WO2019035153A1 - Impeller, fan, and air conditioning device - Google Patents

Impeller, fan, and air conditioning device Download PDF

Info

Publication number
WO2019035153A1
WO2019035153A1 PCT/JP2017/029264 JP2017029264W WO2019035153A1 WO 2019035153 A1 WO2019035153 A1 WO 2019035153A1 JP 2017029264 W JP2017029264 W JP 2017029264W WO 2019035153 A1 WO2019035153 A1 WO 2019035153A1
Authority
WO
WIPO (PCT)
Prior art keywords
radius
wing
impeller
pressure surface
outer peripheral
Prior art date
Application number
PCT/JP2017/029264
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 森川
智哉 福井
敬英 田所
祥吾 生田目
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780092953.7A priority Critical patent/CN110914553B/en
Priority to PCT/JP2017/029264 priority patent/WO2019035153A1/en
Priority to JP2019536356A priority patent/JP6739656B2/en
Publication of WO2019035153A1 publication Critical patent/WO2019035153A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades

Definitions

  • the present invention relates to an impeller intended to suppress noise and improve its efficiency, a blower equipped with the impeller, and an air conditioner equipped with the impeller.
  • an axial flow fan is mounted and used in an apparatus such as a heat pump type air conditioner and a pressure ventilation fan. These devices have different ventilation resistances depending on the installation environment and operating conditions.
  • the axial flow fan mounted on the device is required to cope with high static pressure due to adhesion of dust and the like to the heat exchanger and high-density mounting of the component equipment inside the device. That is, in order to achieve high static pressure, it is necessary to increase the rotational speed of the impeller of the axial flow fan.
  • the impeller of the conventional axial flow fan is rotated at high speed, the vortices generated at the peripheral portion of the wing increase the noise and lower the efficiency.
  • the impeller of the axial flow fan described in Patent Document 1 has a plurality of blades provided on the outer peripheral wall of a boss (hub). And the cross-sectional shape along the rotation direction of a wing
  • a line that equally divides the bulging portion bulging toward the negative pressure surface side and the bulging portion bulging toward the positive pressure surface side is a neutral line of the blade, and the bulging portion bulging toward the negative pressure surface side and the positive pressure surface side
  • the bulging portion is formed such that the distance from the wing neutral line increases from the leading edge of the wing to the trailing edge of the wing.
  • the impeller of the axial flow fan includes a boss portion that rotates around a rotation axis, and a plurality of wings that are provided on an outer peripheral wall of the boss portion and that rotate around the rotation axis together with the boss portion. Therefore, for example, the air flow before flowing into the space between the blades flowing around the boss includes a vortex generated when air passes around the boss. Also, for example, the air flow before flowing into the space between the blades flowing around the boss includes the local high-speed flow generated when flowing in the flow passage narrowed due to the presence of the boss and the above-mentioned vortex. Therefore, the air flow before flowing into the space between the blades flowing around the boss portion is disturbed.
  • the conventional axial flow fan including the axial flow fan described in Patent Document 1 is not considered at all for the air flow flowing around the boss portion. For this reason, when each wing
  • the conventional blower has a problem that the efficiency is also reduced by the turbulent air flow around the boss.
  • the present invention has been made to solve the above-mentioned problems, and has as its first object to obtain an impeller with lower noise and higher efficiency than in the prior art.
  • the second object of the present invention is to obtain a blower and an air conditioner provided with such an impeller.
  • the impeller according to the present invention comprises a boss portion rotating around a rotation axis, and a plurality of wings provided on the outer peripheral wall of the boss portion and rotating around the rotation axis together with the boss portion,
  • Each of the wings has a front edge which is a front edge in the rotational direction of the wings, a rear edge which is a rear edge in the rotational direction, and an outer peripheral part which is an outer edge.
  • an inner circumferential portion which is an edge portion on the inner circumferential side, wherein a circle having a radius R centered on the rotation axis is defined as a virtual circle, and the boss portion and the wing are formed in a plane perpendicular to the rotation axis
  • the intersection of the front edge and the imaginary circle is a first intersection
  • the intersection of the rear edge and the imaginary circle is a second intersection
  • the length of the arc of the virtual circle up to the point of intersection is the first wing length L1
  • the point adjacent to the blade from the first point of intersection of any of the blades When the length of the arc of the virtual circle up to the first intersection point of the virtual circle is defined as the inter-blade distance t and the projection distance ratio .sigma.
  • the radius R decreases from the position where the radius R becomes the radius RA and the radius R becomes the radius RA from the position where the radius R becomes the radius RA.
  • the radius R increases from the position where the radius R becomes the radius RM, and the radius R becomes larger than the radius RM from the position where the radius R becomes the radius RM.
  • the radius R is a radius RC
  • the radius R between the radius RA and the radius RM is a radius RD
  • the radius R between the radius RM and the radius RB is a radius RE
  • the radius RB is an intermediate position between the above and the outer peripheral portion
  • the radius R is a radius RF
  • the radius R is a value between the radius RC and the radius RD
  • the radius R is a radius RG and a value above the radius RE.
  • the radius R is defined as a radius RH, and in a meridional shape of the wing, a distance in a direction parallel to the rotation axis from the front edge to the rear edge at the radius R is defined as a second wing length L2.
  • L2 / R which is the ratio of the second wing length L2 to the radius R, increases from the inner peripheral portion to a position where the radius R becomes the radius RG, and the radius R becomes the radius RG.
  • the portion around the boss in each wing has a shape with a smaller amount of work than in the prior art. That is, in the impeller according to the present invention, the portion around the boss in each wing has a smaller amount of pushing out air than in the prior art. For this reason, the impeller according to the present invention can suppress the noise when each blade pushes out the turbulent air flow around the boss portion, as compared to the prior art. Further, in the impeller according to the present invention, since the amount of work of the portion around the boss portion in each wing is smaller than that of the conventional case, noise due to flow separation generated on the pressure surface can be suppressed as compared to the conventional case.
  • the impeller according to the present invention since the amount of work of the portion around the boss in each wing is smaller than that in the conventional case, the decrease in efficiency due to flow separation generated on the pressure surface can be suppressed as compared to the conventional. Further, in the impeller according to the present invention, the turbulent air flow around the boss portion is guided to the outer peripheral side, and this air flow causes a large amount of air with less disturbance to flow to the outer peripheral side. And each wing
  • the impeller according to the present invention can suppress the secondary flow more than the conventional one. Therefore, the impeller according to the present invention is a low-noise, high-efficiency impeller compared to the prior art.
  • FIG. 1 It is a perspective view which shows an example of the axial-flow fan which concerns on Embodiment 1 of this invention. It is the figure which projected the impeller of the axial flow fan which concerns on Embodiment 1 of this invention on the plane perpendicular
  • FIG. 1 is a perspective view showing an example of an axial flow fan according to Embodiment 1 of the present invention.
  • FIG. 2 is a figure which projected the impeller of the axial flow fan which concerns on Embodiment 1 of this invention on the plane perpendicular
  • 1 and 2 are views of the impeller 1 observed from the negative pressure surface 16 side of the wing 10.
  • the white arrow shown in FIG. 1 has shown the general flow direction of air at the time of the impeller 1 rotating.
  • the thick circular arc shaped arrow shown in FIG. 1 and FIG. 2 indicates the rotation direction of the impeller 1. That is, the thick circular arc-shaped arrow shown in FIG. 1 and FIG. 2 indicates the rotational direction of a boss 2 and a plurality of wings 10 described later that constitute the impeller 1.
  • the axial flow fan 100 includes a casing 20 and an impeller 1.
  • the casing 20 is formed with a substantially cylindrical bellmouth 21.
  • the impeller 1 is rotatably disposed on the inner peripheral side of the bell mouth 21.
  • the impeller 1 is rotated by a motor or the like (not shown) attached to a boss 2 described later.
  • the impeller 1 includes a boss 2 and a plurality of wings 10.
  • the boss portion 2 has a substantially cylindrical shape, and rotates around the rotation axis 3.
  • Each of the wings 10 is provided on the outer peripheral wall of the boss portion 2.
  • each of the wings 10 is disposed on the outer peripheral side of the boss portion 2 at equal angular intervals, and radially protrudes from the outer peripheral wall of the boss portion 2. More specifically, as shown in FIG. 2, each of the wings 10 protrudes from the outer peripheral wall of the boss portion 2 toward the rotational direction of the wing 10 with respect to the radial direction of the virtual circle centered on the rotation axis. .
  • Each wing 10 has a leading edge 11, a trailing edge 12, an outer circumferential portion 13, an inner circumferential portion 14, a pressure surface 15 and a suction surface 16.
  • the front edge portion 11 is a front edge portion in the rotational direction among the peripheral portions of the wing 10.
  • the rear edge 12 is a rear edge of the circumferential direction of the wing 10 in the rotational direction.
  • the outer peripheral portion 13 is an edge portion on the outer peripheral side among the peripheral portions of the wing 10.
  • the outer peripheral portion 13 is formed in a substantially arc shape which is convex on the outer peripheral side from a front end portion 13a which is a front end portion in the rotation direction to a rear end portion 13b which is a rear end portion in the rotation direction.
  • the outer peripheral portion 13 has a substantially arc shape which is convex in the direction away from the rotation shaft 3 from the front end 13a which is the front end in the rotational direction to the rear end 13b which is the rear end in the rotational direction. Is formed.
  • the inner circumferential portion 14 is an edge portion on the inner circumferential side among the circumferential edge portions of the wing 10. That is, the wing 10 is connected to the outer peripheral wall of the boss portion 2 at the inner peripheral portion 14. Therefore, the inner peripheral portion 14 has a shape corresponding to the outer peripheral wall of the boss portion 2. Specifically, the inner circumferential portion 14 is formed in a substantially arc shape which is convex toward the outer periphery from the front end portion 14a which is the front end portion in the rotational direction to the rear end portion 14b which is the rear end portion in the rotational direction. ing.
  • the inner circumferential portion 14 is a substantially circle that is convex in the direction away from the rotation shaft 3 from the front end 14a which is the front end in the rotational direction to the rear end 14b which is the rear end in the rotational direction. It is formed in an arc shape.
  • the pressure surface 15 is a surface on the front side in the rotation direction, of the two surfaces of the wing 10. That is, when the wing 10 rotates, air is pushed by the pressure surface 15.
  • FIGS. 1 and 2 are views of the impeller 1 observed from the negative pressure surface 16 side of the wing 10.
  • the pressure surface 15 is a surface of the wing 10 opposite to the suction surface 16. For this reason, in FIG.1 and FIG.2, since the pressure surface 15 will be arrange
  • the suction surface 16 is the surface on the rear side in the rotational direction, of the two surfaces of the wing 10.
  • Each of the wings 10 rotates with the boss 2 about the rotation axis 3.
  • the overall air flow flowing to the axial flow fan 100 is as shown by the white arrow shown in FIG. That is, the air is sucked into the axial flow fan 100 along the rotation shaft 3 from the front side of the paper surface of FIG. Then, the air is blown out from the axial flow fan 100 along the rotary shaft 3 to the back side of the paper surface of FIG. 1.
  • the impeller 1 which has seven wing
  • each parameter indicating the shape of the wing 10 is defined as follows.
  • FIG. 3 is a diagram in which the impeller of the axial flow fan according to the first embodiment of the present invention is projected on a plane perpendicular to the rotation axis of the impeller. That is, FIG. 3 shows a shape in which each of the boss portion 2 and the wing 10 is projected on a plane perpendicular to the rotation axis 3.
  • FIG. 4 is a figure which shows one meridional surface shape of the wing
  • a circle of radius R centered on the rotation axis 3 is defined as a virtual circle 30.
  • the radius R changes in value.
  • An intersection of the front edge 11 of the wing 10 and the imaginary circle 30 is defined as a first intersection 31.
  • An intersection of the trailing edge 12 of the wing 10 and the imaginary circle 30 is defined as a second intersection 32.
  • the length of the arc of the imaginary circle 30 from the first intersection 31 to the second intersection 32 in the same wing 10 is defined as a first wing length L1.
  • the length of the arc of the virtual circle 30 from the first intersection point 31 of an arbitrary wing 10 to the first intersection point 31 of the wing 10 adjacent to the wing 10 is defined as an inter-wing distance t.
  • FIG. 5 is a view showing the relationship between the projection distance ratio ⁇ and the radius R in the wing according to Embodiment 1 of the present invention.
  • FIG. 6 is a view showing the relationship between the radius R and the ratio L2 / R, which is the ratio of the second span length L2 to the radius R, in the wing according to Embodiment 1 of the present invention.
  • the radius R is represented by a dimensionless number called a radius ratio.
  • the radius R of the position of the inner circumferential portion 14 is “0.0”.
  • the radius R of the position of the outer peripheral part 13 is "1.0".
  • the projection distance ratio ⁇ decreases from the inner circumferential portion 14 to a position where the radius R is the radius RA.
  • the projection distance ratio ⁇ has a first minimum value at a position where the radius R is the radius RA.
  • the projection distance ratio ⁇ increases from the position where the radius R is the radius RA to the position where the radius R is the radius RM larger than the radius RA.
  • the projection distance ratio ⁇ has a maximum value at a position where the radius R is the radius RM.
  • the projection distance ratio ⁇ decreases from the position where the radius R is the radius RM to the position where the radius R is the radius RB larger than the radius RM.
  • the projection distance ratio ⁇ has a second minimum value at a position where the radius R is the radius RB. Further, the projection distance ratio ⁇ increases from the position where the radius R is the radius RB to the outer peripheral portion 13.
  • L2 / R which is the ratio of the second wing length L2 to the radius R, increases from the inner peripheral portion 14 to a position where the radius R becomes the radius RG. Then, L2 / R has a maximum value at a position where the radius R is the radius RG. L2 / R decreases from a position where the radius R is the radius RG to a position where the radius R is the radius RH. And L2 / R has a local minimum at the position where the radius R becomes the radius RH. Further, L2 / R increases from the position where the radius R becomes the radius RH to the outer peripheral portion 13. L2 / R is maximum at a position where the radius R is the radius RG and is minimum at the position where the radius R is the radius RH.
  • the radius RG is smaller than the radius RA.
  • the value of the radius RG is not limited to this, and may be a value near the radius RA.
  • a radius R which is an intermediate position between the inner circumferential portion 14 and the radius RA is defined as a radius RC.
  • a radius R which is an intermediate position between the radius RA and the radius RM is defined as a radius RD.
  • the radius RG may be a value greater than or equal to the radius RC and less than or equal to the radius RD.
  • the radius RH is smaller than the radius RB.
  • the value of the radius RH is not limited to this, and may be a value near the radius RB.
  • the radius R which is an intermediate position between the radius RM and the radius RB, is defined as a radius RE.
  • a radius R which is an intermediate position between the radius RB and the outer peripheral portion 13 is defined as a radius RF.
  • the radius RH may be a value greater than or equal to the radius RE and less than or equal to the radius RF.
  • the wing 10 has the following shape from the inner circumferential portion 14 to the outer circumferential portion 13.
  • the projection distance ratio ⁇ decreases from the inner circumferential portion 14 to the radius RA. That is, although the distance between the adjacent wings 10 increases from the inner circumferential portion 14 to the radius RA, the ratio of the first span L1 to the radius R is substantially constant. That is, the ratio of the chord length to the radius R is substantially constant from the inner circumferential portion 14 to the radius RA.
  • the chord length is the length of the chord line.
  • the chord line is a straight line connecting the leading edge 11 and the trailing edge 12 by developing a cross-sectional view in which the blade 10 is cut at a cylindrical cross section centered on the rotation axis 3.
  • the chord length becomes longer as the distance from the rotation axis increases. That is, both in the impeller of the conventional axial flow fan and in the wing 10 according to the first embodiment, as the radius R becomes larger, the chord length becomes longer. At this time, as the radius R of the impeller of the conventional axial flow fan increases, the ratio of chord length to the radius R also increases. In other words, in the impeller of the conventional axial flow fan, the larger the radius R, the larger the ratio of work to the radius R. On the other hand, in the wing 10 according to the first embodiment, the ratio of the chord length to the radius R is substantially constant from the inner circumferential portion 14 to the radius RA.
  • region from the internal peripheral part 14 to radius RA is small compared with the blade of the impeller of the conventional axial flow fan.
  • the amount of work is smaller in the region from the inner circumferential portion 14 to the radius RA as compared with the impeller blade of the conventional axial flow fan.
  • the amount of work is an amount by which the wing 10 pushes out the air.
  • L2 / R increases from the inner circumferential portion 14 to a position where it becomes the radius RG in the vicinity of the radius RA. That is, the wing 10 gradually rises from the inner circumferential portion 14 to the position of the radius RG. And the distance between the adjacent wing
  • An area near the radius RG and the radius RA is an area where the ratio of the distance between the blades 10 to the radius R is the longest. In other words, the region near the radius RG is the region where (t ⁇ L1) / R is the largest.
  • blade 10 stands up has shown that the angle of the chord line of the wing
  • L2 / R decreases from radius RG to radius RH. That is, the wing 10 gradually sleeps from the radius RG to the radius RH. For this reason, in the wing 10, the ratio of the amount of work to the radius R decreases from the radius RG to the radius RH in the vicinity of the radius RB.
  • the fact that the wing 10 goes to sleep means that the angle between the chord line of the wing 10 and the rotation axis 3 is increasing.
  • the projection distance ratio ⁇ is maximum at the position of the radius RM between the radius RG and the radius RH. That is, at the position of the radius RM, the ratio of the distance between the blades 10 to the radius R is minimized, but the ratio of the first span L1 to the radius R is maximized. That is, at the position of radius RM, the ratio of chord length to radius R becomes maximum. In other words, in the region near the radius RM, the ratio of the blade area to the radius R is maximum. Furthermore, in other words, the area near the radius RM has the largest ratio of the effective area to the radius R. That is, the region near the radius RM is a region where the amount of work is large. In addition, the effective area in the area
  • the projection distance ratio ⁇ is lowered from the radius RM to the radius RB near the radius RH. That is, from the radius RM to the radius RB, the distance between the adjacent wings 10 increases, but the ratio of the first span L1 to the radius R becomes substantially constant. That is, the ratio of chord length to radius R is substantially constant from radius RM to radius RB.
  • the impeller blade of the conventional axial flow fan has a larger chord length to radius R ratio as the radius R increases.
  • the ratio of the chord length to the radius R is substantially constant from the radius RM to the radius RB.
  • the wing 10 according to the first embodiment has a wing area smaller than that of the conventional case from the radius RM to the radius RB. Therefore, in the wing 10 according to the first embodiment, the ratio of the amount of work to the radius R is substantially constant from the radius RM to the radius RB.
  • the amount of increase in the amount of work is larger than that of the impeller blade of the conventional axial flow fan. small.
  • FIG. 7 is a perspective view showing a conventional axial flow fan impeller.
  • symbol of each structure of the impeller 1 which concerns on this Embodiment 1 corresponding to these structures A code with "100" added will be attached.
  • the wing of the conventional impeller 101 is given the symbol "110".
  • the outline arrow shown in FIG. 7 has shown the general flow direction of air when the conventional impeller 101 rotates.
  • the thick arrow shown in FIG. 7 indicates the rotation direction of the conventional impeller 101.
  • blades 110 is abbreviate
  • a boss 102 is present at a position upstream of the air flow flowing between the wings 110.
  • the air flow 50 before flowing into between the wings 110 flowing around the boss portion 102 includes the vortices 51 generated when the air passes around the boss portion 102.
  • a local high-speed flow generated when flowing in the flow path narrowed by the boss portion 102 and the above-mentioned vortex 51 52 is also included. Therefore, the air flow 50 before flowing into the space between the wings 110 flowing around the boss portion 102 becomes turbulent. Therefore, when the pressure surface 115 of each blade 110 pushes out the turbulent air flow 50 around the boss portion 102 in the conventional impeller 101, noise increases.
  • each wing 110 pushes out the turbulent air flow 50 around the boss portion 102 in the conventional impeller 101, the efficiency also decreases as follows.
  • FIG. 8 is a view for explaining the flow of the air flow around the boss of the blade of the impeller of the conventional axial flow fan.
  • FIG. 8A is a view of the conventional impeller 101 observed in the direction of the rotation shaft 103.
  • 8 (b) is a cross-sectional view taken along the line AA in FIG. 8 (a).
  • FIG. 8B is a developed view of the AA position in the cylindrical cross section centering on the rotating shaft 103.
  • the arrow of the thick line shown to Fig.8 (a) has shown the rotation direction of the conventional impeller 101.
  • FIG. 8A is a view of the conventional impeller 101 observed in the direction of the rotation shaft 103.
  • 8 (b) is a cross-sectional view taken along the line AA in FIG. 8 (a).
  • FIG. 8B is a developed view of the AA position in the cylindrical cross section centering on the rotating shaft 103.
  • the arrow of the thick line shown to Fig.8 (a) has shown the rotation direction
  • the air flow 50 before flowing into between the wings 110 flowing around the boss portion 102 is turbulent. Therefore, when the air flow 50 flows in between the wings 110 from the front edge 111 side of the wing 110, the tangential direction 111a of the front edge 111 of the wing 110 and the direction of the air flow 50 do not match. For this reason, flow separation occurs on the front edge portion 111 side on the pressure surface 115 of the inner peripheral side portion of each wing 110. Then, the separated flow reattaches to the pressure surface 115 in the vicinity of the attachment point 54 by the suction force of the vortex 53 generated on the front edge 111 side due to the separation of the flow. The air flow after reattachment flows along the positive pressure surface, and the static pressure rises.
  • the separation of the flow generated on the front edge 111 side of the pressure surface 115 reduces the effective area of the wing 110. For this reason, in the conventional impeller 101, the amount of work of the wing 110 is reduced and the efficiency is reduced. Further, in the conventional impeller 101, noise is also increased due to the separation of the flow generated on the front edge portion 111 side of the pressure surface 115.
  • the static pressure of the outer peripheral side portion of the wing 110 is likely to be higher than that of the inner peripheral side portion of the wing 110.
  • the static pressure is high. From these points, in the conventional impeller 101, the static pressure difference between the inner circumferential side portion and the outer circumferential side portion of the wing 110 becomes large.
  • the impeller 1 which concerns on this Embodiment 1 acts as follows, the noise resulting from the airflow 50 can be suppressed, and the fall of the efficiency resulting from the airflow 50 can be suppressed.
  • FIG.9 and FIG.10 is the figure which observed the impeller which concerns on Embodiment 1 of this invention from the suction surface side along a rotating shaft.
  • FIG. 9 is a figure for demonstrating the air flow of the inner peripheral side part of the wing
  • FIG. 10 is a figure for demonstrating the air flow of the outer peripheral side part of the wing
  • the impeller 1 which concerns on this Embodiment 1 also has the boss
  • FIG. for this reason, also in the impeller 1 according to the first embodiment, the air flow before flowing into the space between the wings 10 flowing around the boss portion 2 is the air flow 50 disturbed as in the conventional case.
  • the blade 10 of the impeller 1 according to the first embodiment in the region from the inner circumferential portion 14 to the radius RA, the blade area is smaller and the amount of work is smaller than in the conventional case.
  • the amount of work is smaller at the peripheral portion of the boss portion 2, that is, the inner peripheral side portion, as compared with the conventional case.
  • the portion around the boss portion 2 in each wing 10 has a smaller amount of pushing out air than in the conventional case.
  • the impeller 1 which concerns on this Embodiment 1 can suppress the noise at the time of each wing
  • the impeller 1 according to the first embodiment can suppress the noise when each wing 10 passes through the turbulent air flow 50 around the boss 2 more than the conventional noise.
  • the impeller 1 according to the first embodiment since the amount of work of the portion around the boss portion 2 in each wing 10 is smaller than that in the conventional case, noise due to flow separation generated on the pressure surface 15 is also This can be suppressed as compared to the prior art. Further, in the impeller 1 according to the first embodiment, since the amount of work of the portion around the boss portion 2 in each wing 10 is smaller than that in the conventional case, the efficiency is reduced due to the separation of the flow generated on the pressure surface 15 Also, it can be suppressed than before.
  • the wing 10 gradually rises from the inner circumferential portion 14 to a position where the radius RG is in the vicinity of the radius RA. That is, in the area of the peripheral portion of the boss portion 2 of the wing 10 having a smaller amount of work than the conventional one, the amount of work increases as going to the outer peripheral side. Therefore, the turbulent air flow 50 around the boss portion 2 is guided to the outer peripheral side. Also, as described above, the regions near the radius RG and the radius RA have a long distance between the wings 10. For this reason, in the region of the radius RG and the radius RA, the air flow 55 with less turbulence flows in a large amount between the blades 10.
  • the air flow 55 is guided to the outer peripheral side than the radius RG and the radius RA by the influence of the air flow 50, as shown in FIG. That is, the air flow 55 flows toward the region near the radius RM in the wing 10.
  • the area near the radius RM in the wing 10 has a large ratio of the wing area to the radius R. Therefore, the impeller 1 according to the first embodiment can pass the air flow 55 with less disturbance a lot in the area near the radius RM where the amount of work is large, so the efficiency is improved.
  • the blade 10 according to the first embodiment performs work compared to the blade of the conventional axial flow fan impeller.
  • the amount of increase is small.
  • the amount of work to the air flow 56 is substantially constant from the radius RM to the radius RB.
  • the pressure surface 15 of the wing 10 according to the first embodiment the static pressure difference between the inner circumferential side and the outer circumferential side is smaller than that in the related art.
  • the impeller 1 which concerns on this Embodiment 1 can suppress a secondary flow rather than before, and efficiency improves further.
  • the impeller 1 which concerns on this Embodiment 1 turns into a low-noise and highly efficient impeller rather than before.
  • FIG. 11 is a diagram showing the relationship between the projection distance ratio ⁇ and the radius R in the wing according to Embodiment 1 of the present invention.
  • FIG. 11 is a view showing preferable ranges of the radius RA, the radius RM and the radius RB.
  • FIG. 12 is a view showing the relationship between the radius R and the ratio L2 / R, which is the ratio of the second wing length L2 to the radius R, in the wing according to Embodiment 1 of the present invention.
  • This FIG. 12 is a view showing a preferred range of the radius RG and the radius RH.
  • FIG. 13 is a diagram showing the relationship between the projection distance ratio ⁇ and the radius R in the wing according to Embodiment 1 of the present invention.
  • FIG. 11 is a view showing preferable ranges of the radius RA, the radius RM and the radius RB.
  • FIG. 12 is a view showing the relationship between the radius R and the ratio L2 / R, which is the ratio of the second wing
  • FIG. 13 is a view showing a preferable range of the projection distance ratio ⁇ at the radius RM and the projection distance ratio ⁇ at the radius RB.
  • the radius R is represented by a dimensionless number called a radius ratio. Specifically, in FIG. 11 to FIG. 13, the radius R of the position of the inner circumferential portion 14 is “0.0”. Further, in FIG. 11 to FIG. 13, the radius R of the position of the outer peripheral portion 13 is “1.0”.
  • the impeller 1 Due to the pressure difference between the pressure surface 15 and the suction surface 16 of the blade 10, a torque in the direction opposite to the rotational direction acts on the impeller 1. And the power consumption of the motor which is not shown in figure which rotates the impeller 1 will increase by this torque.
  • the torque acting on the impeller 1 can be evaluated by the product of the radius R which is a moment arm and the area of the pressure difference at each portion of the wing 10. For this reason, in order to reduce the torque acting on the impeller 1, it is effective to reduce the blade area at the outer peripheral portion of the blade 10 where the radius R, which is a moment arm, increases.
  • the wing area of the region near the radius RB is smaller than that of the conventional impeller.
  • the radius RB is preferably in the range of 0.7 or more and 0.8 or less.
  • the radius RM into the range of 0.45 or more and 0.55 or less.
  • the impeller 1 by making the blade area of the region from the inner circumferential portion 14 to the radius RA smaller than in the conventional case, the impeller 1 generates noise when each blade 10 passes through the turbulent air flow 50 around the boss 2. It is suppressing. As shown in FIG. 11, by setting the radius RA within the range of 0.2 or more and 0.3 or less, the noise when each wing 10 passes through the turbulent air flow 50 around the boss portion 2 can be made more It can be suppressed.
  • Each wing 10 of the impeller 1 increases in blade area from the position of the radius RA to a radius RM which is the outer circumferential side than the radius RA. Also, each wing 10 of the impeller 1 gradually sleeps from the radius RG to the radius RH. For this reason, as shown in FIG. 12, it is preferable to set the radius RG to be in the range of 0.15 or more and 0.25 or less, and to make the position of the radius RA close to the position of the radius RG. By setting the radius RG within such a range, the ratio of the amount of work to the radius R can be made uniform. Also, the position of the radius RH is the most sleeping position among the positions of the wing 10.
  • the region near the radius RH is a region where the pressure difference between the pressure surface 15 and the suction surface 16 is reduced.
  • the projection distance ratio ⁇ at the radius RB is preferably 0.6 or more.
  • the size of the projection distance ratio ⁇ can also be regarded as the size of the blade area. Therefore, the torque acting on the impeller 1 can be reduced by reducing the projection distance ratio ⁇ at the radius RB.
  • the projection distance ratio ⁇ at the radius RB is preferably 0.6 or more.
  • the projection distance ratio ⁇ at the radius RM is preferably less than 1.0.
  • the impeller 1 which concerns on this Embodiment 1 is provided in the outer peripheral wall of the boss part 2 which rotates centering on the rotating shaft 3, and the rotating shaft 3, and the plurality which rotates around the rotating shaft 3 with the rotating shaft 3 And the wings 10 of the.
  • Each of the wings 10 has a front edge 11, a rear edge 12, an outer periphery 13, and an inner periphery 14.
  • the projection distance ratio ⁇ is as follows. Specifically, the projection distance ratio ⁇ decreases from the inner circumferential portion 14 to a position where the radius R becomes the radius RA. Further, the projection distance ratio ⁇ has a first minimum value at a position where the radius R is the radius RA.
  • the projection distance ratio ⁇ increases from the position where the radius R is the radius RA to the position where the radius R is the radius RM larger than the radius RA. Also, the projection distance ratio ⁇ has a maximum value at a position where the radius R is the radius RM. Further, the projection distance ratio ⁇ decreases from the position where the radius R is the radius RM to the position where the radius R is the radius RB larger than the radius RM. Also, the projection distance ratio ⁇ has a second minimum value at a position where the radius R is the radius RB. Also, the projection distance ratio ⁇ increases from the position where the radius R is the radius RB to the outer peripheral portion 13.
  • L2 / R which is the ratio of the second wing length L2 to the radius R, is as follows. Specifically, L2 / R increases from the inner circumferential portion 14 to a position where the radius R becomes the radius RG. L2 / R has a maximum value at a position where the radius R is the radius RG. L2 / R decreases from a position where the radius R is the radius RG to a position where the radius R is the radius RH. Also, L2 / R has a local minimum value at a position where the radius R is the radius RH. Further, L2 / R increases from the position where the radius R becomes the radius RH to the outer peripheral portion.
  • the impeller 1 which concerns on this Embodiment 1 is comprised in this way, the noise resulting from the turbulent air flow 50 can be suppressed, and the fall of the efficiency resulting from the turbulent air flow 50 can be suppressed. Therefore, the impeller 1 which concerns on this Embodiment 1 turns into a low-noise and highly efficient impeller rather than before.
  • an impeller 1 according to a second embodiment of the present invention will be described.
  • items not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 14 is a perspective view of an impeller according to Embodiment 2 of the present invention.
  • FIG. 15 is the figure which observed the impeller which concerns on Embodiment 2 of this invention from the direction orthogonal to a rotating shaft.
  • the white arrow shown in FIG.14 and FIG.15 has shown the general flow direction of air at the time of the impeller 1 rotating.
  • thick arrows shown in FIG. 14 and arc-shaped arrows shown in the vicinity of the rotation shaft 3 in FIG. 15 indicate the rotation direction of the impeller 1.
  • blade 10 is abbreviate
  • a casing 20 is also illustrated in FIG. 15. That is, FIG. 15 shows an axial flow fan 100 according to the second embodiment.
  • each wing 10 of the impeller 1 varies the direction of the pressure surface 15 depending on the position.
  • the direction of the pressure surface 15 at each position of the wing 10 will be described in detail.
  • an angle ⁇ which is a parameter indicating the orientation of the pressure surface 15, is defined as follows.
  • FIG. 16 is a diagram in which the impeller of the axial flow fan according to Embodiment 2 of the present invention is projected on a plane perpendicular to the rotation axis of the impeller.
  • FIG. 16 is a view of the impeller 1 observed from the negative pressure surface 16 side of the wing 10.
  • the first virtual straight line 41 is obtained by projecting this normal on a plane perpendicular to the rotation axis 3 of the impeller 1.
  • a second virtual straight line 42 passing through the rotation axis 3 and the point B is drawn.
  • the angle which the 1st virtual straight line 41 and the 2nd virtual straight line make can be four.
  • two of the angles formed by the first virtual straight line 41 and the second virtual straight line can be made on the front side in the rotational direction with respect to the second virtual straight line 42.
  • the angle closer to the rotation axis 3 is defined as the angle ⁇ on the inner peripheral side.
  • the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 away from the rotation axis 3.
  • the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 so as to be directed to the outer peripheral side. That is, when the angle ⁇ is larger than about 90 degrees, the pressure surface 15 faces the outer peripheral side.
  • the angle ⁇ is smaller than approximately 90 degrees, the normal to the pressure surface 15 extends from the pressure surface 15 in the rotational direction so as to approach the rotation axis 3.
  • the normal to the pressure surface 15 extends from the pressure surface 15 in the rotational direction so as to be directed inward. That is, when the angle ⁇ is smaller than about 90 degrees, the pressure surface 15 faces inward.
  • FIG. 17 is a diagram showing the relationship between the angle ⁇ and the radius R in the wing according to Embodiment 2 of the present invention.
  • the radius R is represented by a dimensionless number called a radius ratio.
  • the radius R of the position of the inner circumferential portion 14 is “0.0”.
  • the radius R of the position of the outer peripheral portion 13 is “1.0”.
  • the solid line indicates the relationship between the angle ⁇ and the radius R at the front edge portion 11.
  • the dashed line shows the relationship between the angle ⁇ at the trailing edge 12 and the radius R.
  • the angle ⁇ at the front edge 11 and the radius R will be described.
  • the angle ⁇ is larger than 90 degrees. That is, in the partial range including the inner circumferential portion 14 in the range in which the radius R becomes the radius RA from the inner circumferential portion 14, the normal of the pressure surface 15 away from the positive pressure surface 15 away from the rotation axis 3 It extends in the rotational direction.
  • the positive pressure surface 15 faces the outer circumferential side in a partial range including the inner circumferential portion 14 out of the range in which the radius R is the radius RA from the inner circumferential portion 14.
  • the normal to the pressure surface 15 extends from the pressure surface 15 in the rotational direction so as to be away from the rotation axis 3 in a range where the radius R is 0.0 or more and 0.15 or less.
  • the air flow 58 flowing in a partial range including the inner peripheral portion 14 flows toward the outer peripheral side.
  • the impeller 1 guides the turbulent air flow 50 around the boss portion 2 to the outer peripheral side. Then, the air flow 55 with little disturbance is allowed to pass through a region near the radius RM where the amount of work is large, and the efficiency of the impeller 1 is improved.
  • the turbulent air flow 50 around the boss portion 2 can be guided to the outer circumferential side. That is, the air flow 55 with less disturbance can be made to pass more through the region near the radius RM where the amount of work is large. Therefore, the efficiency of the impeller 1 can be further improved.
  • the positive pressure surface 15 faces the outer circumferential side in a partial range including the inner circumferential portion 14 out of the range in which the radius R is the radius RA from the inner circumferential portion 14.
  • the range in which the pressure surface 15 faces the outer peripheral side is not limited to the range.
  • the pressure surface 15 may face the outer circumferential side in all of the range in which the radius R is the radius RA from the inner circumferential portion 14.
  • the normal to the pressure surface 15 may extend from the pressure surface 15 in the rotational direction so as to be away from the rotation axis 3 in all the range in which the radius R is the radius RA from the inner circumferential portion 14.
  • the normal to pressure surface 15 is separated from pressure surface 15 so as to be away from rotation axis 3 in at least a partial range including inner peripheral portion 14 within the range where radius R is radius RA from inner peripheral portion 14 It suffices to extend in the rotational direction.
  • the angle ⁇ is smaller than 90 degrees. That is, at the position where the radius R is the radius RM, the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 so as to approach the rotation axis 3. In other words, the pressure surface 15 faces inward around the position where the radius R is the radius RM.
  • the air flow 59 flowing around the position where the radius R is the radius RM flows inward.
  • the impeller 1 improves the efficiency of the impeller 1 by increasing the amount of work around the position of the radius RM. Therefore, the efficiency of the impeller 1 can be further improved by directing the pressure surface 15 inward around the position where the radius R is the radius RM.
  • the angle ⁇ is larger than 90 degrees. That is, in the range from the position where the radius R is the radius RB to the outer peripheral portion 13, the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 away from the rotation axis 3. In other words, in the range from the position where the radius R is the radius RB to the outer peripheral portion 13, the pressure surface 15 faces the outer peripheral side. Specifically, in the range in which the radius R is 0.75 or more and 1.0 or less, the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 so as to be away from the rotation axis 3. With this configuration, as shown in FIG.
  • the pressure surface 15 faces the outer peripheral side in all of the range from the position where the radius R is the radius RB to the outer peripheral portion 13. However, even if the pressure surface 15 faces the outer peripheral side in a partial range including the outer peripheral portion 13 in the range from the position where the radius R becomes the radius RB to the outer peripheral portion 13, generation of the wing tip vortex 57 is suppressed it can. That is, in the range from the position where the radius R is the radius RB to the outer circumferential portion 13, the pressure surface 15 may face the outer circumferential side in at least a partial range including the outer circumferential portion 13.
  • the normal of the pressure surface 15 is the pressure side so as to be away from the rotation axis 3 in at least a partial range including the outer peripheral portion 13 It may extend from 15 in the rotational direction.
  • the trailing edge 12 side of the wing 10 is less affected by the turbulent air flow 50 around the boss 2.
  • the trailing edge 12 of each wing 10 has an angle ⁇ smaller than 90 degrees over the entire area from the inner circumferential portion 14 to the outer circumferential portion 13
  • the normal surface of the pressure surface 15 extends from the pressure surface 15 in the rotational direction so that the trailing edge 12 of each wing 10 approaches the rotation shaft 3 over the entire area from the inner circumferential portion 14 to the outer circumferential portion 13 .
  • the pressure surface 15 of the trailing edge 12 of each wing 10 faces inward over the entire area from the inner circumferential portion 14 to the outer circumferential portion 13.
  • the pressure surface 15 faces inward over the entire area from the inner peripheral portion 14 to the outer peripheral portion 13 in the range shown from the rear edge 12 to the following FIG.
  • FIG. 18 is a view showing the relationship between the angle ⁇ and the radius R in the wing according to Embodiment 2 of the present invention.
  • the radius R is represented by a dimensionless number called a radius ratio.
  • the radius R of the position of the inner circumferential portion 14 is “0.0”.
  • the radius R of the position of the outer peripheral portion 13 is “1.0”.
  • Curves C, D, E shown in FIG. 18 indicate different positions in the chord line direction of the wing 10. Specifically, each position in the chord line direction of the wing 10 is represented by a dimensionless number. Then, the position of the rear edge 12 is 0.0, and the position of the front edge 11 is 1.0.
  • the curve C indicates a position where the position in the chord line direction is 0.7.
  • a curve D indicates a position at which the position in the chord line direction is 0.6.
  • a curve E indicates a position at which the position in the chord line direction is 0.5.
  • the value of the angle ⁇ decreases. That is, as the value of the position in the chord line direction decreases, the angle ⁇ is smaller than 90 degrees.
  • the curve E indicating the position where the position in the chord line direction is 0.5 is smaller than 90 degrees in the entire area from the inner circumferential portion 14 to the outer circumferential portion 13. That is, in the range in which the position in the chord line direction is 0.5 or less, the angle ⁇ is smaller than 90 degrees. In other words, in the range in which the position in the chord line direction is 0.5 or less, the normal to the pressure surface 15 extends from the pressure surface 15 in the rotational direction so as to approach the rotation axis 3.
  • the normal to pressure surface 15 extends from pressure surface 15 in the rotational direction so as to approach rotation axis 3.
  • the pressure surface 15 faces inward. That is, the pressure surfaces 15 of the pressure surfaces 15 of each wing 10 face inward over the entire area from the inner peripheral portion 14 to the outer peripheral portion 13 on the rear edge 12 side from the center position in the chord line direction.
  • the impeller 1 according to the second embodiment can suppress the generation of the wing tip vortex 57 in the vicinity of the outer peripheral portion 13 of the wing 10 .
  • the tip vortices 57 generated in the impeller of the conventional axial flow fan will be described.
  • the wing tip vortex 57 generated in the impeller 1 will be described.
  • FIG. 19 is a perspective view showing an impeller of a conventional axial flow fan.
  • the white arrow shown in FIG. 19 has shown the general flow direction of air at the time of the conventional impeller 101 rotating.
  • thick-line arrows shown in FIG. 19 indicate the rotation direction of the conventional impeller 101.
  • blades 110 is abbreviate
  • the static pressure is likely to increase as compared to the case where the pressure surface of the blade faces the outer peripheral side. That is, when the pressure surface of the blade faces inward, the pressure difference between the pressure surface and the suction surface is larger than when the pressure surface of the blade faces the outer peripheral side. Then, when the pressure difference between the positive pressure surface and the negative pressure surface increases in the outer peripheral portion of the blade, air tends to flow from the positive pressure surface side to the negative pressure surface side, generating wing tip vortices.
  • the outer peripheral portion 113 of the pressure surface of each wing 110 faces inward in the entire region from the front edge portion 111 to the rear edge portion 112. That is, in the conventional impeller 101, the pressure difference between the pressure surface and the suction surface is large in the entire area from the front edge portion 111 to the rear edge portion 112 in the outer peripheral portion 113 of the pressure surface of each wing 110 . For this reason, at the outer peripheral portion 113 of each blade 110 of the conventional impeller 101, a wingtip vortex 57 is generated from the front edge portion 111. Then, the wing tip vortex 57 grows and becomes larger as it goes to the trailing edge 112. Therefore, in the conventional impeller 101, the flow path between the blades 110 is blocked by the large grown tip vortices 57, and the efficiency is reduced.
  • the outer peripheral portion 13 of the positive pressure surface 15 of each blade 10 of the impeller 1 according to the second embodiment has the positive pressure surface 15 facing the outer peripheral side at the front edge portion 11.
  • the wing tip vortex 57 is not generated in the region where the pressure surface 15 faces the outer peripheral side.
  • the tip vortices 57 begin to be generated. Therefore, the impeller 1 according to the second embodiment can delay the generation of the wingtip vortex 57 and can suppress the growth of the wingtip vortex 57.
  • the area of the flow passage between the blades 10 closed by the wing tip vortex 57 is reduced. For this reason, in the impeller 1 according to the second embodiment, more air can flow between the blades 10 than in the conventional impeller 101, and the efficiency is improved.
  • FIG. 20 is a diagram showing the wind speed distribution on the outlet side of the axial flow fan according to Embodiment 2 of the present invention.
  • the vertical axis in FIG. 20 indicates the wind speed on the outlet side of the axial flow fan 100.
  • the horizontal axis in FIG. 20 indicates the distance from the rotation axis 3 of the impeller 1.
  • the distance from the rotation axis 3 of the impeller 1 is represented by a dimensionless number called a distance ratio.
  • the distance from the rotation axis 3 to the inner circumferential portion 14 of the wing 10 is “0.3”.
  • the distance from the rotating shaft 3 to the inner peripheral wall of the bell mouth 21 of the casing 20 is "1.0".
  • the conventional axial flow fan air tends to flow backward between the outer peripheral portion of the wing and the inner peripheral wall of the bell mouth, and a leakage vortex is generated. For this reason, in the conventional axial flow fan, the wind speed on the blowing side is reduced between the outer peripheral portion of the wing and the inner peripheral wall of the bell mouth.
  • the positive pressure surface 15 of the blades 10 of the impeller 1 faces the outer peripheral side at the outer peripheral portion 13. Therefore, the air flow blown out from the outer peripheral portion 13 of the wing 10 is directed to the outer peripheral side more than the conventional one, and collides with the inner peripheral wall of the bell mouth 21.
  • the axial flow fan 100 according to the second embodiment can prevent the occurrence of leakage vortex between the outer peripheral portion 13 of the wing 10 and the inner peripheral wall of the bell mouth 21. For this reason, as shown in FIG. 20, the axial flow fan 100 according to the second embodiment can make the wind speed distribution on the blowout side more uniform than in the prior art.
  • each of the blades 10 of the impeller 1 shown in Embodiment 1 and Embodiment 2 rotates the blade 10 from the outer peripheral wall of the boss portion 2 more than in the radial direction of a virtual circle centered on the rotation axis. Protrusively inclined to the direction side.
  • each of the blades is projected from the outer peripheral wall of the boss portion in a direction opposite to the rotational direction of the blade with respect to the radial direction of the imaginary circle centered on the rotation axis.
  • the impeller 1 shown in Embodiment 1 and this Embodiment 2 was an impeller for axial flow fans.
  • the configuration of the wing 10 of the impeller 1 may be adopted to the wing of an impeller for a mixed flow fan. Even if the configuration of the wing 10 is adopted for the blade of an impeller for a mixed flow fan, the above-mentioned effect can be obtained.
  • the boss portion 2 in a truncated cone shape and providing the wings 10 on the outer peripheral wall of the boss portion 2, an impeller for an axial flow fan can be obtained.
  • FIG. 21 is a longitudinal sectional view showing an example of the air conditioning apparatus according to Embodiment 3 of the present invention.
  • the indoor unit 200 includes a housing 203.
  • a suction port 201 for sucking room air into the housing 203 is formed.
  • an air outlet 202 for supplying the conditioned air to the air conditioning target area is formed at the lower part of the housing 203, more specifically, below the front surface of the housing 203.
  • the blowout port 202 is provided with a mechanism for controlling the blowout direction of the air flow, such as a vane 202a.
  • an axial flow fan 100 and a heat exchanger 204 are provided in the air path from the suction port 201 to the blowout port 202 inside the housing 203.
  • the axial flow fan 100 is disposed downstream of the suction port 201 and upstream of the heat exchanger 204.
  • a plurality of axial flow fans 100 are arranged in parallel in the longitudinal direction of the housing 203 (in the direction orthogonal to the sheet) according to the air volume etc. required of the indoor unit 200.
  • the heat exchanger 204 exchanges heat between room air and the refrigerant flowing inside the heat exchanger 204 to create conditioned air.
  • the impeller 1 shown in Embodiment 1 and Embodiment 2 has lower noise than conventional. That is, the axial flow fan 100 shown in Embodiment 1 and Embodiment 2 has lower noise than conventional. Therefore, the indoor unit 200 equipped with the axial flow fan 100 shown in the first embodiment or the second embodiment can suppress noise more than conventional.
  • the impeller 1 shown in the first embodiment and the second embodiment is more efficient than the conventional one. That is, the axial flow fan 100 shown in Embodiment 1 and Embodiment 2 has higher efficiency than that of the conventional case. Therefore, the indoor unit 200 equipped with the axial flow fan 100 shown in the first embodiment or the second embodiment can improve the power efficiency more than the conventional one.
  • the axial flow fan 100 shown in Embodiment 2 can make the wind speed distribution on the outlet side more uniform than that in the related art. Therefore, in the axial flow fan 100 shown in the second embodiment, even when air flows in the housing 203 where the pressure loss is high due to the heat exchanger 204 etc., the air flow performance is deteriorated due to the variation of the wind speed distribution. Can be suppressed. Therefore, the indoor unit 200 including the axial flow fan 100 described in the second embodiment can further improve the power efficiency as compared with the indoor unit 200 including the axial flow fan 100 described in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

An impeller according to the present invention is provided with a boss part that rotates about a rotary shaft, and a plurality of blades that are provided on an outer peripheral wall of the boss part and rotate about the rotary shaft together with the boss part. Among the plurality of blades, the ratio of the chord length to the distance from the rotary shaft, the angle between the rotary shaft and the chord line, and the like, differ according to the distance from the rotary shaft. By being provided with a plurality of blades having such a structure, the impeller according to the present invention is quieter and more efficient than those in the prior art.

Description

羽根車、送風機、及び空気調和装置Impeller, blower, and air conditioner
 本発明は、騒音の抑制及び効率の向上を図った羽根車、該羽根車を備えた送風機、並びに、該羽根車を備えた空気調和装置に関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an impeller intended to suppress noise and improve its efficiency, a blower equipped with the impeller, and an air conditioner equipped with the impeller.
 従来、軸流送風機は、ヒートポンプ式の空気調和装置及び有圧換気扇等の装置の内部に搭載されて使用されている。これらの装置は、設置環境及び運転条件等により、内部の通風抵抗が異なる。また、熱交換器への埃等の付着、及び装置内部への構成機器の高密度実装化等により、装置に搭載される軸流送風機には、高静圧への対応が要求される。すなわち、高静圧化を図るために、軸流送風機の羽根車の回転数を多くする必要がある。しかしながら、従来の軸流送風機の羽根車を高速で回転させると、翼の周縁部に発生する渦によって、騒音が増大してしまい、効率も低下してしまう。 Conventionally, an axial flow fan is mounted and used in an apparatus such as a heat pump type air conditioner and a pressure ventilation fan. These devices have different ventilation resistances depending on the installation environment and operating conditions. In addition, the axial flow fan mounted on the device is required to cope with high static pressure due to adhesion of dust and the like to the heat exchanger and high-density mounting of the component equipment inside the device. That is, in order to achieve high static pressure, it is necessary to increase the rotational speed of the impeller of the axial flow fan. However, when the impeller of the conventional axial flow fan is rotated at high speed, the vortices generated at the peripheral portion of the wing increase the noise and lower the efficiency.
 そこで、従来の軸流送風機には、騒音の抑制及び効率の向上を図ったものも提案されている(例えば、特許文献1参照)。特許文献1に記載の軸流送風機の羽根車は、ボス部(ハブ)の外周壁に複数枚の翼が設けられている。そして、翼の回転方向に沿う断面形状は、翼の負圧面側に膨出する膨出部と、翼の正圧面側に膨出する膨出部とを交互に3箇所以上有している。また、負圧面側に膨出する膨出部と正圧面側に膨出する膨出部を等分する線を翼の中立線として、負圧面側に膨出する膨出部及び正圧面側に膨出する膨出部は、翼の中立線からの距離が翼の前縁部から翼の後縁部に向かうにしたがって大きくなるように形成されている。 Then, what aimed at suppression of noise and improvement in efficiency is also proposed as a conventional axial flow fan (for example, refer to patent documents 1). The impeller of the axial flow fan described in Patent Document 1 has a plurality of blades provided on the outer peripheral wall of a boss (hub). And the cross-sectional shape along the rotation direction of a wing | blade has three or more places of the bulging part which bulges to the negative pressure surface side of a wing | blade, and the bulging part which bulges to the positive pressure surface side of a wing alternately. In addition, a line that equally divides the bulging portion bulging toward the negative pressure surface side and the bulging portion bulging toward the positive pressure surface side is a neutral line of the blade, and the bulging portion bulging toward the negative pressure surface side and the positive pressure surface side The bulging portion is formed such that the distance from the wing neutral line increases from the leading edge of the wing to the trailing edge of the wing.
特開2010-150945号公報Unexamined-Japanese-Patent No. 2010-150945
 軸流送風機の羽根車は、回転軸を中心に回転するボス部と、このボス部の外周壁に設けられ、ボス部と共に回転軸を中心に回転する複数の翼と、を備えている。このため、例えば、ボス部周辺を流れる翼間に流入する前の気流には、空気がボス部の周辺を通過する際に発生した渦が含まれる。また例えば、ボス部周辺を流れる翼間に流入する前の気流には、ボス部及び上述の渦の存在によって狭くなった流路を流れる際に発生した、局所的な高速流れも含む。したがって、ボス部周辺を流れる翼間に流入する前の気流は、乱れたものとなる。 The impeller of the axial flow fan includes a boss portion that rotates around a rotation axis, and a plurality of wings that are provided on an outer peripheral wall of the boss portion and that rotate around the rotation axis together with the boss portion. Therefore, for example, the air flow before flowing into the space between the blades flowing around the boss includes a vortex generated when air passes around the boss. Also, for example, the air flow before flowing into the space between the blades flowing around the boss includes the local high-speed flow generated when flowing in the flow passage narrowed due to the presence of the boss and the above-mentioned vortex. Therefore, the air flow before flowing into the space between the blades flowing around the boss portion is disturbed.
 ここで、特許文献1に記載の軸流送風機を含め、従来の軸流送風機は、ボス部周辺を流れる気流に対しては、何ら考慮されていない。このため、従来の軸流送風機は、ボス部周辺の乱れた気流を各翼が押し出す際、騒音が増大してしまうという課題があった。また、従来の送風機においては、ボス部周辺の乱れた気流を各翼が吹出側へ押し出す際、各翼の正圧面では前縁部側に流れの剥離が生じてしまう。この剥離によっても、騒音が増大する。また、この剥離によって効率も低下する。また、従来の送風機においては、乱れた気流を押し出す翼の内周側部分と、乱れていない気流を押し出す翼の外周側部分とで、静圧差が大きくなる。このため、従来の送風機の各翼の正圧面には、この静圧差によって、意図する流れ方向とは別方向の流れである2次流れが発生しやすい。したがたって、従来の送風機は、ボス部周辺の乱れた気流によって、効率も低下してしまうという課題があった。 Here, the conventional axial flow fan including the axial flow fan described in Patent Document 1 is not considered at all for the air flow flowing around the boss portion. For this reason, when each wing | blade pushes out the turbulent airflow around a boss | hub part, the conventional axial flow fan had the subject that a noise will increase. Further, in the conventional fan, when each blade pushes out the turbulent air flow around the boss to the outlet side, flow separation occurs on the front edge side on the pressure surface of each blade. This separation also increases the noise. This separation also reduces the efficiency. Moreover, in the conventional air blower, the static pressure difference becomes large between the inner peripheral side portion of the wing pushing out the turbulent air flow and the outer peripheral side portion of the wing pushing out the unsteady air flow. For this reason, on the pressure surface of each blade of the conventional fan, the secondary pressure which is a flow different from the intended flow direction is likely to be generated due to the static pressure difference. Therefore, the conventional blower has a problem that the efficiency is also reduced by the turbulent air flow around the boss.
 本発明は、上述の課題を解決するためになされたものであり、従来よりも低騒音で高効率な羽根車を得ることを第1の目的とする。また、本発明は、このような羽根車を備えた送風機及び空気調和装置を得ることを第2の目的とする。 The present invention has been made to solve the above-mentioned problems, and has as its first object to obtain an impeller with lower noise and higher efficiency than in the prior art. The second object of the present invention is to obtain a blower and an air conditioner provided with such an impeller.
 本発明に係る羽根車は、回転軸を中心に回転するボス部と、前記ボス部の外周壁に設けられ、前記ボス部と共に前記回転軸を中心に回転する複数の翼と、を備え、前記翼のそれぞれは、これら前記翼の回転方向の前側の縁部である前縁部と、前記回転方向の後ろ側の縁部である後縁部と、外周側の縁部である外周部と、内周側の縁部である内周部と、を有し、前記回転軸を中心とする半径Rの円を仮想円と定義し、前記回転軸と垂直な平面に前記ボス部及び前記翼を投影した形状において、前記前縁部と前記仮想円との交点を第1交点、前記後縁部と前記仮想円との交点を第2交点、同一の前記翼における前記第1交点から前記第2交点までの前記仮想円の円弧の長さを第1翼長L1、任意の前記翼の前記第1交点から該翼と隣接する前記翼の前記第1交点までの前記仮想円の円弧の長さを翼間距離t、投影距離比σをσ=L1/t、と定義した場合、前記投影距離比σは、前記内周部から前記半径Rが半径RAとなる位置まで減少し、前記半径Rが前記半径RAとなる位置で第1極小値を有し、前記半径Rが前記半径RAとなる位置から、前記半径Rが前記半径RAよりも大きな半径RMとなる位置まで増加し、前記半径Rが前記半径RMとなる位置で極大値を有し、前記半径Rが前記半径RMとなる位置から、前記半径Rが前記半径RMよりも大きな半径RBとなる位置まで減少し、前記半径Rが前記半径RBとなる位置で第2極小値を有し、前記半径Rが前記半径RBとなる位置から、前記外周部にかけて増加する構成であり、前記内周部と前記半径RAとの中間位置となる前記半径Rを半径RC、前記半径RAと前記半径RMとの中間位置となる前記半径Rを半径RD、前記半径RMと前記半径RBとの中間位置となる前記半径Rを半径RE、前記半径RBと前記外周部との中間位置となる前記半径Rを半径RF、前記半径RC以上で前記半径RD以下の値となる前記半径Rを半径RG、前記半径RE以上で前記半径RF以下の値となる前記半径Rを半径RH、前記翼の子午面形状において、前記半径Rの位置における前記前縁部から前記後縁部までの前記回転軸と平行な方向の距離を第2翼長L2、と定義した場合、前記半径Rに対する前記第2翼長L2の比であるL2/Rは、前記内周部から前記半径Rが前記半径RGとなる位置まで増加し、前記半径Rが前記半径RGとなる位置で極大値を有し、前記半径Rが前記半径RGとなる位置から、前記半径Rが前記半径RHとなる位置まで減少し、前記半径Rが前記半径RHとなる位置で極小値を有し、前記半径Rが前記半径RHとなる位置から前記外周部にかけて増加する構成となっている。 The impeller according to the present invention comprises a boss portion rotating around a rotation axis, and a plurality of wings provided on the outer peripheral wall of the boss portion and rotating around the rotation axis together with the boss portion, Each of the wings has a front edge which is a front edge in the rotational direction of the wings, a rear edge which is a rear edge in the rotational direction, and an outer peripheral part which is an outer edge. And an inner circumferential portion which is an edge portion on the inner circumferential side, wherein a circle having a radius R centered on the rotation axis is defined as a virtual circle, and the boss portion and the wing are formed in a plane perpendicular to the rotation axis In the projected shape, the intersection of the front edge and the imaginary circle is a first intersection, the intersection of the rear edge and the imaginary circle is a second intersection, and the second intersection from the first intersection of the same wing The length of the arc of the virtual circle up to the point of intersection is the first wing length L1, and the point adjacent to the blade from the first point of intersection of any of the blades When the length of the arc of the virtual circle up to the first intersection point of the virtual circle is defined as the inter-blade distance t and the projection distance ratio .sigma. =. Sigma.L1 / t, the projection distance ratio .sigma. The radius R decreases from the position where the radius R becomes the radius RA and the radius R becomes the radius RA from the position where the radius R becomes the radius RA. The radius R increases from the position where the radius R becomes the radius RM, and the radius R becomes larger than the radius RM from the position where the radius R becomes the radius RM. It is configured to decrease to a position where the radius becomes a large radius RB, have a second minimum value at the position where the radius R becomes the radius RB, and increase from the position where the radius R becomes the radius RB to the outer peripheral part , An intermediate position between the inner circumferential portion and the radius RA The radius R is a radius RC, the radius R between the radius RA and the radius RM is a radius RD, and the radius R between the radius RM and the radius RB is a radius RE, the radius RB The radius R, which is an intermediate position between the above and the outer peripheral portion, is a radius RF, and the radius R is a value between the radius RC and the radius RD, and the radius R is a radius RG and a value above the radius RE. The radius R is defined as a radius RH, and in a meridional shape of the wing, a distance in a direction parallel to the rotation axis from the front edge to the rear edge at the radius R is defined as a second wing length L2. In this case, L2 / R, which is the ratio of the second wing length L2 to the radius R, increases from the inner peripheral portion to a position where the radius R becomes the radius RG, and the radius R becomes the radius RG. Having a local maximum at the position, the radius R Is a position at which the radius R becomes the radius RH and a position at which the radius R becomes the radius RH has a local minimum value and a position at which the radius R becomes the radius RH And the outer peripheral portion.
 本発明に係る羽根車においては、各翼におけるボス部周辺の部分は、従来よりも仕事量が少なくなる形状になる。すなわち、本発明に係る羽根車においては、各翼におけるボス部周辺の部分は、従来よりも空気を押し出す量が少なくなる。このため、本発明に係る羽根車は、ボス部周辺の乱れた気流を各翼が押し出す際の騒音を、従来よりも抑制できる。また、本発明に係る羽根車においては、各翼におけるボス部周辺の部分の仕事量が従来よりも少ないので、正圧面に発生する流れの剥離に起因する騒音も、従来より抑制できる。また、本発明に係る羽根車においては、各翼におけるボス部周辺の部分の仕事量が従来よりも少ないので、正圧面に発生する流れの剥離に起因する効率の低下も、従来より抑制できる。また、本発明に係る羽根車においては、ボス部周辺の乱れた気流を外周側へ導き、この気流によって、乱れの少ない空気が外周側へ多く流れる構成となる。そして、本発明に係る羽根車の各翼は、この乱れの少ない空気が流れる領域の仕事量が多くなる形状となる。このため、本発明に係る羽根車は、効率を向上させることができる。また、本発明に係る羽根車の各翼の正圧面では、内周側と外周側との静圧差が、従来よりも小さくなる。このため、本発明に係る羽根車は、2次流れを従来よりも抑制できる。
 したがって、本発明に係る羽根車は、従来よりも低騒音で高効率な羽根車となる。
In the impeller according to the present invention, the portion around the boss in each wing has a shape with a smaller amount of work than in the prior art. That is, in the impeller according to the present invention, the portion around the boss in each wing has a smaller amount of pushing out air than in the prior art. For this reason, the impeller according to the present invention can suppress the noise when each blade pushes out the turbulent air flow around the boss portion, as compared to the prior art. Further, in the impeller according to the present invention, since the amount of work of the portion around the boss portion in each wing is smaller than that of the conventional case, noise due to flow separation generated on the pressure surface can be suppressed as compared to the conventional case. Further, in the impeller according to the present invention, since the amount of work of the portion around the boss in each wing is smaller than that in the conventional case, the decrease in efficiency due to flow separation generated on the pressure surface can be suppressed as compared to the conventional. Further, in the impeller according to the present invention, the turbulent air flow around the boss portion is guided to the outer peripheral side, and this air flow causes a large amount of air with less disturbance to flow to the outer peripheral side. And each wing | blade of the impeller which concerns on this invention becomes a shape where the amount of work of the area | region where this air with few disturbances flows increases. Therefore, the impeller according to the present invention can improve the efficiency. In addition, on the pressure surface of each blade of the impeller according to the present invention, the static pressure difference between the inner circumferential side and the outer circumferential side is smaller than that in the prior art. Therefore, the impeller according to the present invention can suppress the secondary flow more than the conventional one.
Therefore, the impeller according to the present invention is a low-noise, high-efficiency impeller compared to the prior art.
本発明の実施の形態1に係る軸流送風機の一例を示す斜視図である。It is a perspective view which shows an example of the axial-flow fan which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る軸流送風機の羽根車を、該羽根車の回転軸と垂直な平面に投影した図である。It is the figure which projected the impeller of the axial flow fan which concerns on Embodiment 1 of this invention on the plane perpendicular | vertical to the rotating shaft of this impeller. 本発明の実施の形態1に係る軸流送風機の羽根車を、該羽根車の回転軸と垂直な平面に投影した図である。It is the figure which projected the impeller of the axial flow fan which concerns on Embodiment 1 of this invention on the plane perpendicular | vertical to the rotating shaft of this impeller. 本発明の実施の形態1に係る羽根車の翼の1つの子午面形状を示す図である。It is a figure which shows one meridional surface shape of the wing | blade of the impeller which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る翼における、投影距離比σと半径Rとの関係を示す図である。It is a figure which shows the relationship of projection distance ratio (sigma) and radius R in the wing | blade which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る翼における、半径Rに対する第2翼長L2の比であるL2/Rと、半径Rとの関係を示す図である。It is a figure which shows the relationship of L2 / R which is a ratio of 2nd wing length L2 with respect to the radius R, and the radius R in the wing | blade which concerns on Embodiment 1 of this invention. 従来の軸流送風機の羽根車を示す斜視図である。It is a perspective view which shows the impeller of the conventional axial flow fan. 従来の軸流送風機の羽根車の翼の、ボス部周辺部分の気流の流れを説明するための図である。It is a figure for demonstrating the flow of the air flow of the boss | hub peripheral part of the blade | wing of the impeller of the conventional axial flow fan. 本発明の実施の形態1に係る羽根車を、回転軸に沿って負圧面側から観察した図である。It is the figure which observed the impeller which concerns on Embodiment 1 of this invention from the suction surface side along a rotating shaft. 本発明の実施の形態1に係る羽根車を、回転軸に沿って負圧面側から観察した図である。It is the figure which observed the impeller which concerns on Embodiment 1 of this invention from the suction surface side along a rotating shaft. 本発明の実施の形態1に係る翼における、投影距離比σと半径Rとの関係を示す図である。It is a figure which shows the relationship of projection distance ratio (sigma) and radius R in the wing | blade which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る翼における、半径Rに対する第2翼長L2の比であるL2/Rと、半径Rとの関係を示す図である。It is a figure which shows the relationship of L2 / R which is a ratio of 2nd wing length L2 with respect to the radius R, and the radius R in the wing | blade which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る翼における、投影距離比σと半径Rとの関係を示す図である。It is a figure which shows the relationship of projection distance ratio (sigma) and radius R in the wing | blade which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る羽根車の斜視図である。It is a perspective view of the impeller which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る羽根車を回転軸と直交する方向から観察した図である。It is the figure which observed the impeller which concerns on Embodiment 2 of this invention from the direction orthogonal to a rotating shaft. 本発明の実施の形態2に係る軸流送風機の羽根車を、該羽根車の回転軸と垂直な平面に投影した図である。It is the figure which projected the impeller of the axial flow fan which concerns on Embodiment 2 of this invention on the plane perpendicular | vertical to the rotating shaft of this impeller. 本発明の実施の形態2に係る翼における、角度φと半径Rとの関係を示す図である。It is a figure which shows the relationship of angle (phi) and radius R in the wing | blade which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る翼における、角度φと半径Rとの関係を示す図である。It is a figure which shows the relationship of angle (phi) and radius R in the wing | blade which concerns on Embodiment 2 of this invention. 従来の軸流送風機の羽根車を示す斜視図である。It is a perspective view which shows the impeller of the conventional axial flow fan. 本発明の実施の形態2に係る軸流送風機の吹出側の風速分布を示す図である。It is a figure which shows the wind speed distribution on the blowing side of the axial flow fan which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the air conditioning apparatus which concerns on Embodiment 3 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に係る軸流送風機の一例を示す斜視図である。また、図2は、本発明の実施の形態1に係る軸流送風機の羽根車を、該羽根車の回転軸と垂直な平面に投影した図である。なお、図1及び図2は、羽根車1を翼10の負圧面16側から観察した図となっている。また、図1に示す白抜き矢印は、羽根車1が回転した際の全体的な空気の流れ方向を示している。また、図1及び図2に示す太線の円弧状矢印は、羽根車1の回転方向を示している。つまり、図1及び図2に示す太線の円弧状矢印は、羽根車1を構成する後述のボス部2及び複数の翼10の回転方向を示している。
Embodiment 1
FIG. 1 is a perspective view showing an example of an axial flow fan according to Embodiment 1 of the present invention. Moreover, FIG. 2 is a figure which projected the impeller of the axial flow fan which concerns on Embodiment 1 of this invention on the plane perpendicular | vertical to the rotating shaft of this impeller. 1 and 2 are views of the impeller 1 observed from the negative pressure surface 16 side of the wing 10. Moreover, the white arrow shown in FIG. 1 has shown the general flow direction of air at the time of the impeller 1 rotating. Moreover, the thick circular arc shaped arrow shown in FIG. 1 and FIG. 2 indicates the rotation direction of the impeller 1. That is, the thick circular arc-shaped arrow shown in FIG. 1 and FIG. 2 indicates the rotational direction of a boss 2 and a plurality of wings 10 described later that constitute the impeller 1.
 本実施の形態1に係る軸流送風機100は、ケーシング20及び羽根車1を備えている。ケーシング20には、略円筒状のベルマウス21が形成されている。羽根車1は、ベルマウス21の内周側に、回転自在に配置されている。なお、羽根車1は、後述のボス部2に取り付けられた図示せぬモーター等によって回転させられる。 The axial flow fan 100 according to the first embodiment includes a casing 20 and an impeller 1. The casing 20 is formed with a substantially cylindrical bellmouth 21. The impeller 1 is rotatably disposed on the inner peripheral side of the bell mouth 21. The impeller 1 is rotated by a motor or the like (not shown) attached to a boss 2 described later.
 羽根車1は、ボス部2及び複数の翼10を備えている。ボス部2は、略円筒形状をしており、回転軸3を中心に回転する。翼10のそれぞれは、ボス部2の外周壁に設けられている。詳しくは、翼10のそれぞれは、等角度間隔でボス部2の外周側に配置され、ボス部2の外周壁から放射状に突出している。より詳しくは、図2に示すように、翼10のそれぞれは、ボス部2の外周壁から、回転軸を中心とする仮想円の径方向よりも翼10の回転方向側に傾いて突出している。 The impeller 1 includes a boss 2 and a plurality of wings 10. The boss portion 2 has a substantially cylindrical shape, and rotates around the rotation axis 3. Each of the wings 10 is provided on the outer peripheral wall of the boss portion 2. Specifically, each of the wings 10 is disposed on the outer peripheral side of the boss portion 2 at equal angular intervals, and radially protrudes from the outer peripheral wall of the boss portion 2. More specifically, as shown in FIG. 2, each of the wings 10 protrudes from the outer peripheral wall of the boss portion 2 toward the rotational direction of the wing 10 with respect to the radial direction of the virtual circle centered on the rotation axis. .
 翼10のそれぞれは、前縁部11、後縁部12、外周部13、内周部14、正圧面15及び負圧面16を有している。前縁部11は、翼10の周縁部のうち、回転方向の前側の縁部である。後縁部12は、翼10の周縁部のうち、回転方向の後ろ側の縁部である。外周部13は、翼10の周縁部のうち、外周側の縁部である。外周部13は、回転方向の前側の端部である前端部13aから回転方向の後ろ側の端部である後端部13bにかけて、外周側に凸となる略円弧状に形成されている。換言すると、外周部13は、回転方向の前側の端部である前端部13aから回転方向の後ろ側の端部である後端部13bにかけて、回転軸3と離れる方向に凸となる略円弧状に形成されている。 Each wing 10 has a leading edge 11, a trailing edge 12, an outer circumferential portion 13, an inner circumferential portion 14, a pressure surface 15 and a suction surface 16. The front edge portion 11 is a front edge portion in the rotational direction among the peripheral portions of the wing 10. The rear edge 12 is a rear edge of the circumferential direction of the wing 10 in the rotational direction. The outer peripheral portion 13 is an edge portion on the outer peripheral side among the peripheral portions of the wing 10. The outer peripheral portion 13 is formed in a substantially arc shape which is convex on the outer peripheral side from a front end portion 13a which is a front end portion in the rotation direction to a rear end portion 13b which is a rear end portion in the rotation direction. In other words, the outer peripheral portion 13 has a substantially arc shape which is convex in the direction away from the rotation shaft 3 from the front end 13a which is the front end in the rotational direction to the rear end 13b which is the rear end in the rotational direction. Is formed.
 内周部14は、翼10の周縁部のうち、内周側の縁部である。すなわち、翼10は、内周部14においてボス部2の外周壁と接続されている。したがって、内周部14は、ボス部2の外周壁に対応した形状となっている。詳しくは、内周部14は、回転方向の前側の端部である前端部14aから回転方向の後ろ側の端部である後端部14bにかけて、外周側に凸となる略円弧状に形成されている。換言すると、内周部14は、回転方向の前側の端部である前端部14aから回転方向の後ろ側の端部である後端部14bにかけて、回転軸3と離れる方向に凸となる略円弧状に形成されている。 The inner circumferential portion 14 is an edge portion on the inner circumferential side among the circumferential edge portions of the wing 10. That is, the wing 10 is connected to the outer peripheral wall of the boss portion 2 at the inner peripheral portion 14. Therefore, the inner peripheral portion 14 has a shape corresponding to the outer peripheral wall of the boss portion 2. Specifically, the inner circumferential portion 14 is formed in a substantially arc shape which is convex toward the outer periphery from the front end portion 14a which is the front end portion in the rotational direction to the rear end portion 14b which is the rear end portion in the rotational direction. ing. In other words, the inner circumferential portion 14 is a substantially circle that is convex in the direction away from the rotation shaft 3 from the front end 14a which is the front end in the rotational direction to the rear end 14b which is the rear end in the rotational direction. It is formed in an arc shape.
 正圧面15は、翼10が有する2つの面のうち、回転方向前側の面である。すなわち、翼10が回転することにより、正圧面15によって空気が押されることとなる。なお、上述のように、図1及び図2は、羽根車1を翼10の負圧面16側から観察した図となっている。そして、正圧面15は、翼10において、負圧面16とは反対側の面である。このため、図1及び図2では、正圧面15は紙面裏側に配置されることとなるため、正圧面15が図示されていない。負圧面16は、翼10が有する2つの面のうち、回転方向後ろ側の面である。 The pressure surface 15 is a surface on the front side in the rotation direction, of the two surfaces of the wing 10. That is, when the wing 10 rotates, air is pushed by the pressure surface 15. As described above, FIGS. 1 and 2 are views of the impeller 1 observed from the negative pressure surface 16 side of the wing 10. The pressure surface 15 is a surface of the wing 10 opposite to the suction surface 16. For this reason, in FIG.1 and FIG.2, since the pressure surface 15 will be arrange | positioned on the paper surface back side, the pressure surface 15 is not shown in figure. The suction surface 16 is the surface on the rear side in the rotational direction, of the two surfaces of the wing 10.
 翼10のそれぞれは、ボス部2と共に、回転軸3を中心に回転する。ボス部2及び複数の翼10が回転軸3を中心として回転することにより、軸流送風機100に流れる全体的な空気の流れは、図1に示す白抜き矢印のようになる。すなわち、図1の紙面手前側から、回転軸3に沿うように空気が軸流送風機100に吸い込まれる。そして、図1の紙面奥側へ、回転軸3に沿うように空気が軸流送風機100から吹き出される。なお、図1及び図2では、翼10が7枚である羽根車1を例示したが、羽根車1の翼10の枚数は7枚以外でも勿論よい。 Each of the wings 10 rotates with the boss 2 about the rotation axis 3. When the boss portion 2 and the plurality of wings 10 rotate around the rotation shaft 3, the overall air flow flowing to the axial flow fan 100 is as shown by the white arrow shown in FIG. That is, the air is sucked into the axial flow fan 100 along the rotation shaft 3 from the front side of the paper surface of FIG. Then, the air is blown out from the axial flow fan 100 along the rotary shaft 3 to the back side of the paper surface of FIG. 1. In addition, although the impeller 1 which has seven wing | blades 10 was illustrated in FIG.1 and FIG.2, the number of sheets of the wing | blade 10 of the impeller 1 may be naturally except seven sheets.
 続いて、翼10の詳細形状について説明する。まず、翼10の詳細形状を説明するに際し、翼10の形状を示す各パラメータを以下のように定義する。 Subsequently, the detailed shape of the wing 10 will be described. First, in describing the detailed shape of the wing 10, each parameter indicating the shape of the wing 10 is defined as follows.
 図3は、本発明の実施の形態1に係る軸流送風機の羽根車を、該羽根車の回転軸と垂直な平面に投影した図である。すなわち、図3は、回転軸3と垂直な平面にボス部2及び翼10のそれぞれを投影した形状を示している。また、図4は、本発明の実施の形態1に係る羽根車の翼の1つの子午面形状を示す図である。なお、図4に示す翼10の子午面形状とは、回転軸3を通り且つ回転軸3と平行な平面に対して、回転軸3を中心として翼10の各位置を回転させていって投影した形状である。 FIG. 3 is a diagram in which the impeller of the axial flow fan according to the first embodiment of the present invention is projected on a plane perpendicular to the rotation axis of the impeller. That is, FIG. 3 shows a shape in which each of the boss portion 2 and the wing 10 is projected on a plane perpendicular to the rotation axis 3. Moreover, FIG. 4 is a figure which shows one meridional surface shape of the wing | blade of the impeller which concerns on Embodiment 1 of this invention. Note that the meridional shape of the wing 10 shown in FIG. 4 is projected by rotating each position of the wing 10 about the rotation axis 3 with respect to a plane passing through the rotation axis 3 and parallel to the rotation axis 3 Shape.
 図3に示すように、回転軸3を中心とする半径Rの円を、仮想円30と定義する。なお、半径Rは、値が変化するものである。翼10の前縁部11と仮想円30との交点を第1交点31と定義する。翼10の後縁部12と仮想円30との交点を第2交点32と定義する。同一の翼10おける第1交点31から第2交点32までの仮想円30の円弧の長さを、第1翼長L1と定義する。任意の翼10の第1交点31から該翼10と隣接する翼10の第1交点31までの仮想円30の円弧の長さを、翼間距離tと定義する。投影距離比σを、σ=L1/tと定義する。また、図4に示すように、翼10の子午面形状において、半径Rの位置における前縁部11から後縁部12までの回転軸3と平行な方向の距離を、第2翼長L2と定義する。
 このように翼10の形状を示す各パラメータを定義した場合、翼10は、次の様な形状となる。
As shown in FIG. 3, a circle of radius R centered on the rotation axis 3 is defined as a virtual circle 30. The radius R changes in value. An intersection of the front edge 11 of the wing 10 and the imaginary circle 30 is defined as a first intersection 31. An intersection of the trailing edge 12 of the wing 10 and the imaginary circle 30 is defined as a second intersection 32. The length of the arc of the imaginary circle 30 from the first intersection 31 to the second intersection 32 in the same wing 10 is defined as a first wing length L1. The length of the arc of the virtual circle 30 from the first intersection point 31 of an arbitrary wing 10 to the first intersection point 31 of the wing 10 adjacent to the wing 10 is defined as an inter-wing distance t. The projection distance ratio σ is defined as σ = L1 / t. Further, as shown in FIG. 4, in the meridional shape of the wing 10, the distance in the direction parallel to the rotation axis 3 from the front edge 11 to the rear edge 12 at the position of radius R is the second wing length L2 and Define.
Thus, if each parameter which shows the shape of wing 10 is defined, wing 10 will become the following shapes.
 図5は、本発明の実施の形態1に係る翼における、投影距離比σと半径Rとの関係を示す図である。また、図6は、本発明の実施の形態1に係る翼における、半径Rに対する第2翼長L2の比であるL2/Rと、半径Rとの関係を示す図である。なお、図5及び図6では、半径Rを、半径比と称する無次元数で表している。詳しくは、図5及び図6では、内周部14の位置の半径Rが、「0.0」となっている。また、図5及び図6では、外周部13の位置の半径Rが、「1.0」となっている。 FIG. 5 is a view showing the relationship between the projection distance ratio σ and the radius R in the wing according to Embodiment 1 of the present invention. FIG. 6 is a view showing the relationship between the radius R and the ratio L2 / R, which is the ratio of the second span length L2 to the radius R, in the wing according to Embodiment 1 of the present invention. In FIG. 5 and FIG. 6, the radius R is represented by a dimensionless number called a radius ratio. Specifically, in FIG. 5 and FIG. 6, the radius R of the position of the inner circumferential portion 14 is “0.0”. Moreover, in FIG.5 and FIG.6, the radius R of the position of the outer peripheral part 13 is "1.0".
 図5に示すように、投影距離比σは、内周部14から半径Rが半径RAとなる位置まで減少する。そして、投影距離比σは、半径Rが半径RAとなる位置で第1極小値を有する。また、投影距離比σは、半径Rが半径RAとなる位置から、半径Rが半径RAよりも大きな半径RMとなる位置まで増加する。そして、投影距離比σは、半径Rが半径RMとなる位置で極大値を有する。また、投影距離比σは、半径Rが半径RMとなる位置から、半径Rが半径RMよりも大きな半径RBとなる位置まで減少する。そして、投影距離比σは、半径Rが半径RBとなる位置で第2極小値を有する。また、投影距離比σは、半径Rが半径RBとなる位置から外周部13にかけて増加する。 As shown in FIG. 5, the projection distance ratio σ decreases from the inner circumferential portion 14 to a position where the radius R is the radius RA. The projection distance ratio σ has a first minimum value at a position where the radius R is the radius RA. Also, the projection distance ratio σ increases from the position where the radius R is the radius RA to the position where the radius R is the radius RM larger than the radius RA. The projection distance ratio σ has a maximum value at a position where the radius R is the radius RM. Further, the projection distance ratio σ decreases from the position where the radius R is the radius RM to the position where the radius R is the radius RB larger than the radius RM. The projection distance ratio σ has a second minimum value at a position where the radius R is the radius RB. Further, the projection distance ratio σ increases from the position where the radius R is the radius RB to the outer peripheral portion 13.
 また、図6に示すように、半径Rに対する第2翼長L2の比であるL2/Rは、内周部14から半径Rが半径RGとなる位置まで増加する。そして、L2/Rは、半径Rが半径RGとなる位置で極大値を有する。また、L2/Rは、半径Rが半径RGとなる位置から、半径Rが半径RHとなる位置まで減少する。そして、L2/Rは、半径Rが半径RHとなる位置で極小値を有する。また、L2/Rは、半径Rが半径RHとなる位置から外周部13にかけて増加する。また、L2/Rは、半径Rが半径RGとなる位置で最大となり、半径Rが半径RHとなる位置で最小となる。 Further, as shown in FIG. 6, L2 / R, which is the ratio of the second wing length L2 to the radius R, increases from the inner peripheral portion 14 to a position where the radius R becomes the radius RG. Then, L2 / R has a maximum value at a position where the radius R is the radius RG. L2 / R decreases from a position where the radius R is the radius RG to a position where the radius R is the radius RH. And L2 / R has a local minimum at the position where the radius R becomes the radius RH. Further, L2 / R increases from the position where the radius R becomes the radius RH to the outer peripheral portion 13. L2 / R is maximum at a position where the radius R is the radius RG and is minimum at the position where the radius R is the radius RH.
 なお、図6では、半径RGが半径RAよりも小さな値となっている。しかしながら、半径RGの値は、これに限定されるものではなく、半径RA近傍の値であればよい。詳しくは、図6に示すように、内周部14と半径RAとの中間位置となる半径Rを、半径RCと定義する。半径RAと半径RMとの中間位置となる半径Rを、半径RDと定義する。この場合、半径RGは、半径RC以上で半径RD以下の値であればよい。また、図6では、半径RHが半径RBよりも小さな値となっている。しかしながら、半径RHの値は、これに限定されるものではなく、半径RB近傍の値であればよい。詳しくは、図6に示すように、半径RMと半径RBとの中間位置となる前記半径Rを、半径REと定義する。半径RBと外周部13との中間位置となる半径Rを、半径RFと定義する。この場合、半径RHは、半径RE以上で半径RF以下の値であればよい。 In FIG. 6, the radius RG is smaller than the radius RA. However, the value of the radius RG is not limited to this, and may be a value near the radius RA. Specifically, as shown in FIG. 6, a radius R which is an intermediate position between the inner circumferential portion 14 and the radius RA is defined as a radius RC. A radius R which is an intermediate position between the radius RA and the radius RM is defined as a radius RD. In this case, the radius RG may be a value greater than or equal to the radius RC and less than or equal to the radius RD. Further, in FIG. 6, the radius RH is smaller than the radius RB. However, the value of the radius RH is not limited to this, and may be a value near the radius RB. Specifically, as shown in FIG. 6, the radius R, which is an intermediate position between the radius RM and the radius RB, is defined as a radius RE. A radius R which is an intermediate position between the radius RB and the outer peripheral portion 13 is defined as a radius RF. In this case, the radius RH may be a value greater than or equal to the radius RE and less than or equal to the radius RF.
 このため、翼10は、内周部14から外周部13にかけて、次のような形状となっている。
 図5に示すように、投影距離比σが内周部14から半径RAまで減少している。すなわち、内周部14から半径RAにかけて、隣接する翼10間の距離は大きくなるが、半径Rに対する第1翼長L1の比はほぼ一定となる。すなわち、内周部14から半径RAにかけて、半径Rに対する翼弦長の比はほぼ一定となる。なお、翼弦長とは、翼弦線の長さである。また、翼弦線とは、回転軸3を中心とする円筒状の断面において翼10を切断した断面図を展開し、前縁部11と後縁部12とを結んだ直線である。
Therefore, the wing 10 has the following shape from the inner circumferential portion 14 to the outer circumferential portion 13.
As shown in FIG. 5, the projection distance ratio σ decreases from the inner circumferential portion 14 to the radius RA. That is, although the distance between the adjacent wings 10 increases from the inner circumferential portion 14 to the radius RA, the ratio of the first span L1 to the radius R is substantially constant. That is, the ratio of the chord length to the radius R is substantially constant from the inner circumferential portion 14 to the radius RA. The chord length is the length of the chord line. In addition, the chord line is a straight line connecting the leading edge 11 and the trailing edge 12 by developing a cross-sectional view in which the blade 10 is cut at a cylindrical cross section centered on the rotation axis 3.
 ここで、従来の軸流送風機の羽根車の翼においても、本実施の形態1に係る翼10においても、回転軸から遠ざかるにつれて、翼弦長が長くなる。すなわち、従来の軸流送風機の羽根車の翼においても、本実施の形態1に係る翼10においても、半径Rが大きくなるほど、翼弦長が長くなる。この際、従来の軸流送風機の羽根車の翼は、半径Rが大きくなるほど、半径Rに対する翼弦長の比も大きくなる。換言すると、従来の軸流送風機の羽根車の翼は、半径Rが大きくなるほど、半径Rに対する仕事量の比が大きくなる。一方、本実施の形態1に係る翼10は、内周部14から半径RAにかけて、半径Rに対する翼弦長の比はほぼ一定となる。すなわち、本実施の形態1に係る翼10においては、内周部14から半径RAまでの領域は、従来の軸流送風機の羽根車の翼と比べて、翼面積が小さくなっている。換言すると、本実施の形態1に係る翼10においては、内周部14から半径RAまでの領域は、従来の軸流送風機の羽根車の翼と比べて、仕事量が小さくなっている。なお、仕事量とは、翼10が空気を押し出す量である。 Here, in both the blade of the conventional axial flow fan and the blade 10 according to the first embodiment, the chord length becomes longer as the distance from the rotation axis increases. That is, both in the impeller of the conventional axial flow fan and in the wing 10 according to the first embodiment, as the radius R becomes larger, the chord length becomes longer. At this time, as the radius R of the impeller of the conventional axial flow fan increases, the ratio of chord length to the radius R also increases. In other words, in the impeller of the conventional axial flow fan, the larger the radius R, the larger the ratio of work to the radius R. On the other hand, in the wing 10 according to the first embodiment, the ratio of the chord length to the radius R is substantially constant from the inner circumferential portion 14 to the radius RA. That is, in the wing | blade 10 which concerns on this Embodiment 1, the area | region of the area | region from the internal peripheral part 14 to radius RA is small compared with the blade of the impeller of the conventional axial flow fan. In other words, in the wing 10 according to the first embodiment, the amount of work is smaller in the region from the inner circumferential portion 14 to the radius RA as compared with the impeller blade of the conventional axial flow fan. The amount of work is an amount by which the wing 10 pushes out the air.
 また、図6に示すように、L2/Rが内周部14から半径RAの近傍の半径RGとなる位置まで増加している。すなわち、翼10は、内周部14から半径RGとなる位置にかけて、徐々に立ち上がっていく。そして、隣接する翼10間の距離が長くなっていく。半径RG及び半径RA近傍の領域は、半径Rに対する翼10間の距離の比が最も長くなる領域である。換言すると、半径RG近傍の領域は、(t-L1)/Rが最も大きくなる領域である。なお、翼10が立ち上がっていくとは、翼10の翼弦線と回転軸3との角度が小さくなっていくことを示している。 Further, as shown in FIG. 6, L2 / R increases from the inner circumferential portion 14 to a position where it becomes the radius RG in the vicinity of the radius RA. That is, the wing 10 gradually rises from the inner circumferential portion 14 to the position of the radius RG. And the distance between the adjacent wing | blades 10 becomes long. An area near the radius RG and the radius RA is an area where the ratio of the distance between the blades 10 to the radius R is the longest. In other words, the region near the radius RG is the region where (t−L1) / R is the largest. In addition, that the wing | blade 10 stands up has shown that the angle of the chord line of the wing | blade 10 and the rotating shaft 3 becomes small.
 図6に示すように、L2/Rが半径RGから半径RHまで減少している。すなわち、翼10は、半径RGから半径RHにかけて、徐々に寝ていく。このため、翼10は、半径RGから半径RB近傍の半径RHにかけて、半径Rに対する仕事量の比が低下していく。なお、翼10が寝ていくとは、翼10の翼弦線と回転軸3との角度が大きくなっていくことを示している。 As shown in FIG. 6, L2 / R decreases from radius RG to radius RH. That is, the wing 10 gradually sleeps from the radius RG to the radius RH. For this reason, in the wing 10, the ratio of the amount of work to the radius R decreases from the radius RG to the radius RH in the vicinity of the radius RB. The fact that the wing 10 goes to sleep means that the angle between the chord line of the wing 10 and the rotation axis 3 is increasing.
 一方、図5に示すように、半径RGと半径RHとの間となる半径RMの位置において、投影距離比σが最大となっている。すなわち、半径RMの位置において、半径Rに対する翼10間の距離の比が最小となるが、半径Rに対する第1翼長L1の比が最大となる。すなわち、半径RMの位置において、半径Rに対する翼弦長の比が最大となる。換言すると、半径RMの近傍の領域は、半径Rに対する翼面積の比が最大となる。さらに換言すると、半径RMの近傍の領域は、半径Rに対する有効面積の比が最大となる。すなわち、半径RMの近傍の領域は、仕事量が大きい領域となっている。なお、翼10のある領域における有効面積とは、翼10のある領域における正圧面15の翼面積のうち、流れの剥離が生じていない部分の面積を示す。 On the other hand, as shown in FIG. 5, the projection distance ratio σ is maximum at the position of the radius RM between the radius RG and the radius RH. That is, at the position of the radius RM, the ratio of the distance between the blades 10 to the radius R is minimized, but the ratio of the first span L1 to the radius R is maximized. That is, at the position of radius RM, the ratio of chord length to radius R becomes maximum. In other words, in the region near the radius RM, the ratio of the blade area to the radius R is maximum. Furthermore, in other words, the area near the radius RM has the largest ratio of the effective area to the radius R. That is, the region near the radius RM is a region where the amount of work is large. In addition, the effective area in the area | region where the wing | blade 10 exists shows the area of the part which separation of flow has not produced among the wing areas of the pressure surface 15 in the area | region where the wing | blade 10 exists.
 また、図5に示すように、半径RMから半径RH近傍となる半径RBにかけて、投影距離比σが低下している。すなわち、半径RMから半径RBにかけて、隣接する翼10間の距離は大きくなるが、半径Rに対する第1翼長L1の比はほぼ一定となる。すなわち、半径RMから半径RBにかけて、半径Rに対する翼弦長の比はほぼ一定となる。 Further, as shown in FIG. 5, the projection distance ratio σ is lowered from the radius RM to the radius RB near the radius RH. That is, from the radius RM to the radius RB, the distance between the adjacent wings 10 increases, but the ratio of the first span L1 to the radius R becomes substantially constant. That is, the ratio of chord length to radius R is substantially constant from radius RM to radius RB.
 上述のように、従来の軸流送風機の羽根車の翼は、半径Rが大きくなるほど、半径Rに対する翼弦長の比が大きくなる。一方、本実施の形態1に係る翼10は、半径RMから半径RBにかけて、半径Rに対する翼弦長の比はほぼ一定となる。換言すると、本実施の形態1に係る翼10は、半径RMから半径RBにかけて、従来よりも翼面積が小さくなる。このため、本実施の形態1に係る翼10は、半径RMから半径RBにかけて、半径Rに対する仕事量の比はほぼ一定となる。換言すると、本実施の形態1に係る翼10は、半径RMから半径RBの領域において、半径Rが大きくなった際、従来の軸流送風機の羽根車の翼と比べ、仕事量の増加量が小さい。 As mentioned above, the impeller blade of the conventional axial flow fan has a larger chord length to radius R ratio as the radius R increases. On the other hand, in the wing 10 according to the first embodiment, the ratio of the chord length to the radius R is substantially constant from the radius RM to the radius RB. In other words, the wing 10 according to the first embodiment has a wing area smaller than that of the conventional case from the radius RM to the radius RB. Therefore, in the wing 10 according to the first embodiment, the ratio of the amount of work to the radius R is substantially constant from the radius RM to the radius RB. In other words, in the blade 10 according to the first embodiment, when the radius R increases in the region from the radius RM to the radius RB, the amount of increase in the amount of work is larger than that of the impeller blade of the conventional axial flow fan. small.
 続いて、本実施の形態1に係る羽根車1の作用及び効果について説明する。なお、本実施の形態1に係る羽根車1の効果の理解を容易とするため、以下ではまず、従来の軸流送風機の羽根車の作用及び効果を説明する。そして、その後に、本実施の形態1に係る羽根車1の作用及び効果について説明する。 Subsequently, the operation and effects of the impeller 1 according to the first embodiment will be described. In order to facilitate understanding of the effects of the impeller 1 according to the first embodiment, the operation and effects of the impeller of the conventional axial flow fan will be described first. And after that, an operation and an effect of impeller 1 concerning this embodiment 1 are explained.
 図7は、従来の軸流送風機の羽根車を示す斜視図である。なお、従来の軸流送風機の羽根車101を説明する際、従来の羽根車101の各構成には、これらの構成に対応する本実施の形態1に係る羽根車1の各構成の符号に、「100」を加えた符号を付すこととする。例えば、従来の羽根車101の翼には、符号「110」を付す。また、図7に示す白抜き矢印は、従来の羽根車101が回転した際の全体的な空気の流れ方向を示している。また、図7に示す太線の矢印は、従来の羽根車101の回転方向を示している。また、図7では、従来の羽根車101が有する複数の翼110のうち、一部の翼110の図示を省略している。 FIG. 7 is a perspective view showing a conventional axial flow fan impeller. In addition, when demonstrating the impeller 101 of the conventional axial-flow fan, in each structure of the conventional impeller 101, the code | symbol of each structure of the impeller 1 which concerns on this Embodiment 1 corresponding to these structures, A code with "100" added will be attached. For example, the wing of the conventional impeller 101 is given the symbol "110". Moreover, the outline arrow shown in FIG. 7 has shown the general flow direction of air when the conventional impeller 101 rotates. Moreover, the thick arrow shown in FIG. 7 indicates the rotation direction of the conventional impeller 101. Moreover, in FIG. 7, illustration of some wing | blades 110 is abbreviate | omitted among the some wing | blades 110 which the conventional impeller 101 has.
 従来の羽根車101が回転軸103を中心に回転すると、図7の紙面上側から下側に向かって、羽根車101に空気が吸い込まれる。この空気は、翼110の前縁部111側から、隣接する翼110間に流入する。そして、翼110間に流入した空気は、翼110の正圧面115に沿って流れる際、翼110の傾き及び反りによって流れ方向が変えられ、運動量変化により静圧上昇する。この際、ボス部102周辺を流れる翼110間に流入する前の気流50は、図7に示すように乱れたものとなる。 When the conventional impeller 101 rotates around the rotation shaft 103, air is drawn into the impeller 101 from the upper side to the lower side of the drawing of FIG. This air flows between the adjacent wings 110 from the front edge 111 side of the wings 110. Then, when the air flowing into the space between the wings 110 flows along the pressure surface 115 of the wing 110, the flow direction is changed by the inclination and warpage of the wing 110, and the static pressure is increased due to the change in momentum. Under the present circumstances, the air flow 50 before flowing in between the wing | blades 110 which flow around a boss | hub part 102 becomes disordered, as shown in FIG.
 詳しくは、翼110の内周側には、翼110間へ流入する気流の上流側となる位置に、ボス部102が存在する。このため、ボス部102周辺を流れる翼110間へ流入する前の気流50には、空気がボス部102の周辺を通過する際に発生した渦51が含まれる。また例えば、ボス部102周辺を流れる翼110間へ流入する前の気流50には、ボス部102及び上述の渦51の存在によって狭くなった流路を流れる際に発生した、局所的な高速流れ52も含む。したがって、ボス部102周辺を流れる翼110間へ流入する前の気流50は、乱れたものとなる。このため、従来の羽根車101は、ボス部102周辺の乱れた気流50を各翼110の正圧面115が押し出す際、騒音が増大してしまう。 Specifically, on the inner circumferential side of the wing 110, a boss 102 is present at a position upstream of the air flow flowing between the wings 110. For this reason, the air flow 50 before flowing into between the wings 110 flowing around the boss portion 102 includes the vortices 51 generated when the air passes around the boss portion 102. Further, for example, in the air flow 50 before flowing into between the wings 110 flowing around the boss portion 102, a local high-speed flow generated when flowing in the flow path narrowed by the boss portion 102 and the above-mentioned vortex 51 52 is also included. Therefore, the air flow 50 before flowing into the space between the wings 110 flowing around the boss portion 102 becomes turbulent. Therefore, when the pressure surface 115 of each blade 110 pushes out the turbulent air flow 50 around the boss portion 102 in the conventional impeller 101, noise increases.
 また、従来の羽根車101は、ボス部102周辺の乱れた気流50を各翼110の内周側部分が押し出す際、以下のように効率も低下してしまう。 Further, when the inner peripheral side portion of each wing 110 pushes out the turbulent air flow 50 around the boss portion 102 in the conventional impeller 101, the efficiency also decreases as follows.
 図8は、従来の軸流送風機の羽根車の翼の、ボス部周辺部分の気流の流れを説明するための図である。なお、図8(a)は、従来の羽根車101を回転軸103方向に観察した図である。また、図8(b)は、図8(a)のA-A断面図である。換言すると、図8(b)は、回転軸103を中心とする円筒断面のうち、A-A位置を展開した図である。なお、図8(a)に示す太線の矢印は、従来の羽根車101の回転方向を示している。 FIG. 8 is a view for explaining the flow of the air flow around the boss of the blade of the impeller of the conventional axial flow fan. FIG. 8A is a view of the conventional impeller 101 observed in the direction of the rotation shaft 103. 8 (b) is a cross-sectional view taken along the line AA in FIG. 8 (a). In other words, FIG. 8B is a developed view of the AA position in the cylindrical cross section centering on the rotating shaft 103. As shown in FIG. In addition, the arrow of the thick line shown to Fig.8 (a) has shown the rotation direction of the conventional impeller 101. As shown in FIG.
 上述のように、ボス部102周辺を流れる翼110間へ流入する前の気流50は、乱れている。このため、気流50が翼110の前縁部111側から翼110間に流入する際、翼110の前縁部111の接線方向111aと、気流50の向きとが一致しない。このため、各翼110の内周側部分の正圧面115では前縁部111側に流れの剥離が生じてしまう。そして、この剥離した流れは、流れの剥離によって前縁部111側に発生した渦53の吸引力により、付着点54付近で正圧面115に再付着する。再付着後の気流は正圧面に添って流れ、静圧が上昇する。しかしながら、従来の羽根車101は、正圧面115の前縁部111側で生じた流れの剥離により、翼110の有効面積が減少してしまう。このため、従来の羽根車101は、翼110の仕事量が減少し、効率が低下してしまう。また、従来の羽根車101は、正圧面115の前縁部111側で生じた流れの剥離によっても、騒音が増大する。 As described above, the air flow 50 before flowing into between the wings 110 flowing around the boss portion 102 is turbulent. Therefore, when the air flow 50 flows in between the wings 110 from the front edge 111 side of the wing 110, the tangential direction 111a of the front edge 111 of the wing 110 and the direction of the air flow 50 do not match. For this reason, flow separation occurs on the front edge portion 111 side on the pressure surface 115 of the inner peripheral side portion of each wing 110. Then, the separated flow reattaches to the pressure surface 115 in the vicinity of the attachment point 54 by the suction force of the vortex 53 generated on the front edge 111 side due to the separation of the flow. The air flow after reattachment flows along the positive pressure surface, and the static pressure rises. However, in the conventional impeller 101, the separation of the flow generated on the front edge 111 side of the pressure surface 115 reduces the effective area of the wing 110. For this reason, in the conventional impeller 101, the amount of work of the wing 110 is reduced and the efficiency is reduced. Further, in the conventional impeller 101, noise is also increased due to the separation of the flow generated on the front edge portion 111 side of the pressure surface 115.
 また、従来の羽根車101の翼110の外周側部分を通過する気流においては、上流側に乱れを発生させる抵抗部がない。このため、翼110の外周側部分は、翼110の内周側部分と比べ、静圧が上昇しやすい。また、翼110の外周側は、翼110の内周側と比べ、モーメントが大きくなるため、静圧が高くなる。これらの点から、従来の羽根車101は、翼110の内周側部分と外周側部分とで静圧差が大きくなる。このため、従来の羽根車101の各翼110の正圧面115には、この静圧差によって、意図する流れ方向とは別方向の流れである2次流れが発生しやすい。したがたって、従来の羽根車101は、この2次流れによっても、効率が低下してしまう。 Further, in the air flow passing through the outer peripheral side portion of the blade 110 of the conventional impeller 101, there is no resistance portion that generates disturbance on the upstream side. For this reason, the static pressure of the outer peripheral side portion of the wing 110 is likely to be higher than that of the inner peripheral side portion of the wing 110. In addition, since the moment on the outer circumferential side of the wing 110 is larger than that on the inner circumferential side of the wing 110, the static pressure is high. From these points, in the conventional impeller 101, the static pressure difference between the inner circumferential side portion and the outer circumferential side portion of the wing 110 becomes large. Therefore, the static pressure difference on the pressure surface 115 of each blade 110 of the conventional impeller 101 tends to generate a secondary flow that is a flow in a direction different from the intended flow direction. Therefore, the efficiency of the conventional impeller 101 is also reduced by this secondary flow.
 一方、本実施の形態1に係る羽根車1は、下記のように作用するため、気流50に起因する騒音を抑制でき、気流50に起因する効率の低下を抑制できる。 On the other hand, since the impeller 1 which concerns on this Embodiment 1 acts as follows, the noise resulting from the airflow 50 can be suppressed, and the fall of the efficiency resulting from the airflow 50 can be suppressed.
 図9及び図10は、本発明の実施の形態1に係る羽根車を、回転軸に沿って負圧面側から観察した図である。なお、図9は、翼10の内周側部分の気流を説明するための図である。また、図10は、翼10の外周側部分の気流を説明するための図である。 FIG.9 and FIG.10 is the figure which observed the impeller which concerns on Embodiment 1 of this invention from the suction surface side along a rotating shaft. In addition, FIG. 9 is a figure for demonstrating the air flow of the inner peripheral side part of the wing | blade 10. As shown in FIG. Moreover, FIG. 10 is a figure for demonstrating the air flow of the outer peripheral side part of the wing | blade 10. As shown in FIG.
 本実施の形態1に係る羽根車1も、従来の羽根車101と同様にボス部2を有している。このため、本実施の形態1に係る羽根車1においても、ボス部2周辺を流れる翼10間へ流入する前の気流は、従来と同様に乱れた気流50となる。しかしながら、本実施の形態1に係る羽根車1の翼10においては、内周部14から半径RAまでの領域は、従来と比べて、翼面積が小さくなり、仕事量が小さくなっている。換言すると、本実施の形態1に係る羽根車1の翼10においては、ボス部2の周辺部分すなわち内周側部分は、従来と比べて、仕事量が小さくなっている。すなわち、本実施の形態1に係る羽根車1においては、各翼10におけるボス部2周辺の部分は、従来よりも空気を押し出す量が少なくなる。このため、本実施の形態1に係る羽根車1は、ボス部2周辺の乱れた気流50を各翼10が押し出す際の騒音を、従来よりも抑制できる。換言すると、本実施の形態1に係る羽根車1は、ボス部2周辺の乱れた気流50内を各翼10が通過する際の騒音を、従来よりも抑制できる。 The impeller 1 which concerns on this Embodiment 1 also has the boss | hub part 2 similarly to the conventional impeller 101. FIG. For this reason, also in the impeller 1 according to the first embodiment, the air flow before flowing into the space between the wings 10 flowing around the boss portion 2 is the air flow 50 disturbed as in the conventional case. However, in the blade 10 of the impeller 1 according to the first embodiment, in the region from the inner circumferential portion 14 to the radius RA, the blade area is smaller and the amount of work is smaller than in the conventional case. In other words, in the wing 10 of the impeller 1 according to the first embodiment, the amount of work is smaller at the peripheral portion of the boss portion 2, that is, the inner peripheral side portion, as compared with the conventional case. That is, in the impeller 1 according to the first embodiment, the portion around the boss portion 2 in each wing 10 has a smaller amount of pushing out air than in the conventional case. For this reason, the impeller 1 which concerns on this Embodiment 1 can suppress the noise at the time of each wing | blade 10 pushing out the air flow 50 which disturbed the boss | hub part 2 periphery compared with the past. In other words, the impeller 1 according to the first embodiment can suppress the noise when each wing 10 passes through the turbulent air flow 50 around the boss 2 more than the conventional noise.
 また、本実施の形態1に係る羽根車1においては、各翼10におけるボス部2周辺の部分の仕事量が従来よりも少ないので、正圧面15に発生する流れの剥離に起因する騒音も、従来より抑制できる。また、本実施の形態1に係る羽根車1においては、各翼10におけるボス部2周辺の部分の仕事量が従来よりも少ないので、正圧面15に発生する流れの剥離に起因する効率の低下も、従来より抑制できる。 Further, in the impeller 1 according to the first embodiment, since the amount of work of the portion around the boss portion 2 in each wing 10 is smaller than that in the conventional case, noise due to flow separation generated on the pressure surface 15 is also This can be suppressed as compared to the prior art. Further, in the impeller 1 according to the first embodiment, since the amount of work of the portion around the boss portion 2 in each wing 10 is smaller than that in the conventional case, the efficiency is reduced due to the separation of the flow generated on the pressure surface 15 Also, it can be suppressed than before.
 ここで、上述のように、翼10は、内周部14から半径RAの近傍の半径RGとなる位置にかけて、徐々に立ち上がっていく。すなわち、従来よりも仕事量が少ない翼10のボス部2周辺部分の領域内に限ってみると、外周側に行くにしたがって仕事量が増加する。したがって、ボス部2周辺の乱れた気流50は、外周側へ導かれる。また、上述のように、半径RG及び半径RA近傍の領域は、翼10間の距離が長い。このため、半径RG及び半径RAの領域では、翼10間に、乱れの少ない気流55が多く流れ込む。この気流55は、図9に示すように、気流50の影響により、半径RG及び半径RAよりも外周側へ導かれる。すなわち、この気流55は、翼10における半径RM付近の領域の方へ流れていく。上述のように、翼10における半径RM付近の領域は、半径Rに対する翼面積の比が大きい。このため、本実施の形態1に係る羽根車1は、仕事量が大きい半径RM付近の領域に、乱れの少ない気流55を多く通過させることができるので、効率が向上する。 Here, as described above, the wing 10 gradually rises from the inner circumferential portion 14 to a position where the radius RG is in the vicinity of the radius RA. That is, in the area of the peripheral portion of the boss portion 2 of the wing 10 having a smaller amount of work than the conventional one, the amount of work increases as going to the outer peripheral side. Therefore, the turbulent air flow 50 around the boss portion 2 is guided to the outer peripheral side. Also, as described above, the regions near the radius RG and the radius RA have a long distance between the wings 10. For this reason, in the region of the radius RG and the radius RA, the air flow 55 with less turbulence flows in a large amount between the blades 10. The air flow 55 is guided to the outer peripheral side than the radius RG and the radius RA by the influence of the air flow 50, as shown in FIG. That is, the air flow 55 flows toward the region near the radius RM in the wing 10. As described above, the area near the radius RM in the wing 10 has a large ratio of the wing area to the radius R. Therefore, the impeller 1 according to the first embodiment can pass the air flow 55 with less disturbance a lot in the area near the radius RM where the amount of work is large, so the efficiency is improved.
 一方、半径RMよりも外周側となる領域では、図10に示すように、翼10間に気流56が流れ込む。ここで、上述のように、本実施の形態1に係る翼10は、半径RMから半径RBの領域において、半径Rが大きくなった際、従来の軸流送風機の羽根車の翼と比べ、仕事量の増加量が小さい。例えば、本実施の形態1に係る翼10は、半径RMから半径RBにかけて、気流56への仕事量が略一定となる。このため、本実施の形態1に係る翼10の正圧面15では、内周側と外周側との静圧差が、従来よりも小さくなる。このため、本実施の形態1に係る羽根車1は、2次流れを従来よりも抑制でき、効率がさらに向上する。 On the other hand, in the region on the outer peripheral side of the radius RM, as shown in FIG. Here, as described above, when the radius R increases in the region from the radius RM to the radius RB, the blade 10 according to the first embodiment performs work compared to the blade of the conventional axial flow fan impeller. The amount of increase is small. For example, in the wing 10 according to the first embodiment, the amount of work to the air flow 56 is substantially constant from the radius RM to the radius RB. For this reason, in the pressure surface 15 of the wing 10 according to the first embodiment, the static pressure difference between the inner circumferential side and the outer circumferential side is smaller than that in the related art. For this reason, the impeller 1 which concerns on this Embodiment 1 can suppress a secondary flow rather than before, and efficiency improves further.
 したがって、本実施の形態1に係る羽根車1は、従来よりも低騒音で高効率な羽根車となる。 Therefore, the impeller 1 which concerns on this Embodiment 1 turns into a low-noise and highly efficient impeller rather than before.
 最後に、半径RA、半径RM、半径RB、半径RG、半径RH、半径RMにおける投影距離比σ、及び半径RBにおける投影距離比σの好適な範囲について説明する。 Finally, preferred ranges of the radius RA, the radius RM, the radius RB, the radius RG, the radius RH, the projection distance ratio σ at the radius RM, and the projection distance ratio σ at the radius RB will be described.
 図11は、本発明の実施の形態1に係る翼における、投影距離比σと半径Rとの関係を示す図である。この図11は、半径RA、半径RM及び半径RBの好適な範囲を示した図である。図12は、本発明の実施の形態1に係る翼における、半径Rに対する第2翼長L2の比であるL2/Rと、半径Rとの関係を示す図である。この図12は、半径RG及び半径RHの好適な範囲を示した図である。図13は、本発明の実施の形態1に係る翼における、投影距離比σと半径Rとの関係を示す図である。この図13は、半径RMにおける投影距離比σ、及び半径RBにおける投影距離比σの好適な範囲を示した図である。なお、図11~図13では、半径Rを、半径比と称する無次元数で表している。詳しくは、図11~図13では、内周部14の位置の半径Rが、「0.0」となっている。また、図11~図13では、外周部13の位置の半径Rが、「1.0」となっている。 FIG. 11 is a diagram showing the relationship between the projection distance ratio σ and the radius R in the wing according to Embodiment 1 of the present invention. FIG. 11 is a view showing preferable ranges of the radius RA, the radius RM and the radius RB. FIG. 12 is a view showing the relationship between the radius R and the ratio L2 / R, which is the ratio of the second wing length L2 to the radius R, in the wing according to Embodiment 1 of the present invention. This FIG. 12 is a view showing a preferred range of the radius RG and the radius RH. FIG. 13 is a diagram showing the relationship between the projection distance ratio σ and the radius R in the wing according to Embodiment 1 of the present invention. FIG. 13 is a view showing a preferable range of the projection distance ratio σ at the radius RM and the projection distance ratio σ at the radius RB. In FIGS. 11 to 13, the radius R is represented by a dimensionless number called a radius ratio. Specifically, in FIG. 11 to FIG. 13, the radius R of the position of the inner circumferential portion 14 is “0.0”. Further, in FIG. 11 to FIG. 13, the radius R of the position of the outer peripheral portion 13 is “1.0”.
 羽根車1には、翼10の正圧面15と負圧面16との圧力差により、回転方向とは逆方向のトルクが働く。そして、このトルクにより、羽根車1を回転させる図示せぬモーターの消費電力が増大してしまう。この羽根車1に働くトルクは、モーメントアームである半径Rと、翼10の各部位における圧力差の面積分と、の積で評価することができる。このため、羽根車1に働くトルクを低減させるためには、モーメントアームである半径Rが大きくなる翼10の外周側部分において、翼面積を低減することが効果的である。ここで、本実施の形態1に係る軸流送風機100の翼10においては、半径RB近傍の領域の翼面積が、従来の羽根車よりも小さくなっている。このため、半径RBの位置を翼10の外周側となる位置にすれば、羽根車1に働くトルクを低減させることができる。したがって、図11に示すように、半径RBを、0.7以上で0.8以下の範囲内とすることが好ましい。 Due to the pressure difference between the pressure surface 15 and the suction surface 16 of the blade 10, a torque in the direction opposite to the rotational direction acts on the impeller 1. And the power consumption of the motor which is not shown in figure which rotates the impeller 1 will increase by this torque. The torque acting on the impeller 1 can be evaluated by the product of the radius R which is a moment arm and the area of the pressure difference at each portion of the wing 10. For this reason, in order to reduce the torque acting on the impeller 1, it is effective to reduce the blade area at the outer peripheral portion of the blade 10 where the radius R, which is a moment arm, increases. Here, in the wing 10 of the axial flow fan 100 according to the first embodiment, the wing area of the region near the radius RB is smaller than that of the conventional impeller. For this reason, if the position of the radius RB is on the outer peripheral side of the wing 10, the torque acting on the impeller 1 can be reduced. Therefore, as shown in FIG. 11, the radius RB is preferably in the range of 0.7 or more and 0.8 or less.
 一方、翼10において外周側の面積を従来よりも単に小さくしただけでは、羽根車1の仕事量が従来よりも低下してしまう。このため、図11に示すように、半径RMを0.45以上で0.55以下の範囲内とするのが好ましい。換言すると、半径が0.45以上で0.55以下の範囲内となる位置に、仕事量が大きくなる半径RMの領域を配置するのが好ましい。半径RMの領域で仕事量を稼ぐことにより、一定の仕事量を確保しつつ羽根車1に働くトルクの低減を図ることができる。また、羽根車1は、内周部14から半径RAまでの領域の翼面積を従来よりも小さくすることにより、ボス部2周辺の乱れた気流50内を各翼10が通過する際の騒音を抑制している。図11に示すように、半径RAを0.2以上で0.3以下の範囲内とすることにより、ボス部2周辺の乱れた気流50内を各翼10が通過する際の騒音を、より抑制できる。 On the other hand, if the area on the outer peripheral side of the wing 10 is simply made smaller than in the conventional case, the amount of work of the impeller 1 will be lower than in the conventional case. For this reason, as shown in FIG. 11, it is preferable to make the radius RM into the range of 0.45 or more and 0.55 or less. In other words, it is preferable to arrange the area of the radius RM where the amount of work is large at a position where the radius is in the range of 0.45 or more and 0.55 or less. By earning the amount of work in the area of the radius RM, it is possible to reduce the torque acting on the impeller 1 while securing a certain amount of work. Further, by making the blade area of the region from the inner circumferential portion 14 to the radius RA smaller than in the conventional case, the impeller 1 generates noise when each blade 10 passes through the turbulent air flow 50 around the boss 2. It is suppressing. As shown in FIG. 11, by setting the radius RA within the range of 0.2 or more and 0.3 or less, the noise when each wing 10 passes through the turbulent air flow 50 around the boss portion 2 can be made more It can be suppressed.
 羽根車1の各翼10は、半径RAの位置から、該半径RAよりも外周側である半径RMにかけて、翼面積が増加していく。また、羽根車1の各翼10は、半径RGから半径RHにかけて、徐々に寝ていく。このため、図12に示すように、半径RGを0.15以上で0.25以下の範囲とし、半径RAの位置と半径RGの位置とを近くすることが好ましい。半径RGをこのような範囲内とすることにより、半径Rに対する仕事量の比を均一化できる。また、半径RHの位置は、翼10の各位置の中で、最も寝る位置である。すなわち、半径RH近傍の領域は、正圧面15と負圧面16との圧力差が小さくなる領域である。このため、図12に示すように、半径RHを0.7以上で0.8以下の範囲内とし、半径RBの位置と半径RHの位置とを近くすることが好ましい。半径RHをこのような範囲内とすることにより、羽根車1に働くトルクをより抑制することができる。 Each wing 10 of the impeller 1 increases in blade area from the position of the radius RA to a radius RM which is the outer circumferential side than the radius RA. Also, each wing 10 of the impeller 1 gradually sleeps from the radius RG to the radius RH. For this reason, as shown in FIG. 12, it is preferable to set the radius RG to be in the range of 0.15 or more and 0.25 or less, and to make the position of the radius RA close to the position of the radius RG. By setting the radius RG within such a range, the ratio of the amount of work to the radius R can be made uniform. Also, the position of the radius RH is the most sleeping position among the positions of the wing 10. That is, the region near the radius RH is a region where the pressure difference between the pressure surface 15 and the suction surface 16 is reduced. For this reason, as shown in FIG. 12, it is preferable to set the radius RH within the range of 0.7 or more and 0.8 or less, and to make the position of the radius RB close to the position of the radius RH. By setting the radius RH in such a range, it is possible to further suppress the torque acting on the impeller 1.
 図13に示すように、半径RBにおける投影距離比σを、0.6以上とすることが好ましい。上述のように、半径RBの位置の翼面積を小さくすることにより、羽根車1に働くトルクを低減させることができる。ここで、投影距離比σの大きさは、翼面積の大きさとみることもできる。したがって、半径RBにおける投影距離比σを小さくすることにより、羽根車1に働くトルクを低減させることができる。しかしながら、半径RBにおける投影距離比σを小さくしすぎると、半径RB近傍の仕事量が小さくなりすぎてしまう。このため、半径RBにおける投影距離比σは、0.6以上であることが好ましい。 As shown in FIG. 13, the projection distance ratio σ at the radius RB is preferably 0.6 or more. As described above, by reducing the blade area at the radius RB, the torque acting on the impeller 1 can be reduced. Here, the size of the projection distance ratio σ can also be regarded as the size of the blade area. Therefore, the torque acting on the impeller 1 can be reduced by reducing the projection distance ratio σ at the radius RB. However, if the projection distance ratio σ at the radius RB is too small, the amount of work near the radius RB will be too small. For this reason, the projection distance ratio σ at the radius RB is preferably 0.6 or more.
 また、図13に示すように、半径RMにおける投影距離比σを、0.9以上で1.0未満とすることが好ましい。半径RM近傍の領域は、仕事量を稼ぐ領域である。このため、半径RM近傍の領域の翼面積が大きくなるように、半径RMにおける投影距離比σは、0.9以上であることが好ましい。しかしながら、投影距離比σを1.0以上にしてしまうと、第1翼長L1が翼間距離tよりも大きくなってしまう。すなわち、羽根車1を回転軸3方向に観察した際、隣接する翼10の後縁部12と前縁部11とが重なりあってしまう。隣接する翼10がこのような関係になっている場合、金型を用いて羽根車1を製造しようとすると、金型をアンダーカット構造としなければならない。このため、半径RMにおける投影距離比σは、1.0未満であることが好ましい。 Further, as shown in FIG. 13, it is preferable to set the projection distance ratio σ at the radius RM to 0.9 or more and less than 1.0. An area near the radius RM is an area where the amount of work is earned. For this reason, it is preferable that the projection distance ratio σ at the radius RM is 0.9 or more so that the blade area in the region near the radius RM is increased. However, if the projection distance ratio σ is 1.0 or more, the first wing length L1 becomes larger than the wing distance t. That is, when the impeller 1 is observed in the rotational axis 3 direction, the rear edge 12 and the front edge 11 of the adjacent wing 10 overlap with each other. In the case where the adjacent wings 10 are in such a relationship, in order to manufacture the impeller 1 using a mold, the mold must have an undercut structure. Therefore, the projection distance ratio σ at the radius RM is preferably less than 1.0.
 以上、本実施の形態1に係る羽根車1は、回転軸3を中心に回転するボス部2と、回転軸3の外周壁に設けられ、回転軸3と共に回転軸3を中心に回転する複数の翼10と、を備えている。また、翼10のそれぞれは、前縁部11と、後縁部12と、外周部13と、内周部14とを有している。また、翼10のそれぞれにおいては、投影距離比σは次のようになる。詳しくは、投影距離比σは、内周部14から半径Rが半径RAとなる位置まで減少する。また、投影距離比σは、半径Rが半径RAとなる位置で第1極小値を有する。また、投影距離比σは、半径Rが半径RAとなる位置から、半径Rが半径RAよりも大きな半径RMとなる位置まで増加する。また、投影距離比σは、半径Rが半径RMとなる位置で極大値を有する。また、投影距離比σは、半径Rが半径RMとなる位置から、半径Rが半径RMよりも大きな半径RBとなる位置まで減少する。また、投影距離比σは、半径Rが半径RBとなる位置で第2極小値を有する。また、投影距離比σは、半径Rが半径RBとなる位置から、外周部13にかけて増加する。さらに、翼10のそれぞれにおいては、半径Rに対する第2翼長L2の比であるL2/Rは次のようになる。詳しくは、L2/Rは、内周部14から半径Rが半径RGとなる位置まで増加する。また、L2/Rは、半径Rが半径RGとなる位置で極大値を有する。また、L2/Rは、半径Rが半径RGとなる位置から、半径Rが半径RHとなる位置まで減少する。また、L2/Rは、半径Rが半径RHとなる位置で極小値を有する。また、L2/Rは、半径Rが半径RHとなる位置から外周部にかけて増加する。 As mentioned above, the impeller 1 which concerns on this Embodiment 1 is provided in the outer peripheral wall of the boss part 2 which rotates centering on the rotating shaft 3, and the rotating shaft 3, and the plurality which rotates around the rotating shaft 3 with the rotating shaft 3 And the wings 10 of the. Each of the wings 10 has a front edge 11, a rear edge 12, an outer periphery 13, and an inner periphery 14. Further, in each of the wings 10, the projection distance ratio σ is as follows. Specifically, the projection distance ratio σ decreases from the inner circumferential portion 14 to a position where the radius R becomes the radius RA. Further, the projection distance ratio σ has a first minimum value at a position where the radius R is the radius RA. Also, the projection distance ratio σ increases from the position where the radius R is the radius RA to the position where the radius R is the radius RM larger than the radius RA. Also, the projection distance ratio σ has a maximum value at a position where the radius R is the radius RM. Further, the projection distance ratio σ decreases from the position where the radius R is the radius RM to the position where the radius R is the radius RB larger than the radius RM. Also, the projection distance ratio σ has a second minimum value at a position where the radius R is the radius RB. Also, the projection distance ratio σ increases from the position where the radius R is the radius RB to the outer peripheral portion 13. Furthermore, in each of the wings 10, L2 / R, which is the ratio of the second wing length L2 to the radius R, is as follows. Specifically, L2 / R increases from the inner circumferential portion 14 to a position where the radius R becomes the radius RG. L2 / R has a maximum value at a position where the radius R is the radius RG. L2 / R decreases from a position where the radius R is the radius RG to a position where the radius R is the radius RH. Also, L2 / R has a local minimum value at a position where the radius R is the radius RH. Further, L2 / R increases from the position where the radius R becomes the radius RH to the outer peripheral portion.
 本実施の形態1に係る羽根車1は、このように構成されているので、乱れた気流50に起因する騒音を抑制でき、乱れた気流50に起因する効率の低下を抑制できる。したがって、本実施の形態1に係る羽根車1は、従来よりも低騒音で高効率な羽根車となる。 Since the impeller 1 which concerns on this Embodiment 1 is comprised in this way, the noise resulting from the turbulent air flow 50 can be suppressed, and the fall of the efficiency resulting from the turbulent air flow 50 can be suppressed. Therefore, the impeller 1 which concerns on this Embodiment 1 turns into a low-noise and highly efficient impeller rather than before.
実施の形態2.
 次に、本発明の実施の形態2に係る羽根車1について説明する。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Second Embodiment
Next, an impeller 1 according to a second embodiment of the present invention will be described. In the second embodiment, items not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
 図14は、本発明の実施の形態2に係る羽根車の斜視図である。また、図15は、本発明の実施の形態2に係る羽根車を回転軸と直交する方向から観察した図である。なお、図14及び図15に示す白抜き矢印は、羽根車1が回転した際の全体的な空気の流れ方向を示している。また、図14に示す太線の矢印、及び図15において回転軸3近傍に示す円弧状の矢印は、羽根車1の回転方向を示している。また、図14及び図15では、羽根車1が有する複数の翼10のうち、一部の翼10の図示を省略している。また、図15には、羽根車1の他に、ケーシング20も図示している。すなわち、図15には、本実施の形態2に係る軸流送風機100が記載されている。 FIG. 14 is a perspective view of an impeller according to Embodiment 2 of the present invention. Moreover, FIG. 15 is the figure which observed the impeller which concerns on Embodiment 2 of this invention from the direction orthogonal to a rotating shaft. In addition, the white arrow shown in FIG.14 and FIG.15 has shown the general flow direction of air at the time of the impeller 1 rotating. Further, thick arrows shown in FIG. 14 and arc-shaped arrows shown in the vicinity of the rotation shaft 3 in FIG. 15 indicate the rotation direction of the impeller 1. Moreover, in FIG.14 and FIG.15, illustration of one part wing | blade 10 is abbreviate | omitted among several wing | blades 10 which the impeller 1 has. In addition to the impeller 1, a casing 20 is also illustrated in FIG. 15. That is, FIG. 15 shows an axial flow fan 100 according to the second embodiment.
 図14及び図15に示すように、本実施の形態2に係る羽根車1の各翼10は、位置によって正圧面15の向きを異ならせている。以下、翼10の各位置における正圧面15の向きについて詳細に説明していく。まず、翼10の各位置における正圧面15の向きを説明するため、正圧面15の向きを示すパラメータである角度φを、次のように定義する。 As shown in FIG. 14 and FIG. 15, each wing 10 of the impeller 1 according to the second embodiment varies the direction of the pressure surface 15 depending on the position. Hereinafter, the direction of the pressure surface 15 at each position of the wing 10 will be described in detail. First, in order to explain the orientation of the pressure surface 15 at each position of the wing 10, an angle φ, which is a parameter indicating the orientation of the pressure surface 15, is defined as follows.
 図16は、本発明の実施の形態2に係る軸流送風機の羽根車を、該羽根車の回転軸と垂直な平面に投影した図である。なお、図16は、羽根車1を翼10の負圧面16側から観察した図となっている。
 翼10の任意の点Bにおいて、正圧面15の法線を引く。羽根車1の回転軸3と垂直な平面にこの法線を投影したものが、第1仮想直線41である。また、羽根車1の回転軸3と垂直な平面において、回転軸3と点Bとを通る第2仮想直線42を引く。これにより、第1仮想直線41と第2仮想直線とがなす角度が、4つできる。これらのうち、第1仮想直線41と第2仮想直線とがなす角度のうちの2つは、第2仮想直線42に対して回転方向前側にできる。第2仮想直線42に対して回転方向前側にできるこれら2つの角度のうち、回転軸3に近い側の角度を、換言すると内周側の角度を、角度φと定義する。
FIG. 16 is a diagram in which the impeller of the axial flow fan according to Embodiment 2 of the present invention is projected on a plane perpendicular to the rotation axis of the impeller. FIG. 16 is a view of the impeller 1 observed from the negative pressure surface 16 side of the wing 10.
At an arbitrary point B of the wing 10, the normal to the pressure surface 15 is drawn. The first virtual straight line 41 is obtained by projecting this normal on a plane perpendicular to the rotation axis 3 of the impeller 1. Further, in a plane perpendicular to the rotation axis 3 of the impeller 1, a second virtual straight line 42 passing through the rotation axis 3 and the point B is drawn. Thereby, the angle which the 1st virtual straight line 41 and the 2nd virtual straight line make can be four. Among these, two of the angles formed by the first virtual straight line 41 and the second virtual straight line can be made on the front side in the rotational direction with respect to the second virtual straight line 42. Of these two angles that can be made on the front side in the rotational direction with respect to the second virtual straight line 42, the angle closer to the rotation axis 3 is defined as the angle φ on the inner peripheral side.
 角度φが略90度よりも大きい場合、正圧面15の法線は、回転軸3から離れるように、正圧面15から回転方向に延びる状態となっている。換言すると、角度φが略90度よりも大きい場合、正圧面15の法線は、外周側へ向かうように、正圧面15から回転方向に延びる状態となっている。すなわち、角度φが略90度よりも大きい場合、正圧面15は、外周側を向いている状態となっている。また、角度φが略90度よりも小さい場合、正圧面15の法線は、回転軸3に近づくように、正圧面15から回転方向に延びる状態となっている。換言すると、角度φが略90度よりも小さい場合、正圧面15の法線は、内側へ向かうように、正圧面15から回転方向に延びる状態となっている。すなわち、角度φが略90度よりも小さい場合、正圧面15は、内側を向いている状態となっている。 When the angle φ is larger than about 90 degrees, the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 away from the rotation axis 3. In other words, when the angle φ is larger than about 90 degrees, the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 so as to be directed to the outer peripheral side. That is, when the angle φ is larger than about 90 degrees, the pressure surface 15 faces the outer peripheral side. When the angle φ is smaller than approximately 90 degrees, the normal to the pressure surface 15 extends from the pressure surface 15 in the rotational direction so as to approach the rotation axis 3. In other words, when the angle φ is smaller than about 90 degrees, the normal to the pressure surface 15 extends from the pressure surface 15 in the rotational direction so as to be directed inward. That is, when the angle φ is smaller than about 90 degrees, the pressure surface 15 faces inward.
 図17は、本発明の実施の形態2に係る翼における、角度φと半径Rとの関係を示す図である。なお、図17では、半径Rを、半径比と称する無次元数で表している。詳しくは、図17では、内周部14の位置の半径Rが、「0.0」となっている。また、図17では、外周部13の位置の半径Rが、「1.0」となっている。また、図17では、実線が、前縁部11における角度φと半径Rとの関係を示している。破線が、後縁部12における角度φと半径Rとの関係を示している。 FIG. 17 is a diagram showing the relationship between the angle φ and the radius R in the wing according to Embodiment 2 of the present invention. In FIG. 17, the radius R is represented by a dimensionless number called a radius ratio. Specifically, in FIG. 17, the radius R of the position of the inner circumferential portion 14 is “0.0”. Further, in FIG. 17, the radius R of the position of the outer peripheral portion 13 is “1.0”. Further, in FIG. 17, the solid line indicates the relationship between the angle φ and the radius R at the front edge portion 11. The dashed line shows the relationship between the angle φ at the trailing edge 12 and the radius R.
 まず、前縁部11における角度φと半径Rとの関係を説明する。
 図17に示すように、内周部14から半径Rが半径RAとなる範囲のうち、内周部14を含む一部の範囲においては、角度φが90度よりも大きくなっている。すなわち、内周部14から半径Rが半径RAとなる範囲のうち、内周部14を含む一部の範囲においては、回転軸3から離れるように、正圧面15の法線が正圧面15から回転方向に延びている。換言すると、内周部14から半径Rが半径RAとなる範囲のうち、内周部14を含む一部の範囲においては、正圧面15が外周側を向いている。具体的には、半径Rが0.0以上0.15以下となる範囲において、回転軸3から離れるように、正圧面15の法線が正圧面15から回転方向に延びている。
First, the relationship between the angle φ at the front edge 11 and the radius R will be described.
As shown in FIG. 17, in a range including the inner circumferential portion 14 out of the range where the radius R is the radius RA from the inner circumferential portion 14, the angle φ is larger than 90 degrees. That is, in the partial range including the inner circumferential portion 14 in the range in which the radius R becomes the radius RA from the inner circumferential portion 14, the normal of the pressure surface 15 away from the positive pressure surface 15 away from the rotation axis 3 It extends in the rotational direction. In other words, the positive pressure surface 15 faces the outer circumferential side in a partial range including the inner circumferential portion 14 out of the range in which the radius R is the radius RA from the inner circumferential portion 14. Specifically, the normal to the pressure surface 15 extends from the pressure surface 15 in the rotational direction so as to be away from the rotation axis 3 in a range where the radius R is 0.0 or more and 0.15 or less.
 このように構成することにより、図15に示すように、内周部14を含む一部の範囲を流れる気流58は、外周側に向かって流れる。実施の形態1で説明したように、羽根車1は、ボス部2周辺の乱れた気流50を外周側へ導く。そして、仕事量が大きい半径RM付近の領域に、乱れの少ない気流55を多く通過させ、羽根車1の効率を向上させている。本実施の形態2のように、内周部14を含む一部の範囲の正圧面15が外周側を向くことにより、ボス部2周辺の乱れた気流50をより外周側へ導くことができる。すなわち、仕事量が大きい半径RM付近の領域に、乱れの少ない気流55をより多く通過させることができる。したがって、羽根車1の効率をより向上させることができる。 By this configuration, as shown in FIG. 15, the air flow 58 flowing in a partial range including the inner peripheral portion 14 flows toward the outer peripheral side. As described in the first embodiment, the impeller 1 guides the turbulent air flow 50 around the boss portion 2 to the outer peripheral side. Then, the air flow 55 with little disturbance is allowed to pass through a region near the radius RM where the amount of work is large, and the efficiency of the impeller 1 is improved. As in the second embodiment, when the pressure surface 15 in a partial range including the inner circumferential portion 14 faces the outer circumferential side, the turbulent air flow 50 around the boss portion 2 can be guided to the outer circumferential side. That is, the air flow 55 with less disturbance can be made to pass more through the region near the radius RM where the amount of work is large. Therefore, the efficiency of the impeller 1 can be further improved.
 なお、本実施の形態2では、内周部14から半径Rが半径RAとなる範囲のうち、内周部14を含む一部の範囲において、正圧面15が外周側を向いていた。しかしながら、ボス部2周辺の乱れた気流50をより外周側へ導くことができれば、正圧面15が外周側を向いている範囲は、当該範囲に限定されない。例えば、内周部14から半径Rが半径RAとなる範囲のすべてにおいて、正圧面15が外周側を向いていてもよい。換言すると、内周部14から半径Rが半径RAとなる範囲のすべてにおいて、回転軸3から離れるように、正圧面15の法線が正圧面15から回転方向に延びていてもよい。すなわち、内周部14から半径Rが半径RAとなる範囲のうち、内周部14を含む少なくとも一部の範囲において、回転軸3から離れるように、正圧面15の法線が正圧面15から回転方向に延びていればよい。 In the second embodiment, the positive pressure surface 15 faces the outer circumferential side in a partial range including the inner circumferential portion 14 out of the range in which the radius R is the radius RA from the inner circumferential portion 14. However, as long as the turbulent air flow 50 around the boss portion 2 can be guided to the outer peripheral side, the range in which the pressure surface 15 faces the outer peripheral side is not limited to the range. For example, the pressure surface 15 may face the outer circumferential side in all of the range in which the radius R is the radius RA from the inner circumferential portion 14. In other words, the normal to the pressure surface 15 may extend from the pressure surface 15 in the rotational direction so as to be away from the rotation axis 3 in all the range in which the radius R is the radius RA from the inner circumferential portion 14. That is, the normal to pressure surface 15 is separated from pressure surface 15 so as to be away from rotation axis 3 in at least a partial range including inner peripheral portion 14 within the range where radius R is radius RA from inner peripheral portion 14 It suffices to extend in the rotational direction.
 また、図17に示すように、半径Rが半径RMとなる位置においては、角度φが90度よりも小さくなっている。すなわち、半径Rが半径RMとなる位置においては、回転軸3に近づくように、正圧面15の法線が正圧面15から回転方向に延びている。換言すると、半径Rが半径RMとなる位置周辺は、正圧面15が内側を向いている。このように構成することにより、図15に示すように、半径Rが半径RMとなる位置周辺を流れる気流59は、内側に向かって流れる。 Further, as shown in FIG. 17, at a position where the radius R is the radius RM, the angle φ is smaller than 90 degrees. That is, at the position where the radius R is the radius RM, the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 so as to approach the rotation axis 3. In other words, the pressure surface 15 faces inward around the position where the radius R is the radius RM. By this configuration, as shown in FIG. 15, the air flow 59 flowing around the position where the radius R is the radius RM flows inward.
 一般的に、軸流送風機の羽根車においては、翼間を流れる気流は、遠心力の影響によって外周側へ流れていく傾向がある。このため、半径Rが半径RMとなる位置周辺において正圧面15を内側へ向かせることにより、翼10における半径RMとなる位置周辺の仕事量を増大させることができる。換言すると、半径RMとなる位置周辺において、静圧上昇量を増大させることができる。ここで、実施の形態1で説明したように、羽根車1は、半径RMとなる位置周辺での仕事量を多くすることにより、羽根車1の効率を向上させている。このため、半径Rが半径RMとなる位置周辺において正圧面15を内側へ向かせることにより、羽根車1の効率をより向上させることができる。 Generally, in an impeller of an axial flow fan, the air flow flowing between the blades tends to flow to the outer peripheral side due to the influence of centrifugal force. Therefore, by moving the pressure surface 15 inward around the position where the radius R is the radius RM, it is possible to increase the amount of work around the position where the radius RM in the wing 10 becomes. In other words, the static pressure increase amount can be increased around the position where the radius RM is to be reached. Here, as described in the first embodiment, the impeller 1 improves the efficiency of the impeller 1 by increasing the amount of work around the position of the radius RM. Therefore, the efficiency of the impeller 1 can be further improved by directing the pressure surface 15 inward around the position where the radius R is the radius RM.
 また、図17に示すように、半径Rが半径RBとなる位置から外周部13までの範囲においては、角度φが90度よりも大きくなっている。すなわち、半径Rが半径RBとなる位置から外周部13までの範囲においては、回転軸3から離れるように、正圧面15の法線が正圧面15から回転方向に延びている。換言すると、半径Rが半径RBとなる位置から外周部13までの範囲においては、正圧面15が外周側を向いている。具体的には、半径Rが0.75以上1.0以下となる範囲において、回転軸3から離れるように、正圧面15の法線が正圧面15から回転方向に延びている。このように構成することにより、図15に示すように、半径Rが半径RBとなる位置から外周部13までの範囲を流れる気流60は、外周側に向かって流れる。このため、翼10の外周部13近傍において翼端渦57の発生を抑制できる。なお、翼端渦57の発生を抑制できる理由の詳細については、後述する。 Further, as shown in FIG. 17, in the range from the position where the radius R becomes the radius RB to the outer peripheral portion 13, the angle φ is larger than 90 degrees. That is, in the range from the position where the radius R is the radius RB to the outer peripheral portion 13, the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 away from the rotation axis 3. In other words, in the range from the position where the radius R is the radius RB to the outer peripheral portion 13, the pressure surface 15 faces the outer peripheral side. Specifically, in the range in which the radius R is 0.75 or more and 1.0 or less, the normal to the pressure surface 15 extends in the rotational direction from the pressure surface 15 so as to be away from the rotation axis 3. With this configuration, as shown in FIG. 15, the air flow 60 flowing in the range from the position where the radius R is the radius RB to the outer peripheral portion 13 flows toward the outer peripheral side. Therefore, the generation of the wing tip vortex 57 can be suppressed in the vicinity of the outer peripheral portion 13 of the wing 10. In addition, the detail of the reason which can suppress generation | occurrence | production of the wing tip vortex 57 is mentioned later.
 なお、本実施の形態2では、半径Rが半径RBとなる位置から外周部13までの範囲のすべてにおいて、正圧面15が外周側を向いていた。しかしながら、半径Rが半径RBとなる位置から外周部13までの範囲のうち、外周部13を含む一部の範囲において正圧面15が外周側を向いていても、翼端渦57の発生を抑制できる。すなわち、半径Rが半径RBとなる位置から外周部13までの範囲のうち、外周部13を含む少なくとも一部の範囲において、正圧面15が外周側を向いていればよい。換言すると、半径Rが半径RBとなる位置から外周部13までの範囲のうち、外周部13を含む少なくとも一部の範囲において、回転軸3から離れるように、正圧面15の法線が正圧面15から回転方向に延びていればよい。 In the second embodiment, the pressure surface 15 faces the outer peripheral side in all of the range from the position where the radius R is the radius RB to the outer peripheral portion 13. However, even if the pressure surface 15 faces the outer peripheral side in a partial range including the outer peripheral portion 13 in the range from the position where the radius R becomes the radius RB to the outer peripheral portion 13, generation of the wing tip vortex 57 is suppressed it can. That is, in the range from the position where the radius R is the radius RB to the outer circumferential portion 13, the pressure surface 15 may face the outer circumferential side in at least a partial range including the outer circumferential portion 13. In other words, in the range from the position where the radius R becomes the radius RB to the outer peripheral portion 13, the normal of the pressure surface 15 is the pressure side so as to be away from the rotation axis 3 in at least a partial range including the outer peripheral portion 13 It may extend from 15 in the rotational direction.
 次に、後縁部12における角度φと半径Rとの関係を説明する。
 上述のように、一般的に、軸流送風機の羽根車においては、翼間を流れる気流は、遠心力の影響によって外周側へ流れていく傾向がある。このため、正圧面15において外周側を向いている範囲が多くなりすぎると、羽根車1の仕事量が低下してしまう。翼10によって空気を押し、該空気に力を加えようとした際、空気が羽根車1の外周側へ逃げてしまい、空気に加える力が低下するからである。ここで、図8を参照するとわかるように、ボス部2周辺の乱れた気流50によって発生する流れの剥離は、翼10の前縁部11側で発生する。すなわち、翼10の後縁部12側は、ボス部2周辺の乱れた気流50による影響が少ない。このため、本実施の形態2では、図17に示すように、各翼10の後縁部12は、内周部14から外周部13までの全域にわたって、角度φが90度よりも小さくなっている。すなわち、各翼10の後縁部12は、内周部14から外周部13までの全域にわたって、回転軸3に近づくように、正圧面15の法線が正圧面15から回転方向に延びている。換言すると、各翼10の後縁部12は、内周部14から外周部13までの全域にわたって、正圧面15が内側を向いている。このように構成することにより、羽根車1の仕事量を増大させることができる。具体的には、翼10のそれぞれは、後縁部12から以下の図18に示す範囲において、内周部14から外周部13までの全域にわたって、正圧面15が内側を向いている。
Next, the relationship between the angle φ at the rear edge 12 and the radius R will be described.
As described above, generally, in the impeller of an axial flow fan, the air flow flowing between the blades tends to flow to the outer peripheral side due to the influence of the centrifugal force. For this reason, if the range which faces the outer peripheral side in the pressure surface 15 increases too much, the amount of work of the impeller 1 will fall. When the air is pushed by the wing 10 to apply a force to the air, the air escapes to the outer peripheral side of the impeller 1 and the force applied to the air decreases. Here, as can be seen with reference to FIG. 8, the separation of the flow generated by the turbulent air flow 50 around the boss 2 occurs on the front edge 11 side of the wing 10. That is, the trailing edge 12 side of the wing 10 is less affected by the turbulent air flow 50 around the boss 2. For this reason, in the second embodiment, as shown in FIG. 17, the trailing edge 12 of each wing 10 has an angle φ smaller than 90 degrees over the entire area from the inner circumferential portion 14 to the outer circumferential portion 13 There is. That is, the normal surface of the pressure surface 15 extends from the pressure surface 15 in the rotational direction so that the trailing edge 12 of each wing 10 approaches the rotation shaft 3 over the entire area from the inner circumferential portion 14 to the outer circumferential portion 13 . In other words, the pressure surface 15 of the trailing edge 12 of each wing 10 faces inward over the entire area from the inner circumferential portion 14 to the outer circumferential portion 13. By configuring in this manner, the amount of work of the impeller 1 can be increased. Specifically, in each of the wings 10, the pressure surface 15 faces inward over the entire area from the inner peripheral portion 14 to the outer peripheral portion 13 in the range shown from the rear edge 12 to the following FIG.
 図18は、本発明の実施の形態2に係る翼における、角度φと半径Rとの関係を示す図である。なお、図18では、半径Rを、半径比と称する無次元数で表している。詳しくは、図18では、内周部14の位置の半径Rが、「0.0」となっている。また、図18では、外周部13の位置の半径Rが、「1.0」となっている。また、図18に示す曲線C,D,Eは、翼10の翼弦線方向の異なる位置を示している。詳しくは、翼10の翼弦線方向の各位置を無次元数で表すとする。そして、後縁部12の位置を0.0とし、前縁部11の位置を1.0とする。このように定義した場合、曲線Cは、翼弦線方向の位置が0.7となる位置を示している。曲線Dは、翼弦線方向の位置が0.6となる位置を示している。曲線Eは、翼弦線方向の位置が0.5となる位置を示している。 FIG. 18 is a view showing the relationship between the angle φ and the radius R in the wing according to Embodiment 2 of the present invention. In FIG. 18, the radius R is represented by a dimensionless number called a radius ratio. Specifically, in FIG. 18, the radius R of the position of the inner circumferential portion 14 is “0.0”. Further, in FIG. 18, the radius R of the position of the outer peripheral portion 13 is “1.0”. Curves C, D, E shown in FIG. 18 indicate different positions in the chord line direction of the wing 10. Specifically, each position in the chord line direction of the wing 10 is represented by a dimensionless number. Then, the position of the rear edge 12 is 0.0, and the position of the front edge 11 is 1.0. In this definition, the curve C indicates a position where the position in the chord line direction is 0.7. A curve D indicates a position at which the position in the chord line direction is 0.6. A curve E indicates a position at which the position in the chord line direction is 0.5.
 図18からわかるように、曲線C、曲線D及び曲線Eと見ていくにつれて、角度φの値が小さくなっている。すなわち、翼弦線方向の位置の値が小さくなるにつれて、角度φが90度よりも小さくなっている。そして、翼弦線方向の位置が0.5となる位置を示す曲線Eは、内周部14から外周部13の全域において、角度φが90度よりも小さくなっている。すなわち、翼弦線方向の位置が0.5以下となっている範囲では、角度φが90度よりも小さくなっている。換言すると、翼弦線方向の位置が0.5以下となっている範囲では、回転軸3に近づくように、正圧面15の法線が正圧面15から回転方向に延びている。すなわち、翼弦線方向の位置が0.5以下となっている範囲では、回転軸3に近づくように、正圧面15の法線が正圧面15から回転方向に延びている。換言すると、翼弦線方向の位置が0.5以下となっている範囲では、正圧面15が内側を向いている。すなわち、各翼10の正圧面15は、翼弦線方向の中心位置から後縁部12側において、内周部14から外周部13までの全域にわたって、正圧面15が内側を向いている。 As can be seen from FIG. 18, as the curves C, D and E are viewed, the value of the angle φ decreases. That is, as the value of the position in the chord line direction decreases, the angle φ is smaller than 90 degrees. The curve E indicating the position where the position in the chord line direction is 0.5 is smaller than 90 degrees in the entire area from the inner circumferential portion 14 to the outer circumferential portion 13. That is, in the range in which the position in the chord line direction is 0.5 or less, the angle φ is smaller than 90 degrees. In other words, in the range in which the position in the chord line direction is 0.5 or less, the normal to the pressure surface 15 extends from the pressure surface 15 in the rotational direction so as to approach the rotation axis 3. That is, in the range where the position in the chord line direction is 0.5 or less, the normal to pressure surface 15 extends from pressure surface 15 in the rotational direction so as to approach rotation axis 3. In other words, in the range where the position in the chord line direction is 0.5 or less, the pressure surface 15 faces inward. That is, the pressure surfaces 15 of the pressure surfaces 15 of each wing 10 face inward over the entire area from the inner peripheral portion 14 to the outer peripheral portion 13 on the rear edge 12 side from the center position in the chord line direction.
 続いて、本実施の形態2に係る羽根車1が、翼10の外周部13近傍において翼端渦57の発生を抑制できる理由について説明する。なお、以下ではまず、従来の軸流送風機の羽根車に発生する翼端渦57について説明する。そして、その後に、羽根車1に発生する翼端渦57について説明する。 Subsequently, the reason why the impeller 1 according to the second embodiment can suppress the generation of the wing tip vortex 57 in the vicinity of the outer peripheral portion 13 of the wing 10 will be described. In the following, first, the tip vortices 57 generated in the impeller of the conventional axial flow fan will be described. And then, the wing tip vortex 57 generated in the impeller 1 will be described.
 図19は、従来の軸流送風機の羽根車を示す斜視図である。なお、図19に示す白抜き矢印は、従来の羽根車101が回転した際の全体的な空気の流れ方向を示している。また、図19に示す太線の矢印は、従来の羽根車101の回転方向を示している。また、図19では、従来の羽根車101が有する複数の翼110のうち、一部の翼110の図示を省略している。 FIG. 19 is a perspective view showing an impeller of a conventional axial flow fan. In addition, the white arrow shown in FIG. 19 has shown the general flow direction of air at the time of the conventional impeller 101 rotating. Further, thick-line arrows shown in FIG. 19 indicate the rotation direction of the conventional impeller 101. Moreover, in FIG. 19, illustration of some wing | blades 110 is abbreviate | omitted among the some wing | blades 110 which the conventional impeller 101 has.
 上述のように、翼の正圧面が内側を向いている場合、翼の正圧面が外周側を向いている場合と比べ、静圧が上昇しやすい。すなわち、翼の正圧面が内側を向いている場合、翼の正圧面が外周側を向いている場合と比べ、正圧面と負圧面との圧力差が大きくなる。そして、翼の外周部において、正圧面と負圧面との圧力差が大きくなると、正圧面側から負圧面側へ空気が流れ込もうとし、翼端渦が発生する。 As described above, when the pressure surface of the blade faces inward, the static pressure is likely to increase as compared to the case where the pressure surface of the blade faces the outer peripheral side. That is, when the pressure surface of the blade faces inward, the pressure difference between the pressure surface and the suction surface is larger than when the pressure surface of the blade faces the outer peripheral side. Then, when the pressure difference between the positive pressure surface and the negative pressure surface increases in the outer peripheral portion of the blade, air tends to flow from the positive pressure surface side to the negative pressure surface side, generating wing tip vortices.
 ここで、従来の羽根車101においては、各翼110の正圧面の外周部113は、前縁部111から後縁部112までの全域において、内側を向いている。すなわち、従来の羽根車101においては、各翼110の正圧面の外周部113は、前縁部111から後縁部112までの全域において、正圧面と負圧面との圧力差が大きくなっている。このため、従来の羽根車101の各翼110の外周部113では、前縁部111から翼端渦57が発生する。そして、この翼端渦57は、後縁部112に向かうにしたがって成長し、大きくなっていく。このため、従来の羽根車101は、この大きく成長した翼端渦57によって翼110間の流路が塞がれ、効率が低下してしまう。 Here, in the conventional impeller 101, the outer peripheral portion 113 of the pressure surface of each wing 110 faces inward in the entire region from the front edge portion 111 to the rear edge portion 112. That is, in the conventional impeller 101, the pressure difference between the pressure surface and the suction surface is large in the entire area from the front edge portion 111 to the rear edge portion 112 in the outer peripheral portion 113 of the pressure surface of each wing 110 . For this reason, at the outer peripheral portion 113 of each blade 110 of the conventional impeller 101, a wingtip vortex 57 is generated from the front edge portion 111. Then, the wing tip vortex 57 grows and becomes larger as it goes to the trailing edge 112. Therefore, in the conventional impeller 101, the flow path between the blades 110 is blocked by the large grown tip vortices 57, and the efficiency is reduced.
 一方、本実施の形態2に係る羽根車1の各翼10における正圧面15の外周部13は、前縁部11では、正圧面15が外周側を向いている。このため、図14に示すように、本実施の形態2に係る羽根車1の各翼10の外周部13では、正圧面15が外周側を向いている領域において翼端渦57が発生しない。そして、外周部13において正圧面15が内側を向く領域になると、翼端渦57が発生し始める。このため、本実施の形態2に係る羽根車1は、翼端渦57の発生を遅らせることができ、翼端渦57の成長を抑制できる。したがって、本実施の形態2に係る羽根車1は、翼端渦57によって塞がれる翼10間の流路の領域が減少する。このため、本実施の形態2に係る羽根車1は、従来の羽根車101と比べ、多くの空気が翼10間に流入することができ、効率が向上する。 On the other hand, the outer peripheral portion 13 of the positive pressure surface 15 of each blade 10 of the impeller 1 according to the second embodiment has the positive pressure surface 15 facing the outer peripheral side at the front edge portion 11. For this reason, as shown in FIG. 14, in the outer peripheral portion 13 of each blade 10 of the impeller 1 according to Embodiment 2, the wing tip vortex 57 is not generated in the region where the pressure surface 15 faces the outer peripheral side. Then, in the region where the pressure surface 15 faces inward in the outer peripheral portion 13, the tip vortices 57 begin to be generated. Therefore, the impeller 1 according to the second embodiment can delay the generation of the wingtip vortex 57 and can suppress the growth of the wingtip vortex 57. Therefore, in the impeller 1 according to the second embodiment, the area of the flow passage between the blades 10 closed by the wing tip vortex 57 is reduced. For this reason, in the impeller 1 according to the second embodiment, more air can flow between the blades 10 than in the conventional impeller 101, and the efficiency is improved.
 また、外周部13において正圧面15が外周側を向く構成とすることにより、次のような効果を得ることもできる。 In addition, the following effects can be obtained by configuring the pressure surface 15 in the outer peripheral portion 13 to face the outer peripheral side.
 図20は、本発明の実施の形態2に係る軸流送風機の吹出側の風速分布を示す図である。詳しくは、図20の縦軸は、軸流送風機100の吹出側の風速を示している。また、図20の横軸は、羽根車1の回転軸3からの距離を示している。なお、図20の横軸では、羽根車1の回転軸3からの距離を、距離比と称する無次元数で表している。詳しくは、図20では、回転軸3から翼10の内周部14までの距離が、「0.3」となっている。また、図20では、回転軸3からケーシング20のベルマウス21の内周壁までの距離が、「1.0」となっている。 FIG. 20 is a diagram showing the wind speed distribution on the outlet side of the axial flow fan according to Embodiment 2 of the present invention. Specifically, the vertical axis in FIG. 20 indicates the wind speed on the outlet side of the axial flow fan 100. The horizontal axis in FIG. 20 indicates the distance from the rotation axis 3 of the impeller 1. In the horizontal axis of FIG. 20, the distance from the rotation axis 3 of the impeller 1 is represented by a dimensionless number called a distance ratio. Specifically, in FIG. 20, the distance from the rotation axis 3 to the inner circumferential portion 14 of the wing 10 is “0.3”. Moreover, in FIG. 20, the distance from the rotating shaft 3 to the inner peripheral wall of the bell mouth 21 of the casing 20 is "1.0".
 従来の軸流送風機では、翼の外周部とベルマウスの内周壁との間において、空気が逆流しようとし、漏れ渦が発生していた。このため、従来の軸流送風機では、翼の外周部とベルマウスの内周壁との間において、吹出側の風速が低下していた。一方、本実施の形態2に係る軸流送風機100においては、羽根車1の各翼10は、外周部13において正圧面15が外周側を向いている。このため、翼10の外周部13から吹き出される気流は、従来よりも外周側を向くこととなり、ベルマウス21の内周壁に衝突することとなる。これにより、本実施の形態2に係る軸流送風機100は、翼10の外周部13とベルマウス21の内周壁との間において漏れ渦が発生することを防止できる。このため、図20に示すように、本実施の形態2に係る軸流送風機100は、吹出側の風速分布を従来よりも均一にすることができる。 In the conventional axial flow fan, air tends to flow backward between the outer peripheral portion of the wing and the inner peripheral wall of the bell mouth, and a leakage vortex is generated. For this reason, in the conventional axial flow fan, the wind speed on the blowing side is reduced between the outer peripheral portion of the wing and the inner peripheral wall of the bell mouth. On the other hand, in the axial flow fan 100 according to the second embodiment, the positive pressure surface 15 of the blades 10 of the impeller 1 faces the outer peripheral side at the outer peripheral portion 13. Therefore, the air flow blown out from the outer peripheral portion 13 of the wing 10 is directed to the outer peripheral side more than the conventional one, and collides with the inner peripheral wall of the bell mouth 21. Thus, the axial flow fan 100 according to the second embodiment can prevent the occurrence of leakage vortex between the outer peripheral portion 13 of the wing 10 and the inner peripheral wall of the bell mouth 21. For this reason, as shown in FIG. 20, the axial flow fan 100 according to the second embodiment can make the wind speed distribution on the blowout side more uniform than in the prior art.
 なお、実施の形態1及び本実施の形態2で示した羽根車1の翼10のそれぞれは、ボス部2の外周壁から、回転軸を中心とする仮想円の径方向よりも翼10の回転方向側に傾いて突出している。しかしながら、従来の軸流送風機の羽根車においては、翼のそれぞれが、ボス部の外周壁から回転軸を中心とする仮想円の径方向よりも翼の回転方向とは反対側に傾いて突出しているものも提案されている。実施の形態1及び本実施の形態で示した羽根車1の翼10のそれぞれをこのような構成としても、上述の効果を得ることができる。 Note that each of the blades 10 of the impeller 1 shown in Embodiment 1 and Embodiment 2 rotates the blade 10 from the outer peripheral wall of the boss portion 2 more than in the radial direction of a virtual circle centered on the rotation axis. Protrusively inclined to the direction side. However, in the impeller of the conventional axial flow fan, each of the blades is projected from the outer peripheral wall of the boss portion in a direction opposite to the rotational direction of the blade with respect to the radial direction of the imaginary circle centered on the rotation axis. Some are also proposed. Even when each of the wings 10 of the impeller 1 shown in the first embodiment and the present embodiment has such a configuration, the above-described effect can be obtained.
 また、実施の形態1及び本実施の形態2で示した羽根車1は、軸流送風機用の羽根車となっていた。これに限らず、羽根車1の翼10の構成を、斜流送風機用の羽根車の翼に採用してもよい。斜流送風機用の羽根車の翼に翼10の構成を採用しても、上述の効果を得ることができる。例えば、ボス部2を円錐台形状とし、該ボス部2の外周壁に各翼10を設けることにより、軸流送風機用の羽根車とすることができる。 Moreover, the impeller 1 shown in Embodiment 1 and this Embodiment 2 was an impeller for axial flow fans. Not limited to this, the configuration of the wing 10 of the impeller 1 may be adopted to the wing of an impeller for a mixed flow fan. Even if the configuration of the wing 10 is adopted for the blade of an impeller for a mixed flow fan, the above-mentioned effect can be obtained. For example, by forming the boss portion 2 in a truncated cone shape and providing the wings 10 on the outer peripheral wall of the boss portion 2, an impeller for an axial flow fan can be obtained.
実施の形態3.
 本実施の形態3では、実施の形態1又は実施の形態2で示した軸流送風機100が搭載された空気調和装置の一例について説明する。換言すると、本実施の形態3では、実施の形態1又は実施の形態2で示した羽根車1が搭載された空気調和装置の一例について説明する。詳しくは、以下では、軸流送風機100を空気調和装置の室内機200に搭載した例について説明する。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Third Embodiment
In the third embodiment, an example of an air conditioner on which the axial flow fan 100 described in the first embodiment or the second embodiment is mounted will be described. In other words, in the third embodiment, an example of the air conditioner on which the impeller 1 shown in the first embodiment or the second embodiment is mounted will be described. In the following, an example in which the axial flow fan 100 is mounted on the indoor unit 200 of the air conditioner will be described in detail. In the third embodiment, items not particularly described are assumed to be the same as in the first embodiment or the second embodiment, and the same functions and configurations are described using the same reference numerals.
 図21は、本発明の実施の形態3に係る空気調和装置の一例を示す縦断面図である。なお、図21では、図の左側を室内機200の前面側として示している。
 室内機200は、筐体203を備えている。筐体203の上部には、室内空気を該筐体203の内部に吸込むための吸込口201が形成されている。また、筐体203の下部、より詳しくは筐体203の前面部下側には、空調空気を空調対象域に供給するための吹出口202が形成されている。吹出口202には、気流の吹出し方向を制御する機構、例えばベーン202a等が設けられている。
FIG. 21 is a longitudinal sectional view showing an example of the air conditioning apparatus according to Embodiment 3 of the present invention. In FIG. 21, the left side of the drawing is shown as the front side of the indoor unit 200.
The indoor unit 200 includes a housing 203. In the upper part of the housing 203, a suction port 201 for sucking room air into the housing 203 is formed. Further, an air outlet 202 for supplying the conditioned air to the air conditioning target area is formed at the lower part of the housing 203, more specifically, below the front surface of the housing 203. The blowout port 202 is provided with a mechanism for controlling the blowout direction of the air flow, such as a vane 202a.
 また、筐体203の内部には、吸込口201から吹出口202に至る風路内に、軸流送風機100及び熱交換器204が設けられている。軸流送風機100は、吸込口201の下流側でかつ、熱交換器204の上流側に配置されている。なお、軸流送風機100は、室内機200に要求される風量等に応じて、筐体203の長手方向(紙面直交方向)に複数個、並列配置される。熱交換器204は、室内空気と、熱交換器204の内部を流れる冷媒とを熱交換させ、空調空気を作り出すものである。 Further, an axial flow fan 100 and a heat exchanger 204 are provided in the air path from the suction port 201 to the blowout port 202 inside the housing 203. The axial flow fan 100 is disposed downstream of the suction port 201 and upstream of the heat exchanger 204. A plurality of axial flow fans 100 are arranged in parallel in the longitudinal direction of the housing 203 (in the direction orthogonal to the sheet) according to the air volume etc. required of the indoor unit 200. The heat exchanger 204 exchanges heat between room air and the refrigerant flowing inside the heat exchanger 204 to create conditioned air.
 軸流送風機100の羽根車1が回転すると、室内空気は、吸込口201から筐体203内に取り込まれる。この室内空気は、熱交換器204を通過する際に冷媒と熱交換し、加熱又は冷却され、空調空気となる。この空調空気は、筐体203の下部の吹出口202から空調対象域に吹出される。 When the impeller 1 of the axial flow fan 100 rotates, room air is taken into the housing 203 from the suction port 201. The room air exchanges heat with the refrigerant when passing through the heat exchanger 204, and is heated or cooled to become conditioned air. The conditioned air is blown out from the blowout port 202 in the lower part of the housing 203 to the air conditioning target area.
 上述のように、実施の形態1及び実施の形態2で示した羽根車1は、従来よりも低騒音となっている。すなわち、実施の形態1及び実施の形態2で示した軸流送風機100は、従来よりも低騒音となっている。したがって、実施の形態1又は実施の形態2で示した軸流送風機100を備える室内機200は、従来よりも騒音を抑制することができる。 As described above, the impeller 1 shown in Embodiment 1 and Embodiment 2 has lower noise than conventional. That is, the axial flow fan 100 shown in Embodiment 1 and Embodiment 2 has lower noise than conventional. Therefore, the indoor unit 200 equipped with the axial flow fan 100 shown in the first embodiment or the second embodiment can suppress noise more than conventional.
 また、上述のように、実施の形態1及び実施の形態2で示した羽根車1は、従来よりも高効率となっている。すなわち、実施の形態1及び実施の形態2で示した軸流送風機100は、従来よりも高効率となっている。したがって、実施の形態1又は実施の形態2で示した軸流送風機100を備える室内機200は、従来よりも電力効率を向上させることができる。 Further, as described above, the impeller 1 shown in the first embodiment and the second embodiment is more efficient than the conventional one. That is, the axial flow fan 100 shown in Embodiment 1 and Embodiment 2 has higher efficiency than that of the conventional case. Therefore, the indoor unit 200 equipped with the axial flow fan 100 shown in the first embodiment or the second embodiment can improve the power efficiency more than the conventional one.
 また、実施の形態2で示した軸流送風機100は、吹出側の風速分布を従来よりも均一にすることができる。このため、実施の形態2で示した軸流送風機100は、熱交換器204等によって圧力損失が高くなる筐体203内に空気を流す場合においても、風速分布のばらつきに起因する送風性能の低下を抑制できる。したがって、実施の形態2で示した軸流送風機100を備える室内機200は、実施の形態1で示した軸流送風機100を備える室内機200と比べ、電力効率をさらに向上させることができる。 Moreover, the axial flow fan 100 shown in Embodiment 2 can make the wind speed distribution on the outlet side more uniform than that in the related art. Therefore, in the axial flow fan 100 shown in the second embodiment, even when air flows in the housing 203 where the pressure loss is high due to the heat exchanger 204 etc., the air flow performance is deteriorated due to the variation of the wind speed distribution. Can be suppressed. Therefore, the indoor unit 200 including the axial flow fan 100 described in the second embodiment can further improve the power efficiency as compared with the indoor unit 200 including the axial flow fan 100 described in the first embodiment.
 1 羽根車、2 ボス部、3 回転軸、10 翼、11 前縁部、12 後縁部、13 外周部、13a 前端部、13b 後端部、14 内周部、14a 前端部、14b 後端部、15 正圧面、16 負圧面、20 ケーシング、21 ベルマウス、30 仮想円、31 第1交点、32 第2交点、41 第1仮想直線、42 第2仮想直線、50 気流、51 渦、52 高速流れ、53 渦、54 付着点、55 気流、56 気流、57 翼端渦、58 気流、59 気流、60 気流、100 軸流送風機、101 羽根車(従来)、102 ボス部(従来)、103 回転軸(従来)、110 翼(従来)、111 前縁部(従来)、111a 接線方向(従来)、112 後縁部(従来)、113 外周部(従来)、115 正圧面(従来)、200、室内機、201 吸込口、202 吹出口、202a ベーン、203 筐体、204 熱交換器。 1 impeller, 2 bosses, 3 rotating shafts, 10 wings, 11 front edges, 12 rear edges, 13 outer peripherals, 13a front end, 13b rear ends, 14 inner peripherals, 14a front ends, 14b rear ends Part 15, 15 pressure surface, 16 suction surface, 20 casing, 21 bell mouth, 30 virtual circle, 31 first intersection, 32 second intersection, 41 first virtual straight line, 42 second virtual straight line, 50 air flow, 51 vortex, 52 High-speed flow, 53 vortices, 54 attached points, 55 air currents, 56 air currents, 57 wing tip vortices, 58 air currents, 59 air currents, 60 air currents, 100 axial flow fans, 101 impellers (conventional), 102 bosses (conventional), 103 Axis of rotation (conventional), 110 wings (conventional), 111 front edge (conventional), 111a tangential direction (conventional), 112 rear edge (conventional), 113 outer peripheral part (conventional), 15 pressure side (prior art), 200, indoor unit, 201 inlet, 202 outlet, 202a vane, 203 housing, 204 heat exchanger.

Claims (11)

  1.  回転軸を中心に回転するボス部と、
     前記ボス部の外周壁に設けられ、前記ボス部と共に前記回転軸を中心に回転する複数の翼と、
     を備え、
     前記翼のそれぞれは、
     これら前記翼の回転方向の前側の縁部である前縁部と、前記回転方向の後ろ側の縁部である後縁部と、外周側の縁部である外周部と、内周側の縁部である内周部と、
     を有し、
     前記回転軸を中心とする半径Rの円を仮想円と定義し、
     前記回転軸と垂直な平面に前記ボス部及び前記翼を投影した形状において、
     前記前縁部と前記仮想円との交点を第1交点、
     前記後縁部と前記仮想円との交点を第2交点、
     同一の前記翼における前記第1交点から前記第2交点までの前記仮想円の円弧の長さを第1翼長L1、
     任意の前記翼の前記第1交点から該翼と隣接する前記翼の前記第1交点までの前記仮想円の円弧の長さを翼間距離t、
     投影距離比σをσ=L1/t、
     と定義した場合、
     前記投影距離比σは、
     前記内周部から前記半径Rが半径RAとなる位置まで減少し、
     前記半径Rが前記半径RAとなる位置で第1極小値を有し、
     前記半径Rが前記半径RAとなる位置から、前記半径Rが前記半径RAよりも大きな半径RMとなる位置まで増加し、
     前記半径Rが前記半径RMとなる位置で極大値を有し、
     前記半径Rが前記半径RMとなる位置から、前記半径Rが前記半径RMよりも大きな半径RBとなる位置まで減少し、
     前記半径Rが前記半径RBとなる位置で第2極小値を有し、
     前記半径Rが前記半径RBとなる位置から、前記外周部にかけて増加する構成であり、
     前記内周部と前記半径RAとの中間位置となる前記半径Rを半径RC、
     前記半径RAと前記半径RMとの中間位置となる前記半径Rを半径RD、
     前記半径RMと前記半径RBとの中間位置となる前記半径Rを半径RE、
     前記半径RBと前記外周部との中間位置となる前記半径Rを半径RF、
     前記半径RC以上で前記半径RD以下の値となる前記半径Rを半径RG、
     前記半径RE以上で前記半径RF以下の値となる前記半径Rを半径RH、
     前記翼の子午面形状において、前記半径Rの位置における前記前縁部から前記後縁部までの前記回転軸と平行な方向の距離を第2翼長L2、
     と定義した場合、
     前記半径Rに対する前記第2翼長L2の比であるL2/Rは、
     前記内周部から前記半径Rが前記半径RGとなる位置まで増加し、
     前記半径Rが前記半径RGとなる位置で極大値を有し、
     前記半径Rが前記半径RGとなる位置から、前記半径Rが前記半径RHとなる位置まで減少し、
     前記半径Rが前記半径RHとなる位置で極小値を有し、
     前記半径Rが前記半径RHとなる位置から前記外周部にかけて増加する構成である羽根車。
    A boss that rotates around a rotation axis,
    A plurality of wings provided on an outer peripheral wall of the boss portion and rotating around the rotation axis with the boss portion;
    Equipped with
    Each of the wings is
    The front edge which is the front edge in the rotational direction of the wing, the rear edge which is the rear edge in the rotational direction, the outer periphery which is the outer periphery and the edge which is the inner periphery The inner circumference, which is
    Have
    Define a circle of radius R centered on the rotation axis as a virtual circle,
    In a shape in which the boss and the wing are projected on a plane perpendicular to the rotation axis,
    A first intersection point of the front edge and the imaginary circle
    A second point of intersection between the trailing edge and the imaginary circle
    The length of the arc of the virtual circle from the first intersection to the second intersection in the same wing is a first wing length L1,
    The length of the arc of the imaginary circle from the first intersection point of any of the wings to the first intersection point of the wings adjacent to the wing is the wing spacing t,
    The projection distance ratio σ is σ = L1 / t,
    If you define
    The projection distance ratio σ is
    It decreases from the inner periphery to a position where the radius R becomes the radius RA,
    It has a first minimum value at a position where the radius R is the radius RA,
    From a position where the radius R is the radius RA to a position where the radius R is a radius RM larger than the radius RA,
    It has a maximum value at a position where the radius R is the radius RM,
    From a position where the radius R is the radius RM to a position where the radius R is the radius RB larger than the radius RM,
    Has a second minimum value at a position where the radius R is the radius RB,
    The configuration is such that the radius R increases from the position where the radius R becomes the radius RB to the outer peripheral portion,
    The radius R, which is an intermediate position between the inner circumferential portion and the radius RA, is a radius RC,
    The radius R, which is an intermediate position between the radius RA and the radius RM, is a radius RD,
    The radius R which is an intermediate position between the radius RM and the radius RB is a radius RE,
    The radius R, which is an intermediate position between the radius RB and the outer peripheral portion, is a radius RF,
    The radius R is a radius RG, which is a value equal to or less than the radius RC and equal to or less than the radius RD
    The radius R is a radius RH, which is a value not less than the radius RF and not less than the radius RE.
    In the meridional shape of the wing, a distance in a direction parallel to the rotation axis from the front edge to the rear edge at the radius R is a second wing length L2,
    If you define
    The ratio L2 / R, which is the ratio of the second wing length L2 to the radius R, is:
    The radius R increases from the inner circumferential portion to a position where it becomes the radius RG,
    It has a maximum value at a position where the radius R is the radius RG,
    From a position where the radius R is the radius RG to a position where the radius R is the radius RH,
    It has a local minimum at a position where the radius R is the radius RH,
    An impeller having a configuration in which the radius R increases from a position where the radius R becomes the radius RH to the outer peripheral portion.
  2.  前記半径Rを無次元数で表し、前記内周部の位置を0.0とし、前記外周部の位置を1.0とした場合、
     前記半径RAは、0.2以上で0.3以下の範囲内となり、
     前記半径RMは、0.45以上で0.55以下の範囲内となり、
     前記半径RBは、0.7以上で0.8以下の範囲内となる請求項1に記載の羽根車。
    When the radius R is represented by a dimensionless number, the position of the inner peripheral portion is 0.0, and the position of the outer peripheral portion is 1.0,
    The radius RA is in the range of 0.2 or more and 0.3 or less,
    The radius RM is in the range of not less than 0.45 and not more than 0.55,
    The impeller according to claim 1, wherein the radius RB is in the range of 0.7 or more and 0.8 or less.
  3.  前記半径Rを無次元数で表し、前記内周部の位置を0.0とし、前記外周部の位置を1.0とした場合、
     前記半径RGは、0.15以上で0.25以下の範囲内となり、
     前記半径RHは、0.7以上で0.8以下の範囲内となる請求項1又は請求項2に記載の羽根車。
    When the radius R is represented by a dimensionless number, the position of the inner peripheral portion is 0.0, and the position of the outer peripheral portion is 1.0,
    The radius RG is in the range of 0.15 or more and 0.25 or less,
    The impeller according to claim 1 or 2, wherein the radius RH is in the range of 0.7 or more and 0.8 or less.
  4.  前記回転軸と垂直な平面に前記ボス部及び前記翼を投影した形状において、
     前記翼のそれぞれは、
     前記ボス部の外周壁から前記仮想円の径方向よりも前記回転方向側に傾いて突出している、あるいは、前記ボス部の外周壁から前記径方向よりも前記回転方向とは反対側に傾いて突出している請求項1~請求項3のいずれか一項に記載の羽根車。
    In a shape in which the boss and the wing are projected on a plane perpendicular to the rotation axis,
    Each of the wings is
    Protruding from the outer peripheral wall of the boss toward the rotational direction more than the radial direction of the virtual circle, or from the outer peripheral wall of the boss toward the opposite side of the rotational direction than the radial The impeller according to any one of claims 1 to 3, which protrudes.
  5.  前記半径RMの位置における前記投影距離比σは、0.9以上で1.0未満となり、
     前記半径RBの位置における前記投影距離比σは、0.6以上となる請求項1~請求項4のいずれか一項に記載の羽根車。
    The projection distance ratio σ at the position of the radius RM is less than 1.0 at 0.9 or more,
    The impeller according to any one of claims 1 to 4, wherein the projection distance ratio σ at the position of the radius RB is 0.6 or more.
  6.  前記翼のそれぞれは、
     正圧面を有し、
     前記前縁部では、
     前記内周部から前記半径Rが前記半径RAとなる範囲のうち、前記内周部を含む少なくとも一部の範囲においては、前記回転軸から離れるように、前記正圧面の法線が前記正圧面から前記回転方向に延びており、
     前記半径Rが前記RMの位置においては、前記回転軸に近づくように、前記正圧面の法線が前記正圧面から前記回転方向に延びており、
     前記半径Rが前記半径RBとなる位置から前記外周部までの範囲のうち、前記外周部を含む少なくとも一部の範囲においては、前記回転軸から離れるように、前記正圧面の法線が前記正圧面から前記回転方向に延びており、
     前記後縁部では、
     前記回転軸に近づくように、前記正圧面の法線が前記正圧面から前記回転方向に延びている請求項1~請求項5のいずれか一項に記載の羽根車。
    Each of the wings is
    Have a positive pressure surface,
    At the leading edge,
    Of the range from the inner periphery to the radius RA, at least a partial range including the inner periphery, the normal to the pressure surface is the pressure surface so as to be away from the rotation axis Extends in the direction of rotation from
    The normal surface of the pressure surface extends from the pressure surface in the rotational direction so that the radius R approaches the rotation axis at the position of the RM.
    In the range from the position where the radius R becomes the radius RB to the outer peripheral portion, at least a partial range including the outer peripheral portion, the normal to the positive pressure surface is the positive surface so as to be away from the rotation axis It extends in the direction of rotation from the pressure surface,
    At the trailing edge,
    The impeller according to any one of claims 1 to 5, wherein a normal to the pressure surface extends in the rotational direction from the pressure surface so as to approach the rotation axis.
  7.  前記翼の翼弦線方向の各位置を無次元数で表し、前記後縁部の位置を0.0とし、前記前縁部の位置を1.0とした場合、
     前記翼のそれぞれは、前記翼弦線方向の位置が0.5以下となっている範囲では、前記回転軸に近づくように、前記正圧面の法線が前記正圧面から前記回転方向に延びている請求項6に記載の羽根車。
    Assuming that each position in the chord line direction of the wing is represented by a dimensionless number, the position of the trailing edge is 0.0, and the position of the leading edge is 1.0.
    In each of the wings, a normal line of the positive pressure surface extends from the positive pressure surface in the rotational direction so as to approach the rotation axis within a range where the position in the chord line direction is 0.5 or less. The impeller according to claim 6.
  8.  前記半径Rを無次元数で表し、前記内周部の位置を0.0とし、前記外周部の位置を1.0とした場合、
     前記翼のそれぞれの前記前縁部では、
     前記半径Rが0.0以上0.15以下となる範囲において、前記回転軸から離れるように、前記正圧面の法線が前記正圧面から前記回転方向に延びており、
     前記半径Rが0.75以上1.0以下となる範囲において、前記回転軸から離れるように、前記正圧面の法線が前記正圧面から前記回転方向に延びている請求項6又は請求項7に記載の羽根車。
    When the radius R is represented by a dimensionless number, the position of the inner peripheral portion is 0.0, and the position of the outer peripheral portion is 1.0,
    At the leading edge of each of the wings:
    The normal surface of the pressure surface extends in the rotational direction from the pressure surface so as to be away from the rotation axis in a range where the radius R is 0.0 or more and 0.15 or less.
    8. The normal surface of the pressure surface extends from the pressure surface in the rotational direction so as to be away from the rotation axis in a range where the radius R is 0.75 or more and 1.0 or less. The impeller described in.
  9.  請求項6~請求項8のいずれか一項に記載の羽根車と、
     ベルマウスが形成され、該ベルマウスの内周側に前記羽根車が配置されたケーシングと、
     を備えた送風機。
    An impeller according to any one of claims 6 to 8;
    A casing in which a bell mouth is formed and in which the impeller is disposed on the inner circumferential side of the bell mouth;
    Blower with.
  10.  請求項1~請求項8のいずれか一項に記載の羽根車と、
     前記羽根車の回転によって供給される空気と、内部を流れる冷媒とを熱交換させる熱交換器と、
     を備えた空気調和装置。
    An impeller according to any one of claims 1 to 8, and
    A heat exchanger that exchanges heat between the air supplied by the rotation of the impeller and the refrigerant flowing therein;
    An air conditioner equipped with
  11.  請求項9に記載の送風機と、
     前記送風機の前記羽根車の回転によって供給される空気と、内部を流れる冷媒とを熱交換させる熱交換器と、
     を備えた空気調和装置。
    A blower according to claim 9;
    A heat exchanger for exchanging heat between air supplied by rotation of the impeller of the blower and refrigerant flowing therein;
    An air conditioner equipped with
PCT/JP2017/029264 2017-08-14 2017-08-14 Impeller, fan, and air conditioning device WO2019035153A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780092953.7A CN110914553B (en) 2017-08-14 2017-08-14 Impeller, blower and air conditioner
PCT/JP2017/029264 WO2019035153A1 (en) 2017-08-14 2017-08-14 Impeller, fan, and air conditioning device
JP2019536356A JP6739656B2 (en) 2017-08-14 2017-08-14 Impeller, blower, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029264 WO2019035153A1 (en) 2017-08-14 2017-08-14 Impeller, fan, and air conditioning device

Publications (1)

Publication Number Publication Date
WO2019035153A1 true WO2019035153A1 (en) 2019-02-21

Family

ID=65362406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029264 WO2019035153A1 (en) 2017-08-14 2017-08-14 Impeller, fan, and air conditioning device

Country Status (3)

Country Link
JP (1) JP6739656B2 (en)
CN (1) CN110914553B (en)
WO (1) WO2019035153A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113906220A (en) * 2019-06-13 2022-01-07 三菱电机株式会社 Axial fan, air supply device, and refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4145000A4 (en) * 2020-04-30 2023-06-28 Mitsubishi Electric Corporation Blower
CN114412835B (en) * 2022-03-31 2022-06-03 佛山市南海九洲普惠风机有限公司 Crescent forward and backward air supply impeller without disassembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304185A (en) * 2000-04-28 2001-10-31 Matsushita Electric Ind Co Ltd Blower impeller and air conditioner provided with the blower impeller
US20050186096A1 (en) * 2004-02-20 2005-08-25 Vinson Wade D. Cooling fan for electronic device
WO2012039092A1 (en) * 2010-09-21 2012-03-29 三菱電機株式会社 Axial flow blower
JP2014501652A (en) * 2010-10-27 2014-01-23 オスマン キュチュク, High efficiency propeller blade with increased pressure side surface
JP2014080970A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Propeller fan and air conditioner including the same
WO2014103702A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Propeller fan, air blowing equipment, outdoor unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2302141B (en) * 1995-06-13 1997-10-22 Lg Electronics Inc Axial flow fan for microwave oven
EP2960525B1 (en) * 2013-02-22 2022-10-19 Hitachi-Johnson Controls Air Conditioning, Inc. Propeller fan and air conditioner equipped with same
JP5980180B2 (en) * 2013-08-08 2016-08-31 三菱電機株式会社 Axial flow fan and air conditioner having the axial flow fan
CN104675757A (en) * 2013-11-28 2015-06-03 上海尧华科技发展有限公司 Impeller damping mechanism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304185A (en) * 2000-04-28 2001-10-31 Matsushita Electric Ind Co Ltd Blower impeller and air conditioner provided with the blower impeller
US20050186096A1 (en) * 2004-02-20 2005-08-25 Vinson Wade D. Cooling fan for electronic device
WO2012039092A1 (en) * 2010-09-21 2012-03-29 三菱電機株式会社 Axial flow blower
JP2014501652A (en) * 2010-10-27 2014-01-23 オスマン キュチュク, High efficiency propeller blade with increased pressure side surface
JP2014080970A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Propeller fan and air conditioner including the same
WO2014103702A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Propeller fan, air blowing equipment, outdoor unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113906220A (en) * 2019-06-13 2022-01-07 三菱电机株式会社 Axial fan, air supply device, and refrigeration cycle device
CN113906220B (en) * 2019-06-13 2023-09-15 三菱电机株式会社 Axial fan, air supply device and refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2019035153A1 (en) 2019-12-12
CN110914553B (en) 2021-02-19
JP6739656B2 (en) 2020-08-12
CN110914553A (en) 2020-03-24

Similar Documents

Publication Publication Date Title
CN108700086B (en) Axial-flow blower and outdoor unit
CN107850083B (en) Blower and air conditioner equipped with same
JP5955402B2 (en) Turbofan and air conditioner
WO2009139422A1 (en) Centrifugal fan
JP6415741B2 (en) Blower and air conditioner equipped with the same
WO2011141964A1 (en) Axial flow blower
JP6377172B2 (en) Outdoor unit for propeller fan, propeller fan device and air conditioner
WO2017026143A1 (en) Blower and air-conditioning device
WO2014162552A1 (en) Propeller fan, blower device, and outdoor equipment
JP6739656B2 (en) Impeller, blower, and air conditioner
JP4818310B2 (en) Axial blower
JP6611676B2 (en) Outdoor unit for blower and refrigeration cycle equipment
JP2012107538A (en) Axial-flow fan or diagonal-flow fan, and air conditioner mounted outdoor unit with the same
WO2022191034A1 (en) Propeller fan and refrigeration device
JP5984162B2 (en) Propeller fan, blower, and outdoor unit
JP7150480B2 (en) Propeller fan and outdoor unit for air conditioner provided with the same
JP2002357194A (en) Cross-flow fan
JP6625291B1 (en) Impeller, blower and air conditioner
JP6692456B2 (en) Outdoor unit of propeller fan and air conditioner
JP2017067056A5 (en)
WO2020161850A1 (en) Centrifugal air blower and air conditioner using same
JP6038320B2 (en) Multi-blade blower
JP6038321B2 (en) Multi-blade blower
JP2013083158A (en) Axial flow fan or diagonal fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921870

Country of ref document: EP

Kind code of ref document: A1