WO2019041839A1 - 光学指纹识别装置及显示装置 - Google Patents

光学指纹识别装置及显示装置 Download PDF

Info

Publication number
WO2019041839A1
WO2019041839A1 PCT/CN2018/084098 CN2018084098W WO2019041839A1 WO 2019041839 A1 WO2019041839 A1 WO 2019041839A1 CN 2018084098 W CN2018084098 W CN 2018084098W WO 2019041839 A1 WO2019041839 A1 WO 2019041839A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
body grating
grating
guide plate
light guide
Prior art date
Application number
PCT/CN2018/084098
Other languages
English (en)
French (fr)
Inventor
高健
陈小川
杨亚锋
卢鹏程
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/316,448 priority Critical patent/US11216637B2/en
Priority to EP18829172.8A priority patent/EP3678045A4/en
Publication of WO2019041839A1 publication Critical patent/WO2019041839A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces

Definitions

  • Embodiments of the present disclosure relate to an optical fingerprint recognition device and a display device.
  • fingerprint recognition technology With the development of fingerprint recognition technology, it has been widely used in many fields, such as mobile phones, tablets and televisions in electronic equipment terminals; access control and safes in security protection systems.
  • the implementation methods of fingerprint acquisition mainly include optical, capacitive and ultrasonic imaging technologies, among which the optical fingerprint identification technology has a relatively large recognition range and relatively low cost.
  • liquid crystal display including optical fingerprinting technology used by mobile terminals such as mobile phones
  • LCD liquid crystal display
  • backlighting and optical imaging devices are used for diffuse reflection fingerprint imaging.
  • the principle is that the backlight is used as a light source for illumination. After the finger, the light is diffused back to the imaging detector for imaging.
  • Embodiments of the present disclosure provide an optical fingerprint recognition device and a display device for improving the accuracy of fingerprint recognition.
  • an embodiment of the present disclosure provides an optical fingerprint identification device, including: a light source, a light guide plate, a first body grating, a second body grating, and a photodetector; wherein the light guide plate includes two parallel sets a light guiding surface; the first body grating and the second body grating are respectively located on one of the light guiding surfaces of the light guiding plate; the light source is located at a side of the light guiding plate facing away from the first body grating; The light detectors are respectively located on a side of the light guide plate facing away from the second body grating; the first body grating is configured to introduce the light emitted from the light source to the light guide plate; the light guide plate, For performing total reflection on the introduced light; the second body grating for guiding light propagating in the light guide plate; and the photo detector for detecting the second body grating derived The intensity distribution of light.
  • an embodiment of the present disclosure provides a display device including a display panel and the optical fingerprint recognition device located on a light exiting side of the display panel.
  • FIG. 1 is a schematic structural diagram of an optical fingerprint identification apparatus according to an embodiment of the present disclosure
  • FIG. 2a is a schematic structural diagram of a volume grating according to an embodiment of the present disclosure
  • FIG. 2b is a schematic structural diagram of another body grating according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of an optical fingerprint identification device according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an optical fingerprint identification device according to still another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an optical fingerprint identification device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 8 is a top plan view of a volume grating provided by an embodiment of the present disclosure.
  • stripes refers to a particular region or portion formed in a volume grating, for example, the refractive index of a material in that region or portion is greater than the refractive index of a material in other regions or portions.
  • Embodiments of the present disclosure provide an optical fingerprint recognition device and a display device for improving the accuracy of fingerprint recognition.
  • an optical fingerprint identification device provided by an embodiment of the present disclosure includes a light source 11 , a light guide plate 12 , a first body grating 13 , a second body grating 14 , and a photodetector 15 .
  • the light guide plate 12 includes two light guiding surfaces 121 disposed in parallel with each other; the first body grating 13 and the second body grating 14 are respectively located on one of the light guiding surfaces 121 of the light guiding plate 12;
  • the light guide plate 12 faces away from the side of the first body grating 13; the light detectors 15 are both located on the side of the light guide plate 12 facing away from the second body grating 14.
  • the first body grating 13 is configured to introduce light emitted from the light source 11 to the light guide plate 12.
  • a light guide plate 12 for total reflection of the introduced light;
  • a second body grating 14 for guiding light propagating in the light guide plate 12; and
  • a light detector 15 for detecting light emitted by the second body grating 14. The intensity distribution.
  • the detected finger When performing fingerprint recognition, the detected finger is in contact with the light guiding surface 121 of the light guide plate 12 (as shown in FIG. 1 , in contact with the upper surface of the light guide plate), and the light detector 15 detects the light emitted by the second body grating 14 The light intensity distribution identifies the fingerprint of the detected finger.
  • optical fingerprint recognition usually uses the backlight of the display device as a light source, and diffuse reflection occurs after the backlight is incident on the finger, and the fingerprint is recognized by collecting the light intensity distribution of the diffused light of the finger. Since the light energy of the diffusely reflected light detected by the detector is extremely low, and the difference in light energy between the valleys of the finger fingerprint (hereinafter referred to as valley) and the peak (hereinafter referred to as the ridge) is also small, and other light is present in the display device. The interference of the diffuse reflection light makes it difficult for the detection system to recognize the fingerprint, resulting in low accuracy of fingerprint recognition.
  • the embodiments of the present disclosure provide the optical fingerprint recognition device, which uses a light guide plate as a light-conducting device.
  • a light guide plate as a light-conducting device.
  • the refractive index difference between the valley ridge of the finger and the light guide plate is different.
  • the light is reflected on the light guiding surface of the light guide plate, and the reflected light energy of the two parts of the valley is greatly different. Therefore, the light detector can detect the light intensity distribution of the light in the light guide plate after passing the finger. The recognition of the fingerprint valley is realized.
  • the reflected light in the light guiding surface is much stronger than the diffused light of the finger, it is not easily interfered by external light, and the fingerprint valley
  • the energy difference of the corresponding reflected light is more obvious, so the accuracy of fingerprint recognition is determined by detecting the reflected light to determine the light intensity distribution corresponding to the fingerprint.
  • a first volume grating is used as the light introduction device, and a second volume grating is used as the light extraction device.
  • the bulk grating structure is an optical Bragg grating, which is a transparent device having a periodic change in refractive index, and the reflectance of a bandwidth near a certain wavelength is large, and the wave number of the grating when the wavelength of the incident light satisfies the Bragg condition. The wavenumber difference with the incident and reflected light is matched, while the other wavelengths are almost unaffected by the Bragg grating.
  • the optical fingerprint recognition device adopts the above-mentioned volume grating structure as a light introduction device and a light extraction device, and has high diffraction efficiency. As long as the incident angle and the corresponding wavelength band are satisfied, only one diffraction order is emitted. There is no 0-order diffraction compared to conventional gratings.
  • the body grating structure only needs to adjust the surface of the refractive index change during production to realize the reflected light at different angles, and the overall shape of the body grating does not change, and the device flatness can be flexibly set according to actual needs.
  • the refractive index of the light guide plate 12 should be less than the refractive index of the finger being measured.
  • the refractive index of the ridge contacting the light guiding surface is greater than the refractive index of the light guiding plate, so the light propagating in the light guiding plate is reflected and refracted at the contact interface, so that the conduction The reflectance of light is less than 100%.
  • the air corresponding to the light guiding surface at the position is air (the refractive index of the light guiding plate is greater than the refractive index of the air), so the conducted light is here.
  • the light-tight medium is incident on the light-diffusing medium, and the light is totally reflected, and the reflectance is approximately 100%.
  • the reflectance of the light transmitted at the two corners of the finger is different, and the energy of the reflected light is different.
  • the photodetector can recognize the valley of the fingerprint according to the light and dark distribution of the received light intensity.
  • the refractive index of the light guide plate may also be slightly larger than the refractive index of the finger to be tested. In this case, it is necessary to ensure that the difference between the refractive index of the fingerprint ridge and the light guide plate can destroy the total reflection of the light guide plate, and therefore, in practical applications,
  • the light guide plate is made of a suitable material on the premise of knowing the refractive index of the finger, and is not specifically limited herein.
  • the light source can be a collimated light source.
  • the light emitted from the collimated light source is parallel light and is incident on the light guide plate 12.
  • the light guide plate 12 is also used to introduce the incident parallel light into the first body grating 13.
  • the use of the collimated light source is advantageous for adjusting the incident angle of the light source to the first body grating. When the incident light rays are incident on the first body grating at the same incident angle, the utilization ratio of the first body grating to the light emitted by the light source can be improved.
  • the first body grating 13 and the second body grating 14 may have a rectangular parallelepiped structure, as shown in FIGS. 2a and 2b, which is a cross section of the first body grating 13 and the second body grating 14 perpendicular to the light guiding surface.
  • Figure. 2a is a schematic structural view of the first bulk grating 13 of FIG. 1
  • FIG. 8 is a plan view of the first bulk grating 13.
  • the first body grating 13 includes a plurality of first strips 130 that are parallel to each other, and each of the first strips includes a first reflecting surface 131 that is opposite to the interface between the first body grating 13 and the light guide plate 12 The light is tilted so that the reflected light reflected by the first reflecting surface 131 propagates in the light guide plate 12 in a full emission manner.
  • the refractive index of the material of the first stripe is different from the refractive index of the material of other portions of the first bulk grating (also referred to as the medium refractive index), for example, the refractive index of the material of the first stripe is greater than the medium refraction of the first bulk grating rate. As shown in FIG.
  • the first body grating 13 can guide the light to the light guide plate 12 at a certain angle.
  • the introduced light is greater than or equal to the total reflection angle of the light guide plate, The light can be totally reflected and conducted in the light guide plate.
  • the second body grating 14 has the same structure as the first body grating.
  • FIG. 2b which is a schematic structural view of the second body grating 14 in FIG. 1
  • the second body grating 14 includes a plurality of second stripes 140 parallel to each other, and each of the second stripes 140 includes a second reflecting surface 141.
  • the second reflecting surface 141 is inclined with respect to the interface between the second body grating 14 and the light guide plate 12 such that the reflected light reflected by the second reflecting surface 141 is perpendicular to the second body grating 14 and the light guide plate. The direction of the interface between 12 is shot.
  • the refractive index of the material of the second stripe is different from the refractive index of the material of other portions of the second bulk grating (also referred to as the medium refractive index), for example, the refractive index of the material of the second stripe is greater than the medium refraction of the second bulk grating rate.
  • the reflecting surface 141 when the reflecting surface 141 is located on the bisector of the angle between the incident ray and the outgoing ray, the incident ray can be effectively reflected, thereby changing the direction of propagation of the incident ray.
  • the second body grating 14 can take out the light from the light guide plate 12, and then the light detector 15 The taken light is received to recognize the fingerprint according to the light and dark distribution of the light intensity.
  • the refractive index of the light guide plate 12 and the dielectric refractive indices of the first and second body gratings 13 and 14 are identical to each other, such that when the light passes through the interface between the light guide plate and the first body grating, and the light guide plate and the second At the interface of the volume grating, light can travel in a straight line without reflection or refraction, thereby reducing the light loss rate.
  • the inclination direction of the reflection surfaces of both can be determined.
  • the first body grating 13 and the second body grating 14 are both located on the same light guiding surface of the light guide plate 12 (as shown in FIG. 1 , the first body grating 13 and the first The two body gratings 14 are all located on the upper surface of the light guide plate 12; at this time, as shown in FIG.
  • the first body grating 13 and the second body grating 14 may be respectively located at opposite ends of the light guide plate 12, and the first body grating 13
  • the plurality of reflecting surfaces 131 and the plurality of reflecting surfaces 141 of the second body grating 14 are mirror-symmetrical with respect to the mid-perpendicular line.
  • the vertical line CC is a mid-perpendicular line of the line segment b between the two side surfaces 13s and 14s of the first body grating 13 and the second body grating 14 which are opposed to each other, and is also a guide in this embodiment.
  • the vertical line of the smooth surface 121 is also a guide in this embodiment.
  • the first body grating 13 and the second body grating 14 are disposed on the same light guiding surface of the light guiding plate 12, and the first body grating 13 and the second body grating 14 can be arranged symmetrically with each other, and the light is at each interface.
  • the angle of reflection also conforms to the rules of symmetry. For example, as shown in FIG. 1, when the light is perpendicularly incident on the first volume grating 13, after the light is transmitted through the light guide plate, the light is also emitted from the second body grating 14 in a direction perpendicular to the second body grating 14. At this time, it is only necessary to arrange the collimated light source 11 facing the first body grating, and the photodetector 15 may be disposed at the right position of the second body grating 14.
  • the first body grating 13 and the second body grating 14 are respectively located on opposite light guiding surfaces of the light guiding plate (as shown in FIG. 3, the first body grating). 13 is located on the upper surface of the light guide plate 12, and the second body grating 14 is located on the lower surface of the light guide plate 12; at this time, as shown in FIG. 3, each of the reflection surface 131 of the first body grating 13 and the second body grating 14 Each of the reflecting surfaces 141 is parallel to each other.
  • two body grating structures having the same structure can be used as the first body grating 13 and the second body grating 14, respectively, and the arrangement is simpler.
  • the thicknesses of the first body grating 13 and the second body grating 14 may be equal.
  • the process parameters can be simplified during the manufacturing process, and the flatness of the optical fingerprint device is also ensured.
  • the thickness of the first body grating and the second body grating may both be set to 5-20 ⁇ m.
  • the thickness of the bulk grating structure is too large, the reflected light of one reflecting surface may be incident on the adjacent reflecting surface again, which affects the introduction or derivation of light in the light guiding plate.
  • the thickness of the bulk grating structure is too small, it can only reflect the light of a small part of the light source, resulting in low utilization of the light source. Therefore, in consideration of maximizing the utilization of the light source, it is preferable to set the thickness of the first bulk grating 13 and the second bulk grating 14 to 5-20 ⁇ m.
  • the method may further include The protective film layer 16 is disposed between the first body grating 13 and the second body grating 14 on the same light guiding surface of the light guide plate 12 as the first body grating 13 and the second body grating 14 .
  • the protective film layer 16 is equal in thickness to the first body grating 13 and the second body grating 14.
  • the refractive index of the protective film layer 16 can be set to be equal to the refractive index of the light guide plate 12.
  • the refractive indices of the two are equal, the light does not refract at the interface between the two, and the law of the reflection of the light when the finger touches the protective film 16 is the same as that of the structure shown in FIG. 1, and will not be described herein.
  • optical fingerprint recognition principle will be specifically described below by taking the structure of the optical fingerprint identification device shown in FIG. 1 as an example.
  • the reflection surfaces 131 and 141 of the first body grating 13 and the second body grating 14 are both inclined with respect to the light guiding surface of the light guide plate 12, and the reflection surface 131 of the first body grating and the reflection surface of the second body grating It is mirror-symmetrically arranged with respect to the mid-perpendicular line CC.
  • the following directions of the incident beam and the outgoing beam are both vector directions.
  • the wavelength of the incident light source is ⁇
  • the angle ⁇ between the incident light and the reflecting surface 131 and the spacing ⁇ of the reflecting surface 131 the Bragg's law must be satisfied between the three, namely:
  • n is the refractive index of the medium of the first bulk grating.
  • the first body grating can reflect the incident collimated light through the reflecting surface 131 and then introduce it into the light guiding plate 12 to perform total reflection propagation. If the critical angle of total reflection of the light guide plate 12 is C, then:
  • the introduced light can be totally reflected and conducted in the light guide plate 12.
  • the pitch ⁇ and ⁇ values of the reflecting surface 131 of the volume grating structure can be designed.
  • the second volume grating serves as a light extraction means for taking out the light beam propagating in the light guide plate 12 and receiving it by the photodetector, and its structure is symmetrical with the light introduction means.
  • the volume grating When the volume grating is produced, two plane light waves are respectively irradiated and exposed on both sides of the photorefractive material.
  • the directions of the two plane light waves are respectively the direction of the incident light mentioned above and the direction of the outgoing light.
  • the two plane light waves interfere in the photorefractive material and form three-dimensional interference fringes, that is, the grating reflection surface in the volume grating in the embodiment, and the above-mentioned volume grating is formed after forming the grating reflection surface.
  • the refractive index of the material in the stripes of the volume grating is greater than the refractive index of the material in other regions of the bulk grating.
  • the photorefractive material herein refers to a material whose refractive index changes after exposure.
  • the photorefractive material may include a material such as an iron-doped copper niobate crystal, which is not limited in the embodiment of the present disclosure.
  • the light is incident on the position of the fingerprint ridge by the light guide plate, it is equivalent to being incident on the optically dense medium (finger skin) by the light-diffusing medium (light guide plate glass), so that no total reflection occurs at the position of the ridge, but refraction and reflection occur.
  • the refracted light and the reflected light are denoted as C1 and C2, respectively, and the refraction angle is denoted by ⁇ '; and when the light is incident on the position of the fingerprint valley by the light guide plate, it corresponds to the light-tight medium (light guide plate glass) entering the light-dissipating medium (air) Therefore, total reflection occurs and only the reflected beam B2 is generated. Since the reflectance of the beam B2 is approximately 100%, and the reflectance of the beam C2 is less than 100%, the light of B2 is stronger than the intensity of C2, and the resulting intensity difference between the valleys is received by the photodetector. And identify the light and dark distribution of light intensity, and then achieve fingerprint recognition.
  • is the angle of incidence
  • ⁇ ' is the angle of refraction
  • n and n' are the refractive indices of the two media at which interface reflection occurs
  • the embodiment of the present disclosure further provides a display device.
  • the display device includes a display panel 200 and an optical fingerprint recognition device located on a light exit side of the display panel.
  • the optical fingerprint recognition device is provided by the embodiment of the present disclosure. Any optical fingerprinting device.
  • the display device may be a liquid crystal display device, an Organic Light-Emitting Diode (OLED) display device, electronic paper, or the like. It can also be mobile devices such as mobile phones, tablets, and notebooks.
  • OLED Organic Light-Emitting Diode
  • the display panel 200 may include a display area 21 and a non-display area 22 located around the display area; the optical fingerprint recognition device includes a light source 12, The integrated grating 13, the second body grating 14 and the photodetector 15 may be disposed at corresponding positions of the display panel non-display area 22, so that the orthographic projections of the above components in the display panel are all located in the non-display area 22, thereby ensuring The non-transparent components of the optical fingerprinting device (such as the light source 12 and the photodetector 15) do not block the emitted light of the display panel, and the first body grating 13 and the second body grating 14 do not affect the outgoing light of the display panel. .
  • the optical fingerprint recognition device includes a light source 12
  • the integrated grating 13, the second body grating 14 and the photodetector 15 may be disposed at corresponding positions of the display panel non-display area 22, so that the orthographic projections of the above components in the display panel are all located in the non-disp
  • the display device provided by the embodiment of the present disclosure may be a liquid crystal display device.
  • the liquid crystal display panel may include, for example, a lower polarizer 211 , an array substrate 212 , a liquid crystal layer 213 , and color The film substrate 214 and the upper polarizer 215.
  • the display panel can also be an OLED display panel, and the specific structure thereof can be similar to the structure of the existing OLED display panel, and details are not described herein again.
  • the light source 12 of the optical fingerprint recognition device emits light having an infrared wavelength band.
  • the use of a collimated light source in the infrared band can avoid adverse effects on the normal display of the display panel if light leakage occurs on the surface touched by the finger.
  • the detected finger is in contact with the light guiding surface of the light guide plate, and the light detector identifies the light intensity distribution of the light light extracted by the second body grating.
  • the fingerprint of the detected finger Since the reflected light in the light guiding surface is much stronger than the diffuse light of the finger, it is not easily interfered by external light, and the difference of the reflected light corresponding to the fingerprint undulation is more obvious, so the reflection of the light guiding surface by contact with the finger is adopted.
  • Light determines the light intensity distribution corresponding to the fingerprint to achieve higher accuracy of fingerprint recognition.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种光学指纹识别装置及显示装置。该光学指纹识别装置包括:光源(11)、导光板(12)、第一体光栅(13)、第二体光栅(14)以及光探测器(15),其中导光板(12)包括两个相互平行设置的导光面(121);第一体光栅(13)与第二体光栅(14)分别位于导光板(12)的其中一个导光面(121)上;光源(11)位于导光板(12)背离第一体光栅(13)的一侧;光探测器(15)位于导光板(12)背离第二体光栅(14)的一侧;第一体光栅(13)用于将光源(11)发出的光导入至所述导光板(12);导光板(12)用于对所述导入的光线进行全反射;第二体光栅(14)用于将导光板(12)中传播的光线导出;光探测器(15)用于检测第二体光栅(14)导出的光线的光强分布。

Description

光学指纹识别装置及显示装置
相关申请的交叉引用
本申请基于并且要求于2017年8月31日递交的中国专利申请第201710774892.4号的优先权,在此全文引用上述中国专利申请公开的内容。
技术领域
本公开实施例涉及一种光学指纹识别装置及显示装置。
背景技术
随着指纹识别技术的发展,使其在诸多领域得到广泛应用,如电子设备终端中的手机、平板电脑和电视等;安全防护***中的门禁和保险柜等。指纹采集的实现方式主要有光学式、电容式和超声成像式等技术,其中光学式指纹识别技术的识别范围相对较大,且成本相对较低。
目前,液晶显示器(Liquid Crystal Display,简称LCD)包括手机等移动终端使用的光学式指纹识别技术尚不成熟,通常多以背光板、光学成像装置进行漫反射指纹成像,其原理是背光作为光源照明手指后,光线漫反射回成像探测器进行成像。
发明内容
本公开实施例提供一种光学指纹识别装置及显示装置,用以提高指纹识别的准确度。
第一方面,本公开实施例提供一种光学指纹识别装置,包括:光源、导光板、第一体光栅、第二体光栅以及光探测器;其中,所述导光板包括两个相互平行设置的导光面;所述第一体光栅与所述第二体光栅分别位于所述导光板的其中一个导光面上;所述光源位于所述导光板背离所述第一体光栅的一侧;所述光探测器均位于所述导光板背离所述第二体光栅的一侧;所述第一体光栅,用于将所述光源的出射光导入至所述导光板;所述导光板,用于对所述导入的光线进行全反射;所述第二体光栅,用于将所述导光板中传播 的光线导出;以及所述光探测器,用于检测所述第二体光栅导出的光线的光强分布。
第二方面,本公开实施例提供一种显示装置,包括显示面板,以及位于显示面板出光侧的上述光学指纹识别装置。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例提供的光学指纹识别装置的结构示意图;
图2a为本公开实施例提供的体光栅的结构示意图;
图2b为本公开实施例提供的另一体光栅的结构示意图;
图3为本公开另一实施例提供的光学指纹识别装置的结构示意图;
图4为本公开再一实施例提供的光学指纹识别装置的结构示意图;
图5为本公开实施例提供的光学指纹识别装置的原理图;
图6为本公开实施例提供的显示装置的结构示意图;
图7为本公开实施例提供的液晶显示装置的结构示意图;
图8为本公开实施例提供的体光栅的俯视图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或 者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开使用的术语“条纹”指的是形成在体光栅中的特定区域或部分,例如该区域或部分中材料的折射率大于其他区域或部分中材料的折射率。
本公开实施例提供一种光学指纹识别装置及显示装置,用以提高指纹识别的准确度。
如图1所示,本公开实施例提供的光学指纹识别装置,包括:光源11、导光板12、第一体光栅13、第二体光栅14以及光探测器15。如图1所示,导光板12包括两个相互平行设置的导光面121;第一体光栅13与第二体光栅14分别位于导光板12的其中一个导光面121上;光源11位于导光板12背离第一体光栅13的一侧;光探测器15均位于导光板12背离第二体光栅14的一侧。第一体光栅13,用于将光源11发出的光导入至导光板12。导光板12,用于对所述导入的光线进行全反射;第二体光栅14,用于将导光板12中传播的光线导出;光探测器15,用于检测第二体光栅14导出的光线的光强分布。
在进行指纹识别时,被检测手指与导光板12的导光面121接触(如图1所示,与导光板的上表面接触),光探测器15通过检测第二体光栅14导出的光线的光强分布识别出被检测手指的指纹。
在现有技术中光学指纹识别通常以显示装置的背光作为光源,背光入射到手指之后会发生漫反射,通过采集手指的漫反射光的光强分布来识别指纹。由于探测器检测到的漫反射的光线的光能量极低,且手指指纹的波谷(以下简称谷)和波峰(以下简称脊)之间光能量差异也很小,且在显示装置中存在其它光线对漫反射光线的干扰,使得检测***很难对指纹进行识别,造成指纹识别的准确度低下。
有鉴于此,本公开实施例提供上述光学指纹识别装置,采用导光板作为光线传导的装置,当手指与导光板的导光面接触时,由于手指的谷脊与导光板之间的折射率差异,会在导光板的导光面发生光线的反射,且谷脊两部分 的反射光能量存在较大的差异,因此光探测器通过检测通过手指之后的导光板内的光线的光强分布即可实现对指纹谷脊的识别,相比于现有技术的指纹识别来说,由于导光面内的反射光比手指的漫反射光的强度大得多,不易受到外界光线的干扰,指纹谷脊对应的反射光的能量差别更明显,因此通过检测该反射光来确定指纹所对应的光强分布以实现指纹识别的准确度较高。
此外,本公开实施例提供的上述光学指纹识别装置中采用第一体光栅作为光导入装置,采用第二体光栅作为光取出的装置。例如,该体光栅结构为光学布拉格光栅,为一种具有折射率周期性变化的透明装置,在某一特定波长附近的带宽的反射率很大,当入射光波长满足布拉格条件时,光栅的波数与入射光和反射光的波数差是匹配的,而其它波长的光则几乎不受布拉格光栅的影响。本公开实施例提供的上述光学指纹识别装置采用上述体光栅结构作为光导入装置及光取出装置,具有较高的衍射效率,只要满足入射角度和相对应的波段,那么就只有一个衍射级次出射,现传统光栅相比不存在0级衍射。另外,体光栅结构只需要在制作时调整折射率产生变化的面即可实现不同角度的反射光,而体光栅的整体外形不发生变化,在保证器件平整性的同时可根据实际需求灵活设置。
至少一些实施例中,导光板12的折射率应小于被测手指的折射率。当手指触摸导光板12的导光面121时,与导光面相接触的脊的折射率大于导光板的折射率,因此导光板中所传播的光线会在该接触界面发生反射和折射,使得传导光线的反射率小于100%。而在手指的谷位置处由于未与导光板12的导光面121接触,相当于该位置处与导光面相接触的为空气(导光板的折射率大于空气折射率),因此传导光线在此处属于光密介质入射到光疏介质中,光线发生全反射,反射率近似达到100%。由此,在手指的谷脊两处传导光线的反射率不同,反射光的能量有差异,那么,光探测器可根据接收光强的明暗分布来识别出指纹的谷脊。此外,导光板的折射率也可略大于被测手指的折射率,此时需要保证指纹脊处与导光板的折射差可以破坏导光板的全反射即可,因此,在实际应用中可在已知手指折射率的前提下采用适合的材料制作导光板,在此不做具体限定。
至少一些实施例中,光源可为准直光源。准直光源的出射光为平行光,并且入射到导光板12中,此时,导光板12还用于将所述入射的平行光导入 到第一体光栅13。采用准直光源有利于对光源向第一体光栅的入射角度进行调整,当入射光线均以一同入射角入射第一体光栅时,可以提升第一体光栅对光源出射光线的利用率。
至少一些实施例中,第一体光栅13和第二体光栅14可为长方体结构,如图2a和图2b所示,为第一体光栅13和第二体光栅14垂直于导光面的截面图。图2a为图1中第一体光栅13的结构示意图,图8是第一体光栅13的俯视图。第一体光栅13包括多个相互平行的第一条纹130,每个第一条纹包括第一反射面131,该第一反射面131相对于第一体光栅13和导光板12之间的界面呈倾斜,以使经该第一反射面131反射的反射光线在导光板12中以全发射方式传播。该第一条纹的材料的折射率与第一体光栅的其他部分的材料的折射率(也称介质折射率)不同,例如,该第一条纹的材料的折射率大于第一体光栅的介质折射率。如图2a所示,当反射面131位于入射光线与出射光线的夹角的角平分线上时,可对入射光线有效反射,从而改变入射光线的传播方向。当光源的光线以既定的角度入射到第一体光栅13之后,第一体光栅13可将光线以一确定的角度导入导光板12,当导入的光线大于或等于导光板的全反射角时,可使光线在导光板内全反射传导。
第二体光栅14与第一体光栅的结构相同。例如,如图2b所示,为图1中第二体光栅14的结构示意图,第二体光栅14包括多个相互平行的第二条纹140,每个第二条纹140包括第二反射面141,该第二反射面141相对于第二体光栅14和导光板12之间的界面呈倾斜,以使经该第二反射面141反射的反射光线沿垂直于第二体光栅14和所述导光板12之间的界面的方向射出。该第二条纹的材料的折射率与第二体光栅的其他部分的材料的折射率(也称介质折射率)不同,例如,该第二条纹的材料的折射率大于第二体光栅的介质折射率。如图2b所示,当反射面141位于入射光线与出射光线的夹角的角平分线上时,可对入射光线有效反射,从而改变入射光线的传播方向。在导光板内部传导的光线以前述确定出的大于或等于全反射角的角度入射到第二体光栅14之后,第二体光栅14可将光线从导光板12中取出,进而由光探测器15接收该取出的光线,以根据光强的明暗分布识别出指纹。
进一步地,导光板12的折射率、第一、第二体光栅13、14的介质折射率三者彼此相同,这样,当光经过导光板与第一体光栅的界面、以及导光板 与第二体光栅的界面时,光可以沿直线传播,不发生反射或折射,从而减少光损失率。
进一步地,根据第一体光栅13和第二体光栅14的位置,可以确定出两者的反射面的倾斜方向。在一种可实施的方式中,如图1所示,第一体光栅13与第二体光栅14均位于导光板12同一导光面上(如图1所示,第一体光栅13和第二体光栅14均位于导光板12的上表面);此时,如图1所示,第一体光栅13和第二体光栅14可分别位于导光板12的相对两端,第一体光栅13的多个反射面131与第二体光栅14的多个反射面141则关于中垂线呈镜面对称。如图4所示,中垂线CC为第一体光栅13与第二体光栅14彼此相对的两个侧表面13s和14s之间的线段b的中垂线,在本实施例中也为导光面121的中垂线。将第一体光栅13和第二体光栅14设置在导光板12的同一导光面上,可以将第一体光栅13和第二体光栅14设置为相互对称的结构,则光线在各交界面的反射角度也符合对称的规则。例如,如图1所示,当光线垂直入射第一体光栅13时,经导光板传导后,第二体光栅14将光线取出时光线也向垂直于第二体光栅14的方向出射。此时,只需要将准直的光源11正对第一体光栅设置,将光探测器15设置在第二体光栅14的正对位置即可。
在另一种可实施的方式中,如图3所示,第一体光栅13与第二体光栅14分别位于导光板相对的两个导光面上(如图3所示,第一体光栅13位于导光板12的上表面,第二体光栅14位于导光板12的下表面);此时,如图3所示,第一体光栅13的每个反射面131与第二体光栅14的每个反射面141相互平行。在本实施例中,可采用结构完全相同的两个体光栅结构分别作为第一体光栅13和第二体光栅14,设置更为简单。
进一步地,在本公开实施例提供的上述光学指纹识别装置中,如图1和图3所示,第一体光栅13与第二体光栅14的厚度可以相等。将第一体光栅13与第二体光栅14的厚度设置相等,可以在制作过程中简化工艺参数,同时也保证了光学指纹装置的平整度。
例如,第一体光栅与第二体光栅的厚度可均设置为5-20μm。体光栅结构的厚度过大时,一个反射面的反射光将有可能再次入射到相邻的反射面上,影响导光板内光线的导入或导出。而体光栅结构的厚度过小时,则只能对少 部分光源的光线具有反射的作用,导致光源利用率低下。因此,考虑到光源利用率最大化,可将第一体光栅13和第二体光栅14的厚度设置在5-20μm为宜。
至少一些实施例中,在本公开实施例提供的上述光学指纹识别装置中,在第一体光栅13和第二体光栅14位于导光板同一导光面时,如图4所示,还可以包括:保护膜层16;保护膜层16与第一体光栅13、第二体光栅14位于导光板12同一导光面上且位于第一体光栅13与第二体光栅14之间。例如,保护膜层16与第一体光栅13及第二体光栅14的厚度相等。将光导入装置和光取出装置制作在同一个膜层上,可提高整个光学指纹识别装置的平整度。
进一步地,根据上述原理可知,保护膜层16的折射率可设置为与导光板12的折射率相等。当两者的折射率相等时,光线不会在两者的界面发生折射,其在手指接触保护膜16时的光线的反射规律与如图1所示结构的规律相同,此处不再赘述。
以下将以图1所示的光学指纹识别装置结构为例对光学指纹识别原理进行具体说明。
如上所述,第一体光栅13以及第二体光栅14的反射面131、141均相对于导光板12的导光面倾斜,且第一体光栅的反射面131与第二体光栅的反射面为相对于中垂线CC呈镜面对称设置。以下的入射光束与出射光束的方向均为矢量方向。
如图2a所示,设α为第一体光栅13的出射光束与第一体光栅13的出光面法线的夹角,θ为反射面131与入射光束的夹角,则有:
Figure PCTCN2018084098-appb-000001
根据体光栅结构的性质,入射光源的波长为λ,入射光与反射面131的夹角θ及反射面131的间距Λ,三者之间必须满足布拉格定律,即:
2nΛsinθ=λ
其中,n为第一体光栅的介质折射率。
第一体光栅作为光导入装置可将入射的准直光经反射面131的反射后导入导光板12中并进行全反射传播。设导光板12的全反射临界角为C,则有:
Figure PCTCN2018084098-appb-000002
当角度α≥C时,导入的光线可在导光板12内全反射传导。当给定一个α角,则可设计出体光栅结构的反射面131的间距Λ值和θ值。
第二体光栅作为光取出装置可使在导光板12中传播的光束取出并被光电探测器接收,其结构与光导入装置对称。
以下给出对反射面相对于导光面的倾斜角为(90°-θ)的体光栅的形成方法的示例。
在制作体光栅时,由两束平面光波分别在光折变材料的两侧进行照射曝光。这两束平面光波的方向分别为上述所提到的入射光的方向和出射光的方向。两束平面光波在光折变材料内发生干涉并形成三维干涉条纹,即为本实施例中的体光栅中的光栅反射面,形成光栅反射面后即为上述的体光栅。体光栅的条纹中的材料折射率大于体光栅其他区域的材料折射率。这里的光折变材料指曝光后折射率产生变化的材料,例如,光折变材料可以包括掺铁铜铌酸锂晶体等材料,本公开实施例对此不作限制。
进一步地,在进行指纹识别时,如图5所示,用手指触摸导光板的上表面,人体皮肤折射率n′=1.55,大于导光板折射率(导光板折射率取n=1.5),当光线由导光板入射到指纹脊的位置时,相当于由光疏介质(导光板玻璃)入射到光密介质(手指皮肤),所以在脊的位置不会产生全反射而是发生折射和反射,折射光和反射光分别记为C1和C2,折射角记为α′;而光线由导光板入射到指纹谷的位置时,相当于由光密介质(导光板玻璃)入光疏介质(空气),因此会发生全反射并且只产生反射光束B2。由于光束B2的反射率近似为100%,而光束C2的反射率小于100%,所以B2的光强大于C2的光强,由此产生的谷脊之间反射光光强差由光探测器接收并识别光强的明暗分布,进而实现指纹识别功能。
下式给出反射光束C2的反射率计算公式:
Figure PCTCN2018084098-appb-000003
其中,α为入射角,α’为折射角,n和n’为发生界面反射的两种介质的折射率;入射角与折射角满足折射定律:
n sinα=n'sinα'
由上述两式可以计算出光束C2在不同入射角下的反射率,例如,当α=50°时,ρ=0.03%,C2的光强与B2相比,几乎可以忽略,因此B2的光强显著大于C2的光强,由此产生的谷脊之间反射光光强差由光探测器接收并识别光强的明暗分布,进而实现高准确率的指纹识别。
本公开实施例还提供一种显示装置,如图6所示,该显示装置包括显示面板200,以及位于显示面板出光侧的光学指纹识别装置,该光学指纹识别装置为本公开实施例提供的上述任一光学指纹识别装置。该显示装置可为液晶显示装置、有机发光二极管(Organic Light-Emitting Diode,简称OLED)显示装置、电子纸等。也可为手机、平板电脑、笔记本等移动设备。
进一步地,在本公开实施例提供的上述显示装置中,如图6所示,显示面板200可包括显示区域21和位于显示区域四周的非显示区域22;光学指纹识别装置包括的光源12、第一体光栅13、第二体光栅14以及光探测器15均可设置在显示面板非显示区22的对应位置,使得上述各元件在显示面板的正投影均位于非显示区域22之内,从而保证光学指纹识别装置非透光的部件(如光源12、光探测器15)不会遮挡显示面板的出射光,第一体光栅13和第二体光栅14也不会对显示面板的出射光有影响。
本公开实施例提供的显示装置可为液晶显示装置,如图7所示,当显示装置为液晶显示装置时,液晶显示面板例如可以包括:下偏光片211、阵列基板212、液晶层213、彩膜基板214以及上偏光片215。除此之外,显示面板还可为OLED显示面板,其具体结构可与现有的OLED显示面板结构类似,此处不再赘述。
进一步地,在本公开实施例提供的上述显示装置中,光学指纹识别装置的光源12发出的光波长为红外波段。采用红外波段的准直光源可以避免如果在手指所触摸的表面发生漏光现象对显示面板的正常显示产生不良影响。
在采用本公开实施例提供的光学指纹识别装置及显示装置进行指纹识别时,被检测手指与导光板的导光面接触,光探测器通过检测第二体光栅导出的光线的光强分布识别出被检测手指的指纹。由于导光面内的反射光比手指的漫反射光的强度大得多,不易受到外界光线的干扰,指纹起伏对应的反射光的差别更明显,因此通过采用与手指接触的导光面的反射光来确定指纹所对应的光强分布以实现指纹识别的准确度较高。
本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (18)

  1. 一种光学指纹识别装置,包括:光源、导光板、第一体光栅、第二体光栅以及光探测器;其中,
    所述导光板包括两个相互平行设置的导光面;
    所述第一体光栅与所述第二体光栅分别位于所述导光板的其中一个导光面上;所述光源位于所述导光板背离所述第一体光栅的一侧;所述光探测器位于所述导光板背离所述第二体光栅的一侧;
    所述第一体光栅,用于将所述光源发出的光导入至所述导光板;
    所述导光板,用于对所述导入的光线进行全反射;
    所述第二体光栅,用于将所述导光板中传播的光线导出;以及
    所述光探测器,用于检测所述第二体光栅导出的光线的光强分布。
  2. 如权利要求1所述的光学指纹识别装置,其中所述导光板的折射率小于被测手指的折射率。
  3. 如权利要求1或2所述的光学指纹识别装置,其中所述光源为准直光源,用于发出平行光并且入射到所述导光板中。
  4. 如权利要求3所述的光学指纹识别装置,其中所述导光板还用于将所述入射的平行光导入到所述第一体光栅。
  5. 如权利要求1所述的光学指纹识别装置,其中所述第一体光栅包括多个相互平行的第一条纹,每个第一条纹包括第一反射面,该第一反射面相对于所述第一体光栅和所述导光板之间的界面呈倾斜,以使经该第一反射面反射的反射光线在所述导光板中以全发射方式传播。
  6. 如权利要求5所述的光学指纹识别装置,其中所述第一体光栅的第一条纹的材料的折射率大于所述第一体光栅其他部分的材料的折射率。
  7. 如权利要求1至6任一项所述的光学指纹识别装置,其中所述第二体光栅包括多个相互平行的第二条纹,每个第二条纹包括第二反射面,该第二反射面相对于所述第二体光栅和所述导光板之间的界面呈倾斜,以使经该第二反射面反射的反射光线沿垂直于所述第二体光栅和所述导光板之间的界面的方向射出。
  8. 如权利要求7所述的光学指纹识别装置,其中所述第二体光栅的第二 条纹的材料的折射率大于第二体光栅其他部分的材料的折射率。
  9. 如权利要求7所述的光学指纹识别装置,其中所述第一体光栅与所述第二体光栅均位于所述导光板同一导光面上;
    所述第一体光栅的多个第一反射面与所述第二体光栅的多个第二反射面相对于中垂线镜面对称,所述中垂线为所述第一体光栅与所述第二体光栅彼此相对的两个侧表面之间的线段的中垂线。
  10. 如权利要求7所述的光学指纹识别装置,其中所述第一体光栅与所述第二体光栅分别位于所述导光板的两个导光面上;
    所述第一体光栅的每个第一反射面与所述第二体光栅的每个第二反射面相互平行。
  11. 如权利要求1至10任一项所述的光学指纹识别装置,其中所述第一体光栅与所述第二体光栅的厚度相等。
  12. 如权利要求11所述的光学指纹识别装置,其中所述第一体光栅与所述第二体光栅的厚度均为5μm至20μm。
  13. 如权利要求9所述的光学指纹识别装置,还包括:保护膜层;
    所述保护膜层与所述第一体光栅、所述第二体光栅位于所述同一导光面上且位于所述第一体光栅与所述第二体光栅之间。
  14. 如权利要求13所述的光学指纹识别装置,其中所述保护膜层与所述第一体光栅及所述第二体光栅的厚度相等。
  15. 如权利要求13或14所述的光学指纹识别装置,其中所述保护膜层的折射率与所述导光板的折射率相等。
  16. 一种显示装置,包括显示面板,以及位于所述显示面板出光侧的如权利要求1至15任一项所述的光学指纹识别装置。
  17. 如权利要求16所述的显示装置,其中所述光学指纹识别装置的光源、第一体光栅、第二体光栅以及所述光探测器在所述显示面板的正投影均位于所述显示面板的非显示区域内。
  18. 如权利要求17所述的显示装置,其中所述光学指纹识别装置的光源发出的光波长为红外波段。
PCT/CN2018/084098 2017-08-31 2018-04-23 光学指纹识别装置及显示装置 WO2019041839A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/316,448 US11216637B2 (en) 2017-08-31 2018-04-23 Optical fingerprint recognition device and display device
EP18829172.8A EP3678045A4 (en) 2017-08-31 2018-04-23 OPTICAL FINGERPRINT RECOGNITION DEVICE AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710774892.4 2017-08-31
CN201710774892.4A CN107527039B (zh) 2017-08-31 2017-08-31 一种光学指纹识别装置及显示装置

Publications (1)

Publication Number Publication Date
WO2019041839A1 true WO2019041839A1 (zh) 2019-03-07

Family

ID=60683203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084098 WO2019041839A1 (zh) 2017-08-31 2018-04-23 光学指纹识别装置及显示装置

Country Status (4)

Country Link
US (1) US11216637B2 (zh)
EP (1) EP3678045A4 (zh)
CN (1) CN107527039B (zh)
WO (1) WO2019041839A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527039B (zh) * 2017-08-31 2019-09-17 京东方科技集团股份有限公司 一种光学指纹识别装置及显示装置
CN108009533A (zh) * 2018-01-04 2018-05-08 敦捷光电股份有限公司 光学指纹辨识***
CN108038477B (zh) * 2018-01-05 2022-03-22 敦泰电子有限公司 光学感测的保护壳
CN108108718A (zh) * 2018-01-05 2018-06-01 敦捷光电股份有限公司 屏内光学指纹辨识的薄膜晶体管面板
GB2570945B (en) * 2018-02-13 2020-08-19 Intelligent Fingerprinting Ltd Skinprint analysis method and apparatus
CN108520240A (zh) 2018-04-11 2018-09-11 京东方科技集团股份有限公司 指纹识别装置和显示设备
CN109948410B (zh) 2018-07-20 2020-09-11 华为技术有限公司 具有纹路检测功能的电子设备
CN109145859B (zh) * 2018-09-04 2020-12-25 京东方科技集团股份有限公司 一种显示面板、其检测方法及显示装置
WO2020113369A1 (en) * 2018-12-03 2020-06-11 Boe Technology Group Co., Ltd. Integrated photo-sensing detection display apparatus and method of fabricating integrated photo-sensing detection display apparatus
WO2020113380A1 (en) * 2018-12-03 2020-06-11 Boe Technology Group Co., Ltd. Integrated photo-sensing detection display apparatus and method of fabricating integrated photo-sensing detection display apparatus
CN109726650B (zh) * 2018-12-17 2021-04-16 Oppo广东移动通信有限公司 显示屏、电子设备及指纹处理方法
CN109786577B (zh) * 2019-01-30 2020-12-11 固安翌光科技有限公司 一种指纹识别装置用oled屏体和指纹识别装置
CN110008869B (zh) * 2019-03-25 2021-04-30 厦门天马微电子有限公司 显示面板和显示装置
CN110737132B (zh) * 2019-10-16 2021-01-01 上海交通大学 一种基于准直背光源的屏下指纹识别液晶显示装置
CN110929585A (zh) * 2019-10-29 2020-03-27 武汉华星光电技术有限公司 屏下光学指纹识别的装置
CN112749588A (zh) * 2019-10-30 2021-05-04 中兴通讯股份有限公司 显示屏模组及终端
WO2021109045A1 (zh) * 2019-12-04 2021-06-10 深圳市汇顶科技股份有限公司 屏下指纹采集装置、lcd触摸屏、以及电子设备
CN111126342B (zh) * 2019-12-31 2022-10-28 厦门天马微电子有限公司 一种显示面板及显示装置
CN113568168B (zh) * 2020-04-29 2023-02-24 宁波舜宇光电信息有限公司 镜片单元和包括镜片单元的ar设备
CN112036371A (zh) * 2020-05-05 2020-12-04 神盾股份有限公司 电子装置
CN111860296B (zh) * 2020-07-17 2024-04-09 敦泰电子(深圳)有限公司 一种光学指纹识别模组、显示模组及其指纹识别方法
CN113377242B (zh) * 2021-06-22 2023-12-15 武汉华星光电技术有限公司 显示模组
CN216696746U (zh) * 2022-02-17 2022-06-07 联宝(合肥)电子科技有限公司 导光结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448659A (en) * 1993-02-01 1995-09-05 Matsushita Electric Industrial Co., Ltd. Waveguide-type image transmission device and fingerprint identification device
CN104751121A (zh) * 2015-03-05 2015-07-01 上海交通大学 基于光栅结构的光波导式指纹识别***
CN105260708A (zh) * 2015-09-25 2016-01-20 联想(北京)有限公司 一种检测装置,电子设备及信息处理方法
CN107527039A (zh) * 2017-08-31 2017-12-29 京东方科技集团股份有限公司 一种光学指纹识别装置及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728186A (en) * 1985-03-03 1988-03-01 Fujitsu Limited Uneven-surface data detection apparatus
US5732148A (en) * 1994-09-16 1998-03-24 Keagy; John Martin Apparatus and method for electronically acquiring fingerprint images with low cost removable platen and separate imaging device
JP4655771B2 (ja) * 2005-06-17 2011-03-23 ソニー株式会社 光学装置及び虚像表示装置
KR101084894B1 (ko) * 2009-09-16 2011-11-17 삼성전기주식회사 전반사를 이용한 정맥 인증 장치
CN106940598B (zh) * 2016-12-20 2019-12-03 上海交通大学 集触控和指纹识别的光学触摸屏

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448659A (en) * 1993-02-01 1995-09-05 Matsushita Electric Industrial Co., Ltd. Waveguide-type image transmission device and fingerprint identification device
CN104751121A (zh) * 2015-03-05 2015-07-01 上海交通大学 基于光栅结构的光波导式指纹识别***
CN105260708A (zh) * 2015-09-25 2016-01-20 联想(北京)有限公司 一种检测装置,电子设备及信息处理方法
CN107527039A (zh) * 2017-08-31 2017-12-29 京东方科技集团股份有限公司 一种光学指纹识别装置及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678045A4 *

Also Published As

Publication number Publication date
EP3678045A1 (en) 2020-07-08
US20210334506A1 (en) 2021-10-28
US11216637B2 (en) 2022-01-04
CN107527039A (zh) 2017-12-29
CN107527039B (zh) 2019-09-17
EP3678045A4 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2019041839A1 (zh) 光学指纹识别装置及显示装置
US9811710B2 (en) Fingerprint identifying device and fingerprint identifying system
WO2020015436A1 (zh) 具有纹路检测功能的电子设备
WO2018171178A1 (zh) 指纹识别器件及控制方法、触摸显示面板、触摸显示装置
US9996724B2 (en) Optical fingerprint detection apparatus and display device
CN108877492B (zh) 嵌入光学成像传感器的平板显示器
CN108133174B (zh) 光学图像传感器和嵌入有该光学图像传感器的平板显示器
WO2018045813A1 (zh) 一种纹路识别器件及电子设备
CN107392132B (zh) 一种显示面板及显示装置
TWI671540B (zh) 光學指紋感測器
WO2019015668A1 (zh) 触摸显示面板、指纹识别装置及显示装置
KR20180003702A (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
JP2020537265A (ja) センシング導波路のための薄いカプラおよびリフレクタ
KR20170124160A (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
EP3022633A1 (en) Light guide panel including diffraction gratings
US11308308B2 (en) Fingerprint recognition device, recognition device and display device
KR20120098650A (ko) 터치 입력 장치용 프로젝션 시스템
KR20180068040A (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
KR102389197B1 (ko) 표시장치
CN108803781B (zh) 具有光学成像传感器的平板显示器
WO2020181447A1 (zh) 一种光学膜层结构、背光模组、显示装置及电子设备
CN112230474B (zh) 显示装置
WO2020015761A1 (zh) 具有纹路检测功能的电子设备
CN110008869B (zh) 显示面板和显示装置
TWI716209B (zh) 指紋感測裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18829172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018829172

Country of ref document: EP

Effective date: 20200331