WO2019042072A1 - 像素结构、oled显示装置及驱动方法 - Google Patents

像素结构、oled显示装置及驱动方法 Download PDF

Info

Publication number
WO2019042072A1
WO2019042072A1 PCT/CN2018/098354 CN2018098354W WO2019042072A1 WO 2019042072 A1 WO2019042072 A1 WO 2019042072A1 CN 2018098354 W CN2018098354 W CN 2018098354W WO 2019042072 A1 WO2019042072 A1 WO 2019042072A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
column
row
unit
Prior art date
Application number
PCT/CN2018/098354
Other languages
English (en)
French (fr)
Inventor
刘明星
孙佳瑶
李俊峰
高峰
吕东芸
王徐亮
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710774606.4A external-priority patent/CN108511480A/zh
Priority claimed from CN201710775349.6A external-priority patent/CN109427265B/zh
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to KR1020197032742A priority Critical patent/KR102466271B1/ko
Priority to EP18849577.4A priority patent/EP3678182A4/en
Priority to JP2019563815A priority patent/JP7015324B2/ja
Priority to US16/324,992 priority patent/US11152432B1/en
Publication of WO2019042072A1 publication Critical patent/WO2019042072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0465Improved aperture ratio, e.g. by size reduction of the pixel circuit, e.g. for improving the pixel density or the maximum displayable luminance or brightness

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel structure, an OLED display device including the pixel structure, and a driving method of the pixel structure.
  • OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • OLED display technology does not require a backlight and has self-luminous characteristics.
  • the OLED uses a thinner organic material film layer and a glass substrate, and when a current passes, the organic material emits light. Therefore, the OLED display can significantly save power, can be made lighter and thinner, can withstand a wider range of temperature changes than the LCD display, and has a larger viewing angle.
  • OLED display is expected to become the next-generation flat panel display technology after LCD, and it is one of the most popular technologies in flat panel display technology.
  • OLED colorization technology that is now mature and has been successfully mass-produced is mainly OLED evaporation technology, which uses conventional RGB Stripe (RGB strip) arrangement for evaporation.
  • RGB stripe RGB strip
  • the side-by-side method has three sub-pixels of red, green, and blue (R, G, B) in a pixel (Pixel) range, each sub-pixel is quadrilateral, and each has an independent organic A light-emitting component which forms an organic light-emitting component by a vapor deposition film forming technique through a high-precision metal mask (FMM) on a corresponding pixel position on an array substrate, the high-definition metal mask
  • FMM high-precision metal mask
  • the stencil is often referred to simply as a metal mask or an evaporation mask.
  • FIG. 1a is a schematic diagram of a pixel arrangement of an OLED display device.
  • the OLED display device adopts a pixel juxtaposition manner, and each pixel unit Pixel includes an R sub-pixel region 101, a G sub-pixel region 103, and a B sub-pixel region 105, wherein the R sub-pixel region 101 includes R.
  • the G sub-pixel region 103 includes a G light emitting region 104 and a G non-light emitting region (not labeled)
  • the B subpixel region 105 includes a B light emitting region 106 and a B non-light emitting region (not Label).
  • the R, G, and B sub-pixels and the light-emitting area shown in FIG. 1a are respectively equal in area, and the R, G, and B sub-pixels are arranged in a straight line.
  • the industry generally refers to this kind of pixel structure as Real RGB structure (Real RGB).
  • Real RGB Real RGB structure
  • a cathode, an anode, and an electroluminescent layer are included, wherein the electroluminescent layer is located between the cathode and the anode for generating a predetermined color of light for display.
  • the OLED display device shown in FIG. 1a is usually vapor-deposited by using the FMM shown in FIG. 1b, and the FMM includes a shielding region 107 and a plurality of vapor deposition openings 108, and an occlusion region between two adjacent vapor deposition openings 108 in the same column. It is called a bridge.
  • a sufficient distance must be maintained between the sub-pixels and the bridge, which causes the lengths of the sub-pixels to decrease, and affects the aperture ratio of each sub-pixel.
  • the traditional RGB juxtaposed pixel arrangement can only reach 200-300 PPI, which is difficult to achieve high-resolution display. With the increasing demand for the resolution of OLED display devices, such RGB pixel juxtaposition cannot meet the design requirements of high PPI.
  • FIG. 2 is a schematic diagram of a pixel arrangement of another OLED display device. As shown in FIG. 2, only G sub-pixels are used exclusively for each pixel unit, and R and B sub-pixels are shared with adjacent pixel units. For example, pixel unit 201 and pixel unit 202 share R sub-pixels. This method can improve the PPI of the display. However, in this arrangement, the R and B sub-pixels are shared by adjacent pixel units, and the entire display effect may be distorted, not a full-color display in the true sense.
  • An object of the present disclosure is to provide a pixel structure, an OLED display device including the pixel structure, and a driving method of the pixel structure to solve the problems in the prior art.
  • the present disclosure provides a pixel structure including a plurality of repeating units arranged in a matrix form, each of the repeating units including adjacent ones arranged in a first direction and respectively including three different colors
  • Two sub-repeat units of a pixel one of the sub-repeat units of each of the repeat units includes a first sub-pixel, a second sub-pixel and a third sub-pixel or a second sub-pixel, the first sub-paragraph arranged in the second direction a pixel and a third sub-pixel, the other sub-repetition unit including a third sub-pixel, a first sub-pixel and a second sub-pixel or a third sub-pixel, a second sub-pixel, and the first sub-paragraph sequentially arranged in the second direction Pixel.
  • the structure of the sub-pixel misalignment arrangement of such adjacent rows is used to expand the same sub-pixels.
  • the distance that can be utilized between the openings can reduce the difficulty of the mask manufacturing process and the evaporation process, so that the size of the pixel unit can be made smaller, which is advantageous for the manufacture of a high-resolution display.
  • two sub-repeat units in each repeating unit constitute two pixel units disposed adjacently in the second direction, and the center distance of the sub-pixels of any same color in the second direction is in the first direction. 2 times or 2N/(N+1) times the center distance; or, the two sub-repeat units constitute two pixel units adjacently disposed in the first direction, and the center distance of the sub-pixels of any same color in the first direction It is 2N/(N+1) times its center distance in the second direction.
  • the pixel unit in a certain direction in the pixel structure can be equivalent to the (N+1)/N times pixel unit in the Real pixel structure, thereby improving the virtual resolution of the display device.
  • the present disclosure also provides an OLED display device including the pixel structure as described above.
  • the present disclosure further provides a driving method of a pixel structure as described above, wherein N takes a value of 2, the method includes: equating a pixel unit in a certain direction in the pixel structure to a 3/2-fold pixel unit in the Real pixel structure, obtaining a correspondence relationship between each sub-pixel in the pixel structure and each sub-pixel in the Real pixel structure, and a luminance value of each sub-pixel in the Real pixel structure, and according to the Real pixel structure The luminance values of the respective sub-pixels and the correspondence determine the luminance values of the respective sub-pixels in the pixel structure.
  • FIG. 1a is a schematic diagram of a pixel arrangement of an OLED display device in the prior art.
  • Figure 1b corresponds to a schematic view of an FMM of Figure 1a.
  • FIG. 2 is a schematic diagram of pixel arrangement of another OLED display device in the prior art.
  • FIG. 3 is a schematic diagram of a pixel arrangement of an OLED display device according to an embodiment of the present disclosure.
  • Figure 4 is a schematic illustration of a repeating unit of Figure 3.
  • FIG. 5 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • Figure 7 is a schematic illustration of a repeating unit of Figure 6.
  • FIG. 8 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • Figure 12 is a schematic illustration of a repeating unit of Figure 11.
  • FIG. 13 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • Figure 14 is a schematic illustration of a repeating unit of Figure 13.
  • Figure 15 is an equivalent schematic view of an embodiment of the present disclosure.
  • 16 is a schematic diagram of a reference pixel unit connecting gate lines and data lines in an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a pixel unit connecting a gate line and a data line according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of another pixel unit connecting a gate line and a data line in the embodiment of the present disclosure.
  • Figure 19 is another equivalent schematic view of an embodiment of the present disclosure.
  • FIG. 20 is another equivalent diagram of an embodiment of the present disclosure.
  • FIG. 21 is another equivalent diagram of an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • Figure 24 is a schematic illustration of a repeating unit of Figure 23.
  • FIG. 25 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • Figure 26 is a schematic illustration of a repeating unit of Figure 25.
  • a pixel structure of an OLED display device comprising a plurality of repeating units arranged in a matrix, each of the repeating units comprising sub-pixels arranged adjacently in the first direction and respectively comprising three different colors
  • Two sub-repetition units wherein one sub-repetition unit includes a first sub-pixel, a second sub-pixel and a third sub-pixel or a second sub-pixel, a first sub-pixel and a third sub-pixel, which are sequentially arranged in a second direction
  • a sub-repeat unit includes a third sub-pixel, a first sub-pixel and a second sub-pixel or a third sub-pixel, a second sub-pixel, and a first sub-pixel, which are sequentially arranged in the second direction.
  • the two sub-repetition units constitute two pixel units disposed adjacently in the second direction, so each pixel unit includes first sub-pixels, second sub-pixels, and third sub-pixels having different colors from each other, and three sub-pixels
  • the virtual center connection is triangular.
  • the two sub-repetition units constitute two pixel units disposed adjacently in the first direction, and therefore, each of the pixel units includes a first sub-pixel, a second sub-pixel, and a third sub-pixel, which are different in color from each other, and two Each pixel unit is square.
  • each pixel unit (pixel) in the pixel structure is composed of three colors (RGB three colors), which can realize full color display in a true sense.
  • three color sub-pixels are arranged on columns (rows), and two color sub-pixels are arranged on rows (columns), compared to sub-pixels in which only one color is distributed in a certain direction,
  • the row and column directions of the arrangement are more uniform.
  • Two sub-repeat units in each repeating unit are, for example, a first sub-repetitive unit and a second sub-repeating unit, and the first sub-repetitive unit and the second sub-repeating unit constitute two pixel units disposed adjacent to each other in the second direction
  • the virtual center connection of the first sub-pixel, the second sub-pixel, and the third sub-pixel in each pixel unit is, for example, a triangle as follows:
  • the first direction is the row direction
  • the second direction is the column direction.
  • the first sub-pixel and the second sub-pixel in each pixel unit are arranged in the first column and the third sub-pixel are arranged in the same direction.
  • the first column is an odd column (the first, third, fifth, ..., columns)
  • the corresponding second column is an even column (the second, fourth, sixth, ..., columns);
  • the first column is an even column
  • the corresponding second column is an odd column, which is not particularly limited herein.
  • the first direction is the column direction
  • the second direction is the row direction
  • the first sub-pixel and the second sub-pixel in each pixel unit are arranged in the first row and the third sub-pixel are arranged in the same direction.
  • the first column is an odd column (the first, third, fifth, ..., columns)
  • the corresponding second column is an even column (the second, fourth, sixth, ..., columns);
  • the first column is an even column, and the corresponding second column is an odd column, which is not particularly limited herein.
  • the center distance Y 1 of the sub-pixels of any same color in the second direction (such as the column direction)
  • the center distance X 1 of the first direction (such as the row direction) may have the following relationship:
  • each repeating unit includes 2 pixel units in the column direction, and at the same time, M pixel units in the row direction of the pixel structure are caused to realize the display effect of M*(N+1)/N pixel units in the Real pixel structure. To improve the virtual resolution, so,
  • N is an integer greater than or equal to 1.
  • the center distance Y 1 of the sub-pixels of any of the same colors in the second direction is 2N/(N+1) times the center distance X 1 of the first direction.
  • Each repeating unit includes two pixel units in the column direction, and at the same time, M pixel units in the row direction realize the display effect of M pixel units in the Real pixel structure (without compression),
  • the center distance Y 1 of the sub-pixels of any same color in the second direction is twice the center distance X 1 of the first direction.
  • Two sub-repeat units in each repeating unit are, for example, a first sub-repeating unit and a second sub-repeating unit, and the first sub-repeating unit and the second sub-repeating unit constitute two pixel units disposed adjacent to each other in the first direction
  • the virtual center connection of the first sub-pixel, the second sub-pixel, and the third sub-pixel in each pixel unit is, for example, arranged in a square shape as follows:
  • the first direction is the row direction
  • the second direction is the column direction.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel in the first pixel unit are arranged in the first column
  • the second The first sub-pixel, the second sub-pixel, and the third sub-pixel in the pixel unit are arranged in the second column.
  • the first column is an odd column (the first, third, fifth, ..., columns)
  • the corresponding second column is an even column (the second, fourth, sixth, ..., columns)
  • the first column is an even column
  • the corresponding second column is an odd column, which is not particularly limited herein.
  • the first direction is the column direction
  • the second direction is the row direction
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel in the first pixel unit are arranged in the first row
  • the second The first sub-pixel, the second sub-pixel, and the third sub-pixel in the pixel unit are arranged in the second row.
  • the first column is an odd column (the first, third, fifth, ..., columns)
  • the corresponding second column is an even column (the second, fourth, sixth, ..., columns)
  • the first column is an even column
  • the corresponding second column is an odd column, which is not particularly limited herein.
  • the center distance Y 1 of the sub-pixels of any same color in the second direction (such as the column direction)
  • the center distance X 1 of the first direction (such as the row direction) may have the following relationship:
  • N is an integer greater than or equal to 1.
  • the center distance X 1 of the sub-pixels of any of the same colors in the first direction is 2N/(N+1) times the center distance Y 1 of the second direction.
  • FIG. 3 is a schematic diagram of a pixel arrangement of an OLED display device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a repeating unit of FIG.
  • the first direction (X direction) is a row direction (lateral direction)
  • the second direction (Y direction) is a column direction (longitudinal direction).
  • the number of pixels in the actual product is not limited thereto, and the number of pixel units can be changed according to the actual display needs.
  • the first row, the second row, the first column, the second column, etc. in the present disclosure are all referred to as reference standards in the drawings for the purpose of illustrating the present disclosure, and do not refer to rows and columns in actual products.
  • the pixel structure includes a plurality of repeating units 30 arranged in a matrix, each of the repeating units 30 including adjacent ones arranged in a first direction (here, an X direction) and
  • the first sub-repetition unit 31 and the second sub-repetition unit 32 respectively include three sub-pixels of different colors.
  • the first sub-repetition unit 31 includes a first sub-pixel 301, a second sub-pixel 303, and a third sub-pixel 305 which are sequentially arranged in a second direction (here, the Y direction).
  • the second sub-repeat unit 32 includes a third sub-pixel 305, a first sub-pixel 301, and a second sub-pixel 303 that are sequentially arranged in the second direction.
  • the first sub-repetition unit 31 and the second sub-repetition unit 32 in each repeating unit 30 constitute two pixel units disposed adjacently in the second direction, such as the pixel unit (1, 1) and the pixel unit in FIG. 3 ( 2, 1), or in addition, each repeating unit includes two of the pixel units.
  • each of the pixel units includes a first sub-pixel 301, a second sub-pixel 303, and a third sub-pixel 305 whose colors are different from each other and whose virtual center lines are triangular (as shown by the triangular dotted line in FIG. 4), each The pixel unit is composed of three colors of RGB, which can realize the full color display in the true sense.
  • the arrangement structure of all the pixel units in the same row is the same, and the arrangement of each pixel unit flipped 180 degrees in the row direction (self-flip left and right) and the arrangement of adjacent pixel units in the same column
  • the structure is the same. In this way, the pixel unit can be arranged more compactly, the pixel pitch is reduced, and the PPI is improved.
  • the pixel unit of the first row and the first column is referred to as a pixel unit (1, 1)
  • the pixel unit of the first row and the second column is denoted as a pixel unit (1, 2)
  • the pixels of the second row and the first column are
  • the unit is denoted as a pixel unit (2, 1)
  • the pixel unit of the second row and the second column is denoted as a pixel unit (2, 2), and so on.
  • the pixel unit (1, 1) of the first row and the first column is arranged 180 degrees in the X direction and the pixel unit adjacent to the Y direction, that is, the pixel unit of the second row and the first column ( 2, 1) has the same arrangement.
  • two pixel units in the same repeating unit 30, such as the pixel unit (1, 1) and the third sub-pixel 305 of the pixel unit (2, 1) are staggered from each other (pixel unit (1, 1) and pixel)
  • the third sub-pixels of the unit (2, 1) are not arranged in a straight line), and therefore, the vapor deposition openings on the vapor deposition mask (FMM) for forming the third sub-pixel are also staggered. It can reduce the difficulty of the evaporation mask manufacturing process and the evaporation process.
  • the structure of the sub-pixel misalignment arrangement of such adjacent rows is used to expand the same sub-subjects.
  • the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 may have a "pin” shape, an inverted “pin” shape, a "product” shape rotated 90 degrees to the left, or a 90 degree rotation to the right.
  • the shape of the product may be a "good” shape, a "good” shape, a "good” shape rotated 90 degrees to the left, or a "good” shape rotated 90 degrees to the right. In the arrangement shown in FIG.
  • the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 are arranged in a "pin" shape rotated 90 degrees to the right, that is, The first sub-pixel 301 and the second sub-pixel 303 are arranged on the left side, and the third sub-pixel 305 is arranged on the right side; among the pixel units of the even-numbered rows, the first sub-pixel 301, the second sub-pixel 303 and the third sub-pixel
  • the pixel 305 is arranged in a "pin" shape rotated 90 degrees to the left, that is, the third sub-pixel 305 is arranged on the left side, and the first sub-pixel 301 and the second sub-pixel 303 are arranged on the right side.
  • first sub-pixels 301 of all the pixel units in the same row are arranged on a straight line
  • second sub-pixels 303 of all the pixel units in the same row are arranged on a straight line
  • the first of all the pixel units in the same row The three sub-pixels 305 are also arranged in a straight line.
  • each of the pixel units includes a light-emitting area (display area) and a non-light-emitting area (non-display area), and the light-emitting area of each of the sub-pixels includes a cathode, an anode, and an electroluminescent layer (organic emission layer).
  • the electroluminescent layer is positioned between the cathode and the anode for producing a predetermined color of light for display. It is generally required to use a three-time evaporation process to form electroluminescent layers of corresponding colors (such as red, green or blue) in the light-emitting regions of the corresponding color pixel regions, respectively.
  • the offsets may also be adopted.
  • the same mask plate is used to realize electroluminescence layer evaporation of various colors.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel are composed of a red (R) color sub-pixel, a green (G) color sub-pixel, and a blue (B) color sub-pixel. That is, in this embodiment, the first sub-pixel is one of a red (R) color sub-pixel, a green (G) color sub-pixel, and a blue (B) color sub-pixel, and the second sub-pixel is a red (R) dice.
  • the third sub-pixel being a red (R) color sub-pixel, a green (G) color sub-pixel, and a blue (B) color sub-pixel
  • the third sub-pixel being a red (R) color sub-pixel, a green (G) color sub-pixel, and a blue (B) color sub-pixel
  • the first sub-pixel 301 is a green (G) sub-pixel
  • the second sub-pixel 303 is a red (R) sub-pixel
  • the third sub-pixel 305 is a blue (B) sub-pixel.
  • the first sub-pixel 301 includes a G light-emitting region 302 and a G non-light-emitting region, and includes an organic light-emitting layer for emitting green light
  • the second sub-pixel 303 includes an R light-emitting region 304 and an R non-light-emitting region, and includes The organic light emitting layer emitting red light
  • the third sub-pixel 305 includes a B light emitting region 306 and a B non-light emitting region, and includes an organic light emitting layer for emitting blue light.
  • the area of the blue sub-pixel is larger than the area of the red sub-pixel and the green sub-pixel in the same pixel unit, because the lifetime of the blue luminescent material used to fabricate the blue sub-pixel Generally, it is the shortest, so the lifetime of the organic electroluminescent display device mainly depends on the lifetime of the blue sub-pixel. Under the condition that the same display brightness is reached, the brightness of the blue sub-pixel can be reduced when the size of the blue sub-pixel is increased. By reducing the current density flowing through the blue sub-pixels, the lifetime of the blue sub-pixels can be extended, thereby extending the lifetime of the organic electroluminescent display device.
  • the shapes and areas of the first sub-pixel 301 and the second sub-pixel 303 are preferably equal, and are mirror-symmetrically distributed.
  • the center line and the first sub-field of the third sub-pixel 305 extending in the row direction
  • the boundary lines of the pixel 301 and the second sub-pixel 303 coincide, which is advantageous for reducing the pixel pitch and making the RGB sub-pixels uniform and having a better display effect.
  • a center line 306' of the third sub-pixel 305 extending in the row direction (the center line 306' divides the third sub-pixel 305 into two parts and the center line 306' extends in the row direction) and The boundary lines of one sub-pixel 301 and the second sub-pixel 303 coincide.
  • the common edge is the boundary line of the first sub-pixel 301 and the second sub-pixel 303, but it should be understood
  • the "boundary” or “boundary line” herein is not limited to a “boundary” or “boundary line” of an entity, but may refer to a virtual "boundary” or “boundary line” between two pixels or sub-pixels.
  • the shapes of the first sub-pixel 301 and the second sub-pixel 303 are both rectangular, the shape of the third sub-pixel 305 is square, and the first sub-pixel 301 and the second sub-pixel 303 extend along the short side thereof.
  • the side length (height) of the light-emitting region 306 of the third sub-pixel 305 is twice the length of the short side of the light-emitting region 302 of the first sub-pixel 301 and the short side of the light-emitting region 304 of the second sub-pixel 303.
  • the shapes of the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 are not limited to a rectangle, but may be other quadrilaterals other than a rectangle, or a triangle, a pentagon, or a sixth.
  • a polygon such as a polygon, an octagon, or the like.
  • the areas of the first sub-pixel 301 and the second sub-pixel 303 may not be equal, and the area of the third sub-pixel 305 is not limited to twice the area of the first sub-pixel 301 or the second sub-pixel 303, and may be The color matching requirements are to adjust the shape and/or area of each sub-pixel accordingly.
  • the areas of the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 303 may be different, and the third sub-pixel 305 (blue sub-pixel) is larger than the area of the first sub-pixel 301 (green sub-pixel).
  • the area of the first sub-pixel 301 (green sub-pixel) is larger than the area of the second sub-pixel 303 (red sub-pixel); or, as shown in FIG. 5, the third sub-pixel 305 (blue sub-pixel) is equal to the first sub-pixel
  • the area of 301 (green sub-pixel), and the third sub-pixel 305 (blue sub-pixel) and the first sub-pixel 301 (green sub-pixel) are both larger than the area of the second sub-pixel 303 (red sub-pixel), that is, the second The area of the sub-pixel 303 (red sub-pixel) is the smallest.
  • the center distance Y 1 of the third sub-pixel 305 (blue sub-pixel) in the second direction (Y direction or column direction) is its center distance X in the first direction (X direction or row direction) 1/3 times that of 1 .
  • FIG. 6 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a repeating unit of FIG. 6.
  • the pixel structure is different from the pixel structure shown in FIG. 3 in that it flips the entire pixel structure shown in FIG. 3 horizontally by 180 degrees.
  • the first sub-repetition unit 31 includes a third sub-pixel 305, a first sub-pixel 301, and a second sub-pixel 303, which are sequentially arranged along the second direction (here, the Y direction), the second
  • the sub-repeat unit 32 includes a first sub-pixel 301, a second sub-pixel 303, and a third sub-pixel 305 which are sequentially arranged in the second direction.
  • the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 are arranged in a "pin" shape rotated 90 degrees to the left, that is, the third sub-pixel 305 is arranged.
  • the first sub-pixel 301 and the second sub-pixel 303 are arranged on the right side; among the pixel units of the even-numbered rows, the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 are rotated 90 to the right.
  • the "character" shape of the degree is arranged, that is, the first sub-pixel 301 and the second sub-pixel 303 are arranged on the left side, and the third sub-pixel 305 is arranged on the right side.
  • FIG. 8 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • the pixel structure is different from the pixel structure shown in FIG. 3 in that the first sub-pixel 301 and the second sub-pixel 303 of all the pixel units in the same row are alternately arranged. Specifically, the first sub-pixels 301 of all the pixel units in the same row are not arranged in a straight line, and the second sub-pixels 303 of all the pixel units in the same row are not arranged in a straight line, but all the pixel units in the same row.
  • the first sub-pixel 301 and the second sub-pixel 303 are staggered in a straight line.
  • the first sub-pixel 301 of the pixel unit (1, 1) of the first row of the first row, the second sub-pixel 303 of the pixel unit (1, 2) of the first row and the second column, and the first row and the third column are sequentially arranged in a line.
  • FIG. 9 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure.
  • the pixel structure is different from the pixel structure shown in FIG. 3 in that it rotates the OLED display device shown in FIG. 3 by 90 degrees so that the rows and columns are interchanged, and if the X direction is still referred to as the row direction. (lateral), the Y direction is referred to as a column direction (longitudinal direction), then, it can be understood that the first sub-pixel 301 and the second sub-pixel 303 in the same pixel unit are arranged in one row, and the third sub-pixel 305 is arranged in Another line.
  • the arrangement of the pixel units in the same column is the same.
  • each pixel unit flipped in the column direction (upside down) is the same as the arrangement of adjacent pixel units in the same row.
  • the pixel unit (1, 1) of the first row and the first column is arranged with the center point in the column direction rotated by 180 degrees and the pixel unit of the adjacent column in the same row, that is, the pixel of the first row and the second column.
  • the arrangement of the units (1, 2) is the same.
  • FIG. 10 is a schematic diagram of a pixel arrangement of an OLED display device according to an embodiment of the present disclosure.
  • the shape of the first sub-pixel 301 and the second sub-pixel 303 (and their light-emitting areas) are all square, the shape of the third sub-pixel 305 (and its light-emitting area) is a rectangle, and the pixel unit is square in overall, the first sub-pixel The pixel 301 and the second sub-pixel 303 are arranged along the extending direction of the long side of the third sub-pixel 305.
  • FIG. 11 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a repeating unit of FIG.
  • the pixel structure includes a plurality of repeating units 30 arranged in a matrix form, each of the repeating units 30 including a first sub-repetitive unit 31 disposed adjacently in the first direction and respectively including three sub-pixels of different colors.
  • the second sub-repetition unit 32 includes a second sub-pixel 303, a first sub-pixel 301, and a third sub-pixel 305 that are sequentially arranged in the second direction.
  • the second sub-repeat unit 32 includes a third sub-pixel 305, a second sub-pixel 303, and a first sub-pixel 301 that are sequentially arranged in the second direction.
  • the first sub-repetition unit 31 and the second sub-repetition unit 32 in each of the repeating units 30 constitute two pixel units disposed adjacently in the second direction, and thus each pixel unit includes colors and different virtual centers
  • the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 are connected in a triangle shape.
  • the pixel structure is different from the pixel structure shown in FIG. 3 in that, in each repeating unit, the third sub-pixel 305 of one of the sub-repeat units extends along the center line of the row direction and Do not coincide with the boundary line of the first sub-pixel 301 and the second sub-pixel 303 in the other sub-repetition unit.
  • the center line of the third sub-pixel 305 in the first sub-repetition unit 31 extending in the row direction does not The boundary lines of the first sub-pixel 301 and the second sub-pixel 303 in the second sub-repetition unit 32 coincide, but the first of the third sub-pixel 305 and the second sub-repetition unit 32 in the first sub-repetition unit 31
  • the sub-pixels 301 are aligned.
  • the first sub-repetition unit 31 and the second sub-repetition unit 32 in each repeating unit are shifted by a distance of one sub-pixel.
  • the shape of the first sub-pixel 301 (and its light-emitting area), the second sub-pixel 303 (and its light-emitting area), and the third sub-pixel 305 (and its light-emitting area) may be square, the first sub-pixel 301, the first The virtual center connection of the two sub-pixels 303 and the third sub-pixel 305 may be an isosceles triangle. That is, one pixel unit in each repeating unit has an L shape as a whole, and the other pixel unit has an inverted L shape as a whole.
  • the first sub-pixel 301 (and its light-emitting area), the second sub-pixel 303 (and its light-emitting area), and the third sub-pixel 305 (and its light-emitting area) have the same area, such that sub-pixels of the same color
  • the arrangement position is the same, and the size of each pixel is also the same, that is, the arrangement of the three sub-pixels with different colors is the same, so that the same metal mask can be used when preparing sub-pixels of different colors, thereby reducing The number of metal masks produced.
  • the first sub-pixel 301, the second sub-pixel 303, and the third sub-pixel 305 are distributed in the column direction, and two kinds of sub-pixels (RG or GB or BR) are distributed in the row direction.
  • the arrangement of the row and column directions is relatively uniform.
  • FIG. 13 is a schematic diagram of a pixel arrangement of another OLED display device according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a repeating unit of FIG.
  • the pixel structure is different from the pixel structure shown in FIG. 11 in that the first sub-repeat unit 31 includes a first sub-pixel 301 and a second sub-array arranged in the second direction.
  • the second sub-repeat unit 32 includes a third sub-pixel 305, a first sub-pixel 301, and a second sub-pixel 303 that are sequentially arranged in the second direction.
  • the third sub-pixel 305 in the first sub-repetition unit 31 is aligned with the second sub-pixel 303 in the second sub-repetition unit 32, and the third sub-pixel 305 and the first sub-repetition unit in the second sub-repetition unit 32
  • the first sub-pixels 305 in 32 are aligned.
  • the first sub-repetition unit 31 and the second sub-repetition unit 32 in each repeating unit are aligned with each other.
  • the shape of the first sub-pixel 301 (and its light-emitting area), the second sub-pixel 303 (and its light-emitting area), and the third sub-pixel 305 (and its light-emitting area) may be square, the first sub-pixel
  • the virtual center line of the pixel 301, the second sub-pixel 303, and the third sub-pixel 305 may be an isosceles triangle.
  • each sub-pixel can also be appropriately modified, such as 90 degrees, 180 degrees, 270 degrees, etc., and the shape and area of each sub-pixel can be appropriately deformed, for example, the first sub-pixel and The positions of the second sub-pixels can be interchanged, etc., and will not be enumerated here.
  • the above describes the pixel structure of the embodiment of the present disclosure, wherein the center distance Y 1 of the second direction (such as the Y direction) of any sub-pixel of the same color and the first direction (such as the X direction) of the sub-pixel of any same color
  • the center distance X 1 has the following relationship:
  • N is an integer greater than or equal to 1.
  • the center distance Y 1 of the second direction (Y direction) of the sub-pixels of any same color has the following relationship with the center distance X 1 of the sub-pixels of any of the same colors:
  • N is an integer greater than or equal to 1.
  • the center distance X 1 of the sub-pixels of any of the same colors in the first direction is 2N/(N+1) times the center distance Y 1 of the second direction.
  • the present disclosure further provides a corresponding pixel structure driving method to equivalent the pixel unit in a certain direction of the pixel structure to (N+1)/N times in the Real pixel structure.
  • the pixel unit which in turn increases the virtual resolution of the display device.
  • each repeating unit has 2 pixel units in the Y direction and 1 pixel unit in the X direction.
  • the X-direction resolution is compressed to 2/3.
  • the display information of the image is based on the Real pixel structure. Therefore, before the image information is input into the pixel structure of the embodiment for image display, the display information needs to be converted, and the Real pixel structure is The pixel brightness is allocated to the pixel structure of the embodiment, and the pixel of the Real pixel structure has a corresponding relationship with the pixel unit in the pixel structure of the embodiment.
  • one way is to divide the Real pixel structure into a plurality of reference pixel unit groups, each of the reference pixel unit groups includes two rows and three columns of six reference pixel units, and each of the reference pixel units includes three juxtaposed pixels.
  • the sub-pixels are arranged and the colors are different from each other, and the brightness of the sub-pixels in the reference pixel unit group is obtained. And dividing the pixel structure into a plurality of target pixel unit groups, each target pixel unit group including two repeating units (ie, two rows and two columns of four target pixel units), and then according to the sub-pixels in the reference pixel unit group
  • the brightness determines the brightness of the sub-pixels in the target pixel unit group such that the display effect of one target pixel unit group is equivalent to the display effect of one reference pixel unit group.
  • the display effect of three pixel units in the Real pixel structure is realized by two pixel units in the pixel structure. For example, a total of 780 pixel units in the row direction can realize the display effect of 1280 pixel units in the Real pixel structure, thereby improving the virtual Resolution.
  • a reference pixel unit group includes two rows and three columns of six reference pixel units P11', P12', P13', P21', P22', P23', and each reference pixel unit includes three.
  • the sub-pixels arranged side by side, the sub-pixels in the reference pixel units P11', P12', P13' are arranged on one line, and the sub-pixels of the reference pixel units P21', P22', P23' are arranged on another line.
  • the red sub-pixel in the reference pixel unit P11' of the first row and the first column is denoted as R11'
  • the green sub-pixel is denoted as G11'
  • the blue sub-pixel is denoted as B11 '
  • the red sub-pixel in the reference pixel unit P12' of the first row and the second column is denoted as R12'
  • the green sub-pixel is denoted as G12'
  • the blue sub-pixel is denoted as B12'
  • the green sub-pixel is denoted as G21'
  • the blue sub-pixel is denoted as B21'
  • the green sub-pixel is denoted as G22'
  • the blue sub-pixel is denoted as B22'
  • the repeating unit P1 includes two pixel units P11, P21
  • the repeating unit P2 includes two pixel units P12, P22.
  • the pixel units P11 and P12 are juxtaposed in the same row, and the pixel units P21 and P22 are juxtaposed in the same row.
  • the pixel units P11, P12, P21, and P22 each include three sub-pixels whose colors are different from each other and whose virtual center lines are triangular.
  • the red sub-pixel in the reference pixel unit P11 is denoted as R11
  • the green sub-pixel is denoted as G11
  • the blue sub-pixel is denoted as B11
  • the red sub-pixel in the reference pixel unit P12 It is denoted as R12
  • the green sub-pixel is denoted by G12
  • the blue sub-pixel is denoted by B12
  • the red sub-pixel of the reference pixel unit P21 is denoted by R21
  • the green sub-pixel is denoted by G21
  • the blue sub-pixel is denoted by B21
  • the red sub-pixel in the pixel unit P22 is denoted by R22
  • the green sub-pixel is denoted by G22
  • the blue sub-pixel is denoted by B22.
  • the reference pixel unit P11' is controlled by the gate line G1' and the data lines S11', S12', S13', and the reference pixel unit P12' is subjected to the gate line G1' and the data line.
  • the reference pixel unit P13' is controlled by the gate line G1' and the data lines S31', S32', S33', and the reference pixel unit P21' is subjected to the gate line G2' and the data line S11' Controlled by S12', S13', the reference pixel unit P22' is controlled by the gate line G2' and the data lines S21', S22', S23', and the reference pixel unit P23' is subjected to the gate line G2' and the data lines S31', S32.
  • the six reference pixel units P11', P12', P13', P21', P22', P23' are all rectangular structures.
  • the target pixel unit P11 is controlled by the gate line G1 and the data lines S11, S12, S13
  • the target pixel unit P12 is subjected to the gate line G1 and the data lines S21, S22, S23 controls that the target pixel unit P21 is controlled by the gate line G2 and the data lines S11, S12, S13
  • the target pixel unit P22 is controlled by the gate line G2 and the data lines S21, S22, S23.
  • it is implemented in the following two ways:
  • one mode may be that R11, G11, B11, R12, G12, B12 are controlled by gate line G1 and data lines S11, S12, S13, S21, S22, S23, B21, G21, R21, B22, G22 and R22 are controlled by the gate line G2 and the data lines S11, S12, S13, S21, S22, and S23.
  • R11, G11, B11, R12, G12, B12 are controlled by the gate line G1 and the data lines S11, S12, S13, S21, S22, S23, B21, R21, G21, B22.
  • R22 and G22 are controlled by the gate line G2 and the data lines S11, S12, S13, S21, S22, and S23.
  • the target pixel unit group Since four pixel units in the target pixel unit group are required to bear the luminance of six pixel units in the reference pixel unit group, that is, three reference pixel units adjacent in the row direction of the reference pixel unit group are merged into two in the target pixel unit group.
  • the pixel units are displayed to achieve a two-to-three display effect. Therefore, after determining the brightness of each sub-pixel in the reference pixel unit group, it needs to be allocated to the target reference pixel unit.
  • the following allocation manner may be adopted: the luminances of the pixel units P12' and P22' of the middle column are equally divided into two, and the target pixel units P11 and P12 of the odd rows are responsible for the luminance of the reference pixel units P11' and P13' and the reference pixels.
  • Half of the luminance of the cell P12', and the target pixel cells P21, P22 of the even rows are responsible for the luminance of the reference pixel cells P21', P23' and half of the luminance of
  • half of the luminance can be allocated to the sub-pixel B11 of the adjacent target pixel unit P11 for display.
  • the specific brightness distribution method is as follows:
  • L 11r , L 11g , L 11b , L 12r , L 12g , L 12b refer to brightness values of sub- pixels R11, G11, B11, R12, G12, B12 in the target pixel unit group;
  • L' 11r , L' 11g , L' 11b , L' 12r , L' 12g , L' 12b , L' 13r , L' 13g , L' 13b refer to the sub-pixels R11', G11', B11', R12', G12 in the reference pixel unit group Luminance values of ', B12', R13', G13', B13'.
  • L 21r , L 21g , L 21b , L 22r , L 22g , and L 22b refer to luminance values of sub-pixels R21, G21, B21, R22, G22, and B22 in the target pixel unit group;
  • L' 21r and L' 21g L' 21b , L' 22r , L' 22g , L' 22b , L' 23r , L' 23g , L' 23b refer to the sub- pixels R21', G21', B21', R22', G22 in the reference pixel unit group.
  • gray scale value lookup table can be used.
  • the pixel borrowing can be implemented as follows:
  • the third sub-pixel of the mth row and the ith column in the pixel structure assumes the mth row (3*i-1)/2 column and the mth row (3*i+1)/2 column in the Real pixel structure.
  • the second sub-pixel of the mth row and the jth column in the pixel structure bears the second sub- (3*j/2-1) column and the m-th row of the 3*j/2 column in the Real pixel structure.
  • the first sub-pixel of the mth row and the jth column in the pixel structure bears the first sub-m3 (3*j/2-1) column and the mth row 3*j/2 column in the Real pixel structure
  • the first sub-pixel of the nth row and the ith column in the pixel structure assumes the nth row (3*i-1)/2 column and the nth row (3*i+1)/2 column in the Real pixel structure.
  • the second sub-pixel of the nth row and the ith column in the pixel structure assumes the (nth row) (3*i-1)/2 column and the nth row (3*i+1)/2 column in the Real pixel structure.
  • the third sub-pixel of the nth row and the jth column in the pixel structure bears the third sub- (3*j/2-1) column and the third sub-th row of the third *j/2 column in the Real pixel structure.
  • n and j are even numbers.
  • the sub-pixels RGBRGB..., RGB are one pixel unit, and the representation of the two pixel units to the three pixel units is realized by borrowing the sub-pixels. That is, the two target pixel units P11, P12 are equivalent to three reference pixel units P11', P12', P13'.
  • the specific brightness distribution method is as follows:
  • the red sub-pixel R11 bears the luminance of the red sub-pixel R11' in the reference pixel unit P11'
  • the green sub-pixel G11 bears the luminance of the green sub-pixel G11' in the reference pixel unit P11'
  • the blue sub-pixel B11 bears The brightness of the blue sub-pixel B11' in the reference pixel unit P11' and the blue sub-pixel B12' in the reference pixel unit P12';
  • the red sub-pixel R12 bears the luminance of the red sub-pixel R12' in the reference pixel unit P12' and the red sub-pixel R13' in the reference pixel unit P13'
  • the green sub-pixel G12 bears the green sub-pixel in the reference pixel unit P12'.
  • the luminance of the green sub-pixel G13' in the pixel G12' and the reference pixel unit P13', and the blue sub-pixel B12 assume the luminance of the blue sub-pixel B13' in the reference pixel unit P13'.
  • the luminance value L um ' of the sub-pixel in the target pixel unit may be:
  • L um ' L1*L1/(L1+L2)+L2*L2/(L1+L2).
  • the processing method of the sub-pixels in which the odd-numbered rows have a borrowing relationship is, for example:
  • L umB (m, i) ' L1 * L1/(L1 + L2) + L2 * L2 / (L1 + L2);
  • L umR (m,j)' L1*L1/(L1+L2)+L2*L2(L1+L2);
  • L umG (m,j)' L1*L1/(L1+L2)+L2*L2(L1+L2);
  • L1 and L2 are the luminance values in the reference pixel unit, specifically, L umB (m, (3*i-1) )/2) is the luminance value of the blue sub-pixel in the reference pixel unit of the mth row (3*i-1)/2 column, and L umB (m, (3*i+1)/2) is the first
  • L umR (m, (3*j/2-1)) is the mth row (3*) j/2-1)
  • the luminance value of the red sub-pixel in the reference pixel unit of the column, L umR (m, 3*j/2) is the red sub-pixel in the reference pixel unit of the m*th row 3*j/2 column
  • the luminance value of the pixel, L umG (m, (3*j/2-1)) is the luminance value of the pixel,
  • the sub-pixels BRGBRG... are sequentially arranged in the order of the source line, and the BRG is one pixel unit, and the representation of the two pixel units to the three pixel units is realized by borrowing the sub-pixels. That is, the two target pixel units P21, P22 are equivalent to three reference pixel units P21', P22', P23'.
  • the first sub-pixel bears the brightness of the first sub-pixel in the adjacent two reference pixel units
  • the second sub-pixel bears the adjacent two
  • the third sub-pixel is the brightness of the third sub-pixel in the reference pixel unit
  • the first sub-pixel and the second sub-pixel of the other pixel unit bear the first sub-pixel in the reference pixel unit
  • the brightness of the pixel and the second sub-pixel, the third sub-pixel bearing the brightness of the third sub-pixel of the two adjacent reference pixel units.
  • the specific distribution method is as follows:
  • the blue sub-pixel B21 bears the luminance of the blue sub-pixel B21' in the reference pixel unit P21'
  • the red sub-pixel R21 bears the red sub-pixel R21' and the reference pixel unit P22' in the reference pixel unit P21'
  • the brightness of the red sub-pixel R22', the green sub-pixel G21 bears the brightness of the green sub-pixel G21' in the reference pixel unit P21' and the green sub-pixel G22' in the reference pixel unit P22';
  • the blue sub-pixel B22 bears the luminance of the blue sub-pixel B22' in the reference pixel unit P22' and the blue sub-pixel B23' in the reference pixel unit P23'
  • the red sub-pixel R22 bears the reference pixel unit P23'
  • the luminance of the red sub-pixel R23', the green sub-pixel G22 bears the luminance of the green sub-pixel G23' in the reference pixel unit P23'.
  • the processing method of the sub-pixels in which the even-numbered rows have a borrowing relationship is as follows:
  • L umR (n, i) ' L1 * L1/(L1 + L2) + L2 * L2 (L1 + L2);
  • L umG (n, i)' L1 * L1/(L1 + L2) + L2 * L2 (L1 + L2);
  • L umB (n,j)' L1*L1/(L1+L2)+L2*L2(L1+L2);
  • L umR (n, (3*i -1)/2) is the luminance value of the red sub-pixel in the reference pixel unit of the (nth row) (3*i-1)/2 column
  • L umR (n, (3*i+1)/2) is The luminance value of the red sub-pixel in the reference pixel unit of the (nth row) (3*i+1)/2 column, L umG (n, (3*i-1)/2), the nth row (3*i -1)
  • the luminance value of the green sub-pixel in the reference pixel unit of /2 columns, L umG (n, (3*i+1)/2) is the nth row (3*i+1)/2 column
  • the luminance value of the green sub-pixel in the reference pixel unit, L umB (n, (3*j/2-1)) is the luminance value of the green sub-pixel in the reference pixel unit, L umB (n, (3*j/2-1))
  • the maximum or average value of the brightness of the two sub-pixels may be directly used for display, and the display is performed as follows. :
  • each repeating unit has 2 pixel units in the Y direction, 1 pixel unit in the X direction, and realizes Realization of M pixel units in the row direction.
  • the display effect of 2M pixel units in the pixel structure, that is, the number of pixel units in the X direction is compressed to 1/2.
  • the pixel unit in a certain direction in the pixel structure can be equivalent to the 2 ⁇ pixel unit in the Real pixel structure, thereby improving the virtual resolution.
  • the sub-pixel borrowing relationship is as follows:
  • the second sub-pixel of the mth row and the ith column in the pixel structure assumes the brightness of the second sub-pixel of the mth row and the ith column in the Real pixel structure;
  • the second sub-pixel of the mth row and the ith column in the pixel structure assumes the mth row (2i-2) column and the mth row (2i-1) in the Real pixel structure.
  • the first sub-pixel of the mth row and the ith column in the pixel structure assumes the brightness of the first sub-pixel of the mth row and the ith column in the Real pixel structure;
  • the first sub-pixel of the mth row and the ith column in the pixel structure assumes the mth row (2i-2) column and the mth row (2i-1) in the Real pixel structure.
  • the third sub-pixel of the mth row and the ith column in the pixel structure assumes the mth row (2i-1) column and the mth row 2i column of the Real pixel structure The brightness of the three sub-pixels;
  • the third sub-pixel of the nth row and the ith column in the pixel structure assumes the brightness of the third sub-pixel of the nth row and the ith column in the Real pixel structure;
  • the third sub-pixel of the nth row and the ith column in the pixel structure assumes the nth row (2i-2) column and the nth row (2i-1) in the Real pixel structure.
  • the second sub-pixel of the nth row and the ith column in the pixel structure assumes the nth row (2i-1) column and the nth row 2i column of the Real pixel structure The brightness of the two sub-pixels;
  • the first sub-pixel of the nth row and the ith column in the pixel structure assumes the nth row (2i-1) column and the nth row 2i column of the Real pixel structure The brightness of a sub-pixel;
  • n and i are odd numbers
  • n is an even number
  • I W/2
  • the Real pixel structure has a total of W columns ⁇ H rows of pixel units, and the pixel structure has a total of 1 column ⁇ H rows of pixel cells.
  • the sub-pixels RGBRGB... are sequentially arranged in the order of the source line, and RGB is one pixel unit, and display of one pixel unit to two pixel units is realized by borrowing of the sub-pixels.
  • the specific distribution method is as follows:
  • the red sub-pixel R11 bears the luminance of the red sub-pixel R11' in the reference pixel unit P11'
  • the green sub-pixel G11 bears the luminance of the green sub-pixel G11' in the reference pixel unit P11'
  • the blue sub-pixel B11 bears The brightness of the blue sub-pixel B11' in the reference pixel unit P11' and the blue sub-pixel B12' in the reference pixel unit P12';
  • the red sub-pixel R12 bears the luminance of the red sub-pixel R12' in the reference pixel unit P12' and the red sub-pixel R13' in the reference pixel unit P13'
  • the green sub-pixel G12 bears the green sub-pixel in the reference pixel unit P12'.
  • the brightness of the green sub-pixel G13' in the pixel G12' and the reference pixel unit P13', the blue sub-pixel B12 bears the blue sub-pixel B13' in the reference pixel unit P13' and the blue sub-pixel B14' in the reference pixel unit P14' brightness;
  • the odd-numbered row has a borrowing relationship.
  • the pixel is processed by taking the average of the luminance values of the two sub-pixels that are assumed, as follows:
  • m is the number of rows
  • i is the number of columns
  • m is an odd number
  • the data input resolution is W ⁇ H (for example, 1280*640)
  • LR(m,i) is the target pixel unit of the mth row and the i-th column.
  • the luminance value of the red sub-pixel, LG(m, i) is the luminance value of the green sub-pixel in the target pixel unit of the mth row and the ith column
  • LB(m, i) is the target pixel unit of the mth row and the i-th column
  • the luminance value of the blue sub-pixel in the middle L umR (m, i) is the luminance value of the red sub-pixel in the reference pixel unit of the mth row and the i-th column
  • L umG (m, i) is the m-th row and the i-th column
  • the luminance value of the green sub-pixel in the reference pixel unit, L umB (m, i) is the luminance value of the blue sub-pixel in the reference pixel unit of the mth row and the i-th column.
  • the sub-pixels BRGBRG... are sequentially arranged in the order of the source line, and RGB is one pixel unit, and display of one pixel unit to two pixel units is realized by borrowing of the sub-pixels.
  • the specific distribution method is as follows:
  • the blue sub-pixel B21 bears the luminance of the blue sub-pixel B21' in the reference pixel unit P21'
  • the red sub-pixel R21 bears the red sub-pixel R21' and the reference pixel unit P22' in the reference pixel unit P21'
  • the brightness of the red sub-pixel R22', the green sub-pixel G21 bears the brightness of the green sub-pixel G21' in the reference pixel unit P21' and the green sub-pixel G22' in the reference pixel unit P22';
  • the blue sub-pixel B22 bears the luminance of the blue sub-pixel B22' in the reference pixel unit P22' and the blue sub-pixel B23' in the reference pixel unit P23'
  • the red sub-pixel R22 bears the reference pixel unit P23'.
  • the luminance of the red sub-pixel R23' in the red sub-pixel R23' and the reference pixel unit P24', the green sub-pixel G22 bears the green sub-pixel G23' in the reference pixel unit P23' and the green sub-pixel G24' in the reference pixel unit P24' brightness;
  • the processing method of the sub-pixels is to take the average value of the luminance values of the two sub-pixels, as follows:
  • n is the number of rows, i is the number of columns, n is an even number, the data input resolution is W ⁇ H (for example, 1280*640), and LB(n, i) is the target pixel unit of the nth row and the ith column.
  • the luminance value of the blue sub-pixel, LR(n, i) is the luminance value of the red sub-pixel in the target pixel unit of the nth row and the ith column, and LG(n, i) is the target pixel of the nth row and the ith column.
  • the brightness value of the green subpixel in the cell is the brightness value of the green subpixel in the cell.
  • the pixel unit in the pixel structure only bears the brightness of half of the sub-pixels in the Real pixel structure, and the other half of the sub-pixels are omitted from display. For example, the sub-pixels with the dotted frame in FIG. 21(a) are omitted and not displayed.
  • the red sub-pixel R14' and the green sub-pixel G14' in the G23', the reference pixel unit P14', and the blue sub-pixel B24' in the reference pixel unit P24' are omitted from display. Thereby, a one-to-two display effect is achieved.
  • the sub-pixel with a broken line frame in FIG. 21( a ) is displayed in a first ratio of brightness, and the portion without a broken line frame is displayed in a second ratio, wherein the second ratio is not equal to the first ratio, for example, The second ratio is greater than the first ratio, for example, the first ratio is 30% and the second ratio is 70%. In this way, the difference in brightness of the adjacent columns in the horizontal direction can be ensured, and the display of the single point can be made less than distortion.
  • the first ratio and the second ratio can also be equal, that is, the brightness display ratio can also be divided into half, so that the brightness of the adjacent two columns is the same, which is easy to blur the display details, and of course, in the case of high PPI display, a good display can still be obtained. effect.
  • the luminance value (ie, the original image data) of each sub-pixel in the reference pixel unit can be calculated by the driving IC (Drive IC), and the processed image data is obtained by the above method, thereby controlling the target.
  • the sub-pixels in the pixel unit are displayed with the processed luminance values of the sub-pixels of the corresponding color in the reference pixel unit group, and the display effect of the M pixel units on the M*(N+1)/N pixel unit in the Real pixel structure is realized.
  • the two sub-repeat units constitute two pixel units adjacently arranged in the second direction (column direction) (each pixel unit includes a first sub-pixel having a color different from each other and the virtual center line is triangular)
  • the two sub-pixels and the third sub-pixel are described by taking an example in which M pixel units in the first direction (row direction) realize the display effect of M*N(N+1) pixel units in the Real pixel structure.
  • the two sub-repetition units may also constitute two pixel units disposed adjacently in the first direction (row direction), and one pixel unit in the second direction (column direction) is implemented in the Real pixel structure (N+1) ) / N pixel unit display effect.
  • L um L1 * L1/(L1 + L2) + L2 * L2 / (L1 + L2);
  • L um is the luminance value of the first sub-pixel, the second sub-pixel or the third sub-pixel, and L1 and L2 are the luminance values of the two sub-pixels of the corresponding color in the Real pixel structure.
  • L um is the luminance value of the first sub-pixel, the second sub-pixel or the third sub-pixel, and L1 and L2 are the luminance values of the two sub-pixels of the corresponding color in the Real pixel structure.
  • the present disclosure proposes a matching pixel driving method, which compresses a conventional Real pixel structure, and M pixel units in a certain direction in the pixel structure are equivalent to Real pixels.
  • the M*(N+1)/N pixel unit in the structure improves the virtual resolution.
  • the pixel driving method is particularly suitable for a high PPI pixel structure (PPI is 300 or more), and experiments have shown that the higher the display PPI is, the better the effect of the pixel structure and its driving method is.
  • the embodiment further provides an OLED display device, which includes the above pixel structure provided by the embodiment of the present disclosure, and the display device may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, Any product or part that has a display function, such as a navigator.
  • the display device may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, Any product or part that has a display function, such as a navigator.
  • Other indispensable components of the display device are understood by those skilled in the art, and are not described herein, nor should they be construed as limiting the disclosure.
  • the display device reference may be made to the embodiment of the above organic electroluminescent display device, and the repeated description is omitted.
  • each pixel row can be connected with one gate line
  • each pixel column can be connected with one data line. Since the light-emitting regions of the sub-pixels of the odd-numbered rows and

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供一种像素结构、OLED显示装置及驱动方法。该像素结构包括以矩阵形式排布的多个重复单元(30),每一重复单元(30)包括沿第一方向相邻设置的且分别包括三个颜色不同的子像素(301、303、305)的两个子重复单元(31、32)。所述两个子重复单元(31、32)构成沿第二方向相邻设置的两个像素单元,第二方向上连续的三个像素单元中不相邻的两个像素单元中的任意两个相同颜色的子像素(301、303、305)的中心距离(Y1)是第一方向上相邻的两个像素单元中的任意两个相同颜色的子像素(301、303、305)的中心距离(X1)的2倍或2N/(N+1)倍;其中,N为大于等于1的整数。该像素结构可提高显示装置的虚拟分辨率。

Description

像素结构、OLED显示装置及驱动方法 技术领域
本公开涉及显示技术领域,特别涉及一种像素结构、包含所述像素结构的OLED显示装置及所述像素结构的驱动方法。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)是主动发光器件。与传统的LCD(Liquid Crystal Display,液晶显示)显示方式相比,OLED显示技术无需背光灯,具有自发光的特性。OLED采用较薄的有机材料膜层和玻璃基板,当有电流通过时,有机材料就会发光。因此OLED显示屏能够显著节省电能,可以做得更轻更薄,比LCD显示屏耐受更宽范围的温度变化,而且可视角度更大。OLED显示屏有望成为继LCD之后的下一代平板显示技术,是目前平板显示技术中受到关注最多的技术之一。
OLED屏体的彩色化方法有许多种,现在较为成熟并已经成功量产的OLED彩色化技术主要是OLED蒸镀技术,其采用传统的RGB Stripe(RGB条状)排列方式进行蒸镀。其中画面效果最好的是side-by-side(并置)的方式。side-by-side方式是在一个像素(Pixel)范围内有红、绿、蓝(R、G、B)三个子像素(sub-pixel),每个子像素均呈四边形,且各自具有独立的有机发光元器件,它是利用蒸镀成膜技术透过高精细金属掩膜版(Fine Metal Mask,FMM)在阵列(array)基板上相应的像素位置形成有机发光元器件,所述高精细金属掩膜版通常简称为金属掩膜版或蒸镀掩膜版。制作高PPI(Pixel Per Inch,每英寸所拥有的像素数目)的OLED显示屏的技术重点在于精细及机械稳定性好的FMM以及像素(子像素)的排布方式。
图1a为一种OLED显示装置的像素排布示意图。如图1a所示,该OLED显示装置采用像素并置的方式,每个像素单元Pixel包括R子像素区域101、G子像素区域103以及B子像素区域105,其中,R子像素区域101包括R发光区102以及R非发光区(未标号),G子像素区域103包括G发光区104以及G非发光区(未标号),B子像素区域105包括B发光区106以及B非发光区(未标号)。图1a中所示R、G、B子像素和发光区面积分别相等,并且R、G、B子像素呈直线排列。业界通常将该种像素结构称之为Real像素结构(Real RGB)。 具体而言,在每个子像素区域的发光区中,包括阴极、阳极和电致发光层,其中,电致发光层位于阴极和阳极之间,用于产生预定颜色光线以实现显示。在制备该显示屏时,通常需要利用蒸镀工艺以分别在对应颜色像素区域的发光区中形成对应颜色(红色、绿色或蓝色)的电致发光层。
图1a所示的OLED显示装置通常采用图1b所示FMM进行蒸镀,该种FMM包括遮挡区107以及若干个蒸镀开口108,同一列相邻的两个蒸镀开口108之间的遮挡区称之为连接桥(bridge)。为了避免蒸镀时对子像素产生遮蔽效应,子像素与bridge间必须保持足够的距离,这就导致子像素上下的长度缩小,而影响了每一个子像素的开口率。传统的RGB并置像素排列方式,最高只能达到200~300PPI,难以实现高分辨率的显示效果。随着用户对OLED显示装置分辨率的需求越来越高,这种RGB像素并置的方式已不能满足产品高PPI的设计要求。
图2为另一种OLED显示装置的像素排布示意图。如图2所示,每个像素单元仅有G子像素是独用的,R和B子像素均是与相邻的像素单元共用,比如,像素单元201和像素单元202共用R子像素。这种方式可以提高显示屏的PPI,然而,这种排布方式中R和B子像素是由相邻像素单元共用的,整个显示效果可能存在畸变,不是真正意义上的全彩显示。
发明内容
本公开的目的在于提供一种像素结构、包含所述像素结构的OLED显示装置及所述像素结构的驱动方法,以解决现有技术中存在的问题。
为解决上述技术问题,本公开提供一种像素结构,包括以矩阵形式排布的多个重复单元,每一所述重复单元包括沿第一方向相邻设置的且分别包括三个颜色不同的子像素的两个子重复单元;每一所述重复单元中的一个子重复单元包括沿第二方向依次排列的第一子像素、第二子像素和第三子像素或第二子像素、第一子像素和第三子像素,另一个子重复单元包括沿所述第二方向依次排列的第三子像素、第一子像素和第二子像素或第三子像素、第二子像素和第一子像素。由于每个重复单元中的两个子重复单元的第三子像素相互错开排布,在工艺条件相同的情况下,采用这种相邻行的子像素错位排布的结构,扩大了各相同子像素的开口之间可以利用的距离,可降低掩膜版制作工艺和蒸镀工艺 的难度,从而可以将像素单元的尺寸做的更小,有利于实现高分辨率显示屏的制造。
所述像素结构中,每一重复单元中的两个子重复单元构成沿第二方向相邻设置的两个像素单元,任意相同颜色的子像素在第二方向的中心距离是其在第一方向的中心距离的2倍或2N/(N+1)倍;或者,所述两个子重复单元构成沿第一方向相邻设置的两个像素单元,任意相同颜色的子像素在第一方向的中心距离是其在第二方向的中心距离的2N/(N+1)倍。这样,可将所述像素结构中某一方向上的像素单元等效为Real像素结构中的(N+1)/N倍像素单元,进而提高显示装置的虚拟分辨率。
为解决上述技术问题,本公开还提供一种OLED显示装置,其包括如上所述的像素结构。
为解决上述技术问题,本公开还提供一种如上所述的像素结构的驱动方法,其中,N取值为2,所述方法包括:将所述像素结构中某一方向上的像素单元等效为Real像素结构中的3/2倍像素单元,获得所述像素结构中各子像素与Real像素结构中各子像素的对应关系以及Real像素结构中各子像素的亮度值,并根据Real像素结构中各子像素的亮度值以及所述对应关系确定所述像素结构中各子像素的亮度值。
附图说明
图1a为现有技术中一种OLED显示装置的像素排布示意图。
图1b对应图1a的一种FMM的示意图。
图2为现有技术中另一种OLED显示装置的像素排布示意图。
图3为本公开实施例中一种OLED显示装置的像素排布示意图。
图4为图3中一个重复单元的示意图。
图5为本公开实施例中另一种OLED显示装置的像素排布示意图。
图6为本公开实施例中另一种OLED显示装置的像素排布示意图。
图7为图6中一个重复单元的示意图。
图8为本公开实施例中另一种OLED显示装置的像素排布示意图。
图9为本公开实施例中另一种OLED显示装置的像素排布示意图。
图10为本公开实施例中另一种OLED显示装置的像素排布示意图。
图11为本公开实施例中另一种OLED显示装置的像素排布示意图。
图12为图11中一个重复单元的示意图。
图13为本公开实施例中另一种OLED显示装置的像素排布示意图。
图14为图13中一个重复单元的示意图。
图15为本公开实施例中一种等效示意图。
图16为本公开实施例中基准像素单元连接栅极线和数据线的示意图。
图17为本公开实施例中一种像素单元连接栅极线和数据线的示意图。
图18为本公开实施例中另一种像素单元连接栅极线和数据线的示意图。
图19为本公开实施例中另一种等效示意图。
图20为本公开一实施例中又一种等效示意图。
图21为本公开一实施例中再一种等效示意图。
图22为本公开一实施例中显示装置的示意图。
图23为本公开实施例中另一种OLED显示装置的像素排布示意图。
图24为图23中一个重复单元的示意图。
图25为本公开实施例中另一种OLED显示装置的像素排布示意图。
图26为图25中一个重复单元的示意图。
具体实施方式
本申请的发明人研究发现,传统的RGB像素排列方式已不能同时满足产品的开口率和显示效果的要求。因而,提出一种OLED显示装置的像素结构,包括以矩阵形式排布的多个重复单元,每一所述重复单元包括沿第一方向相邻设置的且分别包括三个颜色不同的子像素的两个子重复单元,其中,一个子重复单元包括沿第二方向依次排列的第一子像素、第二子像素和第三子像素或第二子像素、第一子像素和第三子像素,另一个子重复单元包括沿所述第二方向依次排列的第三子像素、第一子像素和第二子像素或第三子像素、第二子像素和第一子像素。
所述两个子重复单元构成沿第二方向相邻设置的两个像素单元,故,每个像素单元包括颜色互不相同的第一子像素、第二子像素和第三子像素,三个子像素的虚拟中心连线呈三角形。或者,所述两个子重复单元构成沿第一方向相邻设置的两个像素单元,故,每个像素单元包括颜色互不相同的第一子像素、 第二子像素和第三子像素,两个像素单元各自呈方形。
所述像素结构中,每个重复单元中的两个子重复单元的第三子像素相互错开排布,在工艺条件相同的情况下,采用这种子像素错位排布的结构,扩大了各相同子像素的开口之间可以利用的距离,可降低掩膜版制作工艺和蒸镀工艺的难度,从而可以将像素单元的尺寸做的更小,有利于实现高分辨率显示屏的制造。同时,该像素结构中每个像素单元(pixel)由三种颜色(RGB三色)组成,可以实现真正意义上的全色显示。并且,所述像素结构中列(行)上排布有三种颜色子像素,行(列)上排布有两种颜色子像素,相比于某一方向上只分布有一种颜色的子像素,这种排布方式行、列方向显示较为均匀。
每一重复单元中两个子重复单元例如是第一子重复单元和第二子重复单元,所述第一子重复单元和第二子重复单元构成沿第二方向相邻设置的两个像素单元时,每个像素单元中第一子像素、第二子像素和第三子像素的虚拟中心连线例如是按照如下方式呈三角形:
1)第一方向为行方向,第二方向为列方向,相应的,每个像素单元中的第一子像素和第二子像素排布在第一列、第三子像素排布在与所述第一列相邻的第二列。具体可以是,所述第一列为奇数列(第1、3、5…列),相应的所述第二列为偶数列(第2、4、6…列);也可以是,所述第一列为偶数列,相应的所述第二列为奇数列,在此对其不做特殊限定。
2)第一方向为列方向,第二方向为行方向,相应的,每个像素单元中的第一子像素和第二子像素排布在第一行、第三子像素排布在与所述第一行相邻的第二行。具体可以是,所述第一列为奇数列(第1、3、5…列),相应的所述第二列为偶数列(第2、4、6…列);也可以是,所述第一列为偶数列,相应的所述第二列为奇数列,在此对其不做特殊限定。
所述两个子重复单元构成沿第二方向相邻设置的两个像素单元时,在所述像素结构中,任意相同颜色的子像素在第二方向(如列方向)的中心距离Y 1与其在第一方向(如行方向)的中心距离X 1可以存在以下关系:
1)每个重复单元在列方向包含2个像素单元,同时,使所述像素结构行方向上的M个像素单元实现Real像素结构中M*(N+1)/N个像素单元的显示效果,以提高虚拟分辨率,所以,
Y 1/2=N/(N+1)X 1
即,Y 1=2N/(N+1)X 1
其中,N为大于等于1的整数。
也就是说,任意相同颜色的子像素在第二方向的中心距离Y 1是其在第一方向的中心距离X 1的2N/(N+1)倍。
2)每个重复单元在列方向包含2个像素单元,同时,使行方向上的M个像素单元实现Real像素结构中M个像素单元的显示效果(无需压缩),所以,
Y 1/2=X 1
即,Y 1=2X 1
也就是说,任意相同颜色的子像素在第二方向的中心距离Y 1是其在第一方向的中心距离X 1的2倍。
每一重复单元中两个子重复单元例如是第一子重复单元和第二子重复单元,所述第一子重复单元和第二子重复单元构成沿第一方向相邻设置的两个像素单元时,每个像素单元中,第一子像素、第二子像素和第三子像素的虚拟中心连线例如是按照如下方式呈方形排布:
1)第一方向为行方向,第二方向为列方向,相应的,第一个像素单元中的第一子像素、第二子像素和第三子像素排布在第一列,第二个像素单元中的第一子像素、第二子像素和第三子像素排布在第二列。具体可以是,所述第一列为奇数列(第1、3、5…列),相应的所述第二列为偶数列(第2、4、6…列);也可以是,所述第一列为偶数列,相应的所述第二列为奇数列,在此对其不做特殊限定。
2)第一方向为列方向,第二方向为行方向,相应的,第一个像素单元中的第一子像素、第二子像素和第三子像素排布在第一行,第二个像素单元中的第一子像素、第二子像素和第三子像素排布在第二行。具体可以是,所述第一列为奇数列(第1、3、5…列),相应的所述第二列为偶数列(第2、4、6…列);也可以是,所述第一列为偶数列,相应的所述第二列为奇数列,在此对其不做特殊限定。
所述两个子重复单元构成沿第二方向相邻设置的两个像素单元时,在所述像素结构中,任意相同颜色的子像素在第二方向(如列方向)的中心距离Y 1与 其在第一方向(如行方向)的中心距离X 1可以存在以下关系:
每个重复单元中将2个像素单元分配给行方向,同时,使列方向上的M个像素单元实现Real像素结构中M*(N+1)/N个像素单元的显示效果,所以,
X 1/2=N/(N+1)Y 1
即,X 1=2N/(N+1)Y 1
其中,N为大于等于1的整数。
也就是说,任意相同颜色的子像素在第一方向的中心距离X 1是其在第二方向的中心距离Y 1的2N/(N+1)倍。
以下结合附图对本公开的像素结构及其驱动方法作更详细的说明。
图3为本公开实施例中一种OLED显示装置的像素排布示意图,图4为图3中一个重复单元的示意图。其中,第一方向(X方向)为行方向(横向),第二方向(Y方向)为列方向(纵向)。为简便,附图中只表示出了OLED显示装置的一部分,实际产品中像素数量不限于此,像素单元的数量可依据实际显示需要作相应的变化。本公开中所述第一行、第二行、第一列、第二列……均是为说明本公开而以图中所示为参考标准的,并非指实际产品中的行和列。
如图3和图4所示,所述像素结构包括以矩阵形式排布的多个重复单元30,每一所述重复单元30包括沿第一方向(此处指X方向)相邻设置的且分别包括三个颜色不同的子像素的第一子重复单元31和第二子重复单元32。所述第一子重复单元31包括沿第二方向(此处指Y方向)依次排列的第一子像素301、第二子像素303和第三子像素305。所述第二子重复单元32包括沿所述第二方向依次排列的第三子像素305、第一子像素301和第二子像素303。每一重复单元30中的第一子重复单元31和第二子重复单元32构成沿第二方向相邻设置的两个像素单元,如图3中的像素单元(1,1)及像素单元(2,1)所示,或者说,每一重复单元包括两个所述像素单元。因而,每个像素单元包括颜色互不相同且虚拟中心连线呈三角形的第一子像素301、第二子像素303和第三子像素305(如图4中的三角形虚线框所示),每个像素单元是由RGB三色组成,可以实现真正意义上的全色显示。
较佳的,同一行中所有像素单元的排布结构相同,并且,每个像素单元沿行方向翻转180度(自身左右翻转)后的排布结构与同一列中相邻的像素单元 的排布结构相同。如此一来,像素单元可以更紧凑的排列,减少了像素间距,提高了PPI。
在此,将第一行第一列的像素单元记为像素单元(1,1),第一行第二列的像素单元记为像素单元(1,2),第二行第一列的像素单元记为像素单元(2,1),第二行第二列的像素单元记为像素单元(2,2),以此类推。如图3所示,第一行第一列的像素单元(1,1)沿X向翻转180度后的排布结构与Y向相邻的像素单元即第二行第一列的像素单元(2,1)的排布结构相同。从而,同一重复单元30中的两个像素单元,比如,像素单元(1,1)和像素单元(2,1)的第三子像素305相互错开排布(像素单元(1,1)和像素单元(2,1)的第三子像素并未排布在一条直线上),因而,用以形成第三子像素的蒸镀掩膜版(FMM)上的蒸镀开口也是错开排布的,可降低蒸镀掩膜版制作工艺和蒸镀工艺的难度。相较于Real像素结构中相邻两行像素单元中的子像素对齐排列的情形,在工艺条件相同的情况下,采用这种相邻行的子像素错位排布的结构,扩大了各相同子像素的开口之间可以利用的距离,从而可以将像素单元的尺寸做的更小,有利于实现高分辨率显示屏的制造。
所述第一子像素301、第二子像素303和第三子像素305可以呈“品”字形、倒“品”字形、向左旋转90度的“品”字形或向右旋转90度的“品”字形排布,也可以是大致呈“品”字形、倒“品”字形、向左旋转90度的“品”字形或向右旋转90度的“品”字形。图3所示的排布结构中,奇数行的像素单元中,第一子像素301、第二子像素303和第三子像素305呈向右旋转90度的“品”字形排布,即,第一子像素301和第二子像素303排布在左侧,第三子像素305排布在右侧;偶数行的像素单元中,第一子像素301、第二子像素303和第三子像素305呈向左旋转90度的“品”字形排布,即,第三子像素305排布在左侧,第一子像素301和第二子像素303排布在右侧。
进一步的,同一行中所有像素单元的第一子像素301排布在一条直线上,同一行中所有像素单元的第二子像素303是排布在一条直线上,同一行中所有像素单元的第三子像素305亦是排布在一条直线上。
其中,像素单元中的每个子像素均包括发光区(显示区)和非发光区(非显示区),每个子像素的发光区中包括阴极、阳极和电致发光层(有机发射层), 所述电致发光层位于阴极和阳极之间,用于产生预定颜色光线以实现显示。通常需要利用三次蒸镀工艺以分别在对应颜色像素区域的发光区中形成对应颜色(如红色、绿色或蓝色)的电致发光层,当然,如果形状和排布相同,也可以通过偏位等方式采用同一掩膜板实现多种颜色的电致发光层蒸镀。
所述第一子像素、第二子像素和第三子像素由红(R)色子像素、绿(G)色子像素和蓝(B)色子像素组成。即在本实施例中,第一子像素为红(R)色子像素、绿(G)色子像素和蓝(B)色子像素中之一,第二子像素为红(R)色子像素、绿(G)色子像素和蓝(B)色子像素中之一,第三子像素为红(R)色子像素、绿(G)色子像素和蓝(B)色子像素中之一,且第一子像素、第二子像素和第三子像素的颜色均不同。例如,图3所示的排布结构中,第一子像素301为绿色(G)子像素,第二子像素303为红色(R)子像素,第三子像素305为蓝色(B)子像素。相应的,第一子像素301包括G发光区302以及G非发光区,并且包括用于发射绿光的有机发射层;第二子像素303包括R发光区304以及R非发光区,并且包括用于发射红光的有机发射层;第三子像素305包括B发光区306以及B非发光区,并且包括用于发射蓝光的有机发射层。
较佳地,为了延长OLED的寿命,在同一像素单元中,蓝色子像素的面积大于红色子像素和绿色子像素的面积,这是因为用于制作蓝色子像素的蓝色发光材料的寿命一般最短,因此有机电致发光显示器件的寿命主要取决于蓝色子像素的寿命,在达到相同显示亮度的条件下,蓝色子像素的尺寸增大时,蓝色子像素的亮度可以减小,通过减小流过蓝色子像素的电流密度,可以延长蓝色子像素的寿命,进而延长有机电致发光显示器件的寿命。
图3中,第一子像素301和第二子像素303的形状和面积优选为相等,且镜像对称分布,每个像素单元中,第三子像素305沿行方向延伸的中心线与第一子像素301和第二子像素303的边界线重合,这样,有利于减少像素间距,并使得RGB子像素分布均匀,具有较佳的显示效果。具体可参考图3,第三子像素305沿行方向延伸的中心线306’(该中心线306’将第三子像素305均分为两份且该中心线306’沿行方向延伸)与第一子像素301和第二子像素303的边界线重合。需要说明的是,由于同一像素单元内的第一子像素301和第二子像素303共用一条边,该共用的边即为第一子像素301和第二子像素303的边界 线,但应理解,此处的“边界”或“边界线”并不限定为实体的“边界”或“边界线”,而可以是指两个像素或子像素之间虚拟的“边界”或“边界线”。图3中,第一子像素301和第二子像素303的形状均为长方形,第三子像素305的形状为正方形,且所述第一子像素301和第二子像素303沿其短边延伸方向排列,第三子像素305的发光区306的边长(高度)为第一子像素301的发光区302的短边长度和第二子像素303的发光区304的短边长度的2倍。
但应理解的是,第一子像素301、第二子像素303以及第三子像素305的形状并不局限于矩形,还可以是矩形之外的其它四边形,或者是三角形、五边形、六边形、八边形等多边形中的一种或其任意组合。实际应用中,还可以在上述形状的基础上对局部做一些变形,例如,四边形的四个角做成圆角,呈现一定的弧度。同时,第一子像素301和第二子像素303的面积也可以不相等,第三子像素305的面积也并不限制为第一子像素301或第二子像素303面积的2倍,可以根据配色要求来相应调整各个子像素的形状和/或面积。比如,第一子像素301、第二子像素303和第三子像素303面积可以均不相同,第三子像素305(蓝色子像素)大于第一子像素301(绿色子像素)的面积,第一子像素301(绿色子像素)的面积大于第二子像素303(红色子像素)的面积;或者,如图5所示,第三子像素305(蓝色子像素)等于第一子像素301(绿色子像素)的面积,且第三子像素305(蓝色子像素)和第一子像素301(绿色子像素)均大于第二子像素303(红色子像素)的面积,即第二子像素303(红色子像素)的面积最小。
在所述像素结构中,任意相同颜色的子像素在第二方向(Y方向或列方向)的中心距离Y1与其在第一方向(X方向或行方向)的中心距离X1可以存在以下关系:Y 1=2N/(N+1)X 1,或者,Y 1=2X 1,或者,X 1/2=N/(N+1)Y 1,N为大于等于1的整数。
例如,参考图3,第三子像素305(蓝色子像素)在第二方向(Y方向或列方向)的中心距离Y 1是其在第一方向(X方向或行方向)的中心距离X 1的4/3倍。
图6为本公开实施例中另一种OLED显示装置的像素排布示意图,图7为图6中一个重复单元的示意图。该像素结构与图3所示像素结构的区别之处在于,其是将图3所示的像素结构整体水平翻转180度。其中,所述第一子重复 单元31包括沿所述第二方向(此处是指Y方向)依次排列的第三子像素305、第一子像素301和第二子像素303,所述第二子重复单元32包括沿第二方向依次排列的第一子像素301、第二子像素303和第三子像素305。具体的,奇数行的像素单元中,第一子像素301、第二子像素303和第三子像素305呈向左旋转90度的“品”字形排布,即,第三子像素305排布在左侧,第一子像素301和第二子像素303排布在右侧;偶数行的像素单元中,第一子像素301、第二子像素303和第三子像素305呈向右旋转90度的“品”字形排布,即,第一子像素301和第二子像素303排布在左侧,第三子像素305排布在右侧。
图8为本公开实施例中另一种OLED显示装置的像素排布示意图。该像素结构与图3所示像素结构的区别之处在于,同一行中所有像素单元的第一子像素301和第二子像素303交错排布。具体的,同一行中所有像素单元的第一子像素301并不是呈直线排列,同时,同一行中所有像素单元的第二子像素303也不是呈直线排列,而是,同一行中所有像素单元的第一子像素301和第二子像素303交错排布在一条直线上。比如,第一行第一列的像素单元(1,1)的第一子像素301、第一行第二列的像素单元(1,2)的第二子像素303、第一行第三列的像素单元(1,3)的第一子像素301…依次排布在一条直线上。
图9为本公开实施例中另一种OLED显示装置的像素排布示意图。该像素结构与图3所示像素结构的区别之处在于,其是将图3所示的OLED显示装置旋转90度,使得行与列进行了互换,若仍将X方向称之为行方向(横向),Y方向称之为列方向(纵向),那么,可以理解为,同一像素单元中的第一子像素301和第二子像素303排布在一行,第三子像素305排布在另一行。同一列中像素单元的排布结构相同,优选的,每个像素单元沿列方向翻转(上下翻转)后的排布结构与同一行中相邻的像素单元的排布结构相同。比如,第一行第一列的像素单元(1,1)以其中心点沿列方向翻转180度后的排布结构与同一行中相邻列的像素单元即第一行第二列的像素单元(1,2)的排布结构相同。
图10为本公开实施例中更一种OLED显示装置的像素排布示意图。该像素结构与图3所示像素结构的区别之处在于,任意相同颜色的子像素第二方向的中心距离Y 1与第一方向的中心距离X 1存在以下关系:Y 1=2X 1。这种情况下,无需采用压缩算法,直接1:1显示即可。其中,第一子像素301和第二子像素 303(及其发光区)的形状均为正方形,第三子像素305(及其发光区)的形状为长方形,像素单元整体呈正方形,第一子像素301和第二子像素303沿第三子像素305的长边延伸方向排列。
图11为本公开实施例中另一种OLED显示装置的像素排布示意图,图12为图11中一个重复单元的示意图。所述像素结构包括以矩阵形式排布的多个重复单元30,每一所述重复单元30包括沿第一方向相邻设置的且分别包括三个颜色不同的子像素的第一子重复单元31和第二子重复单元32。所述第一子重复单元31包括沿第二方向依次排列的第二子像素303、第一子像素301和第三子像素305。所述第二子重复单元32包括沿所述第二方向依次排列的第三子像素305、第二子像素303和第一子像素301。每一所述重复单元30中的第一子重复单元31和第二子重复单元32构成沿第二方向相邻设置的两个像素单元,因而,每个像素单元包括颜色互不相同且虚拟中心连线呈三角形的第一子像素301、第二子像素303和第三子像素305。
如图11和图12所示,该像素结构与图3所示像素结构的区别之处在于,每个重复单元中,其中一个子重复单元的第三子像素305沿行方向延伸的中心线并不与另一个子重复单元中的第一子像素301和第二子像素303的边界线重合,比如,第一子重复单元31中的第三子像素305沿行方向延伸的中心线并不与第二子重复单元32中的第一子像素301和第二子像素303的边界线重合,而是,第一子重复单元31中的第三子像素305与第二子重复单元32中第一子像素301对齐排布。每个重复单元中的第一子重复单元31和第二子重复单元32错开一个子像素的距离。
其中,第一子像素301(及其发光区)、第二子像素303(及其发光区)、第三子像素305(及其发光区)的形状可以为正方形,第一子像素301、第二子像素303和第三子像素305的虚拟中心连线可以为等腰三角形。即,每个重复单元中的一个像素单元整体呈L形,另一个像素单元整体呈倒L形。优选的,第一子像素301(及其发光区)、第二子像素303(及其发光区)、第三子像素305(及其发光区)的面积相同,这样,相同颜色的子像素的排布位置呈相同的规律,且各像素的大小也相同,即颜色不同的三种子像素的排布规律相同,这样在制备不同颜色的子像素时就可以采用同一个金属掩膜板,从而减少了金属掩 膜板的制作数量。
所述像素结构中,列方向上分布有第一子像素301、第二子像素303和第三子像素305(RGB三色),行方向上分布有两种子像素(RG或GB或BR两色),相比于某一方向上只分布有一种颜色的子像素,这种排布方式行、列方向显示较为均匀。
图13为本公开实施例中另一种OLED显示装置的像素排布示意图,图14为图13中一个重复单元的示意图。如图13和图14所示,该像素结构与图11所示像素结构的区别之处在于,所述第一子重复单元31包括沿第二方向依次排列的第一子像素301、第二子像素303和第三子像素305。所述第二子重复单元32包括沿所述第二方向依次排列的第三子像素305、第一子像素301和第二子像素303。第一子重复单元31中的第三子像素305与第二子重复单元32中第二子像素303对齐排布,且第二子重复单元32中的第三子像素305与第一子重复单元32中第一子像素305对齐排布。每个重复单元中的第一子重复单元31和第二子重复单元32相互对齐排列。
在一个像素单元中,第一子像素301(及其发光区)、第二子像素303(及其发光区)、第三子像素305(及其发光区)的形状可以为正方形,第一子像素301、第二子像素303和第三子像素305的虚拟中心连线可以为等腰三角形。
可以理解的是,上述像素结构还可以进行适当的变形,比如旋转90度、180度、270度等,以及,各子像素的形状和面积可以进行适当的变形,还比如,第一子像素和第二子像素的位置可相互调换等,在此不再一一列举。
以上介绍了本公开实施例的几种像素结构,其中,任意相同颜色的子像素第二方向(如Y方向)的中心距离Y 1与任意相同颜色的子像素第一方向(如X方向)的中心距离X 1存在以下关系:
Y 1=2X 1,或者,Y 1=2N/(N+1)X 1
其中,N为大于或等于1的整数。
例如,当N=2时,Y 1=4/3X 1
例如,当N=1时,Y 1=X 1
或者,任意相同颜色的子像素第二方向(Y方向)的中心距离Y 1与任意相同颜色的子像素的中心距离X 1存在以下关系:
X 1/2=N/(N+1)Y 1
即,X 1=2N/(N+1)Y 1
其中,N为大于等于1的整数。
也就是说,任意相同颜色的子像素在第一方向的中心距离X 1是其在第二方向的中心距离Y 1的2N/(N+1)倍。
基于上述实施例提供的像素结构,本公开还提供了相应的像素结构驱动方法,以将所述像素结构中某一方向上的像素单元等效为Real像素结构中的(N+1)/N倍像素单元,进而提高显示装置的虚拟分辨率。
例如,当N=2时,行方向上的2M个像素单元实现Real像素结构中3M个像素单元的显示效果,即,每个重复单元在Y方向具有2个像素单元,X方向具有1个像素单元,同时将X方向分辨率压缩至2/3。
那么,X和Y方向的pitch存在以下关系:
Y 1/2=2/3X 1
即,Y 1=4/3X 1
通常,图像的显示信息都是以Real像素结构为基准的,因此,将这种图像信息输入到本实施例的像素结构中进行图像显示之前,需要对显示信息进行转换,将Real像素结构中的像素亮度分配到本实施例的像素结构中,这时Real像素结构的像素与本实施例的像素结构中的像素单元有一对应的关系。本实施例中,一种方式是,将Real像素结构划分为若干基准像素单元组,每个基准像素单元组包括两行三列共六个基准像素单元,每个基准像素单元包括三个并置排列且颜色互不相同的子像素,并获得基准像素单元组中子像素的亮度。以及,将所述像素结构划分为若干目标像素单元组,每个目标像素单元组包括两个重复单元(即两行两列共四个目标像素单元),再根据基准像素单元组中子像素的亮度确定目标像素单元组中子像素的亮度,使一个目标像素单元组的显示效果等效于一个基准像素单元组的显示效果。以此,通过像素结构中的两个像素单元实现Real像素结构中三个像素单元的显示效果,例如,行方向上共780个像素单元可实现Real像素结构中1280个像素单元的显示效果,提高虚拟分辨率。
参考图15(a),一个基准像素单元组中,包括两行三列共六个基准像素单元P11’、P12’、P13’、P21’、P22’、P23’,每个基准像素单元包括三个并置排列 的子像素,基准像素单元P11’、P12’、P13’中的子像素排列在一行上,基准像素单元P21’、P22’、P23’的子像素排列在另一行上。
为叙述方便,基准像素单元组P0’中,将第一行第一列的基准像素单元P11’中的红色子像素记为R11’,绿色子像素记为G11’,蓝色子像素记为B11’;将第一行第二列的基准像素单元P12’中的红色子像素记为R12’,绿色子像素记为G12’,蓝色子像素记为B12’;将第二行第一列的基准像素单元P21’中的红色子像素记为R21’,绿色子像素记为G21’,蓝色子像素记为B21’;将第二行第二列的基准像素单元P22’中的红色子像素记为R22’,绿色子像素记为G22’,蓝色子像素记为B22’,以此类推。
参考图15(b),目标像素单元组中,包括两个重复单元P1、P2,重复单元P1包括两个像素单元P11、P21,重复单元P2包括两个像素单元P12、P22。像素单元P11、P12并置排列在同一行,像素单元P21、P22并置排列在同一行。像素单元P11、P12、P21、P22各自包括颜色互不相同且虚拟中心连线呈三角形的三个子像素。
为叙述方便,目标像素单元组P0中,将基准像素单元P11中的红色子像素记为R11,绿色子像素记为G11,蓝色子像素记为B11;将基准像素单元P12中的红色子像素记为R12,绿色子像素记为G12,蓝色子像素记为B12;将基准像素单元P21中的红色子像素记为R21,绿色子像素记为G21,蓝色子像素记为B21;将基准像素单元P22中的红色子像素记为R22,绿色子像素记为G22,蓝色子像素记为B22。
如图15(a)和图16所示,基准像素单元P11’受栅极线G1’和数据线S11’、S12’、S13’控制,基准像素单元P12’受栅极线G1’和数据线S21’、S22’、S23’控制,基准像素单元P13’受栅极线G1’和数据线S31’、S32’、S33’控制,基准像素单元P21’受栅极线G2’和数据线S11’、S12’、S13’控制,基准像素单元P22’受栅极线G2’和数据线S21’、S22’、S23’控制,基准像素单元P23’受栅极线G2’和数据线S31’、S32’、S33’控制,可以看出,六个基准像素单元P11’、P12’、P13’、P21’、P22’、P23’均为长方形构造。
如图15(b)、图17和图18所示,目标像素单元P11受栅极线G1和数据线S11、S12、S13控制,目标像素单元P12受栅极线G1和数据线S21、S22、 S23控制,目标像素单元P21受栅极线G2和数据线S11、S12、S13控制,目标像素单元P22受栅极线G2和数据线S21、S22、S23控制。例如是以如下两种方式实现:
参考图17,一种方式可以是,R11、G11、B11、R12、G12、B12受栅极线G1和数据线S11、S12、S13、S21、S22、S23控制,B21、G21、R21、B22、G22、R22受栅极线G2和数据线S11、S12、S13、S21、S22、S23控制。
参考图18,另一种方式可以是,R11、G11、B11、R12、G12、B12受栅极线G1和数据线S11、S12、S13、S21、S22、S23控制,B21、R21、G21、B22、R22、G22受栅极线G2和数据线S11、S12、S13、S21、S22、S23控制。
由于目标像素单元组中四个像素单元需承担基准像素单元组中六个像素单元的亮度,即,将基准像素单元组中行方向上相邻的三个基准像素单元合并成目标像素单元组中两个像素单元进行显示,以实现2对3的显示效果。故,确定所述基准像素单元组中每一子像素的亮度后,需要将其分配到目标基准像素单元中。例如,可采用如下分配方式:将中间列的像素单元P12’、P22’的亮度均分为两份,奇数行的目标像素单元P11、P12承担基准像素单元P11’、P13’的亮度以及基准像素单元P12’一半的亮度,偶数行的目标像素单元P21、P22承担基准像素单元P21’、P23’的亮度以及P22’一半的亮度。
以图15(a)中基准像素单元P12’的子像素B12’为例,可分配一半亮度至相邻的目标像素单元P11的子像素B11进行显示。
具体的亮度分配方式如下:
1)奇数行中,
L 11r=L’ 11r
L 11g=L’ 11g
L 11b=L’ 11b+L’ 12b/2
L 12r=L’ 13r+L’ 12r/2
L 12g=L’ 13g+L’ 12g/2
L 12b=L’ 13b
其中,L 11r、L 11g、L 11b、L 12r、L 12g、L 12b是指目标像素单元组中子像素R11、G11、B11、R12、G12、B12的亮度值;L’ 11r、L’ 11g、L’ 11b、L’ 12r、L’ 12g、L’ 12b、L’ 13r、 L’ 13g、L’ 13b是指基准像素单元组中子像素R11’、G11’、B11’、R12’、G12’、B12’、R13’、G13’、B13’的亮度值。
2)偶数行中
L 21r=L’ 21r+L’ 22r/2
L 21g=L’ 21g+L’ 22g/2
L 21b=L’ 21b
L 22r=L’ 23r
L 22g=L’ 23g
L 22b=L’ 23b+L’ 22b/2
其中,L 21r、L 21g、L 21b、L 22r、L 22g、L 22b是指目标像素单元组中子像素R21、G21、B21、R22、G22、B22的亮度值;L’ 21r、L’ 21g、L’ 21b、L’ 22r、L’ 22g、L’ 22b、L’ 23r、L’ 23g、L’ 23b是指基准像素单元组中子像素R21’、G21’、B21’、R22’、G22’、B22’、R23’、G23’、B23’的亮度值。
上述公式均是对亮度的计算,亮度值L um与灰阶值Gray的关系如下:
L um=(Gray/255) 2.2
为节省运算时间,可采用灰阶值查表的方式。
当N=2时,Y 1=4/3X 1,还可采用另外一种驱动方法,以使行方向上的2M个像素单元实现Real像素结构中3M个像素单元的显示效果。
即,将所述像素结构中某一方向上的像素单元等效为Real像素结构中的3/2倍像素单元时,可以采用如下方式实现像素借用:
所述像素结构中第m行第i列的第三子像素承担Real像素结构中第m行第(3*i-1)/2列和第m行第(3*i+1)/2列的第三子像素的亮度;
所述像素结构中第m行第j列的第二子像素承担Real像素结构中第m行第(3*j/2-1)列和第m行第3*j/2列的第二子像素的亮度;
所述像素结构中第m行第j列的第一子像素承担Real像素结构中第m行第(3*j/2-1)列和第m行第3*j/2列的第一子像素的亮度;
所述像素结构中第n行第i列的第一子像素承担Real像素结构中第n行第(3*i-1)/2列和第n行第(3*i+1)/2列的第一子像素的亮度;
所述像素结构中第n行第i列的第二子像素承担Real像素结构中第n行第 (3*i-1)/2列和第n行第(3*i+1)/2列的第二子像素的亮度;
所述像素结构中第n行第j列的第三子像素承担Real像素结构中第n行第(3*j/2-1)列和第n行第3*j/2列的第三子像素的亮度;
其中,m和i为奇数,n和j为偶数。
下面结合图19详细介绍这种驱动方法。
1)奇数行中
按照数据线(source line)顺序依次为子像素RGBRGB…,RGB为一个像素单元,通过子像素的借用实现两个像素单元对三个像素单元的表示。即,两个目标像素单元P11、P12等效为三个基准像素单元P11’、P12’、P13’。
结合图19所示,具体亮度分配方式如下:
目标像素单元P11中,红色子像素R11承担基准像素单元P11’中红色子像素R11’的亮度,绿色子像素G11承担基准像素单元P11’中绿色子像素G11’的亮度,蓝色子像素B11承担基准像素单元P11’中蓝色子像素B11’和基准像素单元P12’中蓝色子像素B12’的亮度;
目标像素单元P12中,红色子像素R12承担基准像素单元P12’中红色子像素R12’和基准像素单元P13’中红色子像素R13’的亮度,绿色子像素G12承担基准像素单元P12’中绿色子像素G12’和基准像素单元P13’中绿色子像素G13’的亮度,蓝色子像素B12承担基准像素单元P13’中蓝色子像素B13’的亮度。
当奇数行中,目标像素单元中某一子像素承担基准像素单元中对应的两个子像素的亮度时,还需要考虑这两个子像素的亮度分配系数。假设,基准像素单元中一个子像素的亮度为L1,另一个子像素的亮度为L2,那么该目标像素单元中该子像素的亮度值L um’可以为:
L um’=L1*L1/(L1+L2)+L2*L2/(L1+L2)。
具体的,奇数行有借用关系的子像素的处理方式例如是:
对于蓝色子像素,
L1=L umB(m,(3*i-1)/2);
L2=L umB(m,(3*i+1)/2);
当L1和L2均等于0时,L umB(m,i)’=0;
当L1或L2不等于0时,L umB(m,i)’=L1*L1/(L1+L2)+L2*L2/(L1+L2);
对于红色子像素,
L1=L umR(m,(3*j/2-1));
L2=L umR(m,3*j/2);
当L1和L2均等于0时,L umR(m,j)’=0;
当L1或L2不等于0时,L umR(m,j)’=L1*L1/(L1+L2)+L2*L2(L1+L2);
对于绿色子像素,
L1=L umG(m,(3*j/2-1));
L2=L umG(m,3*j/2);
当L1和L2均等于0时,L umG(m,j)’=0;
当L1或L2不等于0时,L umG(m,j)’=L1*L1/(L1+L2)+L2*L2(L1+L2);
其中,m表示行数,i和j表示列数,m和i为奇数,j为偶数,L1和L2为基准像素单元中的亮度值,具体的,L umB(m,(3*i-1)/2)为第m行第(3*i-1)/2列的基准像素单元中的蓝色子像素的亮度值,L umB(m,(3*i+1)/2)为第m行第(3*i+1)/2列的基准像素单元中的蓝色子像素的亮度值,L umR(m,(3*j/2-1))为第m行第(3*j/2-1)列的基准像素单元中的红色子像素的亮度值,L umR(m,3*j/2)为第m行第3*j/2列的基准像素单元中的红色子像素的亮度值,L umG(m,(3*j/2-1))为第m行第(3*j/2-1)列的基准像素单元中的绿色子像素的亮度值,L umG(m,3*j/2)为第m行第3*j/2列的基准像素单元中的绿色子像素的亮度值,L umB(m,i)’为第m行第i列的目标像素单元中的蓝色子像素的亮度值,L umR(m,i)’为第m行第i列的目标像素单元中的红色子像素的亮度值,L umG(m,i)’为第m行第i列的目标像素单元中的绿色子像素的亮度值。
2)偶数行中
如图19所示,按照数据线(source line)顺序依次为子像素BRGBRG…,BRG为一个像素单元,通过子像素的借用实现两个像素单元对三个像素单元的表示。即,两个目标像素单元P21、P22等效为三个基准像素单元P21’、P22’、P23’。
对于偶数行,每个重复单元中,在重复单元的一个像素单元中,第一子像素承担相邻的两个基准像素单元中第一子像素的亮度,第二子像素承担相邻的两个基准像素单元中第二子像素的亮度,第三子像素承一个基准像素单元中第 三子像素的亮度;另一个像素单元的第一子像素和第二子像素承担基准像素单元中第一子像素和第二子像素的亮度,第三子像素承担相邻的两个基准像素单元中第三子像素的亮度。
具体分配方式如下:
目标像素单元P21中,蓝色子像素B21承担基准像素单元P21’中蓝色子像素B21’的亮度,红色子像素R21承担基准像素单元P21’中红色子像素R21’和基准像素单元P22’中红色子像素R22’的亮度,绿色子像素G21承担基准像素单元P21’中绿色子像素G21’和基准像素单元P22’中绿色子像素G22’的亮度;
目标像素单元P22中,蓝色子像素B22承担基准像素单元P22’中蓝色子像素B22’和基准像素单元P23’中蓝色子像素B23’的亮度,红色子像素R22承担基准像素单元P23’中红色子像素R23’的亮度,绿色子像素G22承担基准像素单元P23’中绿色子像素G23’的亮度。
当偶数行中,目标像素单元中某一子像素承担基准像素单元中对应的两个子像素的亮度时,还需要考虑这两个子像素的亮度分配系数。假设,基准像素单元中一个子像素的亮度为L1,另一个子像素的亮度为L2,那么该目标像素单元的亮度值L um’可以为:L um’=L1*L1/(L1+L2)+L2*L2/(L1+L2)。
具体的,偶数行有借用关系的子像素的处理方式例如是:
对于红色子像素,
L1=L umR(n,(3*i-1)/2);
L2=L umR(n,(3*i+1)/2);
当L1和L2均等于0时,L umR(n,i)’=0;
当L1或L2不等于0时,L umR(n,i)’=L1*L1/(L1+L2)+L2*L2(L1+L2);
对于绿色子像素,
L1=L umG(n,(3*i-1)/2);
L2=L umG(n,(3*i+1)/2);
当L1和L2均等于0时,LumG(n,i)’=0;
当L1或L2不等于0时,L umG(n,i)’=L1*L1/(L1+L2)+L2*L2(L1+L2);
对于蓝色子像素,
L1=L umB(n,(3*j/2-1));
L2=L umB(n,3*j/2);
当L1和L2均等于0时,L umB(n,j)’=0;
当L1或L2不等于0时,L umB(n,j)’=L1*L1/(L1+L2)+L2*L2(L1+L2);
其中,n表示行数,i和j表示列数,n为偶数,i为奇数,j为偶数,L1和L2表示基准像素单元中的亮度值,具体的,L umR(n,(3*i-1)/2)为第n行第(3*i-1)/2列的基准像素单元中的红色子像素的亮度值,L umR(n,(3*i+1)/2)为第n行第(3*i+1)/2列的基准像素单元中的红色子像素的亮度值,L umG(n,(3*i-1)/2)第n行第(3*i-1)/2列的基准像素单元中的绿色子像素的亮度值,L umG(n,(3*i+1)/2)为第n行第(3*i+1)/2列的基准像素单元中的绿色子像素的亮度值,L umB(n,(3*j/2-1))为第n行第(3*j/2-1)列的基准像素单元中的蓝色子像素的亮度值,L umG L umB(n,3*j/2)为第n行第3*j/2列的基准像素单元中的蓝色子像素的亮度值,L umR(n,i)’表示第n行第i列的目标像素单元中的红色子像素的亮度值,L umG(n,i)’表示第n行第i列的目标像素单元中的绿色子像素的亮度值,L umB(n,j)’表示第n行第j列的目标像素单元中的蓝色子像素的亮度值。
当然,目标像素单元中某一子像素承担基准像素单元中对应的两个子像素的亮度时,也可以直接采用这两个子像素的亮度的最大值或者平均值进行显示,还以采用如下方式进行显示:
L um=L1*x+L2*y;
其中,x+y=1。
例如,x=0.3,y=0.7。
针对上述像素结构,本实施例又提供一种像素结构驱动方法,每个重复单元在Y方向具有2个像素单元,X方向具有1个像素单元,同时,使行方向上的M个像素单元实现Real像素结构中2M个像素单元的显示效果,即,将X方向像素单元的数目压缩至1/2。
那么,N=1,X和Y方向的pitch存在以下关系:
Y 1/2=X 1/2,
即,Y 1=X 1
如此,可将所述像素结构中某一方向上的像素单元等效为Real像素结构中的2倍像素单元,提高虚拟分辨率。
子像素间借用关系如下:
当i=1时,所述像素结构中第m行第i列的第二子像素承担Real像素结构中第m行第i列的第二子像素的亮度;
当2≤i≤W/2时,所述像素结构中第m行第i列的第二子像素承担Real像素结构中第m行第(2i-2)列和第m行第(2i-1)列的第二子像素的亮度;
当i=1时,所述像素结构中第m行第i列的第一子像素承担Real像素结构中第m行第i列的第一子像素的亮度;
当2≤i≤W/2时,所述像素结构中第m行第i列的第一子像素承担Real像素结构中第m行第(2i-2)列和第m行第(2i-1)列的第一子像素的亮度;
当1≤i≤W/2时,所述像素结构中第m行第i列的第三子像素承担Real像素结构中第m行第(2i-1)列和第m行第2i列的第三子像素的亮度;
当i=1时,所述像素结构中第n行第i列的第三子像素承担Real像素结构中第n行第i列的第三子像素的亮度;
当2≤i≤W/2时,所述像素结构中第n行第i列的第三子像素承担Real像素结构中第n行第(2i-2)列和第n行第(2i-1)列的第三子像素的亮度;
当1≤i≤W/2时,所述像素结构中第n行第i列的第二子像素承担Real像素结构中第n行第(2i-1)列和第n行第2i列的第二子像素的亮度;
当1≤i≤W/2时,所述像素结构中第n行第i列的第一子像素承担Real像素结构中第n行第(2i-1)列和第n行第2i列的第一子像素的亮度;
其中,m和i为奇数,n为偶数,I=W/2,Real像素结构共有W列×H行个像素单元,所述像素结构共有I列×H行个像素单元。
下面结合图20详细介绍这种驱动方法。
1)奇数行中
如图20所示,按照数据线(source line)顺序依次为子像素RGBRGB…,RGB为一个像素单元,通过子像素的借用实现一个像素单元对两个像素单元的显示。
具体分配方式如下:
目标像素单元P11中,红色子像素R11承担基准像素单元P11’中红色子像素R11’的亮度,绿色子像素G11承担基准像素单元P11’中绿色子像素G11’的亮 度,蓝色子像素B11承担基准像素单元P11’中蓝色子像素B11’和基准像素单元P12’中蓝色子像素B12’的亮度;
目标像素单元P12中,红色子像素R12承担基准像素单元P12’中红色子像素R12’和基准像素单元P13’中红色子像素R13’的亮度,绿色子像素G12承担基准像素单元P12’中绿色子像素G12’和基准像素单元P13’中绿色子像素G13’的亮度,蓝色子像素B12承担基准像素单元P13’中蓝色子像素B13’以及基准像素单元P14’中蓝色子像素B14’的亮度;
以此类推,完成奇数行中子像素的借用。
由于奇数行中目标像素单元的某一子像素承担基准像素单元中对应的两个子像素的亮度时,还需要考虑这两个子像素的亮度分配系数,一种方式是,奇数行有借用关系的子像素的处理方式是取承担的两个子像素的亮度值的平均值,具体如下:
Figure PCTCN2018098354-appb-000001
其中,m表示行数,i表示列数,m为奇数,数据输入分辨率为W×H(例如1280*640),LR(m,i)为第m行第i列的目标像素单元中的红色子像素的亮度值,LG(m,i)为第m行第i列的目标像素单元中的绿色子像素的亮度值,LB(m,i)为第m行第i列的目标像素单元中的蓝色子像素的亮度值,L umR(m,i)为第m行第i列的基准像素单元中红色子像素的亮度值,L umG(m,i)为第m行第i列的基准像素单元中绿色子像素的亮度值,L umB(m,i)为第m行第i列的基准像素单元中蓝色子像素的亮度值。
2)偶数行中
如图20所示,按照数据线(source line)顺序依次为子像素BRGBRG…,RGB为一个像素单元,通过子像素的借用实现一个像素单元对两个像素单元的 显示。
具体分配方式如下:
目标像素单元P21中,蓝色子像素B21承担基准像素单元P21’中蓝色子像素B21’的亮度,红色子像素R21承担基准像素单元P21’中红色子像素R21’和基准像素单元P22’中红色子像素R22’的亮度,绿色子像素G21承担基准像素单元P21’中绿色子像素G21’和基准像素单元P22’中绿色子像素G22’的亮度;
目标像素单元P22中,蓝色子像素B22承担基准像素单元P22’中蓝色子像素B22’以及基准像素单元P23’中蓝色子像素B23’的亮度,红色子像素R22承担基准像素单元P23’中红色子像素R23’和基准像素单元P24’中红色子像素R24’的亮度,绿色子像素G22承担基准像素单元P23’中绿色子像素G23’和基准像素单元P24’中绿色子像素G24’的亮度;
以此类推,完成偶数行中子像素的借用。
同样,由于偶数行中目标像素单元的某一子像素承担基准像素单元中对应的两个子像素的亮度时,还需要考虑这两个子像素的亮度分配系数,一种方式是,奇数行有借用关系的子像素的处理方式是取承担的两个子像素的亮度值的平均值,具体如下:
Figure PCTCN2018098354-appb-000002
其中,n表示行数,i表示列数,n为偶数,数据输入分辨率为W×H(例如1280*640),LB(n,i)为第n行第i列的目标像素单元中的蓝色子像素的亮度值,LR(n,i)为第n行第i列的目标像素单元中的红色子像素的亮度值,LG(n,i)为第n行第i列的目标像素单元中的绿色子像素的亮度值。
当N=1时,Y 1=X 1,还可采用另外一种驱动方法,以使行方向上的M个像素单元实现Real像素结构中2M个像素单元的显示效果。结合图21所示,可以 采用如下两种驱动方式:
1)所述像素结构中的像素单元只承担Real像素结构中一半的子像素的亮度,另一半的子像素省略不显示,例如,将图21(a)中带虚线框的子像素省略不显示,即,将基准像素单元P11’中的蓝色子像素B11’、基准像素单元P21’中的红色子像素R21’和绿色子像素G21’、基准像素单元P12’中的红色子像素R12’和绿色子像素G12’、基准像素单元P22’中的蓝色子像素B22’、基准像素单元P13’中的蓝色子像素B13’、基准像素单元P23’中的红色子像素R23’和绿色子像素G23’、基准像素单元P14’中的红色子像素R14’和绿色子像素G14’、基准像素单元P24’中的蓝色子像素B24’省略不显示。从而,实现1对2的显示效果。
2)将图21(a)中带虚线框的子像素进行第一比例亮度显示,不带虚线框的部分进行第二比例亮度显示,所述第二比例与第一比例不相等,例如,所述第二比例大于第一比例,例如,所述第一比例为30%,第二比例为70%。这样,即可保证横向相邻列的亮度差异,也可使单点的显示不过于失真。当然,第一比例和第二比例也可以相等,即亮度显示比例也可以对半划分,这样相邻两列亮度相同易模糊显示细节,当然在高PPI显示的情况下,仍可获得不错的显示效果。
如图22所示,OLED显示屏中,可由驱动芯片(Drive IC)计算基准像素单元中每个子像素的亮度值(即原始图像数据),并利用上述方法获得处理后的图像数据,进而控制目标像素单元中的子像素以基准像素单元组中对应颜色的子像素的处理后的亮度值显示,实现M个像素单元对Real像素结构中M*(N+1)/N像素单元的显示效果。
以上是以所述两个子重复单元构成沿第二方向(列方向)相邻设置的两个像素单元(每个像素单元包括颜色互不相同且虚拟中心连线呈三角形的第一子像素、第二子像素和第三子像素),第一方向(行方向)上M个像素单元实现Real像素结构中M*N(N+1)个像素单元的显示效果为例进行的说明。但应理解,所述两个子重复单元也可以构成沿第一方向(行方向)相邻设置的两个像素单元,第二方向(列方向)上一个像素单元实现Real像素结构中(N+1)/N个像素单元的显示效果。比如,如图23和图24所示,其中,X 1=Y 1,即N=1,即,列方向上M个像素单元实现Real像素结构中M*(N+1)/N个像素单元的 显示效果。再比如,如图25和图26所示,其中,X 1=4/3Y 1,即N=2,即,列方向上2个像素单元实现Real像素结构中3个像素单元的显示效果。列方向上像素进行压缩时的驱动方法与上文描述的行方向上像素进行压缩时的驱动方法原理类似,本领域技术人员结合上文的记载可以知晓如何进行驱动,在此不再赘述。
可知,对于以上介绍的任何一种驱动方法,当所述像素结构中的像素单元中的第一子像素、第二子像素和第三子像素需要承担Real像素结构中对应颜色的两个子像素的亮度时,可以采用如下任一种方式实现借用:
1)选取所述Real像素结构中对应颜色的两个子像素的亮度的最大值或平均值进行显示。
2)L um=L1*L1/(L1+L2)+L2*L2/(L1+L2);
其中,L um为所述第一子像素、第二子像素或第三子像素的亮度值,L1和L2为Real像素结构中对应颜色的两个子像素的亮度值。
3)L um=L1*x+L2*y;x+y=1;
其中,L um为所述第一子像素、第二子像素或第三子像素的亮度值,L1和L2为Real像素结构中对应颜色的两个子像素的亮度值。
综上,本公开基于上述像素结构,提出了一种与之匹配的像素驱动方法,将传统的Real像素结构进行压缩,由所述像素结构中某一方向上的M个像素单元等效为Real像素结构中的M*(N+1)/N像素单元,提高了虚拟分辨率。该像素驱动方法尤其适用于高PPI像素结构(PPI为300以上),实验表明,显示屏PPI越高的情况下该像素结构及其驱动方法的效果越好。
基于同一发明构思,本实施例还提供了一种OLED显示装置,包括本公开实施例提供的上述像素结构,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。该显示装置的实施可以参见上述有机电致发光显示器件的实施例,重复之处不再赘述。该像素结构中每个像素行可以连接一条栅极线,每个像素列可以连接一条数据线,由于该像素结构中奇数行和偶数行相同颜色的子像素的发光区相互错开排列,因而数 据线和/栅极线可呈弯折状。
以上实施例对本公开提出的像素结构及其驱动方法进行了详细说明,但应理解,上述描述仅是对本公开较佳实施例的描述,并非对本公开范围的任何限定,本公开领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。而且,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。

Claims (19)

  1. 一种像素结构,包括以矩阵形式排布的多个重复单元,每一所述重复单元包括沿第一方向相邻设置的且分别包括三个颜色不同的子像素的两个子重复单元;每一所述重复单元中的一个子重复单元包括沿第二方向依次排列的第一子像素、第二子像素和第三子像素或第二子像素、第一子像素和第三子像素,另一个子重复单元包括沿所述第二方向依次排列的第三子像素、第一子像素和第二子像素或第三子像素、第二子像素和第一子像素;
    所述两个子重复单元构成沿第二方向相邻设置的两个像素单元,任意相同颜色的子像素在第二方向的中心距离是其在第一方向的中心距离的2倍或2N/(N+1)倍;或者,所述两个子重复单元构成沿第一方向相邻设置的两个像素单元,任意相同颜色的子像素在第一方向的中心距离是其在第二方向的中心距离的2N/(N+1)倍;其中,N为大于等于1的整数。
  2. 如权利要求1所述的像素结构,其中,所述两个子重复单元构成沿第二方向相邻设置的两个像素单元时,任意相同颜色的子像素在第二方向的中心距离是其在第一方向的中心距离的1倍或4/3倍。
  3. 如权利要求1所述的像素结构,其中,所述两个子重复单元构成沿第一方向相邻设置的两个像素单元时,任意相同颜色的子像素在第一方向的中心距离是其在第二方向的中心距离的1倍或4/3倍。
  4. 如权利要求1-所述的像素结构,其中,所述子重复单元中的一个像素单元沿所述第一方向翻转180度后的排布结构与另一个像素单元相同。
  5. 如权利要求1所述的像素结构,其中,在单个像素单元中,所述第一子像素和第二子像素沿所述第二方向的总尺寸大于或等于所述第三子像素沿所述第二方向的尺寸。
  6. 如权利要求1所述的像素结构,其中,同一行或同一列中像素单元中的第一子像素排布在一条直线上,同一行或同一列中像素单元中的第二子像素排布在另一条直线上。
  7. 如权利要求1所述的像素结构,其中,同一行或同一列中像素单元的第一子像素和第二子像素交替排布在一条直线上。
  8. 如权利要求1所述的像素结构,其中,所述第一子像素、第二子像素以 及第三子像素的形状为三角形、四边形、五边形、六边形、八边形中的一种或其任意组合。
  9. 如权利要求1所述的像素结构,其中,所述第一子像素和第二子像素的形状相同。
  10. 如权利要求1所述的像素结构,其中,所述第一子像素、第二子像素和第三子像素分别为绿色子像素、红色子像素和蓝色子像素。
  11. 如权利要求10所述的像素结构,其中,在单个像素单元中,所述蓝色子像素的面积大于所述红色子像素和绿色子像素的面积。
  12. 一种OLED显示装置,包括如权利要求1至11中任一项所述的像素结构。
  13. 一种如权利要求1所述的像素结构的驱动方法,其中,N取值为2,所述方法包括:将所述像素结构中某一方向上的像素单元等效为Real像素结构中的3/2倍像素单元,获得所述像素结构中各子像素与Real像素结构中各子像素的对应关系以及Real像素结构中各子像素的亮度值,并根据Real像素结构中各子像素的亮度值以及所述对应关系确定所述像素结构中各子像素的亮度值。
  14. 如权利要求13所述的方法,包括:
    将所述Real像素结构划分为若干基准像素单元组,每个所述基准像素单元组包括两行三列共六个基准像素单元,每个所述基准像素单元包括三个并置排列且颜色互不相同的子像素,并获得所述Real像素结构中各子像素的亮度值;以及
    将所述像素结构划分为若干目标像素单元组,每个所述目标像素单元组包括两行两列共四个目标像素单元,每一所述目标像素单元组对应一个所述基准像素单元组。
  15. 如权利要求14所述的方法,其中,所述基准像素单元组中第二列的基准像素单元的亮度均分,第一行第一列和第一行第二列的目标像素单元承担第一行第一列和第一行第三列的基准像素单元的亮度以及第一行第二列的基准像素单元一半的亮度,第二行第一列和第二行第二列的目标像素单元承担第二行第一列和第二行第三列的基准像素单元的亮度以及第二行第二列的基准像素单元一半的亮度。
  16. 如权利要求13所述的方法,其中:
    所述像素结构中第m行第i列的第三子像素承担Real像素结构中第m行第(3*i-1)/2列和第m行第(3*i+1)/2列的第三子像素的亮度;
    所述像素结构中第m行第j列的第二子像素承担Real像素结构中第m行第(3*j/2-1)列和第m行第3*j/2列的第二子像素的亮度;
    所述像素结构中第m行第j列的第一子像素承担Real像素结构中第m行第(3*j/2-1)列和第m行第3*j/2列的第一子像素的亮度;
    所述像素结构中第n行第i列的第一子像素承担Real像素结构中第n行第(3*i-1)/2列和第n行第(3*i+1)/2列的第一子像素的亮度;
    所述像素结构中第n行第i列的第二子像素承担Real像素结构中第n行第(3*i-1)/2列和第n行第(3*i+1)/2列的第二子像素的亮度;
    所述像素结构中第n行第j列的第三子像素承担Real像素结构中第n行第(3*j/2-1)列和第n行第3*j/2列的第三子像素的亮度;
    其中,m和i为奇数,n和j为偶数。
  17. 如权利要求13至16中任一项所述的方法,其中,当所述像素结构中的第一子像素、第二子像素和第三子像素需要承担Real像素结构中对应颜色的两个子像素的亮度时,存在如下关系:Lum=L1*L1/(L1+L2)+L2*L2/(L1+L2);
    其中,Lum为所述第一子像素、第二子像素或第三子像素的亮度值,L1和L2为Real像素结构中对应颜色的两个子像素的亮度值。
  18. 如权利要求13至16中任一项所述的方法,其中,当所述像素结构中的第一子像素、第二子像素和第三子像素需要承担Real像素结构中对应颜色的两个子像素的亮度时,选取所述Real像素结构中对应颜色的两个子像素的亮度的最大值或平均值进行显示。
  19. 如权利要求13至16中任一项所述的方法,其中,当所述像素结构中的第一子像素、第二子像素和第三子像素需要承担Real像素结构中对应颜色的两个子像素的亮度时,存在如下关系:
    Lum=L1*x+L2*y;
    其中,x+y=1;Lum为所述第一子像素、第二子像素或第三子像素的亮度值,L1和L2为Real像素结构中对应颜色的两个子像素的亮度值。
PCT/CN2018/098354 2017-08-31 2018-08-02 像素结构、oled显示装置及驱动方法 WO2019042072A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197032742A KR102466271B1 (ko) 2017-08-31 2018-08-02 픽셀 구조체, oled 디스플레이 디바이스, 및 구동 방법
EP18849577.4A EP3678182A4 (en) 2017-08-31 2018-08-02 PIXEL STRUCTURE, OLED DISPLAY DEVICE AND CONTROL METHOD
JP2019563815A JP7015324B2 (ja) 2017-08-31 2018-08-02 ピクセル構造、oledディスプレイデバイス、および駆動方法
US16/324,992 US11152432B1 (en) 2017-08-31 2018-08-02 Pixel structure, OLED display device and driving method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710775349.6 2017-08-31
CN201710776295.5 2017-08-31
CN201710774606.4 2017-08-31
CN201710774606.4A CN108511480A (zh) 2017-08-31 2017-08-31 像素结构以及oled显示装置
CN201710776295 2017-08-31
CN201710775349.6A CN109427265B (zh) 2017-08-31 2017-08-31 像素驱动方法

Publications (1)

Publication Number Publication Date
WO2019042072A1 true WO2019042072A1 (zh) 2019-03-07

Family

ID=65526150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098354 WO2019042072A1 (zh) 2017-08-31 2018-08-02 像素结构、oled显示装置及驱动方法

Country Status (6)

Country Link
US (1) US11152432B1 (zh)
EP (1) EP3678182A4 (zh)
JP (1) JP7015324B2 (zh)
KR (1) KR102466271B1 (zh)
TW (1) TW201909411A (zh)
WO (1) WO2019042072A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116486738A (zh) * 2023-06-19 2023-07-25 长春希达电子技术有限公司 像素复用方法、数据传输***以及显示屏控制***和方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343544B1 (en) * 2016-12-28 2022-06-15 Vestel Elektronik Sanayi ve Ticaret A.S. Method for a display device
JP7045951B2 (ja) * 2018-07-20 2022-04-01 三菱電機株式会社 表示ユニット及び表示装置
JP7171323B2 (ja) * 2018-09-05 2022-11-15 Tianma Japan株式会社 表示装置及びその制御方法
CN109801946B (zh) * 2019-01-30 2021-01-26 京东方科技集团股份有限公司 显示面板及显示装置
CN110335892B (zh) * 2019-07-15 2021-03-26 云谷(固安)科技有限公司 像素排布结构、显示面板及显示装置
CN110620135B (zh) * 2019-09-30 2022-05-27 武汉天马微电子有限公司 一种显示面板及显示装置
CN114864652B (zh) * 2022-07-08 2022-12-09 惠科股份有限公司 显示面板、显示模组和显示装置
CN116504179B (zh) * 2023-06-27 2023-09-19 长春希达电子技术有限公司 像素复用方法、数据传输***以及显示屏控制***和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092238A1 (en) * 2010-10-15 2012-04-19 Soonjae Hwang Subpixel arrangement structure for display device
CN103123927A (zh) * 2013-01-24 2013-05-29 昆山维信诺显示技术有限公司 用于oled显示屏的像素结构及其金属掩膜板
CN103208507A (zh) * 2013-01-15 2013-07-17 友达光电股份有限公司 电激发光显示面板的像素结构
CN103943032A (zh) * 2014-04-01 2014-07-23 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN105044954A (zh) * 2015-08-28 2015-11-11 厦门天马微电子有限公司 像素结构、显示方法及显示面板

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375688A (ja) * 1989-08-16 1991-03-29 Sharp Corp カラー画像表示装置
JPH03233593A (ja) * 1990-02-09 1991-10-17 Toshiba Corp カラー画像表示装置
JPH0772826A (ja) * 1993-01-22 1995-03-17 Nec Home Electron Ltd 液晶表示装置
FR2742910B1 (fr) * 1995-12-22 1998-04-17 Thomson Multimedia Sa Procede et dispositif d'adressage d'un ecran matriciel
JP2004252273A (ja) * 2003-02-21 2004-09-09 Sharp Corp 表示装置およびそれに用いられる回路装置
JP5441312B2 (ja) * 2007-02-09 2014-03-12 株式会社ジャパンディスプレイ 表示装置
US20080225212A1 (en) * 2007-03-13 2008-09-18 Ong Hiap L Pixel designs for multi-domain vertical alignment liquid crystal display
KR101542398B1 (ko) * 2008-12-19 2015-08-13 삼성디스플레이 주식회사 유기 발광 장치 및 그 제조 방법
JP2010165587A (ja) * 2009-01-16 2010-07-29 Hitachi Displays Ltd 有機エレクトロルミネッセンス表示装置及びその製造方法
CA2686174A1 (en) 2009-12-01 2011-06-01 Ignis Innovation Inc High reslution pixel architecture
US20120313843A1 (en) 2010-02-18 2012-12-13 Sharp Kabushiki Kaisha Display device
KR20110129531A (ko) 2010-05-26 2011-12-02 삼성모바일디스플레이주식회사 유기전계발광 표시장치의 화소배열구조
KR101193636B1 (ko) 2010-07-26 2012-10-24 대우버스(주) 스포일러 일체형 프런트 어퍼 패널
DE102011053000B4 (de) * 2010-08-27 2017-08-17 Lg Display Co., Ltd. Organische elektrolumineszente Vorrichtung
KR101257734B1 (ko) * 2010-09-08 2013-04-24 엘지디스플레이 주식회사 유기전계발광 표시장치
KR101328979B1 (ko) * 2011-06-30 2013-11-13 삼성디스플레이 주식회사 유기 발광 표시장치
KR101615332B1 (ko) 2012-03-06 2016-04-26 삼성디스플레이 주식회사 유기 발광 표시 장치의 화소 배열 구조
US8994056B2 (en) 2012-07-13 2015-03-31 Intematix Corporation LED-based large area display
KR102006875B1 (ko) * 2012-10-05 2019-08-05 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 시인성 평가 방법
US9614191B2 (en) 2013-01-17 2017-04-04 Kateeva, Inc. High resolution organic light-emitting diode devices, displays, and related methods
CN203260585U (zh) * 2013-01-24 2013-10-30 昆山维信诺显示技术有限公司 用于oled显示屏的像素结构及其金属掩膜板及oled显示屏
KR102182953B1 (ko) 2013-11-26 2020-11-25 엘지디스플레이 주식회사 유기발광표시패널 및 이를 이용한 유기발광표시장치
KR102141542B1 (ko) * 2013-12-31 2020-09-14 엘지디스플레이 주식회사 표시장치
CN103886825B (zh) 2014-02-21 2016-02-17 北京京东方光电科技有限公司 像素阵列的驱动方法和显示装置
CN103903524B (zh) * 2014-03-25 2016-06-15 京东方科技集团股份有限公司 显示方法
CN104037202B (zh) 2014-06-12 2017-08-04 上海和辉光电有限公司 一种amoled显示器件及其子像素结构的制备方法
CN104166259B (zh) * 2014-07-30 2017-02-08 京东方科技集团股份有限公司 显示基板及其驱动方法和显示装置
CN105448951B (zh) 2014-08-29 2019-01-29 上海和辉光电有限公司 Oled显示装置
CN104319283B (zh) 2014-10-27 2016-03-02 京东方科技集团股份有限公司 一种有机电致发光显示器件、其驱动方法及显示装置
CN104332486A (zh) 2014-10-29 2015-02-04 上海和辉光电有限公司 Oled像素排列结构
CN105552099A (zh) 2014-10-29 2016-05-04 上海和辉光电有限公司 一种oled像素排列结构
CN104299561B (zh) 2014-10-31 2017-01-18 京东方科技集团股份有限公司 像素阵列的驱动方法
CN105118424B (zh) * 2014-12-05 2017-12-08 京东方科技集团股份有限公司 数据传输模块及方法、显示面板及驱动方法、显示装置
CN104465714B (zh) 2014-12-30 2017-04-26 京东方科技集团股份有限公司 一种像素结构及其显示方法、显示装置
TWI598662B (zh) 2015-01-12 2017-09-11 聯詠科技股份有限公司 顯示面板
CN104505015B (zh) 2015-01-13 2017-02-15 京东方科技集团股份有限公司 显示面板的显示方法、显示面板及显示装置
TWI585726B (zh) 2015-03-25 2017-06-01 鴻海精密工業股份有限公司 畫素結構
CN104680948B (zh) 2015-03-31 2018-01-19 京东方科技集团股份有限公司 一种像素结构、其驱动方法及显示装置
CN104835832A (zh) 2015-05-18 2015-08-12 京东方科技集团股份有限公司 像素排列结构、有机电致发光器件、显示装置、掩模板
CN105137641B (zh) 2015-08-28 2018-10-30 厦门天马微电子有限公司 显示装置及显示方法
CN105139764B (zh) 2015-09-23 2018-02-06 厦门天马微电子有限公司 显示装置及显示方法
CN106023819B (zh) 2016-05-27 2019-08-30 京东方科技集团股份有限公司 像素结构、阵列基板、显示装置和显示装置的驱动方法
CN108010934B (zh) 2016-10-31 2024-01-23 昆山国显光电有限公司 像素结构及其形成方法、oled显示面板以及蒸镀掩膜版
CN206322697U (zh) * 2016-11-21 2017-07-11 昆山国显光电有限公司 像素结构及包含所述像素结构的oled显示面板
CN108091667B (zh) 2016-11-21 2024-06-14 昆山国显光电有限公司 像素结构及包含所述像素结构的oled显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092238A1 (en) * 2010-10-15 2012-04-19 Soonjae Hwang Subpixel arrangement structure for display device
CN103208507A (zh) * 2013-01-15 2013-07-17 友达光电股份有限公司 电激发光显示面板的像素结构
CN103123927A (zh) * 2013-01-24 2013-05-29 昆山维信诺显示技术有限公司 用于oled显示屏的像素结构及其金属掩膜板
CN103943032A (zh) * 2014-04-01 2014-07-23 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN105044954A (zh) * 2015-08-28 2015-11-11 厦门天马微电子有限公司 像素结构、显示方法及显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678182A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116486738A (zh) * 2023-06-19 2023-07-25 长春希达电子技术有限公司 像素复用方法、数据传输***以及显示屏控制***和方法
CN116486738B (zh) * 2023-06-19 2023-09-19 长春希达电子技术有限公司 像素复用方法、数据传输***以及显示屏控制***和方法

Also Published As

Publication number Publication date
EP3678182A1 (en) 2020-07-08
US11152432B1 (en) 2021-10-19
KR102466271B1 (ko) 2022-11-14
EP3678182A4 (en) 2020-09-02
KR20190131581A (ko) 2019-11-26
JP7015324B2 (ja) 2022-02-02
JP2020520482A (ja) 2020-07-09
US20210335906A1 (en) 2021-10-28
TW201909411A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2019042072A1 (zh) 像素结构、oled显示装置及驱动方法
CN107731870B (zh) 有机发光二极管像素结构及包含其的显示面板、显示装置
US10950666B2 (en) Pixel structure, OLED display screen and evaporation mask
TWI676165B (zh) 像素結構及包含所述像素結構的顯示面板
CN109713027B (zh) 一种有机发光显示面板的像素排布及有机发光显示面板
US10971555B2 (en) Pixel structure and display apparatus
TWI659408B (zh) 像素結構驅動方法
US9542885B2 (en) Pixel unit, display panel, display method and display device
CN108511480A (zh) 像素结构以及oled显示装置
TWI698013B (zh) 像素陣列、顯示面板及電子裝置
CN108091667B (zh) 像素结构及包含所述像素结构的oled显示面板
WO2018077006A1 (zh) 一种像素阵列、显示面板、显示装置及驱动方法
CN109524449B (zh) 像素结构、显示基板和显示装置
WO2019041958A1 (zh) 一种像素结构及oled显示面板
WO2022160827A1 (zh) 像素阵列、显示装置及高精度金属掩膜板
CN206115897U (zh) 一种像素排列结构、显示面板及显示装置
CN210052744U (zh) 像素排列结构、彩膜结构及显示面板
CN109427265B (zh) 像素驱动方法
CN109427291B (zh) 像素结构驱动方法
US11195882B2 (en) Pixel arrangement structure, display substrate and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197032742

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019563815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018849577

Country of ref document: EP

Effective date: 20200331