WO2019035380A1 - Solid-state imaging device, method for producing solid-state imaging device, and electronic apparatus - Google Patents

Solid-state imaging device, method for producing solid-state imaging device, and electronic apparatus Download PDF

Info

Publication number
WO2019035380A1
WO2019035380A1 PCT/JP2018/029374 JP2018029374W WO2019035380A1 WO 2019035380 A1 WO2019035380 A1 WO 2019035380A1 JP 2018029374 W JP2018029374 W JP 2018029374W WO 2019035380 A1 WO2019035380 A1 WO 2019035380A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion unit
region
microlens
imaging device
Prior art date
Application number
PCT/JP2018/029374
Other languages
French (fr)
Japanese (ja)
Inventor
田中 俊介
俊徳 大高
盛 一也
Original Assignee
ブリルニクスジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブリルニクスジャパン株式会社 filed Critical ブリルニクスジャパン株式会社
Priority to CN201880053093.0A priority Critical patent/CN111247637B/en
Priority to JP2019536738A priority patent/JP7149278B2/en
Publication of WO2019035380A1 publication Critical patent/WO2019035380A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present invention relates to a solid-state imaging device, a method of manufacturing a solid-state imaging device, and an electronic device.
  • CMOS image sensors are widely applied as a part of various electronic devices such as digital cameras, video cameras, surveillance cameras, medical endoscopes, personal computers (PCs), mobile terminal devices such as mobile phones (mobile devices), etc. There is.
  • the CMOS image sensor has an FD amplifier having a photodiode (photoelectric conversion element) and a floating diffusion layer (FD: Floating Diffusion) for each pixel, and its readout selects one row in the pixel array
  • FD floating diffusion layer
  • a column parallel output type in which they are read simultaneously in the column direction is the mainstream.
  • phase difference information of autofocus is obtained on part of pixels of a pixel array unit.
  • phase difference detection method such as an image plane phase difference method which arranges phase difference detection pixels to perform autofocus.
  • a half of a light receiving area of a pixel is shielded by a light shielding film, and a phase difference detection pixel receiving light in the right half and a phase difference detection pixel receiving light in the left half It detects (for example, refer patent document 1).
  • the sensitivity deterioration due to the decrease in the aperture ratio is large, so the pixel for generating a normal image is a defective pixel, and this defective pixel is a factor such as image resolution deterioration. Become.
  • a photoelectric conversion unit (photodiode (PD)) in a pixel is divided into two (two provided) without using a light shielding film, and a pair of photoelectric conversion units (photodiodes)
  • a method of detecting a phase difference based on the phase shift amount of a signal obtained by the following is also referred to as a pupil division method, in which a passing light beam of an imaging lens is divided into pupils to form a pair of divided images, and pattern deviation (phase shift amount) is detected. Detect the amount of focus. In this case, the phase difference detection does not easily become a defective pixel, and by adding the signals of the divided photoelectric conversion units (PD), it can be used also as a good image signal.
  • a plurality of pixels having two photoelectric conversion units are arranged.
  • a floating diffusion FD is disposed in a pixel central portion between one portion and the other portion of the two photoelectric conversion portions, and the two photoelectric conversion portions are disposed in parallel with the floating diffusion FD interposed therebetween.
  • microlenses are provided in one-to-one correspondence with pixels. The microlens is disposed such that the optical center is located at the center of the pixel.
  • a plurality of pixels having two photoelectric conversion units are arranged.
  • the floating diffusion FD is disposed not at the pixel central portion between one portion and the other portion of the two photoelectric conversion portions, but at the peripheral portion of the pixel.
  • the microlenses are provided in a one-to-one correspondence with the pixels, and the microlenses are arranged such that the optical center is located at the pixel central portion.
  • the floating diffusion FD is disposed in the pixel central portion between one portion and the other portion of the two photoelectric conversion units, and this floating diffusion FD Two photoelectric conversion units are disposed in parallel with each other.
  • the microlenses are disposed such that the optical center is located at the central portion of the pixel where the floating diffusion FD is disposed. Therefore, in the solid-state imaging device disclosed in Patent Document 2, the amount of incident light is concentrated in the arrangement region of the floating diffusion FD in the central portion of the pixel having no light receiving sensitivity, and light, particularly red light, directly enters the floating diffusion FD. Therefore, crosstalk may occur in the floating diffusion FD.
  • the present invention can suppress the crosstalk in the floating diffusion and the charge transfer lag to the floating diffusion, and can obtain highly accurate phase difference information, and thus can improve the image quality, solid-state imaging Abstract: A method of manufacturing a device, and an electronic device.
  • the solid-state imaging device includes a pixel unit in which a pixel is arranged, and the pixel includes a first photoelectric conversion unit that accumulates a charge generated by photoelectric conversion of incident light; A second photoelectric conversion unit that accumulates the charge generated by photoelectric conversion for the lens, a lens unit that causes light to enter the first photoelectric conversion unit and the second photoelectric conversion unit, and the first photoelectric conversion unit A first transfer element capable of transferring the accumulated charge in a designated transfer period; a second transfer element capable of transferring the charge accumulated in the second photoelectric conversion unit in a designated transfer period; Accumulated in at least one photoelectric conversion unit of the first photoelectric conversion unit and the second photoelectric conversion unit through at least one of the first transfer device and the second transfer device Floating charge transfer And a source follower element for converting the charge of the floating diffusion into a voltage signal with a gain according to the charge amount, wherein the first photoelectric conversion unit and the second photoelectric conversion unit are arranged in the first direction.
  • a pixel portion in which a pixel is arranged, wherein the pixel is formed by a first photoelectric conversion portion for accumulating charges generated by photoelectric conversion for incident light, and photoelectric conversion for incident light
  • a second photoelectric conversion unit for storing the generated charge, a lens unit for causing light to enter the first photoelectric conversion unit and the second photoelectric conversion unit, and the charge stored in the first photoelectric conversion unit
  • a second transfer element capable of transferring the charges accumulated in the second photoelectric conversion unit in a specified transfer period, and the first transfer element capable of transferring in a specified transfer period;
  • the charge accumulated in at least one of the first photoelectric conversion unit and the second photoelectric conversion unit is transferred through the transfer device and at least one of the second transfer devices.
  • Floating diffusion A method of manufacturing a solid-state imaging device, comprising: a source follower element for converting the charge of the floating diffusion into a voltage signal with a gain according to the charge amount, wherein the floating diffusion is formed at a predetermined position of a pixel.
  • the first photoelectric conversion unit and the second photoelectric conversion unit are formed in parallel in the first direction, and the lens unit is positioned such that the optical center is at least deviated from the central portion of the pixel.
  • An electronic device includes a solid-state imaging device, and an optical system for forming an object image on the solid-state imaging device, and the solid-state imaging device includes a pixel unit in which pixels are arranged.
  • the pixel includes a first photoelectric conversion unit for accumulating charges generated by photoelectric conversion of incident light, a second photoelectric conversion unit for accumulating charges generated by photoelectric conversion for incident light, and A photoelectric conversion unit according to the invention, a lens unit for causing light to enter the second photoelectric conversion unit, and a first transfer element capable of transferring the charge accumulated in the first photoelectric conversion unit in a designated transfer period; A second transfer element capable of transferring the charge accumulated in the second photoelectric conversion unit in a designated transfer period, and at least one of the first transfer element and the second transfer element Through the first photoelectric conversion unit and the second photoelectric conversion unit.
  • the first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in the first direction, and the lens unit is arranged such that the optical center is at least deviated from the central portion of the pixel. It is arranged.
  • crosstalk in the floating diffusion and charge transfer lag to the floating diffusion can be suppressed, and highly accurate phase difference information can be obtained, and thus the image quality can be improved.
  • FIG. 1 is a block diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an example of a pixel having a phase difference detection function according to the present embodiment.
  • FIGS. 3A and 3B are diagrams showing operation timings of the shutter scan and the readout scan at the time of the normal pixel readout operation in the present embodiment.
  • FIGS. 4A to 4C are diagrams for explaining a configuration example of a readout system of the column output of the pixel unit of the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 5B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 6A and FIG. 6B are simplified cross-sectional views showing configuration examples of main parts of a pixel having a phase difference detection function in the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 7 is a simplified plan view showing an example of the configuration of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a second embodiment of the present invention.
  • FIGS. 8 and 10A and 10B are simplified plan views showing a configuration example of main parts of a pixel having a phase difference detection function in a solid-state imaging device according to a third embodiment of the present invention.
  • FIGS. 9A and 9B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a fourth embodiment of the present invention.
  • FIGS. 10A and 10B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a fifth embodiment of the present invention.
  • FIGS. 12A to 12D are simplified plan views for explaining an example of the configuration of a pixel unit in which pixels having a phase difference detection function in the solid-state imaging device according to the seventh embodiment of the present invention are arrayed. is there.
  • FIG. 13 is a diagram showing an example of the configuration of an electronic device to which the solid-state imaging device according to the embodiment of the present invention is applied.
  • 10, 10A to 10H solid-state imaging device, 20, 20A to 20H: pixel unit, PCXL, PXLA to PXLH: pixel, PD1: first photodiode (first photoelectric conversion unit) PD2 second photodiode (second photoelectric conversion unit) TG1-Tr first transfer transistor (first transfer element) TG2-Tr second transfer transistor Second transfer element), MCL1 ... first micro lens, MCL2 ... second micro lens, MCL3 ... third micro lens, MCL 4 ... fourth micro lens, 210 ... Semiconductor substrate 220 First photodiode 240 Second photodiode 30 Vertical scanning circuit 40 Reading circuit 50 Horizontal scanning circuit 60 And timing control circuit, 70 ... reading unit, 100 ... electronic device, 110 ... CMOS image sensor, 120 ... optical system, 130 ... signal processing circuit (PRC).
  • PRC signal processing circuit
  • FIG. 1 is a block diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present invention.
  • the solid-state imaging device 10 is configured of, for example, a CMOS image sensor. This CMOS image sensor is applied to a back illuminated image sensor (BSI) as an example.
  • BBI back illuminated image sensor
  • the solid-state imaging device 10 includes a pixel unit 20 as an imaging unit, a vertical scanning circuit (row scanning circuit) 30, a readout circuit (column readout circuit) 40, and a horizontal scanning circuit (column scanning circuit) 50. And a timing control circuit 60 as a main component.
  • the vertical scanning circuit 30, the reading circuit 40, the horizontal scanning circuit 50, and the timing control circuit 60 constitute a pixel signal reading unit 70.
  • pixels arranged in a matrix in the pixel unit 20 are generated by photoelectric conversion of incident light in order to obtain phase difference information.
  • the light is incident on the first photoelectric conversion unit (first photodiode) and the second photoelectric conversion unit (second photodiode), the first photoelectric conversion unit, and the second photoelectric conversion unit that store the stored charge.
  • a lens unit for example, a microlens
  • a first transfer element capable of transferring the charge accumulated in the first photoelectric conversion unit during a transfer period designated by the floating diffusion FD
  • Is configured to include a second transfer element (second transfer transistor) capable of transferring the charge stored in the photoelectric conversion portion of the second transfer element in the transfer period designated by the floating diffusion FD.
  • the solid-state imaging device 10 can be adopted, for example, as a phase difference detection system for obtaining phase difference information of autofocus (AF), and the horizontal (left and right), vertical (upper and lower) directions, or / and the position of the oblique direction. It is possible to obtain the difference information.
  • the first photoelectric conversion unit and the second photoelectric conversion unit are arranged in the first direction (for example, a plurality of photoelectric conversion units) so that the solid-state imaging device 10 can suppress crosstalk in the floating diffusion FD and charge transfer lag to the floating diffusion FD.
  • Pixels are arranged in parallel in the column direction, row direction or diagonal direction of the pixel portion in which the pixels are arranged in a matrix, and the lens portion is disposed at a position where the optical center at least avoids the central portion of the pixel. It is arranged as it exists.
  • the lens unit is configured to include two or four microlenses arranged corresponding to two photoelectric conversion units.
  • the first direction is, for example, the column direction (horizontal direction, X direction), row direction (vertical direction, Y direction) or oblique direction of the pixel unit 20 in which a plurality of pixels are arranged in a matrix.
  • the first direction is the column direction (horizontal direction, X direction).
  • the second direction is the row direction (vertical direction, Y direction).
  • a plurality of pixels including a photodiode (photoelectric conversion element) and an in-pixel amplifier are arranged in a two-dimensional matrix (matrix) of N rows ⁇ M columns.
  • at least some of the plurality of pixels are configured as pixels having a phase difference detection function by providing two photoelectric conversion units (photodiodes).
  • phase difference detection is unlikely to be a defective pixel, and for example, by adding signals of two photoelectric conversion units (PD), it can be used also as a good image signal.
  • PD photoelectric conversion units
  • FIG. 2 is a circuit diagram showing an example of a pixel having a phase difference detection function according to the present embodiment.
  • the pixel PXL includes a first photodiode PD1 as a first photoelectric conversion unit for storing charges generated by photoelectric conversion for incident light, and a second photoelectric conversion for storing charges generated by photoelectric conversion for incident light. It is configured to include a second photodiode PD2 as a part.
  • a first transfer transistor TG1-Tr as a first transfer element is connected to the first photodiode PD1, and a second transfer as a second transfer element is connected to the second photodiode PD2.
  • the transistor TG2-Tr is connected.
  • the pixel PXL has one reset transistor RST-Tr as a reset element, one source follower transistor SF-Tr as a source follower element, and one selection transistor SEL-Tr as a selection element.
  • the pixel PXL is connected to, for example, a memory unit MRY (not shown in FIG. 2) for temporarily holding a read signal.
  • the photodiodes PD1 and PD2 generate and accumulate signal charges (here, electrons) according to the amount of incident light.
  • signal charges here, electrons
  • each transistor is an n-type transistor
  • the signal charge may be a hole or each transistor may be a p-type transistor.
  • the present embodiment is also effective in the case where each transistor is shared among a plurality of photodiodes, or in the case where a pixel having no selection transistor is employed.
  • a buried photodiode PPD
  • PD photodiode
  • surface states due to defects such as dangling bonds exist on the surface of the substrate forming the photodiode (PD) a large amount of charge (dark current) is generated by thermal energy, and the correct signal can not be read out.
  • the embedded photodiode PPD
  • the first transfer transistor TG1-Tr is connected between the first photodiode PD1 and the floating diffusion FD, and is controlled by a control signal TG1 applied to the gate through a control line.
  • the first transfer transistor TG1-Tr is turned on when the control signal TG1 is selected at a high (H) level transfer period and becomes conductive, and floating charges (electrons) photoelectrically converted and accumulated by the first photodiode PD1 are diffused. Transfer to FD.
  • the second transfer transistor TG2-Tr is connected between the second photodiode PD2 and the floating diffusion FD, and is controlled by a control signal TG2 applied to the gate through a control line.
  • the second transfer transistor TG2-Tr is selected during the transfer period in which the control signal TG2 is high (H) level and becomes conductive, and the charges (electrons) photoelectrically converted and stored by the second photodiode PD2 are floating-diffused Transfer to FD.
  • the reset transistor RST-Tr is connected, for example, between the power supply line VRst and the floating diffusion FD, and is controlled through the control signal RST.
  • the reset transistor RST-Tr may be connected between the power supply line VDD and the floating diffusion FD, and may be configured to be controlled through the control signal RST.
  • the reset transistor RST-Tr is selected in a period when the control signal RST is at H level and becomes conductive, and resets the floating diffusion FD to the potential of the power supply line VRst (or VDD).
  • the source follower transistor SF-Tr and the selection transistor SEL-Tr are connected in series between the power supply line VDD and the vertical signal line LSGN.
  • the floating diffusion FD is connected to the gate of the source follower transistor SF-Tr, and the selection transistor SEL-Tr is controlled through the control signal SEL.
  • the selection transistor SEL-Tr is selected during a period in which the control signal SEL is at H level, and becomes conductive.
  • the source follower transistor SF-Tr outputs the read signal VSL of the column output obtained by converting the charge of the floating diffusion FD into a voltage signal with a gain corresponding to the charge amount (potential) to the vertical signal line LSGN.
  • each control line is represented as one row scanning control line.
  • the vertical scanning circuit 30 drives the pixels through the row scanning control line in the shutter row and the readout row according to the control of the timing control circuit 60. Further, the vertical scanning circuit 30 outputs a row selection signal of a row address for reading out the signal and a row address of the shutter row for resetting the charge accumulated in the photodiode PD in accordance with the address signal.
  • shutter scan is performed by driving of the reading unit 70 by the vertical scanning circuit 30, and then read scan is performed.
  • FIGS. 3A and 3B are diagrams showing operation timings of the shutter scan and the readout scan at the time of the normal pixel readout operation in the present embodiment.
  • the control signal SEL for controlling on (conduction) and off (non-conduction) of the selection transistor SEL-Tr is set to L level during the shutter scan period PSHT and the selection transistor SEL-Tr is held in the non-conduction state, and read
  • the scan period PRDO is set to H level, and the selection transistor SEL-Tr is held in the conductive state.
  • the control signal TG1 or TG2 is set to the H level for a predetermined period while the control signal RST is at the H level, and the photo transistor is reset via the reset transistor RST-Tr and the transfer transistor TG1-Tr or TG2-Tr.
  • the diodes PD1 and PD2 and the floating diffusion FD are reset.
  • the control signal RST is set to the H level
  • the floating diffusion FD is reset through the reset transistor RST-Tr
  • the signal in the reset state is read in the read period PRD1 after the reset period PR.
  • the control signal TG1 or TG2 is set to the H level for a predetermined period, and the charge stored in the photodiode PD1 or PD2 is transferred to the floating diffusion FD through the transfer transistor TG1-Tr or TG2-Tr.
  • a signal corresponding to the electrons (charges) accumulated in the subsequent readout period PRD2 is read out.
  • the accumulation period (exposure period) EXP resets the photodiodes PD1 and PD2 and the floating diffusion FD in the shutter scan period PSHT as shown in FIG. 3 as an example. Then, after switching the control signal TG1 or TG2 to L level, it is a period from switching the control signal TG1 or TG2 to L level to end the transfer period PT of the read scan period PRDO.
  • the readout circuit 40 includes a plurality of column signal processing circuits (not shown) arranged corresponding to the respective column outputs of the pixel unit 20, and even if column parallel processing is possible by the plurality of column signal processing circuits. Good.
  • the readout circuit 40 can be configured to include a correlated double sampling (CDS) circuit, an ADC (analog digital converter; AD converter), an amplifier (AMP, amplifier), a sample hold (S / H) circuit, etc. It is.
  • CDS correlated double sampling
  • ADC analog digital converter
  • AMP amplifier
  • S / H sample hold
  • the readout circuit 40 may be configured to include an ADC 41 that converts the readout signal VSL of each column output of the pixel unit 20 into a digital signal, as shown in FIG. 4A, for example.
  • an amplifier (AMP) 42 that amplifies the readout signal VSL of each column output of the pixel unit 20 may be disposed.
  • a sample and hold (S / H) circuit 43 may be arranged to sample and hold the read signal VSL of each column output of the pixel unit 20 in the read out circuit 40.
  • the horizontal scanning circuit 50 scans the signals processed by the plurality of column signal processing circuits such as the ADC of the reading circuit 40, transfers the signals in the horizontal direction, and outputs the signals to a signal processing circuit (not shown).
  • the timing control circuit 60 generates timing signals necessary for signal processing of the pixel unit 20, the vertical scanning circuit 30, the reading circuit 40, the horizontal scanning circuit 50, and the like.
  • the readout unit 70 controls readout processing of pixel signals by the vertical scanning circuit 30, the readout circuit 40, the horizontal scanning circuit 50, and the timing control circuit 60.
  • FIG. 5A and FIG. 5B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 5A is a simplified plan view seen from the front side of the pixel
  • FIG. 5B is a simplified plan view of the back side of the pixel (the side on which light is incident).
  • the pixel PXL in the solid-state imaging device 10 can suppress the crosstalk and the charge transfer lag to the floating diffusion in the floating diffusion, as shown in FIG.
  • the floating diffusion is interposed in the first direction (here, as an example, the column direction (horizontal direction, X direction) of the pixel unit).
  • the first direction here, as an example, the column direction (horizontal direction, X direction) of the pixel unit).
  • the first photodiode PD1 as the first photoelectric conversion unit has the first photoelectric conversion region OCV1 and the first photoelectric conversion region OCV1 in the Y direction which is the second direction orthogonal to the X direction which is the first direction. It is formed to include the second photoelectric conversion region OCV2.
  • the second photodiode PD2 as the second photoelectric conversion unit has the third photoelectric conversion area OCV3 and the fourth photoelectric conversion area OCV4 in the Y direction which is the second direction orthogonal to the X direction which is the first direction. It is formed including.
  • the lens portion LNS is formed to allow light to be incident on at least the first photoelectric conversion region OCV1, the second photoelectric conversion region OCV2, the third photoelectric conversion region OCV3, and the fourth photoelectric conversion region OCV4. ing.
  • the solid-state imaging device 10 is configured as a back-illuminated CMOS image sensor as an example, and it is necessary to increase the light receiving area on the back side, as shown in FIGS.
  • the widths SWF and SWB in the X direction of the separation portion (boundary portion) SEP of the first photodiode PD1 and the second photodiode PD2 are such that the width SWB on the back side is the width SWF on the front side It is formed to be narrower (smaller).
  • the separation portion (boundary portion) SEP of the first photodiode PD1 and the second photodiode PD2 can be formed, for example, by DTI (Deep Trench Isolation).
  • the separation portion (boundary portion) SEP of the first photodiode PD1 and the second photodiode PD2 can be formed by, for example, a pn junction separation portion.
  • the floating diffusion FD is a separation portion (boundary portion) between the first photodiode PD1 and the second photodiode PD2, and is provided to the pixel central portion PXCT. It is arranged.
  • the lens portion LNS that causes light to be incident on the first photodiode PD1 and the second photodiode PD2 is such that the optical center OCT lies at least at a position away from the central portion of the pixel Is located in
  • the lens unit LNS is configured such that light is incident on the first photoelectric conversion region OCV1 of the first photodiode PD1 and the third photoelectric conversion region OCV3 of the second photodiode PD2.
  • the first microlens MCL1 has a first optical center OCT1 corresponding to a first photoelectric conversion region OCV1 of the first photodiode PD1 and a first photoelectric conversion region OCV3 of the second photodiode PD2. It is arrange
  • the second microlens MCL2 has a second optical center OCT2 that is a second photoelectric conversion region OCV2 of the first photodiode PD1 and a second photoelectric conversion region OCV4 of the second photodiode PD2. It is arrange
  • FIG. 6A and FIG. 6B are simplified cross-sectional views showing configuration examples of main parts of a pixel having a phase difference detection function in the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 6A is a simplified sectional view taken along line X1-X2 in FIG. 6B, as shown in FIG. 6B.
  • the embedded photodiode (PPD) portion is denoted by reference numeral 200.
  • the embedded type photodiode (PPD) portion 200 of FIG. 6A is a second substrate surface opposite to the first substrate surface 211 side (for example, the back surface side) to which the light L is irradiated and the first substrate surface 211 side. It has a semiconductor substrate (hereinafter simply referred to as a substrate) 210 having a side 212 (front side).
  • the embedded photodiode portion 200 includes a first conductive type (n-type in this embodiment) semiconductor layer (n-type in this embodiment) 221 n formed to be embedded in the substrate 210, and photoelectric conversion of the received light It has a first photodiode 220 (PD1) having a conversion function and a charge storage function.
  • the embedded photodiode portion 200 is formed to be embedded in the substrate 210 so as to be parallel to the first photodiode 220 (PD1) with the second conductive (p-type) separation layer 230 interposed therebetween.
  • a second photodiode 240 (PD2) is included which includes an n layer (first conductive type semiconductor layer) 241n and has a photoelectric conversion function of received light and a charge storage function.
  • the embedded photodiode portion 200 is formed on the side (boundary of the n layer) in the direction orthogonal to the normal to the substrate 210 of the first photodiode 220 (PD1) and the second photodiode 240 (PD2).
  • Two conductive type (p-type) separation layers 231, 232 and 233 are formed.
  • the back surface side BDTI is formed so as to be continuous to the back surface side in the separation layers 231, 232, and 233.
  • the first photodiode 220 (PD1) is formed on the side (boundary portion of the n layer) in the direction (for example, the X direction) orthogonal to the normal to the substrate 210.
  • the second photodiode 240 is formed between the p-type separation layer 232 and the p-type separation layer 233 formed on the side (the boundary of the n layer) in the direction orthogonal to the normal to the substrate 210 There is.
  • a micro lens MCL1 (MCL2) that causes light to enter the first photodiodes PD1 and PD2 is disposed on the back surface side 211 of the substrate 210, and a color filter is provided between the back surface side of the substrate 210 and the microlens MCL1 (MCL2) (G or R or B) FLT is arranged.
  • the first photodiode PD1 and the second photodiode PD2 as two adjacent photoelectric conversion units are not shown by the first microlens MCL1 and the second microlens MCL2. It is disposed at a position where it forms an imaging relationship (that is, substantially conjugate) with the exit pupil of the photographing lens. Therefore, since the distance between the exit pupil of the photographing lens and the first micro lens MCL1 and the second micro lens MCL2 is sufficiently long with respect to the size of the micro lens, the first photoelectric conversion unit can be used as the first photoelectric conversion unit.
  • the photodiode PD1 and the second photodiode PD2 are disposed substantially in the focal plane of the first microlens MCL1 and the second microlens MCL2.
  • the first photodiode PD1 as one of the two photoelectric conversion units is a partial region of the exit pupil of the imaging lens, and in a predetermined direction from the center of the exit pupil The luminous flux from the decentered area is selectively received and photoelectrically converted.
  • the second photodiode PD2 as the other of the two photoelectric conversion units is a partial area of the exit pupil of the photographing lens and an area decentered in the opposite direction from the center of the exit pupil Is selectively received and photoelectrically converted.
  • the signal charge photoelectrically converted by the first photodiode PD1 of each pixel PXL and the signal charge photoelectrically converted by the second photodiode PD2 are different in floating diffusion FD at different timings. It is transferred and read out individually.
  • the individual readout operation of the first photodiode PD1 is performed as follows.
  • PRDO In the read out scan period PRDO, in order to select one row in the pixel array, control signal SEL connected to each pixel PXL in the selected row is set to H level, and select transistor SEL- of pixel PXL is selected. Tr becomes conductive.
  • the reset transistor RST-Tr is selected in the reset period PR and is selected in the period when the control signal RST is at the H level to be conductive, and the floating diffusion FD is reset to the potential of the power supply line VDD.
  • the control signal RST is switched to L level, the reset transistor RST-Tr is turned off, and the reset period PR ends.
  • the reset transistor RST-Tr is turned off, and the period until the transfer period PT is started is a first readout period PRD11 in which the pixel signal in the reset state is read out.
  • the read out unit 70 performs the first read out PDCG11 in which the pixel signal is read out with the conversion gain according to the capacitance (charge amount) of the floating diffusion FD. .
  • the charge of the floating diffusion FD is converted into a voltage signal with a gain according to the charge amount (potential) by the source follower transistor SF-Tr, and the signal is read vertically as a read signal VSL (PDCG11) of column output.
  • the signal is output to the signal line LSGN, supplied to the readout circuit 40, and held, for example.
  • the first read period PRD11 ends, and the transfer period PT11 starts.
  • the transfer transistor TG1-Tr is selected during the period when the control signal TG1 is at H level and becomes conductive, and the charge (electrons) photoelectrically converted and stored by the first photodiode PD1 during a predetermined period is It is transferred to the floating diffusion FD.
  • the first photodiode PD1 performs a second read period PRD12 for reading a pixel signal corresponding to the charge stored by photoelectric conversion.
  • the read unit 70 After the start of the second read period PRD12, the read unit 70 performs a second read PDCG12 for reading a pixel signal with a conversion gain according to the capacitance (charge amount) of the floating diffusion FD.
  • the charge of the floating diffusion FD is converted into a voltage signal with a gain according to the charge amount (potential) by the source follower transistor SF-Tr, and the signal is read vertically as a read signal VSL (PDCG12) of column output.
  • the signal is output to the signal line LSGN, supplied to the readout circuit 40, and held, for example.
  • the control signal RST is switched to L level, the reset transistor RST-Tr is turned off, and the reset period PR ends.
  • the reset transistor RST-Tr is turned off, and the period until the transfer period PT is started is a first readout period PRD21 for reading out the pixel signal in the reset state.
  • the read out unit 70 performs the first read out PDCG21 that reads the pixel signal with the conversion gain according to the capacitance (charge amount) of the floating diffusion FD. .
  • the charge of the floating diffusion FD is converted into a voltage signal with a gain according to the charge amount (potential) by the source follower transistor SF-Tr, and the signal is read vertically as a read signal VSL (PDCG21) of column output.
  • the signal is output to the signal line LSGN, supplied to the readout circuit 40, and held, for example.
  • the first read period PRD21 ends, and the transfer period PT21 starts.
  • the transfer transistor TG2-Tr is selected while the control signal TG2 is at the H level, and becomes conductive, and the charge (electrons) photoelectrically converted and stored by the second photodiode PD2 during a predetermined period is generated. It is transferred to the floating diffusion FD.
  • the second photodiode PD2 performs a second read period PRD22 for reading a pixel signal corresponding to the charge stored by photoelectric conversion.
  • the read unit 70 After the start of the second read period PRD22, the read unit 70 performs a second read PDCG22 for reading a pixel signal with a conversion gain according to the capacitance (charge amount) of the floating diffusion FD.
  • the charge of the floating diffusion FD is converted into a voltage signal with a gain according to the charge amount (potential) by the source follower transistor SF-Tr, and the signal is read vertically as a read signal VSL (PDCG 22) of column output.
  • the signal is output to the signal line LSGN, supplied to the readout circuit 40, and held, for example.
  • the difference ⁇ VSL (PDCG 22) between the readout signal VSL (PDCG 22) of the second readout PDCG 22 and the readout signal VSL (PDCG 21) of the first readout PDCG 21 -VSL (PDCG 21) ⁇ is taken and CDS processing is performed.
  • the focusing state of the imaging lens is detected based on those signals.
  • the signal charge from both portions of the first photodiode PD1 and the second photodiode PD2 of each pixel PXL is the same (transfer transistor TG1-Tr , TG2-Tr are simultaneously transferred in parallel to the same floating diffusion FD, and both signals are added and read out in the pixel. Therefore, since a pixel having a photoelectric conversion portion divided into two does not cause a state similar to a pixel defect at the time of imaging, the image quality can be improved.
  • the pixel PXL in the solid-state imaging device 10 includes the first photodiode PD1 as the first photoelectric conversion unit and the second photoelectric conversion unit as the second photoelectric conversion unit.
  • the photodiodes PD2 are arranged in parallel in the first direction (here, as an example, in the column direction (horizontal direction, X direction) of the pixel portion) with the floating diffusion FD interposed therebetween.
  • the floating diffusion FD is a separation portion (boundary portion) between the first photodiode PD1 and the second photodiode PD2, and is provided to the pixel central portion PXCT.
  • the lens portion LNS which is disposed and which makes light incident on the first photodiode PD1 and the second photodiode PD2, is disposed such that the optical center OCT is at a position at least avoiding the central portion of the pixel.
  • the lens unit LNS causes light to enter the first photoelectric conversion area OCV1 of the first photodiode PD1 and the third photoelectric conversion area OCV3 of the second photodiode PD2.
  • the second microlens MCL2 that injects light into the second photoelectric conversion region OCV2 of the first photodiode PD1 and the fourth photoelectric conversion region OCV4 of the second photodiode PD2.
  • the first microlens MCL1 has a first optical center OCT1 in a first photoelectric conversion region OCV1 of the first photodiode PD1 and a third photoelectric conversion region OCV3 of the second photodiode PD2.
  • the second optical center OCT2 of the second microlens MCL2 is a second photoelectric conversion region OCV2 of the first photodiode PD1 and a second photoelectric conversion region OCV4 of the second photodiode PD2. Is disposed to be located at the border central portion BCT2.
  • the first embodiment it is possible to prevent the concentration of the incident light amount on the arrangement region of the floating diffusion FD in the central portion of the pixel having no light receiving sensitivity, and light, especially red light is directly incident on the floating diffusion FD. It is possible to prevent the occurrence of crosstalk in the floating diffusion FD. Further, according to the first embodiment, the problem of crosstalk can be solved and lag (Lag) can be prevented from being generated in charge transfer from each region of the photoelectric conversion unit to the floating diffusion FD. It becomes.
  • crosstalk in the floating diffusion and charge transfer lag to the floating diffusion can be suppressed.
  • phase difference information which in turn can improve the image quality.
  • FIG. 7 is a simplified plan view showing an example of the configuration of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a second embodiment of the present invention.
  • FIG. 7 is a simplified plan view of the back side (the side on which light is incident) of the pixel.
  • the difference between the pixel PXLA of the second embodiment and the pixel PXL of the first embodiment is as follows.
  • the first microlens MCL1 and the second microlens MCL2 are arranged to straddle over the first photodiode PD1 and the second photodiode PD2. That is, the first microlens MCL1 makes light incident on the first photoelectric conversion region OCV1 of the first photodiode PD1 and the third photoelectric conversion region OCV3 of the second photodiode PD2, and the second microlens The MCL 2 is disposed so that light is incident on the second photoelectric conversion region OCV 2 of the first photodiode PD 1 and the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2.
  • the first microlens MCL1A is disposed on the first photodiode PD1, and the second microlens MCL2A is disposed on the second photodiode PD2.
  • the first microlens MCL1A is arranged to make light incident on the first photoelectric conversion region OCV1 of the first photodiode PD1 and the second photoelectric conversion region OCV2 of the first photodiode PD1.
  • the second microlens MCL 2 A is disposed so that light is incident on the third photoelectric conversion region OCV 3 of the second photodiode PD 2 and the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2.
  • the first microlens MCL1A has a first optical center OCT1A in a first photoelectric conversion region OCV1 of the first photodiode PD1 and a first photoelectric conversion region OCV2 of the first photodiode PD1. Is disposed to be located at the border central portion BCT1A.
  • the second microlens MCL 2 A has a second optical center OCT 2 A as a second boundary of the third photoelectric conversion region OCV 3 of the second photodiode PD 2 and the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2. It is arrange
  • the other configuration is the same as that of the first embodiment described above, and according to the second embodiment, the same effect as that of the first embodiment described above can be obtained.
  • FIG. 8 is a simplified plan view showing a configuration example of main parts of a pixel having a phase difference detection function in a solid-state imaging device according to a third embodiment of the present invention.
  • FIG. 8 is a simplified plan view of the back side (the side on which light is incident) of the pixel.
  • the difference between the pixel PXLB of the third embodiment and the pixels PXL and PXLA of the first and second embodiments is as follows.
  • microlenses MCL1B, MCL2B, MCL3B, and MCL4B are used.
  • the first microlens MCL1B makes light incident on the first photoelectric conversion region OCV1 of the first photodiode PD1.
  • the second microlens MCL2B causes light to enter the second photoelectric conversion region OCV2 of the first photodiode PD1.
  • the third microlens MCL3B causes light to enter the third photoelectric conversion region OCV3 of the second photodiode PD2.
  • the fourth microlens MCL 4 B makes light incident on the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2.
  • the first microlens MCL1B has the first optical center OCT1B located at the first central area RCT1 of the first photoelectric conversion area OCV1 of the first photodiode PD1. It is arranged to be.
  • the second microlens MCL 2 B is arranged such that the second optical center OCT 2 B is located at a second region central portion RCT 2 of the second photoelectric conversion region OCV 2 of the first photodiode PD 1.
  • the third microlens MCL 3 B is arranged such that the third optical center OCT 3 B is located at the third region central portion RCT 3 of the third photoelectric conversion region OCV 3 of the second photodiode PD 2.
  • the fourth microlens MCL 4 B is arranged such that the fourth optical center OCT 4 B is located in the fourth region central portion RCT 4 of the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2.
  • the other configuration is the same as that of the first and second embodiments described above, and according to the third embodiment, the floating diffusion can be obtained as well as the same effect as the first embodiment can be obtained. It is possible to more reliably prevent the occurrence of crosstalk in the FD.
  • FIGS. 9A and 9B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a fourth embodiment of the present invention.
  • FIG. 9A and FIG. 9B are simplified plan views of the back surface side of the pixel (the side on which light is incident).
  • the optical centers of the first microlenses MCL1C and MCL1D and the optical centers of the second microlenses MCL2C and MCL2D are shifted in a predetermined direction.
  • the first optical center OCT1C corresponds to the first photoelectric conversion region OCV1 of the first photodiode PD1 and the third of the second photodiode PD2.
  • the photoelectric conversion region OCV3 is arranged to be shifted from the first boundary central portion BCT1 of the photoelectric conversion region OCV3 in the forward direction X1 (or reverse direction X2) in the X direction which is the first direction.
  • the second microlens MCL 2 C has a second optical center OCT 2 C in a second photoelectric conversion region OCV 2 of the first photodiode PD 1 and a second photoelectric conversion region OCV 4 of the second photodiode PD 2. It is arranged to be shifted from the center BCT2 of the boundary in the reverse direction X2 (or forward direction X1) in the X direction which is the first direction.
  • the first optical center OCT 1 D corresponds to the first photoelectric conversion region OCV 1 of the first photodiode PD 1 and the third of the second photodiode PD 2.
  • the photoelectric conversion region OCV3 is arranged to be shifted from the first boundary central portion BCT1 of the photoelectric conversion region OCV3 in the forward direction Y1 (or reverse direction Y2) in the Y direction which is the second direction.
  • the second microlens MCL 2 D has a second optical center OCT 2 D in a second photoelectric conversion region OCV 2 of the first photodiode PD 1 and a second photoelectric conversion region OCV 4 of the second photodiode PD 2. It is arranged to be shifted from the center BCT2 of the boundary in the reverse direction Y2 (or forward direction Y1) in the Y direction which is the second direction.
  • the first photodiode PD1 as one of the two photoelectric conversion units is a partial region of the exit pupil of the photographing lens and is predetermined from the center of the exit pupil The light flux from the region decentered in the direction is selectively and efficiently received to perform photoelectric conversion.
  • the second photodiode PD2 as the other of the two photoelectric conversion units is a partial area of the exit pupil of the photographing lens and is decentered in the opposite direction from the center of the exit pupil The light flux from the region is selectively and efficiently received for photoelectric conversion.
  • the other configuration is the same as that of the first embodiment described above, and according to the fourth embodiment, in addition to being able to obtain the same effect as that of the first embodiment described above, the cross in the floating diffusion FD It is possible to more reliably prevent the occurrence of charge transfer lag to the talk and the floating diffusion, and it is possible to obtain highly accurate phase difference information, which in turn can improve the image quality.
  • FIGS. 10A and 10B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a fifth embodiment of the present invention.
  • FIG. 10A and FIG. 10B are simplified plan views of the back side of the pixel (the side on which light is incident).
  • the pixels PXLE and PXLF of the fifth embodiment are different from the pixels PXLA of the second embodiment as follows.
  • the optical centers of the first microlenses MCL1E and MCL1F and the optical centers of the second microlenses MCL2E and MCL2F are shifted in a predetermined direction.
  • the first optical center OCT1E corresponds to the first photoelectric conversion region OCV1 of the first photodiode PD1 and the second photoelectric conversion region of the first photodiode PD1.
  • the photoelectric conversion region OCV2 is arranged to be shifted from the first boundary central portion RCT1 of the photoelectric conversion region OCV2 in the forward direction X1 (or reverse direction X2) in the X direction which is the first direction.
  • the second microlens MCL 2 E has a second optical center OCT 2 E in a third photoelectric conversion area OCV 3 of the second photodiode PD 2 and a second photoelectric conversion area OCV 4 of the second photodiode PD 2. It is arranged to be shifted from the center RCT2 of the boundary in the reverse direction X2 (or forward direction X1) in the X direction which is the first direction.
  • the first optical center OCT1F corresponds to the first photoelectric conversion region OCV1 of the first photodiode PD1 and the second photoelectric conversion region of the first photodiode PD1.
  • the photoelectric conversion region OCV2 is arranged to be shifted from the first boundary central portion RCT1 of the photoelectric conversion region OCV2 in the forward direction Y1 (or reverse direction Y2) in the Y direction which is the second direction.
  • the second microlens MCL 2 F has a second optical center OCT 2 F in a second photoelectric conversion region OCV 3 of the second photodiode PD 2 and a second photoelectric conversion region OCV 4 of the second photodiode PD 2. It is arranged to be shifted from the center RCT2 of the boundary in the reverse direction Y2 (or forward direction Y1) in the Y direction which is the second direction.
  • the first photodiode PD1 as one of the two photoelectric conversion units is a partial region of the exit pupil of the photographing lens and is predetermined from the center of the exit pupil The light flux from the region decentered in the direction is selectively and efficiently received to perform photoelectric conversion.
  • the second photodiode PD2 as the other of the two photoelectric conversion units is a partial area of the exit pupil of the photographing lens and is decentered in the opposite direction from the center of the exit pupil The light flux from the region is selectively and efficiently received for photoelectric conversion.
  • the other configuration is the same as that of the second embodiment described above, and according to the fifth embodiment, in addition to the fact that the same effect as that of the second embodiment described above can be obtained, the cross in the floating diffusion FD It is possible to more reliably prevent the occurrence of charge transfer lag to the talk and the floating diffusion, and it is possible to obtain highly accurate phase difference information, which in turn can improve the image quality.
  • FIGS. 11A and 11B are simplified plan views showing an example of the configuration of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a sixth embodiment of the present invention.
  • FIG. 11A and FIG. 11B are simplified plan views of the back side (the side on which light is incident) of the pixel.
  • the optical centers of the fourth microlenses MCL 4 G and MCL 4 H are shifted in a predetermined direction.
  • the first optical center OCT1G corresponds to the first region central portion RCT1 of the first photoelectric conversion region OCV1 of the first photodiode PD1. It is arranged to be located at a position shifted in the forward direction X1 (or backward direction X2) of the X direction which is the direction.
  • the second in-optical OCT 2 G is transmitted from the second region central portion RCT 2 of the second photoelectric conversion region OCV 2 of the first photodiode PD 1 in the X direction forward X 1 It is arranged to be at a position shifted in (or in the reverse direction X2).
  • the third optical center OCT 3 G is in the reverse direction X 2 in the X direction that is the first direction from the third region central portion RCT 3 of the third photoelectric conversion region OCV 3 of the second photodiode PD 2 It is arranged to be at a shifted position (or X1 in the forward direction).
  • the fourth microlens MCL 4 G has a fourth optical center OCT 4 G in the second direction X 2 opposite to the first direction R 4 from the fourth region central portion RCT 4 of the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2 It is arranged to be at a position shifted in (or forward direction X1).
  • the first optical center OCT1H corresponds to the first central area RCT1 of the first region of the first photoelectric conversion region OCV1 of the first photodiode PD1. It is disposed to be shifted to a forward direction Y1 (or reverse direction Y2) in the Y direction which is the direction.
  • the second microlens MCL2H has a second optical center OCT1H in the Y direction forward Y1 which is a second direction from the second region central portion RCT2 of the second photoelectric conversion region OCV2 of the first photodiode PD1. It is arranged to be at a position shifted in (or in the reverse direction Y2).
  • the third optical center OCT 3 H is in the reverse direction Y 2 in the Y direction which is the second direction from the third region central portion RCT 3 of the third photoelectric conversion region OCV 3 of the second photodiode PD 2 It is arranged to be at a position shifted in (or forward direction Y1).
  • the fourth microlens MCL 4 H has a fourth optical center OCT 4 H in the second direction Y 2 opposite to the fourth region central portion RCT 4 of the fourth photoelectric conversion region OCV 4 in the second photodiode PD 2. It is arranged to be at a position shifted in (or forward direction Y1).
  • the first photodiode PD1 as one of the two photoelectric conversion units is a partial region of the exit pupil of the photographing lens and is predetermined from the center of the exit pupil The light flux from the region decentered in the direction is selectively and efficiently received to perform photoelectric conversion.
  • the second photodiode PD2 as the other of the two photoelectric conversion units is a partial region of the exit pupil of the photographing lens and is decentered in the opposite direction from the center of the exit pupil The light flux from the region is selectively and efficiently received for photoelectric conversion.
  • the other configuration is the same as that of the third embodiment described above, and according to the sixth embodiment, in addition to the fact that the same effect as the third embodiment described above can be obtained, the cross in the floating diffusion FD It is possible to more reliably prevent the occurrence of charge transfer lag to the talk and the floating diffusion, and it is possible to obtain highly accurate phase difference information, which in turn can improve the image quality.
  • FIGS. 12A to 12D are simplified planes for illustrating an example of the configuration of a pixel unit in which pixels having a phase difference detection function in the solid-state imaging device according to the seventh embodiment of the present invention are arrayed.
  • FIG. 12 (A) to 12 (D) are simplified plan views of the surface side (the side where light does not enter) of the pixel.
  • the horizontal pixel H-PXL is arranged such that the first photodiode PD1 and the second photodiode PD2 are in parallel in the X direction, which is the column direction.
  • the vertical pixels V-PXL are arranged such that the first photodiode PD1 and the second photodiode PD2 are in parallel in the Y direction which is the row direction.
  • the first photodiode PD1 and the second photodiode PD2 are predetermined in the column direction (X direction) and the row direction (Y direction). They are arranged in parallel in an oblique direction with an angle.
  • the first photodiode PD1 and the second photodiode PD2 are in the column direction between the column direction and the row direction. From the left to the right in a direction perpendicular to the first diagonal direction D1 having a predetermined angle, for example 45 degrees, in the clockwise direction CW.
  • the second diagonal pixel D2-PXL is a second diagonal pixel in which the first photodiode PD1 and the second photodiode PD2 have a predetermined angle, for example 45 degrees, clockwise from the row direction between the row direction and the column direction. It is arrange
  • One or both of the first diagonal pixels D1-PXL and the second diagonal pixels D2-PXL can be arranged.
  • the seventh embodiment for example, it can be adopted as a phase difference detection system for obtaining phase difference information of autofocus (AF), and the phase difference information in the horizontal (left and right), vertical (upper and lower) and diagonal directions can be obtained. It becomes possible to obtain, and it is possible to provide an imaging device capable of acquiring phase difference information without depending on the shape or the like of a subject.
  • AF autofocus
  • the solid-state imaging devices 10 and 10A to 10H described above can be applied as imaging devices to electronic devices such as digital cameras, video cameras, portable terminals, surveillance cameras, and medical endoscope cameras.
  • FIG. 13 is a view showing an example of the configuration of an electronic apparatus equipped with a camera system to which the solid-state imaging device according to the embodiment of the present invention is applied.
  • the electronic device 100 includes a CMOS image sensor 110 to which the solid-state imaging device 10 according to the present embodiment can be applied. Further, the electronic device 100 has an optical system (lens or the like) 120 for guiding incident light to the pixel area of the CMOS image sensor 110 (forming an object image).
  • the electronic device 100 includes a signal processing circuit (PRC) 130 that processes an output signal of the CMOS image sensor 110.
  • PRC signal processing circuit
  • the signal processing circuit 130 performs predetermined signal processing on the output signal of the CMOS image sensor 110.
  • the image signal processed by the signal processing circuit 130 can be displayed as a moving image on a monitor including a liquid crystal display or the like, or can be output to a printer, or can be recorded directly on a recording medium such as a memory card. Is possible.
  • CMOS image sensor 110 As described above, by mounting the above-described solid-state imaging devices 10 and 10A to 10H as the CMOS image sensor 110, it is possible to provide a high-performance, small-sized, low-cost camera system. And, electronic equipment such as surveillance cameras, medical endoscope cameras, etc. used for applications where restrictions on the mounting size, number of connectable cables, cable length, installation height etc. are required for camera installation requirements Can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

In this solid-state imaging device 10, a floating diffusion FD is disposed in a pixel central portion PXCT which is a separating portion (the boundary portion) between a first photodiode PD1 and a second photodiode PD2. A lens part LNS through which light becomes incident on the first photodiode PD1 and the second photodiode PD2 is disposed such that the optical centres OCT are present in positions avoiding at least the pixel central portion. As a result of this configuration, crosstalk in the floating diffusion and lag in the electric charge transfer to the floating diffusion can be inhibited, highly accurate phase difference information can be acquired, and image quality can be improved.

Description

固体撮像装置、固体撮像装置の製造方法、および電子機器Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
 本発明は、固体撮像装置、固体撮像装置の製造方法、および電子機器に関するものである。 The present invention relates to a solid-state imaging device, a method of manufacturing a solid-state imaging device, and an electronic device.
 光を検出して電荷を発生させる光電変換素子を用いた固体撮像装置(イメージセンサ)として、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサが実用に供されている。
 CMOSイメージセンサは、デジタルカメラ、ビデオカメラ、監視カメラ、医療用内視鏡、パーソナルコンピュータ(PC)、携帯電話等の携帯端末装置(モバイル機器)等の各種電子機器の一部として広く適用されている。
As a solid-state imaging device (image sensor) using a photoelectric conversion element that detects light and generates electric charge, a complementary metal oxide semiconductor (CMOS) image sensor is put to practical use.
CMOS image sensors are widely applied as a part of various electronic devices such as digital cameras, video cameras, surveillance cameras, medical endoscopes, personal computers (PCs), mobile terminal devices such as mobile phones (mobile devices), etc. There is.
 CMOSイメージセンサは、画素毎にフォトダイオード(光電変換素子)および浮遊拡散層(FD:Floating Diffusion、フローティングディフュージョン)を有するFDアンプを持ち合わせており、その読み出しは、画素アレイの中のある一行を選択し、それらを同時に列(カラム)方向へと読み出すような列並列出力型が主流である。 The CMOS image sensor has an FD amplifier having a photodiode (photoelectric conversion element) and a floating diffusion layer (FD: Floating Diffusion) for each pixel, and its readout selects one row in the pixel array In addition, a column parallel output type in which they are read simultaneously in the column direction is the mainstream.
 ところで、デジタルカメラ等の撮像装置においては、自動焦点調節(オートフォーカス(AF))を実現するための方式として、たとえば画素アレイ部の画素の一部にオートフォーカス(AF)の位相差情報を得るための位相差検出画素を配置してオートフォーカスを行う、像面位相差法等の位相差検出方式が知られている。 By the way, in an imaging apparatus such as a digital camera, as a method for realizing automatic focusing (autofocus (AF)), for example, phase difference information of autofocus (AF) is obtained on part of pixels of a pixel array unit. There is known a phase difference detection method such as an image plane phase difference method which arranges phase difference detection pixels to perform autofocus.
 像面位相差法においては、たとえば画素の受光領域の半分が遮光膜により遮光さており、右半分で受光する位相差検出画素と左半分で受光する位相差検出画素で像面上の位相差を検出する(たとえば特許文献1参照)。 In the image plane phase difference method, for example, a half of a light receiving area of a pixel is shielded by a light shielding film, and a phase difference detection pixel receiving light in the right half and a phase difference detection pixel receiving light in the left half It detects (for example, refer patent document 1).
 この遮光膜を用いる像面位相差法では、開口率低下による感度劣化が大きいことから、通常の画像を生成するための画素としては欠陥画素となり、この欠陥画素は画像の解像度劣化等の要因となる。 In the image plane phase difference method using this light shielding film, the sensitivity deterioration due to the decrease in the aperture ratio is large, so the pixel for generating a normal image is a defective pixel, and this defective pixel is a factor such as image resolution deterioration. Become.
 これらの課題を解消する方法として、遮光膜を用いずに、画素内の光電変換部(フォトダイオード(PD))を2分割して(2つ設けて)、一対の光電変換部(フォトダイオード)によって得られる信号の位相のずれ量に基づいて位相差を検出する方法が知られている(たとえば特許文献2,3参照)。
 この位相差検出方式は、瞳分割方式とも呼ばれ、撮像レンズの通過光束を瞳分割して一対の分割像を形成し、そのパターンズレ(位相シフト量)を検出することで、撮像レンズのデフォーカス量を検出する。
 この場合、位相差検出が欠陥画素とはなりにくく、分割した光電変換部(PD)の信号を加算することで、良好な画像信号としても利用することができる。
As a method of solving these problems, a photoelectric conversion unit (photodiode (PD)) in a pixel is divided into two (two provided) without using a light shielding film, and a pair of photoelectric conversion units (photodiodes) There is known a method of detecting a phase difference based on the phase shift amount of a signal obtained by the following (see, for example, Patent Documents 2 and 3).
This phase difference detection method is also referred to as a pupil division method, in which a passing light beam of an imaging lens is divided into pupils to form a pair of divided images, and pattern deviation (phase shift amount) is detected. Detect the amount of focus.
In this case, the phase difference detection does not easily become a defective pixel, and by adding the signals of the divided photoelectric conversion units (PD), it can be used also as a good image signal.
 特許文献2に開示された固体撮像装置においては、2つの光電変換部を有する複数の画素が配置されている。2つの光電変換部の一方部分と他方部分との間の画素中央部にはフローティングディフュージョンFDが配置され、このフローティングディフュージョンFDを挟んで2つの光電変換部が並列に配置されている。
 このような光電変換部上に、マイクロレンズが画素に対して1対1に設けられている。マイクロレンズは、光学中心が画素中央部に位置するように配置されている。
In the solid-state imaging device disclosed in Patent Document 2, a plurality of pixels having two photoelectric conversion units are arranged. A floating diffusion FD is disposed in a pixel central portion between one portion and the other portion of the two photoelectric conversion portions, and the two photoelectric conversion portions are disposed in parallel with the floating diffusion FD interposed therebetween.
On such a photoelectric conversion unit, microlenses are provided in one-to-one correspondence with pixels. The microlens is disposed such that the optical center is located at the center of the pixel.
 特許文献3に開示された固体撮像装置においても、2つの光電変換部を有する複数の画素が配置されている。ただし、フローティングディフュージョンFDは、2つの光電変換部の一方部分と他方部分との間の画素中央部ではなく、画素の周縁部に配置されている。
 この場合も、マイクロレンズが画素に対して1対1に設けられており、マイクロレンズは、光学中心が画素中央部に位置するように配置されている。
Also in the solid-state imaging device disclosed in Patent Document 3, a plurality of pixels having two photoelectric conversion units are arranged. However, the floating diffusion FD is disposed not at the pixel central portion between one portion and the other portion of the two photoelectric conversion portions, but at the peripheral portion of the pixel.
Also in this case, the microlenses are provided in a one-to-one correspondence with the pixels, and the microlenses are arranged such that the optical center is located at the pixel central portion.
特許第5157436号Patent No. 5157436 特許第4027113号Patent No. 4027113 特許第5076528号Patent No. 5076528
 ところが、特許文献2に開示された固体撮像装置では、前述したように、2つの光電変換部の一方部分と他方部分との間の画素中央部にはフローティングディフュージョンFDが配置され、このフローティングディフュージョンFDを挟んで2つの光電変換部が並列に配置されている。そして、マイクロレンズは、光学中心がフローティングディフュージョンFDが配置された画素中央部に位置するように配置されている。
 このため、特許文献2に開示された固体撮像装置では、受光感度がない画素中央部のフローティングディフュージョンFDの配置領域に入射光量が集中し、光、特に赤色光がフローティングディフュージョンFDに直接入射することから、フローティングディフュージョンFDにおいてクロストークが生じるおそれがある。
However, in the solid-state imaging device disclosed in Patent Document 2, as described above, the floating diffusion FD is disposed in the pixel central portion between one portion and the other portion of the two photoelectric conversion units, and this floating diffusion FD Two photoelectric conversion units are disposed in parallel with each other. The microlenses are disposed such that the optical center is located at the central portion of the pixel where the floating diffusion FD is disposed.
Therefore, in the solid-state imaging device disclosed in Patent Document 2, the amount of incident light is concentrated in the arrangement region of the floating diffusion FD in the central portion of the pixel having no light receiving sensitivity, and light, particularly red light, directly enters the floating diffusion FD. Therefore, crosstalk may occur in the floating diffusion FD.
 また、特許文献3に開示された固体撮像装置では、クロストークの問題は解消されるが、光電変換部の各領域からフローティングディフュージョンFDへの電荷転送にラグ(Lag)が生じるおそれがある。 Further, in the solid-state imaging device disclosed in Patent Document 3, although the problem of crosstalk is eliminated, lag (Lag) may occur in charge transfer from each region of the photoelectric conversion unit to the floating diffusion FD.
 本発明は、フローティングディフュージョンにおけるクロストークおよびフローティングディフュージョンへの電荷転送ラグを抑止でき、精度の高い位相差情報を取得することが可能となり、ひいては画質を向上させることが可能な固体撮像装置、固体撮像装置の製造方法、および電子機器を提供することにある。 The present invention can suppress the crosstalk in the floating diffusion and the charge transfer lag to the floating diffusion, and can obtain highly accurate phase difference information, and thus can improve the image quality, solid-state imaging Abstract: A method of manufacturing a device, and an electronic device.
 本発明の第1の観点の固体撮像装置は、画素が配置された画素部を有し、前記画素は、入射光に対する光電変換により生成した電荷を蓄積する第1の光電変換部と、入射光に対する光電変換により生成した電荷を蓄積する第2の光電変換部と、前記第1の光電変換部および前記第2の光電変換部に光を入射するレンズ部と、前記第1の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第1の転送素子と、前記第2の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第2の転送素子と、前記第1の転送素子および前記第2の転送素子のうちの少なくとも一方の転送素子を通じて前記第1の光電変換部および前記第2の光電変換部のうちの少なくとも一方の光電変換部で蓄積された電荷が転送されるフローティングディフュージョンと、前記フローティングディフュージョンの電荷を電荷量に応じた利得をもって電圧信号に変換するソースフォロワ素子と、を含み、前記第1の光電変換部および前記第2の光電変換部は、第1方向に並列に配置され、前記レンズ部は、光学中心が、少なくとも前記画素の中央部からずれた位置に存する。 The solid-state imaging device according to the first aspect of the present invention includes a pixel unit in which a pixel is arranged, and the pixel includes a first photoelectric conversion unit that accumulates a charge generated by photoelectric conversion of incident light; A second photoelectric conversion unit that accumulates the charge generated by photoelectric conversion for the lens, a lens unit that causes light to enter the first photoelectric conversion unit and the second photoelectric conversion unit, and the first photoelectric conversion unit A first transfer element capable of transferring the accumulated charge in a designated transfer period; a second transfer element capable of transferring the charge accumulated in the second photoelectric conversion unit in a designated transfer period; Accumulated in at least one photoelectric conversion unit of the first photoelectric conversion unit and the second photoelectric conversion unit through at least one of the first transfer device and the second transfer device Floating charge transfer And a source follower element for converting the charge of the floating diffusion into a voltage signal with a gain according to the charge amount, wherein the first photoelectric conversion unit and the second photoelectric conversion unit are arranged in the first direction. The lens units are arranged in parallel, and the optical centers are at least offset from the center of the pixel.
 本発明の第2の観点は、画素が配置された画素部を有し、前記画素は、入射光に対する光電変換により生成した電荷を蓄積する第1の光電変換部と、入射光に対する光電変換により生成した電荷を蓄積する第2の光電変換部と、前記第1の光電変換部および前記第2の光電変換部に光を入射するレンズ部と、前記第1の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第1の転送素子と、前記第2の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第2の転送素子と、前記第1の転送素子および前記第2の転送素子のうちの少なくとも一方の転送素子を通じて前記第1の光電変換部および前記第2の光電変換部のうちの少なくとも一方の光電変換部で蓄積された電荷が転送されるフローティングディフュージョンと、前記フローティングディフュージョンの電荷を電荷量に応じた利得をもって電圧信号に変換するソースフォロワ素子と、を含む固体撮像装置の製造方法であって、前記フローティングディフュージョンを画素の所定の位置に形成するとともに、前記第1の光電変換部および前記第2の光電変換部を、第1方向に並列に形成し、前記レンズ部を、光学中心が、少なくとも前記画素の中央部からずれた位置に存するように配置する。 According to a second aspect of the present invention, there is provided a pixel portion in which a pixel is arranged, wherein the pixel is formed by a first photoelectric conversion portion for accumulating charges generated by photoelectric conversion for incident light, and photoelectric conversion for incident light A second photoelectric conversion unit for storing the generated charge, a lens unit for causing light to enter the first photoelectric conversion unit and the second photoelectric conversion unit, and the charge stored in the first photoelectric conversion unit A second transfer element capable of transferring the charges accumulated in the second photoelectric conversion unit in a specified transfer period, and the first transfer element capable of transferring in a specified transfer period; The charge accumulated in at least one of the first photoelectric conversion unit and the second photoelectric conversion unit is transferred through the transfer device and at least one of the second transfer devices. Floating diffusion A method of manufacturing a solid-state imaging device, comprising: a source follower element for converting the charge of the floating diffusion into a voltage signal with a gain according to the charge amount, wherein the floating diffusion is formed at a predetermined position of a pixel. In addition, the first photoelectric conversion unit and the second photoelectric conversion unit are formed in parallel in the first direction, and the lens unit is positioned such that the optical center is at least deviated from the central portion of the pixel. Place on
 本発明の第3の観点の電子機器は、固体撮像装置と、前記固体撮像装置に被写体像を結像する光学系と、を有し、前記固体撮像装置は、画素が配置された画素部を有し、前記画素は、入射光に対する光電変換により生成した電荷を蓄積する第1の光電変換部と、入射光に対する光電変換により生成した電荷を蓄積する第2の光電変換部と、前記第1の光電変換部および前記第2の光電変換部に光を入射するレンズ部と、前記第1の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第1の転送素子と、前記第2の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第2の転送素子と、前記第1の転送素子および前記第2の転送素子のうちの少なくとも一方の転送素子を通じて前記第1の光電変換部および前記第2の光電変換部のうちの少なくとも一方の光電変換部で蓄積された電荷が転送されるフローティングディフュージョンと、前記フローティングディフュージョンの電荷を電荷量に応じた利得をもって電圧信号に変換するソースフォロワ素子と、を含み、前記第1の光電変換部および前記第2の光電変換部は、第1方向に並列に配置され、前記レンズ部は、光学中心が、少なくとも前記画素の中央部からずれた位置に存するように配置されている。 An electronic device according to a third aspect of the present invention includes a solid-state imaging device, and an optical system for forming an object image on the solid-state imaging device, and the solid-state imaging device includes a pixel unit in which pixels are arranged. The pixel includes a first photoelectric conversion unit for accumulating charges generated by photoelectric conversion of incident light, a second photoelectric conversion unit for accumulating charges generated by photoelectric conversion for incident light, and A photoelectric conversion unit according to the invention, a lens unit for causing light to enter the second photoelectric conversion unit, and a first transfer element capable of transferring the charge accumulated in the first photoelectric conversion unit in a designated transfer period; A second transfer element capable of transferring the charge accumulated in the second photoelectric conversion unit in a designated transfer period, and at least one of the first transfer element and the second transfer element Through the first photoelectric conversion unit and the second photoelectric conversion unit. A floating diffusion to which the charge accumulated in at least one of the photoelectric conversion units is transferred, and a source follower element that converts the charge of the floating diffusion into a voltage signal with a gain according to the charge amount The first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in the first direction, and the lens unit is arranged such that the optical center is at least deviated from the central portion of the pixel. It is arranged.
 本発明によれば、フローティングディフュージョンにおけるクロストークおよびフローティングディフュージョンへの電荷転送ラグを抑止でき、精度の高い位相差情報を取得することが可能となり、ひいては画質を向上させることができる。 According to the present invention, crosstalk in the floating diffusion and charge transfer lag to the floating diffusion can be suppressed, and highly accurate phase difference information can be obtained, and thus the image quality can be improved.
図1は、本発明の第1の実施形態に係る固体撮像装置の構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present invention. 図2は、本実施形態に係る位相差検出機能を有する画素の一例を示す回路図である。FIG. 2 is a circuit diagram showing an example of a pixel having a phase difference detection function according to the present embodiment. 図3(A)および図3(B)は、本実施形態における通常の画素読み出し動作時のシャッタースキャンおよび読み出しスキャンの動作タイミングを示す図である。FIGS. 3A and 3B are diagrams showing operation timings of the shutter scan and the readout scan at the time of the normal pixel readout operation in the present embodiment. 図4(A)~(C)は、本発明の実施形態に係る固体撮像装置の画素部の列出力の読み出し系の構成例を説明するための図である。FIGS. 4A to 4C are diagrams for explaining a configuration example of a readout system of the column output of the pixel unit of the solid-state imaging device according to the embodiment of the present invention. 図5(A)および図5(B)は、本発明の第1の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。FIG. 5A and FIG. 5B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in the solid-state imaging device according to the first embodiment of the present invention. 図6(A)および図6(B)は、本発明の第1の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略断面図である。FIG. 6A and FIG. 6B are simplified cross-sectional views showing configuration examples of main parts of a pixel having a phase difference detection function in the solid-state imaging device according to the first embodiment of the present invention. 図7は、本発明の第2の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。FIG. 7 is a simplified plan view showing an example of the configuration of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a second embodiment of the present invention. 図8は、本発明の第3の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。FIG. 8 is a simplified plan view showing a configuration example of main parts of a pixel having a phase difference detection function in a solid-state imaging device according to a third embodiment of the present invention. 図9(A)および図9(B)は、本発明の第4の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。FIGS. 9A and 9B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a fourth embodiment of the present invention. 図10(A)および図10(B)は、本発明の第5の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。FIGS. 10A and 10B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a fifth embodiment of the present invention. 図11(A)および図11(B)は、本発明の第6の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。FIGS. 11A and 11B are simplified plan views showing an example of the configuration of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a sixth embodiment of the present invention. 図12(A)~(D)は、本発明の第7の実施形態に係る固撮像装置における位相差検出機能を有する画素が配列される画素部の構成例を説明するための簡略平面図である。FIGS. 12A to 12D are simplified plan views for explaining an example of the configuration of a pixel unit in which pixels having a phase difference detection function in the solid-state imaging device according to the seventh embodiment of the present invention are arrayed. is there. 図13は、本発明の実施形態に係る固体撮像装置が適用される電子機器の構成の一例を示す図である。FIG. 13 is a diagram showing an example of the configuration of an electronic device to which the solid-state imaging device according to the embodiment of the present invention is applied.
 10,10A~10H・・・固体撮像装置、20,20A~20H・・・画素部、PCXL,PXLA~PXLH・・・画素、PD1・・・第1のフォトダイオード(第1の光電変換部)、PD2・・・第2のフォトダイオード(第2の光電変換部)、TG1-Tr・・・第1の転送トランジスタ(第1の転送素子)、TG2-Tr・・・第2の転送トランジスタ(第2の転送素子)、MCL1・・・第1のマイクロレンズ、MCL2・・・第2のマイクロレンズ、MCL3・・・第3のマイクロレンズ、MCL4・・・第4のマイクロレンズ、210・・・半導体基板、220・・・第1のフォトダイオード、240・・・第2のフォトダイオード、30・・・垂直走査回路、40・・・読み出し回路、50・・・水平走査回路、60・・・タイミング制御回路、70・・・読み出し部、100・・・電子機器、110・・・CMOSイメージセンサ、120・・・光学系、130・・・信号処理回路(PRC)。 10, 10A to 10H: solid-state imaging device, 20, 20A to 20H: pixel unit, PCXL, PXLA to PXLH: pixel, PD1: first photodiode (first photoelectric conversion unit) PD2 second photodiode (second photoelectric conversion unit) TG1-Tr first transfer transistor (first transfer element) TG2-Tr second transfer transistor Second transfer element), MCL1 ... first micro lens, MCL2 ... second micro lens, MCL3 ... third micro lens, MCL 4 ... fourth micro lens, 210 ... Semiconductor substrate 220 First photodiode 240 Second photodiode 30 Vertical scanning circuit 40 Reading circuit 50 Horizontal scanning circuit 60 And timing control circuit, 70 ... reading unit, 100 ... electronic device, 110 ... CMOS image sensor, 120 ... optical system, 130 ... signal processing circuit (PRC).
 以下、本発明の実施形態を図面に関連付けて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る固体撮像装置の構成例を示すブロック図である。
 本実施形態において、固体撮像装置10は、たとえばCMOSイメージセンサにより構成される。このCMOSイメージセンサは、一例として裏面照射型イメージセンサ(BSI)に適用される。
First Embodiment
FIG. 1 is a block diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present invention.
In the present embodiment, the solid-state imaging device 10 is configured of, for example, a CMOS image sensor. This CMOS image sensor is applied to a back illuminated image sensor (BSI) as an example.
 この固体撮像装置10は、図1に示すように、撮像部としての画素部20、垂直走査回路(行走査回路)30、読み出し回路(カラム読み出し回路)40、水平走査回路(列走査回路)50、およびタイミング制御回路60を主構成要素として有している。
 これらの構成要素のうち、たとえば垂直走査回路30、読み出し回路40、水平走査回路50、およびタイミング制御回路60により画素信号の読み出し部70が構成される。
As shown in FIG. 1, the solid-state imaging device 10 includes a pixel unit 20 as an imaging unit, a vertical scanning circuit (row scanning circuit) 30, a readout circuit (column readout circuit) 40, and a horizontal scanning circuit (column scanning circuit) 50. And a timing control circuit 60 as a main component.
Among these components, for example, the vertical scanning circuit 30, the reading circuit 40, the horizontal scanning circuit 50, and the timing control circuit 60 constitute a pixel signal reading unit 70.
 本第1の実施形態において、固体撮像装置10は、後で詳述するように、画素部20に行列状に配列される画素は、位相差情報を得るために、入射光に対する光電変換により生成した電荷を蓄積する第1の光電変換部(第1のフォトダイオード)および第2の光電変換部(第2のフォトダイオード)、第1の光電変換部および第2の光電変換部に光を入射するレンズ部(たとえばマイクロレンズ)、第1の光電変換部に蓄積された電荷をフローティングディフュージョンFDに指定される転送期間に転送可能な第1の転送素子(第1の転送トランジスタ)、および第2の光電変換部に蓄積された電荷をフローティングディフュージョンFDに指定される転送期間に転送可能な第2の転送素子(第2の転送トランジスタ)を含んで構成されている。
 これにより、固体撮像装置10は、たとえばオートフォーカス(AF)の位相差情報を得るための位相差検出系として採用でき、水平(左右)、垂直(上下)方向、または/および、斜め方向の位相差情報が取得可能となっている。
In the first embodiment, as described in detail later, in the solid-state imaging device 10, pixels arranged in a matrix in the pixel unit 20 are generated by photoelectric conversion of incident light in order to obtain phase difference information. The light is incident on the first photoelectric conversion unit (first photodiode) and the second photoelectric conversion unit (second photodiode), the first photoelectric conversion unit, and the second photoelectric conversion unit that store the stored charge. A lens unit (for example, a microlens), a first transfer element (first transfer transistor) capable of transferring the charge accumulated in the first photoelectric conversion unit during a transfer period designated by the floating diffusion FD, and Is configured to include a second transfer element (second transfer transistor) capable of transferring the charge stored in the photoelectric conversion portion of the second transfer element in the transfer period designated by the floating diffusion FD. .
Thereby, the solid-state imaging device 10 can be adopted, for example, as a phase difference detection system for obtaining phase difference information of autofocus (AF), and the horizontal (left and right), vertical (upper and lower) directions, or / and the position of the oblique direction. It is possible to obtain the difference information.
 そして、固体撮像装置10は、フローティングディフュージョンFDにおけるクロストークおよびフローティングディフュージョンFDへの電荷転送ラグを抑止できるように、第1の光電変換部および第2の光電変換部は、第1方向(たとえば複数の画素が行列状に配列される画素部の列方向または行方向または斜め方向)にフローティングディフュージョンを挟んで並列に配置され、レンズ部は、光学中心が、少なくとも画素の中央部を避けた位置に存するように配置されている。
 たとえば、レンズ部は、2つの光電変換部に対応して配置される2つ、あるいは、4つのマイクロレンズを含んで構成される。
The first photoelectric conversion unit and the second photoelectric conversion unit are arranged in the first direction (for example, a plurality of photoelectric conversion units) so that the solid-state imaging device 10 can suppress crosstalk in the floating diffusion FD and charge transfer lag to the floating diffusion FD. Pixels are arranged in parallel in the column direction, row direction or diagonal direction of the pixel portion in which the pixels are arranged in a matrix, and the lens portion is disposed at a position where the optical center at least avoids the central portion of the pixel. It is arranged as it exists.
For example, the lens unit is configured to include two or four microlenses arranged corresponding to two photoelectric conversion units.
 なお、本実施形態において、第1方向は、たとえば複数の画素が行列状に配列される画素部20の列方向(水平方向、X方向)または行方向(垂直方向、Y方向)または斜め方向である、
 以下の説明では、一例として、第1方向は列方向(水平方向、X方向)とする。これに伴い第2方向は行方向(垂直方向、Y方向)とする。
In the present embodiment, the first direction is, for example, the column direction (horizontal direction, X direction), row direction (vertical direction, Y direction) or oblique direction of the pixel unit 20 in which a plurality of pixels are arranged in a matrix. is there,
In the following description, as an example, the first direction is the column direction (horizontal direction, X direction). Along with this, the second direction is the row direction (vertical direction, Y direction).
 以下、固体撮像装置10の各部の構成および機能の概要を説明した後、位相差検出機能をもつ画素の具体的な構成等について説明する。 Hereinafter, after describing the configuration and function of each part of the solid-state imaging device 10, a specific configuration of a pixel having a phase difference detection function and the like will be described.
(画素部20および画素PXLの構成)
 画素部20は、フォトダイオード(光電変換素子)と画素内アンプとを含む複数の画素がN行×M列の2次元の行列状(マトリクス状)に配列されている。
 画素部20において、複数の画素のうちの少なくとも一部の画素は、光電変換部(フォトダイオード)を2つ設けることにより位相差検出機能を有する画素として構成される。
 固体撮像装置10においては、位相差検出が欠陥画素とはなりにくく、たとえば2つの光電変換部(PD)の信号を加算することで、良好な画像信号としても利用することができるように構成される。
(Configuration of Pixel Unit 20 and Pixel PXL)
In the pixel unit 20, a plurality of pixels including a photodiode (photoelectric conversion element) and an in-pixel amplifier are arranged in a two-dimensional matrix (matrix) of N rows × M columns.
In the pixel unit 20, at least some of the plurality of pixels are configured as pixels having a phase difference detection function by providing two photoelectric conversion units (photodiodes).
In the solid-state imaging device 10, phase difference detection is unlikely to be a defective pixel, and for example, by adding signals of two photoelectric conversion units (PD), it can be used also as a good image signal. Ru.
 図2は、本実施形態に係る位相差検出機能を有する画素の一例を示す回路図である。 FIG. 2 is a circuit diagram showing an example of a pixel having a phase difference detection function according to the present embodiment.
 この画素PXLは、入射光に対する光電変換により生成した電荷を蓄積する第1の光電変換部としての第1のフォトダイオードPD1、および入射光に対する光電変換により生成した電荷を蓄積する第2の光電変換部としての第2のフォトダイオードPD2を含んで構成されている。 The pixel PXL includes a first photodiode PD1 as a first photoelectric conversion unit for storing charges generated by photoelectric conversion for incident light, and a second photoelectric conversion for storing charges generated by photoelectric conversion for incident light. It is configured to include a second photodiode PD2 as a part.
 第1のフォトダイオードPD1に対して、第1の転送素子としての第1の転送トランジスタTG1-Trが接続され、第2のフォトダイオードPD2に対して、第2の転送素子としての第2の転送トランジスタTG2-Trが接続されている。
 そして、画素PXLは、リセット素子としてのリセットトランジスタRST-Tr、ソースフォロワ素子としてのソースフォロワトランジスタSF-Tr、および選択素子としての選択トランジスタSEL-Trをそれぞれ一つずつ有する。
 また、画素PXLは、たとえば読み出し信号を一時的に保持するためのメモリ部MRY(図2には不図示)に接続される。
A first transfer transistor TG1-Tr as a first transfer element is connected to the first photodiode PD1, and a second transfer as a second transfer element is connected to the second photodiode PD2. The transistor TG2-Tr is connected.
The pixel PXL has one reset transistor RST-Tr as a reset element, one source follower transistor SF-Tr as a source follower element, and one selection transistor SEL-Tr as a selection element.
The pixel PXL is connected to, for example, a memory unit MRY (not shown in FIG. 2) for temporarily holding a read signal.
 フォトダイオードPD1,PD2は、入射光量に応じた量の信号電荷(ここでは電子)を発生し、蓄積する。
 以下、信号電荷は電子であり、各トランジスタがn型トランジスタである場合について説明するが、信号電荷がホールであったり、各トランジスタがp型トランジスタであっても構わない。
 また、本実施形態は、複数のフォトダイオード間で、各トランジスタを共有している場合や、選択トランジスタを有していない画素を採用している場合にも有効である。
The photodiodes PD1 and PD2 generate and accumulate signal charges (here, electrons) according to the amount of incident light.
Hereinafter, the case where the signal charge is an electron and each transistor is an n-type transistor will be described. However, the signal charge may be a hole or each transistor may be a p-type transistor.
Further, the present embodiment is also effective in the case where each transistor is shared among a plurality of photodiodes, or in the case where a pixel having no selection transistor is employed.
 各画素PXLにおいて、フォトダイオード(PD)としては、埋め込み型フォトダイオード(PPD)が用いられる。
 フォトダイオード(PD)を形成する基板表面にはダングリングボンドなどの欠陥による表面準位が存在するため、熱エネルギーによって多くの電荷(暗電流)が発生し、正しい信号が読み出せなくなってしまう。
 埋め込み型フォトダイオード(PPD)では、フォトダイオード(PD)の電荷蓄積部を基板内に埋め込むことで、暗電流の信号への混入を低減することが可能となる。
In each pixel PXL, a buried photodiode (PPD) is used as a photodiode (PD).
Since surface states due to defects such as dangling bonds exist on the surface of the substrate forming the photodiode (PD), a large amount of charge (dark current) is generated by thermal energy, and the correct signal can not be read out.
In the embedded photodiode (PPD), it is possible to reduce the mixing of dark current into a signal by embedding the charge storage portion of the photodiode (PD) in the substrate.
 第1の転送トランジスタTG1-Trは、第1のフォトダイオードPD1とフローティングディフュージョンFDの間に接続され、制御線を通じてゲートに印加される制御信号TG1により制御される。
 第1の転送トランジスタTG1-Trは、制御信号TG1がハイ(H)レベルの転送期間に選択されて導通状態となり、第1のフォトダイオードPD1で光電変換され蓄積された電荷(電子)をフローティングディフュージョンFDに転送する。
The first transfer transistor TG1-Tr is connected between the first photodiode PD1 and the floating diffusion FD, and is controlled by a control signal TG1 applied to the gate through a control line.
The first transfer transistor TG1-Tr is turned on when the control signal TG1 is selected at a high (H) level transfer period and becomes conductive, and floating charges (electrons) photoelectrically converted and accumulated by the first photodiode PD1 are diffused. Transfer to FD.
 第2の転送トランジスタTG2-Trは、第2のフォトダイオードPD2とフローティングディフュージョンFDの間に接続され、制御線を通じてゲートに印加される制御信号TG2により制御される。
 第2の転送トランジスタTG2-Trは、制御信号TG2がハイ(H)レベルの転送期間に選択されて導通状態となり、第2のフォトダイオードPD2で光電変換され蓄積された電荷(電子)をフローティングディフュージョンFDに転送する。
The second transfer transistor TG2-Tr is connected between the second photodiode PD2 and the floating diffusion FD, and is controlled by a control signal TG2 applied to the gate through a control line.
The second transfer transistor TG2-Tr is selected during the transfer period in which the control signal TG2 is high (H) level and becomes conductive, and the charges (electrons) photoelectrically converted and stored by the second photodiode PD2 are floating-diffused Transfer to FD.
 リセットトランジスタRST-Trは、たとえば電源線VRstとフローティングディフュージョンFDの間に接続され、制御信号RSTを通じて制御される。
 なお、リセットトランジスタRST-Trは、電源線VDDとフローティングディフュージョンFDの間に接続され、制御信号RSTを通じて制御されるように構成してもよい。
 リセットトランジスタRST-Trは、制御信号RSTがHレベルの期間に選択されて導通状態となり、フローティングディフュージョンFDを電源線VRst(またはVDD)の電位にリセットする。
The reset transistor RST-Tr is connected, for example, between the power supply line VRst and the floating diffusion FD, and is controlled through the control signal RST.
The reset transistor RST-Tr may be connected between the power supply line VDD and the floating diffusion FD, and may be configured to be controlled through the control signal RST.
The reset transistor RST-Tr is selected in a period when the control signal RST is at H level and becomes conductive, and resets the floating diffusion FD to the potential of the power supply line VRst (or VDD).
 ソースフォロワトランジスタSF-Trと選択トランジスタSEL-Trは、電源線VDDと垂直信号線LSGNの間に直列に接続されている。
 ソースフォロワトランジスタSF-TrのゲートにはフローティングディフュージョンFDが接続され、選択トランジスタSEL-Trは制御信号SELを通じて制御される。
 選択トランジスタSEL-Trは、制御信号SELがHレベルの期間に選択されて導通状態となる。これにより、ソースフォロワトランジスタSF-TrはフローティングディフュージョンFDの電荷を電荷量(電位)に応じた利得をもって電圧信号に変換した列出力の読み出し信号VSLを垂直信号線LSGNに出力する。
 これらの動作は、たとえば転送トランジスタTG1-TrまたはTG2-Tr、リセットトランジスタRST-Tr、および選択トランジスタSEL-Trの各ゲートが行単位で接続されていることから、1行分の各画素について同時並列的に行われる。
The source follower transistor SF-Tr and the selection transistor SEL-Tr are connected in series between the power supply line VDD and the vertical signal line LSGN.
The floating diffusion FD is connected to the gate of the source follower transistor SF-Tr, and the selection transistor SEL-Tr is controlled through the control signal SEL.
The selection transistor SEL-Tr is selected during a period in which the control signal SEL is at H level, and becomes conductive. As a result, the source follower transistor SF-Tr outputs the read signal VSL of the column output obtained by converting the charge of the floating diffusion FD into a voltage signal with a gain corresponding to the charge amount (potential) to the vertical signal line LSGN.
These operations are performed simultaneously for each row of pixels since each gate of transfer transistor TG1-Tr or TG2-Tr, reset transistor RST-Tr, and selection transistor SEL-Tr is connected in row units, for example. It is done in parallel.
 画素部20には、画素PXLがN行×M列配置されているので、各制御信号SEL、RST、TG1、TG2の制御線はそれぞれN本、垂直信号線LSGNはM本ある。
 図1においては、各制御線を1本の行走査制御線として表している。
In the pixel unit 20, since the pixels PXL are arranged in N rows × M columns, there are N control lines of each of the control signals SEL, RST, TG1 and TG2, and M vertical signal lines LSGN.
In FIG. 1, each control line is represented as one row scanning control line.
 垂直走査回路30は、タイミング制御回路60の制御に応じてシャッター行および読み出し行において行走査制御線を通して画素の駆動を行う。
 また、垂直走査回路30は、アドレス信号に従い、信号の読み出しを行うリード行と、フォトダイオードPDに蓄積された電荷をリセットするシャッター行の行アドレスの行選択信号を出力する。
The vertical scanning circuit 30 drives the pixels through the row scanning control line in the shutter row and the readout row according to the control of the timing control circuit 60.
Further, the vertical scanning circuit 30 outputs a row selection signal of a row address for reading out the signal and a row address of the shutter row for resetting the charge accumulated in the photodiode PD in accordance with the address signal.
 本実施形態では、通常の画素読み出し動作においては、読み出し部70の垂直走査回路30による駆動により、シャッタースキャンが行われ、その後、読み出しスキャンが行われる。 In the present embodiment, in a normal pixel read operation, shutter scan is performed by driving of the reading unit 70 by the vertical scanning circuit 30, and then read scan is performed.
 図3(A)および図3(B)は、本実施形態における通常の画素読み出し動作時のシャッタースキャンおよび読み出しスキャンの動作タイミングを示す図である。 FIGS. 3A and 3B are diagrams showing operation timings of the shutter scan and the readout scan at the time of the normal pixel readout operation in the present embodiment.
 選択トランジスタSEL-Trのオン(導通)、オフ(非導通)を制御する制御信号SELは、シャッタースキャン期間PSHTにはLレベルに設定されて選択トランジスタSEL-Trが非導通状態に保持され、読み出しスキャン期間PRDOにはHレベルに設定されて選択トランジスタSEL-Trが導通状態に保持される。
 そして、シャッタースキャン期間PSHTには、制御信号RSTがHレベルの期間に所定期間制御信号TG1またはTG2がHレベルに設定されて、リセットトランジスタRST-Trおよび転送トランジスタTG1-TrまたはTG2-Trを通じてフォトダイオードPD1、PD2、およびフローティングディフュージョンFDがリセットされる。
The control signal SEL for controlling on (conduction) and off (non-conduction) of the selection transistor SEL-Tr is set to L level during the shutter scan period PSHT and the selection transistor SEL-Tr is held in the non-conduction state, and read The scan period PRDO is set to H level, and the selection transistor SEL-Tr is held in the conductive state.
Then, during the shutter scan period PSHT, the control signal TG1 or TG2 is set to the H level for a predetermined period while the control signal RST is at the H level, and the photo transistor is reset via the reset transistor RST-Tr and the transfer transistor TG1-Tr or TG2-Tr. The diodes PD1 and PD2 and the floating diffusion FD are reset.
 読み出しスキャン期間PRDOには、制御信号RSTがHレベルに設定されてリセットトランジスタRST-Trを通じてフローティングディフュージョンFDがリセットされ、このリセット期間PR後の読み出し期間PRD1にリセット状態の信号が読み出される。
 読み出し期間PRD1後に、所定期間、制御信号TG1またはTG2がHレベルに設定されて転送トランジスタTG1-TrまたはTG2-Trを通じてフローティングディフュージョンFDにフォトダイオーPD1またはPD2の蓄積電荷が転送され、この転送期間PT後の読み出し期間PRD2に蓄積された電子(電荷)に応じた信号が読み出される。
During the read scan period PRDO, the control signal RST is set to the H level, the floating diffusion FD is reset through the reset transistor RST-Tr, and the signal in the reset state is read in the read period PRD1 after the reset period PR.
After the readout period PRD1, the control signal TG1 or TG2 is set to the H level for a predetermined period, and the charge stored in the photodiode PD1 or PD2 is transferred to the floating diffusion FD through the transfer transistor TG1-Tr or TG2-Tr. A signal corresponding to the electrons (charges) accumulated in the subsequent readout period PRD2 is read out.
 なお、本第1の実施形態の通常の画素読み出し動作において、蓄積期間(露光期間)EXPは、一例として図3に示すように、シャッタースキャン期間PSHTでフォトダイオードPD1、PD2およびフローティングディフュージョンFDをリセットして制御信号TG1またはTG2をLレベルに切り替えてから、読み出しスキャン期間PRDOの転送期間PTを終了するために制御信号TG1またはTG2をLレベルに切り替えるまでの期間である。 In the normal pixel readout operation of the first embodiment, the accumulation period (exposure period) EXP resets the photodiodes PD1 and PD2 and the floating diffusion FD in the shutter scan period PSHT as shown in FIG. 3 as an example. Then, after switching the control signal TG1 or TG2 to L level, it is a period from switching the control signal TG1 or TG2 to L level to end the transfer period PT of the read scan period PRDO.
 読み出し回路40は、画素部20の各列出力に対応して配置された複数の列信号処理回路(図示せず)を含み、複数の列信号処理回路で列並列処理が可能に構成されてもよい。 The readout circuit 40 includes a plurality of column signal processing circuits (not shown) arranged corresponding to the respective column outputs of the pixel unit 20, and even if column parallel processing is possible by the plurality of column signal processing circuits. Good.
 読み出し回路40は、相関二重サンプリング(CDS:Correlated Double Sampling)回路やADC(アナログデジタルコンバータ;AD変換器)、アンプ(AMP,増幅器)、サンプルホールド(S/H)回路等を含んで構成可能である。 The readout circuit 40 can be configured to include a correlated double sampling (CDS) circuit, an ADC (analog digital converter; AD converter), an amplifier (AMP, amplifier), a sample hold (S / H) circuit, etc. It is.
 このように、読み出し回路40は、たとえば図4(A)に示すように、画素部20の各列出力の読み出し信号VSLをデジタル信号に変換するADC41を含んで構成されてもよい。
 あるいは、読み出し回路40は、たとえば図4(B)に示すように、画素部20の各列出力の読み出し信号VSLを増幅するアンプ(AMP)42が配置されてもよい。
 また、読み出し回路40は、たとえば図4(C)に示すように、画素部20の各列出力の読み出し信号VSLをサンプル、ホールドするサンプルホールド(S/H)回路43が配置されてもよい。
Thus, the readout circuit 40 may be configured to include an ADC 41 that converts the readout signal VSL of each column output of the pixel unit 20 into a digital signal, as shown in FIG. 4A, for example.
Alternatively, in the readout circuit 40, for example, as shown in FIG. 4B, an amplifier (AMP) 42 that amplifies the readout signal VSL of each column output of the pixel unit 20 may be disposed.
In addition, as shown in FIG. 4C, for example, a sample and hold (S / H) circuit 43 may be arranged to sample and hold the read signal VSL of each column output of the pixel unit 20 in the read out circuit 40.
 水平走査回路50は、読み出し回路40のADC等の複数の列信号処理回路で処理された信号を走査して水平方向に転送し、図示しない信号処理回路に出力する。 The horizontal scanning circuit 50 scans the signals processed by the plurality of column signal processing circuits such as the ADC of the reading circuit 40, transfers the signals in the horizontal direction, and outputs the signals to a signal processing circuit (not shown).
 タイミング制御回路60は、画素部20、垂直走査回路30、読み出し回路40、水平走査回路50等の信号処理に必要なタイミング信号を生成する。 The timing control circuit 60 generates timing signals necessary for signal processing of the pixel unit 20, the vertical scanning circuit 30, the reading circuit 40, the horizontal scanning circuit 50, and the like.
 読み出し部70は、垂直走査回路30、読み出し回路40、水平走査回路50、およびタイミング制御回路60による画素信号の読み出し処理を制御する。 The readout unit 70 controls readout processing of pixel signals by the vertical scanning circuit 30, the readout circuit 40, the horizontal scanning circuit 50, and the timing control circuit 60.
 以上、固体撮像装置10の各部の構成および機能の概要について説明した。
 次に、本第1の実施形態に係る位相差検出機能を有する画素のより具体的な構造(構成)等について詳述する。
The outline of the configuration and function of each part of the solid-state imaging device 10 has been described above.
Next, a more specific structure (configuration) or the like of the pixel having the phase difference detection function according to the first embodiment will be described in detail.
 図5(A)および図5(B)は、本発明の第1の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。図5(A)は画素の前面側から見た簡略平面図であり、図5(B)は画素の裏面側(光が入射する側)の簡略平面図である。 FIG. 5A and FIG. 5B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in the solid-state imaging device according to the first embodiment of the present invention. FIG. 5A is a simplified plan view seen from the front side of the pixel, and FIG. 5B is a simplified plan view of the back side of the pixel (the side on which light is incident).
 固体撮像装置10における画素PXLは、フローティングディフュージョンにおけるクロストークおよびフローティングディフュージョンへの電荷転送ラグを抑止できるように、図5(A)および図5(B)に示すように、第1の光電変換部として第1のフォトダイオードPD1および第2の光電変換部としての第2のフォトダイオードPD2は、第1方向(ここでは一例として画素部の列方向(水平方向、X方向))にフローティングディフュージョンを挟んで並列に配置されている。 As shown in FIGS. 5A and 5B, the pixel PXL in the solid-state imaging device 10 can suppress the crosstalk and the charge transfer lag to the floating diffusion in the floating diffusion, as shown in FIG. As the first photodiode PD1 and the second photodiode PD2 as the second photoelectric conversion unit, the floating diffusion is interposed in the first direction (here, as an example, the column direction (horizontal direction, X direction) of the pixel unit). Are arranged in parallel.
 本第1の実施形態において、第1の光電変換部としての第1のフォトダイオードPD1は、第1方向であるX方向に直交する第2方向であるY方向に第1の光電変換領域OCV1および第2の光電変換領域OCV2を含んで形成されている。
 第2の光電変換部としての第2のフォトダイオードPD2は、第1方向であるX方向に直交する第2方向であるY方向に第3の光電変換領域OCV3および第4の光電変換領域OCV4を含んで形成されている。
 そして、レンズ部LNSは、少なくとも、第1の光電変換領域OCV1、第2の光電変換領域OCV2、第3の光電変換領域OCV3、および第4の光電変換領域OCV4に光を入射するように形成されている。
In the first embodiment, the first photodiode PD1 as the first photoelectric conversion unit has the first photoelectric conversion region OCV1 and the first photoelectric conversion region OCV1 in the Y direction which is the second direction orthogonal to the X direction which is the first direction. It is formed to include the second photoelectric conversion region OCV2.
The second photodiode PD2 as the second photoelectric conversion unit has the third photoelectric conversion area OCV3 and the fourth photoelectric conversion area OCV4 in the Y direction which is the second direction orthogonal to the X direction which is the first direction. It is formed including.
The lens portion LNS is formed to allow light to be incident on at least the first photoelectric conversion region OCV1, the second photoelectric conversion region OCV2, the third photoelectric conversion region OCV3, and the fourth photoelectric conversion region OCV4. ing.
 本第1の実施形態の固体撮像装置10は、一例として裏面照射型のCMOSイメージセンサとして構成され、裏面側に受光領域を大きくとる必要があることから、図5(A)および図5(B)に示すように、第1のフォトダイオードPD1と第2のフォトダイオードPD2の分離部(境界部)SEPのX方向における幅SWF,SWBは、裏面側の幅SWBの方が表面側の幅SWFより狭く(小さく)なるように形成されている。
 第1のフォトダイオードPD1と第2のフォトダイオードPD2の分離部(境界部)SEPは、たとえばDTI(Deep Trench Isolation)により形成することが可能である。
 あるいは、第1のフォトダイオードPD1と第2のフォトダイオードPD2の分離部(境界部)SEPは、たとえばpn接合分離部により形成することが可能である。
The solid-state imaging device 10 according to the first embodiment is configured as a back-illuminated CMOS image sensor as an example, and it is necessary to increase the light receiving area on the back side, as shown in FIGS. As shown in), the widths SWF and SWB in the X direction of the separation portion (boundary portion) SEP of the first photodiode PD1 and the second photodiode PD2 are such that the width SWB on the back side is the width SWF on the front side It is formed to be narrower (smaller).
The separation portion (boundary portion) SEP of the first photodiode PD1 and the second photodiode PD2 can be formed, for example, by DTI (Deep Trench Isolation).
Alternatively, the separation portion (boundary portion) SEP of the first photodiode PD1 and the second photodiode PD2 can be formed by, for example, a pn junction separation portion.
 本第1の実施形態の固体撮像装置10において、フローティングディフュージョンFDは、第1のフォトダイオードPD1と第2のフォトダイオードPD2との間の分離部(境界部)であって、画素中央部PXCTに配置されている。
 そして、本第1の実施形態において、第1のフォトダイオードPD1および第2のフォトダイオードPD2に光を入射するレンズ部LNSは、光学中心OCTが、少なくとも画素の中央部を避けた位置に存するように配置されている。
In the solid-state imaging device 10 according to the first embodiment, the floating diffusion FD is a separation portion (boundary portion) between the first photodiode PD1 and the second photodiode PD2, and is provided to the pixel central portion PXCT. It is arranged.
Then, in the first embodiment, the lens portion LNS that causes light to be incident on the first photodiode PD1 and the second photodiode PD2 is such that the optical center OCT lies at least at a position away from the central portion of the pixel Is located in
 本第1の実施形態において、レンズ部LNSは、光を第1のフォトダイオードPD1の第1の光電変換領域OCV1および第2のフォトダイオードPD2の第3の光電変換領域OCV3に入射する第1のマイクロレンズMCL1、並びに、光を第1のフォトダイオードPD1の第2の光電変換領域OCV2および第2のフォトダイオードPD2の第4の光電変換領域OCV4に入射する第2のマイクロレンズMCL2を含んで構成されている。 In the first embodiment, the lens unit LNS is configured such that light is incident on the first photoelectric conversion region OCV1 of the first photodiode PD1 and the third photoelectric conversion region OCV3 of the second photodiode PD2. A configuration including a microlens MCL1 and a second microlens MCL2 in which light is incident on a second photoelectric conversion region OCV2 of the first photodiode PD1 and a fourth photoelectric conversion region OCV4 of the second photodiode PD2 It is done.
 第1のマイクロレンズMCL1は、その第1の光学中心OCT1が、第1のフォトダイオードPD1の第1の光電変換領域OCV1と第2のフォトダイオードPD2の第3の光電変換領域OCV3の第1の境界中央部BCT1に位置するように配置されている。
 第2のマイクロレンズMCL2は、その第2の光学中心OCT2が、第1のフォトダイオードPD1の第2の光電変換領域OCV2と第2のフォトダイオードPD2の第4の光電変換領域OCV4の第2の境界中央部BCT2に位置するように配置されている。
The first microlens MCL1 has a first optical center OCT1 corresponding to a first photoelectric conversion region OCV1 of the first photodiode PD1 and a first photoelectric conversion region OCV3 of the second photodiode PD2. It is arrange | positioned so that it may be located in boundary center part BCT1.
The second microlens MCL2 has a second optical center OCT2 that is a second photoelectric conversion region OCV2 of the first photodiode PD1 and a second photoelectric conversion region OCV4 of the second photodiode PD2. It is arrange | positioned so that it may be located in boundary center part BCT2.
(埋め込み型のフォトダイオードPD、PD2の具体的な構成例)
 ここで、埋め込み型の第1のフォトダイオードPD1および第2のフォトダイオードPD2の構成例について図6(A)および図6(B)に関連付けて説明する。
(Specific configuration example of embedded photodiode PD, PD2)
Here, configuration examples of the embedded first photodiode PD1 and the second photodiode PD2 will be described with reference to FIGS. 6A and 6B.
 図6(A)および図6(B)は、本発明の第1の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略断面図である。図6(A)は図6(B)に示すように、図6(B)におけるX1-X2線の簡略断面図である。
 なお、ここでは、埋め込み型フォトダイオード(PPD)部分を符号200で表す。
FIG. 6A and FIG. 6B are simplified cross-sectional views showing configuration examples of main parts of a pixel having a phase difference detection function in the solid-state imaging device according to the first embodiment of the present invention. FIG. 6A is a simplified sectional view taken along line X1-X2 in FIG. 6B, as shown in FIG. 6B.
Here, the embedded photodiode (PPD) portion is denoted by reference numeral 200.
 図6(A)の埋め込み型フォトダイオード(PPD)部分200は、光Lが照射される第1基板面211側(たとえば裏面側)と第1基板面211側と対向する側の第2基板面212側(前面側)とを有する半導体基板(以下、単に基板という)210を有する。
 埋め込み型フォトダイオード部分200は、基板210に対して埋め込むように形成された第1導電型(本実施形態ではn型)半導体層(本実施形態ではn層)221nを含み、受光した光の光電変換機能および電荷蓄積機能を有する第1のフォトダイオード220(PD1)を有する。
 埋め込み型フォトダイオード部分200は、第2導電型(p型)分離層230を挟んで、第1のフォトダイオード220(PD1)と並列となるように、基板210に対して埋め込むように形成されたn層(第1導電型半導体層)241nを含み、受光した光の光電変換機能および電荷蓄積機能を有する第2のフォトダイオード240(PD2)を有する。
The embedded type photodiode (PPD) portion 200 of FIG. 6A is a second substrate surface opposite to the first substrate surface 211 side (for example, the back surface side) to which the light L is irradiated and the first substrate surface 211 side. It has a semiconductor substrate (hereinafter simply referred to as a substrate) 210 having a side 212 (front side).
The embedded photodiode portion 200 includes a first conductive type (n-type in this embodiment) semiconductor layer (n-type in this embodiment) 221 n formed to be embedded in the substrate 210, and photoelectric conversion of the received light It has a first photodiode 220 (PD1) having a conversion function and a charge storage function.
The embedded photodiode portion 200 is formed to be embedded in the substrate 210 so as to be parallel to the first photodiode 220 (PD1) with the second conductive (p-type) separation layer 230 interposed therebetween. A second photodiode 240 (PD2) is included which includes an n layer (first conductive type semiconductor layer) 241n and has a photoelectric conversion function of received light and a charge storage function.
 埋め込み型フォトダイオード部分200は、第1のフォトダイオード220(PD1)および第2のフォトダイオード240(PD2)の基板210の法線に直交する方向における側部(n層の境界部)には第2の導電型(p型)分離層231,232,233が形成されている。そして、分離層231,232,233に裏面側に連続するように、裏面側BDTIが形成されている。
 図6(A)の例では、第1のフォトダイオード220(PD1)は基板210の法線に直交する方向(たとえばX方向)における側部(n層の境界部)に形成された第2の導電型(p型)分離層231とp型分離層232の間に形成されている。
 第2のフォトダイオード240(PD2)は基板210の法線に直交する方向における側部(n層の境界部)に形成されたp型分離層232とp型分離層233の間に形成されている。
The embedded photodiode portion 200 is formed on the side (boundary of the n layer) in the direction orthogonal to the normal to the substrate 210 of the first photodiode 220 (PD1) and the second photodiode 240 (PD2). Two conductive type (p-type) separation layers 231, 232 and 233 are formed. Then, the back surface side BDTI is formed so as to be continuous to the back surface side in the separation layers 231, 232, and 233.
In the example of FIG. 6A, the first photodiode 220 (PD1) is formed on the side (boundary portion of the n layer) in the direction (for example, the X direction) orthogonal to the normal to the substrate 210. It is formed between the conductive type (p-type) separation layer 231 and the p-type separation layer 232.
The second photodiode 240 (PD2) is formed between the p-type separation layer 232 and the p-type separation layer 233 formed on the side (the boundary of the n layer) in the direction orthogonal to the normal to the substrate 210 There is.
 基板210の裏面側211には、第1のフォトダイオードPD1、PD2に光を入射するマイクロレンズMCL1(MCL2)が配置され、基板210の裏面側とマイクロレンズMCL1(MCL2)との間にカラーフィルタ(GまたはRまたはB)FLTが配置されている。 A micro lens MCL1 (MCL2) that causes light to enter the first photodiodes PD1 and PD2 is disposed on the back surface side 211 of the substrate 210, and a color filter is provided between the back surface side of the substrate 210 and the microlens MCL1 (MCL2) (G or R or B) FLT is arranged.
 上記したように、隣接して2つ設けられた光電変換部としての第1のフォトダイオードPD1および第2のフォトダイオードPD2は、第1のマイクロレンズMCL1および第2のマイクロレンズMCL2によって、図示しない撮影レンズの射出瞳と略結像関係(すなわち、略共役)となる位置に配置されている。
 したがって、撮影レンズの射出瞳と第1のマイクロレンズMCL1および第2のマイクロレンズMCL2との間の距離はマイクロレンズの大きさに対して十分に長いことから、2つの光電変換部としての第1のフォトダイオードPD1および第2のフォトダイオードPD2は、第1のマイクロレンズMCL1および第2のマイクロレンズMCL2の略焦点面に配置されていることになる。
As described above, the first photodiode PD1 and the second photodiode PD2 as two adjacent photoelectric conversion units are not shown by the first microlens MCL1 and the second microlens MCL2. It is disposed at a position where it forms an imaging relationship (that is, substantially conjugate) with the exit pupil of the photographing lens.
Therefore, since the distance between the exit pupil of the photographing lens and the first micro lens MCL1 and the second micro lens MCL2 is sufficiently long with respect to the size of the micro lens, the first photoelectric conversion unit can be used as the first photoelectric conversion unit. The photodiode PD1 and the second photodiode PD2 are disposed substantially in the focal plane of the first microlens MCL1 and the second microlens MCL2.
 以上述べた関係から、各画素PXLにおいて、2つのうち一方の光電変換部としての第1のフォトダイオードPD1は、撮影レンズの射出瞳の一部の領域であって射出瞳の中心から所定方向へ偏心した領域からの光束を選択的に受光して光電変換することになる。
 また、各画素PXLにおいて、2つのうち他方の光電変換部としての第2のフォトダイオードPD2は、撮影レンズの射出瞳の一部の領域であって射出瞳の中心から反対方向へ偏心した領域からの光束を選択的に受光して光電変換することになる。
From the relationship described above, in each pixel PXL, the first photodiode PD1 as one of the two photoelectric conversion units is a partial region of the exit pupil of the imaging lens, and in a predetermined direction from the center of the exit pupil The luminous flux from the decentered area is selectively received and photoelectrically converted.
In each pixel PXL, the second photodiode PD2 as the other of the two photoelectric conversion units is a partial area of the exit pupil of the photographing lens and an area decentered in the opposite direction from the center of the exit pupil Is selectively received and photoelectrically converted.
 固体撮像装置10では、焦点検出時には、各画素PXLの第1のフォトダイオードPD1で光電変換された信号電荷および第2のフォトダイオードPD2で光電変換された信号電荷が、異なるタイミングでフローティングディフュージョンFDに転送されて、それぞれ個別に読み出される。 In the solid-state imaging device 10, at the time of focus detection, the signal charge photoelectrically converted by the first photodiode PD1 of each pixel PXL and the signal charge photoelectrically converted by the second photodiode PD2 are different in floating diffusion FD at different timings. It is transferred and read out individually.
(第1のフォトダイオードPD1の個別読み出し動作)
 焦点検出時、以下のように、第1のフォトダイオードPD1の個別読み出し動作が行われる。
 読み出しスキャン期間PRDOにおいては、画素アレイの中のある一行を選択するために、その選択された行の各画素PXLに接続された制御信号SELがHレベルに設定されて画素PXLの選択トランジスタSEL-Trが導通状態となる。
 この選択状態において、リセット期間PRにリセットトランジスタRST-Trが、制御信号RSTがHレベルの期間に選択されて導通状態となり、フローティングディフュージョンFDが電源線VDDの電位にリセットされる。
 フローティングディフュージョンFDをリセット後、制御信号RSTがLレベルに切り替えられてリセットトランジスタRST-Trが非導通状態となり、リセット期間PRが終了する。
 このリセット期間PRが経過した後、リセットトランジスタRST-Trが非導通状態となり、転送期間PTが開始されるまでの期間が、リセット状態時の画素信号を読み出す第1読み出し期間PRD11となる。
(Individual read operation of the first photodiode PD1)
At the time of focus detection, the individual readout operation of the first photodiode PD1 is performed as follows.
In the read out scan period PRDO, in order to select one row in the pixel array, control signal SEL connected to each pixel PXL in the selected row is set to H level, and select transistor SEL- of pixel PXL is selected. Tr becomes conductive.
In this selected state, the reset transistor RST-Tr is selected in the reset period PR and is selected in the period when the control signal RST is at the H level to be conductive, and the floating diffusion FD is reset to the potential of the power supply line VDD.
After the floating diffusion FD is reset, the control signal RST is switched to L level, the reset transistor RST-Tr is turned off, and the reset period PR ends.
After the reset period PR elapses, the reset transistor RST-Tr is turned off, and the period until the transfer period PT is started is a first readout period PRD11 in which the pixel signal in the reset state is read out.
 第1読み出し期間PRD11が開始された後の所定の時刻に、読み出し部70により、フローティングディフュージョンFDの容量(電荷量)に応じた変換利得で画素信号の読み出しを行う第1の読み出しPDCG11が行われる。
 このとき、各画素PXLにおいては、ソースフォロワトランジスタSF-Trにより、フローティングディフュージョンFDの電荷が電荷量(電位)に応じた利得をもって電圧信号に変換され、列出力の読み出し信号VSL(PDCG11)として垂直信号線LSGNに出力され、読み出し回路40に供給されて、たとえば保持される。
At a predetermined time after the start of the first read period PRD11, the read out unit 70 performs the first read out PDCG11 in which the pixel signal is read out with the conversion gain according to the capacitance (charge amount) of the floating diffusion FD. .
At this time, in each pixel PXL, the charge of the floating diffusion FD is converted into a voltage signal with a gain according to the charge amount (potential) by the source follower transistor SF-Tr, and the signal is read vertically as a read signal VSL (PDCG11) of column output. The signal is output to the signal line LSGN, supplied to the readout circuit 40, and held, for example.
 ここで、第1読み出し期間PRD11が終了し、転送期間PT11となる。
 転送期間PT11に転送トランジスタTG1-Trが、制御信号TG1がHレベルの期間に選択されて導通状態となり、所定の期間に、第1のフォトダイオードPD1で光電変換され蓄積された電荷(電子)がフローティングディフュージョンFDに転送される。
 この転送期間PT11が経過した後(転送トランジスタTG1-Trが非導通状態)、第1のフォトダイオードPD1が光電変換して蓄積した電荷に応じた画素信号を読み出す第2読み出し期間PRD12となる。
Here, the first read period PRD11 ends, and the transfer period PT11 starts.
During the transfer period PT11, the transfer transistor TG1-Tr is selected during the period when the control signal TG1 is at H level and becomes conductive, and the charge (electrons) photoelectrically converted and stored by the first photodiode PD1 during a predetermined period is It is transferred to the floating diffusion FD.
After the transfer period PT11 has elapsed (the transfer transistor TG1-Tr is in a non-conductive state), the first photodiode PD1 performs a second read period PRD12 for reading a pixel signal corresponding to the charge stored by photoelectric conversion.
 第2読み出し期間PRD12が開始された後の所定に、読み出し部70により、フローティングディフュージョンFDの容量(電荷量)に応じた変換利得で画素信号の読み出しを行う第2の読み出しPDCG12が行われる。
 このとき、各画素PXLにおいては、ソースフォロワトランジスタSF-Trにより、フローティングディフュージョンFDの電荷が電荷量(電位)に応じた利得をもって電圧信号に変換され、列出力の読み出し信号VSL(PDCG12)として垂直信号線LSGNに出力され、読み出し回路40に供給されて、たとえば保持される。
After the start of the second read period PRD12, the read unit 70 performs a second read PDCG12 for reading a pixel signal with a conversion gain according to the capacitance (charge amount) of the floating diffusion FD.
At this time, in each pixel PXL, the charge of the floating diffusion FD is converted into a voltage signal with a gain according to the charge amount (potential) by the source follower transistor SF-Tr, and the signal is read vertically as a read signal VSL (PDCG12) of column output. The signal is output to the signal line LSGN, supplied to the readout circuit 40, and held, for example.
 そして、たとえば読み出し部70の一部を構成する読み出し回路40において、第2の読み出しPDCG12の読み出し信号VSL(PDCG12)と第1の読み出しPDCG11の読み出し信号VSL(PDCG11)との差分{VSL(PDCG12)-VSL(PDCG11)}がとられてCDS処理が行われる。 Then, for example, in the readout circuit 40 forming a part of the readout unit 70, the difference {VSL (PDCG12) between the readout signal VSL (PDCG12) of the second readout PDCG 12 and the readout signal VSL (PDCG11) of the first readout PDCG11. -VSL (PDCG 11)} is taken and CDS processing is performed.
(第2のフォトダイオードPD2の個別読み出し動作)
 同様に、焦点検出時、以下のように、第2のフォトダイオードPD2の個別読み出し動作が行われる。
 読み出しスキャン期間PRDOにおいては、画素アレイの中のある一行を選択するために、その選択された行の各画素PXLに接続された制御信号SELがHレベルに設定されて画素PXLの選択トランジスタSEL-Trが導通状態となる。
 この選択状態において、リセット期間PRにリセットトランジスタRST-Trが、制御信号RSTがHレベルの期間に選択されて導通状態となり、フローティングディフュージョンFDが電源線VDDの電位にリセットされる。
 フローティングディフュージョンFDをリセット後、制御信号RSTがLレベルに切り替えられてリセットトランジスタRST-Trが非導通状態となり、リセット期間PRが終了する。
 このリセット期間PRが経過した後、リセットトランジスタRST-Trが非導通状態となり、転送期間PTが開始されるまでの期間が、リセット状態時の画素信号を読み出す第1読み出し期間PRD21となる。
(Individual read operation of the second photodiode PD2)
Similarly, at the time of focus detection, the individual readout operation of the second photodiode PD2 is performed as follows.
In the read out scan period PRDO, in order to select one row in the pixel array, control signal SEL connected to each pixel PXL in the selected row is set to H level, and select transistor SEL- of pixel PXL is selected. Tr becomes conductive.
In this selected state, the reset transistor RST-Tr is selected in the reset period PR and is selected in the period when the control signal RST is at the H level to be conductive, and the floating diffusion FD is reset to the potential of the power supply line VDD.
After the floating diffusion FD is reset, the control signal RST is switched to L level, the reset transistor RST-Tr is turned off, and the reset period PR ends.
After the reset period PR elapses, the reset transistor RST-Tr is turned off, and the period until the transfer period PT is started is a first readout period PRD21 for reading out the pixel signal in the reset state.
 第1読み出し期間PRD21が開始された後の所定の時刻に、読み出し部70により、フローティングディフュージョンFDの容量(電荷量)に応じた変換利得で画素信号の読み出しを行う第1の読み出しPDCG21が行われる。
 このとき、各画素PXLにおいては、ソースフォロワトランジスタSF-Trにより、フローティングディフュージョンFDの電荷が電荷量(電位)に応じた利得をもって電圧信号に変換され、列出力の読み出し信号VSL(PDCG21)として垂直信号線LSGNに出力され、読み出し回路40に供給されて、たとえば保持される。
At a predetermined time after the start of the first read period PRD21, the read out unit 70 performs the first read out PDCG21 that reads the pixel signal with the conversion gain according to the capacitance (charge amount) of the floating diffusion FD. .
At this time, in each pixel PXL, the charge of the floating diffusion FD is converted into a voltage signal with a gain according to the charge amount (potential) by the source follower transistor SF-Tr, and the signal is read vertically as a read signal VSL (PDCG21) of column output. The signal is output to the signal line LSGN, supplied to the readout circuit 40, and held, for example.
 ここで、第1読み出し期間PRD21が終了し、転送期間PT21となる。
 転送期間PT21に転送トランジスタTG2-Trが、制御信号TG2がHレベルの期間に選択されて導通状態となり、所定の期間に、第2のフォトダイオードPD2で光電変換され蓄積された電荷(電子)がフローティングディフュージョンFDに転送される。
 この転送期間PT21が経過した後(転送トランジスタTG2-Trが非導通状態)、第2のフォトダイオードPD2が光電変換して蓄積した電荷に応じた画素信号を読み出す第2読み出し期間PRD22となる。
Here, the first read period PRD21 ends, and the transfer period PT21 starts.
During the transfer period PT21, the transfer transistor TG2-Tr is selected while the control signal TG2 is at the H level, and becomes conductive, and the charge (electrons) photoelectrically converted and stored by the second photodiode PD2 during a predetermined period is generated. It is transferred to the floating diffusion FD.
After the transfer period PT21 has elapsed (the transfer transistor TG2-Tr is in a non-conductive state), the second photodiode PD2 performs a second read period PRD22 for reading a pixel signal corresponding to the charge stored by photoelectric conversion.
 第2読み出し期間PRD22が開始された後の所定に、読み出し部70により、フローティングディフュージョンFDの容量(電荷量)に応じた変換利得で画素信号の読み出しを行う第2の読み出しPDCG22が行われる。
 このとき、各画素PXLにおいては、ソースフォロワトランジスタSF-Trにより、フローティングディフュージョンFDの電荷が電荷量(電位)に応じた利得をもって電圧信号に変換され、列出力の読み出し信号VSL(PDCG22)として垂直信号線LSGNに出力され、読み出し回路40に供給されて、たとえば保持される。
After the start of the second read period PRD22, the read unit 70 performs a second read PDCG22 for reading a pixel signal with a conversion gain according to the capacitance (charge amount) of the floating diffusion FD.
At this time, in each pixel PXL, the charge of the floating diffusion FD is converted into a voltage signal with a gain according to the charge amount (potential) by the source follower transistor SF-Tr, and the signal is read vertically as a read signal VSL (PDCG 22) of column output. The signal is output to the signal line LSGN, supplied to the readout circuit 40, and held, for example.
 そして、たとえば読み出し部70の一部を構成する読み出し回路40において、第2の読み出しPDCG22の読み出し信号VSL(PDCG22)と第1の読み出しPDCG21の読み出し信号VSL(PDCG21)との差分{VSL(PDCG22)-VSL(PDCG21)}がとられてCDS処理が行われる。 Then, for example, in the readout circuit 40 forming a part of the readout unit 70, the difference {VSL (PDCG 22) between the readout signal VSL (PDCG 22) of the second readout PDCG 22 and the readout signal VSL (PDCG 21) of the first readout PDCG 21 -VSL (PDCG 21)} is taken and CDS processing is performed.
 そして、瞳分割位相差方式の原理に従って、それらの信号に基づいて、撮影レンズの焦点調節状態が検出される。 Then, according to the principle of the pupil division phase difference method, the focusing state of the imaging lens is detected based on those signals.
 また、撮影レンズの合焦後等において画像を撮像する場合は、各画素PXLの第1のフォトダイオードPD1および第2のフォトダイオードPD2の両部分からの信号電荷が同じタイミング(転送トランジスタTG1-Tr,TG2-Trが同時並列的に導通状態)で同じフローティングディフュージョンFDに転送されて、両信号が画素内で加算されて読み出される。
 したがって、撮像時に、2分割された光電変換部を有する画素が、画素欠陥と同様の状態を引き起こしてしまうことがないため、画質向上を図ることができる。
In addition, when capturing an image after focusing of the imaging lens, etc., the signal charge from both portions of the first photodiode PD1 and the second photodiode PD2 of each pixel PXL is the same (transfer transistor TG1-Tr , TG2-Tr are simultaneously transferred in parallel to the same floating diffusion FD, and both signals are added and read out in the pixel.
Therefore, since a pixel having a photoelectric conversion portion divided into two does not cause a state similar to a pixel defect at the time of imaging, the image quality can be improved.
 以上説明したように、本第1の実施形態によれば、固体撮像装置10における画素PXLは、第1の光電変換部として第1のフォトダイオードPD1および第2の光電変換部としての第2のフォトダイオードPD2が、第1方向(ここでは一例として画素部の列方向(水平方向、X方向))にフローティングディフュージョンFDを挟んで並列に配置されている。
 本第1の実施形態の固体撮像装置10において、フローティングディフュージョンFDは、第1のフォトダイオードPD1と第2のフォトダイオードPD2との間の分離部(境界部)であって、画素中央部PXCTに配置され、第1のフォトダイオードPD1および第2のフォトダイオードPD2に光を入射するレンズ部LNSは、光学中心OCTが、少なくとも画素の中央部を避けた位置に存するように配置されている。
As described above, according to the first embodiment, the pixel PXL in the solid-state imaging device 10 includes the first photodiode PD1 as the first photoelectric conversion unit and the second photoelectric conversion unit as the second photoelectric conversion unit. The photodiodes PD2 are arranged in parallel in the first direction (here, as an example, in the column direction (horizontal direction, X direction) of the pixel portion) with the floating diffusion FD interposed therebetween.
In the solid-state imaging device 10 according to the first embodiment, the floating diffusion FD is a separation portion (boundary portion) between the first photodiode PD1 and the second photodiode PD2, and is provided to the pixel central portion PXCT. The lens portion LNS, which is disposed and which makes light incident on the first photodiode PD1 and the second photodiode PD2, is disposed such that the optical center OCT is at a position at least avoiding the central portion of the pixel.
 さらに、本第1の実施形態において、レンズ部LNSは、光を第1のフォトダイオードPD1の第1の光電変換領域OCV1および第2のフォトダイオードPD2の第3の光電変換領域OCV3に入射する第1のマイクロレンズMCL1、並びに、光を第1のフォトダイオードPD1の第2の光電変換領域OCV2および第2のフォトダイオードPD2の第4の光電変換領域OCV4に入射する第2のマイクロレンズMCL2を含んで構成されている。
 そして、第1のマイクロレンズMCL1は、その第1の光学中心OCT1が、第1のフォトダイオードPD1の第1の光電変換領域OCV1と第2のフォトダイオードPD2の第3の光電変換領域OCV3の第1の境界中央部BCT1に位置するように配置されている。
 第2のマイクロレンズMCL2は、その第2の光学中心OCT2が、第1のフォトダイオードPD1の記第2の光電変換領域OCV2と第2のフォトダイオードPD2の第4の光電変換領域OCV4の第2の境界中央部BCT2に位置するように配置されている。
Furthermore, in the first embodiment, the lens unit LNS causes light to enter the first photoelectric conversion area OCV1 of the first photodiode PD1 and the third photoelectric conversion area OCV3 of the second photodiode PD2. 1, and the second microlens MCL2 that injects light into the second photoelectric conversion region OCV2 of the first photodiode PD1 and the fourth photoelectric conversion region OCV4 of the second photodiode PD2. It consists of
The first microlens MCL1 has a first optical center OCT1 in a first photoelectric conversion region OCV1 of the first photodiode PD1 and a third photoelectric conversion region OCV3 of the second photodiode PD2. It is arrange | positioned so that it may be located in 1 boundary center part BCT1.
The second optical center OCT2 of the second microlens MCL2 is a second photoelectric conversion region OCV2 of the first photodiode PD1 and a second photoelectric conversion region OCV4 of the second photodiode PD2. Is disposed to be located at the border central portion BCT2.
 これにより、本第1の実施形態によれば、受光感度がない画素中央部のフローティングディフュージョンFDの配置領域に入射光量が集中することを防止でき、光、特に赤色光がフローティングディフュージョンFDに直接入射することを抑止することができ、フローティングディフュージョンFDにおいてクロストークが生じることを防止することが可能となる。
 また、本第1の実施形態によれば、クロストークの問題は解消されるとともに、光電変換部の各領域からフローティングディフュージョンFDへの電荷転送にラグ(Lag)が生じることを防止することが可能となる。
Thereby, according to the first embodiment, it is possible to prevent the concentration of the incident light amount on the arrangement region of the floating diffusion FD in the central portion of the pixel having no light receiving sensitivity, and light, especially red light is directly incident on the floating diffusion FD. It is possible to prevent the occurrence of crosstalk in the floating diffusion FD.
Further, according to the first embodiment, the problem of crosstalk can be solved and lag (Lag) can be prevented from being generated in charge transfer from each region of the photoelectric conversion unit to the floating diffusion FD. It becomes.
 すなわち、本第1の実施形態によれば、フローティングディフュージョンにおけるクロストークおよびフローティングディフュージョンへの電荷転送ラグを抑止することができる。その結果、精度の高い位相差情報を取得することが可能となり、ひいては画質を向上させることができる。 That is, according to the first embodiment, crosstalk in the floating diffusion and charge transfer lag to the floating diffusion can be suppressed. As a result, it is possible to obtain highly accurate phase difference information, which in turn can improve the image quality.
(第2の実施形態)
 図7は、本発明の第2の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。図7は画素の裏面側(光が入射する側)の簡略平面図である。
Second Embodiment
FIG. 7 is a simplified plan view showing an example of the configuration of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a second embodiment of the present invention. FIG. 7 is a simplified plan view of the back side (the side on which light is incident) of the pixel.
 本第2の実施形態の画素PXLAが、第1の実施形態の画素PXLと異なる点は次の通りである。 The difference between the pixel PXLA of the second embodiment and the pixel PXL of the first embodiment is as follows.
 第1の実施形態の画素PXLでは、第1のマイクロレンズMCL1および第2のマイクロレンズMCL2は、第1のフォトダイオードPD1および第2のフォトダイオードPD2上に跨るように配置されている。
 すなわち、第1のマイクロレンズMCL1は、光を第1のフォトダイオードPD1の第1の光電変換領域OCV1および第2のフォトダイオードPD2の第3の光電変換領域OCV3に入射し、第2のマイクロレンズMCL2は、光を第1のフォトダイオードPD1の第2の光電変換領域OCV2および第2のフォトダイオードPD2の第4の光電変換領域OCV4に入射するように配置されている。
In the pixel PXL of the first embodiment, the first microlens MCL1 and the second microlens MCL2 are arranged to straddle over the first photodiode PD1 and the second photodiode PD2.
That is, the first microlens MCL1 makes light incident on the first photoelectric conversion region OCV1 of the first photodiode PD1 and the third photoelectric conversion region OCV3 of the second photodiode PD2, and the second microlens The MCL 2 is disposed so that light is incident on the second photoelectric conversion region OCV 2 of the first photodiode PD 1 and the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2.
 これに対して、第2の実施形態の画素PXLAでは、第1のマイクロレンズMCL1Aは第1のフォトダイオードPD1上に配置され、第2のマイクロレンズMCL2Aは第2のフォトダイオードPD2上に配置されている。
 第1のマイクロレンズMCL1Aは、光を第1のフォトダイオードPD1の第1の光電変換領域OCV1および第1のフォトダイオードPD1の第2の光電変換領域OCV2に入射するように配置されている。
 第2のマイクロレンズMCL2Aは、光を第2のフォトダイオードPD2の第3の光電変換領域OCV3および第2のフォトダイオードPD2の第4の光電変換領域OCV4に入射するように配置されている。
 そして、第1のマイクロレンズMCL1Aは、第1の光学中心OCT1Aが、第1のフォトダイオードPD1の第1の光電変換領域OCV1および第1のフォトダイオードPD1の第2の光電変換領域OCV2の第1の境界中央部BCT1Aに位置するように配置されている。
 第2のマイクロレンズMCL2Aは、第2の光学中心OCT2Aが、第2のフォトダイオードPD2の第3の光電変換領域OCV3および第2のフォトダイオードPD2の第4の光電変換領域OCV4の第2の境界中央部BCT2Aに位置するように配置されている。
On the other hand, in the pixel PXLA of the second embodiment, the first microlens MCL1A is disposed on the first photodiode PD1, and the second microlens MCL2A is disposed on the second photodiode PD2. ing.
The first microlens MCL1A is arranged to make light incident on the first photoelectric conversion region OCV1 of the first photodiode PD1 and the second photoelectric conversion region OCV2 of the first photodiode PD1.
The second microlens MCL 2 A is disposed so that light is incident on the third photoelectric conversion region OCV 3 of the second photodiode PD 2 and the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2.
The first microlens MCL1A has a first optical center OCT1A in a first photoelectric conversion region OCV1 of the first photodiode PD1 and a first photoelectric conversion region OCV2 of the first photodiode PD1. Is disposed to be located at the border central portion BCT1A.
The second microlens MCL 2 A has a second optical center OCT 2 A as a second boundary of the third photoelectric conversion region OCV 3 of the second photodiode PD 2 and the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2. It is arrange | positioned so that it may be located in center part BCT2A.
 その他の構成は上述した第1の実施形態と同様であり、本第2の実施形態によれば、上述した第1の実施形態と同様の効果を得ることができる。 The other configuration is the same as that of the first embodiment described above, and according to the second embodiment, the same effect as that of the first embodiment described above can be obtained.
(第3の実施形態)
 図8は、本発明の第3の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。図8は画素の裏面側(光が入射する側)の簡略平面図である。
Third Embodiment
FIG. 8 is a simplified plan view showing a configuration example of main parts of a pixel having a phase difference detection function in a solid-state imaging device according to a third embodiment of the present invention. FIG. 8 is a simplified plan view of the back side (the side on which light is incident) of the pixel.
 本第3の実施形態の画素PXLBが、第1および第2の実施形態の画素PXL,PXLAと異なる点は次の通りである。 The difference between the pixel PXLB of the third embodiment and the pixels PXL and PXLA of the first and second embodiments is as follows.
 本第3の実施形態においては、画素毎に2つのマイクロレンズを用いる代わりに、4つのマイクロレンズMCL1B、MCL2B、MCL3B、MCL4Bを用いていることにある。 In the third embodiment, instead of using two microlenses for each pixel, four microlenses MCL1B, MCL2B, MCL3B, and MCL4B are used.
 本第3の実施形態において、第1のマイクロレンズMCL1Bは、光を第1のフォトダイオードPD1の第1の光電変換領域OCV1に入射する。
 第2のマイクロレンズMCL2Bは、光を第1のフォトダイオードPD1の第2の光電変換領域OCV2に入射する。
 第3のマイクロレンズMCL3Bは、光を第2のフォトダイオードPD2の第3の光電変換領域OCV3に入射する。
 第4のマイクロレンズMCL4Bは、光を第2のフォトダイオードPD2の第4の光電変換領域OCV4に入射する。
In the third embodiment, the first microlens MCL1B makes light incident on the first photoelectric conversion region OCV1 of the first photodiode PD1.
The second microlens MCL2B causes light to enter the second photoelectric conversion region OCV2 of the first photodiode PD1.
The third microlens MCL3B causes light to enter the third photoelectric conversion region OCV3 of the second photodiode PD2.
The fourth microlens MCL 4 B makes light incident on the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2.
 そして、本第3の実施形態において、第1のマイクロレンズMCL1Bは、第1の光学中心OCT1Bが、第1のフォトダイオードPD1の第1の光電変換領域OCV1の第1の領域中央部RCT1に位置するように配置されている。
 第2のマイクロレンズMCL2Bは、第2の光学中心OCT2Bが、第1のフォトダイオードPD1の第2の光電変換領域OCV2の第2の領域中央部RCT2に位置するように配置されている。
 第3のマイクロレンズMCL3Bは、第3の光学中心OCT3Bが、第2のフォトダイオードPD2の第3の光電変換領域OCV3の第3の領域中央部RCT3に位置するように配置されている。
 第4のマイクロレンズMCL4Bは、第4の光学中心OCT4Bが、第2のフォトダイオードPD2の第4の光電変換領域OCV4の第4の領域中央部RCT4に位置するように配置されている。
In the third embodiment, the first microlens MCL1B has the first optical center OCT1B located at the first central area RCT1 of the first photoelectric conversion area OCV1 of the first photodiode PD1. It is arranged to be.
The second microlens MCL 2 B is arranged such that the second optical center OCT 2 B is located at a second region central portion RCT 2 of the second photoelectric conversion region OCV 2 of the first photodiode PD 1.
The third microlens MCL 3 B is arranged such that the third optical center OCT 3 B is located at the third region central portion RCT 3 of the third photoelectric conversion region OCV 3 of the second photodiode PD 2.
The fourth microlens MCL 4 B is arranged such that the fourth optical center OCT 4 B is located in the fourth region central portion RCT 4 of the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2.
 その他の構成は上述した第1および第2の実施形態と同様であり、本第3の実施形態によれば、上述した第1の実施形態と同様の効果を得ることができることはもとより、フローティングディフュージョンFDにおいてクロストークが生じることをさらに確実に防止することが可能となる。 The other configuration is the same as that of the first and second embodiments described above, and according to the third embodiment, the floating diffusion can be obtained as well as the same effect as the first embodiment can be obtained. It is possible to more reliably prevent the occurrence of crosstalk in the FD.
(第4の実施形態)
 図9(A)および図9(B)は、本発明の第4の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。図9(A)および図9(B)は画素の裏面側(光が入射する側)の簡略平面図である。
Fourth Embodiment
FIGS. 9A and 9B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a fourth embodiment of the present invention. FIG. 9A and FIG. 9B are simplified plan views of the back surface side of the pixel (the side on which light is incident).
 本第4の実施形態の画素PXLC,PXLDが、第1の実施形態の画素PXLと異なる点は次の通りである。 The differences between the pixels PXLC and PXLD of the fourth embodiment and the pixel PXL of the first embodiment are as follows.
 本第4の実施形態の画素PXLC,PXLDにおいては、第1のマイクロレンズMCL1C,MCL1Dの光学中心と第2のマイクロレンズMCL2C,MCL2Dの光学中心が所定方向にシフトされている。 In the pixels PXLC and PXLD of the fourth embodiment, the optical centers of the first microlenses MCL1C and MCL1D and the optical centers of the second microlenses MCL2C and MCL2D are shifted in a predetermined direction.
 図9(A)の例において、第1のマイクロレンズMCL1Cは、第1の光学中心OCT1Cが、第1のフォトダイオードPD1の第1の光電変換領域OCV1と第2のフォトダイオードPD2の第3の光電変換領域OCV3の第1の境界中央部BCT1から第1方向であるX方向の順方向X1(または逆方向X2)にシフトした位置に存するように配置されている。
 そして、第2のマイクロレンズMCL2Cは、第2の光学中心OCT2Cが、第1のフォトダイオードPD1の第2の光電変換領域OCV2と第2のフォトダイオードPD2の第4の光電変換領域OCV4の第2の境界中央部BCT2から第1方向であるX方向の逆方向X2(または順方向X1)にシフトした位置に存するように配置されている。
In the example of FIG. 9A, in the first microlens MCL1C, the first optical center OCT1C corresponds to the first photoelectric conversion region OCV1 of the first photodiode PD1 and the third of the second photodiode PD2. The photoelectric conversion region OCV3 is arranged to be shifted from the first boundary central portion BCT1 of the photoelectric conversion region OCV3 in the forward direction X1 (or reverse direction X2) in the X direction which is the first direction.
The second microlens MCL 2 C has a second optical center OCT 2 C in a second photoelectric conversion region OCV 2 of the first photodiode PD 1 and a second photoelectric conversion region OCV 4 of the second photodiode PD 2. It is arranged to be shifted from the center BCT2 of the boundary in the reverse direction X2 (or forward direction X1) in the X direction which is the first direction.
 図9(B)の例において、第1のマイクロレンズMCL1Dは、第1の光学中心OCT1Dが、第1のフォトダイオードPD1の第1の光電変換領域OCV1と第2のフォトダイオードPD2の第3の光電変換領域OCV3の第1の境界中央部BCT1から第2方向であるY方向の順方向Y1(または逆方向Y2)にシフトした位置に存するように配置されている。
 そして、第2のマイクロレンズMCL2Dは、第2の光学中心OCT2Dが、第1のフォトダイオードPD1の第2の光電変換領域OCV2と第2のフォトダイオードPD2の第4の光電変換領域OCV4の第2の境界中央部BCT2から第2方向であるY方向の逆方向Y2(または順方向Y1)にシフトした位置に存するように配置されている。
In the example of FIG. 9B, in the first microlens MCL 1 D, the first optical center OCT 1 D corresponds to the first photoelectric conversion region OCV 1 of the first photodiode PD 1 and the third of the second photodiode PD 2. The photoelectric conversion region OCV3 is arranged to be shifted from the first boundary central portion BCT1 of the photoelectric conversion region OCV3 in the forward direction Y1 (or reverse direction Y2) in the Y direction which is the second direction.
The second microlens MCL 2 D has a second optical center OCT 2 D in a second photoelectric conversion region OCV 2 of the first photodiode PD 1 and a second photoelectric conversion region OCV 4 of the second photodiode PD 2. It is arranged to be shifted from the center BCT2 of the boundary in the reverse direction Y2 (or forward direction Y1) in the Y direction which is the second direction.
 以上述べた関係から、各画素PXLC,PXLDにおいて、2つのうち一方の光電変換部としての第1のフォトダイオードPD1は、撮影レンズの射出瞳の一部の領域であって射出瞳の中心から所定方向へ偏心した領域からの光束を選択的に、かつ、効率良く受光して光電変換することになる。
 また、各画素PXLC,PXLDにおいて、2つのうち他方の光電変換部としての第2のフォトダイオードPD2は、撮影レンズの射出瞳の一部の領域であって射出瞳の中心から反対方向へ偏心した領域からの光束を選択的に、かつ、効率良く受光して光電変換することになる。
From the relationship described above, in each of the pixels PXLC and PXLD, the first photodiode PD1 as one of the two photoelectric conversion units is a partial region of the exit pupil of the photographing lens and is predetermined from the center of the exit pupil The light flux from the region decentered in the direction is selectively and efficiently received to perform photoelectric conversion.
In each of the pixels PXLC and PXLD, the second photodiode PD2 as the other of the two photoelectric conversion units is a partial area of the exit pupil of the photographing lens and is decentered in the opposite direction from the center of the exit pupil The light flux from the region is selectively and efficiently received for photoelectric conversion.
 その他の構成は上述した第1の実施形態と同様であり、本第4の実施形態によれば、上述した第1の実施形態と同様の効果を得ることができることはもとより、フローティングディフュージョンFDにおけるクロストークおよびフローティングディフュージョンへの電荷転送ラグが生じることをさらに確実に防止することが可能となり、精度の高い位相差情報を取得することが可能となり、ひいては画質を向上させることができる。 The other configuration is the same as that of the first embodiment described above, and according to the fourth embodiment, in addition to being able to obtain the same effect as that of the first embodiment described above, the cross in the floating diffusion FD It is possible to more reliably prevent the occurrence of charge transfer lag to the talk and the floating diffusion, and it is possible to obtain highly accurate phase difference information, which in turn can improve the image quality.
(第5の実施形態)
 図10(A)および図10(B)は、本発明の第5の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。図10(A)および図10(B)は画素の裏面側(光が入射する側)の簡略平面図である。
Fifth Embodiment
FIGS. 10A and 10B are simplified plan views showing a configuration example of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a fifth embodiment of the present invention. FIG. 10A and FIG. 10B are simplified plan views of the back side of the pixel (the side on which light is incident).
 本第5の実施形態の画素PXLE,PXLFが、第2の実施形態の画素PXLAと異なる点は次の通りである。 The pixels PXLE and PXLF of the fifth embodiment are different from the pixels PXLA of the second embodiment as follows.
 本第5の実施形態の画素PXLE,PXLFにおいては、第1のマイクロレンズMCL1E,MCL1Fの光学中心と第2のマイクロレンズMCL2E,MCL2Fの光学中心が所定方向にシフトされている。 In the pixels PXLE and PXLF of the fifth embodiment, the optical centers of the first microlenses MCL1E and MCL1F and the optical centers of the second microlenses MCL2E and MCL2F are shifted in a predetermined direction.
 図10(A)の例において、第1のマイクロレンズMCL1Eは、第1の光学中心OCT1Eが、第1のフォトダイオードPD1の第1の光電変換領域OCV1と第1のフォトダイオードPD1の第2の光電変換領域OCV2の第1の境界中央部RCT1から第1方向であるX方向の順方向X1(または逆方向X2)にシフトした位置に存するように配置されている。
 そして、第2のマイクロレンズMCL2Eは、第2の光学中心OCT2Eが、第2のフォトダイオードPD2の第3の光電変換領域OCV3と第2のフォトダイオードPD2の第4の光電変換領域OCV4の第2の境界中央部RCT2から第1方向であるX方向の逆方向X2(または順方向X1)にシフトした位置に存するように配置されている。
In the example of FIG. 10A, in the first microlens MCL1E, the first optical center OCT1E corresponds to the first photoelectric conversion region OCV1 of the first photodiode PD1 and the second photoelectric conversion region of the first photodiode PD1. The photoelectric conversion region OCV2 is arranged to be shifted from the first boundary central portion RCT1 of the photoelectric conversion region OCV2 in the forward direction X1 (or reverse direction X2) in the X direction which is the first direction.
The second microlens MCL 2 E has a second optical center OCT 2 E in a third photoelectric conversion area OCV 3 of the second photodiode PD 2 and a second photoelectric conversion area OCV 4 of the second photodiode PD 2. It is arranged to be shifted from the center RCT2 of the boundary in the reverse direction X2 (or forward direction X1) in the X direction which is the first direction.
 図10(B)の例においては、第1のマイクロレンズMCL1Fは、第1の光学中心OCT1Fが、第1のフォトダイオードPD1の第1の光電変換領域OCV1と第1のフォトダイオードPD1の第2の光電変換領域OCV2の第1の境界中央部RCT1から第2方向であるY方向の順方向Y1(または逆方向Y2)にシフトした位置に存するように配置されている。
 そして、第2のマイクロレンズMCL2Fは、第2の光学中心OCT2Fが、第2のフォトダイオードPD2の第3の光電変換領域OCV3と第2のフォトダイオードPD2の第4の光電変換領域OCV4の第2の境界中央部RCT2から第2方向であるY方向の逆方向Y2(または順方向Y1)にシフトした位置に存するように配置されている。
In the example of FIG. 10B, in the first microlens MCL1F, the first optical center OCT1F corresponds to the first photoelectric conversion region OCV1 of the first photodiode PD1 and the second photoelectric conversion region of the first photodiode PD1. The photoelectric conversion region OCV2 is arranged to be shifted from the first boundary central portion RCT1 of the photoelectric conversion region OCV2 in the forward direction Y1 (or reverse direction Y2) in the Y direction which is the second direction.
The second microlens MCL 2 F has a second optical center OCT 2 F in a second photoelectric conversion region OCV 3 of the second photodiode PD 2 and a second photoelectric conversion region OCV 4 of the second photodiode PD 2. It is arranged to be shifted from the center RCT2 of the boundary in the reverse direction Y2 (or forward direction Y1) in the Y direction which is the second direction.
 以上述べた関係から、各画素PXLE,PXLFにおいて、2つのうち一方の光電変換部としての第1のフォトダイオードPD1は、撮影レンズの射出瞳の一部の領域であって射出瞳の中心から所定方向へ偏心した領域からの光束を選択的に、かつ、効率良く受光して光電変換することになる。
 また、各画素PXLE,PXLFにおいて、2つのうち他方の光電変換部としての第2のフォトダイオードPD2は、撮影レンズの射出瞳の一部の領域であって射出瞳の中心から反対方向へ偏心した領域からの光束を選択的に、かつ、効率良く受光して光電変換することになる。
From the relationship described above, in each of the pixels PXLE and PXLF, the first photodiode PD1 as one of the two photoelectric conversion units is a partial region of the exit pupil of the photographing lens and is predetermined from the center of the exit pupil The light flux from the region decentered in the direction is selectively and efficiently received to perform photoelectric conversion.
Further, in each of the pixels PXLE and PXLF, the second photodiode PD2 as the other of the two photoelectric conversion units is a partial area of the exit pupil of the photographing lens and is decentered in the opposite direction from the center of the exit pupil The light flux from the region is selectively and efficiently received for photoelectric conversion.
 その他の構成は上述した第2の実施形態と同様であり、本第5の実施形態によれば、上述した第2の実施形態と同様の効果を得ることができることはもとより、フローティングディフュージョンFDにおけるクロストークおよびフローティングディフュージョンへの電荷転送ラグが生じることをさらに確実に防止することが可能となり、精度の高い位相差情報を取得することが可能となり、ひいては画質を向上させることができる。 The other configuration is the same as that of the second embodiment described above, and according to the fifth embodiment, in addition to the fact that the same effect as that of the second embodiment described above can be obtained, the cross in the floating diffusion FD It is possible to more reliably prevent the occurrence of charge transfer lag to the talk and the floating diffusion, and it is possible to obtain highly accurate phase difference information, which in turn can improve the image quality.
(第6の実施形態)
 図11(A)および図11(B)は、本発明の第6の実施形態に係る固体撮像装置における位相差検出機能を有する画素の主要部の構成例を示す簡略平面図である。図11(A)および図11(B)は画素の裏面側(光が入射する側)の簡略平面図である。
Sixth Embodiment
FIGS. 11A and 11B are simplified plan views showing an example of the configuration of the main part of a pixel having a phase difference detection function in a solid-state imaging device according to a sixth embodiment of the present invention. FIG. 11A and FIG. 11B are simplified plan views of the back side (the side on which light is incident) of the pixel.
 本第6の実施形態の画素PXLG,PXLHが、第3の実施形態の画素PXLBと異なる点は次の通りである。 The differences between the pixels PXLG and PXLH of the sixth embodiment and the pixel PXLB of the third embodiment are as follows.
 本第6の実施形態の画素PXLG,PXLHにおいては、第1のマイクロレンズMCL1G,MCL1Hの光学中心、第2のマイクロレンズMCL2G,MCL2Hの光学中心、第3のマイクロレンズMCL3G,MCL3Hの光学中心、および第4のマイクロレンズMCL4G,MCL4Hの光学中心が所定方向にシフトされている。 In the pixels PXLG and PXLH of the sixth embodiment, the optical centers of the first microlenses MCL1G and MCL1H, the optical centers of the second microlenses MCL2G and MCL2H, and the optical centers of the third microlenses MCL3G and MCL3H, The optical centers of the fourth microlenses MCL 4 G and MCL 4 H are shifted in a predetermined direction.
 図11(A)の例において、第1のマイクロレンズMCL1Gは、第1の光学中心OCT1Gが、第1のフォトダイオードPD1の第1の光電変換領域OCV1の第1の領域中央部RCT1から第1方向であるX方向の順方向X1(または逆方向X2)にシフトした位置に存するように配置されている。
 第2のマイクロレンズMCL2Gは、第2の光学中OCT2Gが、第1のフォトダイオードPD1の第2の光電変換領域OCV2の第2の領域中央部RCT2から第1方向であるX方向の順方向X1(または逆方向X2)にシフトした位置に存するように配置されている。
 第3のマイクロレンズMCL3Gは、第3の光学中心OCT3Gが、第2のフォトダイオードPD2の第3の光電変換領域OCV3の第3の領域中央部RCT3から第1方向であるX方向の逆方向X2(または順方向にX1)シフトした位置に存するように配置されている。
 第4のマイクロレンズMCL4Gは、第4の光学中心OCT4Gが、第2のフォトダイオードPD2の第4の光電変換領域OCV4の第4の領域中央部RCT4から第1方向であるX方向の逆方向X2(または順方向X1)にシフトした位置に存するように配置されている。
In the example of FIG. 11A, in the first microlens MCL1G, the first optical center OCT1G corresponds to the first region central portion RCT1 of the first photoelectric conversion region OCV1 of the first photodiode PD1. It is arranged to be located at a position shifted in the forward direction X1 (or backward direction X2) of the X direction which is the direction.
In the second microlens MCL 2 G, the second in-optical OCT 2 G is transmitted from the second region central portion RCT 2 of the second photoelectric conversion region OCV 2 of the first photodiode PD 1 in the X direction forward X 1 It is arranged to be at a position shifted in (or in the reverse direction X2).
In the third microlens MCL 3 G, the third optical center OCT 3 G is in the reverse direction X 2 in the X direction that is the first direction from the third region central portion RCT 3 of the third photoelectric conversion region OCV 3 of the second photodiode PD 2 It is arranged to be at a shifted position (or X1 in the forward direction).
The fourth microlens MCL 4 G has a fourth optical center OCT 4 G in the second direction X 2 opposite to the first direction R 4 from the fourth region central portion RCT 4 of the fourth photoelectric conversion region OCV 4 of the second photodiode PD 2 It is arranged to be at a position shifted in (or forward direction X1).
 図11(A)の例において、第1のマイクロレンズMCL1Hは、第1の光学中心OCT1Hが、第1のフォトダイオードPD1の第1の光電変換領域OCV1の第1の領域中央部RCT1から第2方向のであるY方向の順方向Y1(または逆方向Y2)にシフトした位置に存するように配置されている。
 第2のマイクロレンズMCL2Hは、第2の光学中心OCT1Hが、第1のフォトダイオードPD1の第2の光電変換領域OCV2の第2の領域中央部RCT2から第2方向であるY方向の順方向Y1(または逆方向Y2)にシフトした位置に存するように配置されている。
 第3のマイクロレンズMCL3Hは、第3の光学中心OCT3Hが、第2のフォトダイオードPD2の第3の光電変換領域OCV3の第3の領域中央部RCT3から第2方向であるY方向の逆方向Y2(または順方向Y1)にシフトした位置に存するように配置されている。
 第4のマイクロレンズMCL4Hは、第4の光学中心OCT4Hが、第2のフォトダイオードPD2の第4の光電変換領域OCV4の第4の領域中央部RCT4から第2方向であるY方向の逆方向Y2(または順方向Y1)にシフトした位置に存するように配置されている。
In the example of FIG. 11A, in the first microlens MCL1H, the first optical center OCT1H corresponds to the first central area RCT1 of the first region of the first photoelectric conversion region OCV1 of the first photodiode PD1. It is disposed to be shifted to a forward direction Y1 (or reverse direction Y2) in the Y direction which is the direction.
The second microlens MCL2H has a second optical center OCT1H in the Y direction forward Y1 which is a second direction from the second region central portion RCT2 of the second photoelectric conversion region OCV2 of the first photodiode PD1. It is arranged to be at a position shifted in (or in the reverse direction Y2).
In the third microlens MCL 3 H, the third optical center OCT 3 H is in the reverse direction Y 2 in the Y direction which is the second direction from the third region central portion RCT 3 of the third photoelectric conversion region OCV 3 of the second photodiode PD 2 It is arranged to be at a position shifted in (or forward direction Y1).
The fourth microlens MCL 4 H has a fourth optical center OCT 4 H in the second direction Y 2 opposite to the fourth region central portion RCT 4 of the fourth photoelectric conversion region OCV 4 in the second photodiode PD 2. It is arranged to be at a position shifted in (or forward direction Y1).
 以上述べた関係から、各画素PXLG,PXLHにおいて、2つのうち一方の光電変換部としての第1のフォトダイオードPD1は、撮影レンズの射出瞳の一部の領域であって射出瞳の中心から所定方向へ偏心した領域からの光束を選択的に、かつ、効率良く受光して光電変換することになる。
 また、各画素PXLG,PXLHにおいて、2つのうち他方の光電変換部としての第2のフォトダイオードPD2は、撮影レンズの射出瞳の一部の領域であって射出瞳の中心から反対方向へ偏心した領域からの光束を選択的に、かつ、効率良く受光して光電変換することになる。
From the relationship described above, in each of the pixels PXLG and PXLH, the first photodiode PD1 as one of the two photoelectric conversion units is a partial region of the exit pupil of the photographing lens and is predetermined from the center of the exit pupil The light flux from the region decentered in the direction is selectively and efficiently received to perform photoelectric conversion.
In each of the pixels PXLG and PXLH, the second photodiode PD2 as the other of the two photoelectric conversion units is a partial region of the exit pupil of the photographing lens and is decentered in the opposite direction from the center of the exit pupil The light flux from the region is selectively and efficiently received for photoelectric conversion.
 その他の構成は上述した第3の実施形態と同様であり、本第6の実施形態によれば、上述した第3の実施形態と同様の効果を得ることができることはもとより、フローティングディフュージョンFDにおけるクロストークおよびフローティングディフュージョンへの電荷転送ラグが生じることをさらに確実に防止することが可能となり、精度の高い位相差情報を取得することが可能となり、ひいては画質を向上させることができる。 The other configuration is the same as that of the third embodiment described above, and according to the sixth embodiment, in addition to the fact that the same effect as the third embodiment described above can be obtained, the cross in the floating diffusion FD It is possible to more reliably prevent the occurrence of charge transfer lag to the talk and the floating diffusion, and it is possible to obtain highly accurate phase difference information, which in turn can improve the image quality.
(第7の実施形態)
 図12(A)~図12(D)は、本発明の第7の実施形態に係る固撮像装置における位相差検出機能を有する画素が配列される画素部の構成例を説明するための簡略平面図である。図12(A)~図12(D)は画素の表面側(光が入射しない側)の簡略平面図である。
Seventh Embodiment
FIGS. 12A to 12D are simplified planes for illustrating an example of the configuration of a pixel unit in which pixels having a phase difference detection function in the solid-state imaging device according to the seventh embodiment of the present invention are arrayed. FIG. 12 (A) to 12 (D) are simplified plan views of the surface side (the side where light does not enter) of the pixel.
 本第7の実施形態においては、画素部20に行列状に配列される複数の画素PXLに図12(A)に示す水平画素H-PXL、図12(B)に示す垂直画素V-PXL、図12(C)、(D)に示す第1の斜め画素D1-PXL、第2の斜め画素D2-PXLを含ませること(混在させること)が可能に構成される。 In the seventh embodiment, the horizontal pixels H-PXL shown in FIG. 12A, the vertical pixels V-PXL shown in FIG. 12B, and the plurality of pixels PXL arranged in a matrix in the pixel unit 20, It is possible to include (mix) the first diagonal pixels D1-PXL and the second diagonal pixels D2-PXL shown in FIGS. 12C and 12D.
 水平画素H-PXLは、第1のフォトダイオードPD1と第2のフォトダイオードPD2が列方向であるX方向に並列になるように配置されている。
 垂直画素V-PXLは、第1のフォトダイオードPD1と第2のフォトダイオードPD2が行方向であるY方向に並列になるように配置されている。
 第1の斜め画素D1-PXL、第2の斜め画素D2-PXLは、第1のフォトダイオードPD1と第2のフォトダイオードPD2が列方向(X方向)および行方向(Y方向)に対して所定角度を持つ斜め方向に並列になるように配置されている。
The horizontal pixel H-PXL is arranged such that the first photodiode PD1 and the second photodiode PD2 are in parallel in the X direction, which is the column direction.
The vertical pixels V-PXL are arranged such that the first photodiode PD1 and the second photodiode PD2 are in parallel in the Y direction which is the row direction.
In the first diagonal pixel D1-PXL and the second diagonal pixel D2-PXL, the first photodiode PD1 and the second photodiode PD2 are predetermined in the column direction (X direction) and the row direction (Y direction). They are arranged in parallel in an oblique direction with an angle.
 より具体的には、第1の斜め画素D1-PXLは、図12(C)に示すように、第1のフォトダイオードPD1と第2のフォトダイオードPD2が列方向および行方向の間で列方向から時計回りCWに所定角度、たとえば45度を持つ第1の斜め方向D1に直交する方向に並列になるように配置されている。
 第2の斜め画素D2-PXLは、第1のフォトダイオードPD1と第2のフォトダイオードPD2が行方向および列方向の間で行方向から時計回りCWに所定角度、たとえば45度を持つ第2の斜め方向D2に直交する方向に並列になるように配置されている。
 第1の斜め画素D1-PXLおよび第2の斜め画素D2-PXLは、いずれか一方、または両方が配置可能である。
More specifically, as shown in FIG. 12C, in the first oblique pixels D1-PXL, the first photodiode PD1 and the second photodiode PD2 are in the column direction between the column direction and the row direction. From the left to the right in a direction perpendicular to the first diagonal direction D1 having a predetermined angle, for example 45 degrees, in the clockwise direction CW.
The second diagonal pixel D2-PXL is a second diagonal pixel in which the first photodiode PD1 and the second photodiode PD2 have a predetermined angle, for example 45 degrees, clockwise from the row direction between the row direction and the column direction. It is arrange | positioned so that it may become parallel in the direction orthogonal to diagonal direction D2.
One or both of the first diagonal pixels D1-PXL and the second diagonal pixels D2-PXL can be arranged.
 本第7の実施形態によれば、たとえばオートフォーカス(AF)の位相差情報を得るための位相差検出系として採用でき、水平(左右)、垂直(上下)方向および斜め方向の位相差情報が取得可能となり、被写体の形状等に依存することなく位相差情報を取得可能な撮像装置を提供することが可能となる。 According to the seventh embodiment, for example, it can be adopted as a phase difference detection system for obtaining phase difference information of autofocus (AF), and the phase difference information in the horizontal (left and right), vertical (upper and lower) and diagonal directions can be obtained. It becomes possible to obtain, and it is possible to provide an imaging device capable of acquiring phase difference information without depending on the shape or the like of a subject.
 以上説明した固体撮像装置10,10A~10Hは、デジタルカメラやビデオカメラ、携帯端末、あるいは監視用カメラ、医療用内視鏡用カメラなどの電子機器に、撮像デバイスとして適用することができる。 The solid- state imaging devices 10 and 10A to 10H described above can be applied as imaging devices to electronic devices such as digital cameras, video cameras, portable terminals, surveillance cameras, and medical endoscope cameras.
 図13は、本発明の実施形態に係る固体撮像装置が適用されるカメラシステムを搭載した電子機器の構成の一例を示す図である。 FIG. 13 is a view showing an example of the configuration of an electronic apparatus equipped with a camera system to which the solid-state imaging device according to the embodiment of the present invention is applied.
 本電子機器100は、図13に示すように、本実施形態に係る固体撮像装置10が適用可能なCMOSイメージセンサ110を有する。
 さらに、電子機器100は、このCMOSイメージセンサ110の画素領域に入射光を導く(被写体像を結像する)光学系(レンズ等)120を有する。
 電子機器100は、CMOSイメージセンサ110の出力信号を処理する信号処理回路(PRC)130を有する。
As illustrated in FIG. 13, the electronic device 100 includes a CMOS image sensor 110 to which the solid-state imaging device 10 according to the present embodiment can be applied.
Further, the electronic device 100 has an optical system (lens or the like) 120 for guiding incident light to the pixel area of the CMOS image sensor 110 (forming an object image).
The electronic device 100 includes a signal processing circuit (PRC) 130 that processes an output signal of the CMOS image sensor 110.
 信号処理回路130は、CMOSイメージセンサ110の出力信号に対して所定の信号処理を施す。
 信号処理回路130で処理された画像信号は、液晶ディスプレイ等からなるモニタに動画として映し出し、あるいはプリンタに出力することも可能であり、またメモリカード等の記録媒体に直接記録する等、種々の態様が可能である。
The signal processing circuit 130 performs predetermined signal processing on the output signal of the CMOS image sensor 110.
The image signal processed by the signal processing circuit 130 can be displayed as a moving image on a monitor including a liquid crystal display or the like, or can be output to a printer, or can be recorded directly on a recording medium such as a memory card. Is possible.
 上述したように、CMOSイメージセンサ110として、前述した固体撮像装置10,10A~10Hを搭載することで、高性能、小型、低コストのカメラシステムを提供することが可能となる。
 そして、カメラの設置の要件に実装サイズ、接続可能ケーブル本数、ケーブル長さ、設置高さなどの制約がある用途に使われる、たとえば、監視用カメラ、医療用内視鏡用カメラなどの電子機器を実現することができる。
As described above, by mounting the above-described solid- state imaging devices 10 and 10A to 10H as the CMOS image sensor 110, it is possible to provide a high-performance, small-sized, low-cost camera system.
And, electronic equipment such as surveillance cameras, medical endoscope cameras, etc. used for applications where restrictions on the mounting size, number of connectable cables, cable length, installation height etc. are required for camera installation requirements Can be realized.

Claims (20)

  1.  画素が配置された画素部を有し、
     前記画素は、
      入射光に対する光電変換により生成した電荷を蓄積する第1の光電変換部と、
      入射光に対する光電変換により生成した電荷を蓄積する第2の光電変換部と、
      前記第1の光電変換部および前記第2の光電変換部に光を入射するレンズ部と、
      前記第1の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第1の転送素子と、
      前記第2の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第2の転送素子と、
      前記第1の転送素子および前記第2の転送素子のうちの少なくとも一方の転送素子を通じて前記第1の光電変換部および前記第2の光電変換部のうちの少なくとも一方の光電変換部で蓄積された電荷が転送されるフローティングディフュージョンと、
      前記フローティングディフュージョンの電荷を電荷量に応じた利得をもって電圧信号に変換するソースフォロワ素子と、を含み、
      前記第1の光電変換部および前記第2の光電変換部は、第1方向に並列に配置され、
     前記レンズ部は、
      光学中心が、少なくとも前記画素の中央部からずれた位置に存するように配置されている
     固体撮像装置。
    Having a pixel portion in which pixels are arranged,
    The pixel is
    A first photoelectric conversion unit that accumulates charges generated by photoelectric conversion of incident light;
    A second photoelectric conversion unit that accumulates charges generated by photoelectric conversion of incident light;
    A lens unit for causing light to enter the first photoelectric conversion unit and the second photoelectric conversion unit;
    A first transfer element capable of transferring the charge accumulated in the first photoelectric conversion unit in a designated transfer period;
    A second transfer element capable of transferring the charge accumulated in the second photoelectric conversion unit in a designated transfer period;
    Accumulated in at least one photoelectric conversion unit of the first photoelectric conversion unit and the second photoelectric conversion unit through at least one of the first transfer device and the second transfer device A floating diffusion in which charge is transferred,
    A source follower element that converts the charge of the floating diffusion into a voltage signal with a gain corresponding to the amount of charge;
    The first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in a first direction,
    The lens unit is
    A solid-state imaging device, wherein an optical center is located at a position shifted from at least a central portion of the pixel.
  2.  前記フローティングディフュージョンは、画素の中央部に配置され、
     前記第1の光電変換部および前記第2の光電変換部は、第1方向に前記フローティングディフュージョンを挟んで並列に配置されている
     請求項1記載の固体撮像装置。
    The floating diffusion is disposed in the center of the pixel,
    The solid-state imaging device according to claim 1, wherein the first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in the first direction across the floating diffusion.
  3.  前記第1の光電変換部は、前記第1方向に直交する第2方向に少なくとも第1の光電変換領域および第2の光電変換領域を含み、
     前記第2の光電変換部は、前記第1方向に直交する第2方向に少なくとも第3の光電変換領域および第4の光電変換領域を含み、
     前記レンズ部は、
      少なくとも、前記第1の光電変換領域、前記第2の光電変換領域、前記第3の光電変換領域、および前記第4の光電変換領域に光を入射するように形成されている
     請求項1記載の固体撮像装置。
    The first photoelectric conversion unit includes at least a first photoelectric conversion region and a second photoelectric conversion region in a second direction orthogonal to the first direction,
    The second photoelectric conversion unit includes at least a third photoelectric conversion region and a fourth photoelectric conversion region in a second direction orthogonal to the first direction,
    The lens unit is
    The light is formed to be incident on at least the first photoelectric conversion region, the second photoelectric conversion region, the third photoelectric conversion region, and the fourth photoelectric conversion region. Solid-state imaging device.
  4.  前記レンズ部は、
      光を前記第1の光電変換部の前記第1の光電変換領域および前記第2の光電変換部の前記第3の光電変換領域に入射する第1のマイクロレンズと、
      光を前記第1の光電変換部の前記第2の光電変換領域および前記第2の光電変換部の前記第4の光電変換領域に入射する第2のマイクロレンズと、を含む
     請求項3記載の固体撮像装置。
    The lens unit is
    A first microlens which causes light to be incident on the first photoelectric conversion region of the first photoelectric conversion unit and the third photoelectric conversion region of the second photoelectric conversion unit;
    4. The light emitting device according to claim 3, further comprising: a second micro lens which makes light incident on the second photoelectric conversion region of the first photoelectric conversion portion and the fourth photoelectric conversion region of the second photoelectric conversion portion. Solid-state imaging device.
  5.  前記第1のマイクロレンズは、
      第1の光学中心が、前記第1の光電変換部の前記第1の光電変換領域と前記第2の光電変換部の前記第3の光電変換領域の第1の境界中央部に位置するように配置され、
     前記第2のマイクロレンズは、
      第2の光学中心が、前記第1の光電変換部の前記第2の光電変換領域と前記第2の光電変換部の前記第4の光電変換領域の第2の境界中央部に位置するように配置されている
     請求項4記載の固体撮像装置。
    The first microlens is
    A first optical center is located at a first boundary central portion of the first photoelectric conversion region of the first photoelectric conversion unit and a first boundary of the third photoelectric conversion region of the second photoelectric conversion unit. Placed
    The second microlens is
    A second optical center is positioned at a second boundary central portion of the second photoelectric conversion region of the first photoelectric conversion unit and a second boundary of the fourth photoelectric conversion region of the second photoelectric conversion unit. The solid-state imaging device according to claim 4 disposed.
  6.  前記第1のマイクロレンズは、
      第1の光学中心が、前記第1の光電変換部の前記第1の光電変換領域と前記第2の光電変換部の前記第3の光電変換領域の第1の境界中央部から前記第1方向の順方向または逆方向にシフトした位置に存するように配置され、
     前記第2のマイクロレンズは、
      第2の光学中心が、前記第1の光電変換部の前記第2の光電変換領域と前記第2の光電変換部の前記第4の光電変換領域の第2の境界中央部から前記第1方向の逆方向または順方向にシフトした位置に存するように配置されている
     請求項4記載の固体撮像装置。
    The first microlens is
    A first optical center is a first central portion of a first boundary between the first photoelectric conversion region of the first photoelectric conversion unit and the third photoelectric conversion region of the second photoelectric conversion unit, and the first direction In the forward or reverse shifted position of the
    The second microlens is
    A second optical center corresponds to the first direction from the second boundary central portion of the second photoelectric conversion region of the first photoelectric conversion unit and the fourth photoelectric conversion region of the second photoelectric conversion unit. The solid-state imaging device according to claim 4, wherein the solid-state imaging device according to claim 4 is arranged to be located at a position shifted in the backward direction or the forward direction of.
  7.  前記第1のマイクロレンズは、
      第1の光学中心が、前記第1の光電変換部の前記第1の光電変換領域と前記第2の光電変換部の前記第3の光電変換領域の第1の境界中央部から前記第2方向の順方向または逆方向にシフトした位置に存するように配置され、
     前記第2のマイクロレンズは、
      第2の光学中心が、前記第1の光電変換部の前記第2の光電変換領域と前記第2の光電変換部の前記第4の光電変換領域の第2の境界中央部から前記第2方向の逆方向または順方向にシフトした位置に存するように配置されている
     請求項4記載の固体撮像装置。
    The first microlens is
    The first optical center is from the first boundary central portion of the first photoelectric conversion region of the first photoelectric conversion unit and the first boundary of the third photoelectric conversion region of the second photoelectric conversion unit, and the second direction In the forward or reverse shifted position of the
    The second microlens is
    A second optical center corresponds to a second boundary center portion of the second photoelectric conversion region of the first photoelectric conversion unit and a second boundary center portion of the fourth photoelectric conversion region of the second photoelectric conversion unit, and the second direction. The solid-state imaging device according to claim 4, wherein the solid-state imaging device according to claim 4 is arranged to be located at a position shifted in the backward direction or the forward direction of.
  8.  前記レンズ部は、
      光を前記第1の光電変換部の前記第1の光電変換領域および前記第1の光電変換部の第2の光電変換領域に入射する第1のマイクロレンズと、
      光を前記第2の光電変換部の前記第3の光電変換領域および前記第2の光電変換部の第4の光電変換領域に入射する第2のマイクロレンズと、を含む
     請求項3記載の固体撮像装置。
    The lens unit is
    A first microlens which causes light to be incident on the first photoelectric conversion region of the first photoelectric conversion unit and the second photoelectric conversion region of the first photoelectric conversion unit;
    The solid according to claim 3, further comprising: a second micro lens that makes light incident on the third photoelectric conversion region of the second photoelectric conversion unit and a fourth photoelectric conversion region of the second photoelectric conversion unit. Imaging device.
  9.  前記第1のマイクロレンズは、
      第1の光学中心が、前記第1の光電変換部の前記第1の光電変換領域と前記第1の光電変換部の前記第2の光電変換領域の第1の境界中央部に位置するように配置され、
     前記第2のマイクロレンズは、
      第2の光学中心が、前記第2の光電変換部の前記第3の光電変換領域と前記第2の光電変換部の前記第4の光電変換領域の第2の境界中央部に位置するように配置されている
     請求項8記載の固体撮像装置。
    The first microlens is
    A first optical center is located at a first boundary central portion of the first photoelectric conversion region of the first photoelectric conversion unit and a second boundary of the second photoelectric conversion region of the first photoelectric conversion unit. Placed
    The second microlens is
    A second optical center is located at a central portion of a second boundary of the third photoelectric conversion region of the second photoelectric conversion unit and the fourth photoelectric conversion region of the second photoelectric conversion unit. The solid-state imaging device according to claim 8 disposed.
  10.  前記第1のマイクロレンズは、
      第1の光学中心が、前記第1の光電変換部の前記第1の光電変換領域と前記第1の光電変換部の前記第2の光電変換領域の第1の境界中央部から前記第1方向の順方向または逆方向にシフトした位置に存するように配置され、
     前記第2のマイクロレンズは、
      第2の光学中心が、前記第2の光電変換部の前記第3の光電変換領域と前記第2の光電変換部の前記第4の光電変換領域の第2の境界中央部から前記第1方向の逆方向または順方向にシフトした位置に存するように配置されている
     請求項8記載の固体撮像装置。
    The first microlens is
    A first optical center corresponds to a first central portion of a first boundary between the first photoelectric conversion region of the first photoelectric conversion portion and the second photoelectric conversion region of the first photoelectric conversion portion. In the forward or reverse shifted position of the
    The second microlens is
    A second optical center corresponds to the first direction from the second boundary center of the third photoelectric conversion region of the second photoelectric conversion unit and the fourth photoelectric conversion region of the second photoelectric conversion unit. The solid-state imaging device according to claim 8, wherein the solid-state imaging device according to claim 8 is arranged to be located at a position shifted in the backward direction or the forward direction of.
  11.  前記第1のマイクロレンズは、
      第1の光学中心が、前記第1の光電変換部の前記第1の光電変換領域と前記第1の光電変換部の前記第2の光電変換領域の第1の境界中央部から前記第2方向の順方向または逆方向にシフトした位置に存するように配置され、
     前記第2のマイクロレンズは、
      第2の光学中心が、前記第2の光電変換部の前記第3の光電変換領域と前記第2の光電変換部の前記第4の光電変換領域の第2の境界中央部から前記第2方向の逆方向または順方向にシフトした位置に存するように配置されている
     請求項8記載の固体撮像装置。
    The first microlens is
    A first optical center corresponds to the first photoelectric conversion region of the first photoelectric conversion unit and the second boundary central portion of the first photoelectric conversion region of the first photoelectric conversion unit from the first boundary center portion to the second direction. In the forward or reverse shifted position of the
    The second microlens is
    A second optical center is a second boundary center portion of the third photoelectric conversion region of the second photoelectric conversion unit and a second boundary central portion of the fourth photoelectric conversion region of the second photoelectric conversion unit, and the second direction The solid-state imaging device according to claim 8, wherein the solid-state imaging device according to claim 8 is arranged to be located at a position shifted in the backward direction or the forward direction of.
  12.  前記レンズ部は、
      光を前記第1の光電変換部の前記第1の光電変換領域に入射する第1のマイクロレンズと、
      光を前記第1の光電変換部の前記第2の光電変換領域に入射する第2のマイクロレンズと、
      光を前記第2の光電変換部の前記第3の光電変換領域に入射する第3のマイクロレンズと、
      光を前記第2の光電変換部の前記第4の光電変換領域に入射する第4のマイクロレンズと、を含む
     請求項3記載の固体撮像装置。
    The lens unit is
    A first microlens for causing light to enter the first photoelectric conversion region of the first photoelectric conversion unit;
    A second microlens for causing light to enter the second photoelectric conversion region of the first photoelectric conversion unit;
    A third microlens for causing light to be incident on the third photoelectric conversion region of the second photoelectric conversion unit;
    4. The solid-state imaging device according to claim 3, further comprising: a fourth microlens which makes light enter the fourth photoelectric conversion region of the second photoelectric conversion unit.
  13.  前記第1のマイクロレンズは、
      第1の光学中心が、前記第1の光電変換部の前記第1の光電変換領域の第1の領域中央部に位置するように配置され、
     前記第2のマイクロレンズは、
      第2の光学中心が、前記第1の光電変換部の前記第2の光電変換領域の第2の領域中央部に位置するように配置され、
     前記第3のマイクロレンズは、
      第3の光学中心が、前記第2の光電変換部の前記第3の光電変換領域の第3の領域中央部に位置するように配置され、
     前記第4のマイクロレンズは、
      第4の光学中心が、前記第2の光電変換部の前記第4の光電変換領域の第4の領域中央部に位置するように配置されている
     請求項12記載の固体撮像装置。
    The first microlens is
    A first optical center is disposed to be positioned at a central portion of a first area of the first photoelectric conversion area of the first photoelectric conversion unit,
    The second microlens is
    A second optical center is disposed to be located at a central portion of a second region of the second photoelectric conversion region of the first photoelectric conversion unit,
    The third microlens is
    A third optical center is disposed to be located at a central portion of a third area of the third photoelectric conversion area of the second photoelectric conversion unit,
    The fourth microlens is
    The solid-state imaging device according to claim 12, wherein a fourth optical center is disposed to be located at a central portion of a fourth region of the fourth photoelectric conversion region of the second photoelectric conversion unit.
  14.  前記第1のマイクロレンズは、
      第1の光学中心が、前記第1の光電変換部の前記第1の光電変換領域の第1の領域中央部から前記第1方向の順方向または逆方向にシフトした位置に存するように配置され、
     前記第2のマイクロレンズは、
      第2の光学中心が、前記第1の光電変換部の前記第2の光電変換領域の第2の領域中央部から前記第1方向の順方向または逆方向にシフトした位置に存するように配置され、
     前記第3のマイクロレンズは、
      第3の光学中心が、前記第2の光電変換部の前記第3の光電変換領域の第3の領域中央部から前記第1方向の逆方向または順方向にシフトした位置に存するように配置され、
     前記第4のマイクロレンズは、
      第4の光学中心が、前記第2の光電変換部の前記第4の光電変換領域の第4の領域中央部から前記第1方向の逆方向または順方向にシフトした位置に存するように配置されている
     請求項12記載の固体撮像装置。
    The first microlens is
    The first optical center is located at a position shifted in the forward direction or the reverse direction of the first direction from the center of the first area of the first photoelectric conversion area of the first photoelectric conversion unit; ,
    The second microlens is
    The second optical center is arranged to be shifted from the center of the second area of the second photoelectric conversion area of the first photoelectric conversion unit in the forward or reverse direction of the first direction ,
    The third microlens is
    A third optical center is disposed at a position shifted from the center of a third region of the third photoelectric conversion region of the second photoelectric conversion portion in the opposite or forward direction of the first direction ,
    The fourth microlens is
    The fourth optical center is arranged to be located at a position shifted from the center of the fourth area of the fourth photoelectric conversion area of the second photoelectric conversion unit in the opposite or forward direction of the first direction The solid-state imaging device according to claim 12.
  15.  前記第1のマイクロレンズは、
      第1の光学中心が、前記第1の光電変換部の前記第1の光電変換領域の第1の領域中央部から前記第2方向の順方向または逆方向にシフトした位置に存するように配置され、
     前記第2のマイクロレンズは、
      第2の光学中心が、前記第1の光電変換部の前記第2の光電変換領域の第2の領域中央部から前記第2方向の順方向または逆方向にシフトした位置に存するように配置され、
     前記第3のマイクロレンズは、
      第3の光学中心が、前記第2の光電変換部の前記第3の光電変換領域の第3の領域中央部から前記第2方向の逆方向または順方向にシフトした位置に存するように配置され、
     前記第4のマイクロレンズは、
      第4の光学中心が、前記第2の光電変換部の前記第4の光電変換領域の第4の領域中央部から前記第2方向の逆方向または順方向にシフトした位置に存するように配置されている
     請求項12記載の固体撮像装置。
    The first microlens is
    The first optical center is located at a position shifted in the forward or reverse direction of the second direction from the center of the first region of the first photoelectric conversion region of the first photoelectric conversion unit; ,
    The second microlens is
    A second optical center is disposed at a position shifted in a forward direction or a reverse direction of the second direction from a central portion of a second region of the second photoelectric conversion region of the first photoelectric conversion unit; ,
    The third microlens is
    A third optical center is disposed at a position shifted from the center of a third region of the third photoelectric conversion region of the second photoelectric conversion portion in the opposite direction or the forward direction of the second direction ,
    The fourth microlens is
    The fourth optical center is arranged to be located at a position shifted from the center of the fourth area of the fourth photoelectric conversion area of the second photoelectric conversion unit in the opposite or forward direction of the second direction The solid-state imaging device according to claim 12.
  16.  前記画素部に行列状に配列される複数の画素には、
      前記第1の光電変換部と前記第2の光電変換部が列方向に並列になるように配置されている水平画素と、
      前記第1の光電変換部と前記第2の光電変換部が行方向に並列になるように配置されている垂直画素と、
      前記第1の光電変換部と前記第2の光電変換部が列方向および行方向に対して所定角度を持つ斜め方向に並列になるように配置されている斜め画素と、を含む
     請求項1記載の固体撮像装置。
    The plurality of pixels arranged in a matrix in the pixel unit are:
    A horizontal pixel in which the first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in the column direction;
    Vertical pixels in which the first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in the row direction;
    The pixel includes an oblique pixel in which the first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in an oblique direction having a predetermined angle with respect to the column direction and the row direction. Solid-state imaging device.
  17.  前記斜め画素は、
      前記第1の光電変換部と前記第2の光電変換部が列方向および行方向の間で列方向から時計回りに所定角度を持つ第1の斜め方向に直交する方向に並列になるように配置されている第1の斜め画素と、
      前記第1の光電変換部と前記第2の光電変換部が行方向および列方向の間で行方向から時計回りに所定角度を持つ第2の斜め方向に直交する方向に並列になるように配置されている第2の斜め画素と、のうちの少なくともいずれかを含む
     請求項16記載の固体撮像装置。
    The oblique pixels are
    The first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in a direction orthogonal to a first diagonal direction having a predetermined angle clockwise from the column direction between the column direction and the row direction And the first diagonal pixel being
    The first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in a direction orthogonal to a second diagonal direction having a predetermined angle clockwise from the row direction between the row direction and the column direction The solid-state imaging device according to claim 16, further comprising at least one of a second diagonal pixel that is being
  18.  前記固体撮像装置は、裏面照射型である
     請求項1記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the solid-state imaging device is a backside illumination type.
  19.  画素が配置された画素部を有し、
     前記画素は、
      入射光に対する光電変換により生成した電荷を蓄積する第1の光電変換部と、
      入射光に対する光電変換により生成した電荷を蓄積する第2の光電変換部と、
      前記第1の光電変換部および前記第2の光電変換部に光を入射するレンズ部と、
      前記第1の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第1の転送素子と、
      前記第2の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第2の転送素子と、
      前記第1の転送素子および前記第2の転送素子のうちの少なくとも一方の転送素子を通じて前記第1の光電変換部および前記第2の光電変換部のうちの少なくとも一方の光電変換部で蓄積された電荷が転送されるフローティングディフュージョンと、
      前記フローティングディフュージョンの電荷を電荷量に応じた利得をもって電圧信号に変換するソースフォロワ素子と、を含む固体撮像装置の製造方法であって、
     前記フローティングディフュージョンを画素の所定の位置に形成するとともに、
     前記第1の光電変換部および前記第2の光電変換部を、第1方向に並列に形成し、
     前記レンズ部を、
      光学中心が、少なくとも前記画素の中央部からずれた位置に存するように配置する
     固体撮像装置の製造方法。
    Having a pixel portion in which pixels are arranged,
    The pixel is
    A first photoelectric conversion unit that accumulates charges generated by photoelectric conversion of incident light;
    A second photoelectric conversion unit that accumulates charges generated by photoelectric conversion of incident light;
    A lens unit for causing light to enter the first photoelectric conversion unit and the second photoelectric conversion unit;
    A first transfer element capable of transferring the charge accumulated in the first photoelectric conversion unit in a designated transfer period;
    A second transfer element capable of transferring the charge accumulated in the second photoelectric conversion unit in a designated transfer period;
    Accumulated in at least one photoelectric conversion unit of the first photoelectric conversion unit and the second photoelectric conversion unit through at least one of the first transfer device and the second transfer device A floating diffusion in which charge is transferred,
    And a source follower element for converting the charge of the floating diffusion into a voltage signal with a gain corresponding to the charge amount.
    The floating diffusion is formed at a predetermined position of a pixel, and
    Forming the first photoelectric conversion unit and the second photoelectric conversion unit in parallel in a first direction;
    The lens unit
    A method of manufacturing a solid-state imaging device, wherein an optical center is disposed so as to be located at a position deviated from at least the center of the pixel.
  20.  固体撮像装置と、
     前記固体撮像装置に被写体像を結像する光学系と、を有し、
     前記固体撮像装置は、
      画素が配置された画素部を有し、
      前記画素は、
       入射光に対する光電変換により生成した電荷を蓄積する第1の光電変換部と、
       入射光に対する光電変換により生成した電荷を蓄積する第2の光電変換部と、
       前記第1の光電変換部および前記第2の光電変換部に光を入射するレンズ部と、
       前記第1の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第1の転送素子と、
       前記第2の光電変換部に蓄積された電荷を指定される転送期間に転送可能な第2の転送素子と、
       前記第1の転送素子および前記第2の転送素子のうちの少なくとも一方の転送素子を通じて前記第1の光電変換部および前記第2の光電変換部のうちの少なくとも一方の光電変換部で蓄積された電荷が転送されるフローティングディフュージョンと、
       前記フローティングディフュージョンの電荷を電荷量に応じた利得をもって電圧信号に変換するソースフォロワ素子と、を含み、
       前記第1の光電変換部および前記第2の光電変換部は、第1方向に並列に配置され、
      前記レンズ部は、
       光学中心が、少なくとも前記画素の中央部からずれた位置に存するように配置されている
     電子機器。
    A solid-state imaging device,
    An optical system for forming an object image on the solid-state imaging device;
    The solid-state imaging device is
    Having a pixel portion in which pixels are arranged,
    The pixel is
    A first photoelectric conversion unit that accumulates charges generated by photoelectric conversion of incident light;
    A second photoelectric conversion unit that accumulates charges generated by photoelectric conversion of incident light;
    A lens unit for causing light to enter the first photoelectric conversion unit and the second photoelectric conversion unit;
    A first transfer element capable of transferring the charge accumulated in the first photoelectric conversion unit in a designated transfer period;
    A second transfer element capable of transferring the charge accumulated in the second photoelectric conversion unit in a designated transfer period;
    Accumulated in at least one photoelectric conversion unit of the first photoelectric conversion unit and the second photoelectric conversion unit through at least one of the first transfer device and the second transfer device A floating diffusion in which charge is transferred,
    A source follower element that converts the charge of the floating diffusion into a voltage signal with a gain corresponding to the amount of charge;
    The first photoelectric conversion unit and the second photoelectric conversion unit are arranged in parallel in a first direction,
    The lens unit is
    Electronic equipment, wherein the optical center is located at a position deviated from at least the center of the pixel.
PCT/JP2018/029374 2017-08-15 2018-08-06 Solid-state imaging device, method for producing solid-state imaging device, and electronic apparatus WO2019035380A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880053093.0A CN111247637B (en) 2017-08-15 2018-08-06 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP2019536738A JP7149278B2 (en) 2017-08-15 2018-08-06 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156844 2017-08-15
JP2017156844 2017-08-15

Publications (1)

Publication Number Publication Date
WO2019035380A1 true WO2019035380A1 (en) 2019-02-21

Family

ID=65362189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029374 WO2019035380A1 (en) 2017-08-15 2018-08-06 Solid-state imaging device, method for producing solid-state imaging device, and electronic apparatus

Country Status (3)

Country Link
JP (1) JP7149278B2 (en)
CN (1) CN111247637B (en)
WO (1) WO2019035380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951878A3 (en) * 2020-08-07 2022-03-16 Canon Kabushiki Kaisha Image sensor and image capturing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303540A (en) * 2006-07-26 2006-11-02 Matsushita Electric Ind Co Ltd Imaging device
JP2007208817A (en) * 2006-02-03 2007-08-16 Toshiba Corp Solid-state imaging apparatus
JP2008300631A (en) * 2007-05-31 2008-12-11 Fujitsu Microelectronics Ltd Solid-state imaging element
JP2011221253A (en) * 2010-04-08 2011-11-04 Sony Corp Imaging apparatus, solid-state image sensor, imaging method and program
JP2014007427A (en) * 2013-10-04 2014-01-16 Sony Corp Solid-state image pickup device and electronic device
JP2016021606A (en) * 2014-07-11 2016-02-04 株式会社東芝 Solid-state image pickup device and control method for the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3916612B2 (en) * 2003-02-13 2007-05-16 松下電器産業株式会社 Solid-state imaging device, driving method thereof, and camera using the same
JP2010040997A (en) * 2008-08-08 2010-02-18 Nikon Corp Solid-state imaging element
JP5413481B2 (en) * 2012-04-09 2014-02-12 株式会社ニコン Photoelectric conversion unit connection / separation structure, solid-state imaging device, and imaging apparatus
US10264199B2 (en) * 2014-07-15 2019-04-16 Brillnics Inc. Solid-state imaging device, method for producing solid-state imaging device, and electronic apparatus using photoelectric conversion elements
JP6546457B2 (en) * 2015-06-19 2019-07-17 ブリルニクス インク Solid-state imaging device, method of driving the same, electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208817A (en) * 2006-02-03 2007-08-16 Toshiba Corp Solid-state imaging apparatus
JP2006303540A (en) * 2006-07-26 2006-11-02 Matsushita Electric Ind Co Ltd Imaging device
JP2008300631A (en) * 2007-05-31 2008-12-11 Fujitsu Microelectronics Ltd Solid-state imaging element
JP2011221253A (en) * 2010-04-08 2011-11-04 Sony Corp Imaging apparatus, solid-state image sensor, imaging method and program
JP2014007427A (en) * 2013-10-04 2014-01-16 Sony Corp Solid-state image pickup device and electronic device
JP2016021606A (en) * 2014-07-11 2016-02-04 株式会社東芝 Solid-state image pickup device and control method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951878A3 (en) * 2020-08-07 2022-03-16 Canon Kabushiki Kaisha Image sensor and image capturing apparatus
US11825196B2 (en) 2020-08-07 2023-11-21 Canon Kabushiki Kaisha Image sensor and image capturing apparatus

Also Published As

Publication number Publication date
CN111247637B (en) 2023-05-30
CN111247637A (en) 2020-06-05
JP7149278B2 (en) 2022-10-06
JPWO2019035380A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US11444115B2 (en) Solid-state imaging device and electronic apparatus
JP7264187B2 (en) Solid-state imaging device, its driving method, and electronic equipment
US20210377482A1 (en) Solid-state imaging device, signal processing method therefor, and electronic apparatus
US11350044B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
CN106133912B (en) Solid-state image sensor, electronic device, and imaging method
US10403672B2 (en) Solid-state imaging device with pixels having first and second photoelectric conversion units, driving method therefor, and electronic apparatus
JP5422889B2 (en) Solid-state imaging device and imaging apparatus using the same
US20160353040A1 (en) Solid-state image sensor and camera system
JP2018137467A (en) Imaging element
WO2015045915A1 (en) Solid state imaging element, drive method therefor, and electronic device
WO2015170628A1 (en) Solid-state imaging device and electronic equipment
JP5629995B2 (en) Imaging device and imaging apparatus
JP2008015215A (en) Solid-state imaging device and imaging apparatus using the same
US20230156369A1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP7149278B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic device
JP2021068758A (en) Solid-state image pickup device, method for manufacturing solid-state image pickup device and electronic apparatus
JP6970595B2 (en) Solid-state image sensor, manufacturing method of solid-state image sensor, and electronic equipment
JP7487151B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic device
JP7455945B1 (en) Solid-state imaging device, solid-state imaging device manufacturing method, and electronic equipment
US20230232133A1 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
WO2023248693A1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP2024089267A (en) Solid-state imaging device, manufacturing method thereof, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845859

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18845859

Country of ref document: EP

Kind code of ref document: A1