WO2019034489A1 - Entfernung von lipidanschmutzungen - Google Patents

Entfernung von lipidanschmutzungen Download PDF

Info

Publication number
WO2019034489A1
WO2019034489A1 PCT/EP2018/071464 EP2018071464W WO2019034489A1 WO 2019034489 A1 WO2019034489 A1 WO 2019034489A1 EP 2018071464 W EP2018071464 W EP 2018071464W WO 2019034489 A1 WO2019034489 A1 WO 2019034489A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
weight
textile
washing
water
Prior art date
Application number
PCT/EP2018/071464
Other languages
English (en)
French (fr)
Inventor
Alexander Schulz
Michael Dreja
Michael STROTZ
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Publication of WO2019034489A1 publication Critical patent/WO2019034489A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile

Definitions

  • the present invention relates to the use of certain surfactants to improve the removal of greasy or oily stains when washing textiles.
  • the removal of stains on textiles is the primary objective of the textile washing process.
  • surfactants and usually other ingredients such as bleaching agents or enzymes, which are able to remove dirt from the textile or chemically modify dirt constituents, for example by oxidation or enzymatic degradation, so that they themselves easier to detach from the textile.
  • the further improvement of the washing result is the target of manifold efforts.
  • biosurfactants that have increasingly come into focus, especially in recent times because of their fundamentally sustainable occurrence, are so-called biosurfactants.
  • Mannosyl erythritol lipids are compounds in which a mannose unit esterified with at least one fatty acid is glycosidically linked to an erythritol residue.
  • the hydroxyl group on C2 is esterified with octanoic acid
  • the hydroxyl group on C3 with a C12-18 carboxylic acid
  • the hydroxyl groups on C4 and C6 with acetic acid
  • R Cn-17-alkyl.
  • They are obtained from so-called brand mushrooms of the genera Pseudozyma and Ustilago, in particular the fungi Pseudozyma antarctica and Ustilago maydis.
  • Special cultivation and processing strategies for the optimized production of mannosylerythritol lipids by Ustilago maydis mutants which do not produce cellobioselipids are known from Chem. Ing. Tech. 82, 2010, 1215-1221.
  • Mannosylerythritol lipids belong to the so-called biosurfactants because of their surface-active behavior and their origin.
  • mannosylerythritol lipids in the textile laundry contributes to the improvement of the removal of lipid soils, ie contaminants consisting of or containing oils and / or fats.
  • the invention relates to the use of mannosylerythritol lipid of the general formula (I)
  • Ac is an acetyl group and R is a linear or branched-chain hydrocarbon radical having 1 1 to 17 C atoms,
  • Another object of the invention is the use of the above Mannosylerythritollipid to enhance the washing performance of particular liquid hydrous detergents in the washing of textiles against Lipidanschmutzache.
  • mannosylerythritolollipid to a mannosylerythritylipid-free agent or to a wash liquor containing a mannosylerythritolollipid-free agent, the amount of mannosylerythritolollipid added, based on the amount of mannosylerythritolollide-free agent, preferably in the range of 0.0001% by weight. % to 40 wt .-%, in particular from 0.5 wt .-% to 20 wt .-% is.
  • Mannosyl erythritol lipids which can be used according to the invention are commercially available, for example, under the names Ceramela® HG, Ceremela® PX or MELavo®.
  • Mannosyl erythritol lipids or mannosyl erythritol lipid-containing agents can be used as a pretreatment agent for the stain-removing treatment of locally limited polluted textiles, the field of use according to the invention being the removal of lipid stains from textiles.
  • Another object of the invention is therefore a method for removing lipid stains from textiles using mannosylerythritolollipid or a mannosylerythritol lipid-containing agent by contacting the mannosylerythritolollipid or the mannosylerythritol lipid-containing agent with the textile or at least the lipid soiling-carrying part or parts of the textile.
  • Mannosylerythritol lipid contains, undiluted, for example with the aid of a cloth or sponge, on the textile or at least the soiling applied part of the textile, it preferably acts on the textile if desired located on the human body only so long that it does not dry, and it, preferably with the help of a textile cloth, a sponge or a paper towel, removed from the textile. If necessary, you can repeat this procedure. If desired, a period of from 20 seconds to 60 minutes, in particular from 25 seconds to 20 minutes, is preferred as the reaction time.
  • the agent can also be applied in the form of a foam to the textile or the part of the textile to be cleaned.
  • a manually activated spray dispenser in particular selected from the group comprising aerosol spray dispensers, even pressure-building spray dispensers, pump spray dispensers and trigger spray dispensers, is suitable for the latter variant.
  • the removal of the mannosyl erythritol lipid or the textile containing agent from the textile can also be achieved by washing with water, which can be done by machine or preferably manually, or by machine or manual washing of the textile, if desired with the aid of a conventional detergent.
  • Mannosylerythritollipid or mannosylerythritollipid restrooms agent may also be present in solid form.
  • solid mannosyl erythritol lipid-containing agents in the above pretreatment is possible if the agent can be rendered into a flowable form by the addition of water so that it can be applied to the textile or at least the soiled part of the textile.
  • the concentration of mannosylerythritolollipid in the aqueous wash liquor is 0.05 g / l to 5 g / l, in particular 0.1 g / l to 2 g / l.
  • the inventive method and the inventive use is preferably carried out at temperatures in the range of 5 ° C to 95 ° C, in particular 10 ° C to 60 ° C and particularly preferably from 20 ° C to 40 ° C.
  • the process according to the invention and the use according to the invention are preferably carried out at pH values in the range from pH 5 to pH 12, in particular from pH 7 to pH 11.
  • Mannosylerythritollipid usable detergents which may be present as particular powdery solids, in densified particle form, as homogeneous solutions or suspensions may contain all known and customary in such agents ingredients.
  • the agents may in particular be builder substances, surface-active surfactants, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators, polymers with special effects, such as soil release polymers, dye transfer inhibitors, grayness inhibitors, wrinkle-reducing agents. ducating and shape-retaining polymeric active ingredients, and other auxiliaries, such as optical brighteners, foam regulators, dyes and fragrances.
  • the agents may contain one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic and / or amphoteric surfactants may be contained. It is preferred if, in addition to the mannosyl erythritol lipid, the agents contain at least 3, in particular at least 4, further surfactants, it being possible, if desired, for example for 10 further surfactants to be present.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates having linear radicals of alcohols of native origin having 12 to 18 carbon atoms, e.g.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 7 -n-alcohol with 7 EO, cis-is alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 Alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of Ci2-i4-alcohol with 3 EO and Ci2-is-alcohol with 5 EO.
  • the stated degrees of ethoxylation represent statistical averages, which may correspond to a particular product of an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • nonionic surfactants it is also possible to use fatty alcohols with more than 12 EO. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • other nonionic surfactants which can also be employed are alkylglycosides of the general formula R 5 O (G) x in which R 5 is a primary straight-chain or methyl-branched, especially methyl-branched, 2-position aliphatic radical containing 8 to 22, preferably 12 to 18 carbon atoms.
  • R 5 is a primary straight-chain or methyl-branched, especially methyl-branched, 2-position aliphatic radical containing 8 to 22, preferably 12 to 18 carbon atoms.
  • Corresponds to atoms and G is the symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be used.
  • surfactants are polyhydroxy fatty acid amides of the formula
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, with ⁇ -4-alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives thereof residue.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • Preferred surfactants of the sulfonate type are C9-i3-alkylbenzenesulfonates, olefin-sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, such as those obtained from C12-C18-monoolefins having a terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonated takes into account.
  • alkanesulfonates which are obtained from C 12 -alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
  • sulfated fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and mixtures thereof, as obtained in the preparation by esterification of glycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • alkyl sulfates and ether sulfates are alkyl sulfates and ether sulfates.
  • An alkyl sulfate is to be understood as meaning a salt of a sulfuric acid half-ester of an alcohol which has a linear, branched-chain or cyclic saturated hydrocarbon radical having 10 to 22 carbon atoms.
  • a Jacobkation is present, in particular a sodium or potassium ion or an ammonium, alkylammonium or Hydrxyalkylammoniumion.
  • Preferred alcohol radicals are derived from native C 12-18 fatty alcohols, such as coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol, or the C 10 -C 20 oxo alcohols or secondary alcohols of these chain lengths.
  • alkyl sulfates of said chain length which contain a synthetic, straight-chain alkyl radical produced on a petrochemical basis, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • Ci2-Ci6-alkyl sulfates, Ci2-Ci5-alkyl sulfates and Ci4-Ci5-alkyl sulfates are particularly preferred.
  • Ether sulfates are analogous to the alkyl sulfates of sulfuric monoesters of alkoxylated alcohols, the average number of alkoxy groups per alcohol function being generally from 1 to 10, preferably from 3 to 7.
  • Preferred alkoxy groups are the ethoxy group, the propoxy group and mixtures thereof.
  • the sulfuric monoesters of ethoxylated with 1 to 6 moles of ethylene oxide straight or branched C7-21 alcohols such as 2-methyl-branched C9-n-alcohols having an average of 3.5 moles of ethylene oxide (EO) or Ci2-i8 fatty alcohols with 1 up to 4 EO, are suitable.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain Cs -is-fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • anionic surfactants are particularly soaps into consideration.
  • Suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular of natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • cationic active substances for example, cationic compounds of the following formulas can be used:
  • Such surfactants are present in detergents in amounts of preferably from 5% by weight to 50% by weight, in particular from 8% by weight to 30% by weight.
  • Textile softening compounds can be used to care for the textiles and to improve the textile properties such as a softer "feel” (avivage) and reduced electrostatic charge (increased wear comfort) .
  • the active ingredients of these formulations are quaternary ammonium compounds with two hydrophobic radicals, such as Disteraryldime- thylammoniumchlorid, which, however, due to its insufficient biodegradability increasingly replaced by quaternary ammonium compounds containing ester groups in their hydrophobic residues as predetermined breaking points for biodegradation.
  • esters with improved biodegradability are obtainable, for example, by esterifying mixtures of methyldiethanolamine and / or triethanolamine with fatty acids and then quaternizing the reaction products in a manner known per se with alkylating agents.
  • Suitable as a finishing agent is dimethylolethyleneurea.
  • a detergent preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, in particular methylglycinediacetic acid, nitrilotriacetic acid and ethylenediaminetetraacetic acid and polyaspartic acid, polyphosphonic acids, in particular aminotris (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid) and 1-hydroxyethane-1, 1-diphosphonic acid, polymeric hydroxy compounds such as dextrin and polymeric (poly) carboxylic acids, in particular by oxidation of polysaccharides or dextrins accessible polycarboxylates, and / or polymeric acrylic acids, methacrylic acids, maleic acids and copolymers thereof, which also contain polymerized small amounts of polymerizable substances without carb
  • the relative molecular mass of the homopolymers of unsaturated carboxylic acids is generally between 5,000 and 200,000, that of the copolymers between 2,000 and 200,000, preferably 50,000 to 120,000, in each case based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of 50,000 to 100,000.
  • Suitable, although less preferred, compounds of this class are copolymers of acrylic or methacrylic acid with vinyl ethers, such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene, in which the acid content is at least 50% by weight.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C3-C8 carboxylic acid and preferably from a C3-C4 monocarboxylic acid, in particular of (meth) acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C 4 -C 8 -dicarboxylic acid, with maleic acid being particularly preferred, and / or a derivative of an allylsulfonic acid which is substituted in the 2-position by an alkyl or aryl radical.
  • Such polymers generally have a molecular weight between 1,000 and 200,000.
  • Further preferred copolymers are those which have as monomers acrolein and acrylic acid / acrylic acid salts or vinyl acetate.
  • the organic builder substances can be used, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30 to 50 percent by weight aqueous solutions. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight. Quantities in the upper half of said ranges are preferably used in pasty or liquid, in particular water-containing agents.
  • Suitable water-soluble inorganic builder materials are, in particular, polymeric alkali metal phosphates, which may be in the form of their alkaline neutral or acidic sodium or potassium salts. Examples of these are tetrasodium diphosphate, disodium dihydrogen diphosphate, pentasodium triphosphate, so-called sodium hexametaphosphate and the corresponding potassium salts or mixtures of sodium and potassium salts. Crystalline or amorphous alkali metal aluminosilicates, in amounts of up to 50% by weight, preferably not more than 40% by weight, and in liquid agents, in particular from 1% by weight to 5% by weight, are used as water-insoluble, water-dispersible inorganic builder materials.
  • aluminosilicates especially zeolite A, P and optionally X. Quantities close to the stated upper limit are preferably used in solid, particulate agents.
  • suitable aluminosilicates have no particles with a particle size greater than 30 ⁇ m, and preferably consist of at least 80% by weight of particles having a size of less than 10 ⁇ m.
  • Their calcium binding capacity is generally in the range of 100 mg to 200 mg CaO per gram.
  • Suitable substitutes or partial substitutes for the said aluminosilicate are crystalline alkali silicates which may be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates useful as builders preferably have a molar ratio of alkali metal oxide to SiO 2 below 0.95, in particular from 1: 1, 1 to 1: 12, and may be present in amorphous or crystalline form.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of from 1: 2 to 1: 2.8.
  • Crystalline silicates which may be present alone or in a mixture with amorphous silicates, are preferably crystalline phyllosilicates of the general my formula Na2Six02x + iy H2O used, in which x, the so-called module, a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3.
  • both .beta. And .delta.-sodium disilicates Na.sub.2Si.sub.20.sub.y H.sub.2O
  • Na.sub.2Si.sub.20.sub.y H.sub.2O are preferred.
  • amorphous alkali silicates practically anhydrous crystalline alkali silicates of the above general formula in which x is a number from 1, 9 to 2, 1, can be used.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be prepared from sand and soda. Crystalline sodium silicates with a modulus in the range of 1.9 to 3.5 are used in a further preferred embodiment.
  • a granular compound of alkali metal silicate and alkali carbonate is used, as it is commercially available, for example, under the name Nabion® 15.
  • the weight ratio of aluminosilicate to silicate is preferably 1:10 to 10: 1.
  • the weight ratio of amorphous alkali metal silicate to crystalline alkali metal silicate is preferably 1: 2 to 2: 1 and especially 1: 1 to 2: 1.
  • Builder substances are preferably contained in detergents in amounts of up to 60% by weight, in particular from 5% by weight to 40% by weight.
  • the agent comprises a water-soluble builder block.
  • builder block is intended to express that the agents contain no further builder substances than those which are water-soluble, ie all builder substances contained in the agent are combined in the "block” characterized in this way, the amounts at most being Substances are excluded, which may be contained as impurities or stabilizing additives in small amounts in the other ingredients of the means commercially available manner.
  • water-soluble is to be understood as meaning that the builder block dissolves without leaving a residue at the concentration which results from the use of the agent containing it under the usual conditions, preferably at least 15% by weight and up to 55% by weight %, in particular 25 wt .-% to 50 wt .-% of water-soluble builder block contained in the agents.This is preferably composed of the components
  • the water-soluble builder block contains at least 2 of the components b), c), d) and e) in amounts greater than 0 wt .-%.
  • component a in a preferred embodiment, 15% by weight to 25% by weight of alkali carbonate, which may be replaced at least proportionally by alkali metal bicarbonate, and up to 5% by weight, in particular 0.5% by weight, bis Contain 2.5 wt .-% citric acid and / or Al kalicitrat.
  • component a) 5 wt .-% to 25 wt .-%, in particular 5 wt .-% to 15 wt .-% citric acid and / or alkali citrate and up to 5 wt .-%, in particular 1 wt .-% to 5 wt .-% alkali carbonate, which may be at least partially replaced by alkali metal bicarbonate included. If both alkali metal carbonate and alkali metal bicarbonate are present, the component a) alkali carbonate and alkali metal bicarbonate preferably in a weight ratio of 10: 1 to 1: 1.
  • component b in a preferred embodiment, 1 wt .-% to 5 wt .-% alkali metal silicate with a modulus in the range of 1, 8 to 2.5 included.
  • phosphonic acid and / or alkali metal phosphonate in a preferred embodiment, from 0.05% by weight to 1% by weight of phosphonic acid and / or alkali metal phosphonate is contained.
  • Phosphonic acids are also understood as meaning optionally substituted alkylphosphonic acids, which may also have a plurality of phosphonic acid groups (so-called polyphosphonic acids).
  • They are preferably selected from the hydroxy and / or aminoalkylphosphonic acids and / or their alkali salts, for example dimethylaminomethanediphosphonic acid, 3-aminopropane-1-hydroxy-1,1-diphosphonic acid, 1-amino-1-phenylmethanediphosphonic acid, 1 -Hydroxyethane-1, 1-diphosphonic acid, amino-tris (methylenephosphonic acid), N, N, N ', N'-ethylenediaminetrakis (methylenephosphonic acid) and acylated derivatives of phosphorous acid, which can also be used in any mixtures.
  • dimethylaminomethanediphosphonic acid 3-aminopropane-1-hydroxy-1,1-diphosphonic acid
  • 1-amino-1-phenylmethanediphosphonic acid 1 -Hydroxyethane-1
  • 1-diphosphonic acid amino-tris (methylenephosphonic acid), N, N, N ',
  • alkali metal phosphate in particular trisodium polyphosphate, are contained.
  • Alkaliphosphat is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric (HP03) n and orthophosphoric H3PO4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts and lime incrustations in fabrics and also contribute to the cleaning performance.
  • Sodium dihydrogen phosphate NaH2PÜ4 exists as dihydrate (density 1, 91 like 3 , melting point 60 °) and as monohydrate (density 2.04 like 3 ). Both salts are white, very soluble in water powders, the Heat lose the water of crystallization and pass at 200 ° C into the weakly acidic diphosphate (disodium hydrogendiphosphate, ⁇ ), at higher temperature in sodium trimetaphosphate (NasPsCte) and Madrell's salt.
  • NahhPC reacts acidly; It arises when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (potassium phosphate or potassium phosphate monobasic, KDP), KH2PO4, is a white salt with a density of 2.33, preferably 3 , with a melting point of 253 ° C (decomposed to form (KPÜ3) x, potassium polyphosphate) and is readily soluble in Water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4, is a colorless, very slightly water-soluble crystalline salt.
  • Disodium hydrogen phosphate is prepared by neutralization of phosphoric acid with soda solution using phenolphthalein as an indicator.
  • Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K2HPO4, is an amorphous, white salt that is readily soluble in water.
  • Trisodium phosphate, sodium tertiary phosphate, NasPC are colorless crystals having a density of 1, 62, 3 and a melting point of 73-76 ° C (decomposition) as dodecahydrate, and a melting point of 100 ° as decahydrate (corresponding to 19-20% P2O5) C and in anhydrous form (corresponding to 39-40% P2O5) have a density of 2.536 like 3 .
  • Trisodium phosphate is readily soluble in water under alkaline reaction and is prepared by evaporating a solution of exactly 1 mole of disodium phosphate and 1 mole of NaOH.
  • Tripotassium phosphate (tertiary or tribasic potassium phosphate), K3PO4, is a white, deliquescent, granular powder of density 2.56, preferably 3 , has a melting point of 1340 ° and is readily soluble in water with an alkaline reaction. It arises, for example, when heating Thomasschlacke with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na4P20, exists in anhydrous form (density 2.534, 3 , melting point 988 °, also indicated as 880 °) and as decahydrate (density 1, 815-1, 836, 3 , melting point 94 °, with loss of water).
  • decahydrate Density 1, 815-1, 836, 3 , melting point 94 °, with loss of water.
  • Na4P2Ü7 is formed by heating disodium phosphate to> 200 ° C or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying. The decahydrate complexes heavy metal salts and hardness agents and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K4P2O7, exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33% 3 , which is soluble in water, the pH of the 1% solution being 25 ° 10, 4 is.
  • Condensation of the NaH2PÜ4 or KH2PO4 results in higher molecular weight sodium and potassium phosphates, which can be cyclic representatives, the sodium or Kaliummetaphosphate and chain types, the sodium or Kaliumpolyphosphate differentiate. In particular, for the latter are a variety of names in use: melting or annealing phosphates, Graham's salt, Kurrolsches and Madrell's salt.
  • All higher sodium and potassium phosphates are collectively known as condensed phosphates. termed phate.
  • the industrially important pentasodium triphosphate, NasPsO-io sodium tripolyphosphate
  • NasPsO-io sodium tripolyphosphate
  • 100 g of water dissolve at room temperature about 17 g, at 60 ° about 20 g, at 100 ° around 32 g of the salt water-free salt; after two hours of heating the solution to 100 ° by hydrolysis about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the preparation of pentasodium triphosphate, phosphoric acid is reacted with soda solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dehydrated by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Penta- calcium triphosphate, K5P3O10 (potassium tripolyphosphate), for example, in the form of a 50 wt .-% solution (> 23% P2O5, 25% K2O) in the trade. There are also sodium potassium tripolyphosphates, which can also be used in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH:
  • sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two applicable are just like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two applicable; It is also possible to use mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate.
  • the agent contains from 1.5% by weight to 5% by weight of polymeric polycarboxylate, in particular selected from the polymerization or copolymerization products of acrylic acid, methacrylic acid and / or maleic acid.
  • polymeric polycarboxylate in particular selected from the polymerization or copolymerization products of acrylic acid, methacrylic acid and / or maleic acid.
  • homopolymers of acrylic acid particularly preferred are those having an average molecular weight in the range from 5,000 D to 15,000 D (PA standard).
  • Suitable enzymes which can be used in the compositions are those from the class of lipases, cutinases, amylases, pullulanases, mannanases, cellulases, hemicellulases, xylanases and peroxidases and mixtures thereof, for example amylases such as Termamyl®, Amylase-LT®, Maxamyl®, Duramyl ® and / or Purafect® OxAm, lipases such as Lipolase®, Lipomax®, Lumafast®, Lipozym® and / or Lipex®, cellulases such as Celluzyme® and / or Carezyme®.
  • amylases such as Termamyl®, Amylase-LT®, Maxamyl®, Duramyl ® and / or Purafect® OxAm
  • lipases such as Lipolase®, Lipomax®, Lumafast®, Lipozym® and / or Lipex®
  • cellulases such
  • fungi or bacteria such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes or Pseudomonas cepacia derived enzymatic agents.
  • the optionally used enzymes may be adsorbed to carriers and / or embedded in encapsulants to prevent them from premature inactivation protect. They are preferably present in detergents in amounts of up to 10% by weight, in particular from 0.2% by weight to 2% by weight.
  • the composition contains 5% by weight to 50% by weight, in particular 8% to 30% by weight, of anionic and / or nonionic surfactant, up to 60% by weight, in particular 5% to 40% by weight.
  • the organic solvents which can be used in the detergents include alcohols having 1 to 4 C atoms, in particular methanol, ethanol, isopropanol and tert-butanol, diols having 2 to 4 C atoms, in particular ethylene glycol and propylene glycol, and mixtures thereof, and the ethers derivable from the classes of compound mentioned.
  • Such water-miscible solvents are preferably present in the compositions in amounts not exceeding 30% by weight, in particular from 6% by weight to 20% by weight.
  • Naturally derived polymers which can be used as thickening agents in aqueous liquid agents are, for example, agar-agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, locust bean gum, starch, dextrins, gelatin and Casein, cellulose derivatives such as carboxymethyl cellulose, hydroxyethyl and propyl cellulose, and polymers polysaccharide thickeners such as xanthan;
  • fully synthetic polymers such as polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines, polyamides and polyurethanes are also suitable as thickeners.
  • the agents systemic and environmentally friendly acids especially citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also, mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali metal hydroxides.
  • Such pH regulators are preferably not more than 20 wt .-%, in particular from 1, 2 wt .-% to 17 wt .-%, contained in the means.
  • Soil release polymers are, for example, nonionic or cationic cellulosic derivatives, especially the polyester active soil release polymers Copolyesters of dicarboxylic acids, for example adipic acid, phthalic acid or terephthalic acid, diols, for example ethylene glycol or propylene glycol, and polydiols, for example polyethylene glycol or polypropylene glycol, belong to the dirt-removal-capable polymers used.
  • dicarboxylic acids for example adipic acid, phthalic acid or terephthalic acid
  • diols for example ethylene glycol or propylene glycol
  • polydiols for example polyethylene glycol or polypropylene glycol
  • lyesters include those compounds which are formally accessible by esterification of two monomeric moieties, the first monomer being a dicarboxylic acid HOOC-Ph-COOH and the second monomer being a diol HO- (CHR-) a OH, also known as polymeric diol H- (O-). (CHR -) a ) bOH may be present.
  • Ph is an o-, m- or p-phenylene radical which can carry 1 to 4 substituents selected from alkyl radicals having 1 to 22 C atoms, sulfonic acid groups, carboxyl groups and mixtures thereof
  • R is hydrogen, an alkyl radical having 1 to 22 carbon atoms and mixtures thereof
  • a is a number from 2 to 6
  • b is a number from 1 to 300.
  • the molar ratio of monomer diol units to polymer diol units is preferably 100: 1 to 1: 100, in particular 10: 1 to 1:10.
  • the degree of polymerization b is preferably in the range of 4 to 200, especially 12 to 140.
  • the molecular weight or the average molecular weight or the maximum molecular weight distribution of preferred soil release polyester is in the range of 250 to 100,000, especially 500 to 50,000
  • the acid underlying the radical Ph is preferably selected from terephthalic acid, isophthalic acid, phthalic acid, trimellitic acid, metilitic acid, the isomers of sulfophthalic acid, sulfoisophthalic acid and sulfoterephthalic acid and mixtures thereof.
  • acids having at least two carboxyl groups may be included in the soil release-capable polyester.
  • alkylene and alkenylene dicarboxylic acids such as malonic acid, succinic acid, fumaric acid, maleic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • Preferred diols HO- (CHR-) a OH include those in which R is hydrogen and a is a number from 2 to 6, and those in which a is 2 and R is hydrogen and the alkyl radicals have from 1 to 10 , in particular 1 to 3 C-atoms is selected.
  • R is hydrogen and a is a number from 2 to 6
  • a is 2 and R is hydrogen and the alkyl radicals have from 1 to 10 , in particular 1 to 3 C-atoms is selected.
  • those of the formula HO-CH 2 -CHR -OH in which R has the abovementioned meaning are particularly preferred.
  • diol components are ethylene glycol, 1, 2-propylene glycol, 1, 3-propylene glycol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, 1, 8-octanediol, 1, 2-decanediol, 1, 2-dodecanediol and neopentyl glycol.
  • Particularly preferred among the polymeric diols is polyethylene glycol having an average molecular weight in the range of 1000 to 6000. If desired, these polyesters may also be end developmentver consideration, with alkyl groups having 1 to 22 carbon atoms and esters of monocarboxylic acids in question as end groups.
  • the ester groups bonded via end groups can be based on alkyl, alkenyl and aryl monocarboxylic acids having 5 to 32 carbon atoms, in particular 5 to 18 carbon atoms. These include valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, undecenoic acid, lauric acid, lauroleinic acid, tridecanoic acid, myristic acid, myristoleic acid, pentadecanoic acid, palmitic acid, stearic acid, petroselinic acid, petroselaidic acid, oleic acid, linoleic acid, linoleic acid, linolenic acid, Eleostearic acid, arachidic acid, gadoleic acid, arachidonic acid, behenic acid, erucic acid, brassic acid, clupanodonic acid, lignoceric acid, cerotic acid, meliss
  • the end groups may also be based on hydroxymonocarboxylic acids having 5 to 22 carbon atoms, which include, for example, hydroxyvaleric acid, hydroxycaproic acid, ricinoleic acid, their hydrogenation product hydroxystearic acid and also o-, m- and p-hydroxybenzoic acid.
  • the hydroxymonocarboxylic acids may in turn be linked to one another via their hydroxyl group and their carboxyl group and thus be present several times in an end group.
  • the number of hydroxymonocarboxylic acid units per end group is in the range from 1 to 50, in particular from 1 to 10.
  • Suitable color transfer inhibitors for use in laundry detergents include, in particular, polyvinylpyrrolidones, polyvinylimidazoles, polymeric N-oxides such as poly (vinylpyridine-N-oxide) and copolymers of vinylpyrrolidone with vinylimidazole and optionally other monomers.
  • the agents may contain anti-crease agents, since textile fabrics, in particular of rayon, wool, cotton and their mixtures, can tend to wrinkle, because the individual fibers are sensitive to bending, buckling, pressing and squeezing transverse to the fiber direction.
  • anti-crease agents include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, alkylol esters, alkylolamides or fatty alcohols, which are usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid ester.
  • Graying inhibitors have the task of keeping suspended from the hard surface and in particular from the textile fiber suspended dirt in the fleet.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example starch, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • starch derivatives can be used, for example aldehyde starches.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, for example in amounts of from 0.1 to 5% by weight, based on the compositions used.
  • the agents may contain optical brighteners, among these in particular derivatives of diaminostilbenedisulfonic acid or its alkali metal salts.
  • salts of 4,4'-bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or similarly constructed compounds which are substituted for the morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyrene type may be present, for example, the alkali salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or 4 - (4-chlorostyryl) -4 '- (2-sulfostyryl) -diphenyls. Mixtures of the aforementioned optical brightener can be used.
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of cis-C24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with silanated silicic acid or bis-fatty acid alkylenediamides. It is also advantageous to use mixtures of various foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors in particular silicone and / or paraffin-containing foam inhibitors, are bound to a granular, water-soluble or dispersible carrier substance.
  • a granular, water-soluble or dispersible carrier substance In particular, mixtures of paraffins and bistearylethylenediamide are preferred.
  • peroxygen compounds are, in particular organic peracids or pers acid salts of organic acids, such as phthalimidopercaproic, perbenzoic or diperdodecanedioic acid salts, hydrogen peroxide and under the washing conditions hydrogen peroxide-releasing inorganic salts, such as perborate, percarbonate and / or persilicate, into consideration.
  • Hydrogen peroxide can also be produced by means of an enzymatic system, ie an oxidase and its substrate. If solid peroxygen compounds are to be used, they can be used in the form of powders or granules, which can also be enveloped in a manner known in principle.
  • alkali metal percarbonate alkali metal perborate monohydrate, alkali metal perborate tetrahydrate or, in particular in liquid media, hydrogen peroxide in the form of aqueous solutions which contain from 3% by weight to 10% by weight of hydrogen peroxide.
  • peroxygen compounds are present in detergents in amounts of up to 50% by weight, especially from 5% to 30% by weight.
  • customary bleach activators which form peroxocarboxylic acids or peroxoimidic acids under perhydrolysis conditions and / or customary bleach-activating transition metal complexes can be used.
  • the present component of the bleach activators comprises the customarily used N- or O-acyl compounds, for example polyacylated alkylenediamines, in particular tetraacetylethylenediamine, acylated glycolurils, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles, urazoles, diketopiperazines, sulphurylamides and cyanurates.
  • the bleach activators may have been coated or granulated in known manner with encapsulating substances, granulated tetraacetylethylenediamine having mean particle sizes of from 0.01 mm to 0.8 mm, granulated 1, 5 with the aid of carboxymethylcellulose.
  • Diacetyl-2,4-dioxohexahydro-1, 3,5-triazine, and / or formulated in particulate trialkylammonium acetonitrile is particularly preferred.
  • Such bleach activators are preferably contained in detergents in amounts of up to 8% by weight, in particular from 2% by weight to 6% by weight, based in each case on the total agent.
  • compositions having an increased bulk density in particular in the range from 650 g / l to 950 g / l, a process comprising an extrusion step is preferred.
  • Detergents in the form of aqueous or other conventional solvent-containing solutions are particularly advantageously prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • the agents in particular in concentrated liquid form, are present as a portion in a completely or partially water-soluble coating. Portioning makes it easier for the consumer to dose.
  • the funds can be packed, for example, in foil bags.
  • Pouches made of water-soluble film make it unnecessary for the consumer to tear open the packaging. In this way, a convenient dosing of a single, sized for a wash portion by inserting the bag directly into the washing machine or by throwing the bag into a certain amount of water, for example in a bucket, a bowl or hand basin, possible.
  • the film bag surrounding the washing portion dissolves without residue when it reaches a certain temperature.
  • thermoforming process thermoforming process
  • a seal takes place.
  • the filling material is injected into the forming capsule, wherein the injection pressure of the filling liquid presses the polymer bands in the Kugelschschalenkavticianen.
  • a process for the preparation of water-soluble capsules, in which initially the filling and then the sealing takes place, is based on the so-called Bottle-Pack ® method. In this case, a tubular preform is guided into a two-part cavity. The cavity is closed, the lower tube portion is sealed, then the tube is inflated to form the capsule shape in the cavity, filled and finally sealed.
  • the shell material used for the preparation of the water-soluble portion is preferably a water-soluble polymeric thermoplastic, more preferably selected from the group (optionally partially acetalized) polyvinyl alcohol, polyvinyl alcohol copolymers, polyvinylpyrrolidone, polyethylene oxide, gelatin, cellulose and derivatives thereof, starch and derivatives thereof, blends and composites, inorganic salts and mixtures of said materials, preferably hydroxypropylmethylcellulose and / or polyvinyl alcohol blends.
  • Polyvinyl alcohols are commercially available, for example under the trade name Mowiol ® (Clariant).
  • polyvinyl alcohols are, for example, Mowiol ® 3-83, Mowiol ® 4-88, Mowiol ® 5-88, Mowiol ® 8-88 and Clariant L648.
  • the water-soluble thermoplastic used to prepare the portion may additionally optionally comprise polymers selected from the group comprising acrylic acid-containing polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyethers and / or mixtures of the above polymers.
  • the water-soluble thermoplastic used comprises a polyvinyl alcohol whose degree of hydrolysis makes up 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%. It is further preferred that the water-soluble thermoplastic used comprises a polyvinyl alcohol whose molecular weight is in the range from 10,000 to 100,000 gmol " , preferably from 1,000 to 90,000 gmol " , more preferably from 12,000 to 80,000 gmor and in particular from 13,000 to 70,000 gmol.
  • thermoplastics are used in amounts of at least 50% by weight, preferably of at least 70% by weight, more preferably of at least 80% by weight and in particular of at least 90% by weight, based in each case on the weight the water-soluble polymeric thermoplastic.
  • the values given in Table 2 below show the differences in the ⁇ values of the remission measurement between the agent M1 or M2 and the agent V1, higher values meaning that the soiling was better washed out by the use of the agent according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Detergent Compositions (AREA)

Abstract

Die Reinigungsleistung von Waschmitteln gegenüber Lipidanschmutzungen auf Textilien sollte verbessert werden. Dies gelang im Wesentlichen durch den Einsatz von Mannosylerythritollipid-Tensi- den.

Description

Entfernung von Lipidanschmutzungen
Die vorliegende Erfindung betrifft die Verwendung bestimmter Tenside zur Verbesserung der Entfernung von fettigen oder öligen Anschmutzungen beim Waschen von Textilien.
Die Entfernung von auf Textilien befindlichen Anschmutzungen ist vorrangiges Ziel des Textilwasch- vorgangs. In diesem eingesetzten Waschmittel enthalten zu dem genannten Zweck Tenside und in der Regel weitere Inhaltsstoffe wie Bleichmittel oder Enzyme, welche in der Lage sind, Schmutz vom Textil abzulösen oder Schmutzbestandteile chemisch zu modifizieren, beispielsweise durch Oxida- tion oder enzymatischen Abbau, so dass sie sich leichter vom Textil ablösen lassen. Die weitere Verbesserung des Waschergebnisses ist Ziel mannigfaltiger Anstrengungen.
Zu den insbesondere in neuerer Zeit wegen ihres grundsätzlich nachhaltigen Vorkommens verstärkt in den Fokus gelangten Tensiden gehören sogenannte Biotenside.
Mannosylerythritollipide sind Verbindungen, in denen eine mit mindestens einer Fettsäure verester- ten Mannoseeinheit glycosidisch mit einem Erythritolrest verbunden ist. In der Regel sind in der Man- noseeinheit die Hydroxylgruppe an C2 mit Octansäure, die Hydroxylgruppe an C3 mit einer C12-18- Carbonsäure und die Hydroxylgruppen an C4 und C6 mit Essigsäure verestert,
Figure imgf000002_0001
mit R = Cn-17-Alkyl. Man erhält sie aus sogenannten Brandpilzen der Gattungen Pseudozyma und Ustilago, insbesondere den Pilzen Pseudozyma antarctica und Ustilago maydis. Besondere Kultivie- rungs- und Prozessführungsstrategien zur optimierten Herstellung von Mannosylerythritollipiden durch Ustilago maydis Mutanten, welche keine Cellobioselipide produzieren, sind aus Chem. Ing. Tech. 82, 2010, 1215-1221 bekannt. Mannosylerythritollipide gehören wegen ihres oberflächenaktiven Verhaltens und ihrer Herkunft zu den sogenannten Biotensiden.
Überraschenderweise wurde gefunden, dass der Einsatz von Mannosylerythritollipiden in der Textil- wäsche zur Verbesserung der Entfernung von Lipidanschmutzungen, d.h. Anschmutzungen, die aus Ölen und/oder Fetten bestehen oder solche enthalten, beiträgt. Gegenstand der Erfindung ist die Verwendung von Mannosylerythritollipid der allgemeinen Formel (I),
Figure imgf000003_0001
in der Ac eine Acetylgruppe und R ein linearer oder verzweigtkettiger Kohlenwasserstoffrest mit 1 1 bis 17 C-Atomen ist,
zur Verbesserung der Entfernung von Lipidanschmutzungen beim Waschen von Textilien in insbesondere wässriger Waschflüssigkeit.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von oben genanntem Mannosylerythritollipid zur Verstärkung der Waschleistung von insbesondere flüssigen wasserhaltigen Waschmitteln beim Waschen von Textilien gegen Lipidanschmutzungen.
Dies geschieht vorzugsweise durch Zugabe von Mannosylerythritollipid zu einem mannosylerythri- tollipidfreien Mittel oder zu einer Waschlauge, welches ein mannosylerythritollipidfreies Mittel enthält, wobei die Zugabemenge an Mannosylerythritollipid, bezogen auf die Menge an mannosylerythritolli- pidfreiem Mittel, vorzugsweise im Bereich von 0,0001 Gew.-% bis 40 Gew.-%, insbesondere von 0,5 Gew.-% bis 20 Gew.-% liegt.
Erfindungsgemäß brauchbare Mannosylerythritollipide sind beispielsweise unter den Bezeichnungen Ceramela® HG, Ceremela® PX oder MELavo® im Handel erhältlich.
Mannosylerythritollipide oder mannosylerythritollipidhaltige Mittel können als Vorbehandlungsmittel zur fleckentfernenden Behandlung lokal begrenzt verschmutzter Textilien verwendet werden, wobei das erfindungsgemäße Einsatzgebiet die Entfernung von Lipidanschmutzungen von Textilien ist. Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Entfernung von Lipidanschmutzungen aus Textilien unter Einsatz von Mannosylerythritollipid oder eines mannosylerythritollipidhaltigen Mittels durch in Kontakt bringen des Mannosylerythritollipids oder des mannosylerythritollipidhaltigen Mittels mit dem Textil oder zumindest dem oder den die Lipidanschmutzung tragenden Teil oder Teilen des Textils. In dem Verfahren zur Entfernung von Lipidanschmutzungen von Textilien geht man vorzugsweise so vor, dass man eine flüssige Zubereitung, die 0,000001 Gew.-% bis 50 Gew.-%, insbesondere 0, 1 Gew.-% bis 5 Gew.-% Mannosylerythritollipid enthält, unverdünnt, beispielsweise mit Hilfe eines Tuches oder Schwammes, auf das Textil oder zumindest den die Anschmutzung aufweisenden Teil des Textils aufbringt, sie auf dem gewünschtenfalls am menschlichen Körper befindlichen Textil vorzugsweise nur so lange einwirken lässt, dass sie nicht eintrocknet, und sie, vorzugsweise mit Hilfe eines textilen Tuches, eines Schwammes oder eines Papiertuches, vom Textil entfernt. Gegebenenfalls kann man dieses Vorgehen wiederholen. Bevorzugt ist als Einwirkzeit gegebenenfalls ein Zeitraum von 20 Sekunden bis 60 Minuten, insbesondere von 25 Sekunden bis 20 Minuten. Gewünschtenfalls kann das Mittel auch in Form eines Schaums auf das Textil oder den zu reinigenden Teil des Textils appliziert werden. Zur letztgenannten Variante eignet sich beispielsweise ein manuell aktivierter Sprühspender, insbesondere ausgewählt aus der Gruppe umfassend Aerosolsprühspender, selbst Druck aufbauende Sprühspender, Pumpsprühspender und Triggersprühspender. Das Entfernen des Mannosylerythritollipids oder das dieses enthaltenden Mittels vom Textil kann auch durch Auswaschen mit Wasser, welches maschinell oder vorzugsweise manuell vorgenommen werden kann, oder durch maschinelles oder manuelles Waschen des Textils, gewünschtenfalls mit Hilfe eines konventionellen Waschmittels, erreicht werden. Es ist zur Entfernung von Lipidanschmutzungen auch möglich, Mannosylerythritollipid oder ein mannosylerythritollipidhaltiges Mittel als Additiv zu einem konventionellen Waschmittel bei der insbesondere maschinellen Wäsche von Textilien zuzusetzen, oder ein mannosylerythritollipidhaltiges Waschmittel einzusetzen. Ein zum Einsatz als Additiv oder als Waschmittel vorgesehenes mannosylerythritollipidhaltiges Mittel kann auch in fester Form vorliegen. Der Einsatz fester mannosylerythritollipidhaltiger Mittel in der oben genannten Vorbehandlung ist möglich, wenn das Mittel durch Zugabe von Wasser in eine fließfähige Form gebracht werden kann, so dass es auf das Textil oder zumindest den die Anschmutzung aufweisenden Teil des Textils aufgebracht werden kann.
Im Rahmen der erfindungsgemäßen Verwendung ist bevorzugt, wenn die Konzentration an Mannosylerythritollipid in der wässrigen Waschflotte, wie sie beispielsweise in Waschmaschinen aber auch bei der Handwäsche zum Einsatz kommt, 0,05 g/l bis 5 g/l, insbesondere 0,1 g/l bis 2 g/l beträgt. Das erfindungsgemäße Verfahren und die erfindungsgemäße Verwendung wird vorzugsweise bei Temperaturen im Bereich von 5 °C bis 95 °C, insbesondere 10 °C bis 60 °C und besonders bevorzugt von 20 °C bis 40 °C durchgeführt. Das erfindungsgemäße Verfahren und die erfindungsgemäße Verwendung werden vorzugsweise bei pH-Werten im Bereich von pH 5 bis pH 12, insbesondere von pH 7 bis pH 1 1 durchgeführt.
Im Zusammenhang mit der erfindungsgemäßen Verwendung oder im erfindungsgemäßen Verfahren neben dem Mannosylerythritollipid einsetzbare Waschmittel, die als insbesondere pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die Mittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren, Polymere mit Spezial- effekten, wie soil release-Polymere, Farbübertragungsinhibitoren, Vergrauungsinhibitoren, knitterre- duzierende und formerhaltende polymere Wirkstoffe, und weitere Hilfsstoffe, wie optische Aufheller, Schaumregulatoren, Färb- und Duftstoffe enthalten.
Die Mittel können ein oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische in Frage kommen, aber auch kationische und/oder am- photere Tenside enthalten sein können. Dabei ist bevorzugt, wenn die Mittel neben dem Mannosyl- erythritollipid mindestens 3, insbesondere mindestens 4 weitere Tenside enthalten, wobei ge- wünschtenfalls beispielsweise 10 weitere Tenside anwesend sein können.
Als nichtionische Tenside können alle dem Fachmann bekannten nichtionischen Tenside eingesetzt werden. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann oder lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkohol- ethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 Mol EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Ci2-i4-Alkohole mit 3 EO oder 4 EO, Cg-n-Alkohol mit 7 EO, Cis-is-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus Ci2-i4-Alkohol mit 3 EO und Ci2-is-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt einer ganzen oder einer gebrochenen Zahl entsprechen können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE).
Alternativ oder zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel R50(G)x eingesetzt werden, in der R5 einem primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen entspricht und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosi- den und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette. Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können eingesetzt werden.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel,
R1
I
R-C O-N— [Z] in der R für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch re- duktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alka- nolamin und nachfolgender Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel
Figure imgf000006_0001
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Ο-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes. [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-i3-Alkylbenzolsulfonate, Olefinsulfo- nate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus Ci2-i8-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonie- ren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfo- nierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus Ci2-is-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse oder Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von Glycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Weitere geeignete Aniontenside sind Alkylsulfate und Ethersulfate. Unter einem Alkylsulfat ist ein Salz eines Schwefelsäurehalbesters eines Alkohols zu verstehen, der einen linearen, verzweigtket- tigen oder cyclischen gesättigten Kohlenwasserstoffrest mit 10 bis 22 C-Atomen aufweist. Zur Ladungsneutralisation des Schwefelsäurehalbesters ist ein Gegenkation vorhanden, insbesondere ein Natrium- oder Kaliumion oder ein Ammonium-, Alkylammonium- oder Hydrxyalkylammoniumion. Bevorzugte Alkoholreste leiten sich von nativen Ci2-Ci8-Fettalkoholen, wie beispielsweise von Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol, oder den Cio-C2o-Oxoalko- holen oder sekundären Alkoholen dieser Kettenlängen ab. Weiterhin bevorzugt sind Alkylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Ci2-Ci6-Alkylsulfate, Ci2-Ci5-Alkylsulfate sowie Ci4-Ci5-Alkylsulfate sind besonders bevorzugt. Ethersulfate sind analog den Alkylsulfaten Schwefelsäurehalbester alkoxylierter Alkohole, wobei die durchschnittliche Anzahl von Alkoxygrup- pen pro Alkoholfunktion in der Regel 1 bis 10, vorzugsweise 3 bis 7, beträgt. Bevorzugte Alkoxy- gruppen sind die Ethoxygruppe, die Propoxygruppe und deren Mischungen. Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21- Alkohole, wie 2-Methyl-verzweigte C9-n-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Ci2-i8-Fettalkohole mit 1 bis 4 EO, sind geeignet.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen, darstellen. Bevorzugte Sulfosuccinate enthalten Cs -is-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden.
Als kationische Aktivsubstanzen können beispielsweise kationische Verbindungen der nachfolgenden Formeln eingesetzt werden:
Ri
-N-(CH2)n-T- (CH2)n-T-R2
Figure imgf000008_0001
Figure imgf000008_0002
worin jede Gruppe R unabhängig voneinander ausgewählt ist aus Ο-6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus Cs-28-Alkyl- oder -Alkenylgruppen; R3 = R oder (CH2)n-T-R2; R4 = R oder R2 oder (CH2)n-T-R2; T = -CH2-, -O- CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.
Derartige Tenside sind in Waschmitteln in Mengen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, enthalten.
Zur Pflege der Textilien und zur Verbesserung der Textileigenschaften wie einem weicheren "Griff (Avivage) und verringerter elektrostatischer Aufladung (erhöhter Tragekomfort) können textil- weichmachende Verbindungen eingesetzt werden. Die Wirkstoffe dieser Formulierungen sind quar- täre Ammoniumverbindungen mit zwei hydrophoben Resten, wie beispielsweise das Disteraryldime- thylammoniumchlorid, welches jedoch wegen seiner ungenügenden biologischen Abbaubarkeit zunehmend durch quartäre Ammoniumverbindungen ersetzt wird, die in ihren hydrophoben Resten Estergruppen als Sollbruchstellen für den biologischen Abbau enthalten.
Derartige "Esterquats" mit verbesserter biologischer Abbaubarkeit sind beispielsweise dadurch erhältlich, dass man Mischungen von Methyldiethanolamin und/oder Triethanolamin mit Fettsäuren verestert und die Reaktionsprodukte anschließend in an sich bekannter Weise mit Alkylierungsmit- teln quaterniert. Als Appreturwirkstoff geeignet ist Dimethylolethylenharnstoff.
Ein Waschmittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Builder- substanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycindiessigsäure, Nitrilotriessigsäure und Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methylenphosphonsäure) und 1-Hydro- xyethan-1 ,1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere durch Oxidation von Polysacchariden beziehungsweise Dextrinen zugänglichen Polycarboxylate, und/oder polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopoly- meren ungesättigter Carbonsäuren liegt im allgemeinen zwischen 5 000 und 200 000, die der Copo- lymeren zwischen 2 000 und 200 000, vorzugsweise 50 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 50 000 bis 100 000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder einem veresterten Vinylalkohol oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-C8-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth)- acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4- Cs-Dicarbonsäure, wobei Maleinsäure besonders bevorzugt ist, und/oder ein Derivat einer Allylsul- fonsäure, die in 2-Stellung mit einem Alkyl- oder Arylrest substituiert ist, sein. Derartige Polymere weisen im Allgemeinen eine relative Molekülmasse zwischen 1 000 und 200 000 auf. Weitere bevorzugte Copolymere sind solche, die als Monomere Acrolein und Acrylsäure/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30- bis 50-gewichts- prozentiger wässriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen in der oberen Hälfte der genannten Bereiche werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen Mitteln eingesetzt.
Als wasserlösliche anorganische Buildermaterialien kommen insbesondere polymere Alkaliphosphate, die in Form ihrer alkalischen neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, in Betracht. Beispiele hierfür sind Tetranatriumdiphosphat, Dinatriumdihydrogendiphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat sowie die entsprechenden Kaliumsalze beziehungsweise Gemische aus Natrium- und Kaliumsalzen. Als wasserunlösliche, was- serdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, P und gegebenenfalls X, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenför- migen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 μιη auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 μιη. Ihr Calciumbindevermögen liegt in der Regel im Bereich von 100 mg bis 200 mg CaO pro Gramm.
Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu S1O2 unter 0,95, insbesondere von 1 : 1 , 1 bis 1 : 12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na20:Si02 von 1 :2 bis 1 :2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allge- meinen Formel Na2Six02x+i y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si20s y H2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1 ,9 bis 2, 1 bedeutet, können eingesetzt werden. In einer weiteren bevorzugten Ausführungsform wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es n aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1 ,9 bis 3,5 werden in einer weiteren bevorzugten Ausführungsform eingesetzt. In einer bevorzugten Ausgestaltung setzt man ein granuläres Compound aus Alkalisilikat und Alkalicarbonat ein, wie es zum Beispiel unter dem Namen Nabion® 15 im Handel erhältlich ist. Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat, insbesondere Zeolith, vorhanden ist, beträgt das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, vorzugsweise 1 : 10 bis 10:1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilikat zu kristallinem Alkalisilikat vorzugsweise 1 :2 bis 2: 1 und insbesondere 1 : 1 bis 2:1.
Buildersubstanzen sind in Waschmitteln vorzugsweise in Mengen bis zu 60 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, enthalten.
In einer bevorzugten Ausgestaltung weist das Mittel einen wasserlöslichen Builderblock auf. Durch die Verwendung des Begriffes„Builderblock" soll hierbei ausgedrückt werden, dass die Mittel keine weiteren Buildersubstanzen enthalten als solche, die wasserlöslich sind, das heißt sämtliche in dem Mittel enthaltenen Buildersubstanzen sind in dem so charakterisierten„Block" zusammengefasst, wobei allenfalls die Mengen an Stoffen ausgenommen sind, die als Verunreinigungen beziehungsweise stabilisierende Zusätze in geringen Mengen in den übrigen Inhaltsstoffen der Mittel handelsüblicher Weise enthalten sein können. Unter dem Begriff„wasserlöslich" soll dabei verstanden werden, dass sich der Builderblock bei der Konzentration, die sich durch die Einsatzmenge des ihn enthaltenden Mittels bei den üblichen Bedingungen ergibt, rückstandsfrei löst. Vorzugsweise sind mindestens 15 Gew.-% und bis zu 55 Gew.-%, insbesondere 25 Gew.-% bis 50 Gew.-% an wasserlöslichem Builderblock in den Mitteln enthalten. Dieser setzt sich vorzugsweise zusammen aus den Komponenten
a) 5 Gew.-% bis 35 Gew.-% Citronensäure, Alkalicitrat und/oder Alkalicarbonat, welches auch zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann,
b) bis zu 10 Gew.-% Alkalisilikat mit einem Modul im Bereich von 1 ,8 bis 2,5,
c) bis zu 2 Gew.-% Phosphonsäure und/oder Alkaliphosphonat,
d) bis zu 50 Gew.-% Alkaliphosphat, und
e) bis zu 10 Gew.-% polymerem Polycarboxylat, wobei die Mengenangaben sich auf das gesamte Waschmittel beziehen. Dies gilt auch für alle folgenden Mengenangaben, sofern nicht ausdrücklich anders angegeben.
In einer bevorzugten Ausführungsform enthält der wasserlösliche Builderblock mindestens 2 der Komponenten b), c), d) und e) in Mengen größer 0 Gew.-%.
Hinsichtlich der Komponente a) sind in einer bevorzugten Ausführungsform 15 Gew.-% bis 25 Gew.-% Alkalicarbonat, welches zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann, und bis zu 5 Gew.-%, insbesondere 0,5 Gew.-% bis 2,5 Gew.-% Citronensäure und/oder Al- kalicitrat enthalten. In einer alternativen Ausführungsform sind als Komponente a) 5 Gew.-% bis 25 Gew.-%, insbesondere 5 Gew.-% bis 15 Gew.-% Citronensäure und/oder Alkalicitrat und bis zu 5 Gew.-% , insbesondere 1 Gew.-% bis 5 Gew.-% Alkalicarbonat, welches zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann, enthalten. Falls sowohl Alkalicarbonat wie auch Alkalihydrogencarbonat vorhanden sind, weist die Komponente a) Alkalicarbonat und Alkalihydrogencarbonat vorzugsweise im Gewichtsverhältnis von 10: 1 bis 1 : 1 auf.
Hinsichtlich der Komponente b) sind in einer bevorzugten Ausführungsform 1 Gew.-% bis 5 Gew.-% Alkalisilikat mit einem Modul im Bereich von 1 ,8 bis 2,5 enthalten.
Hinsichtlich der Komponente c) sind in einer bevorzugten Ausführungsform 0,05 Gew.-% bis 1 Gew.-% Phosphonsäure und/oder Alkaliphosphonat enthalten. Unter Phosphonsäuren werden dabei auch gegebenenfalls substituierte Alkylphosphonsäuren verstanden, die auch mehrere Phos- phonsäuregruppierungen aufweisen könne (sogenannte Polyphosphonsäuren). Bevorzugt werden sie ausgewählt aus den Hydroxy- und/oder Aminoalkylphosphonsäuren und/oder deren Alkalisalzen, wie zum Beispiel Dimethylaminomethandiphosphonsäure, 3-Aminopropan-1-hydroxy-1 , 1-diphos- phonsäure, 1-Amino-1-phenyl-methandiphosphonsäure, 1-Hydroxyethan-1 , 1-diphosphonsäure, Amino-tris(methylenphosphonsäure), N,N,N',N'-Ethylendiamin-tetrakis(methylenphosphonsäure) und acylierte Derivate der phosphorigen Säure, die auch in beliebigen Mischungen eingesetzt werden können.
Hinsichtlich der Komponente d) sind in einer bevorzugten Ausführungsform 15 Gew.-% bis 35 Gew.- % Alkaliphosphat, insbesondere Trinatriumpolyphosphat, enthalten. Alkaliphosphat ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HP03)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen und Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei. Natriumdihy- drogenphosphat, NaH2PÜ4, existiert als Dihydrat (Dichte 1 ,91 gern 3, Schmelzpunkt 60°) und als Mo- nohydrat (Dichte 2,04 gern 3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatrium- hydrogendiphosphat, ΝΒΣΗΣΡΣΟ), bei höherer Temperatur in Natriumtrimetaphosphat (NasPsCte) und Madrellsches Salz übergehen. NahhPC reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydro- genphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gern 3, hat einen Schmelzpunkt 253° (Zersetzung unter Bildung von (KPÜ3)x, Kaliumpolyphosphat) und ist leicht löslich in Wasser. Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HP04, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol (Dichte 2,066 gern 3, Wasserverlust bei 95°), 7 Mol (Dichte 1 ,68 gern 3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol Wasser (Dichte 1 ,52 gern 3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P20 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhy- drogenphosphat (sekundäres oder zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist. Trinatriumphosphat, tertiäres Natriumphosphat, NasPC , sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1 ,62 gern 3 und einen Schmelzpunkt von 73- 76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gern 3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gern 3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt. Tetranatriumdiphosphat (Natri- umpyrophosphat), Na4P20, existiert in wasserfreier Form (Dichte 2,534 gern 3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1 ,815-1 ,836 gern 3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2Ü7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern 3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1 %igen Lösung bei 25° 10,4 beträgt. Durch Kondensation des NaH2PÜ4 bzw. des KH2PO4 entstehen höhermolekulare Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- oder Kaliummetaphosphate und kettenförmige Typen, die Natrium- oder Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Madrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phos- phate bezeichnet. Das technisch wichtige Pentanatriumtriphosphat, NasPsO-io (Natriumtripolyphos- phat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(0)(ONa)-0]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Ortho- phosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lösung, durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentaka- liumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%- igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Weiter existieren auch Natriumkaliumtripoly- phosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaP03)3 + 2 KOH Na3K2P30io + H2O
Diese sind genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind einsetzbar.
Hinsichtlich der Komponente e) sind in einer bevorzugten Ausführungsform der Mittel 1 ,5 Gew.-% bis 5 Gew.-% polymeres Polycarboxylat, insbesondere ausgewählt aus den Polymerisations- beziehungsweise Copolymerisationsprodukten von Acrylsäure, Methacrylsäure und/oder Maleinsäure enthalten. Unter diesen sind die Homopolymere der Acrylsäure und unter diesen wiederum solche mit einer mittleren Molmasse im Bereich von 5 000 D bis 15 000 D (PA-Standard) besonders bevorzugt.
Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Lipasen, Cutinasen, Amylasen, Pullulanasen, Mannanasen, Cellulasen, Hemicellulasen, Xylanasen und Peroxidasen sowie deren Gemische in Frage, beispielsweise Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® und/oder Purafect® OxAm, Lipasen wie Lipolase®, Lipomax®, Lumafast®, Lipozym® und/oder Lipex®, Cellulasen wie Celluzyme® und/oder Carezyme®. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes oder Pseudomonas cepacia gewonnene enzymatische Wirkstoffe. Die gegebenenfalls verwendeten Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in Waschmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,2 Gew.-% bis 2 Gew.-%, enthalten.
In einer bevorzugten Ausführungsform enthält das Mittel 5 Gew.-% bis 50 Gew.-%, insbesondere 8 bis 30 Gew.-% anionisches und/oder nichtionisches Tensid, bis zu 60 Gew.-%, insbesondere 5 bis 40 Gew.-% Buildersubstanz und 0,2 Gew.-% bis 2 Gew.-% Enzym, ausgewählt aus den Lipasen, Cutinasen, Amylasen, Pullulanasen, Mannanasen, Cellulasen, Oxidasen und Peroxidasen sowie deren Gemischen.
Zu den in den Waschmitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylengly- kol und Propylenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den Mitteln vorzugsweise in Mengen nicht über 30 Gew.-%, insbesondere von 6 Gew.-% bis 20 Gew.-%, vorhanden.
Aus der Natur stammende Polymere, die in wässrigen flüssigen Mitteln als Verdickungsmittel Verwendung finden können, sind beispielsweise Agar-Agar, Carrageen, Tragant, Gummi arabicum, Al- ginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Gelatine und Casein, Cellulosederivate wie Carboxymethylcellulose, Hydroxyethyl- und -propylcellulose, und po- lymere Polysaccharid-Verdickungsmittel wie Xanthan; daneben kommen auch vollsynthetische Polymere wie Polyacryl- und Polymethacryl-Verbindungen, Vinylpolymere, Polycarbonsäuren, Po- lyether, Polyimine, Polyamide und Polyurethane als Verdicker in Frage.
Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die Mittel System- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den Mitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 1 ,2 Gew.-% bis 17 Gew.-%, enthalten.
Schmutzablösevermögende Polymere, die oft als "Soil Release' -Wirkstoffe oder wegen ihres Vermögens, die behandelte Oberfläche, zum Beispiel der Faser, schmutzabstoßend auszurüsten, als "Soil Repellents" bezeichnet werden, sind beispielsweise nichtionische oder kationische Cellulosederivate. Zu den insbesondere polyesteraktiven schmutzablösevermögenden Polymeren gehören Copolyester aus Dicarbonsäuren, beispielsweise Adipinsäure, Phthalsäure oder Terephthalsäure, Diolen, beispielsweise Ethylenglykol oder Propylenglykol, und Polydiolen, beispielsweise Polyethy- lenglykol oder Polypropylenglykol. Zu den bevorzugt eingesetzten schmutzablösevermögenden Po- lyestern gehören solche Verbindungen, die formal durch Veresterung zweier Monomerteile zugänglich sind, wobei das erste Monomer eine Dicarbonsäure HOOC-Ph-COOH und das zweite Monomer ein Diol HO-(CHR -)aOH, das auch als polymeres Diol H-(0-(CHR -)a)bOH vorliegen kann, ist. Darin bedeutet Ph einen o-, m- oder p-Phenylenrest, der 1 bis 4 Substituenten, ausgewählt aus Alkyl- resten mit 1 bis 22 C-Atomen, Sulfonsäuregruppen, Carboxylgruppen und deren Mischungen, tragen kann, R Wasserstoff, einen Alkylrest mit 1 bis 22 C-Atomen und deren Mischungen, a eine Zahl von 2 bis 6 und b eine Zahl von 1 bis 300. Vorzugsweise liegen in den aus diesen erhältlichen Poly- estern sowohl Monomerdioleinheiten -0-(CHR -)aO- als auch Polymerdioleinheiten -(O- (CHR -)a)bO- vor. Das molare Verhältnis von Monomerdioleinheiten zu Polymerdioleinheiten beträgt vorzugsweise 100: 1 bis 1 :100, insbesondere 10: 1 bis 1 :10. In den Polymerdioleinheiten liegt der Polymerisationsgrad b vorzugsweise im Bereich von 4 bis 200, insbesondere von 12 bis 140. Das Molekulargewicht beziehungsweise das mittlere Molekulargewicht oder das Maximum der Molekulargewichtsverteilung bevorzugter schmutzablösevermögender Polyester liegt im Bereich von 250 bis 100 000, insbesondere von 500 bis 50 000. Die dem Rest Ph zugrundeliegende Säure wird vorzugsweise aus Terephthalsäure, Isophthalsäure, Phthalsäure, Trimellithsäure, Meilithsäure, den Isomeren der Sulfophthalsäure, Sulfoisophthalsäure und Sulfoterephthalsäure sowie deren Gemischen ausgewählt. Sofern deren Säuregruppen nicht Teil der Esterbindungen im Polymer sind, liegen sie vorzugsweise in Salzform, insbesondere als Alkali- oder Ammoniumsalz vor. Unter diesen sind die Natrium- und Kaliumsalze besonders bevorzugt. Gewünschtenfalls können statt des Monomers HOOC-Ph-COOH geringe Anteile, insbesondere nicht mehr als 10 Mol-% bezogen auf den Anteil an Ph mit der oben gegebenen Bedeutung, anderer Säuren, die mindestens zwei Carboxylgruppen aufweisen, im schmutzablösevermögenden Polyester enthalten sein. Zu diesen gehören beispielsweise Alkylen- und Alkenylendicarbonsäuren wie Malonsäure, Bernsteinsäure, Fumarsäure, Maleinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und Sebacinsäure. Zu den bevorzugten Diolen HO-(CHR -)aOH gehören solche, in denen R Wasserstoff und a eine Zahl von 2 bis 6 ist, und solche, in denen a den Wert 2 aufweist und R unter Wasserstoff und den Alkylresten mit 1 bis 10, insbesondere 1 bis 3 C-Atomen ausgewählt wird. Unter den letztgenannten Diolen sind solche der Formel HO-CH2-CHR -OH, in der R die obengenannte Bedeutung besitzt, besonders bevorzugt. Beispiele für Diolkomponenten sind Ethylenglykol, 1 ,2-Propylenglykol, 1 ,3-Propylengly- kol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, 1 ,8-Octandiol, 1 ,2-Decandiol, 1 ,2-Dodecandiol und Neopentylglykol. Besonders bevorzugt unter den polymeren Diolen ist Polyethylenglykol mit einer mittleren Molmasse im Bereich von 1000 bis 6000. Gewünschtenfalls können diese Polyester auch endgruppenverschlossen sein, wobei als Endgruppen Alkylgruppen mit 1 bis 22 C-Atomen und Ester von Monocarbonsäuren in Frage kommen. Den über Esterbindungen gebundenen Endgruppen können Alkyl-, Alkenyl- und Arylmonocarbonsäuren mit 5 bis 32 C-Atomen, insbesondere 5 bis 18 C-Atomen, zugrunde liegen. Zu diesen gehören Valeriansäure, Capronsäure, Önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Undecansäure, Undecensäure, Laurinsäure, Laurolein- säure, Tridecansäure, Myristinsäure, Myristoleinsäure, Pentadecansäure, Palmitinsäure, Stearinsäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Linolsäure, Linolaidinsäure, Linolensäure, Eläostearinsäure, Arachinsäure, Gadoleinsäure, Arachidonsäure, Behensäure, Erucasäure, Brassi- dinsäure, Clupanodonsäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, Benzoesäure, die 1 bis 5 Substituenten mit insgesamt bis zu 25 C-Atomen, insbesondere 1 bis 12 C-Atomen tragen kann, beispielsweise tert.-Butylbenzoesäure. Den Endgruppen können auch Hydroxymonocarbonsäuren mit 5 bis 22 C-Atomen zugrunde liegen, zu denen beispielsweise Hydroxyvaleriansäure, Hydroxyca- pronsäure, Ricinolsäure, deren Hydrierungsprodukt Hydroxystearinsäure sowie o-, m- und p-Hydro- xybenzoesäure gehören. Die Hydroxymonocarbonsäuren können ihrerseits über ihre Hydroxylgruppe und ihre Carboxylgruppe miteinander verbunden sein und damit mehrfach in einer Endgruppe vorliegen. Vorzugsweise liegt die Anzahl der Hydroxymonocarbonsäureeinheiten pro Endgruppe, das heißt ihr Oligomerisierungsgrad, im Bereich von 1 bis 50, insbesondere von 1 bis 10. In einer bevorzugten Ausgestaltung der Erfindung werden Polymere aus Ethylenterephthalat und Po- lyethylenoxid-terephthalat, in denen die Polyethylenglykol-Einheiten Molgewichte von 750 bis 5000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 50:50 bis 90:10 beträgt, allein oder in Kombination mit Cellulosederivaten verwendet.
Zu den für den Einsatz in Mitteln für die Wäsche von Textilien in Frage kommenden Farbübertra- gungsinhibitoren gehören insbesondere Polyvinylpyrrolidone, Polyvinylimidazole, polymere N-Oxide wie Poly-(vinylpyridin-N-oxid) und Copolymere von Vinylpyrrolidon mit Vinylimidazol und gegebenenfalls weiteren Monomeren.
Die Mittel können Knitterschutzmittel enthalten, da textile Flächengebilde, insbesondere aus Reyon, Wolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäu- reamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
Vergrauungsinhibitoren haben die Aufgabe, den von der harten Oberfläche und insbesondere von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ether- carbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Car- boxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methyl- hydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0, 1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt. Die Mittel können optische Aufheller, unter diesen insbesondere Derivate der Diaminostilbendisul- fonsäure beziehungsweise deren Alkalimetallsalze, enthalten. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1 ,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4- Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
Insbesondere beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Cis-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.
Als in den Mitteln, insbesondere den Mitteln in fester Form, gegebenenfalls enthaltene Persauer- stoffverbindungen kommen insbesondere organische Persäuren oder persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure oder Salze der Diperdodecandisäure, Wasserstoffperoxid und unter den Waschbedingungen Wasserstoffperoxid abgebende anorganische Salze, wie Perborat, Percarbonat und/oder Persilikat, in Betracht. Wasserstoffperoxid kann dabei auch mit Hilfe eines enzymatischen Systems, das heißt einer Oxidase und ihres Substrats, erzeugt werden. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Besonders bevorzugt wird Alkalipercarbonat, Alkaliperborat-Monohydrat, Alkaliperborat-Tetrahydrat oder, insbesondere in flüssigen Mitteln, Wasserstoffperoxid in Form wässriger Lösungen, die 3 Gew.-% bis 10 Gew.-% Wasserstoffperoxid enthalten, eingesetzt. Vorzugsweise sind Persauerstoffverbindungen in Mengen von bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, in Waschmitteln vorhanden.
Zusätzlich können übliche Bleichaktivatoren, die unter Perhydrolysebedingungen Peroxocarbonsäu- ren oder Peroxoimidsäuren bilden, und/oder übliche die Bleiche aktivierende Übergangsmetallkomplexe eingesetzt werden. Die fakultativ, insbesondere in Mengen von 0,5 Gew.-% bis 6 Gew.-%, vorhandene Komponente der Bleichaktivatoren umfasst die üblicherweise verwendeten N- oder O- Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetyl- ethylendiamin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hy- drazide, Triazole, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natrium-iso- nonanoyl-phenolsulfonat, und acylierte Zuckerderivate, insbesondere Pentaacetylglukose, sowie kationische Nitrilderivate wie Trimethylammoniumacetonitril-Salze. Die Bleichaktivatoren können zur Vermeidung der Wechselwirkung mit den Persauerstoffverbindungen bei der Lagerung in bekannter Weise mit Hüllsubstanzen überzogen beziehungsweise granuliert worden sein, wobei mit Hilfe von Carboxymethylcellulose granuliertes Tetraacetylethylendiamin mit mittleren Korngrößen von 0,01 mm bis 0,8 mm, granuliertes 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin, und/oder in Teilchenform konfektioniertes Trialkylammoniumacetonitril besonders bevorzugt ist. In Waschmitteln sind derartige Bleichaktivatoren vorzugsweise in Mengen bis zu 8 Gew.-%, insbesondere von 2 Gew.-% bis 6 Gew.-%, jeweils bezogen auf gesamtes Mittel, enthalten.
Die Herstellung fester Mittel bietet keine Schwierigkeiten und kann in im Prinzip bekannter Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen. Zur Herstellung der Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionsschritt aufweisendes Verfahren bevorzugt. Waschmittel in Form wässriger oder sonstige übliche Lösungsmittel enthaltender Lösungen werden besonders vorteilhaft durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.
In einer auch bevorzugten Ausführungsform liegen die Mittel, insbesondere in konzentrierter flüssiger Form, als Portion in einer ganz oder teilweise wasserlöslichen Umhüllung vor. Die Portionierung erleichtert dem Verbraucher die Dosierbarkeit.
Die Mittel können dabei beispielsweise in Folienbeutel eingepackt vorliegen. Beutelverpackungen aus wasserlöslicher Folie machen ein Aufreißen der Verpackung durch den Verbraucher unnötig. Auf diese Weise ist ein bequemes Dosieren einer einzelnen, für einen Waschgang bemessenen Portion durch Einlegen des Beutels direkt in die Waschmaschine oder durch Einwerfen des Beutels in eine bestimmte Menge Wasser, beispielsweise in einem Eimer, einer Schüssel oder im Handwaschbecken, möglich. Der die Waschportion umgebende Folienbeutel löst sich bei Erreichen einer bestimmten Temperatur rückstandsfrei auf.
Im Stand der Technik existieren zahlreiche Verfahren zur Herstellung wasserlöslicher Waschmittelportionen, die grundsätzlich auch zur Herstellung von im Rahmen der vorliegenden Erfindung brauchbaren Mitteln geeignet sind. Bekannteste Verfahren sind dabei die Schlauchfolienverfahren mit horizontalen und vertikalen Siegelnähten. Weiterhin geeignet zur Herstellung von Folienbeuteln oder auch formstabilen Waschmittelportionen ist das Thermoformverfahren (Tiefziehverfahren). Die wasserlöslichen Umhüllungen müssen allerdings nicht zwangsläufig aus einem Folienmaterial bestehen, sondern können auch formstabile Behältnisse darstellen, die beispielsweise mittels eines Spritzguss-Verfahrens erhalten werden können.
Weiterhin sind Verfahren zur Herstellung wasserlöslicher Kapseln aus Polyvinylalkohol oder Gelatine bekannt, die prinzipiell die Möglichkeit bieten, Kapseln mit einem hohen Befüllgrad bereitzustellen. Die Verfahren beruhen darauf, dass in eine formgebende Kavität das wasserlösliche Polymer eingeführt wird. Das Befüllen und Versiegeln der Kapseln erfolgt entweder synchron oder in nacheinander folgenden Schritten, wobei im letzteren Fall die Befüllung der Kapseln durch eine kleine Öffnung erfolgt. Die Befüllung der Kapseln erfolgt dabei beispielsweise durch einen Befüllkeil, der oberhalb von zwei sich gegeneinander drehenden Trommeln, die auf ihrer Oberfläche Kugelhalbschalen aufweisen, angeordnet ist. Die Trommeln führen Polymerbänder, die die Kugelhalbschalenkavitäten bedecken. An den Positionen, an denen das Polymerband der einen Trommel mit dem Polymerband der gegenüberliegenden Trommel zusammentrifft findet eine Versiegelung statt. Parallel dazu wird das Befüllgut in die sich ausbildende Kapsel injiziert, wobei der Injektionsdruck der Befüllflüssigkeit die Polymerbänder in die Kugelhalbschalenkavitäten presst. Ein Verfahren zur Herstellung wasserlöslicher Kapseln, bei dem zunächst die Befüllung und anschließend die Versiegelung erfolgt, basiert auf dem sogenannten Bottle-Pack®-Verfahren. Hierbei wird ein schlauchartiger Vorformling in eine zweiteilige Kavität geführt. Die Kavität wird geschlossen, wobei der untere Schlauchabschnitt versiegelt wird, anschließend wird der Schlauch aufgeblasen zur Ausbildung der Kapselform in der Kavität, befüllt und abschließend versiegelt.
Das für die Herstellung der wasserlöslichen Portion verwendete Hüllmaterial ist vorzugsweise ein wasserlöslicher polymerer Thermoplast, besonders bevorzugt ausgewählt aus der Gruppe (gegebenenfalls teilweise acetalisierter) Polyvinylalkohol, Polyvinylalkohol-Copolymere, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose und deren Derivate, Stärke und deren Derivate, Blends und Verbünde, anorganische Salze und Mischungen der genannten Materialien, vorzugsweise Hydro- xypropylmethylcellulose und/oder Polyvinylalkohol-Blends. Polyvinylalkohole sind kommerziell verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88, Mowiol® 8-88 sowie Clariant L648. Das zur Herstellung der Portion verwendete wasserlösliche Thermoplast kann zusätzlich gegebenenfalls Polymere ausgewählt aus der Gruppe, umfassend Acrylsäure-haltige Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester, Polyether und/oder Mischungen der vorstehenden Polymere, aufweisen. Bevorzugt ist, wenn das verwendete wasserlösliche Thermoplast einen Polyvinylalkohol umfasst, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% ausmacht. Weiter bevorzugt ist, dass das verwendete wasserlösliche Thermoplast einen Polyvinylalkohol umfasst, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol" , vorzugsweise von 1 1.000 bis 90.000 gmol" , besonders bevorzugt von 12.000 bis 80.000 gmor und insbesondere von 13.000 bis 70.000 gmol liegt. Weiterhin bevorzugt ist, wenn die Thermoplaste in Mengen von mindestens 50 Gew.-%, vorzugsweise von mindestens 70 Gew.-%, besonders bevorzugt von mindestens 80 Gew.-% und insbesondere von mindestens 90 Gew.-%, jeweils bezogen auf das Gewicht des wasserlöslichen polymeren Thermoplasts, vorliegt.
Beispiele
Die in der nachfolgenden Tabelle angegebenen standardisierten Anschmutzungen (auf Baumwolle, wenn nicht anders angegeben, oder auf Polyester-Baumwoll-Mischgewebe) wurden gewaschen, dann gespült, getrocknet und anschließend ihr Remissionswert spektralphotometrisch (Minolta® CR400-1 ) vermessen und mit dem Remissionswert vor der Wäsche verglichen (Waschtemperatur 40°C, Waschzeit 90 Minuten, Waschmitteldosierung 4,06 g/l im Hauptwaschgang; Mittelwert aus einer 6-fach Bestimmung).
Tabelle 1 : Anschmutzungen
Figure imgf000022_0001
Zum Einsatz kam ein wasserhaltiges Flüssigwaschmittel mit 5,5 Gew.-% C9 Na-Alkylbenzolsulfo- nat, 5,5 Gew.-% C12 Fettalkohol-7 EO, und 5 Gew.-% C12 Na-Alkohol-2 EO-sulfat (V1 ), sowie ein ansonsten gleich zusammengesetztes Flüssigwaschmittel, das zusätzlich 3 Gew.-% Ceramela® HG (M1 ) oder 3 Gew.-% MELavo® (M2) enthielt; Ausgleich jeweils über die enthaltene Wassermenge. Die in der nachfolgenden Tabelle 2 angegebenen Werte zeigen die Unterschiede der ΔΥ- Werte der Remissionsmessung zwischen dem Mittel M1 oder M2 und dem Mittel V1 , wobei höhere Werte bedeuten, dass die Anschmutzung durch die Anwendung des erfindungsgemäßen Mittels besser ausgewaschen wurden.
Tabelle 2: Helligkeitsunterschiedsdifferenzen
Anschmutzung ΔΔΥ AAY 2/ 1
A 2,8 n.b.
B 1 ,1 1 ,3
C 1 ,8 1 ,5 D 1,3 1,7
E 1,2 1,3
F 0,8 0,7
G 0,8 n.b. n.b.: nicht bestimmt

Claims

Patentansprüche
1. Verwendung von Mannosylerythritollipid der allgemeinen Formel (I)
Figure imgf000024_0001
in der Ac eine Acetylgruppe und R ein linearer oder verzweigtkettiger Kohlenwasserstoffrest mit 1 1 bis 17 C-Atomen ist,
zur Verbesserung der Entfernung von Lipidanschmutzungen beim Waschen von Textilien in insbesondere wässriger Waschflüssigkeit.
2. Verwendung von Mannosylerythritollipid der allgemeinen Formel (I)
Figure imgf000024_0002
in der Ac eine Acetylgruppe und R ein linearer oder verzweigtkettiger Kohlenwasserstoffrest mit 1 1 bis 17 C-Atomen ist,
zur Verstärkung der Waschleistung von insbesondere flüssigen wasserhaltigen Waschmitteln beim Waschen von Textilien gegen Lipidanschmutzungen.
3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie durch Zugabe von Mannosylerythritollipid zu einem mannosylerythritollipidfreien Mittel oder zu einer Waschlauge, welches ein mannosylerythritollipidfreies Mittel enthält, erfolgt.
4. Verwendung nach Anspruch 3, dadurch gekennzeichnet, dass die Zugabemenge an Mannosylerythritollipid, bezogen auf die Menge an mannosylerythritollipidfreiem Mittel, im Bereich von 0,0001 Gew.-% bis 40 Gew.-%, insbesondere von 0,5 Gew.-% bis 20 Gew.-% liegt.
5. Verwendung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Konzentration an Mannosylerythritollipid in der wässrigen Waschflotte 0,05 g/l bis 5 g/l, insbesondere 0,1 g/l bis 2 g/l beträgt.
6. Verfahren zur Entfernung von Lipidanschmutzungen aus Textilien, dadurch gekennzeichnet, dass man Mannosylerythritollipid einsetzt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man das Textil oder zumindest den die Anschmutzung aufweisenden Teil des Textils mit einer flüssigen Zubereitung, die 0,001 Gew.-% bis 70 Gew.-%, insbesondere 1 Gew.-% bis 20 Gew.-% Mannosylerythritollipid enthält, in Kontakt bringt, sie gegebenenfalls für einen Zeitraum von 20 Sekunden bis 60 Minuten, insbesondere von 25 Sekunden bis 20 Minuten, einwirken lässt und vom Textil entfernt.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass man die Zubereitung vom Textil mit Hilfe eines textilen Tuches, eines Schwammes oder eines Papiertuches, durch Auswaschen mit Wasser oder durch maschinelles oder manuelles Waschen des Textils entfernt.
PCT/EP2018/071464 2017-08-16 2018-08-08 Entfernung von lipidanschmutzungen WO2019034489A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017214266.9 2017-08-16
DE102017214266.9A DE102017214266A1 (de) 2017-08-16 2017-08-16 Entfernung von Lipidanschmutzungen

Publications (1)

Publication Number Publication Date
WO2019034489A1 true WO2019034489A1 (de) 2019-02-21

Family

ID=63168408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/071464 WO2019034489A1 (de) 2017-08-16 2018-08-08 Entfernung von lipidanschmutzungen

Country Status (2)

Country Link
DE (1) DE102017214266A1 (de)
WO (1) WO2019034489A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014221889A1 (de) * 2014-10-28 2016-04-28 Henkel Ag & Co. Kgaa Waschmittel mit Mannosylerythritollipid
DE102014225184A1 (de) * 2014-12-09 2016-06-09 Henkel Ag & Co. Kgaa Entfernung von Antitranspirantanschmutzungen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014221889A1 (de) * 2014-10-28 2016-04-28 Henkel Ag & Co. Kgaa Waschmittel mit Mannosylerythritollipid
DE102014225184A1 (de) * 2014-12-09 2016-06-09 Henkel Ag & Co. Kgaa Entfernung von Antitranspirantanschmutzungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEM. ING. TECH., vol. 82, 2010, pages 1215 - 1221

Also Published As

Publication number Publication date
DE102017214266A1 (de) 2019-02-21

Similar Documents

Publication Publication Date Title
EP3196283B1 (de) Die primärwaschkraft verbessernde polymere wirkstoffe
EP1224256A1 (de) Wasch- oder reinigungsmittel
EP3870630A1 (de) Neuartige polyalkyleniminderivate und wasch- und reinigungsmittel, die solche enthalten
EP3617297A1 (de) Die primärwaschkraft verbessernde kombination polymerer wirkstoffe
EP1592762B2 (de) Wasch- oder reinigungsmittel mit wasserlöslichem buildersystem und schmutzablösevermögendem cellulosederivat
EP3196284B1 (de) Entfernung von antitranspirantanschmutzungen
EP1592767B1 (de) Bleichmittelhaltige wasch- oder reinigungsmittel mit wasserlöslichem buildersystem und schmutzablösevermögendem cellulosederivat
EP3234085B1 (de) Wasch- und reinigungsmittel
DE102014225184A1 (de) Entfernung von Antitranspirantanschmutzungen
EP3617299B1 (de) Die primärwaschkraft verbessernde polymere wirkstoffe
WO2019034490A1 (de) Rhamnolipidhaltige wasch- und reinigungsmittel
EP3187574A1 (de) Reinigungsverstärkende celluloseether
WO2019034489A1 (de) Entfernung von lipidanschmutzungen
WO2020043458A1 (de) Die primärwaschkraft verbessernde polymere wirkstoffe
EP1694806B1 (de) Bleichendes wasch- oder reinigungsmittel
DE102014225185A1 (de) Entfernung von Antitranspirantanschmutzungen
DE102014225186A1 (de) Entfernung von Antitranspirantanschmutzungen
DE102018214397A1 (de) Die Primärwaschkraft verbessernde polymere Wirkstoffe
EP3617298A1 (de) Die primärwaschkraft verbessernde polymere wirkstoffe
DE102014225183A1 (de) Entfernung von Antitranspirantanschmutzungen
EP3289056B1 (de) Verwendung von sulfobetainhaltigen wasch- und reinigungsmitteln
DE10351326A1 (de) Bleichmittelhaltige Wasch- oder Reinigungsmittel mit wasserlöslichem Buildersystem und schmutzablösevermögendem Cellulosederivat
WO2016045966A1 (de) Proteinhaltige waschmittel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753147

Country of ref document: EP

Kind code of ref document: A1