported by the elastic structure to ensure reliable connection of the metal connector with the control electrode of the switching element.
  • the switching element is one of: a packaged switching element; and a switching element die.
  • the one electrode of the switching elements in each group are electrically connected together, wherein the at least one first conductive block comprises a plurality of first conductive blocks, each of the first conductive blocks and one Correspondingly, the one electrode of each switching element in the corresponding group is coupled to the first conductive block, and the electrical device further comprises a first insulation disposed between the conductive blocks corresponding to the adjacent two groups Isolation structure.
  • the switching elements in at least one of the groups are arranged in a ring or a part of a ring shape, and at least one other group of switching elements are arranged as a central part surrounded by the ring, the center
  • the one electrode of each of the switching elements in the portion is electrically connected together
  • the at least one first conductive block further includes a first conductive block corresponding to the central portion, and each of the switching elements in the central portion The one electrode is coupled to the first conductive block.
  • the at least one second conductive block includes a plurality of second conductive blocks, each second conductive block corresponding to one group, and the other electrode of each switching element in the corresponding group is coupled to The second conductive block, the electrical device further comprising a second insulating isolation structure disposed between the second conductive blocks corresponding to the adjacent two groups.
  • the at least one second conductive block further includes a second conductive block corresponding to the central portion, the other electrode of each of the switching elements in the central portion being coupled to the second conductive Piece.
  • the electrical device of the present disclosure (eg, a press-fit structure) has one or more of the following benefits:
  • the elastic structure provides pressure to the contact surface, reduces the contact resistance, and uses the auxiliary shrapnel to increase the flow area, thereby increasing the flow capacity of the overall structure.
  • the elastic structure provides pressure to the contact surface, reduces the thermal resistance of the contact surface, and uses a copper-based circuit board to enhance the heat dissipation capability of the overall structure.
  • the elastic structure can limit the upper limit value of the pressure of the surface of the switching element, so that the pressure range applied between the first copper block and the second copper block is larger, and the application range is wider.
  • the press-fit structure of the present disclosure applied to the array of the crimp type switching elements has the following advantageous effects:
  • a ring-shaped or grid-shaped gate connector does not affect the connection of the first copper block, the second copper block and the switching element, and a certain pressure can be applied between the first copper block and the second copper block to reduce the contact surface Resistance and thermal resistance.
  • the gate connector and the gate of the switching element are connected by an elastic structure and a rod-shaped metal to ensure a certain pressure at the joint to ensure reliable connection without being subjected to pressure between the first copper block and the second copper block.
  • the effect is that the switching element will not be damaged due to excessive pressure.
  • power semiconductor devices also referred to as semiconductor devices or power devices
  • the package structure of a power semiconductor device is particularly critical for good electrical connection between the semiconductor device and external circuitry, particularly for power semiconductor devices suitable for use in high voltage, high current environments.
  • a power semiconductor component sometimes referred to as a device wafer, a device chip or a device die
  • a shutdown module is placed in a package (also called a package), and the power semiconductor
  • the inner side and the outer side of the gate ring of the component are both cathodes, and the conductive block for connecting the cathode needs to isolate the channel connecting the gates, that is, a plurality of cathode conductive blocks are required, thus resulting in a complicated package structure.
  • One embodiment of the present disclosure describes an electrical device including: a power semiconductor element having a control electrode and a current electrode, the control electrode being arranged in a ring shape, the control electrode being disposed at one of the current electrodes An outer side; a driving module, configured to drive the power semiconductor component, the driving module includes a plurality of switching elements, the plurality of switching elements are divided into a plurality of groups; and a plurality of first conductive members disposed on the power semiconductor element One side for respectively providing a connection of a corresponding switching element to the one of the current electrodes, and a connection of a corresponding switching element to the control electrode, wherein at least one of the plurality of group of switching elements A group is electrically connected to the control electrode of the power semiconductor component; one or more conductive elastic structures, one end of each of the elastic structures being electrically connected to the corresponding first conductive block, and the other end being electrically connected to the corresponding switching element.
  • the electrical device includes a power semiconductor component 4, a first conductive bump 7, a connector 9, a conductive elastic structure 8, and a drive module.
  • the drive module can be used to include driving the power semiconductor component.
  • the drive module includes a plurality of switching elements.
  • the electrical device further includes at least one circuit board 15 disposed on a corresponding circuit board. The one current electrode terminal and the control electrode terminal of each switching element are coupled to The corresponding circuit board.
  • the electrical device can also include a second conductive bump 16.
  • the electrical device may also include a third conductive block 5.
  • a surface of the power semiconductor component 4 is connected to a conductive sheet.
  • the conductive sheet 3 and the conductive sheet 6 are shown in the drawing.
  • the conductive sheet 3 is connected to the upper surface of the power semiconductor element 4.
  • the conductive sheet 6 is connected to the lower surface of the power semiconductor element 4.
  • the conductive sheets 3, 6 may be, but are not limited to, metal sheets such as molybdenum sheets.
  • the conductive sheet 6 is connected to the first conductive block 7.
  • the bottom of the first conductive block 7 is provided with at least one groove, and the groove is provided with an elastic structure and a switching element.
  • the first conductive block 7 is also used to provide an electrical connection of the power semiconductor component 4 to the current electrode of the switching element.
  • the switching elements can be disposed or mounted to the circuit board 15 and can be coupled to conductive members on the circuit board 15, respectively.
  • the circuit board 15 is also connected to the second conductive block 16.
  • the connecting member 9 can be disposed on both sides of the first conductive block 7 and is isolated from the first conductive block 7. Therefore, the insulating block 10 can be provided outside the connecting member 9.
  • the connector 9 is connected at one end to a control electrode (gate) of the power semiconductor component and at the other end to the associated switching element via an associated resilient structure 8.
  • both the connector 9 and the first conductive block 7 can be considered as the first conductive member. That is, the electrical device includes first conductive members 7 and 9.
  • examples of the power semiconductor component 4 may include, but are not limited to, a common thyristor SCR, a gate commutated thyristor GCT, a gate turn-off thyristor GTO, and the like.
  • the power semiconductor element 4 can be formed in a semiconductor substrate, and therefore, in FIG. 24, reference numeral 4 can also be used to indicate the semiconductor substrate.
  • a control electrode (for example, a gate or a gate) of the power semiconductor element 4 and a current electrode (for example, a cathode, denoted by K) are disposed on one surface of the semiconductor substrate.
  • the other current electrode (for example, the anode, denoted by A) of the power semiconductor element 4 may be disposed on the other surface of the semiconductor substrate opposite to the one surface.
  • the power semiconductor component can have a control electrode (gate G) and a current electrode (anode A and cathode K).
  • the control electrodes of the power semiconductor component 4 are arranged in a ring shape on a semiconductor substrate. As shown in FIG. 25, the control electrode (gate) 41 is annularly disposed and disposed outside the current electrode 42 (cathode or anode).
  • the driving module may be disposed on the circuit board.
  • the drive module can include a shutdown module and/or a conduction module.
  • the shutdown module includes at least one switching element including a drain terminal and a source terminal as current terminals and a gate terminal as a control terminal.
  • a drain terminal and a gate terminal of the switching element may be coupled to the circuit board.
  • the circuit board is provided with a switching element QG and a switching element QE.
  • the switching element QG includes a drain terminal 11, a source terminal 12, and a gate terminal 18.
  • the drain terminal 11 and the gate terminal 18 are coupled to the circuit board 15, and the source terminal 12 is connected to the second conductive block 16.
  • the switching element QE includes a drain terminal 13, a source terminal 14, and a gate terminal 17.
  • the drain terminal 13 and the gate terminal 17 are coupled to the circuit board 15, and the source terminal 14 is connected to the second conductive block 16.
  • the second conductive block 16 is provided with a protrusion.
  • the height of the protrusions coincides with the thickness of the circuit board 15.
  • the switching element can comprise a DirectFet or a Crimp-type MOSFET.
  • the DirectFet is a type of metal oxide semiconductor field effect transistor (MOSFET) manufactured and sold by the International Rectifier company, the metal casing of which is connected to a current electrode (usually the drain) of the MOSFET, and Its housing can be directly coupled to an external device such as a PCB or the like.
  • the electrical device can include a plurality of switching elements arranged in an array.
  • the crimp type MOSFET arrays may be arranged in a circular arrangement or in a matrix arrangement.
  • FIG. 26 a schematic diagram of the arrangement of a switching element according to an embodiment of the present disclosure is shown.
  • the plurality of switching elements can be divided into a plurality of groups.
  • a plurality of switching elements in a group are arranged in a ring or a part of a ring shape.
  • a plurality of switching elements are arranged in an approximately concentric annular shape, and each ring in Fig. 26 represents one or more switching elements.
  • the outer ring in FIG. 26 may correspond to the switch QG in the shut-off module in the drive module shown in FIG. 1, and the intermediate and inner rings may correspond to FIG.
  • the switching elements are arranged in a circular shape on the circuit board and three concentric rings are provided, it should be understood that the switching elements may also be arranged on the circuit board in other annular shapes of any shape, for example, Elliptical, square, polygonal, etc.; the switching element may be provided with one or more rings, such as a single ring as shown in FIG.
  • the elastic structure includes a main spring 6, an electrically conductive auxiliary elastic piece 7, and a metal base 8.
  • the main spring 6 is preferably electrically conductive.
  • the metal base 8 has a groove structure. One end of the main spring 6 is coupled to the recess of the metal base 8. One end of the auxiliary elastic piece 7 is coupled to the metal base 8. The other end of the main spring 6 is coupled to a bottom groove of the first conductive block 7 (for example, a bottom wall of the groove) to be coupled to the first conductive block 7.
  • the other end of the two auxiliary shrapnel 7 is in slight or no contact with the bottom groove of the first conductive block 7 when the external pressure is less than or equal to a predetermined threshold (eg, no external pressure). And when the external pressure is greater than the predetermined threshold, the other end of the auxiliary elastic piece is in contact with the corresponding first conductive block.
  • a predetermined threshold eg, no external pressure
  • the auxiliary shrapnel can generate an elastic force opposite to the direction in which the other end is subjected to the force, so that a good and reliable electrical contact can be ensured.
  • the circuit board 15 may be a circuit board as previously described with respect to FIG.
  • the circuit board 15 includes a top circuit layer, a first insulating layer, an intermediate circuit layer, a second insulating layer and a copper substrate.
  • the circuit board 15 can be exemplified by a conventional FR4 substrate circuit board, or an aluminum substrate or a copper substrate.
  • the elastic structure 8 may be an elastic structure as explained above in connection with Fig. 12, and a repeated description thereof will be omitted herein.
  • the elastic structure 8 when a pressure is applied between the first conductive block 7 and the second conductive block 16 (for example, less than or equal to a threshold), the elastic structure 8 becomes smaller, and the first conductive block 7 and the circuit board 15 are not contact.
  • the first conductive block 7 is electrically connected only to the drain terminal of the crimp type MOSFET through the elastic structure 8.
  • the auxiliary elastic piece 7 in the elastic structure 8 is used to increase the flow area and the contact area, and to reduce the flow resistance and the thermal resistance.
  • the elastic structure 8 When a pressure is applied between the first conductive block 7 and the second conductive block 16, the elastic structure 8 becomes larger (for example, larger than a predetermined threshold), and the first conductive block 7 is in contact with the circuit board 15.
  • the first conductive block 7 can be electrically connected to the drain of the pressure-bonding MOSFET through the elastic structure 8, and can also pass through the contact surface of the first conductive block 7 and the circuit board 15, and the copper-clad area of the top circuit layer of the circuit board 15 and The crimp terminal MOSFET drain terminal is electrically connected. Thereby, the flow area of the first conductive block 7 and the drain of the pressure-bonding MOSFET is increased, and the through-current resistance is reduced.
  • the auxiliary elastic piece 7 in the elastic structure 8 is used to increase the flow area and the contact area, and to reduce the flow resistance and the thermal resistance.
  • the elastic structure 8 may also be a spring, such as a butterfly spring.
  • a spring structure ensures that the switching element is closely connected to the cathode of the power semiconductor component through the cathode copper block without being crushed by excessive pressure.
  • the electrical device further includes a coaxial cable 19, and the circuit board is connected to the driving circuit through the coaxial cable 19.
  • the coaxial cable 19 may be multiple.
  • a gate signal of a switching element is provided, or a gate cathode connection or a gate-to-negative connection for injecting a gate current is provided, or a cathode-to-negative connection for overcurrent protection detection is provided.
  • the electrical device may further include a package housing that may enclose the power semiconductor component 4 and the driver module together with the second conductive block 16 and the third conductive block 5.
  • the package housing may include a support 1 .
  • Each of the third conductive block 5 and the second conductive block 16 may have an extension extending from a side thereof.
  • the support 1 may be disposed between the extensions of the third conductive block 5 and the second conductive block 16 to form the cavity 2.
  • the power semiconductor element 4, the circuit board 15, and the like may be disposed in the cavity 2.
  • the support 1 can be formed of ceramic.
  • the outer side of the support member 1 may be provided with a protrusion (also referred to as a shed structure) as shown in Fig.
  • the sealed cavity 2 may be filled with a gas that is stable in nature and not easily decomposed, such as nitrogen, helium, etc., to further protect the power semiconductor component 4 from the external environment.
  • a gas that is stable in nature and not easily decomposed such as nitrogen, helium, etc.
  • An opening for the passage of the coaxial cable 19 may also be provided in the support member 1.
  • FIG. 27 a schematic structural view of another electrical device is described in the embodiment of the present disclosure.
  • the structure shown in FIG. 27 is substantially the same as the structure of FIG. 24, except that the electrical device of FIG. 27 adds a water-cooling passage 20 to the structure of FIG. 24, and a plurality of first conductive blocks 7 are provided. sink. Therefore, the water cooling channel is provided in the electrical device to ensure effective heat dissipation of the power semiconductor component.
  • the electrical device can include a power semiconductor component, a circuit board, a drive module including one or more switching elements disposed on the circuit board, a first conductive block 24, a second conductive block 25, one or more Elastic structure, one or more connectors.
  • the embodiment shown in FIG. 28 is different from the embodiment shown in FIG. 24 in that the circuit board is disposed on the side of the first conductive block 24; the gate terminal, the source terminal, and the drain terminal of the switching element can pass A solder or other available electrical connection is electrically connected to the circuit board; and the drive module disposed on the circuit board may further include a capacitor 23 attached to the circuit board (the lower surface of the circuit board in the figure). In one embodiment, the capacitor 23 can be electrically connected to the switching element through a circuit board. Also included in Fig. 28 is a coaxial cable 22 pre-charged by capacitor 23 and a control cable 26 for the gate terminal of the switching element.
  • the first conductive blocks described in FIG. 24, FIG. 27 and FIG. 28 may be integrally formed.
  • the switching element adopts a crimp type MOSFET and adopts the elastic structure shown in FIG. 13, further, if the voltage type MOSFET adopts different potentials of different ring MOSFETs as shown in FIG. Designing a plurality of first conductive blocks and adding an insulating ring spacer between different first conductive blocks, as shown in FIG. 17, further, if different sources of different ring MOSFETs have different potentials, correspondingly designing a plurality of second conductive blocks .
  • the first conductive block, the second conductive block, and the third conductive block are all metal blocks having electrical conductivity, such as copper blocks.
  • the electrical device may include a driving module, a package, and a power semiconductor component.
  • the drive module can be used to drive a power semiconductor component for switching operations.
  • the driving module includes at least a shutdown module for turning off the power semiconductor component.
  • the shutdown module of the electrical device includes at least the switching components QG, QE, and when the power semiconductor component is turned off, the switch QG of the shutdown module is turned off. Turning on, the switch QE is turned off, and current is commutated from the cathode K of the power semiconductor element to the gate G, thereby turning off the power semiconductor element.
  • FIG 11a is a circuit schematic of another electrical device in an embodiment of the present disclosure.
  • the electrical device shown in Figure 11a includes a shutdown module, a package, and a power semiconductor component.
  • the shutdown module shown in Figure 11a can include a switching element QG, a capacitor COFF, and a voltage source V.
  • the voltage source V can be used to precharge the capacitor COFF.
  • the switch QG is turned on, thereby commutating current from the cathode K to the gate G through the precharged capacitor COFF, thereby turning off the power semiconductor element.
  • the power semiconductor element may have a control terminal (G) and current terminals (A and K).
  • Examples of power semiconductor components may include, but are not limited to, gate commutated thyristors (GCTs), gate turn-off thyristors (GTOs), etc., while the electrical device shown in FIG. 29 may constitute an integrated gate commutated thyristor (IGCT). ).
  • the electrical device shown in Figure 24 can form an emitter turn-off thyristor IETO and an internal commutated thyristor ICT.
  • the electrical device is formed by combining a thyristor type device and a corresponding package structure, and is used for control of an electronic circuit or the like.
  • An electrical device comprising: a power semiconductor component having a control electrode and a current electrode, the control electrode being arranged in a ring shape, the control electrode being disposed outside a current electrode of the current electrode; and a driving module for driving
  • the driving module includes a plurality of switching elements, the plurality of switching elements are divided into a plurality of groups; a plurality of first conductive members are disposed on one side of the power semiconductor element for respectively providing a connection of a corresponding switching element to the one of the current electrodes, and a connection of a corresponding switching element to the control electrode, wherein at least one of the plurality of groups of switching elements and the power semiconductor element
  • the control electrode is electrically connected; one or more conductive elastic structures, one end of each elastic structure is electrically connected to the corresponding first conductive block, and the other end is electrically connected to the corresponding switching element.
  • each of the elastic structures includes a conductive base, an electrically conductive auxiliary shrapnel, and a spring, wherein the base is coupled to a current terminal of the corresponding switching element, the corresponding The opposite side of the switch is provided with a groove, one end of the spring is disposed in the groove of the base and coupled to the base, and the other end of the spring is coupled with the corresponding first conductive member, the auxiliary elastic piece The spring is disposed independently of the spring, and one end of the auxiliary elastic piece is coupled to the base.
  • the other end of the auxiliary shrapnel has substantially no contact with the first conductive block when the external pressure is less than or equal to a preset threshold, and the external pressure is greater than
  • the threshold is preset
  • the other end of the auxiliary elastic piece is in contact with the corresponding first conductive block, and the auxiliary elastic piece generates an elastic force opposite to a direction in which the other end is subjected to a force.
  • other than the at least one of the plurality of sets of switching elements are arranged in one of the following ways: a ring, a portion of a ring, or a matrix.
  • the plurality of first conductive members include a first conductive member corresponding to a control electrode of the power semiconductor element, the electrical structure further comprising being disposed at a control electrode corresponding to the power semiconductor element An insulating isolation structure between the first conductive member and the other first conductive member.
  • the other groups are arranged in a ring or matrix manner, the plurality of first conductive members comprising a first conductive member corresponding to a control electrode of the power semiconductor component, the electrical structure further comprising a setting An insulating isolation structure between the first conductive members corresponding to the adjacent two rings or adjacent rings and matrices.
  • the electrical device further includes: at least one circuit board, the plurality of switching elements are disposed on a corresponding circuit board, and the one current electrode terminal and the control electrode terminal of each switching element are coupled to the The corresponding board is described.
  • the electrical device further includes: at least one second conductive member coupled to the circuit board; at the plurality of first conductive members and the at least one second When the pressure applied between the conductive members is less than or equal to a preset pressure value, the first conductive member is not in contact with the corresponding circuit board, and the first conductive member can pass the corresponding elastic structure and corresponding The one current electrode terminal of the switching element is connected; the first conductive component is when a pressure is applied between the plurality of first conductive members and the at least one second conductive member that is greater than the preset pressure value Contacting the corresponding circuit board, and the first conductive member can be connected to the corresponding one of the current electrode terminals of the switching element through the corresponding elastic structure, and can also pass the corresponding circuit board Connected to the one current electrode terminal corresponding to the switching element, the one current electrode terminal being disposed on a side of the switching element opposite to the control electrode thereof
  • the plurality of first conductive members comprise a conductive block and one or more connectors, the connectors being disposed on a side of the conductive block and isolated from the conductive block, the connectors being connected To a portion of the control electrode, and the connector is associated with a respective switching element by an elastic structure.
  • the electrical device further includes: a third conductive member coupled to the current electrode of the power semiconductor element disposed on another surface of the semiconductor substrate; and a package housing The second conductive member and the third conductive member collectively encapsulate the power semiconductor component and the drive module.
  • the present disclosure has one or more of the following beneficial effects:
  • the electrical device integrates the shutdown loop into the inside of the package, significantly reducing the area of the commutation loop, reducing the stray inductance of the commutation loop, and increasing the commutation speed.
  • the elastic structure of the electrical device ensures that the switching element is closely connected to the cathode of the power semiconductor element through the conductive block, and at the same time, the upper limit of the pressure of the surface of the switching element can be restricted, so that the switching element is not crushed by excessive pressure. Thereby, the pressure range applied between the first conductive block and the second conductive block is larger, and the application range is wider.
  • the elastic structure also provides pressure for the contact surface of the conductive block and the circuit board, reduces the contact resistance, increases the flow area by using the auxiliary shrapnel, thereby increasing the flow capacity of the overall structure, and the circuit board adopts a copper-based circuit board.
  • the elastic structure has auxiliary shrapnel to enhance the heat dissipation capability of the overall structure.
  • the electrical device has a water-cooled channel to ensure efficient heat dissipation of the power semiconductor components.
  • the electrical device can be used for the thyristor type device with the gate ring on the outer side, so that only one cathode conductive block can be designed in the electrical device, which simplifies the structure and reduces the production cost.
  • the switching elements adopt parallel array, and the structure is simple and compact.
  • the drive module may include a shutdown module and/or a conduction module or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

本公开涉及电气器件以及电气装置。提供一种电气器件,包括:其上形成了功率半导体元件的半导体基板,在该基板的表面上布置功率半导体元件的控制电极和第一电流电极;印刷电路板,其上布置有驱动功率半导体元件的驱动模块,驱动模块包括至少一个第一开关元件,第一开关元件包括控制端子和电流端子;第一导电块,置于所述基板和印刷电路板之间,提供到第一电流电极的电连接;一个或多个连接件,与第一导电块电隔离地穿过第一导电块并连接到控制电极的一部分,连接件与相应的第一开关元件关联;一个或多个第一弹簧部件,置于对应的连接件和与对应的连接件关联的第一开关元件之间,使第一开关元件的第一电流端子通过连接件电连接到控制电极的一部分。

Description

电气器件以及电气装置
相关申请的交叉引用
本申请要求于2017年9月1日提交的中国申请No.201710776469.8、于2018年7月25日提交的中国申请No.201810829499.5、于2018年7月25日提交的中国申请No.201810827090.X、于2018年7月25日提交的中国申请No.201810829497.6的优先权,通过引用将其全文并入在此。
技术领域
本公开涉及包括功率元件的电气器件(electric device)以及包括该电气器件的电气装置(electric apparatus)。
背景技术
面对电力电子技术的快速发展,用户对功率半导体元件(这里也简称作半导体器件或功率器件)提出了关断期间换流速度快、关断可靠性高、散热性能好等要求。功率半导体元件的封装件结构对于半导体器件与外部电路之间的良好电连接尤为关键,特别是针对适用于高电压大电流环境中的功率半导体元件。
随着半导体技术的不断发展,对于衡量功率半导体元件性能的关键指标,诸如关断电流能力或换流速度,提出了更高的要求。而关断电流能力或换流速度很大程度上受到半导体器件内部的换流回路中存在的杂散电感的影响。如果该杂散电感过大,可能会导致关断过程中半导体器件中的部分单元没有完全换流,从而导致关断过程失败。一般来说,功率半导体元件往往与导通模块和/或关断模块协作。导通模块和/或关断模块可以用于或者辅助用于导通和关断功率半导体元件。在现有技术中,在功率半导体元件中,通常将功率半导体元件(有时也称为器件晶片、器件芯片或器件管芯)置于单独的封装件(也称管壳)内,而将驱动模块(导通模块和/或关断模块)置于管壳封装件以外。这种布置会使得换流回路的面积较大,进而导致换流回路中的杂散电感较大。另外,在封装时或封装后,半导体器件的部件受到的机械压力可能远大于驱动模块中的电路元件能够承受的压力,容易造成电路元件的损坏。
因此,现有技术中存在对改善的包括功率元件的电气器件以及电气装置的需要。
概述
为了减轻或者消除部分或者全部上述问题及其他问题,本申请的发明人对半导体器件的封装结构进行了长时间苦心钻研,提出了如在此申请中公开的电气器件以及电气装置。
根据本公开的电气器件具有紧凑的结构,可以有效地减小换流回路面积,降低换流回路的杂散电感。根据本公开的电气器件以及电气装置可以提高换流速度,增大关断电流能力,提高关断的可靠性。根据本公开的电气器件可以通过压接或者压力配合来制备或组装,通过压力来保证部件之间的可靠接触,减少接触电阻,从而改善了部件之间的耦接。根据本公开的电气器件,提高了连接的可靠性和冗余性,降低了故障概率。另外,根据本公开的电气器件以及电气装置可以保证大的压力不会对导通模块和/或关断模块中的电路元件造成损坏。根据本公开的电气器件以及电气装置还可以提供良好的散热性能。
根据本公开的一个方面,提供了一种电气器件,其包括其上形成了功率半导体元件的半导体基板,其中在所述半导体基板的一个表面上布置有所述功率半导体元件的控制电极和第一电流电极;印刷电路板,其上布置有用于驱动所述功率半导体元件的驱动模块,所述驱动模块包括至少一个第一开关元件,每个第一开关元件包括控制端子和电流端子;第一导电块,设置于所述基板和所述印刷电路板之间,用于提供到所述第一电流电极的电连接;一个或多个连接件,每个连接件与所述第一导电块电隔离地穿过所述第一导电块并连接到所述控制电极的一部分,并且每个连接件与相应的第一开关元件相关联,以及一个或多个第一弹簧部件,每个第一弹簧部件置于对应的连接件和与所述对应的连接件相关联的第一开关元件之间,以使得每个第一开关元件的电流端子中的第一电流端子通过所述连接件电连接到所述控制电极的一部分。
根据本公开另一个方面,提供了一种电气器件,包括:至少一个第一导电块,各所述第一导电块设有至少一个凹槽;至少一个弹性结构,所述弹性结构置于对应的凹槽中,所述弹性结构的一端与所述第一导电块电气连接;至少一个功率半导体元件,设置在对应的凹槽中,所述功率半导体元件的一个电极与设置在对应的凹槽中的对应的弹性结构的另一端耦接;电路板,所述功率半导体元件设置于所述电路板的一侧,并且各个所述功率半导体元件的另外两个电极中的至少一个电连接到所述电路板;以及至少一个第二导电块,所述电路板的另一侧附接到所述至少一个第二导电块,其中在所述电气装置受到外部压力大于预设阈值的情况下,各个所述第一导电块通过对应的弹性结构与对应的所述功率半导体的所述一个电极电气连接。
根据本公开又一方面,提供了一种电气器件,包括:至少一个第一导电块;至少一个功率半导体元件,每个功率半导体元件包括控制电极和电流电极,其中所述电流电极中 的一个电极设置在所述功率半导体元件的第一表面并耦接到对应的第一导电块,所述电流电极中的另一个电极和所述控制电极设置在所述功率半导体元件的与第一表面相反的第二表面;至少一个控制电极连接件,每一个包括至少一个导电底座和容纳在所述导电底座中的至少一个弹性导电结构,各个所述弹性导电结构的一端耦接到对应的导电底座,并且所述弹性导电结构的另一端适于与对应的功率半导体元件的控制电极耦接以提供到所述控制电极的电连接;至少一个第二导电块,每一个包括一个或多个凸起部分,各凸起部分与对应的功率半导体元件的所述电流电极中的所述另一个耦接。
根据本公开再一方面,提供了一种电气器件,包括:功率半导体元件,具有控制电极和电流电极,所述控制电极成环形布置,所述控制电极设置在所述电流电极中的一个电流电极的外侧;驱动模块,用于驱动所述功率半导体元件,所述驱动模块包括多个开关元件,所述多个开关元件被分成多个组;多个第一导电部件,设置于所述功率半导体元件的一侧,用于分别提供对应的开关元件到所述电流电极中的所述一个的连接,以及对应的开关元件到所述控制电极的连接,其中所述多个组的开关元件中的至少一个组与所述功率半导体元件的控制电极电连接;一个或多个导电的弹性结构,每个弹性结构的一端与对应的第一导电块电气连接,另一端与对应的开关元件电连接。
本公开还提供了一种电气装置,其包括上述任意方面或实施例所述的电气器件。
附图说明
附图构成本说明书的一部分,其描述了本公开的示例性实施例,并且连同说明书一起用于解释本公开的原理,在附图中:
图1是示出了根据本公开一个实施例的电气器件的电路示意图;
图2是示出了根据本公开一个实施例的电气器件的电路示意图;
图3是示出了根据本申请一个实施例的电气器件的结构示意图;
图4是图3中所示的虚线部分的示意性的放大示意图;
图5示出了根据本申请一个实施例的电气器件中的功率半导体元件的门极;
图6示出了图3所示的电气器件中以环形布置的开关元件的示意图;
图7示出了图3所示的电气器件中连接件以及绝缘件的示意图;
图8示出了根据本申请另一个实施例的电气器件的结构示意图;
图9示出了根据本申请一个实施例的电气器件中设置的用于冷却的通道的示意图;
图10示出了根据现有技术的一种压接型MOSFET结构;
图11a示出了集成门极换流晶闸管IGCT的门极驱动电路的关断模块;
图11b:示出了基于GCT或GTO元件的发射极关断晶闸管(ETO)的驱动电路;
图12示出了本公开一个实施例的压装结构的结构示意图;
图13示出了本公开一个实施例的压装结构的弹簧结构的示意图;
图14示出了本公开一个实施例的压装结构的电路板的结构的示意图;
图15示出了本公开一个实施例的压接型MOSFET阵列以环形排布的视图;
图16示出了本公开一个实施例的压接型MOSFET阵列以多个环形排布的示意图;
图17示出了本公开一个实施例的压接型MOSFET阵列以多个环形排布的示意图。
图18示出了一种MOSFET裸片(也即,无封装)的结构的截面图;
图19示出了本公开一个实施例的电气器件(或电气结构)的至少一部分的示意图;
图20示出了本公开一个实施例的电气器件(或电气结构)的至少一部分的示意图;
图21示出了本公开一个实施例的用于环形设置的压接型MOSFET阵列的栅极连接件;
图22示出了本公开一个实施例的矩阵形布置的压接型MOSFET阵列的示意图;
图23示出了本公开一个实施例的用于矩阵形压接型MOSFET阵列的栅极连接件的示意图。
图24是本公开实施例中一种电气器件的结构示意图;
图25是本公开实施例中一种电气器件中的功率半导体元件布置示意图;
图26是本公开实施例中一种开关元件环形布置示意图;
图27是本公开实施例中一种电气器件的结构示意图;
图28是本公开实施例中另一种电气器件的结构示意图。
具体实施方式
下面将参考附图详细描述本公开的各种示例性实施例。但应理解,对各种实施例的描述仅仅是说明性的,在任何意义上都不是对本申请所要求保护的发明的限制。除非另有具体说明或者上下文或其原理明示或者暗示,在示例性实施例中的组件和步骤的相对布置、表达式和数值等不作为对本申请所要保护的发明的限制。
本文中所用的术语,仅仅是为了描述特定的实施例,而不意图限制本公开。除非上下文明确地另外指出,本文中所用的单数形式的“一”和“所述”意图同样包括复数形式。还要理解的是,“包含”一词在本文中使用时,说明存在所指出的特征、整体、步骤、操作、单元和/或组件,但是并不排除存在或增加一个或多个其它特征、 整体、步骤、操作、单元和/或组件以及/或者它们的组合。
在本公开中,术语“耦接”被用来表示对象之间的直接或间接的接合或连接,包括(但不限于)机械地和/或电地耦接。
在本公开中,术语“电气”被用来表示其所限定的对象涉及电;因此,术语“电气”可以包括“电子”或“电力”或“电力电子”的含义。因此,术语“电气”也需要时可以被适当地替换为“电子”或“电力”或“电力电子”。
在本公开中采用“之上”、“之下”之类的术语来表示对象之间的位置关系。但应理解,这样的术语仅仅是描述性的而不是限制性的,本公开还可以在不同于上述描述的取向上实现。
图1示出了根据本公开一个实施例的电气器件的电路示意图。具体来说,如图1所示,电气器件可以包括驱动模块以及功率半导体元件106。驱动模块可以用于驱动功率半导体元件106来进行开关动作。驱动模块可以包括用于关断功率半导体元件的关断模块100和/或用于导通功率半导体元件的导通模块102。
作为示例,导通模块100可以包括可控电流源,该可控电流源可以包括电压源S、电感器L、电阻器R以及多个开关元件Q 1、Q 2,如图1所示。作为示例,关断模块102可以包括多个开关元件Q G、Q E,如图1所示。
在一些实施例中,开关元件(如Q G、Q E)可以包括DirectFet TM。DirectFet TM是由国际整流器公司(International Rectifier company)生产和销售的一种类型的金属氧化物半导体场效应晶体管(MOSFET),其金属壳体连接到MOSFET的一个电流电极(通常漏极),并且其壳体能够直接耦接到外部装置(如PCB等)。
功率半导体元件106可以具有控制端子(G)以及电流端子(A和K)。功率半导体元件106的例子可以包括(但不限于)门极换流晶闸管(GCT)、门极可关断晶闸管(GTO)等。
其中整合了门极换流晶闸管(GCT)或门极可关断晶闸管(GTO)等以及驱动模块的一部分或者全部的电气器件可以称为集成门极换流晶闸管(IGCT)或发射极关断晶闸管(ETO)。
下面以门极换流晶闸管(GCT)作为功率半导体元件106的例子进行说明。门极换流晶闸管(GCT)可以具有作为控制电极(端子)的门极G以及作为电流电极(端子)(或者电流承载电极)的阳极A和阴极K。
在要导通门极换流晶闸管(GCT)时,导通模块100向门极换流晶闸管(GCT)106 的门极G注入电流I,以使GCT导通。该注入电流可以被配置为具有较高的电流变化率(dI/dt)和较大的电流幅值,从而保证功率半导体元件的均匀导通。此时,关断模块102不工作。
在关断门极换流晶闸管(GCT)时,导通模块不工作,关断模块102的开关Q G导通,开关Q E关断,电流从功率半导体元件的阴极K换流到门极G,从而使得GCT关断。
图2是示出了根据本公开另一实施例的电气器件的电路示意图。图2所示的电气器件包括导通模块200、关断模块202、管壳以及功率半导体元件206。图2所示的电气器件在导通模块与功率半导体元件的结构上与图1所示的结构基本相同,不同之处在于关断模块202。图2所示的关断模块202可以包括开关元件Q G、电容器C OFF以及电压源V。电压源V可以用于向电容器C OFF预充电。
在要导通功率半导体元件206时,关断模块不工作,导通模块向功率半导体元件206的门极G注入较大的电流I,以使功率半导体元件206导通。在要关断功率半导体元件206时,导通模块不工作,开关Q G导通,从而通过预充电的电容器C OFF将电流从阴极K换流到门极G,从而使得功率半导体元件206关断。
在现有技术中常用的半导体器件的电路布置中,导通模块和关断模块均处于功率半导体元件的封装件(管壳)以外,使得关断功率半导体元件时的换流回路的面积较大,进而导致换流回路中的杂散电感较大。因此,需要对半导体器件的封装结构进行改进,减小换流回路面积,以便减小换流回路中的杂散电感。
应理解,本公开不限于图1和2所示的驱动模块以及驱动模块与功率半导体元件的连接方式。
下面参考图3-图5对本公开的一些实施例进行说明。
图3示出了根据本申请的一个实施例的包括功率半导体元件的电气器件的结构示意图。为了清楚的目的,图4示出了图3中的虚线部分的示意性的放大示意图。
如图3所示,该电气器件可以包括功率半导体元件304。功率半导体元件304的例子可以包括(但不限于)SCR、GCT、GTO等。功率半导体元件304可以形成在半导体基板中。因此,在图3中,304也可用于指示该半导体基板。在该半导体基板的一个表面上布置有该功率半导体元件304的门极(也称作控制电极)和电流电极(下面也称作第一电流电极,例如阴极K)501(见附图5,图3中未示出)。
该电气器件还可以包括印刷电路板315,其上可以布置有用于驱动功率半导体元件304的驱动模块。驱动模块可以包括用于关断功率半导体元件304的关断模块和/ 或用于导通功率半导体元件304的导通模块,如前面结合附图1和2所说明的。该驱动模块可以包括至少一个第一开关元件(例如Q G)。本领域技术人员容易明了,每个第一开关元件可以包括控制端子和电流端子。
在一个实施例中,如图3所示,第一开关元件可以包括作为电流端子(电极)的漏极端子311和源极端子312以及作为控制端子(电极)的栅极端子318。作为示例,该第一开关元件的漏极端子311和栅极端子318可以电连接到该印刷电路板315上。在一个实施例中,漏极端子311和栅极端子318可以通过压接、焊接或者其他可用的连接方式耦接到印刷电路板315上。
电气器件还可以包括第一导电块307。第一导电块307可以被设置于功率半导体元件304和印刷电路板315之间,用于提供到第一电流电极501(稍后将更详细说明)的电连接。这里,图3中还示出了可选的设置在功率半导体元件304和导电块307之间的导电片306。另外,尽管这里可能未作示出,但在需要时,可以在彼此电连接的导电部件设置绝缘部件,以例如提供特定几何形状的电连接。
在一个实施例中,第一导电块307可以用于提供到功率半导体元件304的阴极的电连接。第一导电块307可以由导电金属制成,优选地,第一导电块可以是金属铜块。第一导电块307可以通过压接与功率半导体元件304的电极耦接,从而提供到该电极的电连接。
在一个实施例中,在第一导电块307和功率半导体元件304之间还可以包括与功率半导体元件304的第一电流电极501以及导电块307直接接触的导电片306。优选地,导电片306可以包括具有与功率半导体元件304的热膨胀系数一致的热膨胀系数的导电材料,例如钼。导电片306可以用于减少导电块与功率半导体元件之间的接触带来的机械摩擦。
电气器件还可以包括一个或多个连接件309。每个连接件309可以与第一导电块307电隔离地穿过第一导电块307,并连接到门极500的一部分。换而言之,导电块307可以具有一个或多个对应的穿通的开口,以容纳对应的连接件309以及将连接件309与导电块307电隔离的绝缘部件310。每个连接件309可以与相应的第一开关元件相关联。
电气器件还可以包括一个或多个第一弹簧部件308,例如蝶形弹簧。每个第一弹簧部件308可以被置于对应的连接件309和与对应的连接件309相关联的第一开关元件之间,以使得每个第一开关元件的端子(例如第一电流端子)可以通过第一弹簧部 件308和连接件309电连接到门极500的一部分。其中在一个实施例中,如图3所示,第一电流端子可以是第一开关元件的漏极端子318。
通过第一弹簧部件308上述这样的布置,使得能够通过压力配合将第一开关元件(如Q G)通过连接件309与门极500的一部分紧密连接,但又不会由于施加到功率半导体元件304的大的机械压力而导致功率半导体元件304(例如其半导体基板或半导体基板上的电极等)损坏,提高了可靠性。
在大容量或大功率的功率半导体元件304(例如,尺寸为4英寸或6英寸或者更大)的情况下,在制备过程中需要对功率半导体元件304施加较大的压力(例如,4英寸对应36-44kN,6英寸对应90-130kN)来实现功率半导体元件304上的所有单元与周围部件之间的可靠接触,从而降低接触电阻,因此在这种情况下图3所示的布置更为有利。
另外,通过上述的布置,将图1和图2所示的关断模块连同功率半导体元件都集成在管壳(即封装件)中,可以显著地减小半导体器件内部的换流回路的面积,从而有效地降低换流回路中的杂散电感,进而提高换流速度,并提高关断可靠性。
图5示出了根据本申请的一个实施例的电气器件中的功率半导体元件的俯示意图。在功率半导体元件304的半导体基板的一个表面(例如,半导体基板的下表面)上可以布置有门极500以及第一电流电极501。优选地,第一电流电极501可以被设置为围绕门极500。在一个实施例中,门极500可以在半导体基板上成环形布置。门极500的内部可以是第一电流电极501的一部分,并且门极500的外部可以是第一电流电极501的另一部分。在一个实施例中,第一电流电极501可以是功率半导体元件304的阴极。尽管这里的图5仅仅示出了门极500在半导体基板上呈连续的圆环形布置的情形,但应当理解的是,门极500也可以在半导体基板上被设置为任意适当形状的连续的或不连续的环,例如,椭圆形环、方形环、规则多边形环、不规则多边形环等。
图6示出了根据本公开一个实施例的开关元件的布置的示意图。在一个实施例中,如图6所示,至少一个开关元件可以以环形分布的布置设置在印刷电路板315上。图6中示出了分别以近似同心环形布置的第一多个开关元件600、第二多个开关元件601、以及第三多个开关元件602。在一个实施例中,所述第一多个开关元件600可以对应于图1中所示的驱动模块中的关断模块102中的开关Q G,而所述第二多个开关元件601以及第三多个开关元件602可以对应于图1中所示的驱动模块中的关断模块102中的 开关Q E。尽管这里的图6示出了开关元件以圆环形布置在半导体基板上,但应当理解,第一开关元件也可以以其他任意形状的环状布置在半导体基板上,例如,椭圆形、方形、多边形等。
图7示出了根据本公开另一实施例的电气器件的部分的俯视示意图。图7中示出了被配置为分离的弧形的连接件309的上表面700,以及围绕连接件309的绝缘件310的上表面701。图7还示出了设置在印刷电路板315上的开关元件,例如开关Q E
通过上述这样的布置,使得能够通过压力配合或者压接将开关元件(如Q G)与功率元件的电极紧密连接从而提供可靠的连接,并进一步降低了由于施加到功率半导体元件304的机械压力而导致功率半导体元件304(例如其半导体基板或半导体基板上的电极等)损坏的可能性。此外,还可以降低接触电阻,降低杂散电感,进而提高换流速度,并提高关断可靠性。
回到图3,在一个实施例中,电气器件还可以包括第二导电块(在某些实施例中,也称作负极导电块)316。导电块316可以通过压力配合与印刷电路板315耦接,更确切地,与印刷电路板315上的导电部件(例如,导电盘(pad)或电极等)耦接,以提供到印刷电路板的电连接。在图3所示的实施例中,印刷电路板315被示出为布置在负极导电块316与第一导电块307之间。尽管在图中未示出,但是应当理解,在需要时,也可以在导电块316与印刷电路板之间也可以存在垫片或者适当的绝缘部件。
在一个实施例中,导电块316还被设置为与开关元件的源极端子312紧密接触以提供到源极端子312的电连接。如图3所示,通过在负极导电块316的相应位置处设置突起,使得源极端子312与负极导电块316能够紧密接触。
在一个实施例中,如图3所示,第一导电块307可以包括穿透其的第一开口,所述第一开口适于将相应的连接件309、相应的第一开关元件以及相应的第一弹簧部件308容纳于其中。在一个实施例中,如图3所示,连接件309可以包括突出的第一部分309-2以及具有凹陷的第二部分309-4。所述第一部分309-2的横向尺寸可以小于所述第二部分的横向尺寸309-4。相应的开关元件以及相应的弹簧部件308容纳于所述第二部分309-4中。所述第二部分可以包括布置在凹陷边缘处并且延伸至印刷电路板315的侧臂309-1和309-3。侧臂309-1和309-3可以也通过压力配合与印刷电路板315接合以提供电连接。侧臂309-1和309-3和第一部分309-2可以被配置为基本与印刷电路板315和功率半导体元件304的半导体基板基本垂直,如图3和图4所示。
通过侧臂309-1和309-3,连接件309可以将门极500或其一部分电连接到印刷 电路板315上。如此,门极500或其一部分可以通过第一弹簧部件308和连接件309连接到印刷电路板315上的开关Q G的第一电流端子,并且门极500或其该部分还可以通过连接件309的侧臂309-1和309-3连接到印刷电路板315上的连接位点(其与第一电流端子基本等电位),从而在门极500与开关Q G的第一电流端子所处的电位之间存在分立的冗余的电流路径,从而既可以增加通流能力,又可以提供冗余的电流路径,从而提高了可靠性。
在一个实施例中,第一弹簧部件308可以是碟形弹簧。但应当理解,第一弹簧部件308可以采用任何形状的能够产生适合弹力的导电部件,包括但不限于前面所述的碟形弹簧、压簧等任何适合的弹簧。
在前所述的,电气器件还可以包括一个或多个第二开关元件(如Q E)。第二开关元件Q E可以与第一开关元件可以被置于印刷电路板315的相同表面上。电气器件还可以包括一个或多个第二弹簧部件320。每个第二弹簧部件320可以被设置在对应的第二开关元件Q E与第一导电块307之间,以使得第二开关元件Q E通过所述第一导电块307与所述功率半导体元件304的电极(例如第一电流电极501)电连接。具体来说,在一个实施例中,第一电流电极500可以是功率半导体元件304的阴极,通过第二弹簧部件320,可以使得功率半导体元件304的阴极与第二开关元件Q E通过第一导电块307电连接。
第二弹簧部件320可以是碟形弹簧。但应当理解,第二弹簧部件320可以采用任何形状的能够产生适合弹力的弹性导电部件,包括但不限于弹簧。
在一些实施例中,与第一开关元件类似地,第二开关元件Q E可以包括漏极端子313、源极端子314和栅极端子317。通过第二弹簧部件320和第一导电块307,第二开关元件Q E的漏极端子313可以与功率半导体元件304的第一电流电极501电连接。
多个第二开关元件Q E可以也以环形分布设置在印刷电路板315上。优选地,如图3、图6所示,沿径向方向,在至少一部分第一开关元件600的两侧可以分别对称地布置两个第二开关元件Q E。具体来说,在一个实施例中,如图6所示,多个第一开关元件可以以第一环形600布置,而在第一环形600的外部和内部分别布置有由多个第二开关元件Q E形成的第二环形601和第三环形602。针对第一环形600中的部分或者全部第一开关元件,沿第一环形600的径向方向,在第一开关元件的每一侧可以分别布置有一个相应的第二开关元件Q E。优选地,第一开关元件与两侧相应的第二开关元件Q E的距离可以被设置为基本相等。在一些实施例中,通过第二开关元件Q E这样对称 的布置,可以使得功率半导体元件304的门极与其不同位置的阴极之间的换流回路的面积基本上一致,从而使得不同回路的换流速度基本一致。从而,可以使得功率半导体元件304内部不同位置处的单元的均匀关断,防止某个或某些单元发热过多,进而防止造成功率半导体元件304的损坏。
通过利用第二弹簧部件320这样的布置,能够使得第二开关元件Q E通过第一导电块307与第一电流电极501紧密连接,但又不会由于外部施加到功率半导体元件304的过大的压力而损坏。在大容量或大功率的功率半导体元件304(例如,尺寸为4英寸或6英寸的功率半导体元件304)的情况下,需要施加较大的压力(例如,4英寸对应需要例如36-44kN,6英寸对应需要例如90-110kN),因此第二弹簧部件520这样的布置更为有利。
通过上述这样的布置,使得能够通过压力配合或者压接将开关元件(如Q G、Q E)与功率元件的电极紧密连接从而提供可靠的连接,并进一步降低了由于施加到功率半导体元件的机械压力而导致功率半导体元件(例如其半导体基板或半导体基板上的电极等)损坏的可能性。此外,还可以降低接触电阻,降低杂散电感,进而提高换流速度,并提高关断可靠性。
再次回到图3,电气器件还可以包括将印刷电路板315连接到外部的同轴电缆319。在一个实施例中,同轴电缆319可以提供外部分别与第一开关元件和/或第二开关元件Q E的栅极端子和/或源极端子的连接,从而控制开关Q G和/或Q E的导通和关断。或者,同轴电缆319可以提供外部分别与功率半导体元件304的门极500和/或第一电流电极501的连接,从而控制功率半导体元件304的导通和关断。或者,可以通过同轴电缆319来测量流过开关元件(例如,Q G和/或Q E、Q 1和/或Q 2等)的电流,从而对开关元件进行过流保护。
如图3所示,电气器件还可以包括第三导电块305,第三导电块305可以用于提供到功率半导体元件304的被布置在半导体基板的另一表面上的第三电流电极的电连接。在一个实施例中,第三电流电极可以是功率半导体元件304的阳极,阳极可以位于半导体基板的上表面。如图3所示,在第三导电块305和功率半导体元件304之间还可以包括与功率半导体元件304的第三电流电极直接接触的导电垫片303,其中导电垫片303可以包括具有与功率半导体元件304的热膨胀系数一致的热膨胀系数的导电材料,例如钼,用于改善第三导电块305和功率半导体元件304之间的接合,减少导电块与功率半导体元件之间的接触带来的机械摩擦。
电气器件还可以包括封装外壳,其可以与第二导电块316和第三导电块305共同包封功率半导体元件304和驱动模块。具体来说,封装外壳可以包括支撑件301。第三导电块305和第二导电块316各自可以具有从其侧面延伸出来的延伸部。支撑件301可以设置在第三导电块305和第二导电块316的延伸部之间,从而形成腔体302。功率半导体元件304、印刷电路板315等可以设置在腔体202中。支撑件301可以由陶瓷形成。在一个实施例中,支撑件301的外侧可以被设置有突起(也称作伞裙结构),如图3所示,以便增加爬电距离,提高绝缘性能。在一个实施例中,可以在密封的腔体302中充有性质稳定、不容易分解的气体,例如,氮气、氦气等,从而进一步保护功率半导体元件304不易受到外部环境的影响。支撑件301中还可以设置有用于通过同轴电缆319的开口。
在一个实施例中,功率半导体元件304可以包括门极换流晶闸管(GCT)或门极可关断晶闸管(GTO)。在一个实施例中,图3所示的电气器件可以构成发射极关断晶闸管(ETO)。
现在参考图8。图8示出了根据本申请的另一个实施例的半导体元件的电气器件的结构示意图。与图3类似地,该电气器件可以包括功率半导体元件800、印刷电路板801、布置在印刷电路板801上的包括一个或多个第一开关元件的驱动模块、第一导电块804、一个或多个第一弹簧部件808、一个或多个连接件809。图8所示的实施例与图3所示的实施例的不同之处在于:印刷电路板801设置在第一导电块804中的开口中;第一开关元件的栅极端子、源极端子以及漏极端子均可以通过焊接或者其他可用的电连接方式电连接到印刷电路板801上;以及布置在印刷电路板801上的驱动模块还可以包括附接到印刷电路板801(图中在801的下表面)的电容器803。在一个实施例中,电容器803可以通过印刷电路板801与第一开关元件电连接。
由于图8中的功率半导体元件800、第一导电块804、第一开关元件、第一弹簧部件808、连接件809以及同轴电缆802、806以及其他未标识的部件与图3中对应部件基本相同,这里不再赘述。就图3所进行的说明可以容易地适用于本实施例。
在一个实施例中,功率半导体元件800可以包括GCT或GTO,而图8所示的电气器件可以构成集成门极换流晶闸管(IGCT)。
图9示出了根据本申请的一个实施例的电气器件的示意图。如图9所示,优选地,在第一导电块中可以设置有用于冷却的通道900、901。在一些实施例中,在使用流体进行冷却的情况下,通道900可以是与外界连通的进出流体的管道,通道901可以是 第一导电块中的流体通道。由于半导体器件的主要发热部分是功率半导体元件304,而印刷电路板315通常采用导热性能较差的材料,因此热量容易在第一导电块内积聚,而通过在第一导电块中设置用于冷却的通道,可以有效地改善整个半导体器件的散热性能。另外,尽管在图9所示的实施例中,冷却通道901被示出为设置在第一导电块中,然而本公开不限于此。需要时,可以替代地或者另外地在其他导电块中或导电块外侧设置冷却通道。优选地,冷却用流体是不导电的。在使用例如水等可能会导电的流体的情况下,优选使用去离子水,或在冷却通道内设置绝缘层,以提供绝缘。
根据本公开的该方面,还提供了以下实施例。
一种电气器件,包括:在其上具有功率半导体元件的半导体基板,其中在所述半导体基板的一个表面上布置有所述功率半导体元件的控制电极和第一电流电极;印刷电路板,其上布置有用于驱动所述功率半导体元件的驱动模块,所述驱动模块包括至少一个第一开关元件,每个第一开关元件包括控制端子和电流端子;第一导电块,设置于所述半导体基板和所述印刷电路板之间,用于提供到所述第一电流电极的电连接;一个或多个连接件,每个连接件与所述第一导电块电隔离地穿过所述第一导电块并连接到所述控制电极的一部分,并且每个连接件与相应的第一开关元件相关联;以及一个或多个第一弹簧部件,每个第一弹簧部件置于与其对应的连接件和与所述对应的连接件相关联的第一开关元件之间,以使得每个第一开关元件的电流端子中的第一电流端子通过所述连接件电连接到所述控制电极的一部分。
在一个实施例中,所述控制电极在半导体基板上成环形布置。
在一个实施例中,所述至少一个第一开关元件包括多个第一开关元件,所述多个第一开关元件被分成多个组,其中至少一组与所述功率半导体元件的控制电极对应。
在一个实施例中,每个第一开关元件包括作为电流端子的漏极端子和源极端子以及作为控制端子的栅极端子,所述第一开关元件的第二电流端子和栅极端子耦接到所述印刷电路板,其中所述第一电流端子是漏极端子和源极端子中的一个,所述第二电流端子是漏极端子和源极端子中的另一个。
在一个实施例中,所述第一弹簧部件是下列中的一个:导电的弹簧;以及包括弹簧和导电件的导电弹性结构。
在一个实施例中,所述第一导电块包括穿透其的第一开口,所述第一开口适于将相应的连接件、相应的第一开关元件以及相应的第一弹簧部件容纳于其中。
在一个实施例中,所述连接件具有突出的第一部分以及具有凹陷的第二部分,所 述第一部分的横向尺寸小于所述第二部分的横向尺寸,其中相应的第一开关元件以及相应的第一弹簧部件容纳于所述第二部分中,所述凹陷包括布置在凹陷边缘处并且延伸至所述印刷电路板的侧臂。
在一个实施例中,所述电气器件还包括布置在所述连接件与所述第一导电块之间的使两者彼此绝缘的绝缘件。
在一个实施例中,各个组中的第一开关元件被以下列的方式中的一种进行布置:环形,环形的一部分,或者矩阵。
在一个实施例中,所述电气器件还包括:一个或多个第二开关元件,所述第二开关元件与所述第一开关元件置于所述印刷电路板的相同表面上,以及一个或多个第二弹簧部件,每个第二弹簧部件设置在对应的第二开关元件与第一导电块之间,以使得第二开关元件通过所述第一导电块与所述功率半导体元件的第一电流电极电连接,其中,所述第二开关元件和所述第二弹簧部件设置在导电块的凹陷中。
在一个实施例中,所述多个第二开关元件以环形布置分布在所述印刷电路板上,沿所述环形的径向方向,在至少部分第一开关元件的两侧分别对称地布置一个第二开关元件。
在一个实施例中,在所述第一导电块中设置有用于冷却的通道。
在一个实施例中,所述第一开关元件包括DirectFet,所述功率半导体元件包括门极换流晶闸管(GCT)、门极可关断晶闸管(GTO)。
在一个实施例中,所述电气器件还包括:第二导电块,与所述印刷电路板的另一侧耦接;第三导电块,与所述功率半导体元件的被布置在所述半导体基板的另一表面上的第二电流电极耦接;以及封装外壳,其与所述第二导电块和所述第三导电块共同包封所述功率半导体元件和所述驱动模块。
下面说明本公开的另一方面。
传统的用于电力应用的MOSFET一般为横向通流结构。通常将其栅极、漏极、源极焊接在电路板上,器件工作时产生的热量主要通过电路板耗散。受封装类型的影响,这种MOSFET散热能力较差,限制了其通流容量。因此,提出了压接型MOSFET,如图10所示,其为纵向通流结构,漏极连接到顶部金属外壳,源极电极和栅极电极设置在底部。使用期间,可将底部源极和栅极分别与电路板焊接,左右两侧漏极与电路板焊接,顶部漏极与金属连接结构压接,以增大散热能力。
在大功率应用中,通常会使用大量MOSFET并联形成阵列,实现大电流导通和关断的功能。例如,集成门极换流晶闸管(IGCT)的门极驱动电路的关断模块,如图11(a)所示,使用大量并联MOSFET阵列QG和预充电的并联电容组Coff串联,在IGCT关断期间,通过触发MOSFET阵列QG开通,使IGCT的阴极电流换流至门极,从而使IGCT关断。再如,基于GCT或GTO元件的发射极关断晶闸管(ETO)的驱动电路中,如图11(b)所示,使用两组并联MOSFET阵列QG和QE。ETO导通期间QG关断,QE导通;ETO关断时QE关断,QG导通,电流从GCT或GTO元件的阴极换流至门极,从而使其关断。
现有的MOSFET阵列多采用传统的MOSFET焊接在电路板上,由于单个MOSFET通流能力有限,在大功率应用中并联较多数量的MOSFET。若采用压接型MOSFET,则可以大幅降低并联数量,但其散热方式特殊,目前尚无针对压接型MOSFET阵列的散热结构。另外,在一些应用中,利用IGCT和ETO驱动电路,为提高关断器件电流从阴极换流至门极的换流速度,应尽量降低回路的杂散电感,为此,可能期望将MOSFET集成在器件管壳封装内。然而,由于在使用GCT或GTO时需要在其两侧压接钼片,并施加几十kN以上的压力,而单个压接型MOSFET仅能承受50-100N的压力,因此,若将MOSFET集成于管壳(package)内,存在不同组件的压力差异和配合问题。
针对上述问题中一个或多个,提出了根据本公开一个方面的压装结构。
一个实施例中,提供了应用于功率半导体元件(例如,压接型MOSFET)的压装结构。应理解,该压装结构可以视为一种电气器件。如图12所示,该压装结构自上而下包括:第一导电块(例如,铜块)1,弹性结构2,压接型MOSFET 3,电路板4,第二导电块(例如,铜块)5。其中,第一铜块1底部设有凹槽,弹性结构2与压接型MOSFET 3置于凹槽中。压装结构可以包括一个或多个弹性结构2和一个或多个压接型MOSFET 3。在一些实施例中,弹性结构2与压接型MOSFET 3一一对应,然而本公开不限于此。第一铜块1底部设置一个或多个凹槽。弹性结构2与对应的压接型MOSFET 3设置于相应的所述凹槽中。在压装结构中可以具有多组弹性结构2与对应的压接型MOSFET 3的阵列。应理解,尽管这里以压接型MOSFET作为示例,但本领域技术人员将理解,可以采用任何适当的功率半导体元件来替代压接型MOSFET。
在一些实施例中,弹簧结构2,如图13所示,包括:主弹簧6,导电的辅助弹片7(在图13的示例中为两个),以及金属基座8。金属基座8具有凹槽结构。主弹簧6优选是导电的。主弹簧6一端与金属基座8设置在凹槽中并耦接到凹槽底部从而耦 接到金属基座8。辅助弹片7的一端与金属基座8耦接。主弹簧6的另一端与第一铜块1底部凹槽耦接,在无外部压力或外部压力小于或等于预定的阈值时,两个辅助弹片7的另一端与第一铜块1的对应的凹槽的底部轻微接触或不接触。而在所述外部压力大于所述预设阈值时,所述辅助弹片的另一端与对应的所述第一导电块接触。所述辅助弹片可以产生与其所述另一端受到力的方向相反的弹性力。
电路板4可以包括基板,示例性地,底板可以采用FR4基板,也可以采用铝基板或铜基板。本领域技术人员将理解,FR4基板是指符合FR4标准的基板。在一个实施例中,如图14所示,电路板4包括顶层电路层,第一层绝缘导热层,中间电路层,第二层绝缘导热层和铜基板。第二层绝缘导热层设置在基板和所述中间电路层之间,所述中间电路层设置在第一层绝缘导热层和第二层绝缘导热层之间,第一层绝缘导热层设置在顶层电路层和中间电路层之间。
回到图12,如图12所示,弹性结构2与对应的压接型MOSFET3设置于第一铜块1底部的凹槽内。弹性结构2的顶部与凹槽的内表面电气连接。在没有施加压力的情况下,第一铜块1与电路板4不接触,第一铜块1仅通过弹性结构2与压接型MOSFET3的一个电流电极(例如,漏极)电气连接。弹性结构2底部的金属基座8耦接到压接型MOSFET3顶部。在一些实施例中,压接型MOSFET3的一个电流电极(例如,漏极)设置在顶部或电连接到顶部壳体。压接型MOSFET3底部的另一个电流电极(例如,源极)和控制电极(例如,栅极)电气连接所述电路板4。压接型MOSFET3设置于电路板4上面。在一些实施例中,第二铜块5可以刚性连接于电路板4的下面,例如耦接到电路板的基板。应理解,本公开不限于此。
一个实施例中,当第一铜块1与第二铜块5之间施加压力较小(例如,小于或等于预定阈值)时,弹性结构2形变较小,第一铜块1与电路板4不接触,第一铜块1仅通过弹性结构2与压接型MOSFET3漏极电气连接。弹性结构2中的辅助弹片7可以被配置为在这种情况下,与第一铜块轻微接触或不接触。弹性结构2中的辅助弹片7用于增加通流面积和接触面积,减小通流电阻和热阻。
当第一铜块1与第二铜块5之间施加压力较大(例如,大于阈值)时,弹性结构2形变较大,第一铜块1与电路板4接触。如此,第一铜块1既能够通过弹性结构2与压接型MOSFET3漏极电气连接,也能够通过第一铜块1与电路板4的接触面、经电路板4的顶层电路层的敷铜(布线)区域与压接型MOSFET3漏极电气连接。从而,可以增加第一铜块1与压接型MOSFET3漏极的通流面积,减小通流电阻。另外,在这种 情况下,弹性结构2中的辅助弹片7的另一端与对应的所述第一导电块接触,并且所述辅助弹片产生与其所述另一端受到力的方向相反的弹性力。如此,可以保证可靠的电连接。并且,弹性结构2中的辅助弹片7可以增加通流面积和接触面积,减小通流电阻和热阻。
弹性结构2的金属基座8的底部与压接型MOSFET3漏极顶部耦接。主弹簧6用于提供接触面的压力,减小接触电阻和热阻。
如图14所示,压接型MOSFET3的漏极D所连接的金属外壳的边缘与电路板4顶层电路层耦接。压接型MOSFET3的栅极G通过过孔与电路板4中间电路层耦接,并可以连接至电路板的栅极触发信号接收端子。压接型MOSFET3的源极S通过导电导热部件(例如,导电介质,诸如锡膏;或者导电块,例如铜块等)与电路板4的铜基板耦接。这里应理解,电路板4的基板可以采用导电基板或绝缘基板。本领域技术人员可以根据需要来设置电路板4与第二导电块(铜块)5之间进行电连接或不进行电连接,还可以设置不同的电连接方式。
在一些实施例中,第二铜块5可以通过电路板4与压接型MOSFET3源极电气连接。
根据本公开实施例的压装结构,在第一铜块1顶端与第二铜块5底端之间可以施加不同应用所要求的压力,例如,可高至几十kN。在一些实施例中,大于所述预定阈值的外部压力被保持施加在所述第一导电块与所述第二导电块之间。如此,可以确保可靠的电连接。
在一些实施例中,第一铜块1与第二铜块5之间施加压力较小时,弹性结构2形变较小,第一铜块1与电路板4不接触,第二铜块5与电路板刚性接触。在这种情况下,第一铜块1与第二铜块5之间施加压力即为压接型MOSFET3阵列与金属基座8的压力总和。
在一些实施例中,第一铜块1与第二铜块5之间施加压力增大时,第一铜块1与电路板4刚性接触,第二铜块5与电路板4刚性接触,此时弹簧形变不再增大。由此,可根据弹性结构2的金属基座8与压接型MOSFET3的压力要求(50-100N)设计主弹簧6的参数,使主弹簧6在最大形变时提供要求的压力值。当继续增大压力时,多余的压力将施加在第一铜块1与电路板4的接触面,避免压接型MOSFET3因压力过大导致被机械应力损坏。
根据本公开实施例的压装结构,压接型MOSFET3在通流期间产生的热量可以通过 上、下表面进行耗散。在去往上表面的方向上,通过金属基座8、辅助弹片7、第一铜块1、第一铜块1连接的散热器进行散热。此外,也能够通过漏极D金属外壳两端、电路板4顶层电路层、第一铜块1、第一铜块1连接的散热器进行散热。在去往下表面的方向,可以通过锡膏、铜基板、第二铜块5、第二铜块5连接的散热器进行散热。从而实现双面散热的效果,改善了热散逸。
第一铜块1与第二铜块5之间施加的压力,有利于改善各接触面的接触,减小各个接触面的热阻和接触电阻,从而增强导热能力和通流能力。
在一个实施例中,所述至少一个功率半导体元件包括多个功率半导体元件,所述多个功率半导体元件被分成多个组。各组中的功率半导体元件的所述一个电极被电连接在一起。所述至少一个第一导电块包括多个第一导电块,每个第一导电块与一个组对应,对应的组中的各功率半导体元件设置在该第一导电块中的对应的凹槽中。所述电气器件还包括设置在与相邻的两个组对应的导电块之间的第一绝缘隔离结构
一个具体实施例中,压接型MOSFET阵列中的至少一些可以环形排布。形成一个环,如图15所示;或形成多个环,如图15所示形成了三个环;或者也可以矩阵式排布。在一些实施例中,一组的压接型MOSFET还可以被布置为环形的一部分。
第一铜块、第二铜块和弹性结构应根据压接型MOSFET阵列的排布方式进行相应设计。对于如图16所示的分布方式,如果不同环的压接型MOSFET的漏极为不同电位,则应当设计多个第一铜块,并在不同第一铜块之间增加绝缘环隔层,如图17所示。如果不同环的压接型MOSFET的源极为不同电位,同理,则应当设计多个第二铜块。
至此,还应理解,本公开的该方面还提供以下实施例。
一种电气器件,包括:至少一个第一导电块,各所述第一导电块设有至少一个凹槽;至少一个弹性结构,所述弹性结构置于对应的凹槽中,所述弹性结构的一端与所述第一导电块电气连接;至少一个开关元件,设置在对应的凹槽中,所述开关元件的一个电极与设置在对应的凹槽中的对应的弹性结构的另一端耦接;电路板,所述开关元件设置于所述电路板的一侧,并且各个所述开关元件的另外两个电极中的至少一个电连接到所述电路板;以及至少一个第二导电块,所述电路板的另一侧附接到所述至少一个第二导电块,其中在所述电气装置受到外部压力大于预设阈值的情况下,各个所述第一导电块通过对应的弹性结构与对应的所述功率半导体的所述一个电极电气连接。
在一个实施例中,在所述电气器件受到的外部压力小于或等于预设阈值的情况下: 所述第一导电块与所述电路板基本不接触。
在一个实施例中,所述弹性结构包括:金属基座,具有凹槽结构;主弹簧,所述主弹簧的一端设置所述金属基座的凹槽中,所述主弹簧的另一端设置在对应的第一导电块的凹槽中并耦接到该第一导电块,导电的辅助弹片,其独立于所述主弹簧设置,所述辅助弹片的一端与金属基座耦接,在所述外部压力小于或等于预设阈值时所述辅助弹片的另一端与所述第一导电块基本不接触,而在所述外部压力大于所述预设阈值时,所述辅助弹片的另一端与对应的所述第一导电块接触,并且所述辅助弹片产生与其所述另一端受到力的方向相反的弹性力。
在一个实施例中,所述弹性结构被配置为使得其金属基座的与所述凹槽相对的一侧与对应的所述开关元件的所述一个电极电气耦接。
在一个实施例中,所述第一导电块由金属材料形成,所述第二导电块由金属材料形成,以及大于所述预定阈值的外部压力被保持施加在所述第一导电块与所述第二导电块之间。
在一个实施例中,当所述外部压力大于预设阈值时,所述第一导电块与所述电路板接触并与所述电路板上的选定的导电部件电连接。
在一个实施例中,当所述外部压力大于预设阈值时,各个所述第一导电块还通过所述电路板与对应的所述开关元件的至少另一电极电气连接。
在一个实施例中,所述电路板包括顶层电路层、第一层绝缘导热层、中间电路层、和第二层绝缘导热层以及基板,其中第二层绝缘导热层设置在基板和所述中间电路层之间,所述中间电路层设置在第一层绝缘导热层和第二层绝缘导热层之间,第一层绝缘导热层设置在顶层电路层和中间电路层之间,所述开关元件具有金属外壳,所述开关元件的所述一个电极与所述金属外壳电连接,所述金属外壳被配置为其边缘与所述电路板顶层电路层电耦接,所述开关元件的控制电极通过过孔与所述电路板的中间电路层电耦接,以及所述开关元件的所述另一个电极通过导电部件与所述第二导电块电耦接,其中所述基板被附接到所述第二导电块。
在一个实施例中,所述至少一个开关元件包括多个开关元件,所述多个开关元件被分成多个组,各组中的开关元件的所述一个电极被电连接在一起,其中,所述至少一个第一导电块包括多个第一导电块,每个第一导电块与一个组对应,对应的组中的各开关元件设置在该第一导电块中的对应的凹槽中,所述电气器件还包括设置在与相邻的两个组对应的导电块之间的第一绝缘隔离结构。
在一个实施例中,所述组中的至少一个组中的开关元件被布置成环形或环形的一部分,并且至少另一个组的开关元件被布置作为被所述环形围绕的中心部分,其中,所述至少一个第一导电块还包括与所述中心部分对应的第一导电块,所述中心部分中的各开关元件设置在该第一导电块中的对应的凹槽中。
在一个实施例中,所述电气器件还包括:设置在与相邻的两个组对应的第二导电块之间的第二绝缘隔离结构。
根据本公开的该方面的实施例的电气器件(或者,压装结构)具有如下有益效果中的一个或多个:
(1)适用于压接型MOSFET并联阵列,结构简单、紧凑。
(2)弹性结构,为接触面提供压力,减小接触电阻,利用辅助弹片,增加通流面积,从而增加整体结构的通流能力。
(3)弹性结构,为接触面提供压力,减小接触面热阻,同时使用铜基电路板和辅助弹片,增强整体结构的散热能力。
(4)弹性结构,可以限制MOSFET表面受到压力的上限值,从而使第一铜块和第二铜块间施加的压力范围更大,适用范围更广。
下面对本公开的另一方面进行说明。
一个实施例中,提供了一种电气器件或电气组件。该电气器件包括:至少一个第一导电块;至少一个开关元件,每个开关元件包括控制电极和电流电极,其中所述电流电极中的一个电极设置在所述开关元件的第一表面并耦接到对应的第一导电块,所述电流电极中的另一个电极和所述控制电极设置在所述开关元件的与第一表面相反的第二表面;至少一个控制电极连接件,每一个包括至少一个导电底座和容纳在所述导电底座中的至少一个弹性导电结构,各个所述弹性导电结构的一端耦接到对应的导电底座,并且所述弹性导电结构的另一端适于与对应的开关元件的控制电极耦接以提供到所述控制电极的电连接;至少一个第二导电块,每一个包括一个或多个凸起部分,各凸起部分与对应的开关元件的所述电流电极中的所述另一个电极耦接。
控制电极不同于电流电极。控制电极可以是用于控制开关元件的导通/关断的电极。电流电极可以是在开关元件导通时提供电流通路的电极。例如,对于MOSFET,所述控制电极可以是栅极,所述电流电极可以是源极或漏极。应理解,本公开不限于此。
在如图19所示的具体实施例中,其可以被实施例为具有栅极结构的压接型 MOSFET的压装整体结构。该压装结构包括:第一导电块(例如,铜块)41,开关元件(例如,压接型MOSFET)42,栅极连接件43,第二导电块(铜块)45,以及弹性导电结构。所述弹性导电结构可以包括:弹性结构46以及,与压接型MOSFET 42栅极接触的棒状金属47。所述压装结构还可以包括:栅极连接件43与第二铜块45之间的绝缘介质48。所述压装结构还可以包括:接收外部栅极控制信号的连接接口44。
栅极连接件43可以与栅极对应地配置。例如,如果栅极被配置成环形,栅极连接件也可以设置成环形。或者,如果栅极被配置成网格形,栅极连接件也可以设置成网格形。
第一铜块41可以被配置为与压接型MOSFET42的一个电流电极(例如,漏极)等电位,也即,电连接。第二铜块45可以被配置为与压接型MOSFET42的另一个电流电极(例如,源极)等电位,也即,电连接。
第一铜块41与第二铜块45之间可以保持有一定的压力,用于减小第一铜块41与压接型MOSFET42之间接触面的接触电阻和热阻。
压接型MOSFET42的源极与第二铜块45的凸起部分连接,可以通过压接或焊接的方式进行连接。
栅极连接件43置于第二铜块45的凹槽内,并与第二铜块45电气绝缘。
栅极连接件43与压接型MOSFET42的栅极通过弹性导电结构连接。所述弹性导电结构包括弹性结构和由所述弹性结构弹性支撑的导电件,以使得所述导电件与对应的所述栅极接触。在图中所示的实施例中,弹性导电结构可以包括弹性结构46和棒状金属47。弹性结构46能够保证棒状金属47与压接型MOSFET42的栅极可靠接触,还能够避免因尺寸配合问题导致的接触应力过大或过小。
栅极连接件43可以与连接接口44相连,以接收外部栅极控制信号。连接接口44例如是同轴电缆接口,以通过同轴电缆与外部连接。
栅极连接件43可以是金属结构。由于其置于第二铜块45的凹槽内,因此使用绝缘介质48将二者电气隔离。栅极连接件43也可以采用电路板。在这种情况下,在适当时,可以使电路板表面具有电气隔离层以避免与其它部件不期望的电连接。
对于金属结构的栅极连接件43,上表面可以具有凹槽,弹性导电结构可以设置于凹槽中。对于电路板的栅极连接件43,可采用筒状结构部件设置在电路板的预先设定的定位孔中,再将弹性导电结构设置于筒状结构部件内。
这里,开关元件可以是封装的开关元件,例如其可以包括,但不限于,DirectFet TM
这里,还需注意的是,在图19所示的实施例中,由于开关元件42是封装结构,并且其一个电流端子(例如,漏极端子)连接到上封装壳体,因此在第二导电块45中在与上封装壳体的边缘对应的处置处,设置了空隙(例如,凹陷),以提供电隔离,例如以将该壳体与第二导电块或其他部件电隔离。
在另一个实施例中,一种电气器件如图20所示。该电气器件结构基本与图19所示的类似,不同之处在于其开关元件为裸片(die)形式,也即,未被封装。这里,使用术语“裸片”来表示其可以是整个晶片(wafer)也可以是晶片的一部分。如图20所示,第一铜块可以与图4的相同,使用分离型铜块。根据该实施例,对于例如压接型MOSFET的开关元件的裸片不受封装结构影响,压力没有50-100N的限制,因此可如图5所示,使用整体的第一铜块51,并施加较大压力,如几十kN。如此,可以扩展应用范围,降低成本。
由于压接型MOSFET裸片52的漏极D在压接型MOSFET裸片52上方,源极和栅极在下方,因此第二铜块55只需要根据栅极连接件53的设置进行挖槽,而无需考虑与漏极间的电气绝缘。栅极连接件53与压接型MOSFET裸片52栅极的连接结构与图19相似,栅极连接件53与压接型MOSFET裸片52的栅极通过弹性结构56和棒状金属57连接。
在图20的实施例中,栅极连接件53可以设置为环形或网格形,仅占据第二铜块55较小的空间,从而节省了空间。另外,通过弹性结构,因此能够保证良好的电气接触。此外,由于第一铜块51直接与压接型MOSFET裸片52的漏极相连,第二铜块55直接与压接型MOSFET裸片52的源极相连,且第一铜块51与第二铜块55之间具有一定的压力,缩短了功率元件(例如,MOSFET)所产生的热量向上、下表面耗散路径,并降低了路径上的热阻。
在一个实施例中,栅极连接件的形状可以根据压接型MOSFET阵列的排布方式设计。对于环形压接型MOSFET阵列,如图16所示。栅极连接件的一种设计方案如图21所示。若内环和外环压接型MSOFET使用同一栅极信号进行控制,则对应的栅极连接件的内环和外环可以电气连接。若使用不同栅极信号进行控制,如中间环,则使用不同的栅极连接件进行连接。对于矩阵形压接型MOSFET阵列,如图22所示,若均使用同一栅极信号进行控制,则栅极连接件的一种设计方案如图23所示。在图23的示例中,阵列中所有压接型MSOFET使用同一栅极信号进行控制。若使用不同栅极信号进行控制,可以采用例如前述的环形压接型MOSFET阵列的栅极连接件。
还应理解,本公开的该方面还提供了以下实施例。
一种电气器件,包括:至少一个第一导电块;至少一个开关元件,每个开关元件包括控制电极和电流电极,其中所述电流电极中的一个电极设置在所述开关元件的第一表面并耦接到对应的第一导电块,所述电流电极中的另一个电极和所述控制电极设置在所述开关元件的与第一表面相反的第二表面;至少一个控制电极连接件,每一个包括至少一个导电底座和容纳在所述导电底座中的至少一个弹性导电结构,各个所述弹性导电结构的一端耦接到对应的导电底座,并且所述弹性导电结构的另一端适于与对应的开关元件的控制电极耦接以提供到所述控制电极的电连接;至少一个第二导电块,每一个包括一个或多个凸起部分,各凸起部分与对应的开关元件的所述电流电极中的所述另一个电极耦接。
在一个实施例中,所述控制电极连接件置于所述第二导电块的凹槽内,所述电气器件还包括绝缘介质,用于将所述控制电极连接件与所述第二导电块电气绝缘。
在一个实施例中,所述第一导电块与所述第二导电块之间被保持有一定的压力。
在一个实施例中,所述至少一个开关元件包括多个开关元件,所述多个开关元件被分成多个组。
在一个实施例中,各个组中的开关元件被以下列的方式中的一种进行布置:环形,环形的一部分,或者矩阵。
在一个实施例中,所述至少一个控制电极连接件被配置为下列中的一种:所述至少一个控制电极连接件仅包括一个控制电极连接件,以利用该一个控制电极连接件电气连接所有开关元件;或者所述至少一个控制电极连接件包括多个彼此独立的控制电极连接件,各控制电极连接件分别电气连接相应的组中的开关元件。
在一个实施例中,所述弹性导电结构包括弹性结构和金属连接件,所述金属连接件被所述弹性结构弹性地支撑,以保证所述金属连接件与所述开关元件的控制电极可靠连接。
在一个实施例中,所述开关元件为下列中的一个:封装的开关元件;以及开关元件裸片。
在一个实施例中,每个组中的开关元件的所述一个电极被电连接在一起,其中,所述至少一个第一导电块包括多个第一导电块,每个第一导电块与一个组对应,对应的组中的各开关元件的所述一个电极耦接到该第一导电块,所述电气器件还包括设置在与相邻的两个组对应的导电块之间的第一绝缘隔离结构。
在一个实施例中,所述组中的至少一个组中的开关元件被布置成环形或环形的一部分,并且至少另一个组的开关元件被布置作为被所述环形围绕的中心部分,所述中心部分中的各开关元件的所述一个电极被电连接在一起,其中,所述至少一个第一导电块还包括与所述中心部分对应的第一导电块,所述中心部分中的各开关元件的所述一个电极耦接到该第一导电块。
在一个实施例中,所述至少一个第二导电块包括多个第二导电块,每个第二导电块与一个组对应,对应的组中的各开关元件的所述另一个电极耦接到该第二导电块,所述电气器件还包括设置在与相邻的两个组对应的第二导电块之间的第二绝缘隔离结构。
在一个实施例中,所述至少一个第二导电块还包括与所述中心部分对应的第二导电块,所述中心部分中的各开关元件的所述另一个电极耦接到该第二导电块。
本公开的电气器件(例如,压装结构)具有如下有益效果中的一个或多个:
(1)适用于压接型开关元件并联阵列,结构简单、紧凑。
(2)弹性结构,为接触面提供压力,减小接触电阻,利用辅助弹片,增加通流面积,从而增加整体结构的通流能力。
(3)弹性结构,为接触面提供压力,减小接触面热阻,同时使用铜基电路板,增强整体结构的散热能力。
(4)弹性结构,可以限制开关元件表面受到压力的上限值,从而使第一铜块和第二铜块间施加的压力范围更大,适用范围更广。
与现有技术相比,本公开的应用于压接型开关元件阵列的压装结构具有如下有益效果:
(1)适用于压接型开关元件并联阵列的栅极结构,结构简单、紧凑。
(2)环形或网格形栅极连接件,不影响第一铜块、第二铜块与开关元件的连接,且第一铜块与第二铜块间可以施加一定的压力,降低接触面电阻和热阻。
(3)栅极连接件与开关元件栅极通过弹性结构和棒状金属连接,可以保证连接处具有一定的压力,保证其可靠连接,又不会受第一铜块和第二铜块间的压力影响,不会因压力过大导致开关元件损坏。
下面就本公开的再一个方面进行说明。
面对电力电子技术的快速发展,用户对功率半导体器件(这里也简称作半导体器 件或功率器件)提出了关断期间换流速度快、关断可靠性高、散热性能好等要求。功率半导体器件的封装件结构对于半导体器件与外部电路之间的良好电连接尤为关键,特别是针对适用于高电压大电流环境中的功率半导体器件。
在现有技术中,在功率半导体器件中,将功率半导体元件(有时也称为器件晶片、器件芯片或器件管芯)与关断模块置于封装件(也称管壳)内,且功率半导体元件门极环的内侧与外侧均为阴极,进而用于连接阴极的导电块则需要隔离出连接门极的通道,即需要多个阴极导电块,因此导致封装结构较为复杂。
另外,由于在使用GCT或GTO时需要在其两侧压接钼片,并施加几十kN以上的压力,而单个压接型开关元件仅能承受50-100N的压力,因此,若将开关元件集成于管壳内,存在不同组件的压力差异和配合问题。
针对此,提出如本公开的该方面所述的技术。
本公开的一个实施例介绍了一种电气器件,包括:功率半导体元件,具有控制电极和电流电极,所述控制电极成环形布置,所述控制电极设置在所述电流电极中的一个电流电极的外侧;驱动模块,用于驱动所述功率半导体元件,所述驱动模块包括多个开关元件,所述多个开关元件被分成多个组;多个第一导电部件,设置于所述功率半导体元件的一侧,用于分别提供对应的开关元件到所述电流电极中的所述一个的连接,以及对应的开关元件到所述控制电极的连接,其中所述多个组的开关元件中的至少一个组与所述功率半导体元件的控制电极电连接;一个或多个导电的弹性结构,每个弹性结构的一端与对应的第一导电块电气连接,另一端与对应的开关元件电连接。
在一个具体实施示例中,如图24所示,所述电气器件包括功率半导体元件4、第一导电块7、连接件9、导电的弹性结构8、以及驱动模块。驱动模块可以用于包括驱动所述功率半导体元件。驱动模块包括多个开关元件。在一个实施例中,所述的电气器件还包括至少一个电路板15,所述多个开关元件设置在对应的电路板上.各开关元件的所述一个电流电极端子和控制电极端子耦接到所述对应的电路板。所述电气器件还可以包括第二导电块16。所述电气器件还可以包括第三导电块5。在一些实施例中,可选地,所述功率半导体元件4的表面连接有导电片。在图中示出了导电片3和导电片6。所述导电片3与功率半导体元件4的上表面连接。所述导电片6与功率半导体元件4的下表面连接。所述导电片3、6可以是(但不限于)金属片,例如钼片。所述导电片6与第一导电块7连接。所述第一导电块7底部设置有至少一个凹槽,所述凹槽中设置有弹性结构与开关元件。所述第一导电块7还用于提供功率半导体元件 4到所述开关元件电流电极的电连接。所述开关元件可以设置或安装到电路板15,并可以分别与电路板15上的导电部件连接。电路板15还连接到第二导电块16。
所述连接件9可以设置于第一导电块7的两侧,且与所述第一导电块7相隔离。因此,可以在所述连接件9的外侧设置有绝缘块10。所述连接件9一端连接功率半导体元件的控制电极(门极),另一端通过相关联的弹性结构8与相关联的开关元件连接。
这里,在一些实施例中,可以将连接件9和第一导电块7都视为第一导电部件。也就是说,所述电气器件包括第一导电部件7和9。
本实施例中,所述功率半导体元件4的例子可以包括(但不限于)普通晶闸管SCR、门极换流晶闸管GCT、门极关断晶闸管GTO等。功率半导体元件4可以形成在半导体基板中,因此,在图24中,附图标记4也可用于指示该半导体基板。在该半导体基板的一个表面上布置有该功率半导体元件4的控制电极(例如,门极或栅极)和一个电流电极(例如阴极,以K表示)。而功率半导体元件4的另一个电流电极(例如,阳极,以A表示)可以设置在半导体基板的与所述一个表面相反的另一表面。
在一些实施例中,所述功率半导体元件可以具有控制电极(门极G)以及电流电极(阳极A和阴极K)。所述功率半导体元件4的控制电极在半导体基板上成环形布置。如图25所示,所述控制电极(门极)41成环形设置,并设置在所述电流电极42(阴极或阳极)的外侧。
本实施例中,驱动模块可以设置在所述电路板上。所述驱动模块可以包括关断模块和/或导通模块。所述关断模块至少包括一个开关元件,所述开关元件包括作为电流端子的漏极端子和源极端子以及作为控制端子的栅极端子。所述开关元件的漏极端子和栅极端子可以耦接到所述电路板。图24中,所述电路板上设有开关元件QG与开关元件QE。所述开关元件QG包括漏极端子11、源极端子12以及栅极端子18。所述漏极端子11和栅极端子18耦接到所述电路板15,所述源极端子12与第二导电块16连接。所述开关元件QE包括漏极端子13、源极端子14以及栅极端子17。所述漏极端子13和栅极端子17耦接到所述电路板15,所述源极端子14与第二导电块16连接。优选地,为了保证第二导电块16与开关元件的源极端子连接紧密,所述第二导电块16上设置有突起。在一些实施例中,所述突起的高度与电路板15的厚度一致。
在一些实施例中,所述开关元件可以包括DirectFet或压接型MOSFET。所述DirectFet是由国际整流器公司(International Rectifier company)生产和销售的 一种类型的金属氧化物半导体场效应晶体管(MOSFET),其金属壳体连接到MOSFET的一个电流电极(通常漏极),并且其壳体能够直接耦接到外部装置(如PCB等)。在一些实施中,电气器件可以包括成阵列形式布置的多个开关元件。例如,所述压接型MOSFET阵列可以采用环形排布或矩阵式排布。
如图26所示,示出了根据本公开一个实施例的一种开关元件的布置示意图。所述多个开关元件可以被分成多个组。一个组中的多个开关元件被布置成环形或环形的一部分。在图26中,多个开关元件被以近似同心环形布置,图26中每环代表一个或多个开关元件。在一个实施例中,图26中的处于外侧的环可以对应于图1中所示的驱动模块中的关断模块中的开关QG,而所述中间环与内环可以对应于图1中所示的驱动模块中的关断模块中的开关QE。尽管这里的图26示出了开关元件以圆环形布置在电路板上,且设置3个同心环,但应当理解,开关元件也可以以其他任意形状的环状布置在电路板上,例如,椭圆形、方形、多边形等;开关元件可以设置一个或多个圆环,例如可以是如图15所示的单圆环。
如图13所示,根据本公开实施例,还介绍了一种适用于压接型MOSFET的弹性结构。所述弹性结构包括:主弹簧6,导电的辅助弹片7,以及金属基座8。主弹簧6优选是导电的。金属基座8具有凹槽结构。主弹簧6一端与金属基座8的凹槽耦接。辅助弹片7的一端与金属基座8耦接。主弹簧6的另一端与第一导电块7底部凹槽(例如,凹槽的底壁)耦接,从而耦接到第一导电块7。在一些实施例中,在外部压力小于或等于预定阈值(例如,无外部压力)时,两个辅助弹片7的另一端与第一导电块7底部凹槽轻微接触或不接触。而在所述外部压力大于所述预设阈值时,所述辅助弹片的另一端与对应的所述第一导电块接触。在这种情况下,所述辅助弹片可以产生与其所述另一端受到力的方向相反的弹性力,从而可以保证良好可靠的电接触。
根据本公开一些实施例,电路板15可以是如前面就图14所描述的电路板。例如,所述电路板15包括顶层电路层,第一层绝缘导热层,中间电路层,第二层绝缘导热层和铜基板。电路板15示例性可以采用普通的FR4基材电路板,也可以采用铝基板或铜基板。
弹性结构8可以是如前面结合图12所说明的弹性结构,在此省略了对其重复说明。
根据本公开实施例,当第一导电块7与第二导电块16之间施加压力较小(例如,小于等于阈值)时,弹性结构8形变较小,第一导电块7与电路板15不接触。第一 导电块7仅通过弹性结构8与压接型MOSFET漏极端子电气连接。弹性结构8中的辅助弹片7用于增加通流面积和接触面积,减小通流电阻和热阻。
当第一导电块7与第二导电块16之间施加压力较大时,弹性结构8形变较大(例如,大于预定阈值),第一导电块7与电路板15接触。第一导电块7既能够通过弹性结构8与压接型MOSFET漏极电气连接,也能够通过第一导电块7与电路板15的接触面、经电路板15的顶层电路层的敷铜区域与压接型MOSFET漏极端子电气连接。从而增加第一导电块7与压接型MOSFET漏极的通流面积,减小通流电阻。弹性结构8中的辅助弹片7用于增加通流面积和接触面积,减小通流电阻和热阻。
本实施例中,所述弹性结构8也可以是弹簧,例如蝶形弹簧。采用弹簧结构可以保证开关元件与功率半导体元件的阴极通过阴极铜块紧密相连,而又不因为过大的压力压坏。
本实施例中,如图24所示,所述电气器件还包括同轴电缆19,所述电路板通过同轴电缆19与驱动电路连接,优选地,所述同轴电缆19可以是多个,例如提供开关元件的栅极信号,或提供用于注入开通门极电流的门阴极连接或门极与负极连接,或用于过流保护检测的的阴极与负极连接。
本实施例中,电气器件还可以包括封装外壳,其可以与第二导电块16和第三导电块5共同包封功率半导体元件4和驱动模块。具体来说,封装外壳可以包括支撑件1。第三导电块5和第二导电块16各自可以具有从其侧面延伸出来的延伸部。支撑件1可以设置在第三导电块5和第二导电块16的延伸部之间,从而形成腔体2。功率半导体元件4、电路板15等可以设置在腔体2中。支撑件1可以由陶瓷形成。在一个实施例中,支撑件1的外侧可以被设置有突起(也称作伞裙结构),如图24所示,以便增加爬电距离,提高绝缘性能。在一个实施例中,可以在密封的腔体2中充有性质稳定、不容易分解的气体,例如,氮气、氦气等,从而进一步保护功率半导体元件4不易受到外部环境的影响。支撑件1中还可以设置有用于通过同轴电缆19的开口。
如图27所示,本公开实施例中介绍了另一种电气器件的结构示意图。图27所示的结构与图24的结构基本相同,不同之处在于,图27中的电气器件在图24的结构基础上添加了水冷通道20,且在第一导电块7中设置有多个水槽。从而在电气器件中设置水冷通道,可保证功率半导体元件进行有效地散热。
如图28所示,本实施例中介绍了另一种电气器件的结构示意图。与图24类似地,该电气器件可以包括功率半导体元件、电路板、布置在电路板上的包括一个或多个开 关元件的驱动模块、第一导电块24、第二导电块25、一个或多个弹性结构、一个或多个连接件。图28所示的实施例与图24所示的实施例的不同之处在于:电路板设置在第一导电块24的侧面;开关元件的栅极端子、源极端子以及漏极端子均可以通过焊接或者其他可用的电连接方式电连接到电路板上;以及布置在电路板上的驱动模块还可以包括附接到电路板(图中在电路板的下表面)的电容器23。在一个实施例中,电容器23可以通过电路板与开关元件电连接。图28中还包括电容器23预充电的同轴电缆22与开关元件栅极端子的控制电缆26。
本实施例中,图24、图27以及图28中所述第一导电块可以是一体成型设置。优选地,若所述开关元件采用压接型MOSFET且采用图13所示的弹性结构时,进一步的,若压接型MOSFET采用如图16所示的不同环MOSFET的漏极为不同电位,则应设计多个第一导电块,并在不同的第一导电块之间增加绝缘环隔层,如图17所示此外,若不同环MOSFET的源极为不同电位,则相应设计多个第二导电块。
本实施例中,所述第一导电块、第二导电块以及第三导电块均为具有导电性能的金属块,例如铜块。
如图11b所示,本公开实施例中介绍了一种电气器件的电路示意图,电气器件可以包括驱动模块、管壳以及功率半导体元件。驱动模块可以用于驱动功率半导体元件来进行开关动作。驱动模块至少包括用于关断功率半导体元件的关断模块,图11b中,电气器件中所述关断模块至少包括开关元件QG、QE,在关断功率半导体元件时,关断模块的开关QG导通,开关QE关断,电流从功率半导体元件的阴极K换流到门极G,从而使得功率半导体元件关断。
图11a是本公开实施例中另一种电气器件的电路示意图。图11a所示的电气器件包括关断模块、管壳以及功率半导体元件。图11a所示的关断模块可以包括开关元件QG、电容器COFF以及电压源V。电压源V可以用于向电容器COFF预充电。在要关断功率半导体元件时,开关QG导通,从而通过预充电的电容器COFF将电流从阴极K换流到门极G,从而使得功率半导体元件关断。
本实施例中,功率半导体元件可以具有控制端子(G)以及电流端子(A和K)。功率半导体元件的例子可以包括(但不限于)门极换流晶闸管(GCT)、门极可关断晶闸管(GTO)等,而图29所示的电气器件可以构成集成门极换流晶闸管(IGCT)。图24所示电气器件可以构成发射极关断晶闸管IETO和内部换流晶闸管ICT。
本实施例中,所述电气器件是由晶闸管型器件与相应封装结构组合而成,且用于 电子电路的控制等。
还应理解,本公开的该方面还教导了以下实施例。
一种电气器件,包括:功率半导体元件,具有控制电极和电流电极,所述控制电极成环形布置,所述控制电极设置在所述电流电极中的一个电流电极的外侧;驱动模块,用于驱动所述功率半导体元件,所述驱动模块包括多个开关元件,所述多个开关元件被分成多个组;多个第一导电部件,设置于所述功率半导体元件的一侧,用于分别提供对应的开关元件到所述电流电极中的所述一个的连接,以及对应的开关元件到所述控制电极的连接,其中所述多个组的开关元件中的至少一个组与所述功率半导体元件的控制电极电连接;一个或多个导电的弹性结构,每个弹性结构的一端与对应的第一导电块电气连接,另一端与对应的开关元件电连接。
在一个实施例中,每个所述弹性结构包括导电基座、导电的辅助弹片以及弹簧,其中,所述基座与对应的开关元件的一个电流端子耦接,所述基座的与对应的开关相反的一侧设有凹槽,所述弹簧的一端设置在基座的凹槽中并耦接到基座,所述弹簧的另一端与对应的第一导电部件耦接,所述辅助弹片与所述弹簧独立地设置,且所述辅助弹片的一端与基座耦接。
在一个实施例中,所述辅助弹片的另一端在所述外部压力小于或等于预设阈值时所述辅助弹片的另一端与所述第一导电块基本不接触,而在所述外部压力大于所述预设阈值时,所述辅助弹片的另一端与对应的所述第一导电块接触,并且所述辅助弹片产生与其所述另一端受到力的方向相反的弹性力。
在一个实施例中,所述多个组的开关元件中的除所述至少一组之外的其他组被以下列的方式中的一种进行布置:环形,环形的一部分,或者矩阵。
在一个实施例中,所述多个第一导电部件包括与所述功率半导体元件的控制电极对应的第一导电部件,所述电气结构还包括设置在与所述功率半导体元件的控制电极对应的第一导电部件和其他第一导电部件之间的绝缘隔离结构。
在一个实施例中,所述其他组以环形方式或矩阵方式布置,所述多个第一导电部件包括与所述功率半导体元件的控制电极对应的第一导电部件,所述电气结构还包括设置在与相邻的两个环或相邻的环和矩阵对应的第一导电部件之间的绝缘隔离结构。
在一个实施例中,所述电气器件还包括:至少一个电路板,所述多个开关元件设置在对应的电路板上,各开关元件的所述一个电流电极端子和控制电极端子耦接到所述对应的电路板。
在一个实施例中,所述电气器件还包括:至少一个第二导电部件,所述第二导电部件与所述电路板耦接;在所述多个第一导电部件与所述至少一个第二导电部件之间施加的压力小于或等于预设压力值时,所述第一导电部件与对应的所述电路板不接触,并且所述第一导电部件能够通过对应的所述弹性结构与对应的所述开关元件的所述一个电流电极端子连接;在所述多个第一导电部件与所述至少一个第二导电部件之间施加压力大于所述预设压力值时,所述第一导电部件与对应的所述电路板接触,并且所述第一导电部件既能够通过对应的所述弹性结构与对应的所述开关元件的所述一个电流电极端子连接,也能够通过对应的所述电路板与对应所述开关元件的所述一个电流电极端子连接,所述一个电流电极端子设置在所述开关元件的与其控制电极相反的一侧。
在一个实施例中,所述多个第一导电部件包括导电块以及一个或多个连接件,所述连接件设置在所述导电块的侧面,且与导电块相隔离,所述连接件连接到所述控制电极的一部分,并且所述连接件通过弹性结构与相应的开关元件相关联。
在一个实施例中,所述电气器件还包括:第三导电部件,与所述功率半导体元件的被布置在所述半导体基板的另一表面上的电流电极耦接;以及封装外壳,其与所述第二导电部件和所述第三导电部件共同包封所述功率半导体元件和所述驱动模块。
与现有技术相比,本公开具有如下有益效果中的一个或多个:
1、该电气器件将关断回路集成到管壳内部,显著减小换流回路面积,降低换流回路杂散电感,提高换流速度。
2、该电气器件的弹性结构可以保证开关元件与功率半导体元件的阴极通过导电块紧密相连,同时可以限制开关元件表面受到压力的上限值,使得开关元件不会因为过大的压力压坏,从而使第一导电块和第二导电块间施加的压力范围更大,适用范围更广。
3、该弹性结构也为导电块与电路板的接触面提供压力,减小接触电阻,利用辅助弹片,增加通流面积,从而增加整体结构的通流能力,同时电路板采用铜基电路板,且弹性结构具有辅助弹片,增强整体结构的散热能力。
4、该电气器件具有水冷通道,可保证功率半导体元件有效散热。
5、该电气器件可用于门极环在外侧的晶闸管型器件,从而该电气器件中仅设计一个阴极导电块即可,简化结构,降低生产成本。
6、开关元件采用并联阵列,结构简单、紧凑。
至此应理解,本公开还提供了一种电气装置,其可以包括上文详细描述的电气器件。所述驱动模块可以包括关断模块和/或导通模块等。
以上已经描述了本公开的各种实施例,但是上述说明仅仅是示例性的,并非穷尽性的,并且本公开也不限于所公开的各种实施例。在此公开的各实施例可以任意组合,而不脱离本公开的精神和范围。根据本公开在此的教导,相关技术领域的普通技术人员可以容易地想到许多修改和变化,这些修改和变化也被涵盖在本公开的精神和范围内。

Claims (48)

  1. 一种电气器件,包括:
    在其上具有功率半导体元件的半导体基板,其中在所述半导体基板的一个表面上布置有所述功率半导体元件的控制电极和第一电流电极;
    印刷电路板,其上布置有用于驱动所述功率半导体元件的驱动模块,所述驱动模块包括至少一个第一开关元件,每个第一开关元件包括控制端子和电流端子;
    第一导电块,设置于所述半导体基板和所述印刷电路板之间,用于提供到所述第一电流电极的电连接;
    一个或多个连接件,每个连接件与所述第一导电块电隔离地穿过所述第一导电块并连接到所述控制电极的一部分,并且每个连接件与相应的第一开关元件相关联;以及
    一个或多个第一弹簧部件,每个第一弹簧部件置于与其对应的连接件和与所述对应的连接件相关联的第一开关元件之间,以使得每个第一开关元件的电流端子中的第一电流端子通过所述连接件电连接到所述控制电极的一部分。
  2. 根据权利要求1所述的电气器件,其中所述控制电极在半导体基板上成环形布置。
  3. 根据权利要求1所述的电气器件,其中所述至少一个第一开关元件包括多个第一开关元件,所述多个第一开关元件被分成多个组,其中至少一组与所述功率半导体元件的控制电极对应。
  4. 根据权利要求1所述的电气器件,其中每个第一开关元件包括作为电流端子的漏极端子和源极端子以及作为控制端子的栅极端子,所述第一开关元件的第二电流端子和栅极端子耦接到所述印刷电路板,其中所述第一电流端子是漏极端子和源极端子中的一个,所述第二电流端子是漏极端子和源极端子中的另一个。
  5. 根据权利要求1所述的电气器件,其中所述第一弹簧部件是下列中的一个:
    导电的弹簧;以及
    包括弹簧和导电件的导电弹性结构。
  6. 根据权利要求1所述的电气器件,其中所述第一导电块包括穿透其的第一开口,所述第一开口适于将相应的连接件、相应的第一开关元件以及相应的第一弹簧部件容纳于其中。
  7. 根据权利要求1所述的电气器件,其中所述连接件具有突出的第一部分以及具有凹陷的第二部分,所述第一部分的横向尺寸小于所述第二部分的横向尺寸,其中相应的第一开关元件以及相应的第一弹簧部件容纳于所述第二部分中,所述凹陷包括布置在凹陷边缘处并且延伸至所述印刷电路板的侧臂。
  8. 根据权利要求1所述的电气器件,还包括布置在所述连接件与所述第一导电块之间的使两者彼此绝缘的绝缘件。
  9. 根据权利要求3所述的电气器件,其中各个组中的第一开关元件被以下列的方式中的一种进行布置:
    环形,环形的一部分,或者矩阵。
  10. 根据权利要求1所述的电气器件,还包括:
    一个或多个第二开关元件,所述第二开关元件与所述第一开关元件置于所述印刷电路板的相同表面上,以及
    一个或多个第二弹簧部件,每个第二弹簧部件设置在对应的第二开关元件与第一导电块之间,以使得第二开关元件通过所述第一导电块与所述功率半导体元件的第一电流电极电连接,
    其中,所述第二开关元件和所述第二弹簧部件设置在导电块的凹陷中。
  11. 根据权利要求10所述的电气器件,其中所述多个第二开关元件以环形布置分布在所述印刷电路板上,沿所述环形的径向方向,在至少部分第一开关元件的两侧分别对称地布置一个第二开关元件。
  12. 根据权利要求1所述的电气器件,其中在所述第一导电块中设置有用于冷却的通道。
  13. 根据权利要求1所述的电气器件,其中
    所述第一开关元件包括DirectFet,
    所述功率半导体元件包括门极换流晶闸管(GCT)、门极可关断晶闸管(GTO)。
  14. 根据权利要求1所述的电气器件,还包括:
    第二导电块,与所述印刷电路板的另一侧耦接;
    第三导电块,与所述功率半导体元件的被布置在所述半导体基板的另一表面上的第二电流电极耦接;以及
    封装外壳,其与所述第二导电块和所述第三导电块共同包封所述功率半导体元件和所述驱动模块。
  15. 一种电气器件,包括:
    至少一个第一导电块,各所述第一导电块设有至少一个凹槽;
    至少一个弹性结构,所述弹性结构置于对应的凹槽中,所述弹性结构的一端与所述第一导电块电气连接;
    至少一个开关元件,设置在对应的凹槽中,所述开关元件的一个电极与设置在对应的凹槽中的对应的弹性结构的另一端耦接;
    电路板,所述开关元件设置于所述电路板的一侧,并且各个所述开关元件的另外两个电极中的至少一个电连接到所述电路板;以及
    至少一个第二导电块,所述电路板的另一侧附接到所述至少一个第二导电块,
    其中在所述电气装置受到外部压力大于预设阈值的情况下,各个所述第一导电块通过对应的弹性结构与对应的所述功率半导体的所述一个电极电气连接。
  16. 如权利要求15所述的电气器件,其中,在所述电气器件受到的外部压力小于或等于预设阈值的情况下:
    所述第一导电块与所述电路板基本不接触。
  17. 如权利要求15所述的电气器件,其中所述弹性结构包括:
    金属基座,具有凹槽结构;
    主弹簧,所述主弹簧的一端设置所述金属基座的凹槽中,所述主弹簧的另一端设置在对应的第一导电块的凹槽中并耦接到该第一导电块,
    导电的辅助弹片,其独立于所述主弹簧设置,所述辅助弹片的一端与金属基座耦接,在所述外部压力小于或等于预设阈值时所述辅助弹片的另一端与所述第一导电块基本不接触,而在所述外部压力大于所述预设阈值时,所述辅助弹片的另一端与对应的所述第一导电块接触,并且所述辅助弹片产生与其所述另一端受到力的方向相反的弹性力。
  18. 如权利要求17所述的电气器件,其中:所述弹性结构被配置为使得其金属基座的与所述凹槽相对的一侧与对应的所述开关元件的所述一个电极电气耦接。
  19. 如权利要求15所述的电气器件,其中
    所述第一导电块由金属材料形成,
    所述第二导电块由金属材料形成,以及
    大于所述预定阈值的外部压力被保持施加在所述第一导电块与所述第二导电块之间。
  20. 如权利要求15所述的电气器件,其中:
    当所述外部压力大于预设阈值时,所述第一导电块与所述电路板接触并与所述电路板上的选定的导电部件电连接。
  21. 如权利要求15所述的电气器件,其中当所述外部压力大于预设阈值时,各个所述第一导电块还通过所述电路板与对应的所述开关元件的至少另一电极电气连接。
  22. 如权利要求15所述的电气器件,其中:
    所述电路板包括顶层电路层、第一层绝缘导热层、中间电路层、和第二层绝缘导热层以及基板,其中第二层绝缘导热层设置在基板和所述中间电路层之间,所述中间电路层设置在第一层绝缘导热层和第二层绝缘导热层之间,第一层绝缘导热层设置在顶层电路层和中间电路层之间,
    所述开关元件具有金属外壳,所述开关元件的所述一个电极与所述金属外壳电连接,所述金属外壳被配置为其边缘与所述电路板顶层电路层电耦接,所述开关元件的控制电极通过过孔与所述电路板的中间电路层电耦接,以及所述开关元件的所述另一个电极通过导电部件与所述第二导电块电耦接,
    其中所述基板被附接到所述第二导电块。
  23. 如权利要求15所述的电气器件,其中,所述至少一个开关元件包括多个开关元件,所述多个开关元件被分成多个组,
    各组中的开关元件的所述一个电极被电连接在一起,
    其中,所述至少一个第一导电块包括多个第一导电块,每个第一导电块与一个组对应,对应的组中的各开关元件设置在该第一导电块中的对应的凹槽中,
    所述电气器件还包括设置在与相邻的两个组对应的导电块之间的第一绝缘隔离结构。
  24. 如权利要求23所述的电气器件,其中,所述组中的至少一个组中的开关元件被布置成环形或环形的一部分,并且至少另一个组的开关元件被布置作为被所述环形围绕的中心部分,
    其中,所述至少一个第一导电块还包括与所述中心部分对应的第一导电块,所述中心部分中的各开关元件设置在该第一导电块中的对应的凹槽中。
  25. 如权利要求23所述的电气器件,还包括:
    设置在与相邻的两个组对应的第二导电块之间的第二绝缘隔离结构。
  26. 一种电气器件,包括:
    至少一个第一导电块;
    至少一个开关元件,每个开关元件包括控制电极和电流电极,其中所述电流电极中的一个电极设置在所述开关元件的第一表面并耦接到对应的第一导电块,所述电流电极中的另一个电极和所述控制电极设置在所述开关元件的与第一表面相反的第二表面;
    至少一个控制电极连接件,每一个包括至少一个导电底座和容纳在所述导电底座中的至少一个弹性导电结构,各个所述弹性导电结构的一端耦接到对应的导电底座,并且所述弹性导电结构的另一端适于与对应的开关元件的控制电极耦接以提供到所述控制电极的电连接;
    至少一个第二导电块,每一个包括一个或多个凸起部分,各凸起部分与对应的开关元件的所述电流电极中的所述另一个电极耦接。
  27. 如权利要求26所述的电气器件,其中所述控制电极连接件置于所述第二导电块的凹槽内,
    所述电气器件还包括绝缘介质,用于将所述控制电极连接件与所述第二导电块电气绝缘。
  28. 如权利要求26所述的电气器件,其中,所述第一导电块与所述第二导电块之间被保持有一定的压力。
  29. 如权利要求26所述的电气器件,其中,所述至少一个开关元件包括多个开关元件,所述多个开关元件被分成多个组。
  30. 如权利要求29所述的电气器件,其中,各个组中的开关元件被以下列的方式中的一种进行布置:
    环形,环形的一部分,或者矩阵。
  31. 如权利要求29所述的电气器件,其中,所述至少一个控制电极连接件被配置为下列中的一种:
    所述至少一个控制电极连接件仅包括一个控制电极连接件,以利用该一个控制电极连接件电气连接所有开关元件;或者
    所述至少一个控制电极连接件包括多个彼此独立的控制电极连接件,各控制电极连接件分别电气连接相应的组中的开关元件。
  32. 如权利要求26所述的电气器件,其中所述弹性导电结构包括弹性结构和金属 连接件,所述金属连接件被所述弹性结构弹性地支撑,以保证所述金属连接件与所述开关元件的控制电极可靠连接。
  33. 如权利要求26所述的电气器件,其中,所述开关元件为下列中的一个:
    封装的开关元件;以及
    开关元件裸片。
  34. 如权利要求29所述的电气器件,其中,每个组中的开关元件的所述一个电极被电连接在一起,
    其中,所述至少一个第一导电块包括多个第一导电块,每个第一导电块与一个组对应,对应的组中的各开关元件的所述一个电极耦接到该第一导电块,所述电气器件还包括设置在与相邻的两个组对应的导电块之间的第一绝缘隔离结构。
  35. 如权利要求34所述的电气器件,其中,所述组中的至少一个组中的开关元件被布置成环形或环形的一部分,并且至少另一个组的开关元件被布置作为被所述环形围绕的中心部分,所述中心部分中的各开关元件的所述一个电极被电连接在一起,
    其中,所述至少一个第一导电块还包括与所述中心部分对应的第一导电块,所述中心部分中的各开关元件的所述一个电极耦接到该第一导电块。
  36. 如权利要求34所述的电气器件,其中所述至少一个第二导电块包括多个第二导电块,每个第二导电块与一个组对应,对应的组中的各开关元件的所述另一个电极耦接到该第二导电块,
    所述电气器件还包括设置在与相邻的两个组对应的第二导电块之间的第二绝缘隔离结构。
  37. 如权利要求35所述的电气器件,其中,所述至少一个第二导电块还包括与所述中心部分对应的第二导电块,所述中心部分中的各开关元件的所述另一个电极耦接到该第二导电块。
  38. 一种电气器件,包括:
    功率半导体元件,具有控制电极和电流电极,所述控制电极成环形布置,所述控制电极设置在所述电流电极中的一个电流电极的外侧;
    驱动模块,用于驱动所述功率半导体元件,所述驱动模块包括多个开关元件,所述多个开关元件被分成多个组;
    多个第一导电部件,设置于所述功率半导体元件的一侧,用于分别提供对应的开关元件到所述电流电极中的所述一个的连接,以及对应的开关元件到所述控制电极的 连接,其中所述多个组的开关元件中的至少一个组与所述功率半导体元件的控制电极电连接;
    一个或多个导电的弹性结构,每个弹性结构的一端与对应的第一导电块电气连接,另一端与对应的开关元件电连接。
  39. 根据权利要求38所述的电气器件,其中,每个所述弹性结构为下列中的一个:
    导电弹簧;
    包括导电基座、导电的辅助弹片以及弹簧的弹性结构,其中,所述基座与对应的开关元件的一个电流端子耦接,所述基座的与对应的开关相反的一侧设有凹槽,所述弹簧的一端设置在基座的凹槽中并耦接到基座,所述弹簧的另一端与对应的第一导电部件耦接,所述辅助弹片与所述弹簧独立地设置,且所述辅助弹片的一端与基座耦接。
  40. 根据权利要求38所述的电气器件,其中所述辅助弹片的另一端在所述外部压力小于或等于预设阈值时所述辅助弹片的另一端与所述第一导电块基本不接触,而在所述外部压力大于所述预设阈值时,所述辅助弹片的另一端与对应的所述第一导电块接触,并且所述辅助弹片产生与其所述另一端受到力的方向相反的弹性力。
  41. 根据权利要求38所述的电气器件,所述多个组的开关元件中的除所述至少一组之外的其他组被以下列的方式中的一种进行布置:
    环形,环形的一部分,或者矩阵。
  42. 根据权利要求38所述的电气器件,其中,所述多个第一导电部件包括与所述功率半导体元件的控制电极对应的第一导电部件,
    所述电气结构还包括设置在与所述功率半导体元件的控制电极对应的第一导电部件和其他第一导电部件之间的绝缘隔离结构。
  43. 根据权利要求41所述的电气器件,其中所述其他组以环形方式或矩阵方式布置,
    所述多个第一导电部件包括与所述功率半导体元件的控制电极对应的第一导电部件,
    所述电气结构还包括设置在与相邻的两个环或相邻的环和矩阵对应的第一导电部件之间的绝缘隔离结构。
  44. 根据权利要求38所述的电气器件,还包括:
    至少一个电路板,所述多个开关元件设置在对应的电路板上,各开关元件的所述 一个电流电极端子和控制电极端子耦接到所述对应的电路板。
  45. 根据权利要求38所述的电气器件,还包括:
    至少一个第二导电部件,所述第二导电部件与所述电路板耦接;
    在所述多个第一导电部件与所述至少一个第二导电部件之间施加的压力小于或等于预设压力值时,所述第一导电部件与对应的所述电路板不接触,并且所述第一导电部件能够通过对应的所述弹性结构与对应的所述开关元件的所述一个电流电极端子连接;
    在所述多个第一导电部件与所述至少一个第二导电部件之间施加压力大于所述预设压力值时,所述第一导电部件与对应的所述电路板接触,并且所述第一导电部件既能够通过对应的所述弹性结构与对应的所述开关元件的所述一个电流电极端子连接,也能够通过对应的所述电路板与对应所述开关元件的所述一个电流电极端子连接,
    所述一个电流电极端子设置在所述开关元件的与其控制电极相反的一侧。
  46. 根据权利要求38所述的电气器件,其中,所述多个第一导电部件包括导电块以及一个或多个连接件,所述连接件设置在所述导电块的侧面,且与导电块相隔离,所述连接件连接到所述控制电极的一部分,并且所述连接件通过弹性结构与相应的开关元件相关联。
  47. 根据权利要求38所述的电气器件,还包括:
    第三导电部件,与所述功率半导体元件的被布置在所述半导体基板的另一表面上的电流电极耦接;以及
    封装外壳,其与所述第二导电部件和所述第三导电部件共同包封所述功率半导体元件和所述驱动模块。
  48. 一种电气装置,包括根据权利要求1-48中的任一项所述的电气器件。
PCT/CN2018/103750 2017-09-01 2018-09-03 电气器件以及电气装置 WO2019042446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18850023.5A EP3678173A4 (en) 2017-09-01 2018-09-03 ELECTRICAL DEVICE AND ELECTRICAL DEVICE

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201710776469.8 2017-09-01
CN201710776469.8A CN109427709B (zh) 2017-09-01 2017-09-01 电气器件以及电气装置
CN201810827090.X 2018-07-25
CN201810827090.XA CN110767643B (zh) 2018-07-25 2018-07-25 一种电气器件
CN201810829499.5A CN110767638A (zh) 2018-07-25 2018-07-25 应用于压接型mosfet的栅极结构
CN201810829499.5 2018-07-25
CN201810829497.6A CN110767637A (zh) 2018-07-25 2018-07-25 应用于压接型mosfet的压装结构
CN201810829497.6 2018-07-25

Publications (1)

Publication Number Publication Date
WO2019042446A1 true WO2019042446A1 (zh) 2019-03-07

Family

ID=65526216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103750 WO2019042446A1 (zh) 2017-09-01 2018-09-03 电气器件以及电气装置

Country Status (2)

Country Link
EP (1) EP3678173A4 (zh)
WO (1) WO2019042446A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722418A (zh) * 2004-06-08 2006-01-18 富士电机电子设备技术株式会社 半导体装置
US20060039127A1 (en) * 2004-08-19 2006-02-23 Distributed Power, Inc. High power density insulated metal substrate based power converter assembly with very low BUS impedance
CN1848425A (zh) * 2005-04-12 2006-10-18 塞米克朗电子有限及两合公司 具有材料结合设置的接线元件的功率半导体模块
CN207367957U (zh) * 2017-09-01 2018-05-15 清华大学 电气器件以及电气装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE73589T1 (de) * 1988-01-26 1992-03-15 Asea Brown Boveri Hochleistungsschalter.
EP0381849A1 (de) * 1989-02-07 1990-08-16 Asea Brown Boveri Ag Schnelle Leistungshalbleiterschaltung
DE102005054543A1 (de) * 2005-11-14 2007-05-31 Peter Köllensperger Halbleiterschalter mit integrierter Ansteuerschaltung
EP2161746A1 (en) * 2008-09-08 2010-03-10 Converteam Technology Ltd Semiconductor switching devices
DE102009002191B4 (de) * 2009-04-03 2012-07-12 Infineon Technologies Ag Leistungshalbleitermodul, Leistungshalbleitermodulanordnung und Verfahren zur Herstellung einer Leistungshalbleitermodulanordnung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722418A (zh) * 2004-06-08 2006-01-18 富士电机电子设备技术株式会社 半导体装置
US20060039127A1 (en) * 2004-08-19 2006-02-23 Distributed Power, Inc. High power density insulated metal substrate based power converter assembly with very low BUS impedance
CN1848425A (zh) * 2005-04-12 2006-10-18 塞米克朗电子有限及两合公司 具有材料结合设置的接线元件的功率半导体模块
CN207367957U (zh) * 2017-09-01 2018-05-15 清华大学 电气器件以及电气装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678173A4 *

Also Published As

Publication number Publication date
EP3678173A4 (en) 2020-09-23
EP3678173A1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US6181007B1 (en) Semiconductor device
CN207367957U (zh) 电气器件以及电气装置
US10312213B2 (en) Power semiconductor device comprising a substrate and load current terminal elements
CN107533983B (zh) 压接型半导体装置
KR102125099B1 (ko) 프레스핀, 전력 반도체 모듈 및 다중 전력 반도체 모듈들을 갖는 반도체 모듈 조립체
US6548890B2 (en) Press-contact type semiconductor device
CN102693969A (zh) 一种igbt功率模块
US20020060371A1 (en) High-power semiconductor module, and use of such a high-power semiconductor module
CN218414576U (zh) 功率模块的封装结构及大电流模块
CN116072660A (zh) 一种SiCMOSFET多芯片并联子单元压接封装结构
CN109427709B (zh) 电气器件以及电气装置
US6445013B1 (en) Gate commutated turn-off semiconductor device
WO2019042446A1 (zh) 电气器件以及电气装置
EP3513432B1 (en) Press-pack power module
CN112687676B (zh) 压接式igbt子模组及压接式igbt模块
CN208690256U (zh) 一种电气器件
CN110767643B (zh) 一种电气器件
JP4569398B2 (ja) 半導体装置
CN113097186A (zh) 一种功率芯片压接封装结构及其制造方法
JP2001085612A (ja) 相補型igbtの実装構造
CN220210233U (zh) 压接型功率模组及变流器
US11495551B2 (en) Power semiconductor module with integrated surge arrester
US20240213106A1 (en) Semiconductor device
CN114038808A (zh) 大功率半导体器件
WO2023201857A1 (zh) 功率模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850023

Country of ref document: EP

Effective date: 20200401