WO2019039533A1 - Method for manufacturing diamond substrate - Google Patents

Method for manufacturing diamond substrate Download PDF

Info

Publication number
WO2019039533A1
WO2019039533A1 PCT/JP2018/031094 JP2018031094W WO2019039533A1 WO 2019039533 A1 WO2019039533 A1 WO 2019039533A1 JP 2018031094 W JP2018031094 W JP 2018031094W WO 2019039533 A1 WO2019039533 A1 WO 2019039533A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
diamond layer
diamond
support substrate
gas
Prior art date
Application number
PCT/JP2018/031094
Other languages
French (fr)
Japanese (ja)
Inventor
利久 井手
飯塚 幸彦
大嗣 堀内
陽介 梅崎
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018088491A external-priority patent/JP2020200194A/en
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2019039533A1 publication Critical patent/WO2019039533A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers

Definitions

  • the present invention relates to a method of manufacturing a diamond substrate.
  • Diamond has excellent properties such as high thermal conductivity, high hardness, wide band gap, high transparency and so is useful as a material for heat diffusion applications, processing applications, power semiconductor substrates, high-intensity laser window materials, etc. .
  • a diamond heat sink or a heat diffusion substrate provided with a metal plate on the surface of a polycrystalline diamond is known. These are used in an appropriate size of several mm square to conform to the device mounting process.
  • Diamond is artificially produced in various ways.
  • a high temperature high pressure method as disclosed in Patent Document 1 a vacuum film formation by a CVD method as disclosed in Patent Document 2, and the like can be mentioned.
  • Patent Document 3 discloses an example in which a diamond is formed by laser cutting.
  • a source gas of diamond is decomposed by heat or plasma to form a diamond layer on the prepared support substrate, and (2) obtained in the formation step Processing step of applying laser cutting to a composite substrate having a diamond layer and a support substrate and molding it into an appropriate size, and (3) separating the support substrate from the composite substrate after molding and forming a diamond substrate consisting of a diamond layer It is common to carry out the separation step to obtain In such production, it is desirable to produce a large amount of diamond substrate comprising a diamond layer by forming a diamond layer on a large-area support substrate and performing a processing step.
  • the forming step when forming a diamond layer on a support substrate, it is necessary to heat the support substrate to about 1000.degree. As a result, the mismatch occurs in the thermal expansion coefficients of the diamond layer and the support substrate to cause stress. In particular, when the diamond layer is formed on a large support substrate exceeding 2 inches, the diamond layer and the support substrate may be warped or cracked or the like in the processing process due to the above-mentioned stress. As a result, there is a problem that the yield is lowered.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an efficient method of manufacturing a diamond substrate.
  • the present inventors repeated earnestly examination. As a result, it has been found that, by processing the composite substrate including the diamond substrate layer and the support substrate under predetermined conditions, it is possible to suppress warpage and reduce cracks in the composite substrate after processing. It was completed.
  • the present invention includes the following inventions.
  • a method for producing a diamond substrate comprising the following steps: Forming a diamond layer on a support substrate to form a composite substrate; A processing step of processing the composite substrate at substantially the same temperature as the supporting substrate in the forming step to form a processed substrate; Separation step of separating the support substrate from the processing substrate to obtain a diamond substrate consisting of a diamond layer.
  • invention 6 The method according to any one of Inventions 1 to 5, wherein at least laser cutting is performed on the diamond layer or both the diamond layer of the composite substrate and the supporting substrate as the processing.
  • the material of the supporting substrate is at least one selected from the group consisting of carbon, silicon, silicon carbide, aluminum nitride, sapphire, copper, nickel, silicon nitride, alumina, molybdenum, niobium, tungsten, aluminum and titanium. The method according to any one of 6.
  • a mixed gas of hydrogen, a gas containing carbon atoms, and an NF 3 gas is used as a source gas for forming the diamond layer,
  • the raw material gas contains 50 to 99.99 vol% of hydrogen based on the total amount of the raw material gas, 0.01 to 50 vol% of a gas containing a carbon atom with respect to the hydrogen, and the gas containing the carbon atom.
  • the gas contains 0.001 to 1 vol% of NF 3 gas.
  • invention 9 The manufacturing method of a to-be-processed substrate provided with a diamond layer and a support substrate including each following process. Forming a diamond layer on a support substrate to form a composite substrate; A processing step in which the composite substrate is processed at substantially the same temperature as the supporting substrate in the forming step to form a processed substrate.
  • a hot filament CVD apparatus for producing a diamond substrate comprising: A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate; A hot filament CVD apparatus comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the support substrate.
  • a plasma CVD apparatus for producing a diamond substrate comprising: A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate; A heating unit for heating the composite substrate; A plasma CVD apparatus, comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the supporting substrate.
  • the present invention it is possible to suppress warpage of the composite substrate after processing and to reduce cracks, so that a high yield rate is indicated.
  • the present invention can provide an efficient method of manufacturing a diamond substrate.
  • the method for producing a diamond substrate according to the present invention includes the following steps: Forming a diamond layer on a support substrate to form a composite substrate; A processing step of processing the composite substrate at substantially the same temperature as the supporting substrate in the forming step to form a processed substrate; Separation step of separating the support substrate from the processing substrate to obtain a diamond substrate consisting of a diamond layer.
  • a diamond layer is grown and formed (film formation) on a supporting substrate. This results in a composite substrate comprising a diamond layer on a support substrate.
  • the material of the support substrate is not particularly limited as long as the diamond layer can be formed on the support substrate.
  • carbons, metals, alloys, ceramics, ceramics-metals and the like can be mentioned. More specifically, graphite, diamond, silicon, silicon carbide, aluminum nitride, sapphire, copper, nickel, silicon nitride, alumina, molybdenum, niobium, tungsten, aluminum, titanium and the like can be mentioned, but it is not limited thereto. Moreover, these may be single types and may contain 2 or more types.
  • the support substrate may be a multilayer substrate composed of a plurality of layers, for example, composed of a first layer composed of the above-mentioned material and a second layer composed of a material different from the first layer. It may be a multilayer substrate.
  • the support substrate include, but are not limited to, the following materials: Graphite, diamond, silicon, silicon, aluminum, silicon carbide, magnesium, silicon carbide, aluminum nitride single crystal, aluminum nitride ceramic, sapphire, copper, copper-tungsten alloy, copper-molybdenum alloy, copper-carbon alloy, nickel, nickel Silicon nitride; alumina; molybdenum; tungsten; aluminum; aluminum-carbon alloy;
  • the following materials can be exemplified; Silicon carbide; aluminum-silicon carbide; aluminum nitride; sapphire; copper-tungsten alloy; copper-molybdenum alloy; copper-carbon alloy; silicon nitride;
  • the shape of the support substrate is not particularly limited, and may be, for example, circular or square.
  • the size of the support substrate is not particularly limited.
  • the diameter of the supporting substrate is preferably 2 inches or more, more preferably 3 inches or more, and particularly preferably 6 inches or more from the viewpoint of enlargement.
  • the upper limit of the diameter is not particularly limited, but is preferably 10 inches or less, and particularly preferably 8 inches or less, from the viewpoint of practical use.
  • the supporting substrate is rectangular, it is preferably 50 mm ⁇ 50 mm or more, more preferably 75 mm ⁇ 75 mm or more, and the upper limit value of the dimension is preferably 200 mm ⁇ 200 mm or less, from the viewpoint of enlargement. It is not limited.
  • the lower limit of the thickness of the support substrate is preferably 0.05 mm or more, more preferably 0.2 mm or more, and particularly preferably 0.4 mm or more.
  • the upper limit of the thickness is preferably 5 mm or less, more preferably 3 mm or less, and particularly preferably 1.5 mm or less.
  • the method for growing the diamond layer on the support substrate is not particularly limited, and known methods can be used. As a specific example, it is preferable to use a pulsed laser deposition method (PLD method), a vapor deposition method such as a chemical vapor deposition method (CVD method), or the like, but it is not limited thereto. In growing a diamond layer on a support substrate, a growth method involving heating of the support substrate is preferred.
  • PLD method pulsed laser deposition method
  • CVD method chemical vapor deposition method
  • the supporting substrate is preferably pretreated in general.
  • this pretreatment include, but are not limited to, cleaning of the support substrate, drying, arrangement of seed crystals of diamond, and the like.
  • a supporting substrate of a material other than diamond it is possible to promote nucleation of diamond by arranging a seed crystal on the supporting substrate.
  • the arrangement of seed crystals of diamond may be performed by using an existing method, for example, a method of performing ultrasonic treatment in an organic solvent using diamond powder, a method of performing mechanical polishing using diamond powder, on a supporting substrate
  • the support substrate After disposing the seed crystals, the support substrate is preferably washed with water, alcohol or the like, dried, and used for forming a diamond layer. In the case of using a supporting substrate made of diamond, it is not always necessary to arrange the seed crystal as described above.
  • the PLD method for example, laser sputtering is performed on a target containing graphite, amorphous carbon or diamond in an oxygen atmosphere or a hydrogen atmosphere to scatter carbon from the target, thereby growing a diamond layer on a supporting substrate.
  • the pressure in the furnace, the temperature of the support substrate, and the distance between the target and the support substrate are not particularly limited. Usually, the pressure in the furnace is 1 ⁇ 10 ⁇ 4 Pa to 100 Pa, the temperature of the support substrate is 300 to 1000 ° C., and the distance between the target and the support substrate is 10 mm to 100 mm, but is not limited thereto.
  • a support substrate is placed in a CVD growth furnace, and diamond is grown on the support substrate.
  • the growth method is not particularly limited, and for example, direct current plasma CVD, thermal filament CVD, microwave plasma CVD, high frequency plasma CVD, combustion flame method, arc jet method, plasma jet method, etc. can be used.
  • hydrogen and a gas containing carbon atoms are used as source gases.
  • a gas containing a carbon atom together with hydrogen a hydrocarbon such as CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 , an alcohol such as methanol or ethanol, or the like
  • carbon-containing compounds such as CO and acetone.
  • source gases may be separately supplied into the CVD growth furnace or may be mixed and supplied.
  • the source gas may contain nitrogen source gas, oxygen, and halogen gas.
  • the source gas contains a nitrogen source gas, and NF 3 is used as the nitrogen source gas.
  • the growth rate of diamond can be increased by using NF 3 gas.
  • 50 to 99.99 vol% of hydrogen with respect to the total amount of the source gas, 0.01 to 50 vol% of a gas containing a carbon atom with respect to the hydrogen, and NF with respect to a gas containing the carbon atom It is preferable to contain 0.001 to 1 vol%, more preferably 0.01 to 1 vol%, of three gases.
  • the pressure in the furnace and the temperature of the support substrate are not particularly limited. Usually, the pressure in the furnace is maintained at about 1 ⁇ 10 3 Pa to about 1 ⁇ 10 5 Pa, the temperature of the support substrate is maintained at 500 to 1300 ° C., and source gas is supplied on the support substrate to grow diamond. .
  • the support substrate is kept at 500 to 1300 ° C. by heating with generated plasma, and active species are deposited on the support substrate to grow diamond.
  • the distance between the filament and the support substrate is set to 1 to 100 mm, but is not limited thereto.
  • a diamond layer is formed on the support substrate, and a composite substrate comprising the diamond layer and the support substrate is obtained.
  • the composite substrate including the diamond layer and the support substrate is processed at substantially the same temperature as the support substrate in the formation step to form a substrate to be processed.
  • the substantially same temperature depends on the thickness of the diamond layer formed in the forming step and the difference in thermal expansion coefficient between the supporting substrate and the diamond, but is usually within ⁇ 200 ° C. of the temperature of the supporting substrate in the forming step. Is within ⁇ 100 ° C., more preferably within ⁇ 50 ° C.
  • the processing step may be performed after the forming step, may be performed along with the forming step, or may be performed along with the forming step, and may be further processed after the forming step.
  • the supporting substrate temperature in the forming step is determined. It is preferable to keep the temperature substantially the same (for example, within ⁇ 200 ° C., preferably within ⁇ 100 ° C., more preferably within ⁇ 50 ° C. of the temperature of the supporting substrate in the formation step).
  • the forming step and the processing step may be performed in the same device or may be performed in separate devices, but are performed in the same device from the viewpoint of efficiency and ease of maintaining substantially the same temperature. Is preferred. Further, in the case where the forming step and the processing step are performed in the same device, and in particular when laser cutting is performed as processing, it is preferable to use a CVD device described later.
  • the diamond layer of the composite substrate or both the diamond layer of the composite substrate and the support substrate are subdivided.
  • the method of subdivision is not particularly limited, and known methods can be employed.
  • at least a laser cut can be applied to the diamond layer of the composite substrate or to both the diamond layer of the composite substrate and the support substrate.
  • a laser may be applied to the diamond layer of the composite substrate, or to both the diamond layer of the composite substrate and the support substrate, and cut into a desired size and shape.
  • the laser used for laser cutting is not particularly limited as long as it has an output and an appropriate wavelength sufficient to fragment the diamond film. From the viewpoint of maintaining the performance of the laser, a solid laser is preferable, and a short wavelength laser is preferable in terms of the cutting efficiency. In addition, a pulse laser is preferable because a diamond film can be cut with a relatively low output power and damage to the support substrate is less likely to occur.
  • Preferred lasers include Nd: fiber lasers, Nd: YAG lasers, Nd: YVO4 lasers, high-power semiconductor lasers and their second harmonics, third harmonics, fourth harmonics and the like.
  • the lower limit is 10 fs or 50 fs
  • the upper limit is 1 ms, 100 ns or 500 ps. Specifically, 10 fs or more and 1 ms or less are preferable, and 50 fs or more and 100 ns or less are particularly preferable.
  • the average output depends on the optical system and the wavelength and can not be generally defined, but 10 W or more is preferable as the fundamental wave output.
  • the repetition rate of the pulse can not be generally defined because it depends on the laser system etc., but 1 kHz or more and 100 MHz or less is preferable.
  • an optical system or a scanning optical system such as a galvano mirror
  • a galvano mirror it is preferable to use an f ⁇ lens or a corresponding reflective optical system for the focusing optical system.
  • the formation rate of the diamond layer is generally within several tens of ⁇ m / h
  • the time interval for recutting the same place is within several hours, preferably within 1 hour, and more preferably within 30 minutes. is there.
  • a plurality of lasers may be used, or a high power laser may be divided into a plurality of beam lines and irradiated.
  • the diameter of the filament used is not particularly limited. For example, 0.02 to 1 mm, 0.05 to 0.5 mm, and 0.1 to 0.3 mm.
  • the length and the number of filaments can be appropriately selected according to the size of the diamond layer to be formed.
  • the plurality of filaments are arranged in parallel at equal intervals such that the filaments cover at least the entire support substrate at predetermined intervals.
  • the spacing of the filaments is important. It is preferred that the filaments have a suitable spacing so that the irradiated laser does not contact the filaments and break the filaments.
  • the distance between filaments is, for example, 2 to 100 mm, 3 to 50 mm, or 5 to 30 mm, depending on the laser irradiation condition.
  • a cut is made in the planar direction and thickness direction of the diamond layer by laser cutting.
  • the cuts in the thickness direction may extend to part or all of the diamond layer, or may penetrate through the diamond layer to part or all of the support substrate.
  • the cut in the thickness direction may reach half or more, 80% or more, 90% or more, or all of the thickness of the diamond layer.
  • the cut in the thickness direction penetrates the diamond layer and reaches 10% or less, 30% or less, 50% or less, 70% or less, 80% or less, 90% or less, or all of the thickness of the support substrate. You may do so.
  • the size of the substrate to be processed is not particularly limited. Although depending on the size of the diamond layer formed in the forming step, it is usually 2500 mm 2 or less, and the lower limit is not particularly limited, but is usually 25 mm 2 or more (for example, 2500 mm 2 , 900 mm 2 , 100 mm 2 , 25 mm 2 ). Specifically, the size of the substrate to be processed can be 5 mm square to 50 mm square (for example, 5 mm square, 10 mm square, 30 mm square, 50 mm square).
  • the thickness of the substrate to be processed is usually 0.01 mm or more as the thickness of the diamond layer, and the upper limit is not particularly limited, but is usually about 1.5 mm (for example, 0.01 mm, 0.03 mm, 0.05 mm) 0.1 mm, 0.3 mm, 0.5 mm, 1 mm, 1.5 mm).
  • the thickness of the substrate to be processed is usually 0.1 mm to 1 mm (for example, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0 mm) in thickness of both the diamond layer and the support substrate. .6 mm, 0.7 mm, 0.8 mm, 1 mm).
  • the temperature of the substrate to be processed may be lowered.
  • the temperature drop rate is not particularly limited, but is preferably 20 ° C./hr to 500 ° C./hr, more preferably 100 ° C./hr to 300 ° C./hr. At this speed, cracks due to thermal shock are unlikely to occur, and adequate production efficiency is exhibited.
  • the substrate to be processed may be subjected to the separation step described later, or may be used for various applications as it is, or metallizing or dicing may be performed depending on the purpose, or the surface of the diamond layer may be polished and smoothed. May be According to the method of the present invention, since the warpage of the substrate to be processed is suppressed, the stress at the time of fixing to the polishing machine is reduced, and the flatness and the smoothness are improved. Further, the processing substrate can be used as a heat diffusion substrate. In addition, a high thermal conductivity material such as a copper plate or an aluminum nitride ceramic substrate can be attached to the diamond layer of the substrate to be processed.
  • the support substrate is separated from the processing substrate. Thereby, a diamond substrate comprising a diamond layer is obtained.
  • the separation of the support substrate can be performed by a known method.
  • the separation of the support substrate can be performed by mechanically applying a force to the contact surface of the diamond layer and the support substrate, or can also be performed by another electrochemical etching method.
  • the diamond substrate comprising the diamond layer obtained by separation may be metallized or diced according to the purpose, or the surface of the diamond layer may be polished and smoothed.
  • a diamond substrate can be used as a heat diffusion substrate.
  • a high thermal conductivity material such as a copper plate or an aluminum nitride ceramic substrate can be bonded to a diamond substrate.
  • the method according to the invention can be implemented as a CVD apparatus.
  • a hot filament CVD apparatus for producing a diamond substrate, comprising: A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate; A hot filament CVD apparatus, comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the support substrate.
  • FIG. 2 is a view showing a configuration example of the hot filament CVD apparatus 2.
  • a film forming chamber 14 is provided in the chamber 10.
  • the diamond substrate 13 is formed on the surface of the support substrate 12 disposed in the support substrate holder 11.
  • the film forming chamber 14 includes a filament 15 (the description of the fixing portion of the filament 15 is omitted) connected to the power supply post 16.
  • the film forming chamber 10 includes a source gas inlet for introducing the source gas from the source supply device for supplying the source gas, and an exhaust port.
  • the source gas is introduced into the film forming chamber 14 from above the filament 15.
  • the power supply post 16 is energized to heat the filament 15.
  • the diamond substrate 13 is formed on the surface of the support substrate 12.
  • an optical window 17 is provided above the filament 15, an f ⁇ lens 22 is further provided above the optical window 17, and a galvano mirror 21 above the f ⁇ lens 22 (control device will not be described) Further comprising
  • the laser beam 24 is irradiated from the fundamental wave laser generator 18 provided with the second harmonic unit 19 and the condenser lens 20 (the focus position adjustment system and the control device are not described).
  • the irradiated laser light passes through the galvano mirror 21 and the f ⁇ lens 22 provided to control the irradiation position, and is irradiated to the film forming chamber 14 through the optical window 17.
  • the laser light irradiated to the film forming chamber 14 is irradiated to the diamond substrate 13 avoiding the filament 15.
  • the diamond substrate 13 is irradiated with laser from the gap.
  • Adjustment of the laser irradiation position to the diamond substrate 13 is performed by adjusting the position of the optical system such as the galvano mirror 21, the f ⁇ lens 22, and the condensing lens 20, the position of the filament 15, and the position of the support substrate 12.
  • the diamond substrate 13 can be processed (laser cut) into a desired shape. It is preferable to adjust the position of the support substrate 12 from the ease of position adjustment.
  • the support substrate holder 11 is provided with a moving mechanism capable of moving relative to the laser irradiation position.
  • the diamond substrate 13 is processed into a desired shape by, for example, moving the supporting substrate holder in the moving direction (vertical direction to the paper surface) 23 or horizontally to the paper surface (not shown in FIG. 2) by this moving mechanism. .
  • the processing of the diamond substrate 13 by laser irradiation is performed while heating the support substrate 12.
  • the supporting substrate 12 is also heated by the heating of the filament 15, the film forming chamber 14 may be separately provided with a heating mechanism to heat the supporting substrate 12 (for example, the supporting substrate holder 11 is provided with a heating mechanism and supported) The substrate 12 may be heated).
  • one of the embodiments of the present invention is A plasma CVD apparatus for producing a diamond substrate, comprising: A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate; A heating unit for heating the composite substrate; A plasma CVD apparatus, comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the support substrate.
  • FIG. 3 is a view showing a configuration example of the plasma CVD apparatus 3.
  • a film forming chamber 33 is provided in the main chamber 30.
  • a diamond substrate 36 is formed on the surface of the supporting substrate 35 disposed in the supporting substrate holder 34 in the film forming chamber 33 by the microwave plasma CVD method.
  • the film forming chamber 33 includes a source gas inlet and an exhaust port for introducing the source gas from a source supply device for supplying the source gas.
  • a microwave oscillation device 31 (a power supply and a control device are omitted) and a microwave waveguide 32 connected to the microwave oscillation device 31 are provided.
  • the main chamber 30 and the microwave waveguide 32 are connected via a quartz window 43.
  • the microwave generated from the microwave generation system is passed through the quartz window 43 to the film forming chamber 33 in the main chamber 30, and plasma is generated from the microwave in the film forming chamber 33.
  • a source gas is introduced into the film forming chamber 33, plasma is generated by microwaves, and a carbon-containing active species is deposited on the supporting substrate 35, whereby the diamond substrate 36 is formed.
  • the optical window 42 is provided above the microwave waveguide 32, the f ⁇ lens 41 is further provided above the optical window 42, and the galvano mirror 40 (control device is not described above the f ⁇ lens 41) Further).
  • the laser beam 45 is irradiated from a fundamental wave laser generator 37 provided with a second harmonic unit 38 and a condenser lens 39 (a focus position adjustment system and a control device will not be described).
  • the irradiated laser light passes through the galvano mirror 40 and the f ⁇ lens 41 provided to control the irradiation position, and is irradiated to the microwave waveguide 32 through the optical window 42, and the main through the quartz window 43.
  • the film forming chamber 33 in the chamber 30 is irradiated.
  • the laser beam irradiated to the film forming chamber 33 is irradiated to the diamond substrate 36.
  • the adjustment of the laser irradiation position to the diamond substrate 36 can be performed by adjusting the position of the optical system such as the galvano mirror 40, the f ⁇ lens 41, the condensing lens 39, etc., and the position of the support substrate 35.
  • the substrate 36 can be processed (laser cut) into a desired shape. It is preferable to adjust the position of the support substrate 35 from the ease of position adjustment.
  • the support substrate holder 34 is provided with a moving mechanism capable of moving relative to the laser irradiation position. By means of this moving mechanism, the diamond substrate 36 is processed into a desired shape by, for example, moving in the moving direction (vertical direction or horizontal direction with respect to the paper surface) 44 of the support substrate holder.
  • the processing of the diamond substrate 36 by laser irradiation is performed while heating the support substrate 35.
  • the supporting substrate 35 is also heated by plasma generated from the microwave, the film forming chamber 33 may be additionally provided with a heating mechanism to heat the supporting substrate 35 (for example, the supporting substrate holder 34 is provided with a heating mechanism) Support substrate 35)).
  • the yield rate of the composite substrate was calculated as follows: The laser-cut composite substrate was diced, and the amount of warping per composite substrate after dicing was 30 ⁇ m or less, and cracking by dicing, A chip with no chipping was determined to be a non-defective product, and the number of non-defective products was divided by the total number of composite substrates after dicing and expressed as a percentage. Moreover, what computed the sum total of the curvature amount of the composite substrate after dicing divided by the total of the composite substrate after dicing was calculated as "average curvature amount.”
  • the "warpage amount” referred to here is a difference between the highest point and the lowest point on the surface of the supporting substrate side in the composite substrate after dicing and dicing the laser cut composite substrate.
  • the amount of warpage of the composite substrate after dicing can be measured by performing three-dimensional shape measurement on the surface on the support substrate side.
  • the amount of warpage of the composite substrate after dicing was measured using a non-contact three-dimensional measurement apparatus (manufactured by Mitaka Koki Co., Ltd .: NH-3N).
  • Example 1-1 As a supporting substrate, a 2-inch diameter silicon substrate (thickness: 1 mm) was scratched with a diamond powder (average particle diameter: 1 ⁇ m), and then washed with ethanol and dried by air blowing to prepare a substrate. The supporting substrate was placed on a stage in a chamber of a hot filament CVD apparatus, and the temperature of the supporting substrate was adjusted to 1000 ° C. Using a mixed gas of H 2 gas and CH 4 gas as a source gas, a diamond layer having a thickness of 200 ⁇ m was formed on a supporting substrate by a hot filament CVD method to obtain a composite substrate.
  • a mixed gas of H 2 gas and CH 4 gas as a source gas
  • the supply of the source gas was stopped, and the temperature of the supporting substrate was maintained in a range not exceeding 1000 ° C. ⁇ 20 ° C. while only the H 2 gas was supplied.
  • the diamond layer was cut to a size of 3.5 mm ⁇ 3.5 mm by a laser.
  • the cut amount in the thickness direction of the diamond layer by laser cutting was 198 ⁇ m on average calculated from the laser focal position.
  • the laser used is the second harmonic (wavelength 532 nm) of an Nd: YAG laser with an average output of 10 W, and the pulse width is 100 ps.
  • a galvano mirror and an f ⁇ lens were used for laser scanning.
  • the substrate temperature was cooled to room temperature at a cooling rate of 200 ° C./hr.
  • the laser cut composite substrate was taken out.
  • the composite substrate was diced along a trace of the laser cut with a dicer.
  • the average warpage was 4 ⁇ m, and the yield rate was 83%.
  • Embodiment 1-2 A composite substrate after laser cutting was manufactured in the same manner as in Example 1 except that a 4 inch ⁇ silicon substrate (thickness: 1 mm) was used instead of the 2 inch ⁇ silicon substrate, and this was diced. However, the cooling rate after laser cutting was 300 ° C./hr. The average warpage was 6 ⁇ m, and the yield rate was 85%.
  • Embodiment 1-3 A supporting substrate similar to that of Example 1 was prepared except that a 6 inch ⁇ silicon substrate (thickness: 1 mm) was used instead of the 2 inch ⁇ silicon substrate.
  • the supporting substrate was placed on a stage in a chamber of a hot filament CVD apparatus, and the temperature of the supporting substrate was adjusted to 1000 ° C.
  • the diamond layer was laser-cut to a size of 3.5 mm ⁇ 3.5 mm while forming the diamond layer on the support substrate by a hot filament CVD method.
  • the thickness of the diamond layer at the end of the formation was 200 ⁇ m.
  • the cutting amount in the thickness direction of the diamond layer by laser cutting during formation was 150 ⁇ m on average.
  • the supply of the source gas was stopped, and the temperature of the supporting substrate was maintained in a range not exceeding 1000 ° C. ⁇ 20 ° C. while only the H 2 gas was supplied.
  • the above-described laser-cut portion was further subjected to laser cutting.
  • the cut amount in the thickness direction of the diamond layer confirmed after taking out the composite substrate described later was 207 ⁇ m on average, and thereby, the diamond layer was completely cut and a part of the support substrate was cut.
  • the laser and scanning method used are the same as in Example 1-1.
  • the substrate temperature was cooled to room temperature at a cooling rate of 150 ° C./hr.
  • the composite substrate was taken out. It diced with the dicer along the mark of a laser cut. The average amount of warpage was 9 ⁇ m, and the yield rate was 80%.
  • Embodiment 1-4 A composite substrate after laser cutting was manufactured in the same manner as in Example 1-1 except that cutting was performed to a size of 5 mm ⁇ 5 mm, and this was diced. The average warping amount was 12 ⁇ m, and the non-defective rate was 79%.
  • Example 1-5 A composite substrate after laser cutting was manufactured in the same manner as in Example 1-1 except that cutting was performed to a size of 10 mm ⁇ 10 mm, and this was diced. The average warping amount was 20 ⁇ m, and the non-defective rate was 75%.
  • Example 1-6 A composite substrate after laser cutting is manufactured in the same manner as in Example 1-1 except that a 50 mm square aluminum nitride substrate (thickness: 0.64 mm) is used instead of the 2 inch ⁇ silicon substrate, and this is diced. did. The average warpage was 8 ⁇ m, and the non-defective rate was 78%.
  • Example 1-7 A composite substrate after laser cutting was manufactured in the same manner as in Example 1 except that a 100 mm square aluminum nitride substrate (thickness: 0.64 mm) was used instead of the 2 inch ⁇ silicon substrate, and this was diced. The average warping amount was 9 ⁇ m, and the non-defective rate was 75%.
  • Example 1-8 A composite substrate after laser cutting is manufactured in the same manner as in Example 1-1 except that a 50 mm square silicon nitride ceramic substrate (thickness: 0.64 mm) is used instead of the 2 inch ⁇ silicon substrate, Dicing.
  • the average warping amount was 4 ⁇ m, and the non-defective rate was 80%.
  • Example 1-9 A composite substrate after laser cutting is manufactured in the same manner as in Example 1-1 except that a sapphire wafer (thickness: 0.53 mm) of 4 inch diameter is used instead of the silicon substrate of 2 inch diameter, and this is diced. did. The average warpage was 24 ⁇ m, and the non-defective rate was 78%.
  • Example 1-10 A composite substrate after laser cutting was produced in the same manner as in Example 1-1 except that an alumina substrate of 100 mm square (thickness: 0.64 mm) was used instead of the 2 inch-silicon substrate, and this was diced. The average amount of warpage was 17 ⁇ m, and the yield rate was 81%.
  • Example 1-11 A supporting substrate similar to that of Example 1-1 was prepared except that a 4 inch ⁇ SiC wafer (thickness: 0.5 mm) was used instead of the 2 inch ⁇ silicon substrate.
  • the supporting substrate was placed on a stage in a chamber of a microwave plasma CVD apparatus, and the temperature of the supporting substrate was adjusted to 1000 ° C.
  • the diamond layer was laser-cut to a size of 3.5 mm ⁇ 3.5 mm while forming the diamond layer on the supporting substrate by microwave plasma CVD method .
  • the thickness of the diamond layer at the end of the formation was 200 ⁇ m.
  • the amount of cuts in the thickness direction of the diamond layer by laser cutting during formation was 170 ⁇ m on average.
  • the supply of the source gas was stopped, and the temperature of the supporting substrate was maintained in a range not exceeding 1000 ° C. ⁇ 20 ° C. while only the H 2 gas was supplied.
  • the above-described laser-cut portion was further subjected to laser cutting.
  • the cut length in the thickness direction of the diamond layer confirmed after taking out the composite substrate described later was 206 ⁇ m on average, and thereby the diamond layer was completely cut and a cut was also made in a part of the support substrate.
  • the used laser has an average output of 12 W and a second harmonic of a fiber laser (wavelength 520 nm), a pulse width of 1 to 10 ps, and a repetition frequency of 100 MHz.
  • a galvano mirror and an f ⁇ lens were used for laser scanning. Since the laser beam has a narrow scannable field of view, the support substrate was moved along the stage within a range not exceeding ⁇ 25 mm for laser cutting. The plasma was driven intermittently because there is concern about the attenuation of the laser light by the plasma. The repetition frequency is 10 Hz and the duty ratio is 50%. After completion of laser cutting, the substrate temperature was cooled to room temperature at a cooling rate of 150 ° C./hr. After the inside of the chamber was replaced with inert gas, the composite substrate was taken out. It diced with the dicer along the mark of a laser cut. The average warpage was 13 ⁇ m, and the yield rate was 82%.
  • Example 1-12 A supporting substrate similar to that of Example 1 was prepared except that a 50 mm square copper-tungsten alloy substrate (thickness: 2 mm) was used instead of the 2 inch ⁇ silicon substrate.
  • the supporting substrate was placed on a stage in a chamber of a microwave plasma CVD apparatus, and the temperature of the supporting substrate was adjusted to 970.degree.
  • the diamond layer was laser-cut to a size of 3.5 mm ⁇ 3.5 mm while forming the diamond layer on the supporting substrate by microwave plasma CVD method .
  • the thickness of the diamond layer at the end of the formation was 200 ⁇ m.
  • the amount of cuts in the thickness direction of the diamond layer by laser cutting during formation was 170 ⁇ m on average.
  • the supply of the source gas was stopped, and the temperature of the supporting substrate was maintained in the range not exceeding 970 ° C. ⁇ 20 ° C. while only the H 2 gas was supplied.
  • the above-described laser-cut portion was further subjected to laser cutting.
  • the cut amount in the thickness direction of the diamond layer confirmed after taking out the composite substrate described later was 206 ⁇ m on average, and thereby the diamond layer was completely cut and a part of the support substrate was cut.
  • the used laser has an average output of 12 W and a second harmonic of a fiber laser (wavelength 520 nm), a pulse width of 1 to 10 ps, and a repetition frequency of 100 MHz.
  • a galvano mirror and an f ⁇ lens were used for laser scanning.
  • the substrate was moved along the stage within a range not exceeding ⁇ 25 mm and laser cutting was performed.
  • the plasma was driven intermittently because there is concern about the attenuation of the laser light by the plasma.
  • the repetition frequency is 10 Hz and the duty ratio is 50%.
  • the substrate temperature was cooled to room temperature at a cooling rate of 150 ° C./hr.
  • the composite substrate was taken out. It diced with the dicer along the mark of a laser cut.
  • the average warping amount was 10 ⁇ m, and the non-defective rate was 75%.
  • Comparative Example 1-1 After forming the diamond layer, a composite substrate after laser cutting was manufactured in the same manner as in Example 1-1 except that the substrate temperature was lowered to room temperature (29 ° C.) and laser cutting was performed, and this was diced. The average warpage was 37 ⁇ m, and the non-defective rate was 23%.
  • Comparative Example 1-2 After forming the diamond layer, a composite substrate after laser cutting was manufactured in the same manner as in Example 1-1 except that the substrate temperature was lowered to 500 ° C. and laser cutting was performed, and this was diced. The average warping amount was 30 ⁇ m, and the non-defective rate was 35%.
  • Example 1-3 After forming the diamond layer, a composite substrate after laser cutting was manufactured in the same manner as in Example 1-3 except that the substrate temperature was lowered to room temperature (27 ° C.) and laser cutting was performed. However, the diamond layer was broken during the laser cutting, and a non-defective product could not be obtained.
  • Example 1-1 to Example 1-12 and Comparative Example 1-1 to Comparative Example 1-3 size and material of supporting substrate, cutting temperature (supporting substrate temperature at laser cutting), cut size, after dicing Table 1 shows the average amount of warpage of the composite substrate and the non-defective rate.
  • Example 2-1 Evaluation of growth rate of diamond by difference of source gas
  • a microwave plasma CVD apparatus was used.
  • H 2 gas, CH 4 gas, and NF 3 gas were used as source gases.
  • a substrate a substrate obtained by scratching the surface of a Si substrate with diamond powder (average particle diameter: 1 ⁇ m), then cleaning with ethanol and drying by air blow was used.
  • the Si substrate subjected to the above pretreatment was placed on a substrate holder in a chamber, and the inside of the chamber was evacuated. At this time, the pressure in the chamber was about 1 Pa.
  • Comparative Example 2-1 A sample was obtained in the same manner as in Example 2-1 except that the N source gas was not used.
  • Comparative Example 2-3 A sample was obtained in the same manner as in Example 2-1 except that N 2 was used as the N source gas and the inflow of N 2 gas was as described in Table 2.
  • Comparative Example 2-4 A sample was obtained in the same manner as in Example 2-1 except that NH 3 was used as the N source gas and the inflow of NH 3 gas was as described in Table 2.
  • the diamond was confirmed about each obtained sample by the following method. Also, the growth rate of diamond was calculated and is shown in Table 2 and FIG.
  • the cross section of the obtained diamond film was observed with an electron microscope to measure the film thickness.
  • the growth rate per unit time was calculated by dividing the film thickness by the time taken to synthesize the diamond (the time from the start of the inflow of CH 4 gas to the end of the inflow).
  • Plasma CVD device 30 Main chamber 31: Microwave oscillation device (power supply and control device omitted) 32: Microwave waveguide 33: Deposition chamber (gas supply system is omitted) 34: Support substrate holder 35: Support substrate 36: Diamond substrate, 37: fundamental wave laser 38: second harmonic wave unit 39: focusing lens (focus position adjustment system and control device are omitted) 40: Galvano mirror (control device omitted) 41: f ⁇ lens (cross section) 42: Optical window 43: Quartz window 44: Movement direction of support substrate holder (vertical and horizontal to the paper surface) 45: Laser light

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention provides a method for efficiently manufacturing a diamond substrate, the method including the following steps: a forming step for forming a diamond layer on a support substrate to form a composite substrate; a processing step for processing the composite substrate at approximately the same temperature as the support substrate in the forming step to form a substrate to be processed; and a separating step for separating the support substrate from the substrate to be processed to obtain a diamond substrate comprising the diamond layer.

Description

ダイヤモンド基板の製造方法Method of manufacturing diamond substrate
 本発明は、ダイヤモンド基板の製造方法に関する。 The present invention relates to a method of manufacturing a diamond substrate.
 ダイヤモンドは、高い熱伝導率、高硬度、ワイドバンドギャップ、高い透明性などの優れた特性を有するため、熱拡散用途、加工用途、パワー半導体基板、高強度レーザー窓材などの材料として有用である。 Diamond has excellent properties such as high thermal conductivity, high hardness, wide band gap, high transparency and so is useful as a material for heat diffusion applications, processing applications, power semiconductor substrates, high-intensity laser window materials, etc. .
 その熱拡散用途において、ダイヤモンド多結晶体の表面に金属板を備えるダイヤモンドヒートシンクや熱拡散基板が知られている。これらは、デバイス実装プロセスに適合するよう、数mm角程度の適切なサイズで利用される。 In the heat diffusion application, a diamond heat sink or a heat diffusion substrate provided with a metal plate on the surface of a polycrystalline diamond is known. These are used in an appropriate size of several mm square to conform to the device mounting process.
 ダイヤモンドは種々の方法で人工的に製造される。例えば、特許文献1に開示されているような高温高圧法、特許文献2に開示されているようなCVD法による真空成膜などが挙げられる。また、特許文献3には、ダイヤモンドをレーザーカットにより成型加工する例が開示されている。 Diamond is artificially produced in various ways. For example, a high temperature high pressure method as disclosed in Patent Document 1, a vacuum film formation by a CVD method as disclosed in Patent Document 2, and the like can be mentioned. Further, Patent Document 3 discloses an example in which a diamond is formed by laser cutting.
特開昭56-140017号公報Japanese Patent Application Laid-Open No. 56-140017 特表2004-503460号公報Japanese Patent Publication No. 2004-503460 特開2009-167070号公報JP, 2009-167070, A
 CVD法によるダイヤモンド基板の製造においては、(1)ダイヤモンドの原料ガスを熱やプラズマによって分解し、用意した支持基板上にダイヤモンド層を形成する、形成工程と、(2)当該形成工程で得られたダイヤモンド層と支持基板とを備える複合基板に、レーザーカットを施して適切なサイズに成型する、加工工程と、(3)成型後の複合基板から支持基板を分離してダイヤモンド層からなるダイヤモンド基板を得る、分離工程、とを行うのが一般的である。このような製造においては、大面積の支持基板上にダイヤモンド層を形成させ、加工工程を施すことで、ダイヤモンド層からなるダイヤモンド基板を大量に生産することが望まれている。 In the production of a diamond substrate by the CVD method, (1) a source gas of diamond is decomposed by heat or plasma to form a diamond layer on the prepared support substrate, and (2) obtained in the formation step Processing step of applying laser cutting to a composite substrate having a diamond layer and a support substrate and molding it into an appropriate size, and (3) separating the support substrate from the composite substrate after molding and forming a diamond substrate consisting of a diamond layer It is common to carry out the separation step to obtain In such production, it is desirable to produce a large amount of diamond substrate comprising a diamond layer by forming a diamond layer on a large-area support substrate and performing a processing step.
 一般的に、形成工程においては、支持基板上にダイヤモンド層を形成させる際に、当該支持基板を1000℃程度に加熱する必要がある。その結果、ダイヤモンド層と支持基板との熱膨張係数の不整合により応力が生じる。特に2インチを超えるような大型支持基板上にダイヤモンド層を形成した場合には、前述の応力の影響により、加工工程において、ダイヤモンド層と支持基板に反り、クラックなどが発生することがあり、その結果、歩留まりが低下するという問題がある。 Generally, in the forming step, when forming a diamond layer on a support substrate, it is necessary to heat the support substrate to about 1000.degree. As a result, the mismatch occurs in the thermal expansion coefficients of the diamond layer and the support substrate to cause stress. In particular, when the diamond layer is formed on a large support substrate exceeding 2 inches, the diamond layer and the support substrate may be warped or cracked or the like in the processing process due to the above-mentioned stress. As a result, there is a problem that the yield is lowered.
 本発明は、上記事情に鑑みてなされたものであり、効率的なダイヤモンド基板の製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an efficient method of manufacturing a diamond substrate.
 上記課題を解決すべく、本発明者らは、鋭意検討を重ねた。その結果、ダイヤモンド基板層と支持基板とを備える複合基板を、所定の条件下で加工することで、加工後の複合基板における反りの抑制や、クラックを低減させることができることを見出し、本発明を完成させた。 In order to solve the said subject, the present inventors repeated earnestly examination. As a result, it has been found that, by processing the composite substrate including the diamond substrate layer and the support substrate under predetermined conditions, it is possible to suppress warpage and reduce cracks in the composite substrate after processing. It was completed.
 すなわち、本発明は以下の各発明を含む。 That is, the present invention includes the following inventions.
 [発明1]
 以下の各工程を含む、ダイヤモンド基板の製造方法。
 支持基板上にダイヤモンド層を形成して複合基板とする、形成工程;
 複合基板を、形成工程における支持基板と略同一温度下で加工して被加工基板とする、加工工程;
 被加工基板から支持基板を分離して、ダイヤモンド層からなるダイヤモンド基板を得る、分離工程。
[Invention 1]
A method for producing a diamond substrate, comprising the following steps:
Forming a diamond layer on a support substrate to form a composite substrate;
A processing step of processing the composite substrate at substantially the same temperature as the supporting substrate in the forming step to form a processed substrate;
Separation step of separating the support substrate from the processing substrate to obtain a diamond substrate consisting of a diamond layer.
 [発明2]
 形成工程をCVD法により行う、発明1に記載の方法。
[Invention 2]
The method according to Invention 1, wherein the forming step is performed by a CVD method.
 [発明3]
 形成工程を500~1300℃の支持基板温度で行う、発明1または2に記載の方法。
[Invention 3]
The method according to Invention 1 or 2, wherein the forming step is carried out at a supporting substrate temperature of 500 to 1300.degree.
 [発明4]
 加工工程における加工温度が、形成工程における支持基板温度に対して±200℃以内である、発明1~3のいずれかに記載の方法。
[Invention 4]
The method according to any one of Inventions 1 to 3, wherein the processing temperature in the processing step is within ± 200 ° C. with respect to the temperature of the support substrate in the forming step.
 [発明5]
 加工工程における加工温度が、形成工程における支持基板温度に対して±50℃以内である、発明1~4のいずれかに記載の方法。
[Invention 5]
The method according to any one of Inventions 1 to 4, wherein the processing temperature in the processing step is within ± 50 ° C. with respect to the temperature of the support substrate in the forming step.
 [発明6]
 加工として、複合基板のダイヤモンド層もしくはダイヤモンド層と支持基板の両方に、少なくともレーザーカットを施す、発明1~5のいずれかに記載の方法。
[Invention 6]
The method according to any one of Inventions 1 to 5, wherein at least laser cutting is performed on the diamond layer or both the diamond layer of the composite substrate and the supporting substrate as the processing.
 [発明7]
 支持基板の材質が、カーボン、シリコン、炭化珪素、窒化アルミニウム、サファイア、銅、ニッケル、窒化珪素、アルミナ、モリブデン、ニオブ、タングステン、アルミニウムおよびチタンからなる群より選ばれる少なくとも一種である、発明1~6のいずれかに記載の方法。
[Invention 7]
The material of the supporting substrate is at least one selected from the group consisting of carbon, silicon, silicon carbide, aluminum nitride, sapphire, copper, nickel, silicon nitride, alumina, molybdenum, niobium, tungsten, aluminum and titanium. The method according to any one of 6.
 [発明8]
 形成工程において、ダイヤモンド層を形成するための原料ガスとして、水素、炭素原子を含むガス、NF3ガスの混合ガスを用い、
 該原料ガスが、該原料ガスの全量に対して水素を50~99.99vol%、該水素に対して、炭素原子を含むガスを0.01~50vol%、及び該炭素原子を含むガスに対して、NF3ガスを0.001~1vol%含有する、請求項1~7のいずれかに記載の方法。
[Invention 8]
In the forming step, a mixed gas of hydrogen, a gas containing carbon atoms, and an NF 3 gas is used as a source gas for forming the diamond layer,
The raw material gas contains 50 to 99.99 vol% of hydrogen based on the total amount of the raw material gas, 0.01 to 50 vol% of a gas containing a carbon atom with respect to the hydrogen, and the gas containing the carbon atom The method according to any one of claims 1 to 7, wherein the gas contains 0.001 to 1 vol% of NF 3 gas.
 [発明9]
 以下の各工程を含む、ダイヤモンド層と支持基板とを備える被加工基板の製造方法。
 支持基板上にダイヤモンド層を形成して複合基板とする、形成工程;
 複合基板を、形成工程における支持基板と略同一温度下で加工して被加工基板とする、加工工程。
[Invention 9]
The manufacturing method of a to-be-processed substrate provided with a diamond layer and a support substrate including each following process.
Forming a diamond layer on a support substrate to form a composite substrate;
A processing step in which the composite substrate is processed at substantially the same temperature as the supporting substrate in the forming step to form a processed substrate.
 [発明10]
 ダイヤモンド基板を製造するための熱フィラメントCVD装置であって、
 支持基板上にダイヤモンド層を形成して複合基板とするための支持基板ホルダーと、
 前記複合基板のダイヤモンド層もしくはダイヤモンド層と支持基板の両方にレーザーカットを施すためのレーザー照射手段と、を少なくとも備える、熱フィラメントCVD装置。
[Invention 10]
A hot filament CVD apparatus for producing a diamond substrate, comprising:
A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate;
A hot filament CVD apparatus comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the support substrate.
 [発明11]
 ダイヤモンド基板を製造するためのプラズマCVD装置であって、
 支持基板上にダイヤモンド層を形成して複合基板とするための支持基板ホルダーと、
 前記複合基板を加熱するための加熱手段と、
 前記複合基板のダイヤモンド層もしくはダイヤモンド層と支持基板の両方にレーザーカットを施すためのレーザー照射手段と、を少なくとも備える、プラズマCVD装置。
[Invention 11]
A plasma CVD apparatus for producing a diamond substrate, comprising:
A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate;
A heating unit for heating the composite substrate;
A plasma CVD apparatus, comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the supporting substrate.
 本発明によれば、加工後の複合基板における反りの抑制や、クラックを低減させることができるため、高い良品率を示す。したがって、本発明は、効率的なダイヤモンド基板の製造方法を提供することができる。 According to the present invention, it is possible to suppress warpage of the composite substrate after processing and to reduce cracks, so that a high yield rate is indicated. Thus, the present invention can provide an efficient method of manufacturing a diamond substrate.
本発明の実施例及び比較例の、N/Cに対する成長速度をプロットした図である。It is the figure which plotted the growth rate to N / C of the example of the present invention, and a comparative example. 本発明の熱フィラメントCVD装置の一例を示す概略図である。It is the schematic which shows an example of the hot filament CVD apparatus of this invention. 本発明のプラズマCVD装置の一例を示す概略図である。It is the schematic which shows an example of the plasma CVD apparatus of this invention.
 以下、本発明について説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良が加えられたものも本発明に含まれるものとして扱われる。 Hereinafter, the present invention will be described. The present invention is not limited to the following embodiments, and various changes and modifications may be made to the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Are also considered to be included in the present invention.
 本発明に係るダイヤモンド基板の製造方法(以下、「本発明に係る方法」と呼ぶことがある。)は、以下の各工程を含む;
 支持基板上にダイヤモンド層を形成して複合基板とする、形成工程;
 複合基板を、形成工程における支持基板と略同一温度下で加工して被加工基板とする、加工工程;
 被加工基板から支持基板を分離して、ダイヤモンド層からなるダイヤモンド基板を得る、分離工程。
The method for producing a diamond substrate according to the present invention (hereinafter sometimes referred to as “the method according to the present invention”) includes the following steps:
Forming a diamond layer on a support substrate to form a composite substrate;
A processing step of processing the composite substrate at substantially the same temperature as the supporting substrate in the forming step to form a processed substrate;
Separation step of separating the support substrate from the processing substrate to obtain a diamond substrate consisting of a diamond layer.
 [形成工程]
 形成工程においては、支持基板上にダイヤモンド層を成長させて形成(成膜)する。これにより、支持基板上にダイヤモンド層を備える複合基板が得られる。
[Formation process]
In the forming step, a diamond layer is grown and formed (film formation) on a supporting substrate. This results in a composite substrate comprising a diamond layer on a support substrate.
 支持基板の材質は、該支持基板上にダイヤモンド層を形成させることができるものであれば特に限定されない。例えば、カーボン類、金属、合金、セラミックス、セラミックス-金属等が挙げられる。より具体的には、グラファイト、ダイヤモンド、シリコン、炭化珪素、窒化アルミニウム、サファイア、銅、ニッケル、窒化珪素、アルミナ、モリブデン、ニオブ、タングステン、アルミニウム、チタン等が挙げられるが、これらに限定されない。また、これらは単種類であってもよいし、二種以上を含んでいてもよい。また、支持基板は、複数の層からなる積層基板であってもよく、例えば、前述の材質からなる第一の層と、第一の層とは別の材質からなる第二の層とからなる複層基板であってもよい。 The material of the support substrate is not particularly limited as long as the diamond layer can be formed on the support substrate. For example, carbons, metals, alloys, ceramics, ceramics-metals and the like can be mentioned. More specifically, graphite, diamond, silicon, silicon carbide, aluminum nitride, sapphire, copper, nickel, silicon nitride, alumina, molybdenum, niobium, tungsten, aluminum, titanium and the like can be mentioned, but it is not limited thereto. Moreover, these may be single types and may contain 2 or more types. In addition, the support substrate may be a multilayer substrate composed of a plurality of layers, for example, composed of a first layer composed of the above-mentioned material and a second layer composed of a material different from the first layer. It may be a multilayer substrate.
 好ましい支持基板としては、以下の材質が例示できるがこれらに限定されない:
 グラファイト;ダイヤモンド;シリコン;炭化珪素;アルミニウム-炭化珪素;マグネシウム-炭化珪素;窒化アルミニウム単結晶;窒化アルミニウムセラミックス;サファイア;銅;銅-タングステン合金;銅-モリブデン合金;銅-炭素合金;ニッケル;ニッケル-炭素合金;窒化珪素;アルミナ;モリブデン;タングステン;アルミニウム;アルミニウム-炭素合金;チタン。
Preferred examples of the support substrate include, but are not limited to, the following materials:
Graphite, diamond, silicon, silicon, aluminum, silicon carbide, magnesium, silicon carbide, aluminum nitride single crystal, aluminum nitride ceramic, sapphire, copper, copper-tungsten alloy, copper-molybdenum alloy, copper-carbon alloy, nickel, nickel Silicon nitride; alumina; molybdenum; tungsten; aluminum; aluminum-carbon alloy;
 特に好ましい支持基板としては、以下の材質が例示できる;
 シリコン;炭化珪素;アルミニウム-炭化珪素;窒化アルミニウム;サファイア;銅-タングステン合金;銅-モリブデン合金;銅-炭素合金;窒化珪素;アルミナ;モリブデン;タングステン;アルミニウム;チタン。
As a particularly preferred support substrate, the following materials can be exemplified;
Silicon carbide; aluminum-silicon carbide; aluminum nitride; sapphire; copper-tungsten alloy; copper-molybdenum alloy; copper-carbon alloy; silicon nitride;
 支持基板の形状は特に限定されず、例えば、円形状や方形であっても良い。また、支持基板のサイズは特に限定されない。、支持基板が円形の場合は、大型化という観点から、支持基板の直径は2インチ以上であることが好ましく、3インチ以上であることがより好ましく、6インチ以上であることが特に好ましい。直径の上限値は特に限定されないが、実用上の観点から10インチ以下が好ましく、8インチ以下が特に好ましい。支持基板が方形の場合は、大型化という観点から、50mm×50mm以上であることが好ましく、75mm×75mm以上であることがより好ましく、寸法の上限値は200mm×200mm以下が好ましいが、これらに限定されない。また、支持基板の厚みの下限値は、0.05mm以上であることが好ましく、0.2mm以上であることがより好ましく、0.4mm以上であることが特に好ましい。厚みの上限値は、5mm以下であることが好ましく、3mm以下であることがより好ましく、1.5mm以下であることが特に好ましい。 The shape of the support substrate is not particularly limited, and may be, for example, circular or square. In addition, the size of the support substrate is not particularly limited. When the supporting substrate is circular, the diameter of the supporting substrate is preferably 2 inches or more, more preferably 3 inches or more, and particularly preferably 6 inches or more from the viewpoint of enlargement. The upper limit of the diameter is not particularly limited, but is preferably 10 inches or less, and particularly preferably 8 inches or less, from the viewpoint of practical use. When the supporting substrate is rectangular, it is preferably 50 mm × 50 mm or more, more preferably 75 mm × 75 mm or more, and the upper limit value of the dimension is preferably 200 mm × 200 mm or less, from the viewpoint of enlargement. It is not limited. The lower limit of the thickness of the support substrate is preferably 0.05 mm or more, more preferably 0.2 mm or more, and particularly preferably 0.4 mm or more. The upper limit of the thickness is preferably 5 mm or less, more preferably 3 mm or less, and particularly preferably 1.5 mm or less.
 形成工程において、支持基板上にダイヤモンド層を成長させる方法は特に限定されず、公知の方法が利用できる。具体例としては、パルスレーザ蒸着法(PLD法)や、化学気相蒸着法(CVD法)等の気相成長法等を用いることが好ましいが、これらに限定されない。支持基板上にダイヤモンド層を成長させる際に、支持基板の加熱を伴う成長方法が好適である。 In the forming step, the method for growing the diamond layer on the support substrate is not particularly limited, and known methods can be used. As a specific example, it is preferable to use a pulsed laser deposition method (PLD method), a vapor deposition method such as a chemical vapor deposition method (CVD method), or the like, but it is not limited thereto. In growing a diamond layer on a support substrate, a growth method involving heating of the support substrate is preferred.
 形成工程において、支持基板にはあらかじめ、一般的に施される前処理を施すことが好ましい。この前処理としては、例えば、支持基板の洗浄、乾燥や、ダイヤモンドの種結晶の配置などが挙げられるが、これらに限定されない。ダイヤモンド以外の材質の支持基板を用いる場合、支持基板上に種結晶を配置することによって、ダイヤモンドの核形成を促進させることが可能である。ダイヤモンドの種結晶の配置は既存の方法を用いればよく、例えばダイヤモンドパウダーを用いて有機溶剤中で超音波処理を行う方法、ダイヤモンドパウダーを用いて機械的に研磨処理を行う方法、支持基板上にPtやIrなどをヘテロエピタキシャル成長させた中間膜(中間層)を形成し、該中間膜(中間層)上に種結晶を配置する方法等が知られている。上記のような処理を経ることによって、支持基板上に微細なダイヤモンド粒子が埋め込まれ、当該粒子が種結晶となってダイヤモンド層の形成を促進すると考えられている。種結晶を配置した後、支持基板は水やアルコール等で洗浄し、乾燥してからダイヤモンド層の形成に供することが好ましい。なお、材質がダイヤモンドの支持基板を用いる場合は、上記のような種結晶の配置を必ずしも行わなくともよい。 In the forming step, the supporting substrate is preferably pretreated in general. Examples of this pretreatment include, but are not limited to, cleaning of the support substrate, drying, arrangement of seed crystals of diamond, and the like. When using a supporting substrate of a material other than diamond, it is possible to promote nucleation of diamond by arranging a seed crystal on the supporting substrate. The arrangement of seed crystals of diamond may be performed by using an existing method, for example, a method of performing ultrasonic treatment in an organic solvent using diamond powder, a method of performing mechanical polishing using diamond powder, on a supporting substrate There is known a method of forming an intermediate film (intermediate layer) formed by heteroepitaxial growth of Pt, Ir or the like and arranging a seed crystal on the intermediate film (intermediate layer). It is thought that fine diamond particles are embedded on the support substrate through the above-described treatment, and the particles become seed crystals to promote formation of the diamond layer. After disposing the seed crystals, the support substrate is preferably washed with water, alcohol or the like, dried, and used for forming a diamond layer. In the case of using a supporting substrate made of diamond, it is not always necessary to arrange the seed crystal as described above.
 PLD法では、例えば、酸素雰囲気下あるいは水素雰囲気下でグラファイト、アモルファスカーボン又はダイヤモンドを含有するターゲットに対し、レーザースパッタリングを行ってターゲットから炭素を飛散させ、支持基板上にダイヤモンド層を成長させる。炉内圧力、支持基板の温度、ターゲットと支持基板との間の距離は特に限定されない。通常、炉内圧力は1×10-4Pa~100Pa、支持基板の温度は300~1000℃、ターゲットと支持基板との間の距離は10mm~100mmであるが、これらに限定されない。 In the PLD method, for example, laser sputtering is performed on a target containing graphite, amorphous carbon or diamond in an oxygen atmosphere or a hydrogen atmosphere to scatter carbon from the target, thereby growing a diamond layer on a supporting substrate. The pressure in the furnace, the temperature of the support substrate, and the distance between the target and the support substrate are not particularly limited. Usually, the pressure in the furnace is 1 × 10 −4 Pa to 100 Pa, the temperature of the support substrate is 300 to 1000 ° C., and the distance between the target and the support substrate is 10 mm to 100 mm, but is not limited thereto.
 CVD法では、例えば、CVD成長炉内に支持基板を配置し、該支持基板上にダイヤモンドを成長させる。成長方法は特に限定されず、例えば、直流プラズマCVD法、熱フィラメントCVD法、マイクロ波プラズマCVD法、高周波プラズマCVD法、燃焼炎法、アークジェット法、プラズマジェット法等が利用可能である。 In the CVD method, for example, a support substrate is placed in a CVD growth furnace, and diamond is grown on the support substrate. The growth method is not particularly limited, and for example, direct current plasma CVD, thermal filament CVD, microwave plasma CVD, high frequency plasma CVD, combustion flame method, arc jet method, plasma jet method, etc. can be used.
 CVD法において、原料ガスとして水素と、炭素原子を含むガスを使用する。一般的には、水素とともに、炭素原子を含むガスとして、CH4、C22、C24、C26、C38などの炭化水素や、メタノール、エタノールなどのアルコールや、COやアセトンなどの炭素原子含有化合物を使用する。これらの原料ガスは別々にCVD成長炉内に供してもよいし、混合して供してもよい。また、必要に応じて、原料ガスには窒素源ガス、酸素、ハロゲンガスが含まれてもよい。 In the CVD method, hydrogen and a gas containing carbon atoms are used as source gases. Generally, as a gas containing a carbon atom together with hydrogen, a hydrocarbon such as CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 , an alcohol such as methanol or ethanol, or the like And carbon-containing compounds such as CO and acetone. These source gases may be separately supplied into the CVD growth furnace or may be mixed and supplied. In addition, if necessary, the source gas may contain nitrogen source gas, oxygen, and halogen gas.
 本発明の一実施形態において、原料ガスに窒素源ガスを含み、該窒素源ガスとしてNF3を用いる。NF3ガスを用いることによって、ダイヤモンドの成長速度を速くすることができる。この場合、原料ガスの全量に対して水素を50~99.99vol%、該水素に対して、炭素原子を含むガスを0.01~50vol%、及び該炭素原子を含むガスに対して、NF3ガスを0.001~1vol%、より好ましくは0.01~1vol%、含有することが好ましい。 In one embodiment of the present invention, the source gas contains a nitrogen source gas, and NF 3 is used as the nitrogen source gas. The growth rate of diamond can be increased by using NF 3 gas. In this case, 50 to 99.99 vol% of hydrogen with respect to the total amount of the source gas, 0.01 to 50 vol% of a gas containing a carbon atom with respect to the hydrogen, and NF with respect to a gas containing the carbon atom It is preferable to contain 0.001 to 1 vol%, more preferably 0.01 to 1 vol%, of three gases.
 CVD法において、炉内圧力、支持基板の温度は特に限定されない。通常、炉内圧力は約1×103Pa~約1×105Pa、支持基板の温度は500~1300℃に保ち、原料ガスを該支持基板上に供してダイヤモンドを成長させる(形成する)。マイクロ波プラズマCVD法によるダイヤモンド層の成長(形成)の場合は、例えば、発生させたプラズマによる加熱で支持基板を500~1300℃に保ち、支持基板上に活性種を堆積させて、ダイヤモンドを成長(形成)させる。熱フィラメントCVD法によるダイヤモンド層の成長(形成)の場合は、フィラメントと支持基板との間の距離を1~100mmとして行うが、これに限定されない。 In the CVD method, the pressure in the furnace and the temperature of the support substrate are not particularly limited. Usually, the pressure in the furnace is maintained at about 1 × 10 3 Pa to about 1 × 10 5 Pa, the temperature of the support substrate is maintained at 500 to 1300 ° C., and source gas is supplied on the support substrate to grow diamond. . In the case of growth (formation) of a diamond layer by microwave plasma CVD, for example, the support substrate is kept at 500 to 1300 ° C. by heating with generated plasma, and active species are deposited on the support substrate to grow diamond. (Form) In the case of growth (formation) of a diamond layer by the hot filament CVD method, the distance between the filament and the support substrate is set to 1 to 100 mm, but is not limited thereto.
 形成工程により、支持基板上にダイヤモンド層が形成され、ダイヤモンド層と支持基板とを備える複合基板が得られる。 By the formation step, a diamond layer is formed on the support substrate, and a composite substrate comprising the diamond layer and the support substrate is obtained.
 [加工工程]
 加工工程においては、ダイヤモンド層と支持基板とを備える複合基板を、形成工程における支持基板と略同一温度下で加工して被加工基板とする。この略同一温度は、形成工程で形成されたダイヤモンド層の厚みや、支持基板とダイヤモンドの熱膨張係数差にも依存するが、通常、形成工程における支持基板温度の±200℃以内であり、好ましくは±100℃以内であり、より好ましくは±50℃以内である。
[Processing process]
In the processing step, the composite substrate including the diamond layer and the support substrate is processed at substantially the same temperature as the support substrate in the formation step to form a substrate to be processed. The substantially same temperature depends on the thickness of the diamond layer formed in the forming step and the difference in thermal expansion coefficient between the supporting substrate and the diamond, but is usually within ± 200 ° C. of the temperature of the supporting substrate in the forming step. Is within ± 100 ° C., more preferably within ± 50 ° C.
 加工工程は、形成工程後に行ってもよいし、形成工程とともに行ってもよいし、あるいは、形成工程とともに加工工程を行い、形成工程後に加工をさらに行ってもよい。また、形成工程で得られた複合基板に反りが生じるのを抑制するために、形成工程後、加工工程を行うまでの間と、加工工程を行う間は、支持基板温度を形成工程における支持基板温度と略同一温度に保持する(例えば、形成工程における支持基板温度の±200℃以内、好ましくは±100℃以内、より好ましくは±50℃以内に保持する)ことが好ましい。形成工程と加工工程は、同一の装置内で行ってもよいし、別々の装置内で行ってもよいが、効率性や略同一温度保持の容易性の観点から、同一の装置内で行うことが好ましい。また、形成工程と加工工程を同一の装置内で行う場合であって、特に加工としてレーザーカットを施す場合には、後述のCVD装置を用いることが好ましい。 The processing step may be performed after the forming step, may be performed along with the forming step, or may be performed along with the forming step, and may be further processed after the forming step. In addition, in order to suppress warpage of the composite substrate obtained in the forming step, after the forming step, until the processing step is performed, and while the processing step is performed, the supporting substrate temperature in the forming step is determined. It is preferable to keep the temperature substantially the same (for example, within ± 200 ° C., preferably within ± 100 ° C., more preferably within ± 50 ° C. of the temperature of the supporting substrate in the formation step). The forming step and the processing step may be performed in the same device or may be performed in separate devices, but are performed in the same device from the viewpoint of efficiency and ease of maintaining substantially the same temperature. Is preferred. Further, in the case where the forming step and the processing step are performed in the same device, and in particular when laser cutting is performed as processing, it is preferable to use a CVD device described later.
 この加工により、複合基板のダイヤモンド層、もしくは複合基板のダイヤモンド層と支持基板の両方が細分化される。細分化する方法は特に限定されず、公知の方法を採用することができる。この加工の一例として、複合基板のダイヤモンド層、もしくは複合基板のダイヤモンド層と支持基板の両方に、少なくともレーザーカットを施すことができる。 By this processing, the diamond layer of the composite substrate or both the diamond layer of the composite substrate and the support substrate are subdivided. The method of subdivision is not particularly limited, and known methods can be employed. As an example of this processing, at least a laser cut can be applied to the diamond layer of the composite substrate or to both the diamond layer of the composite substrate and the support substrate.
 複合基板のダイヤモンド層、あるいは、複合基板のダイヤモンド層と支持基板の両方にレーザーを入射して、所望のサイズ、形状にカットしてもよい。 A laser may be applied to the diamond layer of the composite substrate, or to both the diamond layer of the composite substrate and the support substrate, and cut into a desired size and shape.
 レーザーカットに用いるレーザーは、ダイヤモンド膜を細分化するのに十分な出力と適切な波長を備えていれば特に限定されない。レーザーの性能維持の観点からは、固体レーザーが好ましく、カッティングの効率の点では短波長レーザーが好ましい。また、比較的低出力でダイヤモンド膜を切断でき、支持基板にダメージが入り難いことから、パルスレーザーが好ましい。好ましいレーザーとしては、Nd:ファイバーレーザー、Nd:YAGレーザー、Nd:YVO4レーザー、高出力半導体レーザーおよびその第二高調波、第三高調波、第四高調波等が挙げられる。 The laser used for laser cutting is not particularly limited as long as it has an output and an appropriate wavelength sufficient to fragment the diamond film. From the viewpoint of maintaining the performance of the laser, a solid laser is preferable, and a short wavelength laser is preferable in terms of the cutting efficiency. In addition, a pulse laser is preferable because a diamond film can be cut with a relatively low output power and damage to the support substrate is less likely to occur. Preferred lasers include Nd: fiber lasers, Nd: YAG lasers, Nd: YVO4 lasers, high-power semiconductor lasers and their second harmonics, third harmonics, fourth harmonics and the like.
 パルス幅としては、光学系の構築が比較的容易であり、レーザー光源も安価であることから、例えば、10fsもしくは50fsを下限とし、1ms、100nsもしくは500psを上限とする。具体的には、10fs以上1ms以下が好ましく、50fs以上100ns以下が特に好ましい。平均出力は、光学系や波長にも依存するので一概にはいえないが、基本波出力として10W以上が好ましい。パルスの繰返し速度はレーザーシステムなどに依存するため一概には規定できないが、1kHz以上、100MHz以下が好ましい。 As the pulse width, since the construction of the optical system is relatively easy and the laser light source is inexpensive, for example, the lower limit is 10 fs or 50 fs, and the upper limit is 1 ms, 100 ns or 500 ps. Specifically, 10 fs or more and 1 ms or less are preferable, and 50 fs or more and 100 ns or less are particularly preferable. The average output depends on the optical system and the wavelength and can not be generally defined, but 10 W or more is preferable as the fundamental wave output. The repetition rate of the pulse can not be generally defined because it depends on the laser system etc., but 1 kHz or more and 100 MHz or less is preferable.
 レーザーのスキャンには、光学系の機械的平行移動やガルバノミラーなどのスキャン光学系を適宜用いることができる。ガルバノミラーを用いる場合は、集光光学系にfθレンズまたは相応する反射光学系を用いることが好ましい。 For laser scanning, mechanical parallel movement of an optical system or a scanning optical system such as a galvano mirror can be used as appropriate. In the case of using a galvano mirror, it is preferable to use an fθ lens or a corresponding reflective optical system for the focusing optical system.
 ダイヤモンド層を形成しながらレーザーカットする場合は、継続するダイヤモンド層の形成によって、カット後の切断面に空洞や欠陥が生じることがあるため、適切な時間間隔で同じ場所を再カットすることが好ましい。このためには、レーザーを比較的高速でスキャンして行くことが好ましい。ダイヤモンド層の形成速度は、一般的には数十μm/h以内であることから、同じ場所を再カットする場合の時間間隔は数時間以内、好ましくは1時間以内、より好ましくは30分以内である。 When performing laser cutting while forming a diamond layer, it is preferable to recut the same place at an appropriate time interval, because the formation of the continuous diamond layer may cause voids and defects in the cut surface after cutting. . For this purpose, it is preferable to scan the laser relatively fast. Since the formation rate of the diamond layer is generally within several tens of μm / h, the time interval for recutting the same place is within several hours, preferably within 1 hour, and more preferably within 30 minutes. is there.
 カッティング速度を向上させるために、複数台のレーザーを用いたり、大出力のレーザーを複数のビームラインに分割して照射してもよい。 In order to improve the cutting speed, a plurality of lasers may be used, or a high power laser may be divided into a plurality of beam lines and irradiated.
 熱フィラメントCVD法において、用いるフィラメントの直径は、特に限定されない。例えば、0.02~1mm、0.05~0.5mm、0.1~0.3mmである。フィラメントの長さや本数は、形成するダイヤモンド層の大きさに応じて適宜選択することができる。好ましくは、フィラメントが、少なくとも支持基板全体を所定の間隔で覆うように、複数本のフィラメントを平行に、等間隔に配置することが好ましい。加工工程において、フィラメントの間隔は重要である。照射されるレーザーが、フィラメントに接触してフィラメントが破損しないように、フィラメントは適度な間隔を有することが好ましい。フィラメントの間隔は、レーザー照射条件にも依るが、例えば、2~100mm、3~50mm、5~30mmである。 In the hot filament CVD method, the diameter of the filament used is not particularly limited. For example, 0.02 to 1 mm, 0.05 to 0.5 mm, and 0.1 to 0.3 mm. The length and the number of filaments can be appropriately selected according to the size of the diamond layer to be formed. Preferably, the plurality of filaments are arranged in parallel at equal intervals such that the filaments cover at least the entire support substrate at predetermined intervals. In the processing step, the spacing of the filaments is important. It is preferred that the filaments have a suitable spacing so that the irradiated laser does not contact the filaments and break the filaments. The distance between filaments is, for example, 2 to 100 mm, 3 to 50 mm, or 5 to 30 mm, depending on the laser irradiation condition.
 この加工において、レーザーカットによりダイヤモンド層の平面方向と厚み方向に切り込みを入れる。 In this processing, a cut is made in the planar direction and thickness direction of the diamond layer by laser cutting.
 厚み方向への切り込みは、ダイヤモンド層の一部または全部にまで達してもよいし、ダイヤモンド層を貫通して、支持基板の一部または全部にまで達してもよい。例えば、厚み方向への切り込みは、ダイヤモンド層の厚みの半分以上、8割以上、9割以上、あるいは、全部に達するようにしてもよい。あるいは、厚み方向への切り込みは、ダイヤモンド層を貫通するとともに、支持基板の厚みの1割以下、3割以下、5割以下、7割以下、8割以下、9割以下、あるいは、全部に達するようにしてもよい。 The cuts in the thickness direction may extend to part or all of the diamond layer, or may penetrate through the diamond layer to part or all of the support substrate. For example, the cut in the thickness direction may reach half or more, 80% or more, 90% or more, or all of the thickness of the diamond layer. Alternatively, the cut in the thickness direction penetrates the diamond layer and reaches 10% or less, 30% or less, 50% or less, 70% or less, 80% or less, 90% or less, or all of the thickness of the support substrate. You may do so.
 被加工基板のサイズは、特に限定されない。形成工程で形成されたダイヤモンド層のサイズにもよるが、通常は2500mm2以下であり、下限は特に限定されないが、通常25mm2以上である(例えば、2500mm2、900mm2、100mm2、25mm2)。具体的には、被加工基板のサイズは、5mm角~50mm角(例えば、5mm角、10mm角、30mm角、50mm角)とすることができる。被加工基板の厚みについては、ダイヤモンド層の厚みで、通常0.01mm以上であり、上限は特に限定されないが、通常1.5mm程度である(例えば、0.01mm、0.03mm、0.05mm、0.1mm、0.3mm、0.5mm、1mm、1.5mm)。被加工基板の厚みは、ダイヤモンド層と支持基板の両方の厚みで、通常0.1mm~1mmである(例えば、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、1mm)。 The size of the substrate to be processed is not particularly limited. Although depending on the size of the diamond layer formed in the forming step, it is usually 2500 mm 2 or less, and the lower limit is not particularly limited, but is usually 25 mm 2 or more (for example, 2500 mm 2 , 900 mm 2 , 100 mm 2 , 25 mm 2 ). Specifically, the size of the substrate to be processed can be 5 mm square to 50 mm square (for example, 5 mm square, 10 mm square, 30 mm square, 50 mm square). The thickness of the substrate to be processed is usually 0.01 mm or more as the thickness of the diamond layer, and the upper limit is not particularly limited, but is usually about 1.5 mm (for example, 0.01 mm, 0.03 mm, 0.05 mm) 0.1 mm, 0.3 mm, 0.5 mm, 1 mm, 1.5 mm). The thickness of the substrate to be processed is usually 0.1 mm to 1 mm (for example, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0 mm) in thickness of both the diamond layer and the support substrate. .6 mm, 0.7 mm, 0.8 mm, 1 mm).
 被加工基板の温度を降下させてもよい。この温度降下速度は、特に限定されるものではないが、好ましくは20℃/hr~500℃/hrであり、より好ましくは100℃/hr~300℃/hrである。この速度であれば熱衝撃によるクラックが発生し難く、また、適度な製造効率を示す。 The temperature of the substrate to be processed may be lowered. The temperature drop rate is not particularly limited, but is preferably 20 ° C./hr to 500 ° C./hr, more preferably 100 ° C./hr to 300 ° C./hr. At this speed, cracks due to thermal shock are unlikely to occur, and adequate production efficiency is exhibited.
 被加工基板は、後述の分離工程に供してもよいし、そのまま種々の用途に供してもよいし、目的に応じてメタライズ加工やダイシングを行ったり、ダイヤモンド層の表面を研磨して平滑化させてもよい。本発明の方法により、被加工基板の反りが抑制されているため、研磨機に固定する際の応力が低くなり、平面度や平滑度が向上する。また、被加工基板は、熱拡散基板として用いることができる。また、被加工基板のダイヤモンド層に、銅板や窒化アルミニウムセラミックス基板などの高熱伝導率材料を貼ることもできる。 The substrate to be processed may be subjected to the separation step described later, or may be used for various applications as it is, or metallizing or dicing may be performed depending on the purpose, or the surface of the diamond layer may be polished and smoothed. May be According to the method of the present invention, since the warpage of the substrate to be processed is suppressed, the stress at the time of fixing to the polishing machine is reduced, and the flatness and the smoothness are improved. Further, the processing substrate can be used as a heat diffusion substrate. In addition, a high thermal conductivity material such as a copper plate or an aluminum nitride ceramic substrate can be attached to the diamond layer of the substrate to be processed.
 [分離工程]
 分離工程においては、被加工基板から支持基板を分離する。これにより、ダイヤモンド層からなるダイヤモンド基板が得られる。支持基板の分離は公知の方法で行うことができる。支持基板の分離は、ダイヤモンド層と支持基板の接面に機械的に力を加えることで行うことができ、また、他にも電気化学的にエッチングする方法によっても行うことができる。
[Separation process]
In the separation step, the support substrate is separated from the processing substrate. Thereby, a diamond substrate comprising a diamond layer is obtained. The separation of the support substrate can be performed by a known method. The separation of the support substrate can be performed by mechanically applying a force to the contact surface of the diamond layer and the support substrate, or can also be performed by another electrochemical etching method.
 分離して得られたダイヤモンド層からなるダイヤモンド基板は、目的に応じてメタライズ加工やダイシングを行ったり、ダイヤモンド層の表面を研磨して平滑化させてもよい。また、ダイヤモンド基板は、熱拡散基板として用いることができる。また、ダイヤモンド基板に、銅板や窒化アルミニウムセラミックス基板などの高熱伝導率材料を貼り合わせることもできる。 The diamond substrate comprising the diamond layer obtained by separation may be metallized or diced according to the purpose, or the surface of the diamond layer may be polished and smoothed. In addition, a diamond substrate can be used as a heat diffusion substrate. In addition, a high thermal conductivity material such as a copper plate or an aluminum nitride ceramic substrate can be bonded to a diamond substrate.
 (CVD装置)
 本発明に係る方法は、CVD装置として実施することができる。
(CVD equipment)
The method according to the invention can be implemented as a CVD apparatus.
 本発明の実施形態の一つは、
 ダイヤモンド基板を製造するための熱フィラメントCVD装置であって、
 支持基板上にダイヤモンド層を形成して複合基板とするための支持基板ホルダーと、
 前記複合基板のダイヤモンド層もしくはダイヤモンド層と支持基板の両方にレーザーカットを施すためのレーザー照射手段と、を少なくとも備える、熱フィラメントCVD装置である。
One of the embodiments of the present invention is
A hot filament CVD apparatus for producing a diamond substrate, comprising:
A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate;
A hot filament CVD apparatus, comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the support substrate.
 以下、図2を例に、熱フィラメントCVD装置の構成例を示すが、本発明の熱フィラメントCVD装置は、図2の構成例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更を加え得る。図2は、熱フィラメントCVD装置2の構成例を示す図である。 Hereinafter, although the structural example of a thermal filament CVD apparatus is shown taking an example of FIG. 2, the thermal filament CVD apparatus of this invention is not limited to the structural example of FIG. 2, It is a range which does not deviate from the meaning of this invention. Various changes can be made. FIG. 2 is a view showing a configuration example of the hot filament CVD apparatus 2.
 熱フィラメントCVD装置2においては、チャンバー10内に成膜室14を備える。成膜室14で、支持基板ホルダー11に配置された支持基板12の表面にダイヤモンド基板13を形成する。成膜室14は、電源ポスト16に接続するフィラメント15(フィラメント15の固定部については記載を省略)を備える。 In the thermal filament CVD apparatus 2, a film forming chamber 14 is provided in the chamber 10. In the film forming chamber 14, the diamond substrate 13 is formed on the surface of the support substrate 12 disposed in the support substrate holder 11. The film forming chamber 14 includes a filament 15 (the description of the fixing portion of the filament 15 is omitted) connected to the power supply post 16.
 また、図2では記載を省略しているが、成膜室10は、原料ガスを供給するための原料供給装置から原料ガスを導入するための原料ガス導入口や、排気口を備える。 Although not shown in FIG. 2, the film forming chamber 10 includes a source gas inlet for introducing the source gas from the source supply device for supplying the source gas, and an exhaust port.
 ダイヤモンド層の形成工程においては、フィラメント15の上方より、成膜室14に原料ガスが導入される。電源ポスト16からフィラメント15に通電してフィラメント15を加熱する。これにより、支持基板12の表面にダイヤモンド基板13が形成される。 In the process of forming the diamond layer, the source gas is introduced into the film forming chamber 14 from above the filament 15. The power supply post 16 is energized to heat the filament 15. Thereby, the diamond substrate 13 is formed on the surface of the support substrate 12.
 熱フィラメントCVD装置2においては、フィラメント15の上方に光学窓17を備え、光学窓17の上方にfθレンズ22をさらに備え、fθレンズ22の上方にガルバノミラー21(制御装置は記載を省略する)をさらに備える。加工工程においては、第二高調波ユニット19、集光レンズ20(焦点位置調整系や制御装置は記載を省略する)を備えた基本波レーザー発生装置18からレーザー光24を照射する。照射されたレーザー光は、照射位置を制御するために備え付けられたガルバノミラー21、fθレンズ22を通り、光学窓17を介して成膜室14に照射される。ダイヤモンド層の加工工程においては、成膜室14に照射されたレーザー光を、フィラメント15を避けてダイヤモンド基板13に照射する。複数のフィラメント15を配置する場合には、その間隙からダイヤモンド基板13にレーザーを照射する。 In the thermal filament CVD apparatus 2, an optical window 17 is provided above the filament 15, an fθ lens 22 is further provided above the optical window 17, and a galvano mirror 21 above the fθ lens 22 (control device will not be described) Further comprising In the processing step, the laser beam 24 is irradiated from the fundamental wave laser generator 18 provided with the second harmonic unit 19 and the condenser lens 20 (the focus position adjustment system and the control device are not described). The irradiated laser light passes through the galvano mirror 21 and the fθ lens 22 provided to control the irradiation position, and is irradiated to the film forming chamber 14 through the optical window 17. In the processing step of the diamond layer, the laser light irradiated to the film forming chamber 14 is irradiated to the diamond substrate 13 avoiding the filament 15. In the case of arranging a plurality of filaments 15, the diamond substrate 13 is irradiated with laser from the gap.
 ダイヤモンド基板13へのレーザー照射位置の調整は、ガルバノミラー21、fθレンズ22、集光レンズ20等の光学系の位置や、フィラメント15の位置や、支持基板12の位置を調整することで行うことができ、これによりダイヤモンド基板13を所望の形状に加工(レーザーカット)することができる。位置調整の容易性から、支持基板12の位置を調整することが好ましい。支持基板12の位置調整のために、例えば、支持基板ホルダー11にレーザー照射位置に対して相対的な移動が可能な移動機構を備える。この移動機構により、例えば、支持基板ホルダーの移動方向(紙面に対して垂直方向)23や、紙面に対して水平方向に移動させ(図2では省略)、ダイヤモンド基板13を所望の形状に加工する。 Adjustment of the laser irradiation position to the diamond substrate 13 is performed by adjusting the position of the optical system such as the galvano mirror 21, the fθ lens 22, and the condensing lens 20, the position of the filament 15, and the position of the support substrate 12. Thus, the diamond substrate 13 can be processed (laser cut) into a desired shape. It is preferable to adjust the position of the support substrate 12 from the ease of position adjustment. In order to adjust the position of the support substrate 12, for example, the support substrate holder 11 is provided with a moving mechanism capable of moving relative to the laser irradiation position. The diamond substrate 13 is processed into a desired shape by, for example, moving the supporting substrate holder in the moving direction (vertical direction to the paper surface) 23 or horizontally to the paper surface (not shown in FIG. 2) by this moving mechanism. .
 レーザー照射によるダイヤモンド基板13の加工は、支持基板12を加熱しながら行う。フィラメント15の加熱により支持基板12も加熱されるが、支持基板12を加熱するために、成膜室14に別途加熱機構を備えてもよい(例えば、支持基板ホルダー11に加熱機構を備えて支持基板12を加熱してもよい。)。 The processing of the diamond substrate 13 by laser irradiation is performed while heating the support substrate 12. Although the supporting substrate 12 is also heated by the heating of the filament 15, the film forming chamber 14 may be separately provided with a heating mechanism to heat the supporting substrate 12 (for example, the supporting substrate holder 11 is provided with a heating mechanism and supported) The substrate 12 may be heated).
 また、本発明の実施形態の一つは、
 ダイヤモンド基板を製造するためのプラズマCVD装置であって、
 支持基板上にダイヤモンド層を形成して複合基板とするための支持基板ホルダーと、
 前記複合基板を加熱するための加熱手段と、
 前記複合基板のダイヤモンド層もしくはダイヤモンド層と支持基板の両方にレーザーカットを施すためのレーザー照射手段と、を少なくとも備える、プラズマCVD装置である。
In addition, one of the embodiments of the present invention is
A plasma CVD apparatus for producing a diamond substrate, comprising:
A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate;
A heating unit for heating the composite substrate;
A plasma CVD apparatus, comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the support substrate.
 以下、図3を例に、プラズマCVD装置の構成例を示すが、本発明のプラズマCVD装置は、図3の構成例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更を加え得る。図3は、プラズマCVD装置3の構成例を示す図である。 Hereinafter, although the example of composition of a plasma CVD apparatus is shown in the example of Drawing 3, the plasma CVD apparatus of the present invention is not limited to the example of composition of Drawing 3, and various change in the range which does not deviate from the meaning of the present invention Can be added. FIG. 3 is a view showing a configuration example of the plasma CVD apparatus 3.
 プラズマCVD装置3においては、メインチャンバー30内に成膜室33を備える。マイクロ波プラズマCVD法により、成膜室33で、支持基板ホルダー34に配置された支持基板35の表面にダイヤモンド基板36を形成する。図3では、記載を省略しているが、成膜室33は、原料ガスを供給するための原料供給装置から原料ガスを導入するための原料ガス導入口や、排気口を備える。 In the plasma CVD apparatus 3, a film forming chamber 33 is provided in the main chamber 30. A diamond substrate 36 is formed on the surface of the supporting substrate 35 disposed in the supporting substrate holder 34 in the film forming chamber 33 by the microwave plasma CVD method. Although the description is omitted in FIG. 3, the film forming chamber 33 includes a source gas inlet and an exhaust port for introducing the source gas from a source supply device for supplying the source gas.
 また、プラズマCVD装置3においては、マイクロ波発生系として、マイクロ波発振装置31(電源と制御装置は省略)、マイクロ波発振装置31と接続するマイクロ波導波管32を備える。メインチャンバー30とマイクロ波導波管32は、石英窓43を介して接続される。マイクロ波発生系から発生させたマイクロ波を、石英窓43を介してメインチャンバー30内の成膜室33に通し、成膜室33内でマイクロ波からプラズマを発生させる。ダイヤモンド層の形成工程においては、成膜室33に原料ガスを導入し、マイクロ波によりプラズマを発生させ、炭素を含む活性種を支持基板35上に堆積させることによりダイヤモンド基板36が形成される。 Further, in the plasma CVD apparatus 3, as a microwave generation system, a microwave oscillation device 31 (a power supply and a control device are omitted) and a microwave waveguide 32 connected to the microwave oscillation device 31 are provided. The main chamber 30 and the microwave waveguide 32 are connected via a quartz window 43. The microwave generated from the microwave generation system is passed through the quartz window 43 to the film forming chamber 33 in the main chamber 30, and plasma is generated from the microwave in the film forming chamber 33. In the step of forming the diamond layer, a source gas is introduced into the film forming chamber 33, plasma is generated by microwaves, and a carbon-containing active species is deposited on the supporting substrate 35, whereby the diamond substrate 36 is formed.
 プラズマCVD装置3においては、マイクロ波導波管32の上方に光学窓42を備え、光学窓42の上方にfθレンズ41をさらに備え、fθレンズ41の上方にガルバノミラー40(制御装置は記載を省略する)をさらに備える。加工工程においては、第二高調波ユニット38、集光レンズ39(焦点位置調整系や制御装置は記載を省略する)を備えた基本波レーザー発生装置37からレーザー光45を照射する。照射されたレーザー光は、照射位置を制御するために備え付けられたガルバノミラー40、fθレンズ41を通り、光学窓42を介してマイクロ波導波管32に照射され、さらに石英窓43を介してメインチャンバー30内の成膜室33に照射される。ダイヤモンド層の加工工程においては、成膜室33に照射されたレーザー光をダイヤモンド基板36に照射する。 In the plasma CVD apparatus 3, the optical window 42 is provided above the microwave waveguide 32, the fθ lens 41 is further provided above the optical window 42, and the galvano mirror 40 (control device is not described above the fθ lens 41) Further). In the processing step, the laser beam 45 is irradiated from a fundamental wave laser generator 37 provided with a second harmonic unit 38 and a condenser lens 39 (a focus position adjustment system and a control device will not be described). The irradiated laser light passes through the galvano mirror 40 and the fθ lens 41 provided to control the irradiation position, and is irradiated to the microwave waveguide 32 through the optical window 42, and the main through the quartz window 43. The film forming chamber 33 in the chamber 30 is irradiated. In the processing step of the diamond layer, the laser beam irradiated to the film forming chamber 33 is irradiated to the diamond substrate 36.
 ダイヤモンド基板36へのレーザー照射位置の調整は、ガルバノミラー40、fθレンズ41、集光レンズ39等の光学系の位置や、支持基板35の位置を調整することで行うことができ、これによりダイヤモンド基板36を所望の形状に加工(レーザーカット)することができる。位置調整の容易性から、支持基板35の位置を調整することが好ましい。支持基板35の位置調整のために、例えば、支持基板ホルダー34にレーザー照射位置に対して相対的な移動が可能な移動機構を備える。この移動機構により、例えば、支持基板ホルダーの移動方向(紙面に対して垂直方向または水平方向)44に移動させ、ダイヤモンド基板36を所望の形状に加工する。 The adjustment of the laser irradiation position to the diamond substrate 36 can be performed by adjusting the position of the optical system such as the galvano mirror 40, the fθ lens 41, the condensing lens 39, etc., and the position of the support substrate 35. The substrate 36 can be processed (laser cut) into a desired shape. It is preferable to adjust the position of the support substrate 35 from the ease of position adjustment. In order to adjust the position of the support substrate 35, for example, the support substrate holder 34 is provided with a moving mechanism capable of moving relative to the laser irradiation position. By means of this moving mechanism, the diamond substrate 36 is processed into a desired shape by, for example, moving in the moving direction (vertical direction or horizontal direction with respect to the paper surface) 44 of the support substrate holder.
 レーザー照射によるダイヤモンド基板36の加工は、支持基板35を加熱しながら行う。マイクロ波から発生したプラズマにより支持基板35も加熱されるが、支持基板35を加熱するために、成膜室33に別途加熱機構を備えてもよい(例えば、支持基板ホルダー34に加熱機構を備えて支持基板35を加熱してもよい。)。 The processing of the diamond substrate 36 by laser irradiation is performed while heating the support substrate 35. Although the supporting substrate 35 is also heated by plasma generated from the microwave, the film forming chamber 33 may be additionally provided with a heating mechanism to heat the supporting substrate 35 (for example, the supporting substrate holder 34 is provided with a heating mechanism) Support substrate 35)).
 以下、実施例により本発明に係る実施形態を詳細に説明するが、本発明の実施形態は実施例に限定されるものではない。 Hereinafter, the embodiment according to the present invention will be described in detail by way of examples, but the embodiments of the present invention are not limited to the examples.
 本実施例において、次のようにして複合基板の良品率を算出した:レーザーカットした複合基板をダイシングし、ダイシング後の複合基板1枚あたりの反り量が30μm以下で、かつ、ダイシングによる割れ、欠けが見られないものを良品と判定し、この良品の枚数を、ダイシング後の複合基板の総数で除して、百分率で表した。また、ダイシング後の複合基板の反り量の総和をダイシング後の複合基板の総数で除したものを「平均反り量」として算出した。 In the present example, the yield rate of the composite substrate was calculated as follows: The laser-cut composite substrate was diced, and the amount of warping per composite substrate after dicing was 30 μm or less, and cracking by dicing, A chip with no chipping was determined to be a non-defective product, and the number of non-defective products was divided by the total number of composite substrates after dicing and expressed as a percentage. Moreover, what computed the sum total of the curvature amount of the composite substrate after dicing divided by the total of the composite substrate after dicing was calculated as "average curvature amount."
 ここで言う「反り量」とは、レーザーカットした複合基板をダイシングし、ダイシング後の複合基板において、支持基板側の表面における最高点と最低点の差で表される。ダイシング後の複合基板の反り量は、支持基板側の表面について、三次元形状測定を行うことで測定可能である。本実施例では、非接触三次元測定装置(三鷹光器株式会社製:NH-3N)を用いてダイシング後の複合基板の反り量を測定した。 The "warpage amount" referred to here is a difference between the highest point and the lowest point on the surface of the supporting substrate side in the composite substrate after dicing and dicing the laser cut composite substrate. The amount of warpage of the composite substrate after dicing can be measured by performing three-dimensional shape measurement on the surface on the support substrate side. In this example, the amount of warpage of the composite substrate after dicing was measured using a non-contact three-dimensional measurement apparatus (manufactured by Mitaka Koki Co., Ltd .: NH-3N).
 1.複合基板の製造
 [実施例1-1]
 支持基板として、2インチφのシリコン基板(厚み:1mm)表面にダイヤモンドパウダー(平均粒径1μm)で傷つけ処理をした後、エタノールで洗浄、及びエアーブローで乾燥させた基板を用意した。この支持基板を熱フィラメントCVD装置のチャンバー内のステージに設置し、該支持基板温度が1000℃となるように調整した。原料ガスとしてH2ガスとCH4ガスの混合ガスを用いて、熱フィラメントCVD法により支持基板上に厚さ200μmのダイヤモンド層を形成し、複合基板を得た。その後、原料ガスの供給を停止し、H2ガスのみを供給しながら、支持基板温度を1000℃±20℃を超えない範囲に保持した。この保持温度で、レーザーにより3.5mm×3.5mmのサイズにダイヤモンド層をカットした。レーザーカットによるダイヤモンド層の厚み方向への切り込み量はレーザー焦点位置から算出して平均198μmであった。
 ここで、使用したレーザーは、平均出力10WのNd:YAGレーザーの第二高調波(波長532nm)であり、パルス幅は100psである。レーザーのスキャンにはガルバノミラーとfθレンズを用いた。
 レーザーカット完了後、基板温度を200℃/hrの冷却速度で室温まで冷却した。チャンバー内を不活性ガスで置換した後にレーザーカット後の複合基板を取り出した。この複合基板に対して、レーザーカットの跡に沿ってダイサーでダイシングした。平均反り量は4μmであり、良品率は83%であった。
1. Production of Composite Substrate [Example 1-1]
As a supporting substrate, a 2-inch diameter silicon substrate (thickness: 1 mm) was scratched with a diamond powder (average particle diameter: 1 μm), and then washed with ethanol and dried by air blowing to prepare a substrate. The supporting substrate was placed on a stage in a chamber of a hot filament CVD apparatus, and the temperature of the supporting substrate was adjusted to 1000 ° C. Using a mixed gas of H 2 gas and CH 4 gas as a source gas, a diamond layer having a thickness of 200 μm was formed on a supporting substrate by a hot filament CVD method to obtain a composite substrate. Thereafter, the supply of the source gas was stopped, and the temperature of the supporting substrate was maintained in a range not exceeding 1000 ° C. ± 20 ° C. while only the H 2 gas was supplied. At this holding temperature, the diamond layer was cut to a size of 3.5 mm × 3.5 mm by a laser. The cut amount in the thickness direction of the diamond layer by laser cutting was 198 μm on average calculated from the laser focal position.
Here, the laser used is the second harmonic (wavelength 532 nm) of an Nd: YAG laser with an average output of 10 W, and the pulse width is 100 ps. A galvano mirror and an fθ lens were used for laser scanning.
After completion of laser cutting, the substrate temperature was cooled to room temperature at a cooling rate of 200 ° C./hr. After replacing the inside of the chamber with an inert gas, the laser cut composite substrate was taken out. The composite substrate was diced along a trace of the laser cut with a dicer. The average warpage was 4 μm, and the yield rate was 83%.
 [実施例1-2]
 2インチφのシリコン基板の代わりに4インチφのシリコン基板(厚み:1mm)を用いた以外は、実施例1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。ただし、レーザーカット後の冷却速度は300℃/hrとした。平均反り量は6μmであり、良品率は85%であった。
Embodiment 1-2
A composite substrate after laser cutting was manufactured in the same manner as in Example 1 except that a 4 inch φ silicon substrate (thickness: 1 mm) was used instead of the 2 inch φ silicon substrate, and this was diced. However, the cooling rate after laser cutting was 300 ° C./hr. The average warpage was 6 μm, and the yield rate was 85%.
 [実施例1-3]
 2インチφのシリコン基板の代わりに6インチφのシリコン基板(厚み:1mm)を用いた以外は、実施例1と同様の支持基板を用意した。この支持基板を熱フィラメントCVD装置のチャンバー内のステージに設置し、該支持基板温度が1000℃となるように調整した。原料ガスとしてH2ガスとCH4ガスの混合ガスを用いて、熱フィラメントCVD法により支持基板上にダイヤモンド層を形成しながら、3.5mm×3.5mmのサイズにダイヤモンド層をレーザーカットした。形成終了時のダイヤモンド層の厚みは200μmであった。形成中のレーザーカットによるダイヤモンド層の厚み方向への切り込み量は、平均150μmであった。形成終了後に原料ガスの供給を停止し、H2ガスのみを供給しながら、支持基板温度を1000℃±20℃を超えない範囲に保持した。この保持温度で、前述のレーザーカットした部位にさらにレーザーカットを施した。後述の複合基板の取り出し後に確認したダイヤモンド層の厚み方向への切り込み量は平均で207μmであり、これにより、ダイヤモンド層を完全に切断するとともに、支持基板の一部にも切り込みを入れた。
 使用したレーザーおよびスキャン方法は実施例1-1と同様である。
 レーザーカット完了後、基板温度を150℃/hrの冷却速度で室温まで冷却した。チャンバー内を不活性ガスで置換した後に複合基板を取り出した。レーザーカットの跡に沿ってダイサーでダイシングした。平均反り量は9μmであり、良品率は80%であった。
Embodiment 1-3
A supporting substrate similar to that of Example 1 was prepared except that a 6 inch φ silicon substrate (thickness: 1 mm) was used instead of the 2 inch φ silicon substrate. The supporting substrate was placed on a stage in a chamber of a hot filament CVD apparatus, and the temperature of the supporting substrate was adjusted to 1000 ° C. Using a mixed gas of H 2 gas and CH 4 gas as a source gas, the diamond layer was laser-cut to a size of 3.5 mm × 3.5 mm while forming the diamond layer on the support substrate by a hot filament CVD method. The thickness of the diamond layer at the end of the formation was 200 μm. The cutting amount in the thickness direction of the diamond layer by laser cutting during formation was 150 μm on average. After completion of the formation, the supply of the source gas was stopped, and the temperature of the supporting substrate was maintained in a range not exceeding 1000 ° C. ± 20 ° C. while only the H 2 gas was supplied. At this holding temperature, the above-described laser-cut portion was further subjected to laser cutting. The cut amount in the thickness direction of the diamond layer confirmed after taking out the composite substrate described later was 207 μm on average, and thereby, the diamond layer was completely cut and a part of the support substrate was cut.
The laser and scanning method used are the same as in Example 1-1.
After completion of laser cutting, the substrate temperature was cooled to room temperature at a cooling rate of 150 ° C./hr. After the inside of the chamber was replaced with an inert gas, the composite substrate was taken out. It diced with the dicer along the mark of a laser cut. The average amount of warpage was 9 μm, and the yield rate was 80%.
 [実施例1-4]
 5mm×5mmのサイズに切削した以外は、実施例1-1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。平均反り量は12μmであり、良品率は79%であった。
Embodiment 1-4
A composite substrate after laser cutting was manufactured in the same manner as in Example 1-1 except that cutting was performed to a size of 5 mm × 5 mm, and this was diced. The average warping amount was 12 μm, and the non-defective rate was 79%.
 [実施例1-5]
 10mm×10mmのサイズに切削した以外は、実施例1-1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。平均反り量は20μmであり、良品率は75%であった。
[Example 1-5]
A composite substrate after laser cutting was manufactured in the same manner as in Example 1-1 except that cutting was performed to a size of 10 mm × 10 mm, and this was diced. The average warping amount was 20 μm, and the non-defective rate was 75%.
 [実施例1-6]
 2インチφのシリコン基板の代わりに50mm角の窒化アルミニウム基板(厚み:0.64mm)を用いた以外は、実施例1-1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。平均反り量は8μmであり、良品率は78%であった。
[Example 1-6]
A composite substrate after laser cutting is manufactured in the same manner as in Example 1-1 except that a 50 mm square aluminum nitride substrate (thickness: 0.64 mm) is used instead of the 2 inch φ silicon substrate, and this is diced. did. The average warpage was 8 μm, and the non-defective rate was 78%.
 [実施例1-7]
 2インチφのシリコン基板の代わりに100mm角の窒化アルミニウム基板(厚み:0.64mm)を用いた以外は、実施例1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。平均反り量は9μmであり、良品率は75%であった。
[Example 1-7]
A composite substrate after laser cutting was manufactured in the same manner as in Example 1 except that a 100 mm square aluminum nitride substrate (thickness: 0.64 mm) was used instead of the 2 inch φ silicon substrate, and this was diced. The average warping amount was 9 μm, and the non-defective rate was 75%.
 [実施例1-8]
 2インチφのシリコン基板の代わりに50mm角の窒化珪素セラミックス基板(厚み:0.64mm)を用いた以外は、実施例1-1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。平均反り量は4μmであり、良品率は80%であった。
[Example 1-8]
A composite substrate after laser cutting is manufactured in the same manner as in Example 1-1 except that a 50 mm square silicon nitride ceramic substrate (thickness: 0.64 mm) is used instead of the 2 inch φ silicon substrate, Dicing. The average warping amount was 4 μm, and the non-defective rate was 80%.
 [実施例1-9]
 2インチφのシリコン基板の代わりに4インチφのサファイアウェハ(厚み:0.53mm)を用いた以外は、実施例1-1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。平均反り量は24μmであり、良品率は78%であった。
[Example 1-9]
A composite substrate after laser cutting is manufactured in the same manner as in Example 1-1 except that a sapphire wafer (thickness: 0.53 mm) of 4 inch diameter is used instead of the silicon substrate of 2 inch diameter, and this is diced. did. The average warpage was 24 μm, and the non-defective rate was 78%.
 [実施例1-10]
 2インチ-シリコン基板の代わりに100mm角のアルミナ基板(厚み:0.64mm)を用いた以外は、実施例1-1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。平均反り量は17μmであり、良品率は81%であった。
[Example 1-10]
A composite substrate after laser cutting was produced in the same manner as in Example 1-1 except that an alumina substrate of 100 mm square (thickness: 0.64 mm) was used instead of the 2 inch-silicon substrate, and this was diced. The average amount of warpage was 17 μm, and the yield rate was 81%.
 [実施例1-11]
 2インチφのシリコン基板の代わりに4インチφのSiCウェハ(厚み:0.5mm)を用いた以外は、実施例1-1と同様の支持基板を用意した。この支持基板をマイクロ波プラズマCVD装置のチャンバー内のステージに設置して、該支持基板温度が1000℃となるように調整した。原料ガスとしてH2ガスとCH4ガスの混合ガスを用いて、マイクロ波プラズマCVD法により支持基板上にダイヤモンド層を形成しながら、3.5mm×3.5mmのサイズにダイヤモンド層をレーザーカットした。形成終了時のダイヤモンド層の厚みは200μmであった。形成中のレーザーカットによるダイヤモンド層の厚み方向への切り込み量は、平均170μmであった。形成終了後に原料ガスの供給を停止し、H2ガスのみを供給しながら、支持基板温度を1000℃±20℃を超えない範囲に保持した。この保持温度で、前述のレーザーカットした部位にさらにレーザーカットを施した。後述の複合基板の取り出し後に確認したダイヤモンド層の厚み方向への切り込み長は平均で206μmであり、これにより、ダイヤモンド層を完全に切断するとともに、支持基板の一部にも切り込みを入れた。
 使用したレーザーは平均出力12WのYb:ファイバーレーザーの第二高調波(波長520nm)、パルス幅は1~10ps、繰返周波数は100MHzである。レーザーのスキャンにはガルバノミラーとfθレンズを用いた。レーザービームはスキャン可能な視野が狭いため、支持基板をステージごと±25mmを超えない範囲で移動させ、レーザーカットした。プラズマによるレーザー光の減衰が懸念されるため、プラズマを間歇的に駆動した。この繰返周波数は10Hz、デューティ比50%である。
 レーザーカット完了後、基板温度を150℃/hrの冷却速度で室温まで冷却した。チャンバー内を不活性ガス置換した後に複合基板を取り出した。レーザーカットの跡に沿ってダイサーでダイシングした。平均反り量は13μmであり、良品率は82%であった。
Example 1-11
A supporting substrate similar to that of Example 1-1 was prepared except that a 4 inch φ SiC wafer (thickness: 0.5 mm) was used instead of the 2 inch φ silicon substrate. The supporting substrate was placed on a stage in a chamber of a microwave plasma CVD apparatus, and the temperature of the supporting substrate was adjusted to 1000 ° C. Using a mixed gas of H 2 gas and CH 4 gas as the source gas, the diamond layer was laser-cut to a size of 3.5 mm × 3.5 mm while forming the diamond layer on the supporting substrate by microwave plasma CVD method . The thickness of the diamond layer at the end of the formation was 200 μm. The amount of cuts in the thickness direction of the diamond layer by laser cutting during formation was 170 μm on average. After completion of the formation, the supply of the source gas was stopped, and the temperature of the supporting substrate was maintained in a range not exceeding 1000 ° C. ± 20 ° C. while only the H 2 gas was supplied. At this holding temperature, the above-described laser-cut portion was further subjected to laser cutting. The cut length in the thickness direction of the diamond layer confirmed after taking out the composite substrate described later was 206 μm on average, and thereby the diamond layer was completely cut and a cut was also made in a part of the support substrate.
The used laser has an average output of 12 W and a second harmonic of a fiber laser (wavelength 520 nm), a pulse width of 1 to 10 ps, and a repetition frequency of 100 MHz. A galvano mirror and an fθ lens were used for laser scanning. Since the laser beam has a narrow scannable field of view, the support substrate was moved along the stage within a range not exceeding ± 25 mm for laser cutting. The plasma was driven intermittently because there is concern about the attenuation of the laser light by the plasma. The repetition frequency is 10 Hz and the duty ratio is 50%.
After completion of laser cutting, the substrate temperature was cooled to room temperature at a cooling rate of 150 ° C./hr. After the inside of the chamber was replaced with inert gas, the composite substrate was taken out. It diced with the dicer along the mark of a laser cut. The average warpage was 13 μm, and the yield rate was 82%.
 [実施例1-12]
 2インチφのシリコン基板の代わりに50mm角の銅-タングステン合金基板(厚さ:2mm)を用いた以外は、実施例1と同様の支持基板を用意した。この支持基板をマイクロ波プラズマCVD装置のチャンバー内のステージに設置して、該支持基板温度が970℃となるように調整した。原料ガスとしてH2ガスとCH4ガスの混合ガスを用いて、マイクロ波プラズマCVD法により支持基板上にダイヤモンド層を形成しながら、3.5mm×3.5mmのサイズにダイヤモンド層をレーザーカットした。形成終了時のダイヤモンド層の厚みは200μmであった。形成中のレーザーカットによるダイヤモンド層の厚み方向への切り込み量は、平均170μmであった。形成終了後に原料ガスの供給を停止し、H2ガスのみを供給しながら、支持基板温度を970℃±20℃を超えない範囲に保持した。この保持温度で、前述のレーザーカットした部位にさらにレーザーカットを施した。後述の複合基板の取り出し後に確認したダイヤモンド層の厚み方向への切り込み量は平均で206μmであり、これにより、ダイヤモンド層を完全に切断するとともに、支持基板の一部にも切り込みを入れた。
 使用したレーザーは平均出力12WのYb:ファイバーレーザーの第二高調波(波長520nm)、パルス幅は1~10ps、繰返周波数は100MHzである。レーザーのスキャンにはガルバノミラーとfθレンズを用いた。レーザービームはスキャン可能な視野が狭いため、基板をステージごと±25mmを超えない範囲で移動させ、レーザーカットした。プラズマによるレーザー光の減衰が懸念されるため、プラズマを間歇的に駆動した。この繰返周波数は10Hz、デューティ比50%である。
 レーザーカット完了後、基板温度を150℃/hrの冷却速度で室温まで冷却した。チャンバー内を不活性ガスで置換した後に複合基板を取り出した。レーザーカットの跡に沿ってダイサーでダイシングした。平均反り量は10μmであり、良品率は75%であった。
Example 1-12
A supporting substrate similar to that of Example 1 was prepared except that a 50 mm square copper-tungsten alloy substrate (thickness: 2 mm) was used instead of the 2 inch φ silicon substrate. The supporting substrate was placed on a stage in a chamber of a microwave plasma CVD apparatus, and the temperature of the supporting substrate was adjusted to 970.degree. Using a mixed gas of H 2 gas and CH 4 gas as the source gas, the diamond layer was laser-cut to a size of 3.5 mm × 3.5 mm while forming the diamond layer on the supporting substrate by microwave plasma CVD method . The thickness of the diamond layer at the end of the formation was 200 μm. The amount of cuts in the thickness direction of the diamond layer by laser cutting during formation was 170 μm on average. After completion of the formation, the supply of the source gas was stopped, and the temperature of the supporting substrate was maintained in the range not exceeding 970 ° C. ± 20 ° C. while only the H 2 gas was supplied. At this holding temperature, the above-described laser-cut portion was further subjected to laser cutting. The cut amount in the thickness direction of the diamond layer confirmed after taking out the composite substrate described later was 206 μm on average, and thereby the diamond layer was completely cut and a part of the support substrate was cut.
The used laser has an average output of 12 W and a second harmonic of a fiber laser (wavelength 520 nm), a pulse width of 1 to 10 ps, and a repetition frequency of 100 MHz. A galvano mirror and an fθ lens were used for laser scanning. Since the laser beam has a narrow scannable field of view, the substrate was moved along the stage within a range not exceeding ± 25 mm and laser cutting was performed. The plasma was driven intermittently because there is concern about the attenuation of the laser light by the plasma. The repetition frequency is 10 Hz and the duty ratio is 50%.
After completion of laser cutting, the substrate temperature was cooled to room temperature at a cooling rate of 150 ° C./hr. After the inside of the chamber was replaced with an inert gas, the composite substrate was taken out. It diced with the dicer along the mark of a laser cut. The average warping amount was 10 μm, and the non-defective rate was 75%.
 [比較例1-1]
 ダイヤモンド層形成後、基板温度を室温(29℃)まで低下させてレーザーカットを実施した以外は実施例1-1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。平均反り量は37μmであり、良品率は23%であった。
Comparative Example 1-1
After forming the diamond layer, a composite substrate after laser cutting was manufactured in the same manner as in Example 1-1 except that the substrate temperature was lowered to room temperature (29 ° C.) and laser cutting was performed, and this was diced. The average warpage was 37 μm, and the non-defective rate was 23%.
 [比較例1-2]
 ダイヤモンド層形成後、基板温度を500℃まで低下させてレーザーカットを実施した以外は実施例1-1と同様にしてレーザーカット後の複合基板を製造し、これをダイシングした。平均反り量は30μmであり、良品率は35%であった。
Comparative Example 1-2
After forming the diamond layer, a composite substrate after laser cutting was manufactured in the same manner as in Example 1-1 except that the substrate temperature was lowered to 500 ° C. and laser cutting was performed, and this was diced. The average warping amount was 30 μm, and the non-defective rate was 35%.
 [比較例1-3]
 ダイヤモンド層形成後、基板温度を室温(27℃)まで低下させてレーザーカットを実施した以外は実施例1-3と同様にしてレーザーカット後の複合基板を製造した。しかしながら、レーザーカット中にダイヤモンド層が破砕し、良品を得ることができなかった。
Comparative Example 1-3
After forming the diamond layer, a composite substrate after laser cutting was manufactured in the same manner as in Example 1-3 except that the substrate temperature was lowered to room temperature (27 ° C.) and laser cutting was performed. However, the diamond layer was broken during the laser cutting, and a non-defective product could not be obtained.
 実施例1-1~実施例1-12および比較例1-1~比較例1-3について、支持基板のサイズ・材質、カット温度(レーザーカットする際の支持基板温度)、カットサイズ、ダイシング後の複合基板の平均反り量、良品率を表1に示す。 About Example 1-1 to Example 1-12 and Comparative Example 1-1 to Comparative Example 1-3, size and material of supporting substrate, cutting temperature (supporting substrate temperature at laser cutting), cut size, after dicing Table 1 shows the average amount of warpage of the composite substrate and the non-defective rate.
Figure JPOXMLDOC01-appb-T000001
表1中、「―」は未測定を表す。
Figure JPOXMLDOC01-appb-T000001
In Table 1, "-" represents unmeasured.
 本実施例より、支持基板上へのダイヤモンド層の形成時と略同一温度でレーザーカットを施した場合、良好な良品率を示すことがわかった。また、複合基板を種々のサイズに加工する場合においても、本発明の方法によれば、反りの抑制、ダイシング時の割れや欠けの低減などによって、良好な良品率を示すことが明らかとなった。また、実施例1-3、実施例1-11、実施例1-12から、支持基板上にダイヤモンド層を形成しながらレーザーカットを行っても良好な良品率を示すことが明らかとなった。これにより、支持基板上にダイヤモンド層を形成してからレーザーカットを行う場合と比べて製造時間を短縮することが可能であることが示された。 From this example, it was found that when the laser cutting was performed at substantially the same temperature as the formation of the diamond layer on the supporting substrate, a good yield rate was shown. In addition, even when the composite substrate is processed into various sizes, according to the method of the present invention, it has become clear that a good non-defective rate is shown by suppression of warpage, reduction of cracks and chips during dicing, etc. . In addition, it is clear from Examples 1-3, 1-11, and 1-12 that even when laser cutting is performed while forming a diamond layer on a supporting substrate, a good yield rate is shown. This shows that it is possible to shorten the manufacturing time as compared with the case of forming a diamond layer on a support substrate and then performing laser cutting.
 2.原料ガスの種類の違いによるダイヤモンドの成長速度の評価
 [実施例2-1]
 本実施例では、マイクロ波プラズマCVD装置を用いた。また、原料ガスとしては、H2ガス、CH4ガス、及びNF3ガスを用いた。また、基板としては、Si基板表面にダイヤモンドパウダー(平均粒径1μm)で傷つけ処理をした後、エタノールで洗浄、及びエアーブローで乾燥させた基板を用いた。
 まず、上記の前処理を施したSi基板を、チャンバー内の基板用ホルダーに設置し、該チャンバー内を真空状態とした。この時、該チャンバー内の圧力を約1Pa程度とした。
 次に、チャンバー内へガス供給口よりH2ガスを流入させ、H2ガス流入後にマイクロ波発振器よりマイクロ波を発生させ、該チャンバー内にプラズマを発生させた。プラズマ発生後、H2ガスの流入量、チャンバー内の圧力、及び投入電力を増加させ、最終的にマイクロ波発生器への投入電力が5500W、H2ガスの流入量が480sccm、チャンバー内の圧力が10.7kPaとなるようにした。
 次に、チャンバー内へCH4ガスを20sccm、NF3ガスを流入させ、各種ガスを流入させたまま約4時間維持した。なお、この時のSi基板の温度は約1000℃程度であった。上記時間経過後、Si基板上にダイヤモンドが成長したサンプルを得た。また、NF3ガスの流入量は表2に記載した。
2. Evaluation of growth rate of diamond by difference of source gas [Example 2-1]
In the present embodiment, a microwave plasma CVD apparatus was used. In addition, H 2 gas, CH 4 gas, and NF 3 gas were used as source gases. In addition, as a substrate, a substrate obtained by scratching the surface of a Si substrate with diamond powder (average particle diameter: 1 μm), then cleaning with ethanol and drying by air blow was used.
First, the Si substrate subjected to the above pretreatment was placed on a substrate holder in a chamber, and the inside of the chamber was evacuated. At this time, the pressure in the chamber was about 1 Pa.
Next, the flow of H 2 gas from the gas supply port into the chamber to generate a microwave from a microwave oscillator after H 2 gas inlet, plasma was generated in the said chamber. After the plasma is generated, the inflow of H 2 gas, the pressure in the chamber, and the input power are increased, and finally the input power to the microwave generator is 5500 W, the inflow of H 2 gas is 480 sccm, the pressure in the chamber Was set to be 10.7 kPa.
Next, 20 sccm of CH 4 gas and NF 3 gas were introduced into the chamber, and maintained for about 4 hours while various gases were introduced. The temperature of the Si substrate at this time was about 1000.degree. After the above time elapsed, a sample in which diamond was grown on a Si substrate was obtained. The inflow of NF 3 gas is described in Table 2.
 [比較例2-1]
 N源ガスを使用しない他は、実施例2-1と同様の方法でサンプルを得た。
Comparative Example 2-1
A sample was obtained in the same manner as in Example 2-1 except that the N source gas was not used.
 [比較例2-2]
 N源ガスとしてH2とN2の混合ガス(H2:N2=98vol%:2vol%、表1では「H-N」と記載)を用い、N2ガスの流入量を表2に記載した通りとした他は、実施例2-1と同様の方法でサンプルを得た。
Comparative Example 2-2
The mixed gas of H 2 and N 2 (H 2 : N 2 = 98 vol%: 2 vol%, described as “H—N” in Table 1) is used as the N source gas, and the inflow of N 2 gas is described in Table 2 A sample was obtained in the same manner as in Example 2-1 except that the process was as described above.
 [比較例2-3]
 N源ガスとしてN2を用い、N2ガスの流入量を表2に記載した通りとした他は、実施例2-1と同様の方法でサンプルを得た。
Comparative Example 2-3
A sample was obtained in the same manner as in Example 2-1 except that N 2 was used as the N source gas and the inflow of N 2 gas was as described in Table 2.
 [比較例2-4]
 N源ガスとしてNH3を用い、NH3ガスの流入量を表2に記載した通りとした他は、実施例2-1と同様の方法でサンプルを得た。
Comparative Example 2-4
A sample was obtained in the same manner as in Example 2-1 except that NH 3 was used as the N source gas and the inflow of NH 3 gas was as described in Table 2.
 得られた各サンプルについて、以下の方法でダイヤモンドを確認した。また、ダイヤモンドの成長速度を算出し、表2及び図1に示した。 The diamond was confirmed about each obtained sample by the following method. Also, the growth rate of diamond was calculated and is shown in Table 2 and FIG.
 (合成ダイヤモンドの評価)
 invia顕微ラマン分光装置(レニショー社製)を用いて、得られた各サンプルのラマンスペクトルを測定した。評価は、532nmのレーザー光をサンプルに照射し、ダイヤモンドに由来する1333cm-1のピークを検出可能か否かで行った。測定の結果、実施例2-1及び比較例2-1~比較例2-4のいずれもダイヤモンド膜が確認された。
(Evaluation of synthetic diamonds)
The Raman spectrum of each obtained sample was measured using an invia microscopic Raman spectrometer (manufactured by Renishaw). The evaluation was performed by irradiating the sample with a laser beam of 532 nm and judging whether the peak at 1333 cm -1 derived from diamond could be detected. As a result of the measurement, a diamond film was confirmed in any of Example 2-1 and Comparative Examples 2-1 to 2-4.
 (ダイヤモンドの成長速度)
 まず、得られたダイヤモンド膜の断面を電子顕微鏡により観察し、膜厚を測定した。次に、ダイヤモンドの合成にかかった時間(CH4ガスの流入開始から流入を終えるまでの時間)で膜厚を割ることにより、単位時間あたりの成長速度(μm/h)を算出した。
(Growth of diamond)
First, the cross section of the obtained diamond film was observed with an electron microscope to measure the film thickness. Next, the growth rate per unit time (μm / h) was calculated by dividing the film thickness by the time taken to synthesize the diamond (the time from the start of the inflow of CH 4 gas to the end of the inflow).
Figure JPOXMLDOC01-appb-T000002
表2中、N/Cは、下記式に従って算出される(図1についても同様である。):
N/C = [(N源ガス流量×N源ガス1分子あたりのN原子の数)/(C源ガス流量×C源ガス1分子あたりのC原子の数)]×106
Figure JPOXMLDOC01-appb-T000002
In Table 2, N / C is calculated according to the following equation (the same applies to FIG. 1):
N / C = [(N source gas flow rate × number of N atoms per N source gas molecule) / (C source gas flow rate × number of C atoms per C source gas)] × 10 6
 以上より、供給するN原子とC原子の比(表2及び図1中では「N/C」と記載)が同程度の場合、実施例2-1のダイヤモンドの成長速度が最も高いことがわかった。また、比較例2-3及び比較例2-4より、実施例2-1と同程度の成長速度を得る為には、約3倍以上のN/Cにする必要があることがわかる。すなわち、NF3ガスは従来のN源ガスよりも少量で、成長速度を高めることが可能であることが明らかとなった。 From the above, it can be seen that, when the ratio of supplied N atoms to C atoms (described as “N / C” in Table 2 and FIG. 1) is comparable, the growth rate of diamond of Example 2-1 is the highest. The Further, it is understood from Comparative Examples 2-3 and 2-4 that in order to obtain a growth rate similar to that of Example 2-1, it is necessary to make the N / C about three times or more. That is, it has become clear that the growth rate can be increased by using a smaller amount of NF 3 gas than the conventional N source gas.
 2: 熱フィラメントCVD装置
 10: チャンバー
 11: 支持基板ホルダー
 12: 支持基板
 13: ダイヤモンド基板
 14: 成膜室(原料ガス供給系は省略)
 15: フィラメント
 16: 電源ポスト
 17: 光学窓、
 18: 基本波レーザー
 19: 第二高調波ユニット
 20: 集光レンズ(焦点位置調整系および制御装置は省略)
 21: ガルバノミラー(制御装置は省略)
 22: fθレンズ(断面)
 23: 支持基板ホルダーの移動方向(紙面に対して垂直方向)
 24: レーザー光
2: Thermal filament CVD apparatus 10: Chamber 11: Support substrate holder 12: Support substrate 13: Diamond substrate 14: Deposition chamber (raw material gas supply system is omitted)
15: Filament 16: Power Post 17: Optical Window,
18: fundamental wave laser 19: second harmonic wave unit 20: focusing lens (focus position adjustment system and control device are omitted)
21: Galvano mirror (control device omitted)
22: fθ lens (cross section)
23: Movement direction of support substrate holder (vertical direction to the paper surface)
24: Laser light
 3: プラズマCVD装置
 30: メインチャンバー
 31: マイクロ波発振装置(電源と制御装置は省略)
 32: マイクロ波導波管
 33: 成膜室(ガス供給系は省略)
 34: 支持基板ホルダー
 35: 支持基板
 36: ダイヤモンド基板、
 37: 基本波レーザー
 38: 第二高調波ユニット
 39: 集光レンズ(焦点位置調整系および制御装置は省略)
 40: ガルバノミラー(制御装置は省略)
 41: fθレンズ(断面)
 42: 光学窓
 43: 石英窓
 44: 支持基板ホルダーの移動方向(紙面に対して垂直方向および水平方向)
 45: レーザー光
3: Plasma CVD device 30: Main chamber 31: Microwave oscillation device (power supply and control device omitted)
32: Microwave waveguide 33: Deposition chamber (gas supply system is omitted)
34: Support substrate holder 35: Support substrate 36: Diamond substrate,
37: fundamental wave laser 38: second harmonic wave unit 39: focusing lens (focus position adjustment system and control device are omitted)
40: Galvano mirror (control device omitted)
41: fθ lens (cross section)
42: Optical window 43: Quartz window 44: Movement direction of support substrate holder (vertical and horizontal to the paper surface)
45: Laser light

Claims (11)

  1.  以下の各工程を含む、ダイヤモンド基板の製造方法。
     支持基板上にダイヤモンド層を形成して複合基板とする、形成工程;
     複合基板を、形成工程における支持基板と略同一温度下で加工して被加工基板とする、加工工程;
     被加工基板から支持基板を分離して、ダイヤモンド層からなるダイヤモンド基板を得る、分離工程。
    A method for producing a diamond substrate, comprising the following steps:
    Forming a diamond layer on a support substrate to form a composite substrate;
    A processing step of processing the composite substrate at substantially the same temperature as the supporting substrate in the forming step to form a processed substrate;
    Separation step of separating the support substrate from the processing substrate to obtain a diamond substrate consisting of a diamond layer.
  2.  形成工程をCVD法により行う、請求項1に記載の方法。 The method according to claim 1, wherein the forming step is performed by a CVD method.
  3.  形成工程を500~1300℃の支持基板温度で行う、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the forming step is performed at a supporting substrate temperature of 500 to 1300 属 C.
  4.  加工工程における加工温度が、形成工程における支持基板温度に対して±200℃以内である、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the processing temperature in the processing step is within ± 200 ° C with respect to the temperature of the support substrate in the forming step.
  5.  加工工程における加工温度が、形成工程における支持基板温度に対して±50℃以内である、請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the processing temperature in the processing step is within ± 50 属 C with respect to the temperature of the support substrate in the forming step.
  6.  加工として、複合基板のダイヤモンド層もしくはダイヤモンド層と支持基板の両方に、少なくともレーザーカットを施す、請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein at least laser cutting is applied to the diamond layer or both the diamond layer and the support substrate of the composite substrate as the processing.
  7.  支持基板の材質が、カーボン、シリコン、炭化珪素、窒化アルミニウム、サファイア、銅、ニッケル、窒化珪素、アルミナ、モリブデン、ニオブ、タングステン、アルミニウムおよびチタンからなる群より選ばれる少なくとも一種である、請求項1~6のいずれかに記載の方法。 The material of the supporting substrate is at least one selected from the group consisting of carbon, silicon, silicon carbide, aluminum nitride, sapphire, copper, nickel, silicon nitride, alumina, molybdenum, niobium, tungsten, aluminum and titanium. The method according to any one of to 6.
  8.  形成工程において、ダイヤモンド層を形成するための原料ガスとして、水素、炭素原子を含むガス、NF3ガスの混合ガスを用い、
     該原料ガスが、該原料ガスの全量に対して水素を50~99.99vol%、該水素に対して、炭素原子を含むガスを0.01~50vol%、及び該炭素原子を含むガスに対して、NF3ガスを0.001~1vol%含有する、請求項1~7のいずれかに記載の方法。
    In the forming step, a mixed gas of hydrogen, a gas containing carbon atoms, and an NF 3 gas is used as a source gas for forming the diamond layer,
    The raw material gas contains 50 to 99.99 vol% of hydrogen based on the total amount of the raw material gas, 0.01 to 50 vol% of a gas containing a carbon atom with respect to the hydrogen, and the gas containing the carbon atom The method according to any one of claims 1 to 7, wherein the gas contains 0.001 to 1 vol% of NF 3 gas.
  9.  以下の各工程を含む、ダイヤモンド層と支持基板とを備える被加工基板の製造方法。
     支持基板上にダイヤモンド層を形成して複合基板とする、形成工程;
     複合基板を、形成工程における支持基板と略同一温度下で加工して被加工基板とする、加工工程。
    The manufacturing method of a to-be-processed substrate provided with a diamond layer and a support substrate including each following process.
    Forming a diamond layer on a support substrate to form a composite substrate;
    A processing step in which the composite substrate is processed at substantially the same temperature as the supporting substrate in the forming step to form a processed substrate.
  10.  ダイヤモンド基板を製造するための熱フィラメントCVD装置であって、
     支持基板上にダイヤモンド層を形成して複合基板とするための支持基板ホルダーと、
     前記複合基板のダイヤモンド層もしくはダイヤモンド層と支持基板の両方にレーザーカットを施すためのレーザー照射手段と、を少なくとも備える、熱フィラメントCVD装置。
    A hot filament CVD apparatus for producing a diamond substrate, comprising:
    A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate;
    A hot filament CVD apparatus comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the support substrate.
  11.  ダイヤモンド基板を製造するためのプラズマCVD装置であって、
     支持基板上にダイヤモンド層を形成して複合基板とするための支持基板ホルダーと、
     前記複合基板を加熱するための加熱手段と、
     前記複合基板のダイヤモンド層もしくはダイヤモンド層と支持基板の両方にレーザーカットを施すためのレーザー照射手段と、を少なくとも備える、プラズマCVD装置。
    A plasma CVD apparatus for producing a diamond substrate, comprising:
    A support substrate holder for forming a diamond layer on a support substrate to form a composite substrate;
    A heating unit for heating the composite substrate;
    A plasma CVD apparatus, comprising at least a diamond layer or a diamond layer of the composite substrate and a laser irradiation means for performing laser cutting on both of the supporting substrate.
PCT/JP2018/031094 2017-08-25 2018-08-23 Method for manufacturing diamond substrate WO2019039533A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-161858 2017-08-25
JP2017161858 2017-08-25
JP2018088491A JP2020200194A (en) 2017-08-25 2018-05-02 Manufacturing method of diamond substrate
JP2018-088491 2018-05-02

Publications (1)

Publication Number Publication Date
WO2019039533A1 true WO2019039533A1 (en) 2019-02-28

Family

ID=65439018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031094 WO2019039533A1 (en) 2017-08-25 2018-08-23 Method for manufacturing diamond substrate

Country Status (1)

Country Link
WO (1) WO2019039533A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439379A (en) * 1987-08-06 1989-02-09 Japan Steel Works Ltd Method and device for producing thin film forming parts
JPH02138477A (en) * 1989-07-14 1990-05-28 Hitachi Ltd Method and device for film forming by microwave plasma
JPH04305095A (en) * 1990-12-20 1992-10-28 General Electric Co <Ge> Symmetrical chemically deposited diamond article and method of manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439379A (en) * 1987-08-06 1989-02-09 Japan Steel Works Ltd Method and device for producing thin film forming parts
JPH02138477A (en) * 1989-07-14 1990-05-28 Hitachi Ltd Method and device for film forming by microwave plasma
JPH04305095A (en) * 1990-12-20 1992-10-28 General Electric Co <Ge> Symmetrical chemically deposited diamond article and method of manufacturing same

Similar Documents

Publication Publication Date Title
CN105899325B (en) By means of the combined chip autofrettage of laser treatment and temperature-induced stress
JP7008063B2 (en) Method for manufacturing modified SiC wafer and method for manufacturing SiC wafer with epitaxial layer
CA2999527C (en) Method of fabricating a plurality of single crystal cvd synthetic diamonds
JP2011084411A (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
US6287889B1 (en) Diamond thin film or the like, method for forming and modifying the thin film, and method for processing the thin film
JP2009266892A (en) Method for manufacturing compound semiconductor crystalline substrate
WO2006048957A1 (en) Single-crystal diamond
CN114667371A (en) Diameter enlargement of aluminum nitride crystal
JP4565062B2 (en) Thin film single crystal growth method
WO2016112596A1 (en) Separation method for diamond layer
WO2019039533A1 (en) Method for manufacturing diamond substrate
WO2009131064A1 (en) Process for producing si(1-v-w-x)cwalxnv base material, process for producing epitaxial wafer, si(1-v-w-x)cwalxnvbase material, and epitaxial wafer
KR102050369B1 (en) Vapor deposition method
JP2020200194A (en) Manufacturing method of diamond substrate
JP6384229B2 (en) Gallium nitride substrate
CN113355650A (en) AlN-diamond heat sink, preparation method and application thereof, and semiconductor laser packaging part
WO2009131061A1 (en) Method of manufacturing a si(1-v-w-x)cwalxnv substrate, method of manufacturing an epitaxial wafer, si(1-v-w-x)cwalxnv substrate, and epitaxial wafer
JP5042134B2 (en) Diamond thin film
WO2021210395A1 (en) Aluminum nitride substrate manufacturing method, aluminum nitride substrate, and method of removing strain layer introduced into aluminum nitride substrate by laser processing
JP7214034B1 (en) SiC device manufacturing method
US20230002933A1 (en) Method of manufacturing diamond substrate
CN115555744A (en) Method for manufacturing diamond substrate
JP3472253B2 (en) Method of forming diamond film
CN117947512A (en) Diamond monocrystal growth method based on MPCVD
JP2018104270A (en) Method for manufacturing synthetic diamond

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18849033

Country of ref document: EP

Kind code of ref document: A1