WO2019042047A1 - 一种辅助停车方法、装置及*** - Google Patents

一种辅助停车方法、装置及*** Download PDF

Info

Publication number
WO2019042047A1
WO2019042047A1 PCT/CN2018/096857 CN2018096857W WO2019042047A1 WO 2019042047 A1 WO2019042047 A1 WO 2019042047A1 CN 2018096857 W CN2018096857 W CN 2018096857W WO 2019042047 A1 WO2019042047 A1 WO 2019042047A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
vehicle
determining
frequency signals
parking
Prior art date
Application number
PCT/CN2018/096857
Other languages
English (en)
French (fr)
Inventor
马希通
赵天月
张治国
曾起
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/341,215 priority Critical patent/US10643476B2/en
Priority to EP18851552.2A priority patent/EP3678115A4/en
Publication of WO2019042047A1 publication Critical patent/WO2019042047A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0247Determining attitude
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/147Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/141Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces
    • G08G1/143Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces inside the vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/145Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
    • G08G1/146Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas where the parking area is a limited parking space, e.g. parking garage, restricted space
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/145Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
    • G08G1/147Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas where the parking area is within an open public zone, e.g. city centre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2356/00Detection of the display position w.r.t. other display screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/10Automotive applications

Definitions

  • Embodiments of the present disclosure relate to an assisted parking method, apparatus, and system.
  • the embodiments of the present disclosure provide an auxiliary parking method, apparatus, and system for solving the problem that the existing parking lot is prone to waste of parking space.
  • an assisted parking method including:
  • Information identifying the virtual location of the vehicle that is expected to park is displayed in the image of the vehicle based on the determined location of the vehicle within the parking area and at least one available vehicle virtual location within the parking area.
  • the number of the radio frequency identification transmitting devices is greater than two;
  • Determining, according to each of the received radio frequency signals, a current location of the vehicle in the parking area including:
  • the radio frequency signal includes: identification information of the radio frequency identification transmitting device, and determining the current location of the vehicle according to the determined time difference of each of the signals received. ,include:
  • the average value of the intersection position between the hyperbolas corresponding to each of the distance differences is taken as the current location of the vehicle.
  • the radio frequency signal further includes: sending time identification information of the radio frequency identification transmitting device;
  • Determining, according to each of the received radio frequency signals, a current location of the vehicle in the parking area including:
  • Determining a current location of the vehicle based on the determined signal transmission time of each of the radio frequency signals.
  • the determining the current location of the vehicle according to the determined signal transmission time of each of the radio frequency signals includes:
  • Determining a circular arc curve corresponding to each of the radio frequency signals by using a position information corresponding to the identification information of the radio frequency identification transmitting device of each of the radio frequency signals as an origin, and using a transmission distance of each of the radio frequency signals as a radius;
  • the average value of the intersection position of the arc curve corresponding to each of the radio frequency signals is taken as the current location of the vehicle.
  • the determining the current location of the vehicle in the parking area according to the received radio frequency signals includes:
  • the current location of the head and tail of the vehicle within the parking area is determined based on each of the radio frequency signals received at the head and tail of the vehicle.
  • the method further includes:
  • An identification offset line of the vehicle relative to the virtual position of the vehicle that is expected to park is displayed in the image of the vehicle based on the central axis of the vehicle and the virtual position of the vehicle that is expected to park.
  • an auxiliary parking device including:
  • a camera configured to acquire an image of the vehicle when the vehicle image acquisition mode is activated
  • the radio frequency tag is configured to receive, in real time, a plurality of radio frequency signals synchronously transmitted by the plurality of radio frequency identification transmitting devices distributed in the parking area when the vehicle image acquisition mode is activated;
  • a processor configured to determine a startup vehicle image acquisition mode; determine, according to each of the received radio frequency signals, a current location of the vehicle in the parking area; according to the determined current location of the vehicle in the parking area, and At least one usable vehicle virtual location within the parking area displays information identifying the virtual location of the vehicle that is expected to park in the image of the vehicle.
  • the processor is configured to synchronously transmit the received plurality of radio frequency identification transmitting devices when the number of the radio frequency identification transmitting devices is greater than two. Determining, by each of the radio frequency signals, a signal receiving time difference between the received first radio frequency signal and the received subsequent each radio frequency signal; determining, according to the determined time difference of each of the signals, determining that the vehicle is currently located position.
  • the processor is configured to determine each of the signals according to the determined time difference of each of the signals and the identification information of each of the radio frequency identification transmitting devices.
  • the radio frequency signal includes: identification information of the radio frequency identification transmitting device, and the processor is configured to have more than one radio frequency identification transmitting device, And determining, by the radio frequency identification signal, the transmission time identification information of the radio frequency identification transmitting device, determining a signal receiving time of each of the radio frequency signals; and transmitting time of the radio frequency identification transmitting device according to each of the radio frequency signals.
  • the identification information, and the signal receiving time of each of the radio frequency signals determine a signal transmission time of each of the radio frequency signals; and determine a current location of the vehicle according to the determined signal transmission time of each of the radio frequency signals.
  • the processor is configured to determine a transmission distance of each of the radio frequency signals according to the determined signal transmission time of each of the radio frequency signals;
  • the position information corresponding to the identification information of the radio frequency identification transmitting device of the radio frequency signal is an origin, and the arc distance corresponding to each of the radio frequency signals is determined by using a transmission distance of each radio frequency signal as a radius; corresponding to each radio frequency signal
  • the average of the intersection positions of the arc curves is taken as the current location of the vehicle.
  • the radio frequency tags are respectively located at the head and the tail of the vehicle;
  • the processor is configured to determine a current location of a head and a tail of the vehicle within the parking area based on each of the radio frequency signals received at a head and a tail of the vehicle.
  • the processor is further configured to determine a central axis of the vehicle according to the determined current position of the head and the tail of the vehicle in the parking area. And displaying an identification offset line of the vehicle relative to the virtual position of the vehicle that is expected to be parked in the image of the vehicle according to the central axis of the vehicle and the virtual position of the vehicle that is expected to be parked.
  • an auxiliary parking system comprising: the above-described auxiliary parking device provided by an embodiment of the present disclosure disposed in a vehicle, and a plurality of radio frequency identification transmitting devices distributed in the parking area.
  • FIG. 1 is a schematic flow chart of an auxiliary parking method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a radio frequency identification transmitting device and a vehicle position in an auxiliary parking method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of time difference calculation in an auxiliary parking method according to an embodiment of the present disclosure
  • FIG. 4 is a second schematic diagram of determining a vehicle position in an auxiliary parking method according to an embodiment of the present disclosure
  • FIG. 5 is a second schematic flowchart of an auxiliary parking method according to an embodiment of the present disclosure.
  • FIG. 6 is a second schematic diagram of determining a vehicle position in an auxiliary parking method according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of determining an identification offset marking line in an auxiliary parking method according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of an auxiliary parking device according to an embodiment of the present disclosure.
  • An auxiliary parking method provided by an embodiment of the present disclosure, as shown in FIG. 1 may include the following steps:
  • S102 Receive, in real time, a plurality of radio frequency signals that are synchronously transmitted by at least two radio frequency identification transmitting devices distributed in the parking area;
  • S104 Display, according to the determined current location of the vehicle in the parking area, and at least one available vehicle virtual position in the parking area, information indicating the virtual position of the vehicle that is expected to be parked in the image of the vehicle.
  • the radio frequency signal in step S102 includes: identification information of the radio frequency identification transmitting device.
  • At least one of the usable vehicle virtual locations in step S104 can be all available vehicle virtual locations.
  • auxiliary parking method when determining the startup vehicle image acquisition mode, a plurality of radio frequency signals synchronously transmitted by at least two radio frequency identification transmitting devices distributed in the parking area are received in real time, and the radio frequency signal is received.
  • identification information of the radio frequency identification transmitting device After that, according to the received radio frequency signals, the current location of the vehicle in the parking area can be determined; finally, according to the determined current location of the vehicle in the parking area, and the predetermined parking All the virtual positions of the vehicles that can be used in the area, and information indicating the virtual position of the vehicle that is expected to stop is displayed in the image of the vehicle, so as to guide the driver of the vehicle to perform the normal parking according to the information of the virtual position of the vehicle, so that the space of the parking area is sufficient use.
  • the step S101 determines that the vehicle image acquisition mode is activated, and may be a mode for determining that the vehicle starts the camera to acquire an image, and may be adopted according to different vehicle models and configurations.
  • the camera disposed at the rear of the vehicle acquires the image of the rear of the vehicle so that the driver can reverse the image according to the image, or the camera (including but not limited to the front camera, the side camera, and the rear camera) disposed around the vehicle can be used to obtain the surrounding of the vehicle.
  • a 360-degree panoramic image of the image so that the driver can enter the library or reverse the storage according to the image. That is, when it is determined in step S101 that the vehicle image acquisition mode is activated, it can be considered that the driver of the vehicle may need to perform parking, so that the subsequent steps S102 to S104 can be performed.
  • the location of the radio frequency identification transmitting device disposed in the parking area may be determined according to the size of the parking area.
  • the radio frequency identification transmitting device can be disposed at four corner positions of the parking area, so that the radio frequency signal transmitted by the radio frequency identification transmitting device can cover the parking area.
  • Each vehicle in order to be able to determine the current location of the vehicle according to the radio frequency signal transmitted by each radio frequency identification transmitting device, at least two radio frequency signals can be used for positioning. Therefore, at least two radio frequency identification transmitting devices, each radio frequency identification transmitting device, should be disposed in the parking area. There can be a certain distance between them.
  • the radio frequency signal transmitted by each radio frequency identification transmitting device should include the identification information of the radio frequency identification transmitting device; the identification information may be an identification code of the radio frequency identification transmitting device to identify the unique identity of the radio frequency identification transmitting device; It may be geographic location information of the radio frequency identification transmitting device, or coordinate information, to identify the unique identity of the radio frequency identification transmitting device.
  • each radio frequency identification transmitting device since the radio frequency signal transmitting function of each radio frequency identification transmitting device is generally controlled by the parking area manager, in general, each radio frequency identification transmitting device transmits a radio frequency signal every set time interval. When the distance between the vehicles in the parking area and the radio frequency identification transmitting devices is different, the time for receiving the radio frequency signals is different. In order to prevent the vehicle from distinguishing the synchronization relationship between the received radio frequency signals, generally, each radio frequency signal is required.
  • the synchronization identification information of each radio frequency signal is carried, and the synchronization identification information may be, for example, a time node for synchronous transmission, or a number of times of synchronous transmission, and the like, as long as the synchronization relationship of each radio frequency signal can be indicated.
  • the radio frequency tag is placed or installed in the vehicle for receiving the radio frequency signal transmitted by each radio frequency identification transmitting device.
  • the number of radio frequency tags in the vehicle may be one or two or more. When the radio frequency tags are two, they are generally located at the front and the rear of the vehicle, so as to accurately position the front and the rear of the vehicle.
  • step S103 determines that the parking area is in the parking area according to the received radio frequency signals.
  • the current location of the vehicle can be achieved as follows:
  • the signal receiving time difference between the received first radio frequency signal and the received subsequent radio frequency signals is determined.
  • the middle box represents the vehicle.
  • the time for receiving each radio frequency signal is different, and when the radio frequency tag receives the synchronization.
  • the first radio frequency signal of the transmitted radio frequency signal is as shown in FIG. 3, the time when the reception time is ta is started, the timer starts to be started, and the other radio frequency signals that are synchronously transmitted are subsequently received, and the reception time tb, tc and Td, the time difference ⁇ t1, ⁇ t2 and ⁇ t3 between the first RF signal received and received.
  • the current location of the vehicle is determined.
  • the distance difference between each radio frequency identification transmitting device corresponding to each signal receiving time difference and the current location of the vehicle may be determined according to the determined time difference of each signal received and the identification information of each radio frequency identification transmitting device, that is, the time difference is converted into a distance difference. . Then, according to the position information corresponding to the identification information of the radio frequency identification transmitting device of each radio frequency signal, and the distance difference, the hyperbola corresponding to each distance difference is determined. As shown in Figure 4, a corresponding three hyperbola can be made.
  • the average value of the intersection position between the hyperbolas corresponding to each distance difference is taken as the current position of the vehicle, that is, the three hyperbolic curves should theoretically intersect at one point, but considering the actual existence error may intersect at multiple points.
  • the coordinates of each intersection point are calculated, and the distance between each intersection point is calculated, and the average of the coordinates of the three intersection points of the closest distance (indicated by a triangle in FIG. 4) is taken as the coordinate value of the current position of the vehicle.
  • the step S103 in the above-mentioned auxiliary parking method is determined according to the received radio frequency signals, and the implementation manner of determining the current location of the vehicle in the parking area is not limited to the above manner, and may also be Use other methods.
  • the radio frequency signal may further include: sending time identification information of the radio frequency identification transmitting device, that is, a sending time of each radio frequency signal.
  • step S103 determines, according to the received radio frequency signals, the current location of the vehicle in the parking area, which can be implemented as follows:
  • the signal transmission time of each radio frequency signal is determined, and the distance is different due to the distance of the vehicle from each radio frequency identification transmitting device.
  • the time to each RF signal is also different, and the signal transmission time of each RF signal is also different.
  • the current location of the vehicle is determined based on the determined signal transmission time of each radio frequency signal.
  • the transmission distance of each radio frequency signal may be determined according to the determined signal transmission time of each radio frequency signal, that is, the transmission time is converted into a transmission distance; and then, the location information corresponding to the identification information of the radio frequency identification transmitting device of each radio frequency signal is used. For the origin, the arc distance corresponding to each radio frequency signal is determined by using the transmission distance of each radio frequency signal as a radius.
  • the average value of the intersection position of the arc curve corresponding to each RF signal is taken as the current position of the vehicle, that is, each arc curve should theoretically intersect at a point, but considering the actual error may intersect at multiple points.
  • the coordinates of each intersection point are calculated, and the distance between each intersection point is calculated, and the average value of the coordinates of the three intersection points of the closest distance is taken as the coordinate value of the current location of the vehicle.
  • the processor of the vehicle may be directed to the parking area after the step S104 is performed after determining the current location of the vehicle in the parking area determined by step S103.
  • the vehicle virtual location information is calculated by the parked vehicles already in the parking area, and can be updated and changed according to the location information of the stopped vehicle to optimize Parking spaces in the parking area.
  • step S104 several vehicle virtual positions adjacent to the current location of the vehicle may be determined as the predicted parking position in all the available vehicle virtual positions in the predetermined parking area, and then the identification is displayed in the image of the vehicle. Information about the virtual location of the vehicle that is expected to park.
  • step S103 determines that the parking is based on the received radio frequency signals.
  • the current location of the vehicle in the area can be achieved as follows:
  • the current position of the head and tail of the vehicle in the parking area is determined based on the respective radio frequency signals received at the head and tail of the vehicle.
  • the head coordinates are (x1, y1)
  • the parking space coordinates are (x2, y2).
  • the central axis of the vehicle can be determined, and the vertical distance L of the coordinates of the reversing camera to the central axis of the parking space can be calculated. And calculating the angle ⁇ between the central axis of the vehicle and the horizontal line of the parking space, and calculating the identification offset line A of the vehicle relative to the virtual position of the vehicle that is expected to stop in the image of the vehicle by the L and ⁇ angles.
  • L' is calculated from L by the image ratio.
  • the marking offset line A gradually moves closer to the standard marking line (ie parallel to the sides of the parking space and the center line of the standard marking line coincides with the center line of the parking space), and the ⁇ angle gradually approaches 90°, when the standard
  • the offset marking A and the standard marking match within the allowable error, it indicates that the owner has stopped the vehicle according to the regulations, otherwise the vehicle owner is prompted to make adjustments.
  • an embodiment of the present disclosure further provides an auxiliary parking device and system. Since the principle of solving the problem is similar to the foregoing auxiliary parking method, the implementation of the device and system can refer to the implementation of the method. , the repetition will not be repeated.
  • an auxiliary parking device provided by an embodiment of the present disclosure is disposed inside a vehicle, as shown in FIG. 8, and includes:
  • the camera 801 is configured to acquire an image of the vehicle when the vehicle image acquisition mode is activated.
  • the camera 801 can be a depth camera, a binocular camera, or the like.
  • the radio frequency tag 802 is configured to receive, in real time, a plurality of radio frequency signals synchronously transmitted by the plurality of radio frequency identification transmitting devices distributed in the parking area when determining the starting image acquisition mode of the vehicle.
  • the radio frequency signal includes: identification information of the radio frequency identification transmitting device.
  • the radio frequency tag 802 can be an active radio frequency tag, a passive radio frequency tag, a semi-active radio frequency tag, and the like.
  • the processor 803 is configured to determine a startup vehicle image acquisition mode, and determine, according to the received radio frequency signals, a current location of the vehicle in the parking area; according to the determined current location of the vehicle in the parking area, and at least one of the parking areas or All available vehicle virtual locations display information in the image of the vehicle that identifies the virtual location of the vehicle that is expected to park.
  • the processor 803 can be a general purpose processor, such as a central processing unit CPU, or a dedicated processor, such as a programmable logic circuit PLD, a field programmable gate array FPGA, or the like.
  • the processor 803 is further configured to synchronously transmit the received multiple radio frequency identification transmitting devices when the number of the radio frequency identification transmitting devices is greater than two.
  • the signal receiving time difference between the received first radio frequency signal and the received subsequent radio frequency signals is determined; and the current location of the vehicle is determined according to the determined time difference of each signal receiving.
  • the processor 803 is further configured to determine each signal according to the determined time difference of each signal received and the identification information of each radio frequency identification transmitting device. Receiving a time difference corresponding to a distance difference between each radio frequency identification transmitting device to a current location of the vehicle; determining a hyperbola corresponding to each distance difference according to the position information corresponding to the identification information of the radio frequency identification transmitting device of each radio frequency signal, and the distance difference; The average of the intersection positions between the hyperbolas corresponding to the distance difference is taken as the current location of the vehicle.
  • the processor 803 is further configured to: when the number of radio frequency identification transmitting devices is greater than one, and the radio frequency signal further includes the sending time identification information of the radio frequency identification transmitting device. Determining a signal receiving time of each radio frequency signal; determining a signal transmission time of each radio frequency signal according to a transmission time identification information of the radio frequency identification transmitting device included in each radio frequency signal, and a signal receiving time of each radio frequency signal; The signal transmission time of each RF signal determines the current location of the vehicle.
  • the processor 803 is further configured to determine a transmission distance of each radio frequency signal according to the determined signal transmission time of each radio frequency signal;
  • the position information corresponding to the identification information of the radio frequency identification transmitting device is the origin, and the arc distance corresponding to each radio frequency signal is determined by the transmission distance of each radio frequency signal; the average value of the intersection position of the arc curve corresponding to each radio frequency signal is As the current location of the vehicle.
  • the radio frequency tags 802 are respectively located at the head and the tail of the vehicle.
  • the processor 803 is further configured to determine a current location of the head and the tail of the vehicle in the parking area according to the respective radio frequency signals received at the head and the tail of the vehicle.
  • the processor 803 is further configured to determine a central axis of the vehicle according to the determined current position of the head and the tail of the vehicle in the parking area; An identification offset line of the vehicle relative to the virtual position of the vehicle that is expected to park is displayed in the image of the vehicle based on the central axis of the vehicle and the virtual position of the vehicle that is expected to park.
  • an auxiliary parking system provided by an embodiment of the present disclosure includes: the auxiliary parking device provided by the embodiment of the present disclosure disposed in a vehicle, and a plurality of radio frequency identification transmitting devices distributed in the parking area.
  • the above-mentioned auxiliary parking method, device and system provided by the embodiments of the present disclosure receive a plurality of radio frequency signals synchronously transmitted by at least two radio frequency identification transmitting devices distributed in the parking area in real time when determining the starting image acquisition mode of the vehicle, the radio frequency signal Included: identification information of the radio frequency identification transmitting device; after that, according to the received radio frequency signals, the current location of the vehicle in the parking area can be determined; finally, according to the determined current location of the vehicle in the parking area, and the predetermined parking All the virtual positions of the vehicles that can be used in the area, and information indicating the virtual position of the vehicle that is expected to stop is displayed in the image of the vehicle, so as to guide the driver of the vehicle to perform the normal parking according to the information of the virtual position of the vehicle, so that the space of the parking area is sufficient use.
  • the embodiments of the present disclosure may be implemented by hardware, or may be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.). A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.
  • a computer device which may be a personal computer, server, or network device, etc.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into multiple sub-modules.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种辅助停车方法,该方法包括,在启动车辆影像获取模式时,实时接收分布于停车区域内的至少两个射频识别发射装置同步发送的多个射频信号,之后,可以根据接收到的各射频信号,确定在停车区域内车辆当前所在位置;最后,根据确定出的停车区域内车辆当前所在位置,以及停车区域内至少一个可使用的车辆虚拟位置,在车辆的影像中显示标识预计停车的车辆虚拟位置的信息,以达到引导车辆驾驶员根据车辆虚拟位置的信息进行规范停车的效果,使得停车区域的空间充分利用。还提供了一种辅助停车装置以及辅助停车***。

Description

一种辅助停车方法、装置及*** 技术领域
本公开实施例涉及一种辅助停车方法、装置及***。
背景技术
目前,在一些临时的停车场合,没有固定的车位框线,容易出现车辆停放不规整,而造成浪费场地空间的问题。或者,在一些停车区域,虽然规划有固定的车位框线,但是已停车辆停放不规整,并未停放在固定的车位框线内,导致已有的固定车位不能被全部有效利用,而造成浪费场地空间的问题。
发明内容
有鉴于此,本公开实施例提供了一种辅助停车方法、装置及***,用以解决现有的停车场地容易出现停车空间浪费的问题。
根据本公开的至少一个实施例,提供了一种辅助停车方法,包括:
启动车辆影像获取模式;
实时接收分布于停车区域内的至少两个射频识别发射装置同步发送的多个射频信号;
根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置;
根据确定出的所述停车区域内车辆当前所在位置,以及所述停车区域内至少一个可使用的车辆虚拟位置,在所述车辆的影像中显示标识预计停车的车辆虚拟位置的信息。
例如,在本公开实施例提供上述辅助停车方法中,所述射频识别发射装置的数量大于两个;
所述根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置,包括:
在接收到的所述多个射频识别发射装置同步发送的各所述射频信号中,确定接收到的首个所述射频信号与接收到的后续各所述射频信号的信号接收时间差;
根据确定出的各所述信号接收时间差,确定所述车辆当前所在位置。
例如,在本公开实施例提供上述辅助停车方法中,所述射频信号包括:所述射频识别发射装置的标识信息,所述根据确定出的各所述信号接收时间差,确定所述车辆当前所在位置,包括:
根据确定出的各所述信号接收时间差,以及各所述射频识别发射装置的标识信息,确定各所述信号接收时间差对应的各所述射频识别发射装置到所述车辆当前所在位置的距离差;
根据各所述射频信号的所述射频识别发射装置的标识信息对应的位置信息,以及所述距离差,确定各所述距离差对应的双曲线;
以各所述距离差对应的双曲线之间的交点位置的平均值作为所述车辆当前所在位置。
例如,在本公开实施例提供上述辅助停车方法中,所述射频信号还包括:所述射频识别发射装置的发送时间标识信息;
所述根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置,包括:
确定接收到各所述射频信号的信号接收时间;
根据各所述射频信号包含的所述射频识别发射装置的发送时间标识信息,以及各所述射频信号的信号接收时间,确定各所述射频信号的信号传输时间;
根据确定出的各所述射频信号的信号传输时间,确定所述车辆当前所在位置。
例如,在本公开实施例提供上述辅助停车方法中,所述根据确定出的各所述射频信号的信号传输时间,确定所述车辆当前所在位置,包括:
根据确定出的各所述射频信号的信号传输时间,确定各所述射频信号的传输距离;
以各所述射频信号的所述射频识别发射装置的标识信息对应的位置信息为原点,以各所述射频信号的传输距离为半径,确定各所述射频信号对应的圆弧曲线;
以各所述射频信号对应的圆弧曲线的交点位置的平均值作为所述车辆当前所在位置。
例如,在本公开实施例提供上述辅助停车方法中,所述根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置,包括:
根据在所述车辆的头部和尾部接收到的各所述射频信号,确定在所述停车区域内车辆的头部和尾部当前所在位置。
例如,在本公开实施例提供上述辅助停车方法中,还包括:
根据确定出的在所述停车区域内车辆的头部和尾部当前所在位置,确定所述车辆的中轴线;
根据所述车辆的中轴线与预计停车的车辆虚拟位置,在所述车辆的影像中显示车辆相对于预计停车的车辆虚拟位置的标识偏移标线。
根据本公开的至少一个实施例,还提供了一种辅助停车装置,包括:
摄像头,被配置为在启动车辆影像获取模式时,获取车辆的影像;
射频标签,被配置为在启动车辆影像获取模式时,实时接收分布于停车区域内的多个射频识别发射装置同步发送的多个射频信号;
处理器,被配置为确定启动车辆影像获取模式;根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置;根据确定出的所述停车区域内车辆当前所在位置,以及所述停车区域内至少一个可使用的车辆虚拟位置,在所述车辆的影像中显示标识预计停车的车辆虚拟位置的信息。
例如,在本公开实施例提供上述辅助停车装置中,所述处理器,被配置为在所述射频识别发射装置的数量大于两个时,在接收到的所述多个射频识别发射装置同步发送的各所述射频信号中,确定接收到的首个所述射频信号与接收到的后续各所述射频信号的信号接收时间差;根据确定出的各所述信号接收时间差,确定所述车辆当前所在位置。
例如,在本公开实施例提供上述辅助停车装置中,所述处理器,被配置为根据确定出的各所述信号接收时间差,以及各所述射频识别发射装置的标识信息,确定各所述信号接收时间差对应的各所述射频识别发射装置到所述车辆当前所在位置的距离差;根据各所述射频信号的所述射频识别发射装置的标识信息对应的位置信息,以及所述距离差,确定各所述距离差对应的双曲线;以各所述距离差对应的双曲线之间的交点位置的平均值作为所述车辆当前所在位置。
例如,在本公开实施例提供上述辅助停车装置中,所述射频信号包括:所述射频识别发射装置的标识信息,所述处理器,被配置为在所述射频识别发射装置的数量大于一个,且所述射频信号还包括所述射频识别发射装置的发送时间标识信息时,确定接收到各所述射频信号的信号接收时间;根据各所述 射频信号包含的所述射频识别发射装置的发送时间标识信息,以及各所述射频信号的信号接收时间,确定各所述射频信号的信号传输时间;根据确定出的各所述射频信号的信号传输时间,确定所述车辆当前所在位置。
例如,在本公开实施例提供上述辅助停车装置中,所述处理器,被配置为根据确定出的各所述射频信号的信号传输时间,确定各所述射频信号的传输距离;以各所述射频信号的所述射频识别发射装置的标识信息对应的位置信息为原点,以各所述射频信号的传输距离为半径,确定各所述射频信号对应的圆弧曲线;以各所述射频信号对应的圆弧曲线的交点位置的平均值作为所述车辆当前所在位置。
例如,在本公开实施例提供上述辅助停车装置中,所述射频标签分别位于所述车辆的头部和尾部;
所述处理器,被配置为根据在所述车辆的头部和尾部接收到的各所述射频信号,确定在所述停车区域内车辆的头部和尾部当前所在位置。
例如,在本公开实施例提供上述辅助停车装置中,所述处理器,还被配置为根据确定出的在所述停车区域内车辆的头部和尾部当前所在位置,确定所述车辆的中轴线;根据所述车辆的中轴线与预计停车的车辆虚拟位置,在所述车辆的影像中显示车辆相对于预计停车的车辆虚拟位置的标识偏移标线。
根据本公开的至少一个实施例,还提供了一种辅助停车***,包括:设置于车辆内的本公开实施例提供的上述辅助停车装置,以及分布于停车区域内的多个射频识别发射装置。
附图说明
图1为本公开实施例提供的辅助停车方法的流程示意图之一;
图2为本公开实施例提供的辅助停车方法中的射频识别发射装置和车辆位置的示意图;
图3为本公开实施例提供的辅助停车方法中时间差计算的示意图;
图4为本公开实施例提供的辅助停车方法中确定车辆位置的示意图之二;
图5为本公开实施例提供的辅助停车方法的流程示意图之二;
图6为本公开实施例提供的辅助停车方法中确定车辆位置的示意图之二;
图7为本公开实施例提供的辅助停车方法中确定标识偏移标线的示意图;以及
图8为本公开实施例提供的辅助停车装置的结构示意图。
具体实施方式
下面结合附图,对本公开实施例提供的辅助停车方法、装置及***的具体实施方式进行详细地说明。
本公开实施例提供的一种辅助停车方法,如图1所示,可以包括以下步骤:
S101、启动车辆影像获取模式;
S102、实时接收分布于停车区域内的至少两个射频识别发射装置同步发送的多个射频信号;
S103、根据接收到的各射频信号,确定在停车区域内车辆当前所在位置;
S104、根据确定出的停车区域内车辆当前所在位置,以及停车区域内至少一个可使用的车辆虚拟位置,在车辆的影像中显示标识预计停车的车辆虚拟位置的信息。
在一个示例中,步骤S102中的射频信号包括:射频识别发射装置的标识信息。
在一个实例中,步骤S104中的至少一个可使用的车辆虚拟位置可以是全部可使用的车辆虚拟位置。
例如,在本公开实施例提供的上述辅助停车方法中,在确定启动车辆影像获取模式时,实时接收分布于停车区域内的至少两个射频识别发射装置同步发送的多个射频信号,该射频信号包括:射频识别发射装置的标识信息;之后,可以根据接收到的各射频信号,确定在停车区域内车辆当前所在位置;最后,根据确定出的停车区域内车辆当前所在位置,以及预先确定的停车区域内全部可使用的车辆虚拟位置,在车辆的影像中显示标识预计停车的车辆虚拟位置的信息,以达到引导车辆驾驶员根据车辆虚拟位置的信息进行规范停车的效果,使得停车区域的空间充分利用。
根据本公开的一个示例,在本公开实施例提供上述辅助停车方法中,步骤S101确定启动车辆影像获取模式,可以为确定车辆启动摄像头获取图像的模式,根据各个车辆型号和配置的不同,可以采用设置于车辆后方的摄像头获取车辆后方影像,以便驾驶员根据影像进行倒车入库,也可以采用设置于车辆四周的摄像头(包括但不限于前置摄像头、侧边摄像头和后置摄像头)获取车辆四周影像构成的360度全景影像,以便驾驶员根据影像进行前进入库或倒车入 库。即当步骤S101确定启动车辆影像获取模式时,即可认为车辆驾驶员有可能需要进行停车入库,因此可以执行后续步骤S102至步骤S104。
根据本公开的一个示例,在本公开实施例提供上述辅助停车方法中,在停车区域内设置的射频识别发射装置位置可以根据停车区域的场地大小而定。例如,一般地,如图2所示的图停车区域为规则的矩形时,射频识别发射装置可以设置在停车区域的四个边角位置,以便射频识别发射装置发射的射频信号可以覆盖停车区域内的各车辆。并且,为了能够根据各射频识别发射装置发送的射频信号确定车辆当前所在位置,可以使用至少两个射频信号进行定位,因此,在停车区域内应设置至少两个射频识别发射装置,各射频识别发射装置之间可以具有一定的间距。
并且,各射频识别发射装置发送的射频信号,应该包含该射频识别发射装置的标识信息;标识信息可以是该射频识别发射装置的识别码,以标识该射频识别发射装置的唯一身份;标识信息还可以是该射频识别发射装置的地理位置信息,或坐标信息,以标识该射频识别发射装置的唯一身份。
此外,由于各射频识别发射装置的射频信号发射功能一般是由停车区域管理者控制的,因此,一般情况下,各射频识别发射装置会每间隔设定时长发送射频信号。在停车区域内的车辆距离各射频识别发射装置的距离不同时,接收到射频信号的时间也不同,为了防止车辆无法分辨接收到的射频信号之间的同步关系,一般地,各射频信号中需要携带各射频信号的同步标识信息,同步标识信息例如可以是同步发送的时间节点,也可以是同步发送的次数标识信息等,只要能够表示各射频信号的同步关系即可。
对应地,在本公开实施例提供上述辅助停车方法中,车辆内放置或安装有射频标签,用以接收各射频识别发射装置发送的射频信号。并且,车辆内的射频标签可以为一个,也可以为两个或多个,当射频标签为两个时,一般分别位于车头和车尾,以便精确对车头和车尾进行定位。
根据本公开的一个示例,在本公开实施例提供上述辅助停车方法中,在停车区域内的射频识别发射装置的数量大于两个时,步骤S103根据接收到的各射频信号,确定在停车区域内车辆当前所在位置,可以通过如下方式实现:
首先,在接收到的多个射频识别发射装置同步发送的各射频信号中,确定接收到的首个射频信号与接收到的后续各射频信号的信号接收时间差。
例如以图2所示的停车区域为例,中间方框表示车辆,此时,由于车辆距 离各射频识别发射装置的远近不同,则接收到各射频信号的时间也不同,当射频标签接收到同步发送的射频信号中的首个射频信号时,如图3所示,记录收到时刻为ta时刻,启动定时器开始计时,后续收到同步发送的其他射频信号后记录收到时刻tb、tc和td,可以得出和接收到的首个射频信号之间时间差Δt1、Δt2和Δt3。
之后,根据确定出的各信号接收时间差,确定车辆当前所在位置。
例如,可以先根据确定出的各信号接收时间差,以及各射频识别发射装置的标识信息,确定各信号接收时间差对应的各射频识别发射装置到车辆当前所在位置的距离差,即将时间差换算成距离差。之后,根据各射频信号的射频识别发射装置的标识信息对应的位置信息,以及距离差,确定各距离差对应的双曲线。如图4所示,可以作出相应的三条双曲线。最后,以各距离差对应的双曲线之间的交点位置的平均值作为车辆当前所在位置,即三条双曲线理论上应相交于一点,但是考虑实际存在误差可能会相交于多个点,得出各相交点的坐标,计算各个相交点之间的距离,取最近距离的三个相交点(图4中三角形表示)坐标的平均值作为车辆当前所在位置的坐标值。
根据本公开的一个示例,在本公开实施例提供上述辅助停车方法中的步骤S103根据接收到的各射频信号,确定在停车区域内车辆当前所在位置的实现方式并不局限于上述方式,还可以采用其他方式。
例如,在停车区域内的射频识别发射装置的数量大于一个时,射频信号还可以包括:射频识别发射装置的发送时间标识信息,即各射频信号的发送时刻。此时,步骤S103根据接收到的各射频信号,确定在停车区域内车辆当前所在位置,可以通过如下方式实现:
首先,确定接收到各射频信号的信号接收时间。
之后,根据各射频信号包含的射频识别发射装置的发送时间标识信息,以及各射频信号的信号接收时间,确定各射频信号的信号传输时间,由于车辆距离各射频识别发射装置的远近不同,因此接收到各射频信号的时间也不同,则各射频信号的信号传输时间也不同。
最后,根据确定出的各射频信号的信号传输时间,确定车辆当前所在位置。
例如,可以首先根据确定出的各射频信号的信号传输时间,确定各射频信号的传输距离,即将传输时间换算成传输距离;之后,以各射频信号的射频识别发射装置的标识信息对应的位置信息为原点,以各射频信号的传输距离为半 径,确定各射频信号对应的圆弧曲线。最后,以各射频信号对应的圆弧曲线的交点位置的平均值作为车辆当前所在位置,即各条圆弧曲线理论上应相交于一点,但是考虑实际存在误差可能会相交于多个点,得出各相交点的坐标,计算各个相交点之间的距离,取最近距离的三个相交点坐标的平均值作为车辆当前所在位置的坐标值。
根据本公开的一个示例,在本公开实施例提供上述辅助停车方法中,在利用步骤S103确定出的停车区域内车辆当前所在位置之后,在执行步骤S104之前,车辆的处理器可以向停车区域的管理***所要停车区域内全部可使用的车辆虚拟位置信息,该车辆虚拟位置信息是通过停车区域内已有的停放车辆计算获得的,并且可以根据已停车辆的位置信息进行更新和变动,以便优化停车区域内的车位。在执行步骤S104时,可以在预先确定的停车区域内全部可使用的车辆虚拟位置中确定与车辆当前所在位置相邻的几个车辆虚拟位置作为预计停车的位置,之后在车辆的影像中显示标识预计停车的车辆虚拟位置的信息。
进一步地,根据本公开的一个示例,在本公开实施例提供上述辅助停车方法中,当在车辆的车头和车尾分别设置有射频标签时,步骤S103根据接收到的各射频信号,确定在停车区域内车辆当前所在位置,可以通过如下方式实现:
根据在车辆的头部和尾部接收到的各射频信号,确定在停车区域内车辆的头部和尾部当前所在位置。
根据本公开的一个示例,在本公开实施例提供上述辅助停车方法中,在确定了车辆的头部和尾部当前所在位置之后,例如车头坐标为(x1,y1),车位坐标为(x2,y2),为了方便引导车辆驾驶员将车辆停入所需的车辆虚拟位置,如图5所示,还可以包括以下步骤:
S501、根据确定出的在停车区域内车辆的头部和尾部当前所在位置,确定车辆的中轴线。
S502、根据车辆的中轴线与预计停车的车辆虚拟位置,在车辆的影像中显示车辆相对于预计停车的车辆虚拟位置的标识偏移标线。
例如,如图6所示,根据车头坐标(x1,y1)和车位坐标(x2,y2),可以确定车辆的中轴线,并计算出倒车摄像头所在的坐标到该车位中轴线的垂直距离L,以及计算出车辆的中轴线与车位水平线之间的夹角α,通过L和α角度在车辆的影像中计算出车辆相对于预计停车的车辆虚拟位置的标识偏移标 线A。如图7所示,其中的L’由L按影像比例算出。随着倒车的进行,标识偏移标线A逐渐往标准标线(即平行于车位的两侧且标准标线的中心线与车位的中心线重合)靠拢,α角度逐渐接近90°,当标准偏移标线A与标准标线在允许误差内吻合时,表明车主按规定停好车辆,否则提示车主进行调整。
基于同一发明构思,本公开实施例还提供了一种辅助停车装置及***,由于该装置及***解决问题的原理与前述一种辅助停车方法相似,因此该装置和***的实施可以参见方法的实施,重复之处不再赘述。
例如,本公开实施例提供的一种辅助停车装置,设置于车辆内部,如图8所示,包括:
摄像头801,用于在启动车辆影像获取模式时,获取车辆的影像。例如,摄像头801可以是深度摄像头,双目摄像头等。
射频标签802,用于在确定启动车辆影像获取模式时,实时接收分布于停车区域内的多个射频识别发射装置同步发送的多个射频信号。例如,射频信号包括:射频识别发射装置的标识信息。例如,射频标签802可以是有源射频标签,无源射频标签,半有源射频标签等等。
处理器803,用于确定启动车辆影像获取模式;根据接收到的各射频信号,确定在停车区域内车辆当前所在位置;根据确定出的停车区域内车辆当前所在位置,以及停车区域内至少一个或全部可使用的车辆虚拟位置,在车辆的影像中显示标识预计停车的车辆虚拟位置的信息。例如,处理器803可以是通用处理器,例如中央处理器CPU,也可以是专用处理器,例如可编程逻辑电路PLD,现场可编程门阵列FPGA等。
根据本公开的一个示例,在本公开实施例提供上述辅助停车装置中,处理器803,进一步用于在射频识别发射装置的数量大于两个时,在接收到的多个射频识别发射装置同步发送的各射频信号中,确定接收到的首个射频信号与接收到的后续各射频信号的信号接收时间差;根据确定出的各信号接收时间差,确定车辆当前所在位置。
或者,根据本公开的一个示例,在本公开实施例提供上述辅助停车装置中,处理器803,进一步用于根据确定出的各信号接收时间差,以及各射频识别发射装置的标识信息,确定各信号接收时间差对应的各射频识别发射装置到车辆当前所在位置的距离差;根据各射频信号的射频识别发射装置的标识信息对应的位置信息,以及距离差,确定各距离差对应的双曲线;以各距离差对应的双 曲线之间的交点位置的平均值作为车辆当前所在位置。
根据本公开的一个示例,在本公开实施例提供上述辅助停车装置中,处理器803,进一步用于在射频识别发射装置的数量大于一个,且射频信号还包括射频识别发射装置的发送时间标识信息时,确定接收到各射频信号的信号接收时间;根据各射频信号包含的射频识别发射装置的发送时间标识信息,以及各射频信号的信号接收时间,确定各射频信号的信号传输时间;根据确定出的各射频信号的信号传输时间,确定车辆当前所在位置。
根据本公开的一个示例,在本公开实施例提供上述辅助停车装置中,处理器803,进一步用于根据确定出的各射频信号的信号传输时间,确定各射频信号的传输距离;以各射频信号的射频识别发射装置的标识信息对应的位置信息为原点,以各射频信号的传输距离为半径,确定各射频信号对应的圆弧曲线;以各射频信号对应的圆弧曲线的交点位置的平均值作为车辆当前所在位置。
根据本公开的一个示例,在本公开实施例提供上述辅助停车装置中,射频标签802分别位于车辆的头部和尾部。
处理器803,进一步用于根据在车辆的头部和尾部接收到的各射频信号,确定在停车区域内车辆的头部和尾部当前所在位置。
根据本公开的一个示例,在本公开实施例提供上述辅助停车装置中,处理器803,还用于根据确定出的在停车区域内车辆的头部和尾部当前所在位置,确定车辆的中轴线;根据车辆的中轴线与预计停车的车辆虚拟位置,在车辆的影像中显示车辆相对于预计停车的车辆虚拟位置的标识偏移标线。
此外,本公开实施例提供的一种辅助停车***,包括:设置于车辆内的本公开实施例提供的上述辅助停车装置,以及分布于停车区域内的多个射频识别发射装置。
本公开实施例提供的上述辅助停车方法、装置及***,在确定启动车辆影像获取模式时,实时接收分布于停车区域内的至少两个射频识别发射装置同步发送的多个射频信号,该射频信号包括:射频识别发射装置的标识信息;之后,可以根据接收到的各射频信号,确定在停车区域内车辆当前所在位置;最后,根据确定出的停车区域内车辆当前所在位置,以及预先确定的停车区域内全部可使用的车辆虚拟位置,在车辆的影像中显示标识预计停车的车辆虚拟位置的信息,以达到引导车辆驾驶员根据车辆虚拟位置的信息进行规范停车的效果,使得停车区域的空间充分利用。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本公开实施例可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本公开实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的模块或流程并不一定是实施本公开所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述进行分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
本申请要求于2017年8月30日递交的中国专利申请第201710764687.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (15)

  1. 一种辅助停车方法,包括:
    启动车辆影像获取模式;
    实时接收分布于停车区域内的至少两个射频识别发射装置同步发送的多个射频信号;根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置;
    根据确定出的所述停车区域内车辆当前所在位置,以及所述停车区域内至少一个可使用的车辆虚拟位置,在所述车辆的影像中显示标识预计停车的车辆虚拟位置的信息。
  2. 如权利要求1所述的辅助停车方法,其中,所述射频识别发射装置的数量大于两个;
    所述根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置,包括:
    在接收到的所述多个射频识别发射装置同步发送的各所述射频信号中,确定接收到的首个所述射频信号与接收到的后续各所述射频信号的信号接收时间差;
    根据确定出的各所述信号接收时间差,确定所述车辆当前所在位置。
  3. 如权利要求2所述的辅助停车方法,其中,所述射频信号包括:所述射频识别发射装置的标识信息;
    所述根据确定出的各所述信号接收时间差,确定所述车辆当前所在位置,包括:
    根据确定出的各所述信号接收时间差,以及各所述射频识别发射装置的标识信息,确定各所述信号接收时间差对应的各所述射频识别发射装置到所述车辆当前所在位置的距离差;
    根据各所述射频信号的所述射频识别发射装置的标识信息对应的位置信息,以及所述距离差,确定各所述距离差对应的双曲线;
    以各所述距离差对应的双曲线之间的交点位置的平均值作为所述车辆当前所在位置。
  4. 如权利要求1所述的辅助停车方法,其中,所述射频信号还包括:所述射频识别发射装置的发送时间标识信息;
    所述根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置,包括:
    确定接收到各所述射频信号的信号接收时间;
    根据各所述射频信号包含的所述射频识别发射装置的发送时间标识信息,以及各所述射频信号的信号接收时间,确定各所述射频信号的信号传输时间;
    根据确定出的各所述射频信号的信号传输时间,确定所述车辆当前所在位置。
  5. 如权利要求4所述的辅助停车方法,其中,所述根据确定出的各所述射频信号的信号传输时间,确定所述车辆当前所在位置,包括:
    根据确定出的各所述射频信号的信号传输时间,确定各所述射频信号的传输距离;
    以各所述射频信号的所述射频识别发射装置的标识信息对应的位置信息为原点,以各所述射频信号的传输距离为半径,确定各所述射频信号对应的圆弧曲线;
    以各所述射频信号对应的圆弧曲线的交点位置的平均值作为所述车辆当前所在位置。
  6. 如权利要求1-5任一项所述的辅助停车方法,其中,所述根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置,包括:
    根据在所述车辆的头部和尾部接收到的各所述射频信号,确定在所述停车区域内车辆的头部和尾部当前所在位置。
  7. 如权利要求6所述的辅助停车方法,还包括:
    根据确定出的在所述停车区域内车辆的头部和尾部当前所在位置,确定所述车辆的中轴线;
    根据所述车辆的中轴线与预计停车的车辆虚拟位置,在所述车辆的影像中显示车辆相对于预计停车的车辆虚拟位置的标识偏移标线。
  8. 一种辅助停车装置,包括:
    摄像头,被配置为在启动车辆影像获取模式时,获取车辆的影像;
    射频标签,被配置为在确定启动车辆影像获取模式时,实时接收分布于停车区域内的多个射频识别发射装置同步发送的多个射频信号;
    处理器,被配置为启动车辆影像获取模式;根据接收到的各所述射频信号,确定在所述停车区域内车辆当前所在位置;根据确定出的所述停车区域内车辆 当前所在位置,以及所述停车区域内至少一个可使用的车辆虚拟位置,在所述车辆的影像中显示标识预计停车的车辆虚拟位置的信息。
  9. 如权利要求8所述的辅助停车装置,其中,所述处理器,进一步被配置为在所述射频识别发射装置的数量大于两个时,在接收到的所述多个射频识别发射装置同步发送的各所述射频信号中,确定接收到的首个所述射频信号与接收到的后续各所述射频信号的信号接收时间差;根据确定出的各所述信号接收时间差,确定所述车辆当前所在位置。
  10. 如权利要求9所述的辅助停车装置,其中,所述射频信号包括:所述射频识别发射装置的标识信息;
    其中,所述处理器,进一步被配置为根据确定出的各所述信号接收时间差,以及各所述射频识别发射装置的标识信息,确定各所述信号接收时间差对应的各所述射频识别发射装置到所述车辆当前所在位置的距离差;根据各所述射频信号的所述射频识别发射装置的标识信息对应的位置信息,以及所述距离差,确定各所述距离差对应的双曲线;以各所述距离差对应的双曲线之间的交点位置的平均值作为所述车辆当前所在位置。
  11. 如权利要求8所述的辅助停车装置,其中,所述处理器,进一步被配置为在所述射频识别发射装置的数量大于一个,且所述射频信号还包括所述射频识别发射装置的发送时间标识信息时,确定接收到各所述射频信号的信号接收时间;根据各所述射频信号包含的所述射频识别发射装置的发送时间标识信息,以及各所述射频信号的信号接收时间,确定各所述射频信号的信号传输时间;根据确定出的各所述射频信号的信号传输时间,确定所述车辆当前所在位置。
  12. 如权利要求11所述的辅助停车装置,其中,所述处理器,进一步被配置为根据确定出的各所述射频信号的信号传输时间,确定各所述射频信号的传输距离;以各所述射频信号的所述射频识别发射装置的标识信息对应的位置信息为原点,以各所述射频信号的传输距离为半径,确定各所述射频信号对应的圆弧曲线;以各所述射频信号对应的圆弧曲线的交点位置的平均值作为所述车辆当前所在位置。
  13. 如权利要求8-12任一项所述的辅助停车装置,其中,所述射频标签分别位于所述车辆的头部和尾部;
    所述处理器,具体被配置为根据在所述车辆的头部和尾部接收到的各所述 射频信号,确定在所述停车区域内车辆的头部和尾部当前所在位置。
  14. 如权利要求13所述的辅助停车装置,其中,所述处理器,还被配置为根据确定出的在所述停车区域内车辆的头部和尾部当前所在位置,确定所述车辆的中轴线;根据所述车辆的中轴线与预计停车的车辆虚拟位置,在所述车辆的影像中显示车辆相对于预计停车的车辆虚拟位置的标识偏移标线。
  15. 一种辅助停车***,包括:设置于车辆内的如权利要求8-14任一项所述的辅助停车装置,以及分布于停车区域内的多个射频识别发射装置。
PCT/CN2018/096857 2017-08-30 2018-07-24 一种辅助停车方法、装置及*** WO2019042047A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/341,215 US10643476B2 (en) 2017-08-30 2018-07-24 Auxiliary parking method, apparatus, and system
EP18851552.2A EP3678115A4 (en) 2017-08-30 2018-07-24 AID PARKING METHOD, DEVICE AND SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710764687.XA CN109427211B (zh) 2017-08-30 2017-08-30 一种辅助停车方法、装置及***
CN201710764687.X 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019042047A1 true WO2019042047A1 (zh) 2019-03-07

Family

ID=65504164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096857 WO2019042047A1 (zh) 2017-08-30 2018-07-24 一种辅助停车方法、装置及***

Country Status (4)

Country Link
US (1) US10643476B2 (zh)
EP (1) EP3678115A4 (zh)
CN (1) CN109427211B (zh)
WO (1) WO2019042047A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019208788A1 (de) * 2019-06-17 2020-12-17 Volkswagen Aktiengesellschaft Kraftfahrzeug
CN112735006A (zh) * 2020-12-31 2021-04-30 高新兴智联科技有限公司 电子标识在停车管理***的识别方法及存储介质
US11881108B2 (en) * 2022-01-12 2024-01-23 Ford Global Technologies, Llc Systems and methods for virtual parking lot space allocation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1522460A1 (en) * 2003-10-07 2005-04-13 Delphi Technologies, Inc. Parking assist system
CN103661369A (zh) * 2012-08-28 2014-03-26 怡利电子工业股份有限公司 倒车停车辅助导引装置
CN104851315A (zh) * 2014-02-18 2015-08-19 厦门歌乐电子企业有限公司 一种停车管理方法和***、以及车载装置和服务器
CN106864369A (zh) * 2015-12-11 2017-06-20 华创车电技术中心股份有限公司 停车辅助环场影像***

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990013856A1 (en) * 1989-05-01 1990-11-15 Kabushiki Kaisha Komatsu Seisakusho Travelling control apparatus for vehicules
US7323989B2 (en) * 2005-02-22 2008-01-29 International Business Machines Corporation Product locating method and system
US9420423B1 (en) * 2005-04-12 2016-08-16 Ehud Mendelson RF beacon deployment and method of use
US7132981B1 (en) * 2005-06-06 2006-11-07 Harris Corporation Method of locating object using phase differences among multiple frequency beacons transmitted from spaced apart transmitter sites
CN101309818A (zh) * 2005-11-17 2008-11-19 爱信精机株式会社 泊车支援装置及泊车支援方法
DE102006040879B4 (de) * 2006-08-31 2019-04-11 Bayerische Motoren Werke Aktiengesellschaft Einpark- und Rückfahrhilfe
CN101201395B (zh) * 2007-12-24 2011-05-04 北京航空航天大学 一种基于rfid技术的地下车库定位***
US8639666B2 (en) * 2008-09-05 2014-01-28 Cast Group Of Companies Inc. System and method for real-time environment tracking and coordination
CN101727754B (zh) * 2008-10-28 2013-12-18 财团法人车辆研究测试中心 停车导引***及其导引方法
JP2010211277A (ja) * 2009-03-06 2010-09-24 Toyota Industries Corp 駐車支援装置および駐車支援方法
US8766818B2 (en) * 2010-11-09 2014-07-01 International Business Machines Corporation Smart spacing allocation
JP5545238B2 (ja) * 2011-02-21 2014-07-09 株式会社オートネットワーク技術研究所 駐車支援システム
JP5982750B2 (ja) * 2011-08-04 2016-08-31 日産自動車株式会社 駐車支援装置及び駐車支援方法
US20140057237A1 (en) * 2012-08-27 2014-02-27 Stephen Chen Method for parking a vehicle by using a parking assistant system
US9761139B2 (en) * 2012-12-20 2017-09-12 Wal-Mart Stores, Inc. Location based parking management system
JP6193714B2 (ja) * 2013-10-04 2017-09-06 アイシン精機株式会社 駐車支援装置
US9638787B2 (en) * 2014-04-25 2017-05-02 Palo Alto Research Center Incorporated Computer-implemented system and method for tracking objects via identifier-tracker pairings
CN105321213B (zh) * 2014-06-18 2018-03-02 深圳市金溢科技股份有限公司 一种路内停车收费管理方法及***
DE102014212843A1 (de) * 2014-07-02 2016-01-07 Robert Bosch Gmbh Verfahren zur Parkplatzvermittlung und Freier-Parkplatz-Assistenzsystem
US9984222B2 (en) * 2014-07-08 2018-05-29 Pixart Imaging Inc Individualized control system utilizing biometric characteristic
US10282928B2 (en) * 2014-07-08 2019-05-07 Pixart Imaging Inc. Individualized control system utilizing biometric characteristic
US20160180712A1 (en) * 2015-08-27 2016-06-23 Sparkcity.Com Ltd. Citywide parking reservation system and method
US9640077B2 (en) * 2014-09-04 2017-05-02 Backsafe Systems, Inc. System and method for determining position of a position device relative to a moving vehicle
US20160140846A1 (en) * 2014-09-25 2016-05-19 Christopher Scott Outwater System and Method for Parking Management Based on Location Tracking
US10062132B2 (en) * 2014-12-30 2018-08-28 Paypal, Inc. Parking guidance and parking services provided through wireless beacons
CN106205136B (zh) * 2014-12-31 2019-01-15 深圳市金溢科技股份有限公司 基于uwb的车辆定位***及方法
DE102015202480B4 (de) * 2015-02-12 2022-09-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln einer Parkposition für ein Fahrzeug
DE102015204973A1 (de) * 2015-03-19 2016-09-22 Siemens Aktiengesellschaft Verfahren und Parksystem zum unterstützten Abstellen von Stellfahrzeugen
EP3072710B1 (en) * 2015-03-24 2018-03-28 LG Electronics Inc. Vehicle, mobile terminal and method for controlling the same
CN105059286A (zh) * 2015-08-11 2015-11-18 盐城工学院 一种辅助泊车***及方法
JP6519748B2 (ja) * 2015-09-30 2019-05-29 日立オートモティブシステムズ株式会社 駐車支援装置
US10745050B2 (en) * 2015-11-24 2020-08-18 Wellen Sham Automated vehicle parking
CN106297317B (zh) * 2016-09-29 2019-11-08 深圳市金溢科技股份有限公司 一种车辆停车检测方法、终端、服务器和***
AU2017272234B2 (en) * 2016-12-20 2021-12-02 Licensys Australasia Pty Ltd An antenna
CN107067796A (zh) * 2016-12-28 2017-08-18 深圳市金溢科技股份有限公司 一种停车管理服务器、方法和***
US10332398B2 (en) * 2017-01-20 2019-06-25 Nec Corporation Smart parking facility management by using wireless communication techniques to perform stationary and moving vehicle detection
US10170003B2 (en) * 2017-01-24 2019-01-01 International Business Machines Corporation Dynamic parking space definition
US10482766B2 (en) * 2017-02-01 2019-11-19 Microsoft Technology Licensing, Llc Automated parking lot space assignment
WO2018204210A1 (en) * 2017-05-01 2018-11-08 Parkofon Inc. System and method for high accuracy location determination and parking
US20180374004A1 (en) * 2017-06-27 2018-12-27 Jacques Eone Parking inventory and reservation management system for flexible parking subscriptions
US20190019407A1 (en) * 2017-07-14 2019-01-17 Omid B. Nakhjavani Real time parking lot analysis and management
JP6958117B2 (ja) * 2017-08-29 2021-11-02 株式会社アイシン 駐車支援装置
US11110915B2 (en) * 2017-08-31 2021-09-07 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America Auto park human machine interface display based control
US10850727B2 (en) * 2018-03-09 2020-12-01 Toyota Research Institute, Inc. System, method, and apparatus for parking assistance
US20190371175A1 (en) * 2018-06-04 2019-12-05 Valeo Schalter Und Sensoren Gmbh Server, method, and computer-readable storage medium for automated parking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1522460A1 (en) * 2003-10-07 2005-04-13 Delphi Technologies, Inc. Parking assist system
CN103661369A (zh) * 2012-08-28 2014-03-26 怡利电子工业股份有限公司 倒车停车辅助导引装置
CN104851315A (zh) * 2014-02-18 2015-08-19 厦门歌乐电子企业有限公司 一种停车管理方法和***、以及车载装置和服务器
CN106864369A (zh) * 2015-12-11 2017-06-20 华创车电技术中心股份有限公司 停车辅助环场影像***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678115A4 *

Also Published As

Publication number Publication date
EP3678115A4 (en) 2021-06-02
US10643476B2 (en) 2020-05-05
EP3678115A1 (en) 2020-07-08
CN109427211B (zh) 2021-08-03
US20190318628A1 (en) 2019-10-17
CN109427211A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
US6766245B2 (en) Landmark-based location of users
US11900309B2 (en) Item delivery to an unattended vehicle
JP6418266B2 (ja) 音声コマンドに対応した視覚コンテキストを表示する三次元ヘッドアップディスプレイ装置
WO2019042047A1 (zh) 一种辅助停车方法、装置及***
EP3644296A1 (en) Vehicle positioning method, apparatus and terminal device
US20180031375A1 (en) Methods, apparatuses, and mobile terminals for positioning and searching for a vehicle
US9984570B2 (en) Traffic control method, network side device and terminal
US9796379B2 (en) Driving assistance apparatus, and control method thereof
EP3961582A2 (en) Method and apparatus for controlling vehicle and electronic device
CN109817022A (zh) 一种获取目标对象位置的方法、终端、汽车及***
CN110164135A (zh) 一种定位方法、定位装置及定位***
CA3133537A1 (en) Homography through satellite image matching
US20110199290A1 (en) Digital signs
EP3757970A1 (en) Methods and systems for authenticating an automatic dependent surveillance-broadcast (ads-b) signal
WO2019161663A1 (zh) 一种港区监控方法及***、中控***
CN109785654A (zh) 基于位置空间模型的车辆引导
CN112399334A (zh) 基于超宽带的定位方法、装置、电子设备和可读存储介质
EP3266014A1 (en) A vehicle assistance system
Yeh et al. A city parking integration system combined with cloud computing technologies and smart mobile devices
US20140233550A1 (en) Location determination
WO2020147390A1 (zh) 车辆控制方法和装置
EP2908494A1 (en) System and method for remote access to on-board aircraft systems
US20230336939A1 (en) Content sharing based on location
JP2011118519A (ja) 衝突防止装置、衝突防止方法、衝突防止プログラム、および衝突防止システム
US10977935B2 (en) Information processing device, vehicle-mounted device, and information processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018851552

Country of ref document: EP

Effective date: 20200330