WO2019039633A1 - Self-alignment guide system for wireless charging - Google Patents

Self-alignment guide system for wireless charging Download PDF

Info

Publication number
WO2019039633A1
WO2019039633A1 PCT/KR2017/009326 KR2017009326W WO2019039633A1 WO 2019039633 A1 WO2019039633 A1 WO 2019039633A1 KR 2017009326 W KR2017009326 W KR 2017009326W WO 2019039633 A1 WO2019039633 A1 WO 2019039633A1
Authority
WO
WIPO (PCT)
Prior art keywords
intensity
magnetic
magnetic field
wireless power
coil
Prior art date
Application number
PCT/KR2017/009326
Other languages
French (fr)
Korean (ko)
Inventor
유효열
Original Assignee
(주)그린파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그린파워 filed Critical (주)그린파워
Publication of WO2019039633A1 publication Critical patent/WO2019039633A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to a self-aligned guidance system for wireless charging, and more particularly to a wireless self-alignment guidance system for wirelessly charging a wireless charging station, Guide system.
  • a method of charging a battery included in an electric vehicle is classified into a wired charging method and a wireless charging method.
  • Korean Patent Laid-Open Publication No. 10-2017-0066732 (" 1, June 15, 2015, hereinafter referred to as prior art 1).
  • the charging system includes a wireless power transmitter and a wireless power receiver embedded in a lower portion of a vehicle.
  • the charging system includes a wireless power transmitter and a wireless power receiver. The battery will be charged.
  • the charging efficiency is increased as the distance between the transmitting coil and the receiving coil, which are wound in a plane direction parallel to the paper surface and spaced apart from each other by a predetermined distance, becomes closer to each other. Since the vertical distance between the transmission coil embedded in the ground and the reception coil installed in the vehicle can not be changed to a predetermined matter, the horizontal distance between the transmission coil and the reception coil, that is, the distance between the transmission coil and the center axis of the reception coil There is a need. In order to align the distance between the transmission coil and the center axis of the reception coil, the driver must operate the vehicle. However, in the conventional wireless charging system, the driver must move the vehicle to a certain position to align the center axes of the transmission coil and the reception coil There is a problem that it is not possible to obtain information as to whether or not it can be done.
  • the present invention provides a wireless self-aligning guidance system capable of providing information on the movement of an electric vehicle to a driver during wireless charging of the electric vehicle.
  • the wireless self-alignment guidance system of the present invention includes a wireless power receiving unit installed in a vehicle, a wireless power transmitting unit installed in a charging area on the periphery of the wireless power receiving unit, A plurality of magnetic sensors for sensing the intensity of a magnetic field to be detected by the magnetic sensor, and a degree of alignment of the receiving coil of the wireless power receiving unit and a transmitting coil of the wireless power transmitting unit or a position of the receiving coil, And a signal processor for processing the signal.
  • the magnetic sensor may be installed at a corner of the plate-shaped wireless power receiver, or may be installed on the outer side of the wireless power receiver.
  • the signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the front and rear sides of the radio transceiver, and if the errors are within a predetermined range, the front and rear positions of the reception coil and the transmission coil are aligned .
  • the signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the front and rear sides of the wireless transceiver, respectively, so that the error exceeds the predetermined range, And determines that the reception coil is positioned behind the transmission coil if the intensity of the magnetic field detected by the sensor is larger than the intensity of the magnetic field sensed by the sensor.
  • the signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the front and rear sides of the wireless transceiver, respectively, so that the error exceeds the predetermined range, And determines that the receiving coil is positioned ahead of the transmitting coil when the intensity of the magnetic field detected by the sensor is smaller than the intensity of the magnetic field detected by the sensor.
  • the signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located on the left and right sides of the radio transceiver, and determines whether the left / right positions of the reception coil and the transmission coil are aligned .
  • the signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the left and right sides of the wireless transceiver, respectively, so that the error exceeds the predetermined range, and the intensity of the magnetic field sensed by the left magnetic sensor is greater than And determines that the receiving coil is positioned to the right of the transmitting coil if the intensity of the magnetic field detected by the sensor is greater than the intensity of the magnetic field detected by the sensor.
  • the signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the left and right sides of the wireless transceiver, respectively, so that the error exceeds the predetermined range, and the intensity of the magnetic field sensed by the left magnetic sensor is greater than And determines that the reception coil is located on the left side of the transmission coil when the intensity of the magnetic field detected by the sensor is smaller than the intensity of the magnetic field sensed by the sensor.
  • the signal processing unit outputs a guidance message to the driver to move the vehicle in the direction of the transmission coil when it is determined that the reception coil and the transmission coil are not aligned.
  • the signal processing unit may output a relative position between the reception coil and the transmission coil.
  • the magnetic sensor includes a ferrite block and an X-winding, a Y-winding, and a Z-winding wound around the ferrite block so as to be perpendicular to each other.
  • the magnetic sensor may calculate the sum of the magnitudes of the magnetic field sensed by the X winding, the Y winding, and the Z winding, respectively, To the signal processing unit.
  • the position where the charging efficiency can be increased can be calculated by using the intensity of the magnetic field sensed by the magnetic sensor installed in the vehicle, The charging efficiency of the vehicle using the wireless charging system can be increased.
  • FIG. 1 is a schematic top plan view of an electric vehicle incorporating the present invention.
  • FIG. 2 is a perspective view of a magnetic sensor of the present invention.
  • FIG. 3 is a block diagram illustrating a method of connecting a magnetic sensor and a signal processing unit of the present invention.
  • FIG. 4 is a schematic view for explaining a distance between a magnetic sensor and a charged region according to the present invention.
  • 5 and 6 are side schematic views of a vehicle for explaining the alignment of the vehicle with respect to the direction of travel using the present invention
  • FIG. 7 is a block diagram of a magnetic sensor for determining the alignment of the vehicle according to the traveling direction of the present invention.
  • FIGS. 8 and 9 are rear schematic views of a vehicle for explaining the alignment of the vehicle with respect to the horizontal direction using the present invention.
  • FIG. 10 is a block diagram of a magnetic sensor for determining the alignment of the vehicle in the lateral direction according to the present invention.
  • 11 is a self-aligned image of a vehicle that can be output from the signal processing section of the present invention.
  • FIG. 13 is a block diagram for explaining alignment using the magnetic sensor shown in Fig.
  • An embodiment of the self-aligned guidance system for wireless charging according to the present invention may be installed in a vehicle, and may include a magnetic sensor and a signal processing unit.
  • FIG. 1 schematically illustrates a vehicle 30 including a wireless self-aligned guidance system according to the present invention, which may be an electric vehicle capable of wirelessly charging an embedded battery.
  • the vehicle 30 is provided with a wireless power receiving unit 100 connected to a battery (not shown).
  • the wireless charging method is an electromagnetic induction Method
  • the wireless power receiving unit 100 includes the receiving coil 110.
  • the wireless power receiving unit 100 shown in FIG. 1 is intended to show that the wireless power receiving unit 100 is installed in the vehicle 30, and does not mean that the wireless power receiving unit 100 is installed on the vehicle 30. Since the wireless power receiving unit 100 uses an electromagnetic induction method, the wireless power receiving unit 100 should be close to a wireless power transmission unit normally installed in a charging area. Accordingly, the wireless power receiving unit 100 may be installed under the vehicle 30, and may be connected to the battery of the vehicle to charge the battery through the induction electromotive force generated in the receiving coil 110.
  • the magnetic sensor is installed around the wireless power receiving unit 100.
  • the first to fourth magnetic sensors 121, 122, 123, and 124 may be connected to the wireless power receiving unit 100, And may be installed at diagonal corner portions.
  • the first through fourth magnetic sensors are installed at the diagonal corners, but the present invention is not limited thereto. An embodiment in which the magnetic sensors are installed at different positions will be described later.
  • the first to fourth magnetic sensors 121, 122, 123, and 124 are configured to detect the intensity of a magnetic field generated in a wireless power transmission unit installed in a charging area on the ground, All the same is preferable.
  • the first magnetic sensor 121 is shown in Fig. 2, the first magnetic sensor 121 includes an X-winding 62x, a Y-winding 62y, and a Z-winding 62z in a direction orthogonal to the outer peripheral surface of a ferrite block 61 in the shape of a cube, This is the winding form.
  • the X-winding, Y-winding, and Z-winding are for sensing a magnetic field generated in all directions around the first magnetic sensor.
  • 3A and 3B show how the magnetic field sensed by the X winding 62x, the Y winding 62y, and the Z winding 62z is transmitted to the signal processing unit 200 through some method.
  • the filter 64 may be a frequency filter, and one of a high-pass filter and a band-pass filter may be used if necessary. However, the filter 64 may be used for removing noise A low-pass filter, which is generally used for removing noise, may be used.
  • 3B is a block diagram of an embodiment in which the intensity of the magnetic field sensed by each of the X winding 62x, the Y winding 62y and the Z winding 62z is summed to the signal processor 200, 3A, the intensities of the magnetic fields sensed by the X-winding 62x, the Y-winding 62y, and the Z-winding 62z can be converted into DC through the rectifier 63 before being added, The noise can be removed through the filter 64 before being transmitted to the signal processing unit 200.
  • the magnitudes of the magnetic fields sensed by the X winding 62x, the Y winding 62y, and the Z winding 62z are respectively added to each other, and then the sum of the magnitudes of the magnetic fields is calculated to calculate the total intensity of the magnetic field have.
  • the total intensity of the calculated magnetic field may be transmitted to the signal processing unit 200.
  • first magnetic sensor 121 Although only the first magnetic sensor 121 is shown in Fig. 2, the first magnetic sensor and the second to fourth magnetic sensors have the same configuration, and are structurally the same because they are different in position.
  • the Z axis is the central axis of the receiving coil 110 included in the wireless power receiving unit 100.
  • the X axis is the traveling direction of the vehicle 30 orthogonal to the Z axis and the Y axis is the axis orthogonal to the X axis and the Z axis.
  • the magnetic force lines generated in the transmission coil of the wireless power transmission unit must pass through the reception coil as much as possible, so that the transmission coil and the reception coil
  • the coils must have a large area overlapping each other in the up-and-down direction. Therefore, it is necessary to maximize the area where the transmission coil and the reception coil overlap each other by matching the center axes of the transmission coil and the reception coil.
  • the present invention requires that the center axis of the transmission coil coincides with the center axis of the reception coil, So that the vehicle can be aligned with the center axis of the vehicle.
  • the information on the moving direction of the vehicle may be output through the signal processing unit.
  • the signal processing unit may be implemented by software embedded in the vehicle 30 or a separate device, and may provide the user with information on the moving direction of the vehicle.
  • the signal processing unit receives intensity of a magnetic field sensed by the first to fourth magnetic sensors 121, 122, 123, and 124, and calculates and outputs a direction in which the vehicle moves.
  • Fig. 4 shows a schematic view of the vehicle 30 entering the charging area 40.
  • a wireless power transmission unit 50 is installed in the charging area 40, and a reception coil 51 is included in the wireless power transmission unit 50.
  • the magnetic field generated by the receiving coil 51 is detected by each of the first to fourth magnetic sensors 121, 122, 123 and 124, and the intensity of the magnetic field sensed by each magnetic sensor is detected by the magnetic sensor and the receiving coil (51). Since the distances from the first to fourth magnetic sensors to the receiving coil 51 are different from each other, the strengths of the magnetic fields sensed by the first to fourth magnetic sensors are different from each other.
  • the signal processor measures the intensity of the magnetic field sensed by each magnetic sensor 30) to move.
  • the moving direction of the signal outputted from the signal processing unit and guided to the driver can be divided into a process of determining the forward / backward guidance of the vehicle and a process of determining the left / right moving guidance of the vehicle. Thereby guiding the forward / backward movement of the vehicle.
  • Figures 5 and 7 show the side of the vehicle 30.
  • the driver enters the charging area of the vehicle 30 and places the wireless power receiving unit 100 on the wireless charging transmitting unit. However, the driver can not fully align the wireless power receiving unit 100 and the wireless power receiving unit 100 included in the wireless power receiving unit 100
  • the center axis Z of the reception coil 110 is positioned behind the center axis Z 'of the transmission coil 51 of the wireless power transmission unit. 4, when the sum of the intensities of the magnetic fields sensed by the first and second magnetic sensors 121 and 122 located forward of the Y axis is greater than the sum of the intensity of the magnetic field sensed by the third and fourth magnetic sensors 123 , 124), and in this case, the signal processing unit can guide the driver to advance the vehicle.
  • FIG. 7 is a block diagram for explaining a process of determining forward / backward of the vehicle in the situation shown in FIGS. 5 and 7.
  • FIG. 7 the intensities of the magnetic fields sensed by the first and second magnetic sensors 121 and 122 are summed by the first adder 71 and the third and fourth magnetic sensors 123 and 124
  • the intensity of the magnetic field sensed in the second adder 72 is added up.
  • the intensity of the magnetic field added by the first adder 71 and the second adder 72 is added again by the third adder 73. That is, the intensity of the magnetic field added by the third adder 73 is the intensity of all the magnetic fields detected by the first to fourth magnetic sensors 121, 122, 123, and 124 (hereinafter, total intensity).
  • the divider 74 divides the intensity of the magnetic field detected by the first adder 71 by the total intensity detected by the third adder 73.
  • the value calculated by the divider 74 is 0.5 And the signal processing unit guides the driver to advance the vehicle. 6 since the intensity of the magnetic field added by the first adder 71 is smaller than the intensity of the magnetic field added by the second adder 72, the value calculated by the divider 74 is less than 0.5 And the signal processing unit guides the driver to reverse the vehicle.
  • 5 to 7 show a process of aligning the position of the center axis Z of the receiving coil 110 with the position of the center axis Z 'of the transmitting coil 51 before and after.
  • FIG. 8 shows the rear side of the vehicle 30.
  • the Z axis which is the center axis of the receiving coil 110 installed at the lower portion of the vehicle 30 is located on the left side of the center axis Z ' ≪ / RTI > Therefore, the sum of the intensities of the magnetic fields sensed by the second and third magnetic sensors 122 and 123 positioned on the left side with respect to the X axis orthogonal to the Z axis is the sum of the intensities of the magnetic fields sensed by the first and fourth magnetic sensors 121 and 124 The intensity of the detected magnetic field is weakly sensed, and in this case, the signal processing section can guide the driver to move the vehicle to the right.
  • FIG. 9 shows a case where the center axis Z of the receiving coil 110 is located on the right side of the central axis Z 'of the transmitting coil 51, as opposed to the case of FIG. 8. Therefore, The sum of the intensities of the magnetic fields sensed by the magnetic sensors 122 and 123 is detected to be stronger than the sum of the intensities of the magnetic fields sensed by the first and fourth magnetic sensors 121 and 124. In this case, To the driver.
  • FIG. 10 is a block diagram for explaining a process of determining left / right movement of a vehicle in a situation in FIGS. 8 and 10.
  • the intensities of the magnetic fields sensed by the first and fourth magnetic sensors 121 and 124 are summed by the first adder 71 and the intensity of the magnetic field detected by the second and third magnetic sensors 122 and 123 The intensity of the sensed magnetic field is summed in the second adder 72.
  • the intensity of the magnetic field added by the first adder 71 and the second adder 72 is added again by the third adder 73.
  • the intensity of the magnetic field added by the third adder 73 is the intensity of all the magnetic fields detected by the first to fourth magnetic sensors 121, 122, 123, and 124 (hereinafter, total intensity).
  • the divider 74 divides the intensity of the magnetic field detected by the first adder 71 by the total intensity detected by the third adder 73.
  • the signal processing unit may combine the forward / backward guidance determined in the process shown in FIG. 7 and the left / right moving guidance determined in the process shown in FIG. 10 to output the image to the user. For example, when the signal processing unit outputs a guidance message indicating that advancement and leftward movement are necessary for aligning the center axis of the receiving coil, it is possible to inform the driver that forwarding in the left diagonal direction is required to the display installed inside the vehicle.
  • FIG. 11 shows the position of the wireless power transmission unit 50 including the transmission coil and the reception coil installed in the vehicle of the driver according to the values calculated in the division unit 74 of Figs. 7 and 10, This is an example of a screen provided.
  • the wireless power transmission unit 50 is schematically represented by a square, and the reception coil is shown by a circle 80.
  • the side of the radio power transmission unit 50 has a left end of 0, a right end of 1.0, a vertical end of 0, and a lower end of 1.0.
  • the reason why the horizontal and vertical sides of the wireless power transmission unit 50 have the above values is that the intensity of the magnetic field divided in FIGS. 7 and 11 is the sum of the strengths of the magnetic fields sensed at the front and left sides, respectively.
  • the front / rear coordinates X 'of the circle 80 indicating the current position of the receiving coil shown in FIG. 11A are values calculated by the divider 74 shown in FIG. 7, and the left / right coordinates Y' Is a value calculated by the divider 74 in Fig. That is, as the forward / backward and left / right coordinates of the center of the circle 80 approaches 0.5, the center of the radio power transmission unit 50 approaches the center axis of the transmission coil, 80 are larger than 0 and smaller than 0.5, the vehicle is positioned on the front left side in the central axis of the transmission coil of the wireless power transmission unit 50. [ In FIG. 11A, the center of the wireless power transmission unit 50 is not located in the area of the circle 80. FIG. Therefore, in such a case, as shown in FIG. 11A, the circle 80 may be displayed in red, indicating that the current vehicle position is not aligned with the center axis of the transmission coil.
  • FIG. 11B shows a state in which the center of the wireless power transmission unit 50 is positioned within the area of the circle 80 by moving the vehicle from the vehicle to the right and back at the position of the vehicle shown in Fig. 11A.
  • the signal processing unit may determine that the center axis of the transmission coil and the reception coil are aligned when the center of the wireless power transmission unit 50 is positioned within the area of the circle 80, By changing the color of the display 80 from red to green in FIG. 11A, the driver can be more intuitively informed of the alignment state.
  • the vehicle is a device that turns left or right according to the movement of the handle on the basis of forward / backward movement, so the driver normally arranges left / right first and then front / rear. Therefore, if the center axis Z of the receiving coil 110 coincides with the center axis Z 'of the transmitting coil 51 by a left / right movement after the left / (When the sum of the intensities of the magnetic fields sensed by the first and second magnetic sensors becomes equal to or somewhat similar to the sum of the intensities of the magnetic fields sensed by the third and fourth magnetic sensors), then the forward / can do.
  • the above-described method is one example for comparing the magnitude of the magnetic field sensed by the magnetic sensor, but the present invention is not limited thereto, and the magnitude of the magnetic field sensed by the magnetic sensor located at the front / rear or left /
  • the intensity of the magnetic field divided by the total intensity in Figs. 7 and 10 may be the intensity of the magnetic field summed in the second adder 72, unlike the embodiment described above.
  • the first to fourth magnetic sensors are installed at the same distance in the Z axis, and in the present invention, they can be installed on the same plane as the plane where the receiving coil 110 is installed.
  • the positions of the first to fourth magnetic sensors are not limited to the same plane as the receiving coil 110, but may be disposed on a plane parallel to the receiving coil 110.
  • At least one pair of magnetic sensors may be provided at positions facing each other with respect to the X axis, and at least one pair may be provided at positions facing each other with respect to the Y axis.
  • two pairs of magnetic sensors are provided at positions that are opposed to each other with respect to the X axis and the Y axis.
  • the number of the magnetic sensors is not limited thereto.
  • the magnetic sensor is installed at the corner of the wireless power receiving unit 100, thereby reducing the size of the wireless power receiving unit 100 itself.
  • the present invention does not limit the position of the magnetic sensor to the embodiment of the present invention shown in FIG. 1.
  • the first to fourth magnetic sensors 121, 122, 123, Axis and the Y-axis are installed in the periphery of the wireless power receiving unit 100, as shown in FIG.
  • FIG. 13 shows a process of determining forward / backward and left / right movement of the vehicle in the embodiment as shown in FIG. Referring to FIG. 13, the first and third magnetic sensors 121 and 123, which are divided based on the Y axis in FIG.
  • the intensity of the magnetic field sensed by the first magnetic sensor 121 located at the front in the divider 74 is added to the sum of the magnetic field strength detected by the first adder 71 Of the total. If the value calculated by the divider 74 is greater than 0.5, the signal processor guides the vehicle to advance, and if the calculated value is less than 0.5, the signal processor guides the vehicle backward.
  • the left / right movement of the vehicle also uses the same method as the forward / backward movement, except that the value summed by the second adder 72 is the intensity of the magnetic field sensed by each of the second and fourth magnetic sensors 122 and 124 .
  • first magnetic sensor 122 second magnetic sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to a self-alignment guide system for wireless charging, which can guide a driver of a wirelessly chargeable vehicle, such as an electric car, to a wireless charging position in which charging efficiency can be increased, the self-alignment guide system comprising: a wireless power receiving unit installed in a vehicle; a plurality of magnetic sensors installed around the wireless power receiving unit so as to sense the strength of a magnetic field generated by a wireless power transmitting unit installed in a charging area on the ground; and a signal processing unit for determining the degree of alignment between a reception coil of the wireless power receiving unit and a transmission coil of the wireless power transmitting unit or the position of the reception coil according to the strength of a magnetic field, sensed by each of the magnetic sensors.

Description

무선충전의 자기 정렬 안내 시스템Wireless self-alignment guidance system
본 발명은 무선충전의 자기 정렬 안내 시스템에 관한 것으로써, 보다 상세히는 전기 자동차와 같이 무선충전이 가능한 주행체의 운전자에게 충전효율을 높일 수 있는 무선충전 위치를 안내할 수 있는 무선충전의 자기 정렬 안내 시스템에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-aligned guidance system for wireless charging, and more particularly to a wireless self-alignment guidance system for wirelessly charging a wireless charging station, Guide system.
최근 자동차는 가솔린 또는 디젤과 같이 화학연료를 사용하는 방식에서 배터리를 이용한 전기자동차로 전환되는 추세이다. 전기자동차는 차체 내부에 포함되는 배터리의 전력을 사용하는데, 화학연료와 같이 전력 또한 방전에 따라 주기적으로 충전할 필요가 있다.In recent years, automobiles have been shifting from using chemical fuels such as gasoline or diesel to electric vehicles using batteries. The electric vehicle uses the electric power of the battery included in the body of the vehicle, and the electric power such as the chemical fuel also needs to be charged periodically according to the discharge.
전기자동차 내부에 포함되는 배터리를 충전하는 방식은 유선충전방식과 무선충전방식으로 나뉘며, 이미 공개된 무선충전방식에 대해서는 한국공개특허공보 제10-2017-0066732호(“차량용 무선 충전 시스템”, 공개일 2017.06.15., 이하 선행기술 1)가 있다. A method of charging a battery included in an electric vehicle is classified into a wired charging method and a wireless charging method. For the wireless charging method already disclosed, Korean Patent Laid-Open Publication No. 10-2017-0066732 (" 1, June 15, 2015, hereinafter referred to as prior art 1).
차량용 무선 충전 시스템을 간략히 설명하면 충전 시스템은 차량의 하부에 매설된 무선전력송신부 및 무선전력수신부를 포함하며, 무선전력송신와 무선전력수신부 각각에 포함된 송신 및 수신코일간의 전자기 유도를 통해 전기자동차의 배터리를 충전하게 된다.The charging system includes a wireless power transmitter and a wireless power receiver embedded in a lower portion of a vehicle. The charging system includes a wireless power transmitter and a wireless power receiver. The battery will be charged.
상기한 방식의 무선충전방식은 지면에 평행한 평면방향으로 권선되어 서로 일정간격 이격된 송신코일과 수신코일간의 거리가 가까울수록 충전효율이 증가한다. 지면에 매설된 송신코일과 차량에 설치된 수신코일간의 수직 거리는 미리 결정된 사항으로 변경이 불가능하기 때문에, 송신코일과 수신코일간의 수평방향의 거리, 즉 송신코일과 수신코일의 중심축간의 거리를 정렬할 필요가 있다. 송신코일과 수신코일의 중심축간의 거리를 정렬하는 것은 운전자가 차량을 운전하는 방식으로 할 수 밖에 없는데, 종래 무선 충전 시스템에서 운전자는 어느 위치로 차량을 이동시켜야 송신코일과 수신코일의 중심축을 정렬할 수 있는지에 대한 정보를 얻을 수 없는 문제점이 있다.The charging efficiency is increased as the distance between the transmitting coil and the receiving coil, which are wound in a plane direction parallel to the paper surface and spaced apart from each other by a predetermined distance, becomes closer to each other. Since the vertical distance between the transmission coil embedded in the ground and the reception coil installed in the vehicle can not be changed to a predetermined matter, the horizontal distance between the transmission coil and the reception coil, that is, the distance between the transmission coil and the center axis of the reception coil There is a need. In order to align the distance between the transmission coil and the center axis of the reception coil, the driver must operate the vehicle. However, in the conventional wireless charging system, the driver must move the vehicle to a certain position to align the center axes of the transmission coil and the reception coil There is a problem that it is not possible to obtain information as to whether or not it can be done.
본 발명은 상기한 바와 같은 문제점을 해결하기 위해 안출된 것으로써, 본 발명에 의한 무선충전의 자기 정렬 안내 시스템의 목적은 송신코일과 수신코일의 중심축을 정렬하여, 전기자동차의 무선충전 효율을 높일 수 있도록 전기자동차의 무선 충전시 운전자에게 전기자동차의 이동에 관한 정보를 제공할 수 있는 무선충전의 자기 정렬 안내 시스템을 제공함에 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a self-aligning guidance system for wireless charging according to the present invention, in which the central axes of a transmission coil and a reception coil are aligned, The present invention provides a wireless self-aligning guidance system capable of providing information on the movement of an electric vehicle to a driver during wireless charging of the electric vehicle.
상기한 바와 같은 문제점을 해결하기 위한 본 발명에 의한 무선충전의 자기 정렬 안내 시스템은, 차량에 설치되는 무선전력수신부, 상기 무선전력수신부의 주변에 설치되어 지상의 충전영역에 설치된 무선전력송신부에서 발생하는 자기장의 세기를 감지하는 복수의 자기센서 및 상기 자기센서 각각에서 감지된 자기장의 세기에 따라 상기 무선전력수신부의 수신코일과 상기 무선전력송신부의 송신코일의 정렬정도 또는 상기 수신코일의 위치를 판단하는 신호처리부를 포함하는 것을 특징으로 한다.In order to solve the above-mentioned problems, the wireless self-alignment guidance system of the present invention includes a wireless power receiving unit installed in a vehicle, a wireless power transmitting unit installed in a charging area on the periphery of the wireless power receiving unit, A plurality of magnetic sensors for sensing the intensity of a magnetic field to be detected by the magnetic sensor, and a degree of alignment of the receiving coil of the wireless power receiving unit and a transmitting coil of the wireless power transmitting unit or a position of the receiving coil, And a signal processor for processing the signal.
또한, 상기 자기센서는 판형의 상기 무선전력수신부의 코너부에 설치되거나, 상기 무선전력수신부의 외곽 변에 설치되는 것을 특징으로 한다.The magnetic sensor may be installed at a corner of the plate-shaped wireless power receiver, or may be installed on the outer side of the wireless power receiver.
또한, 상기 신호처리부는 상기 무선전련수신부의 전방과 후방 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 서로 동일하거나 오차가 소정 범위 내면 상기 수신코일과 송신코일의 전/후 위치가 정렬된 것으로 판단하는 것을 특징으로 한다.The signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the front and rear sides of the radio transceiver, and if the errors are within a predetermined range, the front and rear positions of the reception coil and the transmission coil are aligned .
또한, 상기 신호처리부는 상기 무선전련수신부의 전방과 후방 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 오차가 소정 범위를 초과하되, 전방의 자기센서에서 감지된 자기장의 세기가 후방의 자기센서에서 감지된 자기장의 세기보다 크면 상기 수신코일이 송신코일보다 후방에 위치하는 것으로 판단하는 것을 특징으로 한다.The signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the front and rear sides of the wireless transceiver, respectively, so that the error exceeds the predetermined range, And determines that the reception coil is positioned behind the transmission coil if the intensity of the magnetic field detected by the sensor is larger than the intensity of the magnetic field sensed by the sensor.
또한, 상기 신호처리부는 상기 무선전련수신부의 전방과 후방 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 오차가 소정 범위를 초과하되, 전방의 자기센서에서 감지된 자기장의 세기가 후방의 자기센서에서 감지된 자기장의 세기보다 작으면 상기 수신코일이 송신코일보다 전방에 위치하는 것으로 판단하는 것을 특징으로 한다.The signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the front and rear sides of the wireless transceiver, respectively, so that the error exceeds the predetermined range, And determines that the receiving coil is positioned ahead of the transmitting coil when the intensity of the magnetic field detected by the sensor is smaller than the intensity of the magnetic field detected by the sensor.
또한, 상기 신호처리부는 상기 무선전련수신부의 좌측과 우측 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 서로 동일하거나 오차가 소정 범위 내면 상기 수신코일과 송신코일의 좌/우 위치가 정렬된 것으로 판단하는 것을 특징으로 한다.The signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located on the left and right sides of the radio transceiver, and determines whether the left / right positions of the reception coil and the transmission coil are aligned .
또한, 상기 신호처리부는 상기 무선전련수신부의 좌측과 우측 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 오차가 소정 범위를 초과하되, 좌측의 자기센서에서 감지된 자기장의 세기가 우측의 자기센서에서 감지된 자기장의 세기보다 크면 상기 수신코일이 송신코일보다 우측에 위치하는 것으로 판단하는 것을 특징으로 한다.The signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the left and right sides of the wireless transceiver, respectively, so that the error exceeds the predetermined range, and the intensity of the magnetic field sensed by the left magnetic sensor is greater than And determines that the receiving coil is positioned to the right of the transmitting coil if the intensity of the magnetic field detected by the sensor is greater than the intensity of the magnetic field detected by the sensor.
또한, 상기 신호처리부는 상기 무선전련수신부의 좌측과 우측 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 오차가 소정 범위를 초과하되, 좌측의 자기센서에서 감지된 자기장의 세기가 우측의 자기센서에서 감지된 자기장의 세기보다 작으면 상기 수신코일이 송신코일보다 좌측에 위치하는 것으로 판단하는 것을 특징으로 한다.The signal processing unit compares the intensities of the magnetic fields sensed by the magnetic sensors located at the left and right sides of the wireless transceiver, respectively, so that the error exceeds the predetermined range, and the intensity of the magnetic field sensed by the left magnetic sensor is greater than And determines that the reception coil is located on the left side of the transmission coil when the intensity of the magnetic field detected by the sensor is smaller than the intensity of the magnetic field sensed by the sensor.
또한, 상기 신호처리부는 상기 수신코일과 송신코일이 정렬되지 않았다고 판단했을 때, 운전자에게 차량을 상기 송신코일의 방향으로 이동하도록 안내 메시지를 출력하는 것을 특징으로 한다.The signal processing unit outputs a guidance message to the driver to move the vehicle in the direction of the transmission coil when it is determined that the reception coil and the transmission coil are not aligned.
또한, 상기 신호처리부는 상기 수신코일과 송신코일의 정렬정도와 상대적인 위치를 출력하는 것을 특징으로 한다.The signal processing unit may output a relative position between the reception coil and the transmission coil.
또한, 상기 자기센서는 페라이트 블록과 상기 페라이트 블록에 서로 수직하도록 감기는 X권선, Y권선 및 Z권선을 포함하여 이루어지는 것을 특징으로 한다.The magnetic sensor includes a ferrite block and an X-winding, a Y-winding, and a Z-winding wound around the ferrite block so as to be perpendicular to each other.
또한, 상기 자기센서는 상기 X권선, Y권선 및 Z권선 각각에서 감지된 자기장의 세기를 각각 제곱하여 더한 후 제곱근을 취하거나 합산하여 상기 신호처리부로 송신하거나, 감지된 자기장의 세기 중 가장 큰 자기장의 세기만을 상기 신호처리부로 송신하는 것을 특징으로 한다.In addition, the magnetic sensor may calculate the sum of the magnitudes of the magnetic field sensed by the X winding, the Y winding, and the Z winding, respectively, To the signal processing unit.
상기한 바와 같은 본 발명에 의한 무선충전의 자기 정렬 안내 시스템에 의하면, 차량에 설치된 자기센서에서 감지된 자기장의 세기를 이용하여 충전효율을 높일 수 있는 위치를 계산하고, 계산된 위치를 차량의 운전자에게 안내함으로써, 무선충전방식을 사용하는 차량의 충전효율을 높일 수 있는 효과가 있다.According to the self-alignment guidance system of wireless charging according to the present invention as described above, the position where the charging efficiency can be increased can be calculated by using the intensity of the magnetic field sensed by the magnetic sensor installed in the vehicle, The charging efficiency of the vehicle using the wireless charging system can be increased.
도 1은 본 발명이 내장된 전기자동차의 상측 평면 개략도.1 is a schematic top plan view of an electric vehicle incorporating the present invention.
도 2는 본 발명의 자기센서의 사시도.2 is a perspective view of a magnetic sensor of the present invention.
도 3은 본 발명의 자기센서와 신호처리부의 연결되는 방식을 도시한 블록도.3 is a block diagram illustrating a method of connecting a magnetic sensor and a signal processing unit of the present invention.
도 4는 본 발명의 자기센서와 충전영역 사이의 거리를 설명하기 위한 개략도.4 is a schematic view for explaining a distance between a magnetic sensor and a charged region according to the present invention;
도 5 및 도 6은 본 발명을 이용한 차량의 진행방향에 대한 정렬을 설명하기 위한 차량의 측면 개략도.5 and 6 are side schematic views of a vehicle for explaining the alignment of the vehicle with respect to the direction of travel using the present invention;
도 7은 본 발명의 차량의 진행방향에 대한 정렬을 판단하기 위한 자기센서의 블록도.7 is a block diagram of a magnetic sensor for determining the alignment of the vehicle according to the traveling direction of the present invention.
도 8 및 도 9는 본 발명을 이용한 차량의 수평방향에 대한 정렬을 설명하기 위한 차량의 후면 개략도.8 and 9 are rear schematic views of a vehicle for explaining the alignment of the vehicle with respect to the horizontal direction using the present invention.
도 10은 본 발명의 차량의 좌우방향에 대한 정렬을 판단하기 위한 자기센서의 블록도.10 is a block diagram of a magnetic sensor for determining the alignment of the vehicle in the lateral direction according to the present invention.
도 11은 본 발명의 신호처리부에서 출력될 수 있는 차량의 자기정렬 이미지.11 is a self-aligned image of a vehicle that can be output from the signal processing section of the present invention.
도 12는 본 발명의 자기센서의 다른 실시예.12 is another embodiment of the magnetic sensor of the present invention.
도 13은 도 12에 도시된 자기센서를 이용한 정렬을 설명하기 위한 블록도.13 is a block diagram for explaining alignment using the magnetic sensor shown in Fig.
이하 첨부된 도면을 참고하여 본 발명에 의한 무선충전의 자기 정렬 안내 시스템의 바람직한 실시예에 관하여 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
본 발명에 의한 무선충전의 자기 정렬 안내 시스템의 일실시예는 차량에 설치되는 것으로써, 자기센서 및 신호처리부를 포함하여 이루어질 수 있다.An embodiment of the self-aligned guidance system for wireless charging according to the present invention may be installed in a vehicle, and may include a magnetic sensor and a signal processing unit.
도 1은 본 발명에 의한 무선충전의 자기 정렬 안내 시스템을 포함하는 차량(30)을 개략적으로 도시한 것으로, 상기 차량(30)은 내장된 배터리를 무선으로 충전하는 것이 가능한 전기자동차일 수 있다. 상기 차량(30)의 배터리를 무선으로 충전하기 위해 상기 차량(30)에는 배터리(미도시)에 연결된 무선전력수신부(100)가 설치되어 있으며, 무선충전방식은 배경기술에서 상술한 바와 같이 전자기유도방식을 사용하기 때문에, 무선전력수신부(100)에는 수신코일(110)이 포함된다.1 schematically illustrates a vehicle 30 including a wireless self-aligned guidance system according to the present invention, which may be an electric vehicle capable of wirelessly charging an embedded battery. In order to wirelessly charge the battery of the vehicle 30, the vehicle 30 is provided with a wireless power receiving unit 100 connected to a battery (not shown). The wireless charging method is an electromagnetic induction Method, the wireless power receiving unit 100 includes the receiving coil 110. [
도 1에 도시된 무선전력수신부(100)는 차량(30)에 설치된다는 것을 보여주기 위한 것으로, 차량(30)의 상부에 설치된다는 의미가 아니다. 상기 무선전력수신부(100)는 전자기유도방식을 이용하기 때문에, 일반적으로 충전영역에 매설되어 설치되는 무선젼력송신부에 근접해야한다. 따라서 상기 무선전력수신부(100)는 차량(30)의 하부에 설치될 수 있으며, 차량의 배터리와 연결되어 수신코일(110)에서 발생하는 유도기전력을 통해 배터리를 충전할 수 있다.The wireless power receiving unit 100 shown in FIG. 1 is intended to show that the wireless power receiving unit 100 is installed in the vehicle 30, and does not mean that the wireless power receiving unit 100 is installed on the vehicle 30. Since the wireless power receiving unit 100 uses an electromagnetic induction method, the wireless power receiving unit 100 should be close to a wireless power transmission unit normally installed in a charging area. Accordingly, the wireless power receiving unit 100 may be installed under the vehicle 30, and may be connected to the battery of the vehicle to charge the battery through the induction electromotive force generated in the receiving coil 110.
상기 자기센서는 상기 무선전력수신부(100)의 주변에 설치된다. 상기 자기센서는 복수개가 설치될 수 있으며, 본 발명의 일실시예에서는 도 1에 도시된 바와 같이 제1 내지 제4자기센서(121, 122, 123, 124)가 상기 무선전력수신부(100)의 대각선 코너부에 설치될 수 있다. 이하 제1 내지 제4자기센서가 대각선 코너부에 설치되는 실시예에 대하여 중점적으로 설명하나, 본 발명은 이에 한정하는 것이 아니며 자기센서가 다른 위치에 설치되는 실시예에 대해서는 후술한다.The magnetic sensor is installed around the wireless power receiving unit 100. 1, the first to fourth magnetic sensors 121, 122, 123, and 124 may be connected to the wireless power receiving unit 100, And may be installed at diagonal corner portions. Hereinafter, the first through fourth magnetic sensors are installed at the diagonal corners, but the present invention is not limited thereto. An embodiment in which the magnetic sensors are installed at different positions will be described later.
상기 제1 내지 제4자기센서(121, 122, 123, 124)는 지상의 충전영역에 설치된 무선전력송신부에서 발생하는 자기장의 세기를 감지할 수 있는 구성으로, 각각의 성능 또는 구조가 다를 수 있으나 모두 동일한 것이 바람직하다.The first to fourth magnetic sensors 121, 122, 123, and 124 are configured to detect the intensity of a magnetic field generated in a wireless power transmission unit installed in a charging area on the ground, All the same is preferable.
도 2에는 상기 제1자기센서(121)에 대하여 도시되어 있다. 도 2에 도시된 바와 같이, 상기 제1자기센서(121)는 정육면체 형상의 페라이트 블록(61)의 외주면에 서로 직교하는 방향으로 X권선(62x), Y권선(62y) 및 Z권선(62z)이 권선된 형태이다. 상기 X권선, Y권선 및 Z권선은 상기 제1자기센서의 주변 모든 방향에서 발생하는 자기장을 감지하기 위한 것이다. 도 3A 및 도 3B는 상기 X권선(62x), Y권선(62y) 및 Z권선(62z)에서 감지되는 자기장이 어떤 방식을 통해 신호처리부(200)로 전송되는지를 도시한 것이다. 도 3A는 상기 X권선(62x), Y권선(62y) 및 Z권선(62z) 각각에서 감지된 자기장의 세기 중 가장 큰 값을 가지는 자기장의 세기를 상기 신호처리부(200)로 전송되는 것을 도시한 것으로, 도 3A에 도시된 바와 같이 상기 X권선(62x), Y권선(62y) 및 Z권선(62z)과 신호처리부 사이에는 정류기(63)가 위치하여, 상기 X권선(62x), Y권선(62y) 및 Z권선(62z)에서 감지된 자기장의 세기를 직류로 변환하고, 가장 큰 값의 신호를 필터(64)를 통해 노이즈를 제거한 후 상기 신호처리부(200)로 전송될 수 있다. 상기 필터(64)는 주파수 필터로, 필요에 따라 고대역 필터(high-pass filter) 및 밴드 패스 필터(band-pass filter) 중 하나가 사용될 수 있으나, 상기 필터(64)는 노이즈 제거를 목적으로 하기 때문에 일반적으로 노이즈 제거용으로 사용되는 저대역 필터(low-pass filter)가 사용될 수 있다.The first magnetic sensor 121 is shown in Fig. 2, the first magnetic sensor 121 includes an X-winding 62x, a Y-winding 62y, and a Z-winding 62z in a direction orthogonal to the outer peripheral surface of a ferrite block 61 in the shape of a cube, This is the winding form. The X-winding, Y-winding, and Z-winding are for sensing a magnetic field generated in all directions around the first magnetic sensor. 3A and 3B show how the magnetic field sensed by the X winding 62x, the Y winding 62y, and the Z winding 62z is transmitted to the signal processing unit 200 through some method. 3A shows that the intensity of the magnetic field having the greatest magnitude of the magnetic field strength detected in each of the X winding 62x, the Y winding 62y, and the Z winding 62z is transmitted to the signal processor 200 3A, a rectifier 63 is disposed between the X winding 62x, the Y winding 62y, and the Z winding 62z and the signal processing section, and the X winding 62x, the Y winding 62y and the Z winding 62z to DC and removes the noise of the largest value signal through the filter 64 and then to the signal processing unit 200. [ The filter 64 may be a frequency filter, and one of a high-pass filter and a band-pass filter may be used if necessary. However, the filter 64 may be used for removing noise A low-pass filter, which is generally used for removing noise, may be used.
도 3B는 상기 X권선(62x), Y권선(62y) 및 Z권선(62z) 각각에서 감지된 자기장의 세기를 합산하여 상기 신호처리부(200)로 전송되는 실시예의 블록도를 도시한 것으로, 도 3A와 동일하게 상기 X권선(62x), Y권선(62y) 및 Z권선(62z) 각각에서 감지된 자기장의 세기는 합산되기 전에 정류기(63)를 통해 직류로 변환한 후 합산될 수 있고, 상기 신호처리부(200)로 전송되기 전에 필터(64)를 통해 노이즈를 제거할 수 있다. 또한, 도 3B와 달리 상기 X권선(62x), Y권선(62y) 및 Z권선(62z) 각각에서 감지된 자기장의 세기를 제곱하여 서로 합산한 후, 제곱근을 취하여 자기장의 총 세기를 연산할 수 있다. 연산된 자기장의 총 세기는 상기 신호처리부(200)로 전송될 수 있다.3B is a block diagram of an embodiment in which the intensity of the magnetic field sensed by each of the X winding 62x, the Y winding 62y and the Z winding 62z is summed to the signal processor 200, 3A, the intensities of the magnetic fields sensed by the X-winding 62x, the Y-winding 62y, and the Z-winding 62z can be converted into DC through the rectifier 63 before being added, The noise can be removed through the filter 64 before being transmitted to the signal processing unit 200. 3B, the magnitudes of the magnetic fields sensed by the X winding 62x, the Y winding 62y, and the Z winding 62z are respectively added to each other, and then the sum of the magnitudes of the magnetic fields is calculated to calculate the total intensity of the magnetic field have. The total intensity of the calculated magnetic field may be transmitted to the signal processing unit 200.
도 2에서는 제1자기센서(121)만이 도시되어 있지만, 제1자기센서와 제2 내지 제4자기센서는 동일한 구성이되, 설치되는 위치만 다르기 때문에 구조적으로 동일하다.Although only the first magnetic sensor 121 is shown in Fig. 2, the first magnetic sensor and the second to fourth magnetic sensors have the same configuration, and are structurally the same because they are different in position.
설명의 편의를 위하여 도 1을 참고하여 가상의 X축, Y축 및 Z축을 결정한다. Z축은 상기 무선전력수신부(100)에 포함되는 수신코일(110)의 중심축이고, X축은 Z축에 직교하는 차량(30)의 진행방향이며, Y축은 X축과 Z축에 각각 직교하는 축이다.For convenience of explanation, virtual X-axis, Y-axis, and Z-axis are determined with reference to FIG. The Z axis is the central axis of the receiving coil 110 included in the wireless power receiving unit 100. The X axis is the traveling direction of the vehicle 30 orthogonal to the Z axis and the Y axis is the axis orthogonal to the X axis and the Z axis.
무선충전의 경우 상술한 바와 같이 전자기유도방식을 사용하는데, 전자기유도방식의 충전효율을 높이기 위해서는 무선전력송신부의 송신코일에서 발생하는 자기력선이 상기 수신코일을 최대한 많이 통과해야 하기 때문에, 송신코일과 수신코일은 상하방향으로 서로 겹쳐지는 면적이 많아야 한다. 따라서 송신코일과 수신코일의 중심축을 서로 일치시켜 송신코일과 수신코일이 서로 겹쳐지는 면적을 최대화하는 작업이 필요하며, 본 발명은 이를 위해 운전자에게 송신코일과 수신코일의 중심축을 일치, 즉 송신코일의 중심축에 맞춰 차량을 정렬할 수 있도록 차량의 이동 방향에 대한 정보를 제공한다.In order to increase the charging efficiency of the electromagnetic induction type, the magnetic force lines generated in the transmission coil of the wireless power transmission unit must pass through the reception coil as much as possible, so that the transmission coil and the reception coil The coils must have a large area overlapping each other in the up-and-down direction. Therefore, it is necessary to maximize the area where the transmission coil and the reception coil overlap each other by matching the center axes of the transmission coil and the reception coil. To this end, the present invention requires that the center axis of the transmission coil coincides with the center axis of the reception coil, So that the vehicle can be aligned with the center axis of the vehicle.
상기한 차량의 이동 방향에 대한 정보는 상기 신호처리부를 통해 출력될 수 있다. 상기 신호처리부는 차량(30)에 내장된 소프트웨어나 별도의 장치로 구현될 수 있으며, 사용자에게 차량의 이동방향에 대한 정보를 제공할 수 있다. 상기 신호처리부는 상기 제1 내지 제4자기센서(121, 122, 123, 124)에서 감지된 자기장의 세기를 수신하고, 이를 통해 차량이 이동할 방향을 연산 및 출력한다.The information on the moving direction of the vehicle may be output through the signal processing unit. The signal processing unit may be implemented by software embedded in the vehicle 30 or a separate device, and may provide the user with information on the moving direction of the vehicle. The signal processing unit receives intensity of a magnetic field sensed by the first to fourth magnetic sensors 121, 122, 123, and 124, and calculates and outputs a direction in which the vehicle moves.
도 4는 충전영역(40)으로 진입하는 차량(30)의 개략적인 모습을 도시한 것이다. 도 4에 도시된 바와 같이 충전영역(40)에는 무선전력송신부(50)가 설치되어 있으며, 상기 무선전력송신부(50)에는 수신코일(51)이 포함되어 있다.Fig. 4 shows a schematic view of the vehicle 30 entering the charging area 40. Fig. As shown in FIG. 4, a wireless power transmission unit 50 is installed in the charging area 40, and a reception coil 51 is included in the wireless power transmission unit 50.
상기 수신코일(51)에서 발생되는 자기장은 제1 내지 제4자기센서(121, 122, 123, 124) 각각에서 감지되되, 각각의 자기센서에서 감지되는 자기장의 세기는 각각의 자기센서와 수신코일(51)과의 거리에 반비례한다. 제1 내지 제4자기센서 각각에서 수신코일(51)과의 거리는 서로 다르기 때문에 각각에서 감지되는 자기장의 세기는 서로 다른데, 상기 신호처리부는 각각의 자기센서에서 감지되는 자기장의 세기를 기준으로 차량(30)이 이동할 위치를 안내한다.The magnetic field generated by the receiving coil 51 is detected by each of the first to fourth magnetic sensors 121, 122, 123 and 124, and the intensity of the magnetic field sensed by each magnetic sensor is detected by the magnetic sensor and the receiving coil (51). Since the distances from the first to fourth magnetic sensors to the receiving coil 51 are different from each other, the strengths of the magnetic fields sensed by the first to fourth magnetic sensors are different from each other. The signal processor measures the intensity of the magnetic field sensed by each magnetic sensor 30) to move.
구체적으로 상기 신호처리부에서 출력되어 운전자에게 안내하는 이동방향은 차량의 전진/후진 안내를 결정하는 과정과 차량의 좌측/우측 이동안내를 결정하는 과정으로 나뉠 수 있으며, 먼저 도 5 및 7을 참고로 하여 차량의 전진/후진을 안내하는 과정을 설명한다.Specifically, the moving direction of the signal outputted from the signal processing unit and guided to the driver can be divided into a process of determining the forward / backward guidance of the vehicle and a process of determining the left / right moving guidance of the vehicle. Thereby guiding the forward / backward movement of the vehicle.
도 5 및 7에는 차량(30)의 측면이 도시되어 있다. 도 5에 도시된 바와 같이 운전자는 차량(30)을 충전영역에 진입시켜 무선충전송신부의 상부에 무선전력수신부(100)를 위치시킨 상태이나, 완전히 정렬하지 못하고 무선전력수신부(100)에 포함된 수신코일(110)의 중심축(Z)은 무선전력송신부의 송신코일(51)의 중심축(Z’)보다 뒤에 위치한 상태이다. 도 4와 같은 상태가 되면, Y축보다 전방에 위치한 제1 및 제2자기센서(121, 122)에서 감지되는 자기장의 세기의 합은 Y축보다 후방에 위치한 제3 및 제4자기센서(123, 124)에서 감지되는 자기장의 세기의 합보다 강하게 감지되며, 이러한 경우 상기 신호처리부는 차량을 전진시키도록 운전자에게 안내할 수 있다.Figures 5 and 7 show the side of the vehicle 30. [ 5, the driver enters the charging area of the vehicle 30 and places the wireless power receiving unit 100 on the wireless charging transmitting unit. However, the driver can not fully align the wireless power receiving unit 100 and the wireless power receiving unit 100 included in the wireless power receiving unit 100 The center axis Z of the reception coil 110 is positioned behind the center axis Z 'of the transmission coil 51 of the wireless power transmission unit. 4, when the sum of the intensities of the magnetic fields sensed by the first and second magnetic sensors 121 and 122 located forward of the Y axis is greater than the sum of the intensity of the magnetic field sensed by the third and fourth magnetic sensors 123 , 124), and in this case, the signal processing unit can guide the driver to advance the vehicle.
도 6은 도 5와는 반대로, 무선전력수신부(100)에 포함된 수신코일(110)의 중심축(Z)은 무선전력송신부의 송신코일(51)의 중심축(Z’)보다 앞에 위치하는 경우를 도시한 것이다. 따라서 제1 및 제2자기센서(121, 122)에서 감지되는 자기장의 세기의 합은 제3 및 제4자기센서(123, 124)에서 감지되는 자기장의 세기의 합보다 약하게 감지되며, 이러한 경우 상기 신호처리부는 차량을 후진하도록 운전자에게 안내할 수 있다.6, when the center axis Z of the receiving coil 110 included in the wireless power receiving unit 100 is located in front of the center axis Z 'of the transmitting coil 51 of the wireless power transmitting unit, FIG. Therefore, the sum of the intensities of the magnetic fields sensed by the first and second magnetic sensors 121 and 122 is weaker than the sum of the intensities of the magnetic fields sensed by the third and fourth magnetic sensors 123 and 124, The signal processing unit can guide the driver to reverse the vehicle.
차량의 전진/후진 또는 후술할 좌측/우측이동을 결정하기 위해 전방과 후방 각각 또는 좌측/우측 각각에 위치한 자기센서에서 감지된 자기장의 세기의 대/소를 비교하는 방식은 다양하게 있을 수 있으며, 본 발명에서는 그 방법 중 하나에 관하여 설명한다.There are various ways to compare the magnitude of the magnetic field sensed by the magnetic sensor located at each of the front and rear sides or the left / right sides to determine the forward / backward movement or left / right movement of the vehicle, One of the methods will be described in the present invention.
도 7은 도 5 및 7에 도시된 상황에서 차량의 전진/후진을 결정하는 과정을 구체적으로 설명하기 위한 블록도이다. 도 7에 도시된 바와 같이, 제1 및 제2자기센서(121, 122)에서 감지된 자기장의 세기는 제1가산부(71)에서 합산되고, 제3 및 제4자기센서에(123, 124)에서 감지된 자기장의 세기는 제2가산부(72)에서 합산된다. 상기 제1가산부(71) 및 제2가산부(72)에서 합산된 자기장의 세기는 제3가산부(73)에서 다시 가산된다. 즉, 상기 제3가산부(73)에서 가산되는 자기장의 세기는 제1 내지 제4자기센서(121, 122, 123, 124)에서 감지된 모든 자기장의 세기(이하 총 세기)이다. 제산부(74)는 상기 제1가산부(71)에서 감지된 자기장의 세기를 상기 제3가산부(73)에서 감지된 총 세기로 나눈다.FIG. 7 is a block diagram for explaining a process of determining forward / backward of the vehicle in the situation shown in FIGS. 5 and 7. FIG. 7, the intensities of the magnetic fields sensed by the first and second magnetic sensors 121 and 122 are summed by the first adder 71 and the third and fourth magnetic sensors 123 and 124 The intensity of the magnetic field sensed in the second adder 72 is added up. The intensity of the magnetic field added by the first adder 71 and the second adder 72 is added again by the third adder 73. That is, the intensity of the magnetic field added by the third adder 73 is the intensity of all the magnetic fields detected by the first to fourth magnetic sensors 121, 122, 123, and 124 (hereinafter, total intensity). The divider 74 divides the intensity of the magnetic field detected by the first adder 71 by the total intensity detected by the third adder 73.
도 5와 같은 경우에는 상기 제1가산부(71)에서 합산된 자기장의 세기가 제2가산부(72)에서 합산된 자기장의 세기보다 크기 때문에, 상기 제산부(74)에서 연산된 값이 0.5보다 크며, 상기 신호처리부는 운전자에게 차량을 전진하라고 안내한다. 도 6과 같은 경우에는 상기 제1가산부(71)에서 합산된 자기장의 세기가 제2가산부(72)에서 합산된 자기장의 세기보다 작기 때문에 상기 제산부(74)에서 연산된 값이 0.5보다 작으며, 상기 신호처리부는 운전자에게 차량을 후진하라고 안내한다.5, since the intensity of the magnetic field added by the first adder 71 is larger than the intensity of the magnetic field added by the second adder 72, the value calculated by the divider 74 is 0.5 And the signal processing unit guides the driver to advance the vehicle. 6, since the intensity of the magnetic field added by the first adder 71 is smaller than the intensity of the magnetic field added by the second adder 72, the value calculated by the divider 74 is less than 0.5 And the signal processing unit guides the driver to reverse the vehicle.
도 5 내지 7은 수신코일(110)의 중심축(Z)과 송신코일(51)의 중심축(Z’)의 전/후 위치를 정렬하는 과정이다. 단, 수신코일(110)의 중심축(Z)과 송신코일(51)의 중심축(Z’)의 전/후 위치를 명확하게 정렬하는 것은 어려울 수 있다. 따라서 상기 신호처리부는 상기 제산부(74)에서 연산되는 수치가 0.5를 기준으로 일정 범위 내로 되면(예를 들어 연산된 값이 0.4 이상 0.6 이하) 운전자에게 차량의 전진/후진에 관한 안내를 종료할 수 있다.5 to 7 show a process of aligning the position of the center axis Z of the receiving coil 110 with the position of the center axis Z 'of the transmitting coil 51 before and after. However, it may be difficult to clearly align the center axis Z of the receiving coil 110 with the position of the center axis Z 'of the transmitting coil 51 before / after. Therefore, when the numerical value calculated by the divider 74 falls within a predetermined range based on 0.5 (for example, the calculated value is 0.4 or more and 0.6 or less), the signal processing unit terminates the guidance on the forward / backward of the vehicle to the driver .
이하 차량의 좌측/우측 이동안내를 결정하는 과정을 설명한다. 도 8에는 차량(30)의 후면이 도시되어 있으며, 차량(30)의 하부에 설치된 수신코일(110)의 중심축인 Z축은 하부에 위치한 송신코일(51)의 중심축(Z’)보다 좌측에 위치해 있다. 따라서 Z축에 직교하는 X축을 기준으로 좌측에 위치한 제2 및 제3자기센서(122, 123)에서 감지되는 자기장의 세기의 합은 우측에 위치한 제1 및 제4자기센서(121, 124)에서 감지되는 자기장의 세기의 합보다 약하게 감지되며, 이러한 경우 상기 신호처리부는 차량을 우측으로 이동하도록 운전자에게 안내할 수 있다.Hereinafter, a procedure for determining the left / right movement guidance of the vehicle will be described. 8 shows the rear side of the vehicle 30. The Z axis which is the center axis of the receiving coil 110 installed at the lower portion of the vehicle 30 is located on the left side of the center axis Z ' ≪ / RTI > Therefore, the sum of the intensities of the magnetic fields sensed by the second and third magnetic sensors 122 and 123 positioned on the left side with respect to the X axis orthogonal to the Z axis is the sum of the intensities of the magnetic fields sensed by the first and fourth magnetic sensors 121 and 124 The intensity of the detected magnetic field is weakly sensed, and in this case, the signal processing section can guide the driver to move the vehicle to the right.
도 9에는 도 8과는 반대로, 수신코일(110)의 중심축(Z)이 송신코일(51)의 중심축(Z’)보다 우측에 위치해 있는 경우를 도시한 것이다, 따라서 제2 및 제3자기센서(122, 123)에서 감지되는 자기장의 세기의 합은 제1 및 제4자기센서(121, 124)에서 감지되는 자기장의 세기의 합보다 강하게 감지되며, 이러한 경우 상기 신호처리부는 차량을 좌측으로 운전자에게 안내할 수 있다.9 shows a case where the center axis Z of the receiving coil 110 is located on the right side of the central axis Z 'of the transmitting coil 51, as opposed to the case of FIG. 8. Therefore, The sum of the intensities of the magnetic fields sensed by the magnetic sensors 122 and 123 is detected to be stronger than the sum of the intensities of the magnetic fields sensed by the first and fourth magnetic sensors 121 and 124. In this case, To the driver.
도 10은 도 8 및 10에 상황에서 차량의 좌측/우측 이동을 결정하는 과정을 구체적으로 설명하기 위한 블록도이다. 도 10에 도시된 바와 같이 제1 및 제4자기센서(121, 124)에서 감지된 자기장의 세기는 제1가산부(71)에서 합산되고, 제2 및 제3자기센서(122, 123)에서 감지된 자기장의 세기는 제2가산부(72)에서 합산된다. 상기 제1가산부(71) 및 제2가산부(72)에서 합산된 자기장의 세기는 제3가산부(73)에서 다시 가산된다. 즉, 상기 제3가산부(73)에서 가산되는 자기장의 세기는 제1 내지 제4자기센서(121, 122, 123, 124)에서 감지된 모든 자기장의 세기(이하 총 세기)이다. 제산부(74)는 상기 제1가산부(71)에서 감지된 자기장의 세기를 상기 제3가산부(73)에서 감지된 총 세기로 나눈다.FIG. 10 is a block diagram for explaining a process of determining left / right movement of a vehicle in a situation in FIGS. 8 and 10. FIG. 10, the intensities of the magnetic fields sensed by the first and fourth magnetic sensors 121 and 124 are summed by the first adder 71 and the intensity of the magnetic field detected by the second and third magnetic sensors 122 and 123 The intensity of the sensed magnetic field is summed in the second adder 72. The intensity of the magnetic field added by the first adder 71 and the second adder 72 is added again by the third adder 73. That is, the intensity of the magnetic field added by the third adder 73 is the intensity of all the magnetic fields detected by the first to fourth magnetic sensors 121, 122, 123, and 124 (hereinafter, total intensity). The divider 74 divides the intensity of the magnetic field detected by the first adder 71 by the total intensity detected by the third adder 73.
도 8과 같은 경우에는 상기 제1가산부(71)에서 합산된 자기장의 세기가 제2가산부(72)에서 합산된 자기장의 세기보다 작기 때문에, 상기 제산부(74)에서 연산된 값이 0.5보다 작으며, 상기 신호처리부는 운전자에게 차량을 좌측으로 이동하라고 안내한다. 도 9와 같은 경우에는, 상기 제1가산부(71)에서 합산된 자기장의 세기가 제2가산부(72)에서 합산된 자기장의 세기보다 크기 때문에, 상기 제산부(74)에서 연산된 값이 0.5보다 크며, 상기 신호처리부는 운전자에게 차량을 우측으로 이동하라고 안내한다.8, since the intensity of the magnetic field added by the first adder 71 is smaller than the intensity of the magnetic field added by the second adder 72, the value calculated by the divider 74 is 0.5 , And the signal processing unit guides the driver to move the vehicle to the left. 9, since the intensity of the magnetic field added by the first adder 71 is larger than the intensity of the magnetic field added by the second adder 72, the value calculated by the divider 74 0.5, and the signal processing unit guides the driver to move the vehicle to the right.
도 8 내지 10은 수신코일(110)의 중심축(Z)과 송신코일(51)의 중심축(Z’)의 좌/우 위치를 정렬하는 과정이다. 단, 수신코일(110)의 중심축(Z)과 송신코일(51)의 중심축(Z’)의 좌/우 위치를 명확하게 정렬하는 것은 어려울 수 있다. 따라서 상기 신호처리부는 상기 제산부(74)에서 연산되는 수치가 0.5를 기준으로 일정 범위 내로 되면(예를 들어 연산된 값이 0.4 이상 0.6 이하) 운전자에게 차량의 좌측/우측이동에 관한 안내를 종료할 수 있다.8 to 10 are a process of aligning the center axis Z of the receiving coil 110 and the left / right position of the center axis Z 'of the transmitting coil 51. FIG. However, it may be difficult to clearly align the center axis Z of the receiving coil 110 with the left / right position of the center axis Z 'of the transmitting coil 51. Accordingly, when the numerical value calculated by the divider 74 falls within a certain range based on 0.5 (for example, the calculated value is 0.4 or more and 0.6 or less), the signal processing unit terminates guidance on the left / right movement of the vehicle to the driver can do.
상기 신호처리부는 도 7에 도시된 과정에서 결정된 전진/후진안내와 도 10에 도시된 과정에서 결정된 좌측/우측이동안내를 서로 결합시켜 사용자에게 이미지로 출력할 수 있다. 예를 들어 수신코일 중심축의 정렬을 위해 전진 및 좌측이동이 필요하다고 상기 신호처리부가 안내 메시지를 출력할 경우, 차량 내부에 설치된 디스플레이에 좌측 대각선 방향으로 전진이 필요하다고 운전자에게 안내할 수 있다.The signal processing unit may combine the forward / backward guidance determined in the process shown in FIG. 7 and the left / right moving guidance determined in the process shown in FIG. 10 to output the image to the user. For example, when the signal processing unit outputs a guidance message indicating that advancement and leftward movement are necessary for aligning the center axis of the receiving coil, it is possible to inform the driver that forwarding in the left diagonal direction is required to the display installed inside the vehicle.
도 11은 도 7 및 10의 상기 제산부(74)에서 계산된 값에 따라 송신코일을 포함하는 무선전력송신부(50)와 운전자의 차량에 설치된 수신코일의 위치를 상기 신호처리부에서 이미지화하여 운전자에게 제공하는 화면의 예이다. 도 11에서 무선전력송신부(50)는 사각형으로 개략적으로 표시되어 있고, 수신코일은 원(80)으로 도시되어 있다. 상기 무선전력송신부(50)의 가로변은 좌측 끝이 0이고, 우측 끝이 1.0이며, 세로변은 상측 끝이 0이고, 하측 끝이 1.0이다. 상기 무선전력송신부(50)의 가로 및 세로변이 상기한 바와 같은 값을 가지는 이유는 도 7 및 11에서 나눠지는 자기장의 세기가 각각 전방 및 좌측에서 감지된 자기장의 세기의 합이기 때문이다.11 shows the position of the wireless power transmission unit 50 including the transmission coil and the reception coil installed in the vehicle of the driver according to the values calculated in the division unit 74 of Figs. 7 and 10, This is an example of a screen provided. In FIG. 11, the wireless power transmission unit 50 is schematically represented by a square, and the reception coil is shown by a circle 80. The side of the radio power transmission unit 50 has a left end of 0, a right end of 1.0, a vertical end of 0, and a lower end of 1.0. The reason why the horizontal and vertical sides of the wireless power transmission unit 50 have the above values is that the intensity of the magnetic field divided in FIGS. 7 and 11 is the sum of the strengths of the magnetic fields sensed at the front and left sides, respectively.
도 11A에 도시된 수신코일의 현재 위치를 나타내는 상기 원(80)의 전/후 좌표(X’)는 도 7에 도시된 제산부(74)에서 계산된 값이며, 좌/우 좌표(Y’)는 도 10의 제산부(74)에서 계산된 값이다. 즉, 상기 원(80)의 중앙부의 전/후 및 좌/우 좌표가 0.5에 가까울수록 상기 무선전력송신부(50)의 중앙, 즉 송신코일의 중심축에 가까워지며, 도 11에 도시된 원(80)의 전/후 좌표와 좌/우 좌표는 0보다 크고 0.5보다 작으므로, 차량은 무선전력송신부(50)의 송신코일의 중심축에서 전방 좌측에 위치한 상태이다. 도 11A에서는 상기 원(80)의 영역 내에 상기 무선전력송신부(50)의 중앙이 위치하지 않는다. 따라서 이와 같은 경우에는 도 11A에 도시된 바와 같이 상기 원(80)이 붉은색으로 표시되어, 현재 차량의 위치가 상기 송신코일의 중심축에 정렬되지 않은 것을 나타낼 수 있다.The front / rear coordinates X 'of the circle 80 indicating the current position of the receiving coil shown in FIG. 11A are values calculated by the divider 74 shown in FIG. 7, and the left / right coordinates Y' Is a value calculated by the divider 74 in Fig. That is, as the forward / backward and left / right coordinates of the center of the circle 80 approaches 0.5, the center of the radio power transmission unit 50 approaches the center axis of the transmission coil, 80 are larger than 0 and smaller than 0.5, the vehicle is positioned on the front left side in the central axis of the transmission coil of the wireless power transmission unit 50. [ In FIG. 11A, the center of the wireless power transmission unit 50 is not located in the area of the circle 80. FIG. Therefore, in such a case, as shown in FIG. 11A, the circle 80 may be displayed in red, indicating that the current vehicle position is not aligned with the center axis of the transmission coil.
도 11B는 도 11A에 도시된 차량의 위치에서 운전자가 차량을 우측후방으로 움직여, 원(80)의 영역 내부에 무선전력송신부(50)의 중앙이 위치한 상태를 도시한 것이다. 원(80)의 영역 내부에 무선전력송신부(50)의 중앙이 위치하는 경우를 상기 신호처리부는 송신코일과 수신코일의 중심축이 정렬되었다고 판단할 수 있고, 도 11B에 도시된 바와 같이 상기 원(80)의 색상을 도 11A의 붉은색에서 초록색으로 변경함으로써, 운전자에게 보다 직관적으로 정렬상태를 알릴 수 있다.11B shows a state in which the center of the wireless power transmission unit 50 is positioned within the area of the circle 80 by moving the vehicle from the vehicle to the right and back at the position of the vehicle shown in Fig. 11A. The signal processing unit may determine that the center axis of the transmission coil and the reception coil are aligned when the center of the wireless power transmission unit 50 is positioned within the area of the circle 80, By changing the color of the display 80 from red to green in FIG. 11A, the driver can be more intuitively informed of the alignment state.
이외에도 일반적으로 차량은 전진/후진을 기본으로 핸들의 움직임에 따라 좌회전 또는 우회전하는 장치이기 때문에, 운전자는 보통 좌측/우측을 먼저 정렬한 후, 전/후를 정렬한다. 따라서 상기 신호처리부는 좌측/우측 이동을 먼저 안내한 후, 좌측/우측이동을 통해 수신코일(110)의 중심축(Z)이 송신코일(51)의 중심축(Z’)과 일정정도 일치하면(제1 및 제2자기센서에서 감지되는 자기장의 세기의 합이 제3 및 제4자기센서에서 감지되는 자기장의 세기의 합과 동일하거나 일정 정도 유사해질 경우), 그 후에 전진/후진 안내를 하도록 할 수 있다.In general, the vehicle is a device that turns left or right according to the movement of the handle on the basis of forward / backward movement, so the driver normally arranges left / right first and then front / rear. Therefore, if the center axis Z of the receiving coil 110 coincides with the center axis Z 'of the transmitting coil 51 by a left / right movement after the left / (When the sum of the intensities of the magnetic fields sensed by the first and second magnetic sensors becomes equal to or somewhat similar to the sum of the intensities of the magnetic fields sensed by the third and fourth magnetic sensors), then the forward / can do.
상술한 바와 같이, 상기한 방식은 자기센서에서 감지된 자기장의 대소를 비교하기 위한 하나의 실시예로, 이에 한정하지 않으며 전방/후방 또는 좌측/우측에 위치한 자기센서에서 감지되는 자기장의 세기를 직접 비교하는 방식이 있을 수 있으며, 다른 예로 도 7 및 도 10에서 총 세기로 나누는 자기장의 세기가 상기한 실시예와 달리 제2가산부(72)에서 합산된 자기장의 세기가 될 수 있다.As described above, the above-described method is one example for comparing the magnitude of the magnetic field sensed by the magnetic sensor, but the present invention is not limited thereto, and the magnitude of the magnetic field sensed by the magnetic sensor located at the front / rear or left / In another example, the intensity of the magnetic field divided by the total intensity in Figs. 7 and 10 may be the intensity of the magnetic field summed in the second adder 72, unlike the embodiment described above.
무선전력수신부(100)의 코너부에 설치되는 제1 내지 제4자기센서를 이용하여 상기한 바와 같이 전진/후진 및 좌측/우측 정렬을 하려면, 중심축(Z, Z’)이 서로 일치했을 때 각각의 자기센서에서 감지되는 자기장의 세기는 동일해야 한다. 따라서 제1 내지 제4자기센서는 Z축에서 동일한 거리에 설치되는 것이 바람직하며, 본 발명에서는 수신코일(110)이 설치된 평면과 동일한 평면상에 설치될 수 있다. 그러나 상기 제1 내지 제4자기센서의 위치는 상기 수신코일(110)과 동일한 평면에 한정하는 것은 아니며, 상기 수신코일(110)과 평행한 평면상에 설치되는 실시예가 있을 수 있다.In order to perform forward / backward and left / right alignment using the first to fourth magnetic sensors provided at the corner of the wireless power receiving unit 100, when the central axes Z and Z 'coincide with each other The strength of the magnetic field sensed by each magnetic sensor should be the same. Therefore, it is preferable that the first to fourth magnetic sensors are installed at the same distance in the Z axis, and in the present invention, they can be installed on the same plane as the plane where the receiving coil 110 is installed. However, the positions of the first to fourth magnetic sensors are not limited to the same plane as the receiving coil 110, but may be disposed on a plane parallel to the receiving coil 110.
상기 자기센서는 X축을 기준으로 서로 대향되는 위치에 적어도 한 쌍이 설치될 수 있으며, Y축을 기준으로 서로 대향되는 위치에 적어도 한 쌍이 설치될 수 있다. 도 1에 도시된 본 발명의 일실시예에서는 총 두 쌍의 자기센서가 X축 및 Y축을 기준으로 서로 대향되는 위치에 각각 설치되어 있다. 단, 상기 자기센서의 개수는 이에 한정하지 않는다.At least one pair of magnetic sensors may be provided at positions facing each other with respect to the X axis, and at least one pair may be provided at positions facing each other with respect to the Y axis. In an embodiment of the present invention shown in FIG. 1, two pairs of magnetic sensors are provided at positions that are opposed to each other with respect to the X axis and the Y axis. However, the number of the magnetic sensors is not limited thereto.
도 1에 도시된 바와 같이 상기 자기센서는 무선전력수신부(100)의 코너부에 설치됨으로써 무선전력수신부(100)의 크기 자체를 줄일 수 있는 효과가 있다. 그러나 본 발명은 상기 자기센서의 위치를 도 1에 도시된 본 발명의 실시예에 한정하지 않으며, 도 12에 도시된 바와 같이 제1 내지 제4자기센서(121, 122, 123, 124)가 X축 및 Y축 상에 각각 두 개씩 두 쌍이 설치되어 무선전력수신부(100)의 주변에 설치되는 실시예를 포함하여 다른 실시예가 있을 수 있다. 도 13은 도 12와 같은 실시예에서 차량의 전진/후진 및 좌측/우측이동을 결정하는 과정을 도시한 것이다. 도 12의 실시예를 이용하여 차량의 전진/후진을 결정하는 과정을 설명하면, 도 13에 도시된 바와 같이, 도 12의 Y축을 기준으로 나뉘는 제1 및 제3자기센서(121, 123) 각각에서 감지되는 자기장의 세기를 제1가산기(71)에서 합산하고, 제산부(74)에서 전방에 위치한 제1자기센서(121)에서 감지되는 자기장의 세기를 제1가산기(71)에서 합산된 자기장의 총 세기로 나눈다. 상기 제산부(74)에서 연산된 값이 0.5보다 크면 상기 신호처리부는 차량을 전진하도록 안내하고, 연산된 값이 0.5보다 작으면 상기 신호처리부는 차량을 후진하도록 안내한다.As shown in FIG. 1, the magnetic sensor is installed at the corner of the wireless power receiving unit 100, thereby reducing the size of the wireless power receiving unit 100 itself. However, the present invention does not limit the position of the magnetic sensor to the embodiment of the present invention shown in FIG. 1. As shown in FIG. 12, the first to fourth magnetic sensors 121, 122, 123, Axis and the Y-axis are installed in the periphery of the wireless power receiving unit 100, as shown in FIG. FIG. 13 shows a process of determining forward / backward and left / right movement of the vehicle in the embodiment as shown in FIG. Referring to FIG. 13, the first and third magnetic sensors 121 and 123, which are divided based on the Y axis in FIG. 12, respectively, And the intensity of the magnetic field sensed by the first magnetic sensor 121 located at the front in the divider 74 is added to the sum of the magnetic field strength detected by the first adder 71 Of the total. If the value calculated by the divider 74 is greater than 0.5, the signal processor guides the vehicle to advance, and if the calculated value is less than 0.5, the signal processor guides the vehicle backward.
차량의 좌측/우측이동 또한 전진/후진과 마찬가지 방법을 이용하며, 제2가산기(72)에서 합산되는 값이 제2 및 제4자기센서(122, 124) 각각에서 감지된 자기장의 세기라는 것만 다르다.The left / right movement of the vehicle also uses the same method as the forward / backward movement, except that the value summed by the second adder 72 is the intensity of the magnetic field sensed by each of the second and fourth magnetic sensors 122 and 124 .
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
[부호의 설명][Description of Symbols]
30 : 차량 40 : 충전영역30: vehicle 40: charging area
50 : 무선전력송신부50: wireless power transmitter
51 : 송신코일51: transmission coil
61 : 페라이트 블록61: ferrite block
62x : X권선 62y : Y권선62x: X winding 62y: Y winding
62z : Z권선 62z: Z winding
63 : 정류기 64 : 필터63: rectifier 64: filter
71 : 제1가산부 72 : 제2가산부71: first adder 72: second adder
73 : 제3가산부 74 : 제산부73: third addition section 74:
80 : 원80: won
100 : 무선전력수신부100: wireless power receiver
110 : 수신코일110: Receive coil
121 : 제1자기센서 122 : 제2자기센서121: first magnetic sensor 122: second magnetic sensor
123 : 제3자기센서 124 : 제4자기센서123: third magnetic sensor 124: fourth magnetic sensor
200 : 신호처리부200: Signal processor

Claims (12)

  1. 차량에 설치되는 무선전력수신부;A wireless power receiver installed in the vehicle;
    상기 무선전력수신부의 주변에 설치되어 지상의 충전영역에 설치된 무선전력송신부에서 발생하는 자기장의 세기를 감지하는 복수의 자기센서; 및A plurality of magnetic sensors installed in the periphery of the wireless power receiving unit and sensing a strength of a magnetic field generated in a wireless power transmitting unit installed in a ground charged area; And
    상기 자기센서 각각에서 감지된 자기장의 세기에 따라 상기 무선전력수신부의 수신코일과 상기 무선전력송신부의 송신코일의 정렬정도 또는 상기 수신코일의 위치를 판단하는 신호처리부;A signal processor for determining the degree of alignment between the reception coil of the wireless power receiver and the transmission coil of the wireless power transmitter or the position of the reception coil according to the intensity of the magnetic field sensed by each of the magnetic sensors;
    를 포함하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.Wherein the wireless self-alignment guide system comprises:
  2. 제1항에 있어서, 상기 자기센서는The magnetic sensor according to claim 1, wherein the magnetic sensor
    판형의 상기 무선전력수신부의 코너부에 설치되거나, 상기 무선전력수신부의 외곽 변에 설치되는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.Wherein the wireless power receiving unit is installed at a corner of the plate-like wireless power receiving unit or at a side of the wireless power receiving unit.
  3. 제1항에 있어서, 상기 신호처리부는2. The apparatus of claim 1, wherein the signal processing unit
    상기 무선전련수신부의 전방과 후방 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 서로 동일하거나 오차가 소정 범위 내면 상기 수신코일과 송신코일의 전/후 위치가 정렬된 것으로 판단하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.And comparing the intensities of the magnetic fields sensed by the magnetic sensors located at the front and rear sides of the radio receiver to determine whether the front and rear positions of the reception coil and the transmission coil are aligned if the errors are within a predetermined range, Self-alignment guidance system for wireless charging.
  4. 제1항에 있어서, 상기 신호처리부는2. The apparatus of claim 1, wherein the signal processing unit
    상기 무선전련수신부의 전방과 후방 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 오차가 소정 범위를 초과하되, 전방의 자기센서에서 감지된 자기장의 세기가 후방의 자기센서에서 감지된 자기장의 세기보다 크면 상기 수신코일이 송신코일보다 후방에 위치하는 것으로 판단하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.The intensity of the magnetic field sensed by the magnetic sensor located at the rear of the radio transceiver is compared with the intensity of the magnetic field sensed by the magnetic sensor located at the rear of the radio transceiver, And determines that the reception coil is located behind the transmission coil if the intensity is greater than the intensity.
  5. 제1항에 있어서, 상기 신호처리부는2. The apparatus of claim 1, wherein the signal processing unit
    상기 무선전련수신부의 전방과 후방 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 오차가 소정 범위를 초과하되, 전방의 자기센서에서 감지된 자기장의 세기가 후방의 자기센서에서 감지된 자기장의 세기보다 작으면 상기 수신코일이 송신코일보다 전방에 위치하는 것으로 판단하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.The intensity of the magnetic field sensed by the magnetic sensor located at the rear of the radio transceiver is compared with the intensity of the magnetic field sensed by the magnetic sensor located at the rear of the radio transceiver, And determines that the reception coil is located ahead of the transmission coil when the intensity of the reception coil is smaller than the intensity.
  6. 제1항에 있어서, 상기 신호처리부는2. The apparatus of claim 1, wherein the signal processing unit
    상기 무선전련수신부의 좌측과 우측 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 서로 동일하거나 오차가 소정 범위 내면 상기 수신코일과 송신코일의 좌/우 위치가 정렬된 것으로 판단하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.And comparing the intensities of the magnetic fields sensed by the magnetic sensors located on the left and right sides of the radio training receiver, and determining that the left and right positions of the reception coil and the transmission coil are aligned if they are equal to each other or within a predetermined range. Self-alignment guidance system for wireless charging.
  7. 제1항에 있어서, 상기 신호처리부는2. The apparatus of claim 1, wherein the signal processing unit
    상기 무선전련수신부의 좌측과 우측 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 오차가 소정 범위를 초과하되, 좌측의 자기센서에서 감지된 자기장의 세기가 우측의 자기센서에서 감지된 자기장의 세기보다 크면 상기 수신코일이 송신코일보다 우측에 위치하는 것으로 판단하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.The magnetic field intensity detected by the magnetic sensor located on the left and right sides of the radio training receiver is compared with the intensity of the magnetic field sensed by the left magnetic sensor. And determines that the reception coil is located on the right side of the transmission coil when the intensity is greater than the intensity.
  8. 제1항에 있어서, 상기 신호처리부는2. The apparatus of claim 1, wherein the signal processing unit
    상기 무선전련수신부의 좌측과 우측 각각에 위치한 자기센서에서 감지된 자기장의 세기를 비교하여 오차가 소정 범위를 초과하되, 좌측의 자기센서에서 감지된 자기장의 세기가 우측의 자기센서에서 감지된 자기장의 세기보다 작으면 상기 수신코일이 송신코일보다 좌측에 위치하는 것으로 판단하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.The magnetic field intensity detected by the magnetic sensor located on the left and right sides of the radio training receiver is compared with the intensity of the magnetic field sensed by the left magnetic sensor. And determines that the reception coil is positioned to the left of the transmission coil when the intensity is smaller than the intensity.
  9. 제4항, 제5항, 제7항 및 제8항 중 어느 한 항에 있어서, 상기 신호처리부는9. The apparatus according to any one of claims 4, 5, 7, and 8, wherein the signal processing unit
    상기 수신코일과 송신코일이 정렬되지 않았다고 판단했을 때, 운전자에게 차량을 상기 송신코일의 방향으로 이동하도록 안내 메시지를 출력하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.And outputs a guidance message to the driver to move the vehicle in the direction of the transmission coil when it is determined that the reception coil and the transmission coil are not aligned.
  10. 제1항에 있어서, 상기 신호처리부는2. The apparatus of claim 1, wherein the signal processing unit
    상기 수신코일과 송신코일의 정렬정도와 상대적인 위치를 출력하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.And outputs a relative position and a degree of alignment between the receiving coil and the transmitting coil.
  11. 제1항에 있어서, 상기 자기센서는The magnetic sensor according to claim 1, wherein the magnetic sensor
    페라이트 블록과 상기 페라이트 블록에 서로 수직하도록 감기는 X권선, Y권선 및 Z권선을 포함하여 이루어지는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.Wherein the ferrite block and the ferrite block comprise an X winding, a Y winding, and a Z winding wound to be perpendicular to each other.
  12. 제11항에 있어서, 상기 자기센서는The magnetic sensor according to claim 11, wherein the magnetic sensor
    상기 X권선, Y권선 및 Z권선 각각에서 감지된 자기장의 세기를 각각 제곱하여 더한 후 제곱근을 취하거나 합산하여 상기 신호처리부로 송신하거나, 감지된 자기장의 세기 중 가장 큰 자기장의 세기만을 상기 신호처리부로 송신하는 것을 특징으로 하는 무선충전의 자기 정렬 안내 시스템.The signal processing unit receives the square root of each of the X-winding, Y-winding, and Z-winding, respectively, and sends the sum to the signal processing unit, or only the strength of the magnetic field of the detected magnetic field, To the wireless communication device.
PCT/KR2017/009326 2017-08-23 2017-08-25 Self-alignment guide system for wireless charging WO2019039633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0106397 2017-08-23
KR20170106397 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019039633A1 true WO2019039633A1 (en) 2019-02-28

Family

ID=65439058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009326 WO2019039633A1 (en) 2017-08-23 2017-08-25 Self-alignment guide system for wireless charging

Country Status (1)

Country Link
WO (1) WO2019039633A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371141A (en) * 2020-03-19 2020-07-03 深圳市古石科技有限公司 Wireless charging method and system based on automatic identification technology
CN112994130A (en) * 2019-12-16 2021-06-18 北京小米移动软件有限公司 Wireless charging alignment method and device, electronic equipment and wireless charging equipment
CN113071478A (en) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 Automatic parking control method, automatic parking system and vehicle
US11198370B2 (en) * 2018-11-28 2021-12-14 Hyundai Motor Company Position measurement apparatus and method for wireless power transfer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120262002A1 (en) * 2011-04-13 2012-10-18 Qualcomm Incorporated Antenna alignment and vehicle guidance for wireless charging of electric vehicles
WO2015048032A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Device alignment in inductive power transfer systems
KR20150080508A (en) * 2012-11-15 2015-07-09 델피 테크놀로지스 인코포레이티드 Alignment system for wireless electrical power transfer
KR20150126779A (en) * 2014-05-05 2015-11-13 델피 테크놀로지스 인코포레이티드 Variable gain reference antenna for non-contact charging device
KR101694407B1 (en) * 2015-09-04 2017-01-09 (주) 씨아이디티 Wireless Charging System Having Function for Guiding Charging Position
US20170040848A1 (en) * 2014-04-17 2017-02-09 Bombardier Primove Gmbh Object Detection System and Method for Detecting Foreign Objects in an Inductive Power Transfer System
KR20170044912A (en) * 2015-10-16 2017-04-26 현대자동차주식회사 Method and apparatus for magnetic field alignment in wireless power charging system and primary pad used therein

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120262002A1 (en) * 2011-04-13 2012-10-18 Qualcomm Incorporated Antenna alignment and vehicle guidance for wireless charging of electric vehicles
KR20150080508A (en) * 2012-11-15 2015-07-09 델피 테크놀로지스 인코포레이티드 Alignment system for wireless electrical power transfer
WO2015048032A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Device alignment in inductive power transfer systems
US20170040848A1 (en) * 2014-04-17 2017-02-09 Bombardier Primove Gmbh Object Detection System and Method for Detecting Foreign Objects in an Inductive Power Transfer System
KR20150126779A (en) * 2014-05-05 2015-11-13 델피 테크놀로지스 인코포레이티드 Variable gain reference antenna for non-contact charging device
KR101694407B1 (en) * 2015-09-04 2017-01-09 (주) 씨아이디티 Wireless Charging System Having Function for Guiding Charging Position
KR20170044912A (en) * 2015-10-16 2017-04-26 현대자동차주식회사 Method and apparatus for magnetic field alignment in wireless power charging system and primary pad used therein

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198370B2 (en) * 2018-11-28 2021-12-14 Hyundai Motor Company Position measurement apparatus and method for wireless power transfer
CN112994130A (en) * 2019-12-16 2021-06-18 北京小米移动软件有限公司 Wireless charging alignment method and device, electronic equipment and wireless charging equipment
CN111371141A (en) * 2020-03-19 2020-07-03 深圳市古石科技有限公司 Wireless charging method and system based on automatic identification technology
CN111371141B (en) * 2020-03-19 2020-12-25 深圳市古石科技有限公司 Wireless charging method and system based on automatic identification technology
CN113071478A (en) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 Automatic parking control method, automatic parking system and vehicle

Similar Documents

Publication Publication Date Title
WO2019039633A1 (en) Self-alignment guide system for wireless charging
US8963489B2 (en) Contactless power transfer device for moving object
US9739641B2 (en) Method and apparatus for controlling stray electromagnetic fields and providing operator feedback when aligning a vehicle with an inductive charging system
JP5537981B2 (en) Mobile power feeder
EP3089323B1 (en) Non-contact power transmission device
JP5509883B2 (en) Wireless charging device for vehicle
EP3103673B1 (en) Parking assistance device and parking assistance method
WO2015102275A1 (en) Traffic lane change warning apparatus
WO2013105712A2 (en) Multi-functional apparatus for supplying power
CN105052010A (en) Contactless electricity supply system
CN205921464U (en) Charge coil position detecting device , coil skew detection device , capital construction end and on -vehicle end
WO2019156440A1 (en) Motor
WO2017105159A1 (en) System, apparatus and method for controlling inlet of electric car
US20180019623A1 (en) Parking assistance device and parking assistance method
JP2015012746A (en) Power feeding apparatus and power feeding method
WO2016114629A1 (en) Wireless power transmission device
WO2018101702A1 (en) Electric vehicle charging system capable of inter-vehicle charging
WO2019117403A1 (en) Autonomous wireless charging device having high hardware and cost efficiency
JP2012016106A (en) Alignment system of noncontact power supply device
WO2022169306A1 (en) Antenna module, wireless power transmission system, and case for portable terminal
JP2020043699A (en) Non-contact power transmission system
JPH0767271A (en) Displacement detector in noncontact power supply for mobile body
WO2022035035A1 (en) Wirelessly chargeable terminal module and wireless charging method of terminal
CN109484217B (en) Three-in-one electronic highway unmanned navigation system and method
WO2021187696A1 (en) Recharging apparatus for robot cleaner

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922128

Country of ref document: EP

Kind code of ref document: A1