WO2019036777A1 - Process for producing silver biosynthetic nanoparticles, the silver biosynthetic nanoparticles produced and use thereof - Google Patents

Process for producing silver biosynthetic nanoparticles, the silver biosynthetic nanoparticles produced and use thereof Download PDF

Info

Publication number
WO2019036777A1
WO2019036777A1 PCT/BR2018/000050 BR2018000050W WO2019036777A1 WO 2019036777 A1 WO2019036777 A1 WO 2019036777A1 BR 2018000050 W BR2018000050 W BR 2018000050W WO 2019036777 A1 WO2019036777 A1 WO 2019036777A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
silver
biosynthetic
process according
biomass
Prior art date
Application number
PCT/BR2018/000050
Other languages
French (fr)
Portuguese (pt)
Inventor
Wagner José FAVARO
Luiz Alberto Bandeira FERREIRA
Patrick Vianna GARCIA
Marcelo Bispo DE JESUS
Nelson Eduardo Duran Caballero
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2019036777A1 publication Critical patent/WO2019036777A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/38Silver; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/77Fusarium

Definitions

  • the present invention is in the field of application of medical science, more specifically, in the field of drugs for the treatment of disorders of the urinary bladder system, since it relates to a process for obtaining silver biosynthetic nanoparticles in the aqueous dispersion for incorporation into a pharmaceutical or veterinary base for the treatment of bladder cancer.
  • Nanotechnology has been presented as a very innovative area in the improvement of industrialized products and especially in the development of more effective drugs with less toxic effects. Because it is a new perspective in the search for therapeutic alternatives for some diseases whose cure is still unknown, the interaction between nanomaterials and biological systems has aroused an increasing interest in science.
  • invasive urothelial bladder carcinoma is a potentially lethal disease requiring aggressive treatment, and if left untreated, less than 15% of patients survive two years.
  • few pharmacological and therapeutic alternatives are effective in their more advanced stages.
  • the present invention proposes a silver biosynthetic nanoparticle in the form of aqueous dispersion for instillation or for incorporation into a base pharmaceutical or veterinary treatment for the treatment of bladder cancer.
  • These nanoparticles are obtained by reducing the silver by enzymes and substrates present in solution obtained after the filtration of the biomass of the fungus Fusarium Oxysporum.
  • the processes described differ from the process proposed by the present invention, mainly by not standardizing the parameters for obtaining the biomass and silver reduction mechanism, such as established spore quantification, time, temperature, agitation and AgNO3 concentration. In this sense, it is important to emphasize that the standard parameters of the process proposed by the present invention are considered essential to achieve the differentiated characteristics presented by the proposed silver biosynthetic nanoparticles.
  • the present invention relates to a process for obtaining silver biosynthetic nanoparticles through of silver reduction by enzymes and substrates present in solution obtained after the filtration of the biomass of the fungus Fusarium Oxysporum.
  • the process proposed by the present invention consists in the addition of silver nitrate to the fungal extract solution containing reductases which will reduce the Ag + silver ions to silver Ag 0 , and comprises the steps of: a) Production of spores in solid medium; b) Standardization of spore solution for inoculation; c) Production of biomass in liquid medium d) Filtration and obtaining biomass; e) Extraction of reductase and quinone cofactors; f) Reduction of Ag + and formation of nanoparticles; eg) silver nanoparticles were washed by centrifugation.
  • the proposed process allows obtaining spherical silver nanoparticles (AgNP) with a narrow size range (low polydispersity), with an average diameter of approximately 100 nm, already stabilized by proteins of the microorganism itself, without the need for surfactant addition.
  • the present invention relates to such nanoparticles obtained, as well as to the use thereof, for the preparation of a medicament for treating bladder cancer, since through preliminary tests, the biosynthetic AgNPs promoted considerable regression of the bladder tumor induced by the carcinogen MNU, especially when the concentration of 0.05mg / mL was used.
  • Figure 1 AB graphically depicts (A) the determination of IC 50 in bladder carcinoma 5637, and (B) a cytotoxicity of AgNP as a function of time.
  • Figure 2 A-F are images representing photomicrographs of the urinary bladders of the Control (A, B) and MNU groups (C, D, E, F).
  • Figure 3 AF are images representing photons of urinary bladders of groups MNU + AgNP 0.5 (A, B), MNU + AgNP 0.2 (C, D) and MNU + AgNP 0.05 (E, F).
  • the present invention relates to a process for the preparation of silver biosynthetic nanoparticles in the form of aqueous dispersion for instillation or for incorporation into a pharmaceutical or veterinary base for the treatment of bladder cancer.
  • step "a" for the production of spores, the fungus species Fusarium oxysporum, was used. preferably strain ATCC 9848.
  • stage "a" for the production of the fungi Fusarium oxysporum (ATCC 9848) in solid medium, Petri dishes containing 3.9% Dextrose Potato Agar-PDA medium (potato dextrose agar) are prepared. After solidification of the medium, the fungus is inoculated from F. oxysporum samples that were preserved in cryotubes with glycerol at -80 ° C. Thus, the plates were kept in greenhouses at a temperature of 33 ° C, without light. The plates remained in these conditions for another 7 days and were evaluated. At the end of 14 days the test was finalized.
  • Dextrose Potato Agar-PDA medium potato dextrose agar
  • step "b" after growth of F. oxysporum in solid medium, according to item (a), the spores obtained from the plates in PDA medium were removed with the aid of a handle of Drigalski disposable in 50 mL of 0.9% saline solution and 20 to 1% Tweem. The obtained suspension was pipetted into sterile flask, then spectrophotometer readings were taken at wavelength of 530 nm. The spore concentration was standardized from the absorbance between 0.15 and 0.17, which is equivalent to 10 6 CFU / ml.
  • step "c” 10% of the standardized spore suspension was used to inoculate in Erlenmeyer flasks, containing 50 mL of medium with 0.5% yeast and 2% malt extract. The inoculum is then incubated on an orbital shaker (Shaker) at 20-28 ° C and 100 rpm for a period of 7 days.
  • an orbital shaker Shaker
  • step “d” after growth of the biomass according to step “c", the contents are subjected to vacuum filtration on Buckner funnel with filter paper (Nl), previously dried in an oven at 80 ° C for 24 h and weighed. All filtered material was discarded, the biomass of the fungus retained on the filter paper was extracted and washed three times with water by centrifugation, presenting the brownish-reddish coloration.
  • step "e” the filtered and washed biomass was added in distilled and sterilized water, in a ratio of 20 grams of biomass to 100 ml of water (1: 5). Then, the solution was incubated at 28 ° C, 120 rpm on shaker for 5 days (where protein release kinetics was higher) for the extraction of the quinone reductase and cofactors.
  • step "f” quantities of AgNO3 were added to the solution obtained in step “e” to obtain a final concentration solution of 1.0 x 10 -2 M.
  • AgNP formation was monitored by observation of change in the coloration of the solution to reddish-brown and by spectrophotometer readings with a range of 300-700 nm, for up to 72h (approximate time to stabilize the reduction process).
  • the highest plasmon resonance band intensity appears at 440 nm, which represents the typical metallic silver band at 100 nm sizes.
  • step "f" the nanoparticles were washed by ultracentrifugation at 50,000 rpm for 30 min, 3 times, in order to separate the proteins bound from the particles present in solution. At each ultracentrifugation, the supernatant was discarded and 10.0 mL of distilled water were added. In the last ultracentrifugation, total protein quantification of the supernatant of the sample was performed by the Bradford method (1976). If it contains detectable protein concentrations, further washing steps should be taken.
  • the biosynthesis process proposed by the present invention makes it possible to obtain spherical silver nanoparticles having unique characteristics with a narrow range of hydrodynamic diameter, already stabilized by proteins of the microorganism itself, without the need for addition of surfactants.
  • the present invention relates to silver biosynthetic nanoparticles obtained in the form of aqueous dispersion for instillation or for incorporation into a pharmaceutical or veterinary base for the treatment of bladder cancer.
  • Said nanoparticles have the maximum plasmonic band absorption at 440 nm and metal silver concentration at 1.0 x 10 -2 M.
  • the nanoparticles had the mean hydrodynamic diameter (DHM) of 104.1 nm ⁇ 2.1 and a polydispersity index of 0.317 ⁇ 0.025.
  • the nanoparticles presented the Zeta Potential of -28.8 mV ⁇ 1.7 mV, which suggests a low tendency for aggregation, because in module, the presence of strong electric charges on the surface of the particles prevents the agglomeration of particles due to difference.
  • the present invention relates to the use of the nanoparticles obtained for the preparation of a medicament for treating cancer, preferably bladder cancer, more preferably non-muscle invasive urinary bladder cancer (CBNMI), especially when it is used at a concentration of 0.05 mg / mL.
  • CBNMI non-muscle invasive urinary bladder cancer
  • MNU Cancer
  • Group received an intravesical dose of 0.1 mL of 0.9% physiological solution for 3 consecutive weeks
  • Group MNU + AgNP 0.5 mg / mL received an intravesical dose of 0.5 mg / mL AgNP for 3 consecutive weeks
  • Group MNU + AgNP 0.2 mg / mL received an intravesical dose of 0.2 mg / mL AgNP for 3 consecutive weeks
  • Group MNU + AgNP 0.05 mg / mL received an intravesical dose of 0.05 mg / mL AgNP for 3 consecutive weeks.
  • the samples were collected, fixed in Bouin's solution, included in Paraplast Plus (Sigma, St. Louis, MO, USA), sectioned and stained in Hematoxylin-Eosin.
  • the urothelial lesions were classified according to the staging proposed by the consensus of the World Health Organization / International Society of Urological Pathology
  • Table 1 Percentage of histopathological changes in the urinary bladder of mice from the different experimental groups.
  • pT1 carcinoma was characterized by neoplastic cells grouped into small clusters or cords invading the lamina intestinal, numerous mitotic figures and pleomorphic cells with enlarged nuclei.
  • the papillary urothelial carcinoma (pTa) was characterized by extensive papillary lesions, urothelial cells with disordered arrangement and loss of polarity, intense cellular pleomorphism and numerous mitosis figures.
  • the most frequent neoplastic lesions in the MNU + AgNP 0.5 mg / mL group were pTa (Figure 3a) and pTis (Figure 3b) in 50% and 50% of the animals, respectively (Table 1), indicating that this treatment was not effective in regressing the neoplastic lesions.
  • the pTis carcinoma was characterized by a disordered proliferation of urothelial cells (hyperplasia) in a flat urothelium, with marked cellular atypia characterized by bulky nuclei, reduced cytoplasm, and multiple and prominent nucleoli.
  • the biosynthetic AgNPs of the present invention promoted considerable regression of the MNU carcinogen-induced bladder tumor, especially when using concentrations of 0.2 mg / mL to 0.05 mg / mL, demonstrating is a promising drug candidate in the treatment of non-muscle invasive bladder cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a process for producing silver biosynthetic nanoparticles by reducing silver using enzymes and substrates present in solution obtained after filtering biomass from the fungus Fusarium oxysporum. In addition, the present invention relates to said nanoparticles produced, as well as to use thereof for preparing a medicament for treating bladder cancer.

Description

PROCESSO DE OBTENÇÃO DE NANOPARTíCULAS BIOSSINTÉTICAS DE PRATA, NANOPARTíCULAS BIOSSINTÉTICAS DE PRATA OBTIDAS E  PROCESS FOR OBTAINING SILVER BIOSYNTHETIC NANOPARTALS, SILICON BIOSYTHETIC NANOPARTALS OBTAINED AND
SEU USO  YOUR USE
Campo da invenção :  Field of the Invention:
[1] A presente invenção se insere no campo de aplicação da ciência médica, mais especificamente, na área de fármacos para o tratamento de distúrbios do sistema urinário da bexiga, uma vez que se refere a um processo de obtenção de nanoparticulas biossintéticas de prata na forma de dispersão aquosa para incorporação em uma base farmacêutica ou veterinária para o tratamento de câncer de bexiga.  The present invention is in the field of application of medical science, more specifically, in the field of drugs for the treatment of disorders of the urinary bladder system, since it relates to a process for obtaining silver biosynthetic nanoparticles in the aqueous dispersion for incorporation into a pharmaceutical or veterinary base for the treatment of bladder cancer.
Fundamentos da invenção:  Background of the invention:
[2] A nanotecnologia tem se apresentado como uma área bastante inovadora no aprimoramento de produtos industrializados e principalmente no desenvolvimento de medicamentos mais eficazes e com menos efeitos tóxicos. Por se constituir como uma nova perspectiva na busca de alternativas terapêuticas para algumas doenças cuja cura ainda é desconhecida, a interação entre nanomateriais e sistemas biológicos desperta cada vez mais interesse da ciência .  Nanotechnology has been presented as a very innovative area in the improvement of industrialized products and especially in the development of more effective drugs with less toxic effects. Because it is a new perspective in the search for therapeutic alternatives for some diseases whose cure is still unknown, the interaction between nanomaterials and biological systems has aroused an increasing interest in science.
[3] Por exemplo, o carcinoma urotelial invasivo de bexiga é uma doença potencialmente letal que requer tratamento agressivo e, se não tratados, menos de 15% dos pacientes sobrevivem dois anos. Além disso, poucas alternativas farmacológicas e terapêuticas são eficientes em seus estágios mais avançados.  [3] For example, invasive urothelial bladder carcinoma is a potentially lethal disease requiring aggressive treatment, and if left untreated, less than 15% of patients survive two years. In addition, few pharmacological and therapeutic alternatives are effective in their more advanced stages.
[4] Nesta linha, a presente invenção propõe uma nanoparticulas biossintéticas de prata na forma de dispersão aquosa para instilação ou para incorporação em uma base farmacêutica ou veterinária para o tratamento de câncer de bexiga. As referidas nanoparticulas são obtidas através da redução da prata por enzimas e substratos presentes em solução obtidas após a filtração da biomassa do fungo Fusaríum oxysporum. [4] In this vein, the present invention proposes a silver biosynthetic nanoparticle in the form of aqueous dispersion for instillation or for incorporation into a base pharmaceutical or veterinary treatment for the treatment of bladder cancer. These nanoparticles are obtained by reducing the silver by enzymes and substrates present in solution obtained after the filtration of the biomass of the fungus Fusarium Oxysporum.
[5] No estado da técnica, alguns documentos, tais como TW200902722, PI 0605681-4 e US2009148484 , descrevem um processo de obtenção de nanoparticulas de prata biogênica por Fusaríum oxysporum.  [5] In the state of the art, some documents, such as TW200902722, PI 0605681-4 and US2009148484, describe a process for obtaining biogenic silver nanoparticles by Fusarium oxysporum.
[6] Todavia, os processos descritos diferem do processo proposto pela presente invenção, principalmente por não padronizarem os parâmetros para obtenção da biomassa e mecanismo de redução da prata, tais como quantificação de esporos, tempo, temperatura, agitação e concentração de AgN03 estabelecidos. Nesse sentido, é importante ressaltar que os parâmetros padronizados do processo proposto pela presente invenção são considerados essenciais para se atingir as características diferenciadas apresentadas pelas nanoparticulas biossintéticas de prata propostas.  [6] However, the processes described differ from the process proposed by the present invention, mainly by not standardizing the parameters for obtaining the biomass and silver reduction mechanism, such as established spore quantification, time, temperature, agitation and AgNO3 concentration. In this sense, it is important to emphasize that the standard parameters of the process proposed by the present invention are considered essential to achieve the differentiated characteristics presented by the proposed silver biosynthetic nanoparticles.
[7] Portanto, nenhum documento do estado da técnica descreve nanoparticulas de prata biossintéticas com características únicas, com uma faixa estreita de diâmetro hidrodinâmico, já estabilizadas por proteínas do próprio microrganismo, não sendo necessário a adição de surfactantes , promissoras candidatas a fármaco para o tratamento do câncer de bexiga ín vivo, tal como proposto pela presente invenção.  Therefore, no prior art document describes biosynthetic silver nanoparticles having unique characteristics, with a narrow range of hydrodynamic diameter, already stabilized by proteins of the microorganism itself, and there is no need for the addition of surfactants, promising drug candidates for the treatment of in vivo bladder cancer, as proposed by the present invention.
Breve descrição da invenção:  BRIEF DESCRIPTION OF THE INVENTION:
[8] A presente invenção refere-se a um processo de obtenção de nanoparticulas biossintéticas de prata através da redução da prata por enzimas e substratos presentes em solução obtidas após a filtração da biomassa do fungo Fusaríum oxysporum. O processo proposto pela presente invenção consiste na adição de nitrato de prata à solução de extrato fúngico contendo redutases que irão reduzir os ions prata Ag+ para prata Ag0, e compreende as etapas de; a) Produção de esporos em meio sólido; b) Padronização da solução de esporos para inoculação; c) Produção da biomassa em meio liquido d) Filtração e obtenção da biomassa; e) Extração de redutases e cofatores quinónicos; f) Redução da Ag+ e formação das nanoparticulas ; e g) Lavagem das nanoparticulas de prata por centrifugação. The present invention relates to a process for obtaining silver biosynthetic nanoparticles through of silver reduction by enzymes and substrates present in solution obtained after the filtration of the biomass of the fungus Fusarium Oxysporum. The process proposed by the present invention consists in the addition of silver nitrate to the fungal extract solution containing reductases which will reduce the Ag + silver ions to silver Ag 0 , and comprises the steps of: a) Production of spores in solid medium; b) Standardization of spore solution for inoculation; c) Production of biomass in liquid medium d) Filtration and obtaining biomass; e) Extraction of reductase and quinone cofactors; f) Reduction of Ag + and formation of nanoparticles; eg) silver nanoparticles were washed by centrifugation.
[9] Portanto, o processo proposto possibilita obter nanoparticulas de prata (AgNP) esféricas com faixa estreita de tamanho (baixa polidispersividade) , com odiâmetro médio de aproximadamente lOOnm, já estabilizadas por proteínas do próprio microrganismo, não sendo necessário a adição de surfactantes . Adicionalmente, a presente invenção refere-se as referidas nanoparticulas obtidas, assim como ao uso das mesmas para o preparo de um medicamento para tratar o câncer de bexiga, uma vez que através de ensaios preliminares, as AgNP biossintéticas promoveram considerável regressão do tumor de bexiga induzido pelo carcinógeno MNU, principalmente quando utilizado a concentração de 0,05mg/mL.  [9] Therefore, the proposed process allows obtaining spherical silver nanoparticles (AgNP) with a narrow size range (low polydispersity), with an average diameter of approximately 100 nm, already stabilized by proteins of the microorganism itself, without the need for surfactant addition. In addition, the present invention relates to such nanoparticles obtained, as well as to the use thereof, for the preparation of a medicament for treating bladder cancer, since through preliminary tests, the biosynthetic AgNPs promoted considerable regression of the bladder tumor induced by the carcinogen MNU, especially when the concentration of 0.05mg / mL was used.
Breve descrição das figuras:  Brief description of the figures:
[10] Para obter completa visualização do objeto desta invenção, são apresentadas as figuras as quais se faz referências, conforme se segue.  [10] For a full disclosure of the subject matter of this invention, there are shown the reference figures, as follows.
[11] A Figura 1 A-B representa graficamente (A) a determinação do IC50 em carcinoma de bexiga 5637, e (B) a citotoxicidade das AgNP em função do tempo. Figure 1 AB graphically depicts (A) the determination of IC 50 in bladder carcinoma 5637, and (B) a cytotoxicity of AgNP as a function of time.
[12] A Figura 2 A-F são imagens que representam fotomicrografias das bexigas urinárias dos grupos Controle (A, B) e MNU (C, D, E, F) .  [2] Figure 2 A-F are images representing photomicrographs of the urinary bladders of the Control (A, B) and MNU groups (C, D, E, F).
[13] A Figura 3 A-F são imagens que representam fotomicrografias das bexigas urinárias dos grupos MNU + AgNP 0,5 (A, B) , MNU + AgNP 0,2 (C, D) e MNU + AgNP 0,05 (E, F) .  [13] Figure 3 AF are images representing photons of urinary bladders of groups MNU + AgNP 0.5 (A, B), MNU + AgNP 0.2 (C, D) and MNU + AgNP 0.05 (E, F).
Descrição detalhada da invenção:  Detailed description of the invention:
[14] A presente invenção refere-se a um processo de obtenção de nanoparticulas biossintéticas de prata na forma de dispersão aquosa para instilação ou para incorporação em uma base farmacêutica ou veterinária para o tratamento de câncer de bexiga.  The present invention relates to a process for the preparation of silver biosynthetic nanoparticles in the form of aqueous dispersion for instillation or for incorporation into a pharmaceutical or veterinary base for the treatment of bladder cancer.
[15] O referido processo é considerado essencial para se atingir as características diferenciadas apresentadas pelas nanoparticulas obtidas. Assim, o referido processo compreende as etapas a seguir:  [15] Said process is considered essential to achieve the differentiated characteristics presented by the nanoparticles obtained. Accordingly, said process comprises the following steps:
a) Produção de esporos em meio sólido;  a) Production of spores in solid medium;
b) Padronização da solução de esporos para  b) Standardization of the spore solution for
inoculação ;  inoculation;
c) Produção da biomassa em meio líquido;  c) Production of biomass in liquid medium;
d) Filtração e obtenção da biomassa;  d) Filtration and obtaining the biomass;
e) Extração de redutases e cofatores quinónicos;  e) Extraction of reductase and quinone cofactors;
f) Redução da Ag+ e formação das nanoparticulas; e g) Lavagem das nanoparticulas por centrifugação. f) Reduction of Ag + and formation of nanoparticles; and g) washing the nanoparticles by centrifugation.
[16] Na etapa "a", para a produção de esporos, utilizou- se a espécie do fungo Fusaríum oxysporum,. preferencialmente a cepa ATCC 9848.  [16] In step "a", for the production of spores, the fungus species Fusarium oxysporum, was used. preferably strain ATCC 9848.
[17] Ainda, na etapa "a", para a produção dos esporos do fungo Fusaríum oxysporum (ATCC 9848) em meio sólido, prepara-se placas de Petri contendo de 3,9% de meio Agar Dextrose Batata - PDA (do inglês, potato dextrose agar) . Após solidificação do meio, realiza-se a inoculação do fungo a partir das amostras de F. oxysporum que encontravam-se preservadas em criotubos com glicerol em -80°C. Assim, as foram placas mantidas em estufas na temperatura de 33°C, sem luminosidade. As placas permaneceram nestas condições por mais 7 dias e foram avaliadas. Ao final de 14 dias o ensaio foi finalizado. [17] Also, in stage "a", for the production of the fungi Fusarium oxysporum (ATCC 9848) in solid medium, Petri dishes containing 3.9% Dextrose Potato Agar-PDA medium (potato dextrose agar) are prepared. After solidification of the medium, the fungus is inoculated from F. oxysporum samples that were preserved in cryotubes with glycerol at -80 ° C. Thus, the plates were kept in greenhouses at a temperature of 33 ° C, without light. The plates remained in these conditions for another 7 days and were evaluated. At the end of 14 days the test was finalized.
[18] Para a padronização da solução de esporos para inoculação, na etapa "b", após crescimento do F. oxysporum em meio sólido, conforme item (a) , os esporos obtidos das placas em meio PDA foram removidos com o auxilio de alça de Drigalski descartável em 50 mL de solução salina 0,9% e Tweem 20 a 1%. A suspensão obtida foi pipetada para frasco esterilizado, em seguida foram feitas leituras em espectrofotômetro no comprimento de onda de 530 nm. A concentração de esporos foi padronizada a partir da absorbância entre 0,15 a 0,17, que é equivalente a concentração de 106UFC/mL. [18] For the standardization of the spore solution for inoculation, in step "b", after growth of F. oxysporum in solid medium, according to item (a), the spores obtained from the plates in PDA medium were removed with the aid of a handle of Drigalski disposable in 50 mL of 0.9% saline solution and 20 to 1% Tweem. The obtained suspension was pipetted into sterile flask, then spectrophotometer readings were taken at wavelength of 530 nm. The spore concentration was standardized from the absorbance between 0.15 and 0.17, which is equivalent to 10 6 CFU / ml.
[19] Para a produção de biomassa por F. oxysporum em meio liquido, na etapa "c", utilizou-se 10% da suspensão de esporos padronizada para inocular em frascos Erlenmeyer, contendo 50 mL de meio com 0,5% extrato de levedura e 2% de extrato de malte. Em seguida, o inoculo é incubado em agitador orbital (Shaker) a 20-28°C e 100 rpm, por um período de 7 dias.  [19] For the production of biomass by F. oxysporum in liquid medium, in step "c", 10% of the standardized spore suspension was used to inoculate in Erlenmeyer flasks, containing 50 mL of medium with 0.5% yeast and 2% malt extract. The inoculum is then incubated on an orbital shaker (Shaker) at 20-28 ° C and 100 rpm for a period of 7 days.
[20] Na etapa "d", após a crescimento da biomassa, de acordo com a etapa "c", o conteúdo é submetido a filtração à vácuo em funil de Buckner com papel de filtro (N.l), previamente seco em estufa a 80°C por 24 h e pesado. Todo material filtrado foi descartando, a biomassa do fungo retida no papel de filtro foi extraída e lavada três vezes com água por centrifugação, apresentando a coloração marron- avermelhada . [20] In step "d", after growth of the biomass according to step "c", the contents are subjected to vacuum filtration on Buckner funnel with filter paper (Nl), previously dried in an oven at 80 ° C for 24 h and weighed. All filtered material was discarded, the biomass of the fungus retained on the filter paper was extracted and washed three times with water by centrifugation, presenting the brownish-reddish coloration.
[21] Na etapa "e", a biomassa filtrada e lavada foi adicionada em água destilada e esterilizada, em relação de 20 gramas de biomassa para 100 mL água (1:5) . Em seguida, a solução foi incubada à 28°C, 120 rpm em agitador orbital (Shaker) , por 5 dias (onde a cinética de liberação da proteína se mostrou maior) para a extração das redutases e cofatores quinónicos.  [21] In step "e", the filtered and washed biomass was added in distilled and sterilized water, in a ratio of 20 grams of biomass to 100 ml of water (1: 5). Then, the solution was incubated at 28 ° C, 120 rpm on shaker for 5 days (where protein release kinetics was higher) for the extraction of the quinone reductase and cofactors.
[22] Na etapa "f", adicionou-se na solução obtida na etapa "e" quantidades de AgN03 para a obtenção de solução de concentração final de 1,0 x 10~2 M. A formação das AgNP foi acompanhada através observação da alteração da coloração da solução para marrom-avermelhada e por leituras em espectrofotômetro com intervalo de 300-700 nm, por até 72h (tempo aproximado de estabilização do processo de redução) . A maior intensidade de banda plasmônica de ressonância aparece 440 nm, que representa a típica banda de prata metálica para tamanhos de 100 nm. [22] In step "f", quantities of AgNO3 were added to the solution obtained in step "e" to obtain a final concentration solution of 1.0 x 10 -2 M. AgNP formation was monitored by observation of change in the coloration of the solution to reddish-brown and by spectrophotometer readings with a range of 300-700 nm, for up to 72h (approximate time to stabilize the reduction process). The highest plasmon resonance band intensity appears at 440 nm, which represents the typical metallic silver band at 100 nm sizes.
[23] Por fim, na etapa "f", as nanopartícuias foram lavadas por ultracentrifugação à 50.000 rpm por 30 min, por 3 vezes, com o objetivo de separar as proteínas ligadas as partículas daquelas presentes em solução. A cada ultracentrifugação, o sobrenadante foi descartado e 10,0 mL de água destilada foram adicionadas. Na última ultracentrifugação, realizou-se a quantificação de proteínas totais do sobrenadante da amostra pelo método de Bradford (1976) . Caso contenha concentrações proteicas detectáveis, mais etapas de lavagem deverão ser feitas. Finally, in step "f", the nanoparticles were washed by ultracentrifugation at 50,000 rpm for 30 min, 3 times, in order to separate the proteins bound from the particles present in solution. At each ultracentrifugation, the supernatant was discarded and 10.0 mL of distilled water were added. In the last ultracentrifugation, total protein quantification of the supernatant of the sample was performed by the Bradford method (1976). If it contains detectable protein concentrations, further washing steps should be taken.
[24] Portanto, o processo de biossintese proposto pela presente invenção, possibilita obter nanoparticulas de prata esféricas com características únicas, com uma faixa estreita de diâmetro hidrodinâmico, já estabilizadas por proteínas do próprio microrganismo, não sendo necessário a adição de surfactantes .  Therefore, the biosynthesis process proposed by the present invention makes it possible to obtain spherical silver nanoparticles having unique characteristics with a narrow range of hydrodynamic diameter, already stabilized by proteins of the microorganism itself, without the need for addition of surfactants.
[25] Adicionalmente, a presente invenção refere-se às nanoparticulas biossintéticas de prata obtidas na forma de dispersão aquosa para instilação ou para incorporação em uma base farmacêutica ou veterinária para o tratamento de câncer de bexiga.  [25] Additionally, the present invention relates to silver biosynthetic nanoparticles obtained in the form of aqueous dispersion for instillation or for incorporation into a pharmaceutical or veterinary base for the treatment of bladder cancer.
[26] As referidas nanoparticulas possuem a absorção máxima de banda plasmônica em 440 nm e concentração de prata metálica em 1,0 x 10~2 M. [26] Said nanoparticles have the maximum plasmonic band absorption at 440 nm and metal silver concentration at 1.0 x 10 -2 M.
[27] Ainda, as nanoparticulas apresentaram o diâmetro hidrodinâmico médio (DHM) de 104,1 nm ±2,1 e índice de polidispersividade de 0,317 ± 0,025. Além disso, as nanoparticulas apresentaram o Potencial Zeta de -28,8 mV ±1,7 mV, o qual sugere uma baixa tendência para agregação, pois em módulo, a presença de fortes cargas elétricas na superfície das partículas impede a aglomeração de partículas devido diferença eletroestática .  [27] Furthermore, the nanoparticles had the mean hydrodynamic diameter (DHM) of 104.1 nm ± 2.1 and a polydispersity index of 0.317 ± 0.025. In addition, the nanoparticles presented the Zeta Potential of -28.8 mV ± 1.7 mV, which suggests a low tendency for aggregation, because in module, the presence of strong electric charges on the surface of the particles prevents the agglomeration of particles due to difference.
[28] Adicionalmente, a presente invenção refere-se ao uso das nanoparticulas obtidas para o preparo de um medicamento para tratar o câncer, preferencialmente o câncer de bexiga, mais preferencialmente câncer de bexiga urinária não-músculo invasivo (CBNMI), principalmente quando é utilizado a uma concentração de 0,05mg/mL. [29] Para avaliar o potencial das nanoparticulas da presente invenção, a seguir são apresentados os resultados dos testes realizados. [28] In addition, the present invention relates to the use of the nanoparticles obtained for the preparation of a medicament for treating cancer, preferably bladder cancer, more preferably non-muscle invasive urinary bladder cancer (CBNMI), especially when it is used at a concentration of 0.05 mg / mL. [29] To evaluate the potential of the nanoparticles of the present invention, the results of the tests performed are presented below.
Testes Realizados:  Tests:
[30] Foram realizados estudos de viabilidade celular em linhagem celular de carcinoma de bexiga 5637 pelo método de redução do MTT (MOSMANN, 1983) . Sendo assim, as células foram incubadas em crescentes concentrações de nanoparticulas de prata (AgNP) biossintéticas (1-25 uM) propostas pela presente invenção por 24h para a determinação da dose responsável pela redução em 50% da viabilidade celular (ICso) ·  [30] Cell viability studies were performed on the 5637 bladder carcinoma cell line by the MTT reduction method (MOSMANN, 1983). Thus, the cells were incubated in increasing concentrations of nanoparticles of silver (AgNP) biosynthetic (1-25 μM) proposed by the present invention for 24 hours to determine the dose responsible for 50% reduction in cell viability (ICso)
[31] A regressão sigmoidal dos dados resultou no IC50 de 6,15 μΜ e coeficiente de determinação 0,9825 (Figura 1- A) . Em seguida, foi avaliado o perfil de citotoxicidade das AgNP biossintéticas em menores intervalos de tempo (Figura 1-B) . Os resultados mostraram que após 6h de tratamento o perfil de citotoxicidade é similar ao observado após 24h de tratamento, não obtendo diferenças estatísticas (24h vs 6h *p<0,05, ANOVA - Tukey) . Em tempos inferiores (lh e 3h) , não foram obtidos redução significativa da viabilidade quando comparados ao grupo 24h de tratamento (*p<0,05, ANOVA - Tukey) . Portanto, o ensaio de viabilidade demonstrou que a citotoxicidade das AgNP é dose e tempo dependentes nas condições testadas de incubação e de tipo celular.  [31] Sigmoidal regression of the data resulted in the IC 50 of 6.15 μΜ and determination coefficient 0.9825 (Figure 1-A). Next, the cytotoxicity profile of biosynthetic AgNPs was evaluated in shorter time intervals (Figure 1-B). The results showed that after 6h of treatment the cytotoxicity profile is similar to that observed after 24h of treatment, not obtaining statistical differences (24h vs 6h * p <0.05, ANOVA - Tukey). In lower times (1h and 3h), no significant reduction in viability was obtained when compared to the 24h treatment group (* p <0.05, ANOVA - Tukey). Therefore, the viability assay has demonstrated that AgNP cytotoxicity is dose and time dependent under the incubated and cell type assay conditions.
[32] Com os resultados obtidos nos testes de viabilidade celular, foi avaliado a atividade antitumoral das AgNP(s) em modelo animal induzido quimicamente para o câncer de bexiga urinária não-músculo invasivo (CBNMI) .  [32] With the results obtained in the cellular viability tests, the antitumor activity of AgNP (s) in a chemically induced animal model for non-muscle invasive urinary bladder cancer (CBNMI) was evaluated.
[33] Para tal, foram utilizados 25 camundongos fêmeas da linhagem C57BL/ 6 obtidos no Centro de Bioterismo da Universidade Estadual de Campinas (CEMIB/UNICAMP) . Os procedimentos com animais foram aprovados pelo Comité de Ética para Experimentação Animal (CEUA) / UNICAMP (protocolo número 4017-1) . Para a indução do CBNMI, 20 animais foram anestesiados com Cloridrato de Xilazina 2% (5mg/kg i.m.; Kõnig, São Paulo, Brasil) e Cloridrato de Cetamina 10%[33] For this, 25 female mice were used of the C57BL / 6 lineage obtained at the Bioter- mic Center of the State University of Campinas (CEMIB / UNICAMP). The animal procedures were approved by the Ethics Committee for Animal Experimentation (CEUA) / UNICAMP (protocol number 4017-1). For the induction of CBNMI, 20 animals were anesthetized with 2% Xylazine Hydrochloride (5mg / kg im; König, São Paulo, Brazil) and 10% Ketamine Hydrochloride
(60mg/kg, i.m.; Fort Dodge, Iowa, EUA), mantidos nesse estado por 45 minutos para evitar micção espontânea e instilada uma dose de 1,5 mg/kg de N-metil-N-nitrosouréia (MNU - Sigma, St. Louis, MO, EUA) dissolvida em 0,1 mL de citrato de sódio(60 mg / kg, Fort Dodge, Iowa, USA), kept in this state for 45 minutes to prevent spontaneous urination and instillation at a dose of 1.5 mg / kg of N-methyl-N-nitrosiourea (MNU - Sigma, St , Louis, MO, USA) dissolved in 0.1 ml of sodium citrate
( 1M pH 6,0) a cada 15 dias (semanas 0, 2, 4), totalizando 3 doses (modificado de Garcia et al . , 2016) . Os outros 5 animais que não receberam MNU foram considerados como Grupo Controle . (1M pH 6.0) every 15 days (weeks 0, 2, 4), totaling 3 doses (modified from Garcia et al., 2016). The other 5 animals that did not receive MNU were considered as Control Group.
[34] Posteriormente, os animais foram divididos em 4 grupos (5 animais por grupo) : Grupo MNU (Câncer) : recebeu uma dose intravesical de 0,1 mL de solução fisiológica 0,9% por 3 semanas consecutivas; Grupo MNU + AgNP 0,5 mg/mL: recebeu uma dose intravesical de 0,5 mg/mL de AgNP por 3 semanas consecutivas; Grupo MNU + AgNP 0,2 mg/mL: recebeu uma dose intravesical de 0,2 mg/mL de AgNP por 3 semanas consecutivas; e Grupo MNU + AgNP 0,05 mg/mL: recebeu uma dose intravesical de 0,05 mg/mL de AgNP por 3 semanas consecutivas .  [34] Subsequently, the animals were divided into 4 groups (5 animals per group): MNU (Cancer) Group: received an intravesical dose of 0.1 mL of 0.9% physiological solution for 3 consecutive weeks; Group MNU + AgNP 0.5 mg / mL: received an intravesical dose of 0.5 mg / mL AgNP for 3 consecutive weeks; Group MNU + AgNP 0.2 mg / mL: received an intravesical dose of 0.2 mg / mL AgNP for 3 consecutive weeks; and Group MNU + AgNP 0.05 mg / mL: received an intravesical dose of 0.05 mg / mL AgNP for 3 consecutive weeks.
[35] As doses intravesicais nos diferentes grupos experimentais foram instiladas via cateter flexível 20 gauge (Abocath, São Paulo, Brasil) . Os animais de todos os grupos experimentais receberam água e a mesma dieta sólida ad líbítum (Nuvilab, Colombo, PR, Brasil) . Após o período de tratamento, os animais foram eutanasiados e as bexigas urinárias coletadas e submetidas às análises histopatológicas . [35] Intravesical doses in the different experimental groups were instilled via a flexible 20-gauge catheter (Abocath, São Paulo, Brazil). Animals from all experimental groups received water and the same solid diet ad libitum (Nuvilab, Colombo, PR, Brazil). After the treatment, the animals were euthanized and the urinary bladders were collected and submitted to histopathological analyzes.
[36] A mortalidade relativa ao procedimento de indução do CBNMI foi de 40% (n=2 animais) para os animais do grupo MNU, 60% (n=3 animais) para os grupos MNU + AgNP 0,5 mg/mLe MNU + AgNP 0,05 mg/mL, e 20% para o grupo MNU + AgNP 0,2 mg/mL .  [36] Mortality related to the induction procedure of CBNMI was 40% (n = 2 animals) for the animals of the MNU group, 60% (n = 3 animals) for the MNU + AgNP groups 0.5 mg / mL and MNU + AgNP 0.05 mg / mL, and 20% for the MNU + AgNP group 0.2 mg / mL.
[37] Para as análises histopatológicas foram utilizadas amostras da bexiga urinária de todos os grupos experimentais: Controle (n=5 animais), MNU (n=3 animais), MNU + AgNP 0,5 mg/mL (n=2 animais), MNU + AgNP 0,2 mg/mL (n=4) e MNU + AgNP 0,05 mg/mL (n=2) . As amostras foram coletadas, fixadas em solução de Bouin, inclusas em Paraplast Plus (Sigma, ST. Louis, MO, EUA) , seccionadas e coradas em Hematoxilina- Eosina. As lesões uroteliais foram classificadas conforme o estadiamento proposto pelo consenso da Organização Mundial da Saúde/Sociedade Internacional de Patologia Urológica For the histopathological analyzes, urinary bladder samples from all experimental groups were used: Control (n = 5 animals), MNU (n = 3 animals), MNU + AgNP 0.5 mg / mL (n = 2 animals) , MNU + AgNP 0.2 mg / mL (n = 4) and MNU + AgNP 0.05 mg / mL (n = 2). The samples were collected, fixed in Bouin's solution, included in Paraplast Plus (Sigma, St. Louis, MO, USA), sectioned and stained in Hematoxylin-Eosin. The urothelial lesions were classified according to the staging proposed by the consensus of the World Health Organization / International Society of Urological Pathology
(EPSTEIN et al . , 1998) . (Epson et al., 1998).
[38] O trato urinário dos animais do grupo Controle não apresentaram alterações microscópicas (Figuras 2a, 2b; Tabela 1) . O urotélio normal foi composto por 2 - 3 camadas, sendo: uma camada de células basais, uma camada celular intermediária, e uma camada superficial ou apical composta por células em guarda-chuva (Figuras 2a, 2b) .  [38] The urinary tract of the animals in the Control group did not present microscopic changes (Figures 2a, 2b, Table 1). The normal urothelium was composed of 2-3 layers, being: a layer of basal cells, an intermediate cell layer, and a superficial or apical layer composed of cells in umbrella (Figures 2a, 2b).
[39] Em contraste, o trato urinário do grupo MNU [39] In contrast, the urinary tract of the MNU group
(Câncer) apresentou drásticas alterações histopatológicas, tais como: carcinoma urotelial com invasão da lâmina própria(Cancer) presented drastic histopathological changes, such as: urothelial carcinoma with invasion of the lamina propria
(pTl) (Figuras 2c, 2d) e carcinoma urotelial papilifero (pTa)(pT1) (Figures 2c, 2d) and papillary urothelial carcinoma (pTa)
(Figuras 2e, 2f) em 66,66% e 33,33% dos animais, respectivamente (Tabela 1) . (Figures 2e, 2f) in 66.66% and 33.33% of the animals, respectively (Table 1).
Tabela 1: Porcentagem de alterações histopatológicas na bexiga urinária de camundongos dos diferentes grupos experimentais .  Table 1: Percentage of histopathological changes in the urinary bladder of mice from the different experimental groups.
Figure imgf000013_0001
Figure imgf000013_0001
[40] 0 carcinoma pTl foi caracterizado por células neoplásicas agrupadas em pequenos grupos ou cordões invadindo a lâmina própria, numerosas figuras de mitose e células pleomórficas com núcleos aumentados. O carcinoma urotelial papilifero (pTa) foi caracterizado por extensas lesões papiliferas, células uroteliais com arranjo desordenado e com perda da polaridade, intenso pleomorfismo celular e numerosas figuras de mitose.  [40] pT1 carcinoma was characterized by neoplastic cells grouped into small clusters or cords invading the lamina propria, numerous mitotic figures and pleomorphic cells with enlarged nuclei. The papillary urothelial carcinoma (pTa) was characterized by extensive papillary lesions, urothelial cells with disordered arrangement and loss of polarity, intense cellular pleomorphism and numerous mitosis figures.
[41] As lesões neoplásicas mais frequentes no Grupo MNU + AgNP 0,5 mg/mL foram o pTa (Figura 3a) e o pTis (Figura 3b) em 50% e 50% dos animais, respectivamente (Tabela 1), indicando que esse tratamento não foi eficaz em regredir as lesões neoplásicas. O carcinoma pTis foi caracterizado por uma desordenada proliferação das células uroteliais (hiperplasia) em um urotélio plano, com acentuadas atipias celulares caracterizadas por núcleos volumosos, redução do citoplasma e nucléolos múltiplos e proeminentes. The most frequent neoplastic lesions in the MNU + AgNP 0.5 mg / mL group were pTa (Figure 3a) and pTis (Figure 3b) in 50% and 50% of the animals, respectively (Table 1), indicating that this treatment was not effective in regressing the neoplastic lesions. The pTis carcinoma was characterized by a disordered proliferation of urothelial cells (hyperplasia) in a flat urothelium, with marked cellular atypia characterized by bulky nuclei, reduced cytoplasm, and multiple and prominent nucleoli.
[42] As análises histopatológicas dos animais do Grupo MNU + AgNP 0,2 mg/mL demonstraram 50% de regressão tumoral, sendo que 50% dos animais apresentaram hiperplasia plana (Figura 3c; Tabela 1) . As lesões neoplásicas mais frequentes nesse grupo foram o pTis (Figura 3d) em 50% dos animais (Tabela 1) . A hiperplasia plana foi caracterizada por espessamento do urotélio e ausência de atipias citológicas.  [42] Histopathological analyzes of animals of the MNU + AgNP Group 0.2 mg / mL showed 50% of tumor regression, and 50% of the animals presented flat hyperplasia (Figure 3c; Table 1). The most frequent neoplastic lesions in this group were pTis (Figure 3d) in 50% of the animals (Table 1). Flat hyperplasia was characterized by thickening of the urothelium and absence of cytological atypia.
[43] O tratamento com AgNP 0,05 mg/mL apresentou 100% de regressão tumoral (Tabela 1), sendo que 50% dos animais apresentaram urotélio normal (Figura 3e) e 50% apresentaram hiperplasia plana (Figura 3f ) , a qual é considerada uma lesão benigna .  [43] Treatment with 0.05 mg / mL AgNP presented 100% tumor regression (Table 1), with 50% of the animals showing normal urothelium (Figure 3e) and 50% showing flat hyperplasia (Figure 3f). is considered a benign lesion.
[44] Deste modo, através destes ensaios preliminares, as AgNP biossintéticas da presente invenção promoveram considerável regressão do tumor de bexiga induzido pelo carcinógeno MNU, principalmente quando utilizamos as concentrações de 0,2 mg/mL a 0,05 mg/mL, demonstrando-se um promissor candidato à fármaco no tratamento de câncer de bexiga não músculo invasivo.  [44] Thus, through these preliminary tests, the biosynthetic AgNPs of the present invention promoted considerable regression of the MNU carcinogen-induced bladder tumor, especially when using concentrations of 0.2 mg / mL to 0.05 mg / mL, demonstrating is a promising drug candidate in the treatment of non-muscle invasive bladder cancer.

Claims

REIVINDICAÇÕES
l. Processo de obtenção de nanoparticulas biossintéticas de prata caracterizado pelo fato de compreender as etapas de:  l. Process for obtaining silver biosynthetic nanoparticles characterized in that it comprises the steps of:
a) Produção de esporos em meio sólido;  a) Production of spores in solid medium;
b) Padronização da solução de esporos para  b) Standardization of the spore solution for
inoculação;  inoculation;
c) Produção da biomassa em meio liquido;  c) Production of biomass in liquid medium;
d) Filtração e obtenção da biomassa;  d) Filtration and obtaining the biomass;
e) Extração de redutases e cofatores quinónicos;  e) Extraction of reductase and quinone cofactors;
f) Redução da Ag+ e formação das nanoparticulas; e g) Lavagem das nanoparticulas por centrifugação. f) Reduction of Ag + and formation of nanoparticles; and g) washing the nanoparticles by centrifugation.
2. Processo, de acordo com a reivindicação 1, caracterizado pelo fato dos esporos (etapa a) ser da espécie do fungo Fusarium oxysporum, preferencialmente a cepa ATCC 9848.  A process according to claim 1, characterized in that the spores (step a) are of the fungus species Fusarium oxysporum, preferably the strain ATCC 9848.
3. Processo, de acordo com a reivindicação 1, caracterizado pela etapa "a" ser realizada da seguinte forma: o meio sólido (etapa a) é preparado contendo de 3,9% de meio Agar Dextrose Batata; após solidificação, realiza-se a inoculação do fungo a partir das amostras de F. oxysporum que encontravam-se preservadas em glicerol em -80°C; manter em estufas na temperatura de 33°C, sem luminosidade; permanecer nestas condições por mais 14 dias.  A process according to claim 1, characterized in that step "a" is carried out in the following manner: the solid medium (step a) is prepared containing 3.9% Dextrose Agar Potato medium; after solidification, the fungus is inoculated from F. oxysporum samples which were preserved in glycerol at -80 ° C; keep in greenhouses at 33 ° C, without light; remain in these conditions for another 14 days.
4. Processo, de acordo com a reivindicação 1, caracterizado pelo fato da etapa "b" ser realizada da seguinte forma: após crescimento do F. oxysporum em meio sólido, os esporos obtidos são removidos em 50 mL de solução salina 0,9% e Tweem 20 a 1%; a suspensão obtida compreende concentração de esporos a partir da absorbância entre 0,15 a 0,17, equivalente a concentração de IO6 UFC/mL. A process according to claim 1, characterized in that step b is carried out as follows: after growth of F. oxysporum in solid medium, the spores obtained are removed in 50 ml of 0.9% and Tweem 20 to 1%; the suspension obtained comprises spore concentration from absorbance between 0.15 and 0.17, equivalent to 10 6 CFU / ml.
5. Processo, de acordo com a reivindicação 1, caracterizado pelo fato da etapa "c" ser realizada da seguinte forma: utiliza-se 10% da suspensão de esporos padronizada para inocular em recipiente contendo 50 mL de meio com 0,5% extrato de levedura e 2% de extrato de malte; o inoculo é incubado em agitador orbital a 20-28 °C e 100 rpm, por um período de 7 dias. A process according to claim 1, characterized in that step "c" is carried out as follows: 10% of the standardized spore suspension is used to inoculate into a vessel containing 50 ml of 0.5% extract medium of yeast and 2% of malt extract; the inoculum is incubated on an orbital shaker at 20-28 ° C and 100 rpm for a period of 7 days.
6. Processo, de acordo com a reivindicação 1, caracterizado pelo fato da etapa "d" ser realizada da seguinte forma: o conteúdo é previamente seco em estufa a 80°C por 24 h submetido a filtração à vácuo, o filtrado é descartado, a biomassa do fungo retida é extraída e lavada três vezes com água por centrifugação, apresentando a coloração marron- avermelhada .  Process according to claim 1, characterized in that step "d" is carried out in the following way: the contents are preheated in an oven at 80 ° C for 24 h under vacuum filtration, the filtrate is discarded, the biomass of the retained fungus is extracted and washed three times with water by centrifugation, presenting the brownish-red coloration.
7. Processo, de acordo com a reivindicação 1, caracterizado pelo fato da etapa "e" ser realizada da seguinte forma: a biomassa obtida é adicionada em água destilada e esterilizada, em relação de 20 gramas de biomassa para 100 mL água (1:5); a solução é incubada à 28 °C, 120 rpm em agitador orbital por 5 dias para a extração das redutases e cofatores quinónicos.  Process according to claim 1, characterized in that step e is carried out as follows: the obtained biomass is added in distilled and sterilized water, in the ratio of 20 grams of biomass to 100 ml of water (1: 5); the solution is incubated at 28øC, 120 rpm on orbital shaker for 5 days for the extraction of the quinone reductase and cofactors.
8. Processo, de acordo com a reivindicação 1, caracterizado pelo fato da etapa "f" ser realizada da seguinte forma: adiciona-se AgNC>3 na solução obtida na etapa "e" para a obtenção de solução de concentração final de 1,0 x 10~2 M; a formação das AgNP é acompanhada através observação da alteração da coloração da solução para marrom-avermelhada e por leituras em espectrofotômetro com intervalo de 300-700 nm, por até 72h. A process according to claim 1, characterized in that step "f" is carried out in the following way: AgNC> 3 is added in the solution obtained in step "e" to obtain the final concentration solution of 1, 0 x 10 ~ 2 M; the AgNP formation is monitored by observation of the change in coloration of the solution to reddish-brown and spectrophotometer readings ranging from 300-700 nm for up to 72 hours.
9. Processo, de acordo com a reivindicação 1, caracterizado pelo fato da etapa wg" ser realizada da seguinte forma: as nanoparticulas obtidas são lavadas por ultracentrifugação à 50.000 rpm por 30 min, por pelo menos 3 vezes; a cada ultracentrifugação, o sobrenadante é descartado e 10,0 mL de água destilada são adicionadas; na última ultracentrifugação, realiza-se a quantificação de proteínas totais do sobrenadante, caso contenha concentrações proteicas detectáveis, mais etapas de lavagem deverão ser feitas . A process according to claim 1, characterized in that by the fact that step w g is performed as follows: the nanoparticles obtained are washed by ultracentrifugation at 50,000 rpm for 30 min for at least 3 times; at each ultracentrifugation the supernatant is discarded and 10.0 ml of distilled water are in the last ultracentrifugation, quantification of total proteins of the supernatant is carried out, if it contains detectable protein concentrations, more washing steps should be done.
10. Nanoparticulas biossintéticas de prata caracterizadas pelo fato de serem obtidas conforme processo definido em qualquer umas das reivindicações 1 a 9, e compreenderem:  Silver biosynthetic nanoparticles characterized in that they are obtained according to a process defined in any one of claims 1 to 9 and comprise:
- absorção máxima de banda plasmônica em 440 nm;  - maximum plasmonic band absorption at 440 nm;
- concentração de prata metálica em 1,0 x IO-2 M; - concentration of metallic silver in 1.0 x 10 -2 M;
- diâmetro hidrodinâmico médio (DHM) de 104,1 nm ±2,1; - mean hydrodynamic diameter (DHM) of 104.1 nm ± 2.1;
- índice de polidispersividade de 0,317 ± 0,025; e- polydispersity index of 0.317 ± 0.025; and
- potencial Zeta de -28,8 mV ±1,7 Mv. - Zeta potential of -28.8 mV ± 1.7 Mv.
11. Uso das nanoparticulas biossintéticas de prata conforme descrição da reivindicação 10 caracterizado ser no preparo de um medicamento humano ou veterinário para tratar o câncer, preferencialmente o câncer de bexiga, mais preferencialmente câncer de bexiga urinária não-músculo invasivo (CBNMI) - The use of the silver biosynthetic nanoparticles as described in claim 10, characterized in that it is in the preparation of a human or veterinary medicament for treating cancer, preferably bladder cancer, more preferably non-muscle invasive urinary bladder cancer (CBNMI).
12. Uso, de acordo com a reivindicação 11, caracterizado pelo fato de a concentração ser de 0,2 mg/mL a 0,05 mg/mL. Use according to claim 11, characterized in that the concentration is from 0.2 mg / ml to 0.05 mg / ml.
PCT/BR2018/000050 2017-08-24 2018-08-24 Process for producing silver biosynthetic nanoparticles, the silver biosynthetic nanoparticles produced and use thereof WO2019036777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR1020170181294 2017-08-24
BR102017018129-4A BR102017018129A2 (en) 2017-08-24 2017-08-24 PROCESS FOR OBTAINING SILVER BIOSYNTHETIC NANOParticles, SILVER BIOSYNTHETIC NANOParticles OBTAINED AND THEIR USE

Publications (1)

Publication Number Publication Date
WO2019036777A1 true WO2019036777A1 (en) 2019-02-28

Family

ID=65439722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/000050 WO2019036777A1 (en) 2017-08-24 2018-08-24 Process for producing silver biosynthetic nanoparticles, the silver biosynthetic nanoparticles produced and use thereof

Country Status (2)

Country Link
BR (1) BR102017018129A2 (en)
WO (1) WO2019036777A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570726A (en) * 2020-11-24 2021-03-30 山东省分析测试中心 Dihydromyricetin functionalized silver nanoparticle and green synthesis method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0605681A (en) * 2006-09-18 2008-05-06 Unicamp production process of protein-stabilized silver nanoparticles in the production of antibacterial textile products and the treatment of effluents produced

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0605681A (en) * 2006-09-18 2008-05-06 Unicamp production process of protein-stabilized silver nanoparticles in the production of antibacterial textile products and the treatment of effluents produced

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ALMEIDA, E. S. ET AL.: "Characterization of silver nanoparticles produced by biosynthesis mediated by Fusarium oxysporum und er different processing conditions", BIOPROCESS AND BIOSYSTEMS ENGINEERING, vol. 40, no. 9, 24 May 2017 (2017-05-24), pages 1291 - 1303, XP036301650, ISSN: 1615-7591, DOI: 10.1007/s00449-017-1788-9 *
BIRLA, S. S. ET AL.: "Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions", THE SCIENTIFIC WORLD JOURNAL, vol. 2013, 30 August 2013 (2013-08-30), pages 1 - 12, XP055578403, ISSN: 1537-744X, DOI: 10.1155/2013/796018 *
CASTIGLIONI, S. ET AL.: "Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells", TOXICOLOGY LETTERS, vol. 237, no. 3, 17 September 2015 (2015-09-17), pages 237 - 243, XP055578380, ISSN: 0378-4274, DOI: 10.1016/j.toxlet.2015.06.1707 *
DURAN, N. ET AL.: "Mechanistic aspects of biosyntheis of silver nanoparticles by several Fusarium oxysporum strains", JOURNAL OF NANOBIOTECHNOLOG Y, vol. 3, 13 July 2005 (2005-07-13), pages 1 - 7, XP021008674, ISSN: 1477-3155, DOI: 10.1186/1477-3155-3-8 *
FAVARO, W. J.: "Nanoparticula Biossintetica de Prata: Perspectiva Terapeutica para o Cancer de Bexiga Urinaria Nao-Musculo Invasivo", 14° CONGRESSO DA SOCIEDADE LATINO AMERICAN A DE BIOMATERIAIS , ÓRGÃOS ARTIFICIAIS E ENGENHARIA DE TECIDOS- SLABO, 21 August 2017 (2017-08-21), XP055578367 *
FERREIRA, L. A. B.: "Citotoxicidade, endocitose e processamento celular de nanoparticulas biossinteticas de prata em macrofagos peritoneais", DISSERTAÇÃO- UNICAMP, 2015, Campinas, pages 1 - 70, XP055578340 *
GAIKWAD, S.C. ET AL.: "Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles", JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, vol. 24, no. 12, December 2013 (2013-12-01), pages 1974 - 1982, DOI: 10.5935/0103-5053.20130247 *
ISHIDA, K. ET AL.: "Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts", MEMÓRIAS DO INSTITUTO OSWALDO CRUZ, vol. 109, no. 2, April 2014 (2014-04-01), pages 220 - 228, XP055578401, DOI: 10.1590/0074-0276130269 *
LONGHI, C. ET AL.: "Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resista nt Candida albicans", MEDICAL MYCOLOGY, vol. 54, no. 4, May 2015 (2015-05-01) - 19 June 2015 (2015-06-19), pages 428 - 432, XP055578391, DOI: 10.1093/mmy/myv036 *
PICOLI, S. U. ET AL.: "Silver nanoparticles/silver chloride (Ag/AgCI) synthesized from Fusarium oxysporum acting against Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum b eta-lactamase (ESBL", FRONTIERS IN NANOSCIENCE AND NANOTECHNOLOGY, vol. 2, no. 2, January 2016 (2016-01-01), pages 107 - 110, XP055578373, ISSN: 2397-6527, DOI: 10.15761/FNN.1000117 *
SALAHELDIN, T. A. ET AL.: "Evaluation of the cytotoxic behavior of fungai extracellular synthesized Ag nanoparticles using confocal laser scanning microscope", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES., vol. 17, no. 3, March 2016 (2016-03-01), pages 329, XP055578345, DOI: 10.3390/ijms17030329 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570726A (en) * 2020-11-24 2021-03-30 山东省分析测试中心 Dihydromyricetin functionalized silver nanoparticle and green synthesis method and application thereof

Also Published As

Publication number Publication date
BR102017018129A2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
Xu et al. Silver nanoparticles: Synthesis, medical applications and biosafety
Patil et al. Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges
Sathishkumar et al. Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens
US10391123B2 (en) Anticancer nano-silver composition for treatment and prevention of cervical cancer, and preparation method and use thereof
Paul et al. Anticancer Potentials of Root Extract of Polygala senega and Its PLGA Nanoparticles‐Encapsulated Form
Mabrouk Zayed et al. The effect of encapsulated apigenin nanoparticles on HePG-2 cells through regulation of P53
Zhang et al. Colon tissue-accumulating mesoporous carbon nanoparticles loaded with Musca domestica cecropin for ulcerative colitis therapy
Al-Zahrani et al. Green-synthesized silver nanoparticles with aqueous extract of green algae Chaetomorpha ligustica and its anticancer potential
Shao et al. Novel strategies for solubility and bioavailability enhancement of bufadienolides
Virgen-Ortiz et al. Biocompatible silver nanoparticles synthesized using rumex hymenosepalus extract decreases fasting glucose levels in diabetic rats
CN113181211A (en) Fe2O3@ TA-Pt nano composite material and preparation method and application thereof
Shi et al. Construction of inulin-based selenium nanoparticles to improve the antitumor activity of an inulin-type fructan from chicory
Salavati et al. Enhanced colloidal stability of silver nanoparticles by green synthesis approach: characterization and anti-leishmaniasis activity
Takke et al. Magnetic-core-based silibinin nanopolymeric carriers for the treatment of renal cell cancer
WO2019036777A1 (en) Process for producing silver biosynthetic nanoparticles, the silver biosynthetic nanoparticles produced and use thereof
Revathi et al. Greater efficiency of polyherbal drug encapsulated biosynthesized chitosan nano-biopolymer on diabetes and its complications
TWI483723B (en) A composition for preventing and treating cancer and a method for manufacturing the same
Sun et al. Synthesis, applications and biosafety evaluation of carbon dots derived from herbal medicine
Roudsari et al. Investigation of characteristics and behavior of loaded carboplatin on the, liposomes nanoparticles, on the lung and ovarian cancer: an in-vitro evaluation
CN106389385B (en) Annonacin nanoparticle based on cyclodextrin and lecithin as carriers and preparation method and application thereof
Wang et al. Fabrication of Etoposide-loaded superparamagnetic iron oxide nanoparticles (SPIONs) induced apoptosis in glioma cancer cells
Roy et al. Metallic nanoparticles from natural products as a potential anti-cancer
Prusty et al. Nanostructured chitosan composites for cancer therapy: A review
CN109224083B (en) Application of poloxamer-modified iron oxide nanoparticles in preparation of drugs for treating non-alcoholic fatty liver diseases
Han et al. Anti-inflammation effects of Sophora flavescens nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848788

Country of ref document: EP

Kind code of ref document: A1