WO2019039060A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2019039060A1
WO2019039060A1 PCT/JP2018/023304 JP2018023304W WO2019039060A1 WO 2019039060 A1 WO2019039060 A1 WO 2019039060A1 JP 2018023304 W JP2018023304 W JP 2018023304W WO 2019039060 A1 WO2019039060 A1 WO 2019039060A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
oil
holding portion
oil passage
axial direction
Prior art date
Application number
PCT/JP2018/023304
Other languages
French (fr)
Japanese (ja)
Inventor
勇樹 石川
修平 中松
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880050820.8A priority Critical patent/CN111033969B/en
Publication of WO2019039060A1 publication Critical patent/WO2019039060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Definitions

  • the present invention relates to a drive device.
  • An electric motor in which a coolant is circulated in a case for lubrication and cooling of a stator, a rotor and the like.
  • Japanese Patent Laid-Open Publication No. 2003-324901 describes an electric motor mounted on a vehicle.
  • the cooling fluid is caused to flow through the passage inside the rotor, and is ejected from the plurality of discharge ports to cool the coil.
  • the pressure of the cooling fluid spouted from the plurality of discharge ports tends to be uneven, and it is difficult to uniformly cool the coil.
  • An object of one embodiment of the present invention is to provide a drive device in which the uniformity of coil cooling is improved.
  • a rotor having a motor shaft disposed along a central axis extending in one direction and a rotor core fixed to the motor shaft, and a stator radially opposed to the rotor via a gap.
  • a housing that accommodates the rotor and the stator and has an accommodation portion capable of storing oil, and the motor shaft extends along a central axis, and a radial outer side of the shaft body.
  • a cylindrical rotor core holding portion located in the axial direction, a connecting portion radially connecting the outer peripheral surface of the shaft main body portion and the inner peripheral surface of the rotor core holding portion, and the axial direction extending in the axial direction
  • a plurality of second oil passages branched from the first oil passage and extending radially along the inside of the connection portion;
  • a plurality of third oil passages branched from the oil passage and extending along the axial direction inside the connection portion, and opening in the surfaces facing the axial direction one side and the other side of the connection portion;
  • the flow passage cross-sectional area of the second oil passage is smaller than the flow passage cross-sectional area of the first oil passage, and the flow passage cross-sectional area of the third oil passage is smaller than the flow passage cross-sectional area of the second oil passage ,
  • a driving device is provided.
  • a drive device with improved coil cooling uniformity is provided.
  • FIG. 1 is a cross-sectional view showing a drive device of the embodiment.
  • FIG. 2 is a partial cross-sectional view showing the configuration of a modification.
  • FIG. 1 is a cross-sectional view showing a drive device of the present embodiment.
  • the Z-axis direction shown in the figure is a vertical direction Z with the positive side as the upper side and the negative side as the lower side.
  • the vertical direction Z is the vertical direction of the figure.
  • the upper side in the vertical direction is simply referred to as "upper side”
  • the lower side in the vertical direction is simply referred to as "lower side”.
  • the drive device 1 of the present embodiment includes a rotor 20 having a housing 10 and a motor shaft 20 a disposed along a central axis J1 extending in one direction, a rotation detection unit 80, and a stator 30. , A pump unit 40, and bearings 70, 71.
  • the central axis J1 extends in the left-right direction in FIG. That is, in the present embodiment, the left and right direction in FIG. 1 corresponds to one direction.
  • a direction parallel to the axial direction of the central axis J1 is simply referred to as "axial direction”
  • a radial direction centered on the central axis J1 is simply referred to as “radial direction”
  • the central axis J1 is centered
  • the circumferential direction is simply referred to as "circumferential direction”.
  • the left side of FIG. 1 in the axial direction is referred to as “one side in the axial direction”
  • the right side of FIG. 1 in the axial direction is referred to as the “other side in the axial direction”.
  • the housing 10 has a main body 11, an inner lid 12, and an outer lid 13.
  • the main body 11, the inner lid 12 and the outer lid 13 are separate members.
  • the main body portion 11 has a bottomed cylindrical shape that opens in one side in the axial direction.
  • the main body portion 11 has a bottom portion 11 a, a main body cylindrical portion 11 b, and a bearing holding portion 11 c.
  • the bottom portion 11 a is in the form of an annular plate that expands in the radial direction.
  • the main body cylindrical portion 11b has a cylindrical shape extending in the axial direction from the outer peripheral edge portion of the bottom portion 11a.
  • the bearing holding portion 11c has a cylindrical shape that protrudes in one axial direction from the inner edge portion of the bottom portion 11a.
  • the bearing holder 11 c holds the bearing 71 on the inner circumferential surface.
  • the inner lid 12 is attached to one side of the main body 11 in the axial direction.
  • the inner lid portion 12 includes an annular plate portion 12a, an outer cylindrical portion 12b, an inner cylindrical portion 12c, and a bearing holding portion 12e.
  • the annular plate portion 12 a has an annular plate shape that expands in the radial direction.
  • the inner cover 12 covers one side of the stator 30 in the axial direction by the annular plate 12 a.
  • the annular plate portion 12a has an opening 12f at its lower end, which axially penetrates the annular plate portion 12a.
  • the opening 12 f leads to the inside of the housing 10.
  • the outer cylindrical portion 12b is in the shape of a cylinder extending from the radial outer edge of the annular plate portion 12a to the other side in the axial direction.
  • the other axial end of the outer cylindrical portion 12b is fixed in contact with the axial one end of the main cylindrical portion 11b.
  • the inner cylindrical portion 12c has a cylindrical shape extending from the radially inner edge of the annular plate portion 12a to the other side in the axial direction.
  • the bearing holding portion 12e has an annular portion 101 extending radially inward from an end portion on the other axial side of the inner cylindrical portion 12c, and a cylindrical portion 102 projecting to the other end side in the axial direction from the radial inner edge portion of the annular portion.
  • the inner lid 12 has a second recess 12 g which is recessed from the surface on one axial side of the inner lid 12 to the other axial side.
  • the inner surface of the second recess 12 g includes the inner peripheral surface of the inner cylindrical portion 12 c and the surface on one axial side of the annular portion 101.
  • the surface on one axial side of the inner lid 12 is the surface on one axial side of the annular portion 101 in the present embodiment.
  • the inner side surface of the second recess 12 g includes the radially inner side surface of the inner cylindrical portion 12 c and the surface on one axial side of the annular portion 101.
  • the cylindrical portion 102 of the bearing holding portion 12 e has a cylindrical shape that protrudes from the radially inner end of the annular portion 101 to the other side in the axial direction.
  • the bearing holding portion 12 e holds the bearing 70 on the inner peripheral surface of the cylindrical portion 102.
  • the housing 10 has a housing portion 14 composed of a main body portion 11 and an inner lid portion 12.
  • the housing portion 14 houses the rotor 20 and the stator 30.
  • the stator 30 is fixed to the inner surface of the main body 11.
  • the rotor 20 is disposed radially inward of the stator 30.
  • the stator 30 faces the rotor 20 in the radial direction via a gap.
  • the stator 30 has a stator core 31 and a plurality of coils 32 mounted on the stator core 31.
  • the stator core 31 has an annular shape centered on the central axis J1.
  • the outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the main body cylindrical portion 11b.
  • the stator core 31 opposes the radial direction outer side of the rotor core 22 mentioned later via a clearance gap.
  • the coil 32 projects on one side in the axial direction of the stator core 31 and on the other side in the axial direction.
  • the storage unit 14 can store oil O inside.
  • the oil O is stored in the region below the accommodation portion 14 in the vertical direction.
  • the “vertically lower region of the storage portion” includes a portion located below the center of the storage portion in the vertical direction Z.
  • the liquid level OS of the oil O stored in the storage portion 14 is located above the opening 12 f.
  • the fluid level OS of the oil O fluctuates as the pump portion 40 sucks up the oil O, but is disposed below the rotor 20 at least when the rotor 20 rotates. Thereby, when the rotor 20 rotates, it can suppress that oil O becomes rotation resistance of the rotor 20. As shown in FIG.
  • the outer cover 13 is attached to one side of the inner cover 12 in the axial direction.
  • the outer lid 13 has an outer lid main body 13a and a plug body 13b.
  • the outer lid main body 13a spreads in the radial direction.
  • the outer lid main body portion 13a has a lid plate portion 13c and a projecting portion 13d.
  • the cover plate portion 13c is in the shape of a circular plate that expands in the radial direction.
  • the radially outer edge portion of the cover plate portion 13c is fixed to the radially outer edge portion of the annular plate portion 12a.
  • the surface on the other side in the axial direction of the cover plate portion 13c contacts the surface on the one side in the axial direction of the annular plate portion 12a.
  • the protrusion 13 d protrudes from the central portion of the lid plate 13 c to the other side in the axial direction.
  • the protrusion 13 d is inserted into the inner cylindrical portion 12 c from one side in the axial direction.
  • the protruding portions 13 d are arranged at intervals in one axial direction of the annular portion 101 of the bearing holding portion 12 e.
  • the outer cover main body 13a has a first recess 13e and a second through hole 13f.
  • the first recess 13 e is recessed from the surface on one side in the axial direction of the outer lid main body 13 a to the other side in the axial direction.
  • the first recess 13e is provided at the center of the outer lid main body 13a, and is provided across the lid plate 13c and the protrusion 13d.
  • the second through hole 13 f penetrates from the bottom surface of the first recess 13 e to the surface on the other side in the axial direction of the protrusion 13 d. That is, the second through holes 13 f penetrate from the bottom surface of the first recess 13 e to the inside of the housing 10.
  • the second through holes 13 f open inside the second recess 12 g. Thereby, the second through hole 13 f connects the inside of the first recess 13 e and the inside of the second recess 12 g. A central axis J1 passes through the second through hole 13f.
  • the plug portion 13b is fitted into the first recess 13e and fixed to the outer cover main portion 13a.
  • the plug portion 13 b closes an opening on one side in the axial direction of the first recess 13 e.
  • the plug portion 13b covers one axial side of the motor shaft 20a. That is, the outer cover 13 covers one side in the axial direction of the motor shaft 20a.
  • the plug portion 13 b has a flange portion 13 g projecting radially outward at an end on one side in the axial direction.
  • the flange portion 13g contacts the surface on one side in the axial direction of the lid plate portion 13c.
  • the plug portion 13b is axially positioned by the collar 13g.
  • the internal gear 43 and the external gear 42 are accommodated between the outer lid main portion 13a and the plug portion 13b.
  • the portion of the outer cover 13 that accommodates the external gear 42 and the internal gear 43 constitutes the pump 40.
  • the pump unit 40 is a trochoidal pump.
  • a cylindrical mounting member 50 for connecting the pump portion 40 and the oil passage in the motor shaft 20a is inserted into the through hole of the external gear 42.
  • the plug portion 13b has a suction side oil passage 40a and a discharge side oil passage 40b.
  • the suction side oil passage 40 a connects the opening 12 f and the suction port of the pump unit 40 via an oil passage (not shown) provided in the outer cover 13.
  • the discharge side oil passage 40 b connects the discharge port of the pump portion 40 and the through hole of the mounting member 50.
  • the rotor 20 has a motor shaft 20 a, a rotor core 22, a first end plate 24, and a second end plate 25.
  • the motor shaft 20 a has a shaft main body 21 a, a rotor core holding portion 21 b, a connection portion 21 c, and an attachment member 50.
  • the shaft body portion 21a, the rotor core holding portion 21b, and the connection portion 21c are a single member.
  • the shaft body portion 21a is a cylindrical shape extending in the axial direction centering on the central axis J1.
  • the rotor core holding portion 21b has a cylindrical shape centering on the central axis J1 and surrounding the radially outer side of the shaft main portion 21a.
  • the axial length of the rotor core holding portion 21b is shorter than the axial length of the shaft main portion 21a.
  • the connecting portion 21c annularly expands radially outward from the axial central portion of the shaft main portion 21a in a region where the shaft main portion 21a and the rotor core holding portion 21b overlap in the radial direction, and the shaft main portion 21a and The rotor core holding portion 21b is connected in the radial direction.
  • connection portion 21c The axial length of the connection portion 21c is shorter than the axial length of the shaft main portion 21a and the axial length of the rotor core holding portion 21b. Therefore, the outer peripheral surface 201a of the shaft main portion 21a and the inner peripheral surface 201b of the rotor core holding portion 21b radially face each other on one side in the axial direction of the connection portion 21c. Further, on the other side in the axial direction of the connection portion 21c, the outer peripheral surface 202a of the shaft main portion 21a and the inner peripheral surface 202b of the rotor core holding portion 21b face in the radial direction.
  • the motor shaft 20a has a first shaft recess 21A opening toward one side in the axial direction and a second shaft recess 21B opening toward the other side in the axial direction.
  • the first shaft recess 21 ⁇ / b> A is an annular groove which is open to one side in the axial direction and extends in the circumferential direction.
  • the outer peripheral surface 201a of the shaft main portion 21a and the inner peripheral surface 201b of the rotor core holding portion 21b are side surfaces, and the surface 201c on one side in the axial direction of the connecting portion 21c is a bottom surface.
  • the inner circumferential surface 201b of the rotor core holding portion 21b is inclined radially outward toward the opening end on one side in the axial direction of the rotor core holding portion 21b.
  • the inner circumferential surface 201b of the rotor core holding portion 21b has a sloped surface portion 201d having a curved surface shape at the end on the opening side in the axial direction.
  • the sloped portion 201 d is a curved surface which is inclined radially outward as it goes to one side in the axial direction.
  • the second shaft recess 21 ⁇ / b> B is an annular groove which is open on the other side in the axial direction and extends in the circumferential direction.
  • the outer peripheral surface 202a of the shaft main portion 21a and the inner peripheral surface 202b of the rotor core holding portion 21b are side surfaces, and the surface 202c on one axial direction side of the connection portion 21c is a bottom surface.
  • the inner circumferential surface 202b of the rotor core holding portion 21b is inclined radially outward toward the opening end on the other axial direction side of the rotor core holding portion 21b.
  • the shaft main portion 21a is rotatably supported by a bearing 70 located on one side in the axial direction of the connection portion 21c and a bearing 71 located on the other side in the axial direction of the connection portion 21c.
  • the bearings 70 and 71 are, for example, ball bearings.
  • a part of the bearing holding portion 12e holding the bearing 70 overlaps the rotor core holding portion 21b as viewed in the radial direction. According to this configuration, the axial length of the drive device 1 can be shortened, and the thickness can be reduced.
  • the cylindrical portion 102 of the bearing holding portion 12e has a shape in which the diameter increases in the axial direction toward the one side in the vicinity of the opening on the one side in the axial direction of the rotor core holding portion 21b. That is, the outer peripheral surface of the bearing holding portion 12e is an inclined surface which is inclined radially outward from the inside to the outside in the axial direction of the rotor core holding portion 21b.
  • the outer peripheral surface of the bearing holding portion 12e has a curved surface shape that follows the sloped portion 201d of the rotor core holding portion 21b opposed with a gap.
  • the annular portion 101 of the bearing holding portion 12 e faces the flange portion 203 in the axial direction. That is, the bearing holding portion 12e faces the surface of the rotor core holding portion 21b facing in the axial direction.
  • the shaft body portion 21a has an output portion 21e at the other end in the axial direction.
  • the rotation detection unit 80 is disposed on one side in the axial direction of the bearing 70.
  • the rotation detection unit 80 detects the rotation of the rotor 20.
  • the rotation detection unit 80 is, for example, a VR (Variable Reluctance) resolver.
  • the rotation detection unit 80 is disposed on the inner side in the radial direction of the inner cylindrical portion 12c.
  • the resolver rotor of the rotation detection unit 80 is fixed to an end portion on one side in the axial direction of the shaft main portion 21a, and the resolver stator is fixed to the inner periphery of the inner cylindrical portion 12c.
  • the rotation detection unit 80 may be configured by combining a Hall element or an MR (Magneto Resistive) element with a magnet.
  • the shaft body 21a has a first oil passage 61 which is open at one axial end of the shaft body 21a and has a bottomed hole extending to the other axial side.
  • the other axial end of the first oil passage 61 is closed.
  • the inner edge of the first oil passage 61 has a circular shape centered on the central axis J1.
  • the rotor core holding portion 21 b is a portion of the motor shaft 20 a to which the rotor core 22 is attached.
  • the rotor core 22 has an annular shape fixed to the shaft body 21a.
  • the rotor core 22 is fitted to the outer peripheral surface of the cylindrical rotor core holding portion 21b.
  • the rotor core 22 has a plurality of rotor magnets (not shown). The plurality of rotor magnets are arranged along the circumferential direction of the rotor core 22.
  • the rotor core holding portion 21 b has a flange portion 203 that extends outward in the radial direction from an end portion on one axial side.
  • the flange portion 203 has an internally threaded portion 203a penetrating in the axial direction.
  • the first end plate 24 is axially sandwiched between the flange portion 203 and the rotor core 22.
  • the second end plate 25 is disposed in contact with the other surface of the rotor core 22 in the axial direction.
  • the first end plate 24 and the second end plate 25 are in the form of a radially expanding annular plate. However, the first end plate 24 may not be necessary.
  • the rotor core 22 and the second end plate 25 have a through hole axially penetrating the rotor core 22 and the second end plate 25.
  • the rotor core 22 is fixed to the rotor core holding portion by bolts 204.
  • the bolt 204 is inserted into the through hole of the rotor core 22 and the second end plate 25.
  • the male screw portion of the bolt 204 is fastened to the female screw portion of the flange portion 203.
  • the rotor core holding portion 21b includes the flange portion 203, whereby the rotor core 22 can be positioned and fixed in the axial direction.
  • the bolt 204 can be fastened without using a nut. Since the tip of the bolt 204 only slightly protrudes on the surface on one side in the axial direction of the flange portion 203, the flow of oil O transmitted along the surface of the flange portion 203 is not easily inhibited.
  • the mounting member 50 is fixed to one side in the axial direction of the shaft main portion 21 a by a cap-like connecting member 51.
  • the connecting member 51 has a through hole which penetrates the connecting member 51 in the axial direction, and the mounting member 50 is inserted into the through hole of the connecting member 51.
  • the through hole of the mounting member 50 constitutes a part of the first oil passage 61 of the shaft body 21 a and is connected to the discharge side oil passage 40 b of the pump 40.
  • the mounting member 50 extends to one side in the axial direction with respect to the shaft main portion 21a, and is rotatably supported by the second through hole 13f.
  • the first oil passage 61 is branched into a plurality of second oil passages 62 at a central portion in the axial direction of the shaft main portion 21 a.
  • the plurality of second oil passages 62 radially extend from the first oil passage 61 in the radial direction.
  • the number of second oil passages 62 is, for example, 2 to 16.
  • the second oil passage 62 may have a shape inclined or curved with respect to the radial direction as long as the oil can be guided radially outward from the first oil passage 61.
  • the second oil passage 62 radially extends from the first oil passage 61, penetrates the connection portion 21c and the rotor core holding portion 21b, and opens at the outer peripheral surface of the rotor core holding portion 21b. Therefore, a part of the inner peripheral surface of the rotor core 22 is exposed at the radially outer end of the second oil passage 62. Thus, the rotor core 22 can also be cooled by the oil O.
  • the second oil passage 62 is branched into two third oil passages 63A and 63B in the inside of the connection portion 21c.
  • the third oil passage 63A extends from the branch point with the second oil passage 62 in the axial direction to one side, and opens in the surface 201c on the one side in the axial direction of the connection portion 21c.
  • the third oil passage 63B extends from the branch point with the second oil passage 62 to the other side in the axial direction, and opens in the surface 202c on the other side in the axial direction of the connection portion 21c.
  • the third oil passages 63A, 63B may be inclined or curved in the axial direction as long as the oil can be guided in the axial direction from the second oil passage 62.
  • the third oil passages 63A, 63B open at the central portion in the radial direction of the connection portion 21c.
  • the corner of the bottom of the first shaft recess 21A and the second shaft recess 21B tends to be rounded, and the drill is slippery in the vicinity of the corner, which makes drilling difficult.
  • the central portion in the radial direction of the connection portion 21c is likely to be a relatively flat surface, so it is easy to perform drilling. Further, since the processing is easy, the accuracy of the third oil passages 63A and 63B can be easily improved.
  • the shaft body 21a further includes fourth oil passages 64A, 64B extending from the first oil passage 61 to the bearings 70, 71.
  • the fourth oil passage 64A is branched from an axial center portion of the first oil passage 61, and obliquely extends outward in the radial direction toward the radial one side.
  • the fourth oil passage 64A is opened at a position facing the other surface of the bearing 70 in the axial direction on the outer peripheral surface of the shaft main portion 21a.
  • the connection position of the fourth oil passage 64A and the first oil passage 61 is on one side in the axial direction of the connection position of the second oil passage 62 and the first oil passage 61.
  • the number of fourth oil passages 64A is, for example, 1 to 8.
  • the fourth oil passage 64B is branched from the other axial end of the first oil passage 61 and extends radially outward.
  • the connection position of the fourth oil passage 64 ⁇ / b> B and the first oil passage 61 is on the other side in the axial direction with respect to the bearing 71.
  • the fourth oil passage 64B extends radially outward from the first oil passage 61.
  • the fourth oil passage 64B is open at a position facing the other surface of the bearing 71 in the axial direction on the outer peripheral surface of the shaft main portion 21a.
  • the number of fourth oil passages 64B is, for example, 1 to 8.
  • the pump unit 40 is driven via the motor shaft 20a.
  • the drive device 1 when the rotor 20 rotates and the motor shaft 20 a rotates, the external gear 42 fixed to the motor shaft 20 a rotates.
  • the internal gear 43 engaged with the external gear 42 is rotated, and the oil O is pumped up from the lower part of the housing portion 14 through the suction side oil passage 40a.
  • the oil O sucked between the external gear 42 and the internal gear 43 is discharged to the discharge side oil passage 40b.
  • the oil O discharged to the discharge side oil passage 40 b flows into the first oil passage 61.
  • the oil O that has flowed into the first oil passage 61 flows into the plurality of second oil passages 62 branched at the central portion in the axial direction. Further, the oil O having flowed into the second oil passage 62 flows into the two third oil passages 63A, 63B branched at the radial center of the second oil passage 62. The oil O that has flowed into the third oil passage 63A flows into the first shaft recess 21A from the opening located on the surface 201c facing the axial direction one side of the connection portion 21c.
  • the oil O that has flowed into the first shaft recess 21A moves radially outward by centrifugal force and reaches the inner circumferential surface 201b of the rotor core holding portion 21b.
  • the oil O on the inner circumferential surface 201b moves to one side in the axial direction along the inclination of the inner circumferential surface 201b.
  • the oil O that has reached the end portion on one side in the axial direction of the inner circumferential surface 201b is directed radially outward in the moving direction along the sloped portion 201d, and flows out to the outside of the first shaft recess 21A.
  • the inner peripheral surface 201b is an inclined surface, the oil O smoothly moves toward the coil 32 without staying on the inner peripheral surface 201b.
  • the moving direction of the oil O can be smoothly rotated in the radial direction from the axial direction, and the main scattering direction of the oil O is directed to the coil 32. be able to.
  • the oil O that has flowed out of the first shaft recess 21A is scattered radially outward directly from the axial direction end of the inner circumferential surface 201b, or moves radially outward along the surface of the flange portion 203. Splash.
  • the scattered oil O adheres to the coil 32 of the stator 30, and cools the coil 32.
  • the rotor core holding portion 21b has the flange portion 203, so that the oil O flowing radially outward from the sloped portion 201d at the opening end of the first shaft recess 21A is one side of the flange portion 203 in the axial direction. It can be scattered radially outward along the surface.
  • the bearing holding portion 12e is disposed at a position facing the inner circumferential surface 201b of the rotor core holding portion 21b and the flange portion 203.
  • the oil O that has flowed into the second shaft recess 21B moves radially outward by centrifugal force and reaches the inner circumferential surface 202b of the rotor core holding portion 21b.
  • the oil O on the inner peripheral surface 202b moves to the other side in the axial direction along the inclination of the inner peripheral surface 202b, and flows out from the end on the other axial side of the inner peripheral surface 201b to the outside of the second shaft recess 21B.
  • the inner peripheral surface 202b is an inclined surface, the oil O smoothly moves toward the coil 32 without staying on the inner peripheral surface 202b.
  • the oil O that has flowed out of the second shaft recess 21B scatters directly radially outward from the other axial end of the inner circumferential surface 202b, or moves radially outward along the surface of the second end plate 25. It flies after being done.
  • the scattered oil O adheres to the coil 32 of the stator 30, and cools the coil 32.
  • the flow passage cross-sectional area of the oil passage decreases in the order of the first oil passage 61, the second oil passage 62, and the third oil passages 63A and 63B. Because a plurality of second oil passages 62 are branched from one first oil passage 61, and two third oil passages 63A and 63B are branched from one second oil passage 62, each time it is branched By making the oil passage thin, it is possible to maintain the flow passage cross-sectional area of the entire oil passage and to carry the oil O at a constant pressure.
  • the flow passage cross-sectional area of the first oil passage 61 may be 90% or more and 110% or less of the sum of the flow passage cross-sectional areas of the plurality of branched second oil passages 62.
  • the pressure fluctuation of the oil O flowing from the first oil passage 61 to the second oil passage 62 can be suppressed by suppressing the change rate of the flow passage cross-sectional area before and after branching to 10% or less.
  • the amount of oil O supplied to the coil 32 can be suppressed from fluctuating in the circumferential direction.
  • the flow passage cross-sectional area of the second oil passage 62 may be 90% or more and 110% or less of the sum of the flow passage cross-sectional areas of the branched third oil passages 63A and 63B.
  • a part of the oil O flowing through the first oil passage 61 flows out of the opening of the outer peripheral surface of the shaft body 21a through the fourth oil passage 64A, and is supplied to the bearing 70.
  • the other oil O flows from the opening of the outer peripheral surface of the shaft body 21a from the first oil passage 61 through the fourth oil passage 64B, and is supplied to the bearing 71.
  • the oil O is used as a lubricant for the bearings 70, 71.
  • the fourth oil passages 64A, 64B are branched from the first oil passage 61. Therefore, the relationship between the flow passage cross-sectional areas may be taken into consideration of the flow passage cross-sectional areas of the fourth oil passages 64A and 64B. That is, the flow passage cross-sectional area of the first oil passage 61 is at least 90% of the sum of the flow passage cross-sectional areas of the plurality of second oil passages 62 and the fourth oil passages 64A and 64B branched from the first oil passage 61 It may be% or less. As a result, pressure fluctuations can be suppressed in each oil passage branched from the first oil passage 61, and variation in the discharge amount of the oil O can be suppressed.
  • the pump portion 40 can be driven by the rotation of the motor shaft 20a, and the oil O stored in the housing 10 can be sucked up by the pump portion 40 and supplied to the rotor 20, the stator 30, and the bearings 70, 71. .
  • the oil 20 stored in the housing 10 can be used to cool the rotor 20 and the stator 30, and the lubricity between the bearings 70 and 71 and the shaft main portion 21a can be improved.
  • the oil O supplied to the stator 30 and the bearings 70 and 71 drops in the housing portion 14 and is stored again in the lower area of the housing portion 14. Thereby, the oil O in the accommodating part 14 can be circulated.
  • FIG. 2 is a partial cross-sectional view of a modified rotor 20A.
  • the rotor core holding portion 21b of the rotor 20A is directed to the inner circumferential surface 201b and the inner circumferential surface 202b from the connection position with the connection portion 21c toward the opening end on both axial sides of the rotor core holding portion 21b. It has fin parts 210 and 211 which extend.
  • the configuration of the rotor 20A is the same as that of the rotor 20 of the embodiment except for the fin portions 210 and 211.
  • the fin portions 210 and 211 are, for example, strip-like protrusions extending along the axial direction, and are arranged in the circumferential direction on the inner circumferential surfaces 201 b and 202 b. According to this configuration, the oil O located in the first shaft recess 21A and the second shaft recess 21B can be smoothly moved in the axial direction by the fin portions 210 and 211. Thus, the oil O is efficiently supplied to the coil 32. In the above configuration, only one of the fin portions 210 and 211 may be provided.
  • the external gear 42 may be directly fixed to the shaft body 21 a without the attachment member 50.
  • the first oil passage 61 may be provided, for example, only inside the shaft body 21a.
  • the mounting member 50 may be fixed to the outer peripheral surface of the shaft main body 21 a.
  • the rotor core 22 may be fixed to the outer peripheral surface of the rotor core holding portion 21b by press fitting or the like.
  • the flange portion 203, the first end plate 24, and the second end plate 25 of the rotor core holding portion 21b may not be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Provided is a drive device which comprises: a rotor having a motor shaft and a rotor core; a stator; and a housing having a containing section capable of holding oil. The motor shaft has: a shaft body extending in the direction of a center axis; a cylindrical, rotor core holding section located radially outside the shaft body; a connection section for radially connecting the outer peripheral surface of the shaft body and the inner peripheral surface of the rotor core holding section; a first oil passage extending axially within the shaft body and open to an axial end of the shaft body; a plurality of second oil passages branching off from the first oil passage and extending radially within the connection section; and a plurality of third oil passages which branch off from the second oil passages, extend axially within the connection section, and are open to the surfaces of the connection section, which face one axial side and the other axial side. The flow passage cross-sectional area of the second oil passages is smaller than that of the first oil passage, and the flow passage cross-sectional area of the third oil passages is smaller than that of the second oil passages.

Description

駆動装置Drive unit
 本発明は、駆動装置に関する。 The present invention relates to a drive device.
 ステータおよびロータ等の潤滑および冷却のために冷却液をケース内で流通させる電動機が知られる。例えば、日本国公開公報 特開2003-324901号公報では、車両に搭載される電動機が記載される。 An electric motor is known in which a coolant is circulated in a case for lubrication and cooling of a stator, a rotor and the like. For example, Japanese Patent Laid-Open Publication No. 2003-324901 describes an electric motor mounted on a vehicle.
日本国公開公報 特開2003-324901号公報Japanese Patent Application Publication No. 2003-324901
 上記の電動機では、ロータ内部の通路に冷却液を流通させ、複数の吐出口から噴出させてコイルを冷却していた。しかし、複数の吐出口から噴出する冷却液の圧力が不均一になりやすく、コイルを均一に冷却することが困難であった。 In the above-described electric motor, the cooling fluid is caused to flow through the passage inside the rotor, and is ejected from the plurality of discharge ports to cool the coil. However, the pressure of the cooling fluid spouted from the plurality of discharge ports tends to be uneven, and it is difficult to uniformly cool the coil.
 本発明の一態様は、コイル冷却の均一性を向上させた駆動装置を提供することを目的の一つとする。 An object of one embodiment of the present invention is to provide a drive device in which the uniformity of coil cooling is improved.
 本発明の一態様によれば、一方向に延びる中心軸に沿って配置されるモータシャフトおよび前記モータシャフトに固定されるロータコアを有するロータと、前記ロータと径方向に隙間を介して対向するステータと、前記ロータおよび前記ステータを収容するとともにオイルを貯留可能な収容部を有するハウジングと、を備え、前記モータシャフトは、中心軸に沿って延びるシャフト本体部と、前記シャフト本体部の径方向外側に位置する筒状のロータコア保持部と、前記シャフト本体部の外周面と前記ロータコア保持部の内周面とを径方向に繋ぐ接続部と、前記シャフト本体部の内部を軸方向に延び軸方向の端部に開口する前記第1油路と、前記第1油路から分岐され、前記接続部の内部を径方向に沿って延びる複数の第2油路と、前記第2油路から分岐されて前記接続部の内部を軸方向に沿って延び、前記接続部の軸方向一方側および他方側を向く面にそれぞれ開口する複数の第3油路と、を有し、前記第2油路の流路断面積は、前記第1油路の流路断面積よりも小さく、前記第3油路の流路断面積は、前記第2油路の流路断面積よりも小さい、駆動装置が提供される。 According to one aspect of the present invention, there is provided a rotor having a motor shaft disposed along a central axis extending in one direction and a rotor core fixed to the motor shaft, and a stator radially opposed to the rotor via a gap. And a housing that accommodates the rotor and the stator and has an accommodation portion capable of storing oil, and the motor shaft extends along a central axis, and a radial outer side of the shaft body. A cylindrical rotor core holding portion located in the axial direction, a connecting portion radially connecting the outer peripheral surface of the shaft main body portion and the inner peripheral surface of the rotor core holding portion, and the axial direction extending in the axial direction A plurality of second oil passages branched from the first oil passage and extending radially along the inside of the connection portion; A plurality of third oil passages branched from the oil passage and extending along the axial direction inside the connection portion, and opening in the surfaces facing the axial direction one side and the other side of the connection portion; The flow passage cross-sectional area of the second oil passage is smaller than the flow passage cross-sectional area of the first oil passage, and the flow passage cross-sectional area of the third oil passage is smaller than the flow passage cross-sectional area of the second oil passage , A driving device is provided.
 本発明の態様によれば、例えば、コイル冷却の均一性が向上した駆動装置が提供される。 According to an aspect of the present invention, for example, a drive device with improved coil cooling uniformity is provided.
図1は実施形態の駆動装置を示す断面図である。FIG. 1 is a cross-sectional view showing a drive device of the embodiment. 図2は変形例の構成を示す部分断面図である。FIG. 2 is a partial cross-sectional view showing the configuration of a modification.
 図1は本実施形態の駆動装置を示す断面図である。図に示すZ軸方向は、正の側を上側とし、負の側を下側とする鉛直方向Zである。本実施形態では、鉛直方向Zは、図の上下方向である。以下の説明においては、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。 FIG. 1 is a cross-sectional view showing a drive device of the present embodiment. The Z-axis direction shown in the figure is a vertical direction Z with the positive side as the upper side and the negative side as the lower side. In the present embodiment, the vertical direction Z is the vertical direction of the figure. In the following description, the upper side in the vertical direction is simply referred to as "upper side", and the lower side in the vertical direction is simply referred to as "lower side".
 図1に示すように、本実施形態の駆動装置1は、ハウジング10と、一方向に延びる中心軸J1に沿って配置されるモータシャフト20aを有するロータ20と、回転検出部80と、ステータ30と、ポンプ部40と、ベアリング70,71と、を備える。 As shown in FIG. 1, the drive device 1 of the present embodiment includes a rotor 20 having a housing 10 and a motor shaft 20 a disposed along a central axis J1 extending in one direction, a rotation detection unit 80, and a stator 30. , A pump unit 40, and bearings 70, 71.
 中心軸J1は、図1の左右方向に延びる。すなわち、本実施形態においては、図1の左右方向が一方向に相当する。以下の説明においては、中心軸J1の軸方向と平行な方向を単に「軸方向」と呼び、中心軸J1を中心とする径方向を単に「径方向」と呼び、中心軸J1を中心とする周方向を単に「周方向」と呼ぶ。また、軸方向のうち図1の左側を、「軸方向一方側」と呼び、軸方向のうち図1の右側を、「軸方向他方側」と呼ぶ。 The central axis J1 extends in the left-right direction in FIG. That is, in the present embodiment, the left and right direction in FIG. 1 corresponds to one direction. In the following description, a direction parallel to the axial direction of the central axis J1 is simply referred to as "axial direction", a radial direction centered on the central axis J1 is simply referred to as "radial direction", and the central axis J1 is centered The circumferential direction is simply referred to as "circumferential direction". Further, the left side of FIG. 1 in the axial direction is referred to as “one side in the axial direction”, and the right side of FIG. 1 in the axial direction is referred to as the “other side in the axial direction”.
 ハウジング10は、本体部11と、内蓋部12と、外蓋部13と、を有する。本実施形態において本体部11と内蓋部12と外蓋部13とは、互いに別部材である。本体部11は、軸方向一方側に開口する有底の筒状である。本体部11は、底部11aと、本体筒部11bと、ベアリング保持部11cと、を有する。底部11aは、径方向に拡がる円環板状である。本体筒部11bは、底部11aの径方向外縁部から軸方向一方側に延びる円筒状である。ベアリング保持部11cは、底部11aの内縁部から軸方向一方側に突出する円筒状である。ベアリング保持部11cは、内周面にベアリング71を保持する。 The housing 10 has a main body 11, an inner lid 12, and an outer lid 13. In the present embodiment, the main body 11, the inner lid 12 and the outer lid 13 are separate members. The main body portion 11 has a bottomed cylindrical shape that opens in one side in the axial direction. The main body portion 11 has a bottom portion 11 a, a main body cylindrical portion 11 b, and a bearing holding portion 11 c. The bottom portion 11 a is in the form of an annular plate that expands in the radial direction. The main body cylindrical portion 11b has a cylindrical shape extending in the axial direction from the outer peripheral edge portion of the bottom portion 11a. The bearing holding portion 11c has a cylindrical shape that protrudes in one axial direction from the inner edge portion of the bottom portion 11a. The bearing holder 11 c holds the bearing 71 on the inner circumferential surface.
 内蓋部12は、本体部11の軸方向一方側に取り付けられる。内蓋部12は、円環板部12aと、外筒部12bと、内筒部12cと、ベアリング保持部12eと、を有する。円環板部12aは、径方向に拡がる円環板状である。内蓋部12は、円環板部12aによりステータ30の軸方向一方側を覆う。円環板部12aは、下側の端部に、円環板部12aを軸方向に貫通する開口部12fを有する。開口部12fは、ハウジング10の内部に繋がる。 The inner lid 12 is attached to one side of the main body 11 in the axial direction. The inner lid portion 12 includes an annular plate portion 12a, an outer cylindrical portion 12b, an inner cylindrical portion 12c, and a bearing holding portion 12e. The annular plate portion 12 a has an annular plate shape that expands in the radial direction. The inner cover 12 covers one side of the stator 30 in the axial direction by the annular plate 12 a. The annular plate portion 12a has an opening 12f at its lower end, which axially penetrates the annular plate portion 12a. The opening 12 f leads to the inside of the housing 10.
 外筒部12bは、円環板部12aの径方向外縁部から軸方向他方側に延びる円筒状である。外筒部12bの軸方向他方側の端部は、本体筒部11bの軸方向一方側の端部と接触して固定される。内筒部12cは、円環板部12aの径方向内縁部から軸方向他方側に延びる円筒状である。 The outer cylindrical portion 12b is in the shape of a cylinder extending from the radial outer edge of the annular plate portion 12a to the other side in the axial direction. The other axial end of the outer cylindrical portion 12b is fixed in contact with the axial one end of the main cylindrical portion 11b. The inner cylindrical portion 12c has a cylindrical shape extending from the radially inner edge of the annular plate portion 12a to the other side in the axial direction.
 ベアリング保持部12eは、内筒部12cの軸方向他方側の端部から径方向内側に拡がる円環状部101と、円環状部の径方向内縁部から軸方向他端側に突出する円筒部102とを有する。
 内蓋部12は、内蓋部12の軸方向一方側の面から軸方向他方側に窪む第2凹部12gを有する。第2凹部12gの内面は、内筒部12cの内周面と円環状部101の軸方向一方側の面とを含む。内蓋部12の軸方向一方側の面は、本実施形態では円環状部101の軸方向一方側の面である。第2凹部12gの内側面は、内筒部12cの径方向内側面と円環状部101の軸方向一方側の面とを含む。
The bearing holding portion 12e has an annular portion 101 extending radially inward from an end portion on the other axial side of the inner cylindrical portion 12c, and a cylindrical portion 102 projecting to the other end side in the axial direction from the radial inner edge portion of the annular portion. And.
The inner lid 12 has a second recess 12 g which is recessed from the surface on one axial side of the inner lid 12 to the other axial side. The inner surface of the second recess 12 g includes the inner peripheral surface of the inner cylindrical portion 12 c and the surface on one axial side of the annular portion 101. The surface on one axial side of the inner lid 12 is the surface on one axial side of the annular portion 101 in the present embodiment. The inner side surface of the second recess 12 g includes the radially inner side surface of the inner cylindrical portion 12 c and the surface on one axial side of the annular portion 101.
 ベアリング保持部12eの円筒部102は、円環状部101の径方向内側の端縁から軸方向他方側に突出する円筒状である。ベアリング保持部12eは、円筒部102の内周面にベアリング70を保持する。 The cylindrical portion 102 of the bearing holding portion 12 e has a cylindrical shape that protrudes from the radially inner end of the annular portion 101 to the other side in the axial direction. The bearing holding portion 12 e holds the bearing 70 on the inner peripheral surface of the cylindrical portion 102.
 ハウジング10は、本体部11と内蓋部12とからなる収容部14を有する。収容部14は、ロータ20およびステータ30を収容する。ステータ30は、本体部11の内面に固定される。ロータ20は、ステータ30の径方向内側に配置される。 The housing 10 has a housing portion 14 composed of a main body portion 11 and an inner lid portion 12. The housing portion 14 houses the rotor 20 and the stator 30. The stator 30 is fixed to the inner surface of the main body 11. The rotor 20 is disposed radially inward of the stator 30.
 ステータ30は、ロータ20と径方向に隙間を介して対向する。ステータ30は、ステータコア31と、ステータコア31に装着される複数のコイル32と、を有する。ステータコア31は、中心軸J1を中心とした円環状である。ステータコア31の外周面は、本体筒部11bの内周面に固定される。ステータコア31は、後述するロータコア22の径方向外側に隙間を介して対向する。コイル32は、ステータコア31の軸方向一方側および軸方向他方側に突出する。 The stator 30 faces the rotor 20 in the radial direction via a gap. The stator 30 has a stator core 31 and a plurality of coils 32 mounted on the stator core 31. The stator core 31 has an annular shape centered on the central axis J1. The outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the main body cylindrical portion 11b. The stator core 31 opposes the radial direction outer side of the rotor core 22 mentioned later via a clearance gap. The coil 32 projects on one side in the axial direction of the stator core 31 and on the other side in the axial direction.
 収容部14は、内部にオイルOを貯留可能である。オイルOは、収容部14の鉛直方向下側領域に貯留される。本明細書において「収容部の鉛直方向下側領域」とは、収容部の鉛直方向Zの中心よりも下側に位置する部分を含む。 The storage unit 14 can store oil O inside. The oil O is stored in the region below the accommodation portion 14 in the vertical direction. In the present specification, the “vertically lower region of the storage portion” includes a portion located below the center of the storage portion in the vertical direction Z.
 本実施形態において収容部14に貯留されるオイルOの液面OSは、開口部12fよりも上側に位置する。これにより、開口部12fには、収容部14に貯留されるオイルOが常時流通する。オイルOの液面OSは、ポンプ部40によってオイルOが吸い上げられることで変動するが、少なくともロータ20の回転時において、ロータ20よりも下側に配置される。これにより、ロータ20が回転する際に、オイルOがロータ20の回転抵抗となることを抑制できる。 In the present embodiment, the liquid level OS of the oil O stored in the storage portion 14 is located above the opening 12 f. As a result, the oil O stored in the storage unit 14 constantly flows through the opening 12 f. The fluid level OS of the oil O fluctuates as the pump portion 40 sucks up the oil O, but is disposed below the rotor 20 at least when the rotor 20 rotates. Thereby, when the rotor 20 rotates, it can suppress that oil O becomes rotation resistance of the rotor 20. As shown in FIG.
 外蓋部13は、内蓋部12の軸方向一方側に取り付けられる。外蓋部13は、外蓋本体部13aと、栓体部13bと、を有する。外蓋本体部13aは、径方向に拡がる。外蓋本体部13aは、蓋板部13cと、突出部13dと、を有する。蓋板部13cは、径方向に拡がる円板状である。蓋板部13cの径方向外縁部は、円環板部12aの径方向外縁部に固定される。蓋板部13cの軸方向他方側の面は、円環板部12aの軸方向一方側の面と接触する。突出部13dは、蓋板部13cの中央部から軸方向他方側に突出する。突出部13dは、内筒部12cに軸方向一方側から挿入される。突出部13dは、ベアリング保持部12eの円環状部101の軸方向一方側に間隔を空けて配置される。 The outer cover 13 is attached to one side of the inner cover 12 in the axial direction. The outer lid 13 has an outer lid main body 13a and a plug body 13b. The outer lid main body 13a spreads in the radial direction. The outer lid main body portion 13a has a lid plate portion 13c and a projecting portion 13d. The cover plate portion 13c is in the shape of a circular plate that expands in the radial direction. The radially outer edge portion of the cover plate portion 13c is fixed to the radially outer edge portion of the annular plate portion 12a. The surface on the other side in the axial direction of the cover plate portion 13c contacts the surface on the one side in the axial direction of the annular plate portion 12a. The protrusion 13 d protrudes from the central portion of the lid plate 13 c to the other side in the axial direction. The protrusion 13 d is inserted into the inner cylindrical portion 12 c from one side in the axial direction. The protruding portions 13 d are arranged at intervals in one axial direction of the annular portion 101 of the bearing holding portion 12 e.
 外蓋本体部13aは、第1凹部13eと、第2貫通孔13fと、を有する。第1凹部13eは、外蓋本体部13aの軸方向一方側の面から軸方向他方側に窪む。第1凹部13eは、外蓋本体部13aの中央部に設けられ、蓋板部13cと突出部13dとに跨って設けられる。第2貫通孔13fは、第1凹部13eの底面から突出部13dの軸方向他方側の面まで貫通する。すなわち、第2貫通孔13fは、第1凹部13eの底面からハウジング10の内部まで貫通する。第2貫通孔13fは、第2凹部12gの内部に開口する。これにより、第2貫通孔13fは、第1凹部13eの内部と第2凹部12gの内部とを繋ぐ。第2貫通孔13fには、中心軸J1が通る。 The outer cover main body 13a has a first recess 13e and a second through hole 13f. The first recess 13 e is recessed from the surface on one side in the axial direction of the outer lid main body 13 a to the other side in the axial direction. The first recess 13e is provided at the center of the outer lid main body 13a, and is provided across the lid plate 13c and the protrusion 13d. The second through hole 13 f penetrates from the bottom surface of the first recess 13 e to the surface on the other side in the axial direction of the protrusion 13 d. That is, the second through holes 13 f penetrate from the bottom surface of the first recess 13 e to the inside of the housing 10. The second through holes 13 f open inside the second recess 12 g. Thereby, the second through hole 13 f connects the inside of the first recess 13 e and the inside of the second recess 12 g. A central axis J1 passes through the second through hole 13f.
 栓体部13bは、第1凹部13eに嵌め込まれて外蓋本体部13aに固定される。栓体部13bは、第1凹部13eの軸方向一方側の開口を閉塞する。栓体部13bは、モータシャフト20aの軸方向一方側を覆う。すなわち、外蓋部13は、モータシャフト20aの軸方向一方側を覆う。栓体部13bは、軸方向一方側の端部に径方向外側に突出する鍔部13gを有する。鍔部13gは、蓋板部13cの軸方向一方側の面に接触する。栓体部13bは、鍔部13gにより軸方向に位置決めされる。 The plug portion 13b is fitted into the first recess 13e and fixed to the outer cover main portion 13a. The plug portion 13 b closes an opening on one side in the axial direction of the first recess 13 e. The plug portion 13b covers one axial side of the motor shaft 20a. That is, the outer cover 13 covers one side in the axial direction of the motor shaft 20a. The plug portion 13 b has a flange portion 13 g projecting radially outward at an end on one side in the axial direction. The flange portion 13g contacts the surface on one side in the axial direction of the lid plate portion 13c. The plug portion 13b is axially positioned by the collar 13g.
 外蓋部13において、外蓋本体部13aと栓体部13bとの間には、内歯歯車43および外歯歯車42が収容される。本実施形態において、外蓋部13のうちの外歯歯車42および内歯歯車43を収容する部位がポンプ部40を構成する。本実施形態では、ポンプ部40はトロコイドポンプである。外歯歯車42の貫通孔には、ポンプ部40とモータシャフト20a内の油路とを接続する筒状の取付部材50が挿入される。 In the outer lid portion 13, the internal gear 43 and the external gear 42 are accommodated between the outer lid main portion 13a and the plug portion 13b. In the present embodiment, the portion of the outer cover 13 that accommodates the external gear 42 and the internal gear 43 constitutes the pump 40. In the present embodiment, the pump unit 40 is a trochoidal pump. A cylindrical mounting member 50 for connecting the pump portion 40 and the oil passage in the motor shaft 20a is inserted into the through hole of the external gear 42.
 栓体部13bは、吸入側油路40aと、吐出側油路40bとを有する。吸入側油路40aは、外蓋部13に設けられる図示しない油路を介して開口部12fとポンプ部40の吸入口とを繋ぐ。吐出側油路40bは、ポンプ部40の吐出口と取付部材50の貫通孔とを繋ぐ。 The plug portion 13b has a suction side oil passage 40a and a discharge side oil passage 40b. The suction side oil passage 40 a connects the opening 12 f and the suction port of the pump unit 40 via an oil passage (not shown) provided in the outer cover 13. The discharge side oil passage 40 b connects the discharge port of the pump portion 40 and the through hole of the mounting member 50.
 ロータ20は、モータシャフト20aと、ロータコア22と、第1エンドプレート24と、第2エンドプレート25と、を有する。モータシャフト20aは、シャフト本体部21aと、ロータコア保持部21bと、接続部21cと、取付部材50と、を有する。シャフト本体部21aと、ロータコア保持部21bと、接続部21cは、単一の部材である。 The rotor 20 has a motor shaft 20 a, a rotor core 22, a first end plate 24, and a second end plate 25. The motor shaft 20 a has a shaft main body 21 a, a rotor core holding portion 21 b, a connection portion 21 c, and an attachment member 50. The shaft body portion 21a, the rotor core holding portion 21b, and the connection portion 21c are a single member.
 シャフト本体部21aは、中心軸J1を中心とし、軸方向に延びる円柱状である。ロータコア保持部21bは、中心軸J1を中心とし、シャフト本体部21aの径方向外側を囲む円筒状である。ロータコア保持部21bの軸方向長さは、シャフト本体部21aの軸方向長さよりも短い。接続部21cは、シャフト本体部21aとロータコア保持部21bとが径方向に見て重なる領域において、シャフト本体部21aの軸方向の中央部から径方向外側へ円環状に拡がり、シャフト本体部21aとロータコア保持部21bとを径方向に連結する。接続部21cの軸方向長さは、シャフト本体部21aの軸方向長さおよびロータコア保持部21bの軸方向長さよりも短い。したがって、接続部21cの軸方向一方側において、シャフト本体部21aの外周面201aとロータコア保持部21bの内周面201bとが、径方向に対向する。また接続部21cの軸方向他方側において、シャフト本体部21aの外周面202aとロータコア保持部21bの内周面202bとが、径方向に対向する。 The shaft body portion 21a is a cylindrical shape extending in the axial direction centering on the central axis J1. The rotor core holding portion 21b has a cylindrical shape centering on the central axis J1 and surrounding the radially outer side of the shaft main portion 21a. The axial length of the rotor core holding portion 21b is shorter than the axial length of the shaft main portion 21a. The connecting portion 21c annularly expands radially outward from the axial central portion of the shaft main portion 21a in a region where the shaft main portion 21a and the rotor core holding portion 21b overlap in the radial direction, and the shaft main portion 21a and The rotor core holding portion 21b is connected in the radial direction. The axial length of the connection portion 21c is shorter than the axial length of the shaft main portion 21a and the axial length of the rotor core holding portion 21b. Therefore, the outer peripheral surface 201a of the shaft main portion 21a and the inner peripheral surface 201b of the rotor core holding portion 21b radially face each other on one side in the axial direction of the connection portion 21c. Further, on the other side in the axial direction of the connection portion 21c, the outer peripheral surface 202a of the shaft main portion 21a and the inner peripheral surface 202b of the rotor core holding portion 21b face in the radial direction.
 モータシャフト20aは、軸方向一方側に向けて開口する第1シャフト凹部21Aと、軸方向他方側に向けて開口する第2シャフト凹部21Bとを有する。
 第1シャフト凹部21Aは、軸方向一方側へ開口し周方向に延びる円環状の溝部である。第1シャフト凹部21Aは、シャフト本体部21aの外周面201a、およびロータコア保持部21bの内周面201bを側面とし、接続部21cの軸方向一方側の面201cを底面とする。
The motor shaft 20a has a first shaft recess 21A opening toward one side in the axial direction and a second shaft recess 21B opening toward the other side in the axial direction.
The first shaft recess 21 </ b> A is an annular groove which is open to one side in the axial direction and extends in the circumferential direction. In the first shaft recess 21A, the outer peripheral surface 201a of the shaft main portion 21a and the inner peripheral surface 201b of the rotor core holding portion 21b are side surfaces, and the surface 201c on one side in the axial direction of the connecting portion 21c is a bottom surface.
 第1シャフト凹部21Aにおいて、ロータコア保持部21bの内周面201bは、ロータコア保持部21bの軸方向一方側の開口端に向かうに従って径方向外側へ傾斜する。また、ロータコア保持部21bの内周面201bは、軸方向の開口側の端部に曲面形状の斜面部201dを有する。斜面部201dは、軸方向一方側へ向かうに従って径方向外側へ傾斜する曲面である。 In the first shaft recess 21A, the inner circumferential surface 201b of the rotor core holding portion 21b is inclined radially outward toward the opening end on one side in the axial direction of the rotor core holding portion 21b. The inner circumferential surface 201b of the rotor core holding portion 21b has a sloped surface portion 201d having a curved surface shape at the end on the opening side in the axial direction. The sloped portion 201 d is a curved surface which is inclined radially outward as it goes to one side in the axial direction.
 第2シャフト凹部21Bは、軸方向他方側に開口し周方向に延びる円環状の溝部である。第2シャフト凹部21Bは、シャフト本体部21aの外周面202a、およびロータコア保持部21bの内周面202bを側面とし、接続部21cの軸方向一方側の面202cを底面とする。第2シャフト凹部21Bにおいて、ロータコア保持部21bの内周面202bは、ロータコア保持部21bの軸方向他方側の開口端に向かうに従って径方向外側へ傾斜する。 The second shaft recess 21 </ b> B is an annular groove which is open on the other side in the axial direction and extends in the circumferential direction. In the second shaft recess 21B, the outer peripheral surface 202a of the shaft main portion 21a and the inner peripheral surface 202b of the rotor core holding portion 21b are side surfaces, and the surface 202c on one axial direction side of the connection portion 21c is a bottom surface. In the second shaft recess 21B, the inner circumferential surface 202b of the rotor core holding portion 21b is inclined radially outward toward the opening end on the other axial direction side of the rotor core holding portion 21b.
 シャフト本体部21aは、接続部21cの軸方向一方側に位置するベアリング70と、接続部21cの軸方向他方側に位置するベアリング71とにより回転可能に支持される。ベアリング70,71は例えばボールベアリングである。
 本実施形態では、ベアリング70を保持するベアリング保持部12eの一部が、径方向に見て、ロータコア保持部21bと重なる。この構成によれば、駆動装置1の軸方向長さを短くでき、薄型化可能である。
The shaft main portion 21a is rotatably supported by a bearing 70 located on one side in the axial direction of the connection portion 21c and a bearing 71 located on the other side in the axial direction of the connection portion 21c. The bearings 70 and 71 are, for example, ball bearings.
In the present embodiment, a part of the bearing holding portion 12e holding the bearing 70 overlaps the rotor core holding portion 21b as viewed in the radial direction. According to this configuration, the axial length of the drive device 1 can be shortened, and the thickness can be reduced.
 本実施形態では、ベアリング保持部12eの円筒部102は、ロータコア保持部21bの軸方向一方側の開口部の近傍において、軸方向一方側へ向かうに従って径が大きくなる形状を有する。すなわち、ベアリング保持部12eの外周面は、ロータコア保持部21bの内側から軸方向の外側へ向かって径方向外側に傾斜する傾斜面である。ベアリング保持部12eの外周面は、隙間を介して対向するロータコア保持部21bの斜面部201dに倣う曲面形状を有する。
 ベアリング保持部12eの円環状部101は、フランジ部203と軸方向に対向する。すなわち、ベアリング保持部12eは、ロータコア保持部21bの軸方向を向いた面と対向する。
 シャフト本体部21aは、軸方向他方側の端部に出力部21eを有する。
In the present embodiment, the cylindrical portion 102 of the bearing holding portion 12e has a shape in which the diameter increases in the axial direction toward the one side in the vicinity of the opening on the one side in the axial direction of the rotor core holding portion 21b. That is, the outer peripheral surface of the bearing holding portion 12e is an inclined surface which is inclined radially outward from the inside to the outside in the axial direction of the rotor core holding portion 21b. The outer peripheral surface of the bearing holding portion 12e has a curved surface shape that follows the sloped portion 201d of the rotor core holding portion 21b opposed with a gap.
The annular portion 101 of the bearing holding portion 12 e faces the flange portion 203 in the axial direction. That is, the bearing holding portion 12e faces the surface of the rotor core holding portion 21b facing in the axial direction.
The shaft body portion 21a has an output portion 21e at the other end in the axial direction.
 ベアリング70の軸方向一方側に、回転検出部80が配置される。回転検出部80は、ロータ20の回転を検出する。本実施形態において回転検出部80は、例えば、VR(Variable Reluctance)型レゾルバである。回転検出部80は、内筒部12cの径方向内側に配置される。回転検出部80のレゾルバロータはシャフト本体部21aの軸方向一方側の端部に固定され、レゾルバステータは、内筒部12cの内周に固定される。回転検出部80は、ホール素子やMR(Magneto Resistive)素子と、マグネットとを組み合わせた構成であってもよい。 The rotation detection unit 80 is disposed on one side in the axial direction of the bearing 70. The rotation detection unit 80 detects the rotation of the rotor 20. In the present embodiment, the rotation detection unit 80 is, for example, a VR (Variable Reluctance) resolver. The rotation detection unit 80 is disposed on the inner side in the radial direction of the inner cylindrical portion 12c. The resolver rotor of the rotation detection unit 80 is fixed to an end portion on one side in the axial direction of the shaft main portion 21a, and the resolver stator is fixed to the inner periphery of the inner cylindrical portion 12c. The rotation detection unit 80 may be configured by combining a Hall element or an MR (Magneto Resistive) element with a magnet.
 シャフト本体部21aは、シャフト本体部21aの軸方向一方側の端部に開口し、軸方向他方側へ延びる有底穴からなる第1油路61を有する。第1油路61の軸方向他方側の端部は閉塞される。本実施形態において軸方向と直交する断面において第1油路61の内縁は、中心軸J1を中心とする円形状である。 The shaft body 21a has a first oil passage 61 which is open at one axial end of the shaft body 21a and has a bottomed hole extending to the other axial side. The other axial end of the first oil passage 61 is closed. In the cross section orthogonal to the axial direction in the present embodiment, the inner edge of the first oil passage 61 has a circular shape centered on the central axis J1.
 ロータコア保持部21bは、モータシャフト20aにおいてロータコア22が取り付けられる部分である。ロータコア22は、シャフト本体部21aに固定される円環状である。ロータコア22は、円筒状のロータコア保持部21bの外周面に嵌め合わされる。ロータコア22は、図示しない複数のロータマグネットを有する。複数のロータマグネットは、ロータコア22の周方向に沿って配置される。 The rotor core holding portion 21 b is a portion of the motor shaft 20 a to which the rotor core 22 is attached. The rotor core 22 has an annular shape fixed to the shaft body 21a. The rotor core 22 is fitted to the outer peripheral surface of the cylindrical rotor core holding portion 21b. The rotor core 22 has a plurality of rotor magnets (not shown). The plurality of rotor magnets are arranged along the circumferential direction of the rotor core 22.
 ロータコア保持部21bは、軸方向一方側の端部から径方向外側へ拡がるフランジ部203を有する。フランジ部203は、軸方向に貫通する雌ねじ部203aを有する。第1エンドプレート24は、フランジ部203とロータコア22との間に軸方向に挟まれて配置される。第2エンドプレート25は、ロータコア22の軸方向他方側の面と接して配置される。第1エンドプレート24および第2エンドプレート25は、径方向に拡がる円環板状である。ただし、第1エンドプレート24がなくてもよい。 The rotor core holding portion 21 b has a flange portion 203 that extends outward in the radial direction from an end portion on one axial side. The flange portion 203 has an internally threaded portion 203a penetrating in the axial direction. The first end plate 24 is axially sandwiched between the flange portion 203 and the rotor core 22. The second end plate 25 is disposed in contact with the other surface of the rotor core 22 in the axial direction. The first end plate 24 and the second end plate 25 are in the form of a radially expanding annular plate. However, the first end plate 24 may not be necessary.
 ロータコア22および第2エンドプレート25は、ロータコア22および第2エンドプレート25を軸方向に貫通する貫通孔を有する。ロータコア22は、ボルト204によりロータコア保持部に固定される。ボルト204は、ロータコア22および第2エンドプレート25の貫通孔に挿入される。ボルト204の雄ねじ部は、フランジ部203の雌ねじ部に締結される。 The rotor core 22 and the second end plate 25 have a through hole axially penetrating the rotor core 22 and the second end plate 25. The rotor core 22 is fixed to the rotor core holding portion by bolts 204. The bolt 204 is inserted into the through hole of the rotor core 22 and the second end plate 25. The male screw portion of the bolt 204 is fastened to the female screw portion of the flange portion 203.
 本実施形態では、ロータコア保持部21bがフランジ部203を有することにより、ロータコア22を軸方向に位置決めして固定できる。フランジ部203に雌ねじ部が設けられていることにより、ナットを用いることなくボルト204を締結できる。フランジ部203の軸方向一方側の面には、ボルト204の先端がわずかに突出するだけであるため、フランジ部203の表面を伝わるオイルOの流れを阻害しにくい。 In the present embodiment, the rotor core holding portion 21b includes the flange portion 203, whereby the rotor core 22 can be positioned and fixed in the axial direction. By providing the flange portion 203 with the female screw portion, the bolt 204 can be fastened without using a nut. Since the tip of the bolt 204 only slightly protrudes on the surface on one side in the axial direction of the flange portion 203, the flow of oil O transmitted along the surface of the flange portion 203 is not easily inhibited.
 取付部材50は、キャップ状の連結部材51により、シャフト本体部21aの軸方向一方側に固定される。連結部材51は、連結部材51を軸方向に貫通する貫通孔を有し、取付部材50は、連結部材51の貫通孔に挿入される。取付部材50の貫通孔は、シャフト本体部21aの第1油路61の一部を構成し、ポンプ部40の吐出側油路40bに繋がる。取付部材50は、シャフト本体部21aよりも軸方向一方側に延びて、第2貫通孔13fに回転可能に支持される。 The mounting member 50 is fixed to one side in the axial direction of the shaft main portion 21 a by a cap-like connecting member 51. The connecting member 51 has a through hole which penetrates the connecting member 51 in the axial direction, and the mounting member 50 is inserted into the through hole of the connecting member 51. The through hole of the mounting member 50 constitutes a part of the first oil passage 61 of the shaft body 21 a and is connected to the discharge side oil passage 40 b of the pump 40. The mounting member 50 extends to one side in the axial direction with respect to the shaft main portion 21a, and is rotatably supported by the second through hole 13f.
 第1油路61は、シャフト本体部21aの軸方向の中央部において、複数の第2油路62に分岐される。複数の第2油路62は、第1油路61から径方向に放射状に延びる。第2油路62の本数は、例えば2本~16本である。第2油路62は、第1油路61から径方向外側へオイルを案内可能であれば、径方向に対して傾斜または湾曲した形状であってもよい。 The first oil passage 61 is branched into a plurality of second oil passages 62 at a central portion in the axial direction of the shaft main portion 21 a. The plurality of second oil passages 62 radially extend from the first oil passage 61 in the radial direction. The number of second oil passages 62 is, for example, 2 to 16. The second oil passage 62 may have a shape inclined or curved with respect to the radial direction as long as the oil can be guided radially outward from the first oil passage 61.
 第2油路62は、第1油路61から径方向に延びて接続部21cおよびロータコア保持部21bを貫通し、ロータコア保持部21bの外周面に開口する。したがって、第2油路62の径方向外側の端部には、ロータコア22の内周面の一部が露出する。これにより、ロータコア22についても、オイルOによって冷却可能である。 The second oil passage 62 radially extends from the first oil passage 61, penetrates the connection portion 21c and the rotor core holding portion 21b, and opens at the outer peripheral surface of the rotor core holding portion 21b. Therefore, a part of the inner peripheral surface of the rotor core 22 is exposed at the radially outer end of the second oil passage 62. Thus, the rotor core 22 can also be cooled by the oil O.
 第2油路62は、接続部21cの内部において、2本の第3油路63A、63Bに分岐される。第3油路63Aは、第2油路62との分岐点から軸方向一方側へ延び、接続部21cの軸方向一方側の面201cに開口する。第3油路63Bは、第2油路62との分岐点から軸方向他方側へ延び、接続部21cの軸方向他方側の面202cに開口する。第3油路63A、63Bは、第2油路62から軸方向へオイルを案内可能であれば、軸方向に対して傾斜または湾曲した形状であってもよい。 The second oil passage 62 is branched into two third oil passages 63A and 63B in the inside of the connection portion 21c. The third oil passage 63A extends from the branch point with the second oil passage 62 in the axial direction to one side, and opens in the surface 201c on the one side in the axial direction of the connection portion 21c. The third oil passage 63B extends from the branch point with the second oil passage 62 to the other side in the axial direction, and opens in the surface 202c on the other side in the axial direction of the connection portion 21c. The third oil passages 63A, 63B may be inclined or curved in the axial direction as long as the oil can be guided in the axial direction from the second oil passage 62.
 本実施形態では、第3油路63A、63Bは、接続部21cの径方向の中央部に開口する。第1シャフト凹部21Aおよび第2シャフト凹部21Bの底面の角部は丸みを帯びた形状となりやすく、角部の近傍ではドリルが滑りやすいため穴開け加工が難しくなる。本実施形態では、接続部21cの径方向の中央部は、比較的平坦な面となりやすいため、穴開け加工が行いやすい。また、加工が容易であることから、第3油路63A、63Bの精度も向上させやすい。 In the present embodiment, the third oil passages 63A, 63B open at the central portion in the radial direction of the connection portion 21c. The corner of the bottom of the first shaft recess 21A and the second shaft recess 21B tends to be rounded, and the drill is slippery in the vicinity of the corner, which makes drilling difficult. In the present embodiment, the central portion in the radial direction of the connection portion 21c is likely to be a relatively flat surface, so it is easy to perform drilling. Further, since the processing is easy, the accuracy of the third oil passages 63A and 63B can be easily improved.
 シャフト本体部21aは、第1油路61からベアリング70、71へ延びる第4油路64A、64Bをさらに有する。第4油路64Aは、第1油路61の軸方向中央部から分岐され、径方向一方側へ向かうに従って径方向外側へ斜めに延びる。第4油路64Aは、シャフト本体部21aの外周面において、ベアリング70の軸方向他方側の面に臨む位置に開口する。第4油路64Aと第1油路61との接続位置は、第2油路62と第1油路61との接続位置よりも軸方向一方側である。第4油路64Aの本数は、例えば1本~8本である。 The shaft body 21a further includes fourth oil passages 64A, 64B extending from the first oil passage 61 to the bearings 70, 71. The fourth oil passage 64A is branched from an axial center portion of the first oil passage 61, and obliquely extends outward in the radial direction toward the radial one side. The fourth oil passage 64A is opened at a position facing the other surface of the bearing 70 in the axial direction on the outer peripheral surface of the shaft main portion 21a. The connection position of the fourth oil passage 64A and the first oil passage 61 is on one side in the axial direction of the connection position of the second oil passage 62 and the first oil passage 61. The number of fourth oil passages 64A is, for example, 1 to 8.
 第4油路64Bは、第1油路61の軸方向他方側の端部から分岐され、径方向外側へ延びる。第4油路64Bと第1油路61との接続位置は、ベアリング71よりも軸方向他方側である。第4油路64Bは、第1油路61から径方向外側へ延びる。第4油路64Bは、シャフト本体部21aの外周面において、ベアリング71の軸方向他方側の面に臨む位置に開口する。第4油路64Bの本数は、例えば1本~8本である。 The fourth oil passage 64B is branched from the other axial end of the first oil passage 61 and extends radially outward. The connection position of the fourth oil passage 64 </ b> B and the first oil passage 61 is on the other side in the axial direction with respect to the bearing 71. The fourth oil passage 64B extends radially outward from the first oil passage 61. The fourth oil passage 64B is open at a position facing the other surface of the bearing 71 in the axial direction on the outer peripheral surface of the shaft main portion 21a. The number of fourth oil passages 64B is, for example, 1 to 8.
 本実施形態の駆動装置1において、ポンプ部40は、モータシャフト20aを介して駆動される。駆動装置1において、ロータ20が回転してモータシャフト20aが回転すると、モータシャフト20aに固定された外歯歯車42が回転する。これにより、外歯歯車42と噛み合う内歯歯車43が回転し、吸入側油路40aを介して収容部14の下部からオイルOが汲み上げられる。外歯歯車42と内歯歯車43の間に吸入されたオイルOは吐出側油路40bへ吐出される。吐出側油路40bへ吐出されたオイルOは、第1油路61に流入する。 In the drive device 1 of the present embodiment, the pump unit 40 is driven via the motor shaft 20a. In the drive device 1, when the rotor 20 rotates and the motor shaft 20 a rotates, the external gear 42 fixed to the motor shaft 20 a rotates. As a result, the internal gear 43 engaged with the external gear 42 is rotated, and the oil O is pumped up from the lower part of the housing portion 14 through the suction side oil passage 40a. The oil O sucked between the external gear 42 and the internal gear 43 is discharged to the discharge side oil passage 40b. The oil O discharged to the discharge side oil passage 40 b flows into the first oil passage 61.
 第1油路61に流入したオイルOは、軸方向の中央部において分岐する複数の第2油路62へ流入する。さらに、第2油路62へ流入したオイルOは、第2油路62の径方向の中央部において分岐する2本の第3油路63A、63Bへ流入する。第3油路63Aに流入したオイルOは、接続部21cの軸方向一方側を向く面201cに位置する開口から第1シャフト凹部21A内へ流入する。 The oil O that has flowed into the first oil passage 61 flows into the plurality of second oil passages 62 branched at the central portion in the axial direction. Further, the oil O having flowed into the second oil passage 62 flows into the two third oil passages 63A, 63B branched at the radial center of the second oil passage 62. The oil O that has flowed into the third oil passage 63A flows into the first shaft recess 21A from the opening located on the surface 201c facing the axial direction one side of the connection portion 21c.
 第1シャフト凹部21A内に流入したオイルOは、遠心力により径方向外側へ移動し、ロータコア保持部21bの内周面201bに達する。内周面201b上のオイルOは、内周面201bの傾斜に沿って軸方向一方側へ移動する。内周面201bの軸方向一方側の端部に達したオイルOは、斜面部201dに沿って移動方向を径方向外側へ向けられ、第1シャフト凹部21Aの外側へ流出する。
 本実施形態では、内周面201bが傾斜面であることにより、オイルOが内周面201b上に滞留することなく円滑にコイル32側へ移動する。また、内周面201bの端部に斜面部201dを有することにより、オイルOの移動方向を軸方向から径方向に円滑に転回させることができ、オイルOの主な飛散方向をコイル32へ向けることができる。
The oil O that has flowed into the first shaft recess 21A moves radially outward by centrifugal force and reaches the inner circumferential surface 201b of the rotor core holding portion 21b. The oil O on the inner circumferential surface 201b moves to one side in the axial direction along the inclination of the inner circumferential surface 201b. The oil O that has reached the end portion on one side in the axial direction of the inner circumferential surface 201b is directed radially outward in the moving direction along the sloped portion 201d, and flows out to the outside of the first shaft recess 21A.
In the present embodiment, since the inner peripheral surface 201b is an inclined surface, the oil O smoothly moves toward the coil 32 without staying on the inner peripheral surface 201b. Further, by providing the inclined surface 201d at the end of the inner peripheral surface 201b, the moving direction of the oil O can be smoothly rotated in the radial direction from the axial direction, and the main scattering direction of the oil O is directed to the coil 32. be able to.
 第1シャフト凹部21Aから流出したオイルOは、内周面201bの軸方向一方側の端部から直接径方向外側へ飛散し、あるいは、フランジ部203の表面を伝わって径方向外側へ移動した後に飛散する。飛散したオイルOは、ステータ30のコイル32に付着し、コイル32を冷却する。
 本実施形態では、ロータコア保持部21bがフランジ部203を有することで、第1シャフト凹部21Aの開口端の斜面部201dから径方向外側へ流出するオイルOを、フランジ部203の軸方向一方側の面を伝わらせて滑らかに径方向外側へ飛散させることができる。
The oil O that has flowed out of the first shaft recess 21A is scattered radially outward directly from the axial direction end of the inner circumferential surface 201b, or moves radially outward along the surface of the flange portion 203. Splash. The scattered oil O adheres to the coil 32 of the stator 30, and cools the coil 32.
In the present embodiment, the rotor core holding portion 21b has the flange portion 203, so that the oil O flowing radially outward from the sloped portion 201d at the opening end of the first shaft recess 21A is one side of the flange portion 203 in the axial direction. It can be scattered radially outward along the surface.
 また本実施形態では、ロータコア保持部21bの内周面201bおよびフランジ部203と対向する位置にベアリング保持部12eが配置される。この構成により、第1シャフト凹部21Aから軸方向一方側へ飛散してベアリング保持部12eに衝突したオイルOについても、ベアリング保持部12eの表面形状によって、移動方向を軸方向から径方向へ滑らかに転回させることができる。これにより、効率よくコイル32にオイルOを供給できる。 Further, in the present embodiment, the bearing holding portion 12e is disposed at a position facing the inner circumferential surface 201b of the rotor core holding portion 21b and the flange portion 203. With this configuration, the oil O that is scattered from the first shaft recess 21A to one side in the axial direction and collides with the bearing holding portion 12e is also smoothly moved in the axial direction from the axial direction according to the surface shape of the bearing holding portion 12e. You can turn it around. Thereby, oil O can be supplied to the coil 32 efficiently.
 第2油路62から第3油路63Bに流入したオイルOは、接続部21cの軸方向他方側を向く面202cに位置する開口から第2シャフト凹部21B内へ流入する。第2シャフト凹部21B内に流入したオイルOは、遠心力により径方向外側へ移動し、ロータコア保持部21bの内周面202bに達する。内周面202b上のオイルOは、内周面202bの傾斜に沿って軸方向他方側へ移動し、内周面201bの軸方向他方側の端部から第2シャフト凹部21Bの外側へ流出する。本実施形態では、内周面202bが傾斜面であることにより、オイルOが内周面202b上に滞留することなく円滑にコイル32側へ移動する。 The oil O flowing from the second oil passage 62 into the third oil passage 63B flows into the second shaft recess 21B from the opening located on the surface 202c facing the other side of the connecting portion 21c in the axial direction. The oil O that has flowed into the second shaft recess 21B moves radially outward by centrifugal force and reaches the inner circumferential surface 202b of the rotor core holding portion 21b. The oil O on the inner peripheral surface 202b moves to the other side in the axial direction along the inclination of the inner peripheral surface 202b, and flows out from the end on the other axial side of the inner peripheral surface 201b to the outside of the second shaft recess 21B. . In the present embodiment, since the inner peripheral surface 202b is an inclined surface, the oil O smoothly moves toward the coil 32 without staying on the inner peripheral surface 202b.
 第2シャフト凹部21Bから流出したオイルOは、内周面202bの軸方向他方側の端部から直接径方向外側へ飛散し、あるいは、第2エンドプレート25の表面を伝わって径方向外側へ移動した後に飛散する。飛散したオイルOは、ステータ30のコイル32に付着し、コイル32を冷却する。 The oil O that has flowed out of the second shaft recess 21B scatters directly radially outward from the other axial end of the inner circumferential surface 202b, or moves radially outward along the surface of the second end plate 25. It flies after being done. The scattered oil O adheres to the coil 32 of the stator 30, and cools the coil 32.
 本実施形態の駆動装置1では、図1に示すように、油路の流路断面積が、第1油路61、第2油路62、第3油路63A、63Bの順に小さくなる。1本の第1油路61から複数の第2油路62が分岐され、さらに1本の第2油路62から2本の第3油路63A、63Bが分岐されるため、分岐される毎に油路を細くすることで、油路全体の流路断面積を維持し、オイルOを一定の圧力で搬送できる。これにより、オイルOの流れが分岐した油路の一方に偏ったり、油路中にエアが入り込んでオイルOが流れなくなる不具合を抑制できる。その結果、所定量のオイルOをコイル32に供給でき、コイル32を十分に冷却できる。 In the drive device 1 of the present embodiment, as shown in FIG. 1, the flow passage cross-sectional area of the oil passage decreases in the order of the first oil passage 61, the second oil passage 62, and the third oil passages 63A and 63B. Because a plurality of second oil passages 62 are branched from one first oil passage 61, and two third oil passages 63A and 63B are branched from one second oil passage 62, each time it is branched By making the oil passage thin, it is possible to maintain the flow passage cross-sectional area of the entire oil passage and to carry the oil O at a constant pressure. As a result, it is possible to suppress the problem that the flow of the oil O is biased to one of the branched oil passages, or that the air enters the oil passage and the oil O does not flow. As a result, a predetermined amount of oil O can be supplied to the coil 32, and the coil 32 can be sufficiently cooled.
 本実施形態において、第1油路61の流路断面積は、分岐される複数の第2油路62の流路断面積の和の90%以上110%以下としてもよい。分岐前後の流路断面積の変化率を10%以下に抑えることで、第1油路61から第2油路62へ流れるオイルOの圧力変動を抑制できる。これにより、コイル32へのオイルOの供給量が周方向でばらつくのを抑制できる。 In the present embodiment, the flow passage cross-sectional area of the first oil passage 61 may be 90% or more and 110% or less of the sum of the flow passage cross-sectional areas of the plurality of branched second oil passages 62. The pressure fluctuation of the oil O flowing from the first oil passage 61 to the second oil passage 62 can be suppressed by suppressing the change rate of the flow passage cross-sectional area before and after branching to 10% or less. As a result, the amount of oil O supplied to the coil 32 can be suppressed from fluctuating in the circumferential direction.
 本実施形態において、第2油路62の流路断面積は、分岐される第3油路63A、63Bの流路断面積の和の90%以上110%以下としてもよい。分岐前後の流路断面積の変化率を10%以下に抑えることで、第2油路62から2本の第3油路63A、63Bへ流れるオイルOの圧力変動を抑制できる。これにより、コイル32へのオイルOの供給量が、軸方向一方側と他方側でばらつくのを抑制できる。 In the present embodiment, the flow passage cross-sectional area of the second oil passage 62 may be 90% or more and 110% or less of the sum of the flow passage cross-sectional areas of the branched third oil passages 63A and 63B. By suppressing the change rate of the flow passage cross-sectional area before and after branching to 10% or less, the pressure fluctuation of the oil O flowing from the second oil passage 62 to the two third oil passages 63A and 63B can be suppressed. As a result, the amount of oil O supplied to the coil 32 can be suppressed from fluctuating on one side and the other side in the axial direction.
 第1油路61を流通するオイルOの一部は、第4油路64Aを通ってシャフト本体部21aの外周面の開口から流出し、ベアリング70に供給される。また、オイルOの他の一は、第1油路61から第4油路64Bを通ってシャフト本体部21aの外周面の開口から流出し、ベアリング71に供給される。これにより、オイルOは、ベアリング70,71の潤滑剤として利用される。 A part of the oil O flowing through the first oil passage 61 flows out of the opening of the outer peripheral surface of the shaft body 21a through the fourth oil passage 64A, and is supplied to the bearing 70. The other oil O flows from the opening of the outer peripheral surface of the shaft body 21a from the first oil passage 61 through the fourth oil passage 64B, and is supplied to the bearing 71. Thus, the oil O is used as a lubricant for the bearings 70, 71.
 本実施形態では、第4油路64A、64Bは、第1油路61から分岐される。したがって、上記流路断面積の関係は、第4油路64A、64Bの流路断面積を考慮してもよい。すなわち、第1油路61の流路断面積は、第1油路61から分岐される複数の第2油路62および第4油路64A、64Bの流路断面積の和の90%以上110%以下としてもよい。これにより、第1油路61から分岐される各油路において圧力変動を抑制でき、オイルOの吐出量がばらつくのを抑制できる。 In the present embodiment, the fourth oil passages 64A, 64B are branched from the first oil passage 61. Therefore, the relationship between the flow passage cross-sectional areas may be taken into consideration of the flow passage cross-sectional areas of the fourth oil passages 64A and 64B. That is, the flow passage cross-sectional area of the first oil passage 61 is at least 90% of the sum of the flow passage cross-sectional areas of the plurality of second oil passages 62 and the fourth oil passages 64A and 64B branched from the first oil passage 61 It may be% or less. As a result, pressure fluctuations can be suppressed in each oil passage branched from the first oil passage 61, and variation in the discharge amount of the oil O can be suppressed.
 以上のようにして、モータシャフト20aの回転によってポンプ部40を駆動し、ポンプ部40によってハウジング10に貯留されるオイルOを吸い上げてロータ20、ステータ30およびベアリング70,71に供給することができる。これにより、ハウジング10に貯留されるオイルOを利用して、ロータ20およびステータ30を冷却することができるとともに、ベアリング70,71とシャフト本体部21aとの間の潤滑性を向上できる。ステータ30およびベアリング70,71に供給されたオイルOは、収容部14内を落下して、再び収容部14の下側の領域に貯留される。これにより、収容部14内のオイルOを循環させることができる。 As described above, the pump portion 40 can be driven by the rotation of the motor shaft 20a, and the oil O stored in the housing 10 can be sucked up by the pump portion 40 and supplied to the rotor 20, the stator 30, and the bearings 70, 71. . Thus, the oil 20 stored in the housing 10 can be used to cool the rotor 20 and the stator 30, and the lubricity between the bearings 70 and 71 and the shaft main portion 21a can be improved. The oil O supplied to the stator 30 and the bearings 70 and 71 drops in the housing portion 14 and is stored again in the lower area of the housing portion 14. Thereby, the oil O in the accommodating part 14 can be circulated.
 本発明は上述の実施形態に限られず、他の構成を採用することもできる。
 図2は、変形例のロータ20Aを部分断面図である。
 図2に示すように、ロータ20Aのロータコア保持部21bは、内周面201bおよび内周面202bに、接続部21cとの接続位置からロータコア保持部21bの軸方向両側の開口端に向かってそれぞれ延びるフィン部210、211を有する。ロータ20Aの構成は、フィン部210、211以外は実施形態のロータ20と共通である。フィン部210、211は、例えば、軸方向に沿って延びる帯状の突起であり、内周面201b、202b上に周方向に並んで配置される。この構成によれば、第1シャフト凹部21A、第2シャフト凹部21B内に位置するオイルOをフィン部210、211によって軸方向に円滑に移動させることができる。これにより、オイルOが効率よくコイル32に供給される。上記構成において、フィン部210、211のうちのいずれか一方のみが設けられた構成としてもよい。
The present invention is not limited to the above-described embodiment, and other configurations can be adopted.
FIG. 2 is a partial cross-sectional view of a modified rotor 20A.
As shown in FIG. 2, the rotor core holding portion 21b of the rotor 20A is directed to the inner circumferential surface 201b and the inner circumferential surface 202b from the connection position with the connection portion 21c toward the opening end on both axial sides of the rotor core holding portion 21b. It has fin parts 210 and 211 which extend. The configuration of the rotor 20A is the same as that of the rotor 20 of the embodiment except for the fin portions 210 and 211. The fin portions 210 and 211 are, for example, strip-like protrusions extending along the axial direction, and are arranged in the circumferential direction on the inner circumferential surfaces 201 b and 202 b. According to this configuration, the oil O located in the first shaft recess 21A and the second shaft recess 21B can be smoothly moved in the axial direction by the fin portions 210 and 211. Thus, the oil O is efficiently supplied to the coil 32. In the above configuration, only one of the fin portions 210 and 211 may be provided.
 外歯歯車42は、取付部材50を介さずにシャフト本体部21aに直接的に固定されてもよい。この場合、第1油路61は、例えば、シャフト本体部21aの内部にのみ設けられてもよい。また、取付部材50は、シャフト本体部21aの外周面に固定されてもよい。 The external gear 42 may be directly fixed to the shaft body 21 a without the attachment member 50. In this case, the first oil passage 61 may be provided, for example, only inside the shaft body 21a. Also, the mounting member 50 may be fixed to the outer peripheral surface of the shaft main body 21 a.
 ロータコア22は、ロータコア保持部21bの外周面に圧入等により固定されてもよい。この場合に、ロータコア保持部21bのフランジ部203、第1エンドプレート24、および第2エンドプレート25は、それぞれ設けられなくてもよい。 The rotor core 22 may be fixed to the outer peripheral surface of the rotor core holding portion 21b by press fitting or the like. In this case, the flange portion 203, the first end plate 24, and the second end plate 25 of the rotor core holding portion 21b may not be provided.
 なお、上述した実施形態の駆動装置の用途は、特に限定されない。また、上述した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 In addition, the application of the drive device of embodiment mentioned above is not specifically limited. Moreover, each structure mentioned above can be combined suitably in the range which does not contradiction mutually.
 1…駆動装置、10…ハウジング、11…本体部、12e…ベアリング保持部、14…収容部、20…ロータ、20a…モータシャフト、21a…シャフト本体部、21b…ロータコア保持部、21c…接続部、22…ロータコア、30…ステータ、61…第1油路、62…第2油路、63A,63B…第3油路、64A,64B…第4油路、70,71…ベアリング、201a,202a…外周面、201b,202b…内周面、201c,202c…接続部の軸方向を向いた面、201d…斜面部、203…フランジ部、J1…中心軸、O…オイル DESCRIPTION OF SYMBOLS 1 ... Drive device, 10 ... Housing, 11 ... Body part, 12e ... Bearing holding part, 14 ... Housing part, 20 ... Rotor, 20a ... Motor shaft, 21a ... Shaft main body part, 21b ... Rotor core holding part, 21c ... Connection part , 22: rotor core, 30: stator, 61: first oil passage, 62: second oil passage, 63A, 63B, third oil passage, 64A, 64B, fourth oil passage, 70, 71, bearings, 201a, 202a ... outer peripheral surface, 201b, 202b ... inner peripheral surface, 201c, 202c ... surface facing in the axial direction of the connecting portion, 201d ... sloped portion, 203 ... flange portion, J1 ... central axis, O ... oil

Claims (13)

  1.  一方向に延びる中心軸に沿って配置されるモータシャフトおよび前記モータシャフトに固定されるロータコアを有するロータと、
     前記ロータと径方向に隙間を介して対向するステータと、
     前記ロータおよび前記ステータを収容するとともにオイルを貯留可能な収容部を有するハウジングと、
     を備え、
     前記モータシャフトは、
      中心軸に沿って延びるシャフト本体部と、
      前記シャフト本体部の径方向外側に位置する筒状のロータコア保持部と、
      前記シャフト本体部の外周面と前記ロータコア保持部の内周面とを径方向に繋ぐ接続部と、
      前記シャフト本体部の内部を軸方向に延び軸方向の端部に開口する第1油路と、
      前記第1油路から分岐され、前記接続部の内部を径方向に沿って延びる複数の第2油路と、
      前記第2油路から分岐されて前記接続部の内部を軸方向に沿って延び、前記接続部の軸方向一方側および他方側を向く面にそれぞれ開口する複数の第3油路と、
     を有し、
     前記第2油路の流路断面積は、前記第1油路の流路断面積よりも小さく、
     前記第3油路の流路断面積は、前記第2油路の流路断面積よりも小さい、駆動装置。
    A rotor having a motor shaft disposed along a central axis extending in one direction and a rotor core fixed to the motor shaft;
    A stator that faces the rotor in the radial direction via a gap;
    A housing that accommodates the rotor and the stator and has an accommodation portion capable of storing oil;
    Equipped with
    The motor shaft is
    A shaft body extending along a central axis,
    A cylindrical rotor core holding portion located radially outward of the shaft body portion;
    A connecting portion radially connecting an outer peripheral surface of the shaft main body and an inner peripheral surface of the rotor core holding portion;
    A first oil passage axially extending inside the shaft body and opening at an axial end;
    A plurality of second oil passages branched from the first oil passage and extending in the radial direction inside the connection portion;
    A plurality of third oil passages branched from the second oil passage and extending along the axial direction inside the connection portion, and opening in the surfaces facing the axial direction one side and the other side of the connection portion, respectively;
    Have
    The flow passage cross-sectional area of the second oil passage is smaller than the flow passage cross-sectional area of the first oil passage,
    A drive unit wherein a flow passage cross-sectional area of the third oil passage is smaller than a flow passage cross-sectional area of the second oil passage.
  2.  前記第1油路の流路断面積は、複数の前記第2油路の流路断面積の和の90%以上110%以下である、請求項1に記載の駆動装置。 The drive device according to claim 1, wherein a flow passage cross-sectional area of the first oil passage is 90% or more and 110% or less of a sum of the flow passage cross-sectional areas of the plurality of second oil passages.
  3.  前記第2油路の流路断面積は、複数の前記第3油路の流路断面積の和の90%以上110%以下である、請求項1または2に記載の駆動装置。 The drive device according to claim 1, wherein a flow passage cross-sectional area of the second oil passage is 90% or more and 110% or less of a sum of the flow passage cross-sectional areas of the plurality of third oil passages.
  4.  前記シャフト本体部を支持するベアリングを有し、
     前記モータシャフトは、前記第1油路から分岐され前記ベアリングに臨む位置に開口する第4油路を有する、請求項1から3のいずれか1項に記載の駆動装置。
    A bearing for supporting the shaft body,
    The drive device according to any one of claims 1 to 3, wherein the motor shaft has a fourth oil passage branched from the first oil passage and opened at a position facing the bearing.
  5.  前記第3油路は、前記接続部の径方向の中央部に開口する、請求項1から4のいずれか1項に記載の駆動装置。 The drive device according to any one of claims 1 to 4, wherein the third oil passage opens at a radial center of the connection portion.
  6.  前記ロータコア保持部の内周面は、前記接続部との接続位置から前記ロータコア保持部の軸方向の開口端に向かうに従って、径方向外側へ傾斜する、請求項1から5のいずれか1項に記載の駆動装置。 The inner circumferential surface of the rotor core holding portion is inclined radially outward from the connection position with the connection portion toward the opening end in the axial direction of the rotor core holding portion. The drive described.
  7.  前記ロータコア保持部の内周面は、軸方向の開口側の端部に曲面形状の斜面部を有する、請求項1から6のいずれか1項に記載の駆動装置。 The drive device according to any one of claims 1 to 6, wherein an inner circumferential surface of the rotor core holding portion has a sloped surface having a curved surface shape at an end portion on the opening side in the axial direction.
  8.  前記ロータコア保持部は、前記ロータコア保持部の内周面に、前記接続部との接続位置から前記ロータコア保持部の軸方向の開口端に向かって延びるフィン部を有する、請求項1から7のいずれか1項に記載の駆動装置。 8. The rotor core holding portion according to any one of claims 1 to 7, wherein the inner peripheral surface of the rotor core holding portion has a fin portion extending from the connection position with the connection portion toward the opening end in the axial direction of the rotor core holding portion. The drive device according to any one of the preceding claims.
  9.  前記ロータコア保持部は、軸方向の開口端から径方向外側へ拡がるフランジ部を有する、請求項1から8のいずれか1項に記載の駆動装置。 The drive device according to any one of claims 1 to 8, wherein the rotor core holding portion has a flange portion that extends radially outward from an axial open end.
  10.  前記シャフト本体部を支持するベアリングを有し、
     前記ハウジングは、前記ベアリングを保持するベアリング保持部を有し、
     前記ベアリング保持部の少なくとも一部は、径方向に見て、前記ロータコア保持部と重なる、請求項1から9のいずれか1項に記載の駆動装置。
    A bearing for supporting the shaft body,
    The housing has a bearing holder that holds the bearing.
    The drive device according to any one of claims 1 to 9, wherein at least a part of the bearing holding portion overlaps with the rotor core holding portion when viewed in the radial direction.
  11.  前記ベアリング保持部の外周面は、前記ロータコア保持部の内側から前記ベアリング保持部側へ向かうに従って径方向外側に傾斜する傾斜面である、請求項10に記載の駆動装置。 The drive device according to claim 10, wherein the outer peripheral surface of the bearing holding portion is an inclined surface which is inclined radially outward from the inner side of the rotor core holding portion toward the bearing holding portion side.
  12.  前記ベアリング保持部は、前記ロータコア保持部の軸方向を向いた面と対向する面を有する、請求項11に記載の駆動装置。 The drive device according to claim 11, wherein the bearing holding portion has a surface facing a surface facing in the axial direction of the rotor core holding portion.
  13.  前記第2油路は、前記接続部および前記ロータコア保持部の内部を径方向に延び、前記ロータコア保持部の外周面に開口する、請求項1から12のいずれか1項に記載の駆動装置。 The drive device according to any one of claims 1 to 12, wherein the second oil passage extends radially in the inside of the connection portion and the rotor core holding portion, and opens at an outer peripheral surface of the rotor core holding portion.
PCT/JP2018/023304 2017-08-25 2018-06-19 Drive device WO2019039060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880050820.8A CN111033969B (en) 2017-08-25 2018-06-19 Drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-162675 2017-08-25
JP2017162675 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039060A1 true WO2019039060A1 (en) 2019-02-28

Family

ID=65438625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023304 WO2019039060A1 (en) 2017-08-25 2018-06-19 Drive device

Country Status (2)

Country Link
CN (1) CN111033969B (en)
WO (1) WO2019039060A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467912A (en) * 2020-11-18 2021-03-09 珠海格力电器股份有限公司 Oil cooling mechanism for motor, oil cooling system and motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213231A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Electric motor
JP2009291056A (en) * 2008-06-02 2009-12-10 Ntn Corp Motor cooling structure
JP2016086462A (en) * 2014-10-23 2016-05-19 トヨタ自動車株式会社 Rotor for rotary electric machine
JP2017131078A (en) * 2016-01-22 2017-07-27 Ntn株式会社 Cooling structure of motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3967624B2 (en) * 2002-04-26 2007-08-29 株式会社日本自動車部品総合研究所 Electric motor
US7002267B2 (en) * 2004-03-22 2006-02-21 General Motors Corporation Method and apparatus for cooling a hybrid transmission electric motor
JP4550631B2 (en) * 2005-03-11 2010-09-22 本田技研工業株式会社 Wheel drive device for vehicle
US20080135339A1 (en) * 2006-11-17 2008-06-12 Miller Kent A Method and apparatus for cooling and lubricating an off-axis motor/generator
JP5448559B2 (en) * 2009-05-07 2014-03-19 Ntn株式会社 Motor cooling structure
JP5738007B2 (en) * 2011-03-02 2015-06-17 株式会社小松製作所 Electric motor cooling structure and electric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213231A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Electric motor
JP2009291056A (en) * 2008-06-02 2009-12-10 Ntn Corp Motor cooling structure
JP2016086462A (en) * 2014-10-23 2016-05-19 トヨタ自動車株式会社 Rotor for rotary electric machine
JP2017131078A (en) * 2016-01-22 2017-07-27 Ntn株式会社 Cooling structure of motor

Also Published As

Publication number Publication date
CN111033969A (en) 2020-04-17
CN111033969B (en) 2022-04-15

Similar Documents

Publication Publication Date Title
US10941768B2 (en) Drive device
US9960649B2 (en) Rotating electric machine
EP2977615A1 (en) Electric pump
CN109565222B (en) Drive device
US20180278117A1 (en) Electric motor
WO2018030324A1 (en) Drive device
US10084359B2 (en) Electric motor
JP2016023635A (en) Motor pump
JP2023006089A (en) Motor and drive device
WO2018030325A1 (en) Drive device
TW202315282A (en) Drive apparatus
JP2018014857A (en) Cooling structure of electric motor
US10958137B2 (en) Drive device
WO2019039060A1 (en) Drive device
JP7010224B2 (en) Drive
JP2023006084A (en) Drive device and vehicle
JP2023006087A (en) Drive device and vehicle
JP2022129781A (en) motor
JP2023006085A (en) Drive device and vehicle
CN111033971B (en) Drive device
US10284048B2 (en) Electric motor for suppressing entry of foreign substances
WO2020031999A1 (en) Motor
JP2022129782A (en) motor
JP2022128745A (en) Rotary electric machine and driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP