WO2019034074A1 - 随机接入方法、终端和基站 - Google Patents

随机接入方法、终端和基站 Download PDF

Info

Publication number
WO2019034074A1
WO2019034074A1 PCT/CN2018/100636 CN2018100636W WO2019034074A1 WO 2019034074 A1 WO2019034074 A1 WO 2019034074A1 CN 2018100636 W CN2018100636 W CN 2018100636W WO 2019034074 A1 WO2019034074 A1 WO 2019034074A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
terminal
access signal
resource
rar
Prior art date
Application number
PCT/CN2018/100636
Other languages
English (en)
French (fr)
Inventor
吴昱民
鲁智
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP18847003.3A priority Critical patent/EP3672349A4/en
Priority to US16/640,002 priority patent/US20200260480A1/en
Publication of WO2019034074A1 publication Critical patent/WO2019034074A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to the field of wireless communications technologies, and in particular, to a random access method, a terminal, and a base station.
  • the base station configures a Physical Random Access Channel Configuration Index (PRACH Configuration Index) for a User Equipment (UE) by using a Radio Resource Control (RRC) message. ".
  • PRACH Configuration Index Physical Random Access Channel Configuration Index
  • UE User Equipment
  • RRC Radio Resource Control
  • the terminal finds a configuration of the random access resource corresponding to the index in the frame structure table (such as the frame structure type 1 table shown in Table 1), where the configuration information of the random access resource corresponding to each index includes :
  • System frame number (such as even (Even) or arbitrary (Any) system frame number).
  • Subframe number (such as 1/4/7, etc.).
  • the fifth generation (5G) mobile communication system introduces the transmission of the beam-based random access signal, that is, the terminal can continuously send multiple random access signals in multiple random access resources, and the continuously transmitted random access signal can be The same or different random access resource configurations are used to ensure that the base station can receive the random access signal of the terminal at different times and on different beams.
  • the base station can receive random signals of different beams, which may result in more densely configured random access resources, resulting in wasteful configuration of random access resources and increased power consumption when the terminal transmits random access signals.
  • Some embodiments of the present disclosure provide a random access method, a terminal, and a base station, for more flexible configuration of random access resources.
  • some embodiments of the present disclosure provide a random access method, where the method is applied to a base station, including: configuring configuration information of a random access resource, where configuration information of the random access resource includes at least sending a random access signal. a time-frequency resource and a preamble format of the random access resource; sending configuration information of the random access resource to the terminal.
  • some embodiments of the present disclosure provide a random access method, which is applied to a terminal, and includes: receiving configuration information of a random access resource sent by a base station, where configuration information of the random access resource includes at least sending a random connection.
  • some embodiments of the present disclosure provide a base station, including: a configuration unit, configured to configure configuration information of a random access resource, where configuration information of the random access resource includes at least a time when a random access signal is sent. a preamble format of the frequency resource and the random access resource; and a sending unit, configured to send configuration information of the random access resource to the terminal.
  • some embodiments of the present disclosure provide a terminal, including: a receiving unit, configured to receive configuration information of a random access resource sent by a base station, where configuration information of the random access resource includes at least sending a random access signal And a preamble format of the available time-frequency resource and the random access resource; the sending unit is configured to send a random access signal to the base station according to the configuration information of the random access resource.
  • some embodiments of the present disclosure provide a base station including a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor
  • the processor implements the steps of the random access method described above.
  • some embodiments of the present disclosure provide a terminal, including a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor
  • the processor implements the steps of the random access method described above.
  • some embodiments of the present disclosure provide a computer readable storage medium having a computer program stored thereon, the processor implementing the base station side when the computer program is executed by a processor The steps of the random access method.
  • some embodiments of the present disclosure provide a computer readable storage medium having a computer program stored thereon, the processor implementing the terminal side when the computer program is executed by a processor The steps of the random access method.
  • FIG. 1 is a schematic flowchart 1 of a random access method according to some embodiments of the present disclosure
  • FIG. 3 is a schematic structural diagram 1 of a base station according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic structural diagram 1 of a terminal according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic structural diagram 2 of a base station according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic structural diagram 2 of a terminal according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram 3 of a terminal according to some embodiments of the present disclosure.
  • the random access method, the terminal, and the base station provided by some embodiments of the present disclosure may configure the random access resource more flexibly.
  • FIG. 1 is a schematic flowchart of a random access method according to some embodiments of the present disclosure.
  • the random access method is applied to a base station and includes steps 101 and 102.
  • Step 101 Configure configuration information of a random access resource, where the configuration information of the random access resource includes at least a time-frequency resource for transmitting a random access signal and a preamble format (Preamble Format) of the random access resource.
  • Preamble Format Preamble Format
  • Step 102 Send configuration information of the random access resource to the terminal.
  • the base station does not send a physical random access channel configuration index (PRACH Configuration Index) to the terminal, but generates specific configuration information of the random access resource, and The device is sent to the terminal, so that the random access resources can be configured more flexibly according to the requirements to adapt to different application scenarios, and the configuration waste of the random access resources is avoided.
  • PRACH Configuration Index physical random access channel configuration index
  • the base station in some embodiments of the present disclosure may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA). It can also be a base station (NodeB, NB for short) in Wideband Code Division Multiple Access (WCDMA), or an Evolutionary Node B (eNB or eNodeB for short) in LTE, or a relay station. Or an access point, or a base station in a 5G network, etc., is not limited herein.
  • the time-frequency resource that is used to send the random access signal includes at least one of the following:
  • the so-called plurality of random access signals in some embodiments of the present disclosure refer to at least two random access signals.
  • the time domain location information and/or the frequency domain location information that can be used to send the random access signal may be time domain location information and/or frequency domain location information that may be used to send a random access signal, or may be multiple random transmissions. All time domain location information and/or frequency domain location information available for access signals.
  • the time domain location information that is used to send the random access signal may include at least one of the following:
  • the starting time domain location information of sending multiple random access signals may include at least one of the following:
  • the configuration information of the random access resource configured by the base station is not only the two basic and necessary configuration information for transmitting the time-frequency resource available for the random access signal and the preamble format of the random access resource, but also Other configuration information may be included to make the configuration of the random access resources more flexible.
  • the configuration information of the random access resource further includes at least one of the following:
  • the terminal can send the number of times of sending the random access signal
  • the terminal can transmit the number of times of transmission of the random access signal, and/or, 6) whether to stop transmitting the indication information of the random access signal after receiving the RAR, or may be pre-agreed by the protocol.
  • the information that the terminal can transmit the random access signal may include at least one of the following:
  • the number of transmissions is 5, that is, the terminal can continuously transmit 5 random access signals on 5 random access resources.
  • the base station may configure multiple types of random access resources according to requirements, and send the information to the terminal, so that the configuration of the random access resources is more flexible, to adapt to different application scenarios, and to avoid random access resources. Configuration waste. For example, in a scenario in which a beam-based random access signal is transmitted, configuration information related to "a plurality of random access signals" may be configured.
  • FIG. 2 is a schematic flowchart of a random access method according to some embodiments of the present disclosure, where the random access method includes steps 201-202.
  • Step 201 Receive configuration information of a random access resource sent by the base station, where the configuration information of the random access resource includes at least a time-frequency resource for transmitting a random access signal and a preamble format of the random access resource.
  • Step 202 Send a random access signal to the base station according to the configuration information of the random access resource.
  • the terminal Since the configuration information of the random access resource includes the preamble format of the random access resource, the terminal needs to send the random access signal by using the preamble format indicated in the configuration information of the random access resource.
  • the terminal sends a random access signal according to specific configuration information of the random access resource configured by the base station to adapt to different application scenarios, and ensures that the random access signal sent by the terminal can be received by the base station. At the same time save the power consumption of the terminal.
  • the terminal in some embodiments of the present disclosure may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or is connected to Other processing devices for wireless modems.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the terminal (User Device or User Equipment) are not limited herein.
  • the time-frequency resources available for transmitting the random access signal configured by the base station include at least one of the following:
  • the sending of multiple random access signals in some embodiments of the present disclosure refers to the transmission of a beam-based random access signal, that is, the terminal may continuously send multiple random access signals in multiple random access resources, the multiple The random access signal may be configured with the same or different random access resources, thereby ensuring that the base station can receive the random access signal of the terminal at different times and on different beams.
  • the so-called plurality of random access signals in some embodiments of the present disclosure refer to at least two random access signals.
  • the time domain location information and/or the frequency domain location information that can be used to send the random access signal may be time domain location information and/or frequency domain location information that may be used to send a random access signal, or may be multiple random transmissions. All time domain location information and/or frequency domain location information available for access signals.
  • the time domain location information that is used to send the random access signal may include at least one of the following:
  • the starting time domain location information of sending multiple random access signals may include at least one of the following:
  • the configuration information of the random access resource configured by the base station is not only the two basic and necessary configuration information for transmitting the time-frequency resource available for the random access signal and the preamble format of the random access resource, but also Other configuration information may be included to make the configuration of the random access resources more flexible.
  • the configuration information of the random access resource configured by the base station further includes at least one of the following:
  • the terminal can send the number of times of sending the random access signal
  • the information that the terminal can transmit the random access signal may include at least one of the following:
  • the number of transmissions is 5, that is, the terminal can continuously transmit 5 random access signals on 5 random access resources.
  • the configuration information of the random access resource may be pre-scheduled by a protocol, in addition to being configurable by the base station. That is, the random access method in some embodiments of the present disclosure may further include: acquiring configuration information of a pre-agreed random access resource;
  • the base station And sending, according to the configuration information of the random access resource, the random access signal to the base station, including: configuring information of a random access resource configured by the base station, and pre-agreed configuration information of the random access resource,
  • the base station transmits a random access signal.
  • the terminal in the configuration information of the random access resource can send the number of times of sending the random access signal, and/or, 6) whether to stop sending after receiving the RAR.
  • the indication information of the random access signal may also be pre-agreed by the protocol.
  • the configuration information of the random access resource includes indicating that the terminal can send a single random access signal.
  • the indication information and/or the indication information that the terminal can send the single random access signal before receiving the RAR the sending the random access signal to the base station according to the configuration information of the random access resource, including: Before receiving the RAR, selecting a time-frequency resource from the time-frequency resources available for transmitting the random access signal, and transmitting a random access signal to the base station on the selected time-frequency resource.
  • the time-frequency resource is a time domain resource
  • select an available time domain resource that is closest in the time domain and send a random access signal to the base station on the selected available time domain resource.
  • the indication that the terminal can send multiple random accesses is included.
  • the method includes: selecting a plurality of time-frequency resources from the time-frequency resources available for transmitting the random access signal, and transmitting a random access signal to the base station on each selected time-frequency resource.
  • the time-frequency resource is a time domain resource
  • the available time domain resources may be sequentially selected in the time domain from the near to the farthest for transmitting multiple random access signals.
  • the configuration information of the random access resource (the configuration information of the random access resource may be configured by the base station, or may be pre-agreed)
  • the number of times of sending multiple random access signals is included. And sending, according to the configuration information of the random access resource, the random access signal to the base station, where the number of times of sending the multiple random access signals is the number of transmissions configured in the configuration information. For example, when the number of transmissions is five, five time-frequency resources are selected from available time-frequency resources, and one random access signal is sent on each time-frequency resource.
  • the configuration according to the random access resource includes: when each time sending a random access signal to the base station, encoding the random access signal sent according to the preamble number corresponding to the sending.
  • the configuration information of the random access resource includes a number of a beam, a beam group, or a beam pair used for each of the plurality of random access signal transmissions
  • sending, by the configuration information of the random access resource, the random access signal to the base station including: sending a random access signal to the base station, and transmitting, on the corresponding beam, beam group, or beam pair.
  • the configuration information of the random access resource includes initial time domain location information for transmitting multiple random access signals or initial frequency domain location information for transmitting multiple random access signals. And sending, according to the configuration information of the random access resource, a random access signal to the base station, where: when the random access signal is sent to the base station for the first time, in the initial time domain location The information is transmitted on the time-frequency resource corresponding to the initial frequency domain location information.
  • the sending when the configuration information of the random access resource includes a period of a random access resource, the sending, according to the configuration information of the random access resource, random access to the base station And the signal includes: the multiple random access signals according to a period of the random access resource.
  • the indication that the receiving time of the RAR is expired is included in the RAR.
  • the random access method of some embodiments of the present disclosure includes steps 301-302.
  • Step 301 The base station sends configuration information of the random access resource to the terminal, where the configuration information of the random access resource includes:
  • the subframe number at which the random access signal is available is available.
  • the system frame number at which the random access signal is sent is sent.
  • the period of random access resources is the period of random access resources.
  • the preamble format of the random access resource is the preamble format of the random access resource.
  • the first item and/or the second item may also be pre-agreed by an agreement.
  • items 1 and 2 can also be configured alternately.
  • Step 302 The terminal sends a random access signal to the base station according to the random access resource configuration information sent by the base station, which specifically includes:
  • a random access signal is transmitted before receiving the RAR.
  • the time domain resource used by the random access signal is the latest one of the available time domain resources.
  • the random access signal is transmitted in a preamble format of the random access resource indicated in the configuration information.
  • the random access method of some embodiments of the present disclosure includes steps 401-402.
  • the subframe number at which the random access signal is available is available.
  • the system frame number at which the random access signal is sent is sent.
  • the period of random access resources is the period of random access resources.
  • the preamble format of the random access resource is the preamble format of the random access resource.
  • the number of times that multiple random access signals are sent (also pre-agreed by protocol).
  • the preamble number used for each transmission of multiple random access signal transmissions is the preamble number used for each transmission of multiple random access signal transmissions.
  • the beam number, beam group number, or beam pair number used for each transmission of multiple random access signal transmissions.
  • the indication information for stopping the transmission of the random access signal after receiving the RAR may also be pre-agreed by the protocol).
  • the first item, the second item, the eighth item, and/or the eleventh item may also be pre-agreed by an agreement.
  • items 1 and 2 can also be configured alternately.
  • Step 402 The terminal sends a random access signal to the base station according to the random access resource configuration information sent by the base station, which specifically includes:
  • time domain in order from near to far, multiple available time domain resources are sequentially selected for transmitting multiple random access signals.
  • the random access signal is transmitted in a preamble format of the random access resource indicated in the configuration information.
  • the number of transmissions of the plurality of random access signals is the number of transmissions configured in the configuration information.
  • the random access signal transmitted is encoded according to the preamble number corresponding to the transmission.
  • the transmission of the random access signal is stopped after receiving the RAR.
  • the random access method of some embodiments of the present disclosure includes steps 501-502.
  • Step 501 The base station sends configuration information of the random access resource to the terminal, where the configuration information of the random access resource includes:
  • the number of times that multiple random access signals are sent (also pre-agreed by protocol).
  • the preamble format of the random access resource is the preamble format of the random access resource.
  • the starting subframe number of multiple random access signals is sent.
  • the starting time slot number at which multiple random access signals are transmitted is transmitted.
  • the starting system frame number at which multiple random access signals are transmitted is the starting system frame number at which multiple random access signals are transmitted.
  • the period of random access resources is the period of random access resources.
  • the preamble number used for each transmission of multiple random access signal transmissions is the preamble number used for each transmission of multiple random access signal transmissions.
  • the beam number, beam group number, or beam pair number used for each transmission of multiple random access signal transmissions.
  • the indication information for stopping the transmission of the random access signal after receiving the RAR may also be pre-agreed by the protocol).
  • Step 502 The terminal sends a random access signal to the base station according to the random access resource configuration information sent by the base station, which specifically includes:
  • the number of transmissions of the plurality of random access signals is the number of transmissions configured in the configuration information.
  • the random access signal is transmitted in a preamble format of the random access resource indicated in the configuration information.
  • the random access signal When the random access signal is sent to the base station for the first time, it is sent on the time domain resource corresponding to the start time domain location information. (eg, according to any one of the following starting time domain locations, including: a starting subframe number for transmitting multiple random access signals; a starting slot number for transmitting multiple random access signals; sending multiple randoms The starting system frame number of the access signal).
  • the plurality of random access signals are transmitted one by one according to the period of the random access resource.
  • the random access signal transmitted is encoded according to the preamble number corresponding to the transmission.
  • the transmission of the random access signal is stopped after receiving the RAR.
  • the random access method of some embodiments of the present disclosure includes steps 601-602.
  • Step 601 The base station sends configuration information of the random access resource to the terminal, where the configuration information of the random access resource includes:
  • the terminal can send a single random access signal before receiving the RAR (also pre-agreed by protocol).
  • the indication information indicating that the terminal can send multiple random access signals after the RAR reception time expires and the RAR is not received may also be pre-agreed by the protocol).
  • the subframe number at which the random access signal is available is available.
  • the system frame number at which the random access signal is sent is sent.
  • the period of random access resources is the period of random access resources.
  • a preamble format of a random access resource used for each of a plurality of random access signal transmissions is not limited.
  • the number of times that multiple random access signals are sent (also pre-agreed by protocol).
  • the preamble number used for each transmission of multiple random access signal transmissions is the preamble number used for each transmission of multiple random access signal transmissions.
  • the beam number, beam group number, or beam pair number used for each transmission of multiple random access signal transmissions.
  • the first item, the second item, and/or the eighth item may also be pre-agreed by an agreement.
  • items 1 and 2 can also be configured alternately.
  • Step 602 The terminal sends a random access signal to the base station according to the random access resource configuration information sent by the base station, which specifically includes:
  • a random access signal is transmitted before receiving the RAR.
  • the time domain resource used is the latest one of the available time domain resources.
  • the used time domain resource is the latest one of the available time domain resources, and the time-frequency resource is randomly transmitted before.
  • the resources of the access signal are different.
  • the plurality of random access signals transmitted after the RAR reception time expires and the RAR is not received are sent in the preamble format of the indicated random access resource every time the random access signal is transmitted.
  • the number of transmissions of the plurality of random access signals is the number of transmissions configured in the configuration information.
  • the random access signal transmitted is encoded according to the preamble number corresponding to the transmission.
  • the random access method of some embodiments of the present disclosure includes steps 701-702.
  • Step 701 The base station sends configuration information of the random access resource to the terminal, where the configuration information of the random access resource includes:
  • the terminal can send a single random access signal before receiving the RAR (also pre-agreed by protocol).
  • the indication information indicating that the terminal can send multiple random access signals after the RAR reception time expires and the RAR is not received may also be pre-agreed by the protocol).
  • the number of times that multiple random access signals are sent (also pre-agreed by protocol).
  • the starting subframe number of multiple random access signals is sent.
  • the starting time slot number at which multiple random access signals are transmitted is transmitted.
  • the starting system frame number at which multiple random access signals are transmitted is the starting system frame number at which multiple random access signals are transmitted.
  • the period of random access resources is the period of random access resources.
  • the preamble number used for each transmission of multiple random access signal transmissions is the preamble number used for each transmission of multiple random access signal transmissions.
  • the beam number, beam group number, or beam pair number used for each transmission of multiple random access signal transmissions.
  • Step 702 The terminal sends a random access signal to the base station according to the random access resource configuration information sent by the base station, which specifically includes:
  • the number of times of sending the plurality of random access signals is the number of times the configuration is configured in the configuration information.
  • the plurality of random access signals transmitted after the RAR reception time expires and the RAR is not received are sent in the preamble format of the indicated random access resource every time the random access signal is transmitted.
  • a random access signal is transmitted before receiving the RAR.
  • the time domain corresponding to the start time domain location information Sent on the resource eg, according to any one of the following starting time domain locations, including: a starting subframe number for transmitting multiple random access signals; a starting slot number for transmitting multiple random access signals; sending multiple randoms The starting system frame number of the access signal).
  • Random access signals, and the time-frequency resources used are different from those of the previously transmitted random access signals.
  • the random access signal transmitted is encoded according to the preamble number corresponding to the transmission.
  • the present disclosure further provides a base station 30, including: a configuration unit 31, configured to configure configuration information of a random access resource, where the configuration information of the random access resource includes at least a random connection.
  • the base station does not send a physical random access channel configuration index to the terminal, but generates specific configuration information of the random access resource, and sends the configuration information to the terminal, thereby
  • the random access resources can be configured more flexibly according to the requirements to adapt to different application scenarios and avoid wasteful configuration of random access resources.
  • the time-frequency resource that is used to send the random access signal includes at least one of the following:
  • the sending of multiple random access signals in some embodiments of the present disclosure refers to the transmission of a beam-based random access signal, that is, the terminal may continuously send multiple random access signals in multiple random access resources, the multiple The random access signal may be configured with the same or different random access resources, thereby ensuring that the base station can receive the random access signal of the terminal at different times and on different beams.
  • the so-called plurality of random access signals in some embodiments of the present disclosure refer to at least two random access signals.
  • the time domain location information and/or the frequency domain location information that can be used to send the random access signal may be time domain location information and/or frequency domain location information that may be used to send a random access signal, or may be multiple random transmissions. All time domain location information and/or frequency domain location information available for access signals.
  • the time domain location information that is used to send the random access signal may include at least one of the following:
  • the starting time domain location information of sending multiple random access signals may include at least one of the following:
  • the configuration information of the random access resource configured by the base station is not only the two basic and necessary configuration information for transmitting the time-frequency resource available for the random access signal and the preamble format of the random access resource, but also Other configuration information may be included to make the configuration of the random access resources more flexible.
  • the configuration information of the random access resource further includes at least one of the following:
  • the terminal can send the number of times of sending the random access signal
  • the terminal can transmit the number of times of transmission of the random access signal, and/or, 6) whether to stop transmitting the indication information of the random access signal after receiving the RAR, or may be pre-agreed by the protocol.
  • the information that the terminal can transmit the random access signal may include at least one of the following:
  • the number of transmissions is 5, that is, the terminal can continuously transmit 5 random access signals on 5 random access resources.
  • the base station may configure multiple types of random access resources according to requirements, and send the information to the terminal, so that the configuration of the random access resources is more flexible, to adapt to different application scenarios, and to avoid random access resources. Configuration waste. For example, in a scenario in which a beam-based random access signal is transmitted, configuration information related to "a plurality of random access signals" may be configured.
  • the present disclosure further provides a terminal 40, including: a receiving unit 41, configured to receive configuration information of a random access resource sent by a base station, where configuration information of the random access resource includes at least a random access signal.
  • the available time-frequency resource and the preamble format of the random access resource the sending unit 42 is configured to send a random access signal to the base station according to the configuration information of the random access resource.
  • the terminal Since the configuration information of the random access resource includes the preamble format of the random access resource, the terminal needs to send the random access signal by using the preamble format indicated in the configuration information of the random access resource.
  • the terminal sends a random access signal according to specific configuration information of the random access resource configured by the base station to adapt to different application scenarios, and ensures that the random access signal sent by the terminal can be received by the base station. At the same time save the power consumption of the terminal.
  • the time-frequency resources available for transmitting the random access signal configured by the base station include at least one of the following:
  • the sending of multiple random access signals in some embodiments of the present disclosure refers to the transmission of a beam-based random access signal, that is, the terminal may continuously send multiple random access signals in multiple random access resources, the multiple The random access signal may be configured with the same or different random access resources, thereby ensuring that the base station can receive the random access signal of the terminal at different times and on different beams.
  • the so-called plurality of random access signals in some embodiments of the present disclosure refer to at least two random access signals.
  • the time domain location information and/or the frequency domain location information that can be used to send the random access signal may be time domain location information and/or frequency domain location information that may be used to send a random access signal, or may be multiple random transmissions. All time domain location information and/or frequency domain location information available for access signals.
  • the time domain location information that is used to send the random access signal may include at least one of the following:
  • the starting time domain location information of sending multiple random access signals may include at least one of the following:
  • the configuration information of the random access resource configured by the base station is not only the two basic and necessary configuration information for transmitting the time-frequency resource available for the random access signal and the preamble format of the random access resource, but also Other configuration information may be included to make the configuration of the random access resources more flexible.
  • the configuration information of the random access resource configured by the base station further includes at least one of the following:
  • the terminal can send the number of times of sending the random access signal
  • the information that the terminal can transmit the random access signal may include at least one of the following:
  • the number of transmissions is 5, that is, the terminal can continuously transmit 5 random access signals on 5 random access resources.
  • the configuration information of the random access resource may be pre-scheduled by a protocol, in addition to being configurable by the base station. That is, the terminal of some embodiments of the present disclosure may further include: an obtaining unit, configured to acquire configuration information of a pre-agreed random access resource, where the sending unit is further configured to: according to a random access resource configured by the base station The configuration information and the configuration information of the pre-agreed random access resource are sent to the base station to send a random access signal.
  • the terminal in the configuration information of the random access resource can send the number of times of sending the random access signal, and/or, 6) whether to stop sending after receiving the RAR.
  • the indication information of the random access signal may also be pre-agreed by the protocol.
  • the configuration information of the random access resource includes indicating that the terminal can send a single random connection.
  • the sending unit is further configured to: before the receiving the RAR, the available random access signal is sent A time-frequency resource is selected from the time-frequency resources, and a random access signal is sent to the base station on the selected time-frequency resource.
  • the indication that the terminal can send multiple randoms is included.
  • the indication information of the access signal and/or the indication unit that the terminal can send the plurality of random access signals before receiving the RAR the sending unit is further configured to use the time-frequency resource available from the random access signal A plurality of time-frequency resources are selected, and a random access signal is sent to the base station on each selected time-frequency resource.
  • the configuration information of the random access resource (the configuration information of the random access resource may be configured by a base station, or may be pre-agreed) includes multiple random access signals.
  • the sending unit is further configured to send the random access signal of the number of times of sending to the base station.
  • the sending unit when the configuration information of the random access resource includes a preamble number used for each transmission of the plurality of random access signal transmissions, the sending unit is further used for each time.
  • the random access signal is sent to the base station, the random access signal transmitted is encoded according to the preamble number corresponding to the transmission.
  • the sending unit when the configuration information of the random access resource includes a number of a beam, a beam group, or a beam pair used for each of the plurality of random access signal transmissions, the sending unit, It is also used to transmit on a corresponding beam, beam group or beam pair when transmitting a random access signal to the base station every time.
  • the configuration information of the random access resource includes initial time domain location information for transmitting multiple random access signals or initial frequency domain location information for transmitting multiple random access signals.
  • the sending unit is further configured to send, on the time-frequency resource corresponding to the start time domain location information or the start frequency domain location information, when the random access signal is sent to the base station for the first time.
  • the sending unit when the configuration information of the random access resource includes a period of a random access resource, the sending unit is further configured to send the according to a period of the random access resource. Multiple random access signals.
  • the receiving time indicating the terminal at the RAR is included.
  • the indication unit capable of transmitting a single random access signal after receiving the RAR or the indication information indicating that the terminal can transmit the plurality of random access signals after the RAR reception time is cut off and the RAR is not received, the sending unit, It is further configured to: after the RAR receiving time expires and the RAR is not received, select a resource different from the random access resource that previously sent the random access signal, and send the multiple random access signals.
  • Some embodiments of the present disclosure also provide a base station including a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor
  • the processor implements the steps of the random access method on the base station side.
  • Some embodiments of the present disclosure also provide a terminal, including a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor
  • the processor implements the steps of the random access method on the terminal side.
  • Some embodiments of the present disclosure provide a computer readable storage medium having stored thereon a computer program, the processor implementing the random access method on the base station side when the computer program is executed by a processor
  • the steps are the same and can achieve the same technical effect. To avoid repetition, we will not repeat them here.
  • Some embodiments of the present disclosure provide a computer readable storage medium having stored thereon a computer program, the processor implementing the terminal side random access method when the computer program is executed by a processor
  • the steps are the same and can achieve the same technical effect. To avoid repetition, we will not repeat them here.
  • the above computer readable storage medium may be volatile or non-volatile, transient or non-transitory, such as Read-Only Memory (ROM), Random Access Memory (Random Access). Memory, referred to as RAM), disk or CD.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • CD Compact Disc
  • FIG. 5 is a schematic structural diagram of a base station according to some embodiments of the present disclosure, which can implement the details of the random access method on the base station side, and achieve the same effect.
  • the base station 50 includes a processor 51, a transceiver 52, a memory 53, a user interface 54, and a bus interface.
  • the base station 50 further includes a computer program stored on the memory 53 and operable on the processor 51.
  • the processor 51 executes the following steps:
  • the configuration information of the random access resource includes at least a time-frequency resource for transmitting a random access signal and a preamble format of the random access resource
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 51 and various circuits of memory represented by memory 53.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 52 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 54 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 51 is responsible for managing the bus architecture and the usual processing, and the memory 53 can store data used by the processor 51 when performing operations.
  • the time-frequency resource that is used to send the random access signal includes at least one of the following:
  • the time domain location information includes at least one of the following: a system frame number, a subframe number, and a time slot number;
  • the initial time domain location information includes at least one of the following: a starting system frame number, a starting subframe number, and a starting time slot number.
  • the configuration information of the random access resource further includes at least one of the following:
  • the terminal can send the number of times of sending the random access signal
  • the number of the beam used for each transmission of multiple random access signal transmissions is the number of the beam used for each transmission of multiple random access signal transmissions
  • the number of the beam group used for each of the plurality of random access signal transmissions is the number of the beam group used for each of the plurality of random access signal transmissions
  • the number of the beam pair used for each transmission of multiple random access signal transmissions is the number of the beam pair used for each transmission of multiple random access signal transmissions.
  • the sending time information that the terminal can send the random access signal includes at least one of the following:
  • the base station does not send a physical random access channel configuration index to the terminal, but generates specific configuration information of the random access resource, and sends the configuration information to the terminal, thereby
  • the random access resources can be configured more flexibly according to the requirements to adapt to different application scenarios and avoid wasteful configuration of random access resources.
  • the present disclosure provides a terminal 60.
  • the terminal 60 shown in FIG. 6 includes at least one processor 61, a memory 62, at least one network interface 64, and other user interfaces 63.
  • the various components in terminal 60 are coupled together by a bus system 65.
  • the bus system 65 is used to implement connection communication between these components.
  • the bus system 65 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 65 in FIG.
  • the user interface 63 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 62 in some embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DirectRambusRAM Direct Memory bus random access memory
  • the memory 62 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • memory 62 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 621 and application 622.
  • the operating system 621 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 622 includes various applications, such as a Media Player, a browser, etc., for implementing various application services, and a program for implementing some embodiment methods of the present disclosure may be included in the application 622. in.
  • the terminal 60 further includes a computer program stored on the memory 62 and operable on the processor 61. Specifically, it may be a computer program in the application 622. When the computer program is executed by the processor 61, the processor 61 implements the following steps:
  • configuration information of the random access resource sent by the base station where the configuration information of the random access resource includes at least a time-frequency resource for transmitting the random access signal and a preamble format of the random access resource;
  • Processor 61 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 61 or an instruction in a form of software.
  • the processor 61 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with some embodiments of the present disclosure may be directly embodied by the hardware decoding processor, or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 62, and the processor 61 reads the information in the memory 62 and, in conjunction with its hardware, performs the steps of the above method.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSP devices, DSPDs), programmable Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other electronic unit for performing the functions described herein Or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSP devices digital signal processing devices
  • DSPDs digital signal processing devices
  • PLD programmable Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller
  • microprocessor other electronic unit for performing the functions described herein Or a combination thereof.
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the time-frequency resource that is used to send the random access signal includes at least one of the following:
  • the time domain location information includes at least one of: a system frame number, a subframe number, and a slot number; the start time domain location information includes at least one of: a starting system frame Number, starting subframe number and starting slot number.
  • the configuration information of the random access resource further includes at least one of the following:
  • the terminal can send the number of times of sending the random access signal
  • the number of the beam used for each transmission of multiple random access signal transmissions is the number of the beam used for each transmission of multiple random access signal transmissions
  • the number of the beam group used for each of the plurality of random access signal transmissions is the number of the beam group used for each of the plurality of random access signal transmissions
  • the number of the beam pair used for each transmission of multiple random access signal transmissions is the number of the beam pair used for each transmission of multiple random access signal transmissions.
  • the processor 61 may further implement the following steps: acquiring configuration information of a pre-agreed random access resource; and configuring information of the random access resource configured according to the base station and the foregoing The configuration information of the agreed random access resource is used to send a random access signal to the base station.
  • the configuration information of the pre-agreed random access resource includes information about a number of times that the terminal can send the random access signal, and/or an indication of whether to stop sending the random access signal after receiving the RAR. information.
  • the sending time information that the terminal can send the random access signal includes at least one of the following:
  • the processor 61 may further implement the following steps: when the configuration information of the random access resource includes indication information indicating that the terminal is capable of transmitting a single random access signal, and / or instructing the terminal to send the indication information of the single random access signal before receiving the RAR, before receiving the RAR, selecting a time-frequency resource from the time-frequency resources available for transmitting the random access signal, and at the time of selection A random access signal is sent to the base station on the frequency resource.
  • the processor 61 may further implement the following steps: when the configuration information of the random access resource includes indication information indicating that the terminal can send multiple random access signals And/or indicating that the terminal can send the indication information of the multiple random access signals before receiving the RAR, selecting a plurality of time-frequency resources from the time-frequency resources available for sending the random access signal, and each time of the selection A random access signal is sent to the base station on the frequency resource.
  • the processor 61 may further implement the following steps: when the configuration information of the random access resource includes the number of times of sending the plurality of random access signals, The base station sends the random access signal of the number of transmissions.
  • the processor 61 may further implement the following steps: when the configuration information of the random access resource includes multiple random access signal transmissions, each of the transmissions is used. When the preamble number is sent, each time the random access signal is sent to the base station, the random access signal transmitted is encoded according to the preamble number corresponding to the transmission.
  • the processor 61 may further implement the following steps: when the configuration information of the random access resource includes multiple random access signal transmissions, each of the transmissions is used. When the number of beams, beam groups, or beam pairs is transmitted, each time a random access signal is transmitted to the base station, it is transmitted on the corresponding beam, beam group, or beam pair.
  • the processor 61 may further implement the following steps: when the configuration information of the random access resource includes a start time domain location for transmitting multiple random access signals When the information or the initial frequency domain location information of the multiple random access signals is sent, when the random access signal is sent to the base station for the first time, the initial time domain location information or the initial frequency domain location information corresponds to Sent on the time-frequency resource.
  • the processor 61 may further implement the following steps: when the configuration information of the random access resource includes a period of random access resources, according to the random connection The period of the incoming resource, the plurality of random access signals.
  • the processor 61 may further implement the following steps: when the configuration information of the random access resource includes the indication that the terminal ends the RAR and does not receive the RAR.
  • the terminal 60 can implement various processes implemented by the terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the terminal sends a random access signal according to specific configuration information of the random access resource configured by the base station to adapt to different application scenarios, and ensures that the random access signal sent by the terminal can be received by the base station. At the same time save the power consumption of the terminal.
  • the present disclosure provides a terminal 70.
  • the terminal 70 in FIG. 7 may be a mobile phone, a tablet computer, a personal digital assistant (PDA), or a car computer.
  • PDA personal digital assistant
  • the terminal 70 in FIG. 7 includes a radio frequency (RF) circuit 71, a memory 72, an input unit 73, a display unit 74, a processor 75, a WiFi (Wireless Fidelity) module 76, an audio circuit 77, and a power source 78.
  • RF radio frequency
  • the input unit 73 can be used to receive digital or character information input by the user, and generate signal input related to user setting and function control of the terminal 70.
  • the input unit 73 may include a touch panel 731.
  • the touch panel 731 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 731), and according to the preset The programmed program drives the corresponding connection device.
  • the touch panel 731 may include two parts of a touch detection device and a touch controller. Wherein, the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 75 is provided and can receive commands from the processor 75 and execute them.
  • the touch panel 731 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 73 may further include other input devices 732, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 74 can be used to display information input by the user or information provided to the user and various menu interfaces of the terminal 70.
  • the display unit 74 may include a display panel 741.
  • the display panel 741 may be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 731 can cover the display panel 741 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 75 to determine the type of the touch event, and then the processor 75 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 75 by calling a software program and/or module stored in the first memory 721 and/or data in the second memory 722, when the computer program is executed by the processor 75, the processor 75 implements the following Step: receiving configuration information of a random access resource sent by the base station, where the configuration information of the random access resource includes at least a time-frequency resource for transmitting a random access signal and a preamble format of the random access resource;
  • the time-frequency resource that is used to send the random access signal includes at least one of the following:
  • the time domain location information includes at least one of: a system frame number, a subframe number, and a slot number; the start time domain location information includes at least one of: a starting system frame Number, starting subframe number and starting slot number.
  • the configuration information of the random access resource further includes at least one of the following:
  • the terminal can send the number of times of sending the random access signal
  • the number of the beam used for each transmission of multiple random access signal transmissions is the number of the beam used for each transmission of multiple random access signal transmissions
  • the number of the beam group used for each of the plurality of random access signal transmissions is the number of the beam group used for each of the plurality of random access signal transmissions
  • the number of the beam pair used for each transmission of multiple random access signal transmissions is the number of the beam pair used for each transmission of multiple random access signal transmissions.
  • the processor 75 may further implement the steps of: acquiring configuration information of a pre-agreed random access resource; and configuring information of the random access resource configured according to the base station and the foregoing The configuration information of the agreed random access resource is used to send a random access signal to the base station.
  • the configuration information of the pre-agreed random access resource includes information about a number of times that the terminal can send the random access signal, and/or an indication of whether to stop sending the random access signal after receiving the RAR. information.
  • the sending time information that the terminal can send the random access signal includes at least one of the following:
  • the processor 75 may further implement the following steps: when the configuration information of the random access resource includes indication information indicating that the terminal is capable of transmitting a single random access signal, and / or instructing the terminal to send the indication information of the single random access signal before receiving the RAR, before receiving the RAR, selecting a time-frequency resource from the time-frequency resources available for transmitting the random access signal, and at the time of selection A random access signal is sent to the base station on the frequency resource.
  • the processor 75 may further implement the following steps: when the configuration information of the random access resource includes indication information indicating that the terminal can send multiple random access signals And/or indicating that the terminal can send the indication information of the multiple random access signals before receiving the RAR, selecting a plurality of time-frequency resources from the time-frequency resources available for sending the random access signal, and each time of the selection A random access signal is sent to the base station on the frequency resource.
  • the processor 75 may further implement the following steps: when the configuration information of the random access resource includes the number of transmission times of the plurality of random access signals, The base station sends the random access signal of the number of transmissions.
  • the processor 75 may further implement the following steps: when the configuration information of the random access resource includes multiple random access signal transmissions, each of the transmissions is used. When the preamble number is sent, each time the random access signal is sent to the base station, the random access signal transmitted is encoded according to the preamble number corresponding to the transmission.
  • the processor 75 may further implement the following steps: when the configuration information of the random access resource includes multiple random access signal transmissions, each of the transmissions is used. When the number of beams, beam groups, or beam pairs is transmitted, each time a random access signal is transmitted to the base station, it is transmitted on the corresponding beam, beam group, or beam pair.
  • the processor 75 may further implement the following steps: when the configuration information of the random access resource includes a starting time domain location for transmitting multiple random access signals When the information or the initial frequency domain location information of the multiple random access signals is sent, when the random access signal is sent to the base station for the first time, the initial time domain location information or the initial frequency domain location information corresponds to Sent on the time-frequency resource.
  • the processor 75 may further implement the following steps: when the configuration information of the random access resource includes a period of random access resources, according to the random connection The period of the incoming resource, the plurality of random access signals.
  • the processor 75 may further implement the following steps: when the configuration information of the random access resource includes indicating that the terminal ends the RAR and does not receive the RAR.
  • the terminal 70 can implement various processes implemented by the terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the terminal sends a random access signal according to specific configuration information of the random access resource configured by the base station to adapt to different application scenarios, and ensures that the random access signal sent by the terminal can be received by the base station. At the same time save the power consumption of the terminal.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, an optical disk, and the like, which can store various program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种随机接入方法、终端和基站。应用于基站的随机接入方法包括:配置随机接入资源的配置信息,随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;向终端发送随机接入资源的配置信息。

Description

随机接入方法、终端和基站
相关申请的交叉引用
本申请主张在2017年8月18日在中国提交的中国专利申请号No.201710712248.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种随机接入方法、终端和基站。
背景技术
长期演进(Long Term Evolution,简称LTE)***中,基站通过无线资源控制(Radio Resource Control,简称RRC)消息给终端(User Equipment,简称UE)配置“物理随机接入信道配置索引(PRACH Configuration Index)”。终端根据该index,在帧结构表格(如表1所示的帧结构类型1表格)中找到该index对应的随机接入资源的配置,其中,每个index对应的随机接入资源的配置信息包括:
1)前导格式(Preamble Format)(如0/1/2/3)。
2)***帧号(System frame number)(如偶数(Even)或任意(Any)***帧号)。
3)子帧号(Subframe number)(如1/4/7等)。
表1
Figure PCTCN2018100636-appb-000001
Figure PCTCN2018100636-appb-000002
第五代(5G)移动通信***中引入基于波束的随机接入信号的发送,即终端可以连续的在多个随机接入资源发送多个随机接入信号,该连续发送的随机接入信号可以采用相同的或不同的随机接入资源配置,从而保证基站能够在不同时间和不同波束上接收到终端的随机接入信号。
另外,5G***中引入了更加灵活的子帧或时隙(slot)的配置,即每个***帧中subfram/slot的数量都是可变的,这要求随机接入资源的配置更加灵活的适应不同的帧结构。
由于5G***更加灵活的帧或时隙的配置,以及不同波束扫描的方式会导致不同的随机接入资源的配置,采用传统的基于index的随机接入资源配置方式会导致随机接入资源的配置不灵活,例如为了基站能够接收到不同波束的随机信号,会导致配置更加密集的随机接入资源发送,导致随机接入资源的配置浪费,也增加了终端发送随机接入信号时的功率损耗。
发明内容
本公开的一些实施例提供一种随机接入方法、终端和基站,用于更加灵活的配置随机接入资源。
第一方面,本公开的一些实施例提供一种随机接入方法,应用于基站,包括:配置随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;向终端发送所述随机接入资源的配置信息。
第二方面,本公开的一些实施例提供一种随机接入方法,应用于终端,包括:接收基站发送的随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;根据所述随机接入资源的配置信息,向所述基站发送随机接入信号。
第三方面,本公开的一些实施例提供一种基站,包括:配置单元,用于配置随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;发送单元,用于 向终端发送所述随机接入资源的配置信息。
第四方面,本公开的一些实施例提供一种终端,包括:接收单元,用于接收基站发送的随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;发送单元,用于根据所述随机接入资源的配置信息,向所述基站发送随机接入信号。
第五方面,本公开的一些实施例提供一种基站,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现上述的随机接入方法的步骤。
第六方面,本公开的一些实施例提供一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现上述随机接入方法的步骤。
第七方面,本公开的一些实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时所述处理器实现上述基站侧的随机接入方法的步骤。
第八方面,本公开的一些实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时所述处理器实现上述终端侧的随机接入方法的步骤。
附图说明
为了更清楚地说明本公开的一些实施例的技术方案,下面将对本公开的一些实施例的描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开的一些实施例的随机接入方法的流程示意图一;
图2为本公开的一些实施例的随机接入方法的流程示意图二;
图3为本公开的一些实施例的基站的结构示意图一;
图4为本公开的一些实施例的终端的结构示意图一;
图5为本公开的一些实施例的基站的结构示意图二;
图6为本公开的一些实施例的终端的结构示意图二;以及
图7为本公开的一些实施例的终端的结构示意图三。
具体实施方式
为使本公开的一些实施例的目的、技术方案和优点更加清楚,下面将结合本公开的一些实施例的附图,对本公开的一些实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
本公开的一些实施例提供的随机接入方法、终端和基站可以更加灵活的配置随机接入资源。
请参考图1,图1为本公开的一些实施例的随机接入方法的流程示意图,该随机接入方法应用于基站并且包括步骤101和102。
步骤101:配置随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式(Preamble Format)。
步骤102:向终端发送所述随机接入资源的配置信息。
本公开的一些实施例中,与相关的随机接入方法不同的是,基站不是向终端发送物理随机接入信道配置索引(PRACH Configuration Index),而是生成随机接入资源的具体配置信息,并向终端发送,从而可以根据需要更加灵活地配置随机接入资源,以适应不同的应用场景,避免随机接入资源的配置浪费。
本公开的一些实施例中的基站可以是全球移动通信(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站等,在此并不限定。
本公开的一些实施例中,所述发送随机接入信号可用的时频资源包括以下至少之一:
1)发送随机接入信号可用的时域位置信息;
2)发送随机接入信号可用的频域位置信息;
3)发送多个随机接入信号的起始时域位置信息;
4)发送多个随机接入信号的起始频域位置信息。
本公开的一些实施例中的发送多个随机接入信号是指基于波束的随机接入信号的发送,即终端可以连续的在多个随机接入资源发送多个随机接入信号,该多个随机接入信号可以采用相同的或不同的随机接入资源配置,从而保证基站能够在不同时间和不同波束上接收到终端的随机接入信号。
本公开的一些实施例中所谓的多个随机接入信号,是指至少两个随机接入信号。
所述发送随机接入信号可用的时域位置信息和/或频域位置信息,可以是发送一个随机接入信号可用的时域位置信息和/或频域位置信息,也可以是发送多个随机接入信号可用的全部时域位置信息和/或频域位置信息。
本公开的一些实施例中,所述发送随机接入信号可用的时域位置信息可以包括以下至少之一:
11)发送随机接入信号可用的***帧编号(System frame number);
12)发送随机接入信号可用的子帧编号(Subframe number);
13)发送随机接入信号可用的时隙编号(Slot number)。
本公开的一些实施例中,所述发送多个随机接入信号的起始时域位置信息可以包括以下至少之一:
31)发送多个随机接入信号的起始***帧编号;
32)发送多个随机接入信号的起始子帧编号;
33)发送多个随机接入信号的起始时隙编号。
本公开的一些实施例中,基站配置的随机接入资源的配置信息除了发送随机接入信号可用的时频资源和随机接入资源的前导格式两种最基本和必要的配置信息之外,还可以包括其他配置信息,以使得随机接入资源的配置更加灵活。
在本公开的一些实施例中,所述随机接入资源的配置信息还包括以下至少之一:
5)终端能够发送随机接入信号的发送次数信息;
6)在接收到随机接入响应(Random Access Response,简称RAR)后是否停止发送随机接入信号的指示信息;
7)随机接入资源的周期;
8)多个随机接入信号发送中每一次发送采用的前导码编号;
9)多个随机接入信号发送中每一次发送采用的波束的编号;
10)多个随机接入信号发送中每一次发送采用的波束组的编号;
11)多个随机接入信号发送中每一次发送采用的波束对的编号。
其中,5)终端能够发送随机接入信号的发送次数信息,和/或,6)在接收到RAR后是否停止发送随机接入信号的指示信息,也可以由协议预先约定。
本公开的一些实施例中,所述终端能够发送随机接入信号的发送次数信息可以包括以下至少之一:
51)指示终端能够发送单个随机接入信号的指示信息;
52)指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
53)指示终端能够发送多个随机接入信号的指示信息;
54)指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
55)指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
56)指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
57)多个随机接入信号的发送次数。
例如,发送次数是5,即终端可以在5个随机接入资源上连续发送5个随机接入信号。
本公开的一些实施例中,基站可以根据需要配置多种类型的随机接入资源,并向终端发送,使得随机接入资源的配置更加灵活,以适应不同的应用场景,避免随机接入资源的配置浪费。例如,在基于波束的随机接入信号的发送的场景下,可以配置“多个随机接入信号”相关的配置信息。
请参考图2,图2为本公开的一些实施例二的随机接入方法的流程示意图,该随机接入方法包括步骤201-202。
步骤201:接收基站发送的随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;
步骤202:根据所述随机接入资源的配置信息,向所述基站发送随机接入信号。
由于随机接入资源的配置信息中包括随机接入资源的前导格式,因而,终端需要采用随机接入资源的配置信息中指示的前导格式发送随机接入信号。
本公开的一些实施例中,终端根据基站配置的随机接入资源的具体配置信息,发送随机接入信号,以适应不同的应用场景,保证终端发送的随机接入信号均能够被基站接收到,同时节省终端的功耗。
本公开的一些实施例中的终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、终端(User Device or User Equipment),在此不作限定。
本公开的一些实施例中,所述基站配置的发送随机接入信号可用的时频资源包括以下至少之一:
1)发送随机接入信号可用的时域位置信息;
2)发送随机接入信号可用的频域位置信息;
3)发送多个随机接入信号的起始时域位置信息;
4)发送多个随机接入信号的起始频域位置信息。
本公开的一些实施例中的发送多个随机接入信号是指基于波束的随机接入信号的发送,即终端可以连续的在多个随机接入资源发送多个随机接入信号,该多个随机接入信号可以采用相同的或不同的随机接入资源配置,从而保证基站能够在不同时间和不同波束上接收到终端的随机接入信号。
本公开的一些实施例中所谓的多个随机接入信号,是指至少两个随机接入信号。
所述发送随机接入信号可用的时域位置信息和/或频域位置信息,可以是发送一个随机接入信号可用的时域位置信息和/或频域位置信息,也可以是发送多个随机接入信号可用的全部时域位置信息和/或频域位置信息。
本公开的一些实施例中,所述发送随机接入信号可用的时域位置信息可以包括以下至少之一:
11)发送随机接入信号可用的***帧编号;
12)发送随机接入信号可用的子帧编号;
13)发送随机接入信号可用的时隙编号。
本公开的一些实施例中,所述发送多个随机接入信号的起始时域位置信息可以包括以下至少之一:
31)发送多个随机接入信号的起始***帧编号;
32)发送多个随机接入信号的起始子帧编号;
33)发送多个随机接入信号的起始时隙编号。
本公开的一些实施例中,基站配置的随机接入资源的配置信息除了发送随机接入信号可用的时频资源和随机接入资源的前导格式两种最基本和必要的配置信息之外,还可以包括其他配置信息,以使得随机接入资源的配置更加灵活。
在本公开的一些实施例中,所述基站配置的随机接入资源的配置信息还包括以下至少之一:
5)终端能够发送随机接入信号的发送次数信息;
6)在接收到随机接入响应(Random Access Response,简称RAR)后是否停止发送随机接入信号的指示信息;
7)随机接入资源的周期;
8)多个随机接入信号发送中每一次发送采用的前导码编号;
9)多个随机接入信号发送中每一次发送采用的波束的编号;
10)多个随机接入信号发送中每一次发送采用的波束组的编号;
11)多个随机接入信号发送中每一次发送采用的波束对的编号。
本公开的一些实施例中,所述终端能够发送随机接入信号的发送次数信息可以包括以下至少之一:
51)指示终端能够发送单个随机接入信号的指示信息;
52)指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
53)指示终端能够发送多个随机接入信号的指示信息;
54)指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
55)指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
56)指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
57)多个随机接入信号的发送次数。
例如,发送次数是5,即终端可以在5个随机接入资源上连续发送5个随机接入信号。
本公开的一些实施例中,随机接入资源的配置信息除了可以由基站配置之外,有些还可以由协议预先预定。即,本公开的一些实施例中的随机接入方法还可以包括:获取预先约定的随机接入资源的配置信息;
所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:根据基站配置的随机接入资源的配置信息和预先约定的随机接入资源的配置信息,向所述基站发送随机接入信号。
本公开的一些实施例中,可选地,上述随机接入资源的配置信息中的5)终端能够发送随机接入信号的发送次数信息,和/或,6)在接收到RAR后是 否停止发送随机接入信号的指示信息,也可以由协议预先约定。
在本公开的一些实施例中,当随机接入资源的配置信息(该随机接入资源的配置信息可以是基站配置的,也可以是预先约定的)中包括指示终端能够发送单个随机接入信号的指示信息和/或指示终端接收到RAR之前能够发送单个随机接入信号的指示信息时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:在接收到RAR之前,从所述发送随机接入信号可用的时频资源中选择一时频资源,并在选择的时频资源上向所述基站发送一个随机接入信号。可选地,当所述时频资源为时域资源时,选择在时域上最近的一可用时域资源,并在选择的可用时域资源上向所述基站发送一个随机接入信号。
在本公开的一些实施例中,当随机接入资源的配置信息(该随机接入资源的配置信息可以是基站配置的,也可以是预先约定的)中包括指示终端能够发送多个随机接入信号的指示信息和/或指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:从所述发送随机接入信号可用的时频资源中选择多个时频资源,并在选择的每一时频资源上向所述基站发送一个随机接入信号。可选地,当所述时频资源为时域资源时,从时域上最近的一可用时域资源开始,在多个连续的可用时域资源上发送多个随机接入信号。当然,当可用的时域资源不连续时,也可以在时域上按照从近到远的顺序,依次选择可用的多个时域资源,用于发送多个随机接入信号。
在本公开的一些实施例中,当随机接入资源的配置信息(该随机接入资源的配置信息可以是基站配置的,也可以是预先约定的)中包括多个随机接入信号的发送次数时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:多个随机接入信号的发送次数为所述配置信息中配置的发送次数。例如,当发送次数为5个时,从可用的时频资源上选择5个时频资源,并在每个时频资源上分别发送一个随机接入信号。
在本公开的一些实施例中,当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的前导码编号时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:在每一次向所述 基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
在本公开的一些实施例中,当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的波束、波束组或波束对的编号时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
在本公开的一些实施例中,当所述随机接入资源的配置信息中包括发送多个随机接入信号的起始时域位置信息或发送多个随机接入信号的起始频域位置信息时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:在第一次向所述基站发送随机接入信号时,在所述起始时域位置信息或起始频域位置信息对应的时频资源上发送。
在本公开的一些实施例中,当所述随机接入资源的配置信息中包括随机接入资源的周期时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:按照所述随机接入资源的周期,所述多个随机接入信号。
在本公开的一些实施例中,当随机接入资源的配置信息(该随机接入资源的配置信息可以是基站配置的,也可以是预先约定的)中包括指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息或者指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:在RAR的接收时间截止且未收到RAR之后,选择与之前发送随机接入信号的随机接入资源不同的资源,发送所述多个随机接入信号,从而避免随机接入信号再次发送失败。
下面结合基站和终端的交互,对本公开的随机接入方法进行详细说明。
实例一
本公开的一些实施例的随机接入方法包括步骤301-302。
步骤301:基站向终端发送随机接入资源的配置信息,该随机接入资源的配置信息包括:
Figure PCTCN2018100636-appb-000003
指示终端能够发送单个随机接入信号的指示信息(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000004
指示终端接收到RAR之前能够发送单个随机接入信号的指示信息(也可以通过协议预先约定);
Figure PCTCN2018100636-appb-000005
发送随机接入信号可用的子帧编号。
Figure PCTCN2018100636-appb-000006
发送随机接入信号可用的时隙编号。
Figure PCTCN2018100636-appb-000007
发送随机接入信号可用的***帧编号。
Figure PCTCN2018100636-appb-000008
随机接入资源的周期。
Figure PCTCN2018100636-appb-000009
随机接入资源的前导格式。
其中,在本公开的其他一些实施例中,第1项和/或第2项,也可以通过协议预先约定。且,第1项和第2项,也可以择一配置。
步骤302:终端根据基站发送的随机接入资源配置信息,向所述基站发送随机接入信号,具体包括:
Figure PCTCN2018100636-appb-000010
在接收到RAR之前发送1个随机接入信号。
Figure PCTCN2018100636-appb-000011
该随机接入信号使用的时域资源为可用的时域资源中最近的一个时域资源。
Figure PCTCN2018100636-appb-000012
采用配置信息中指示的随机接入资源的前导格式发送随机接入信号。
实例二
本公开的一些实施例的随机接入方法包括步骤401-402。
步骤401:基站向终端发送随机接入资源的配置信息,该随机接入资源的配置信息包括:
Figure PCTCN2018100636-appb-000013
指示终端能够发送多个随机接入信号的指示信息(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000014
指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000015
发送随机接入信号可用的子帧编号。
Figure PCTCN2018100636-appb-000016
发送随机接入信号可用的时隙编号。
Figure PCTCN2018100636-appb-000017
发送随机接入信号可用的***帧编号。
Figure PCTCN2018100636-appb-000018
随机接入资源的周期。
Figure PCTCN2018100636-appb-000019
随机接入资源的前导格式。
Figure PCTCN2018100636-appb-000020
多个随机接入信号的发送次数(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000021
多个随机接入信号发送中每一次发送采用的前导码编号。
Figure PCTCN2018100636-appb-000022
多个随机接入信号发送中每一次发送采用的波束编号、波束组编号或波束对编号。
Figure PCTCN2018100636-appb-000023
接收到RAR后停止发送随机接入信号的指示信息(也可以通过协议预先约定)。
其中,在本公开的其他一些实施例中,第1项、第2项、第8项和/或第11项,也可以通过协议预先约定。且,第1项和第2项,也可以择一配置。
步骤402:终端根据基站发送的随机接入资源配置信息,向所述基站发送随机接入信号,具体包括:
Figure PCTCN2018100636-appb-000024
在时域上按照从近到远的顺序,依次选择可用的多个时域资源,用于发送多个随机接入信号。
Figure PCTCN2018100636-appb-000025
采用配置信息中指示的随机接入资源的前导格式发送随机接入信号。
Figure PCTCN2018100636-appb-000026
多个随机接入信号的发送次数为所述配置信息中配置的发送次数。
Figure PCTCN2018100636-appb-000027
在每一次向所述基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
Figure PCTCN2018100636-appb-000028
在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
Figure PCTCN2018100636-appb-000029
在接收到RAR后停止随机接入信号的发送。
实例三
本公开的一些实施例的随机接入方法包括步骤501-502。
步骤501:基站向终端发送随机接入资源的配置信息,该随机接入资源的配置信息包括:
Figure PCTCN2018100636-appb-000030
指示终端能够发送多个随机接入信号的指示信息(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000031
指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000032
多个随机接入信号的发送次数(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000033
随机接入资源的前导格式。
Figure PCTCN2018100636-appb-000034
发送多个随机接入信号的起始子帧编号。
Figure PCTCN2018100636-appb-000035
发送多个随机接入信号的起始时隙编号。
Figure PCTCN2018100636-appb-000036
发送多个随机接入信号的起始***帧编号。
Figure PCTCN2018100636-appb-000037
随机接入资源的周期。
Figure PCTCN2018100636-appb-000038
多个随机接入信号发送中每一次发送采用的前导码编号。
Figure PCTCN2018100636-appb-000039
多个随机接入信号发送中每一次发送采用的波束编号、波束组编号或波束对编号。
Figure PCTCN2018100636-appb-000040
接收到RAR后停止发送随机接入信号的指示信息(也可以通过协议预先约定)。
步骤502:终端根据基站发送的随机接入资源配置信息,向所述基站发送随机接入信号,具体包括:
Figure PCTCN2018100636-appb-000041
多个随机接入信号的发送次数为所述配置信息中配置的发送次数。
Figure PCTCN2018100636-appb-000042
采用配置信息中指示的随机接入资源的前导格式发送随机接入信号。
Figure PCTCN2018100636-appb-000043
在第一次向所述基站发送随机接入信号时,在所述起始时域位置信息对应的时域资源上发送。(如根据以下起始时域位置中的任意一项发送,包括:发送多个随机接入信号的起始子帧编号;发送多个随机接入信号的起始时隙编号;发送多个随机接入信号的起始***帧编号)。
Figure PCTCN2018100636-appb-000044
从第1次随机接入信号发送的位置开始,按照所述随机接入资源的周期,逐个发送所述多个随机接入信号。
Figure PCTCN2018100636-appb-000045
在每一次向所述基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
Figure PCTCN2018100636-appb-000046
在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
Figure PCTCN2018100636-appb-000047
在接收到RAR后停止随机接入信号的发送。
实例四
本公开的一些实施例的随机接入方法包括步骤601-602。
步骤601:基站向终端发送随机接入资源的配置信息,该随机接入资源的配置信息包括:
Figure PCTCN2018100636-appb-000048
指示终端接收到RAR之前能够发送单个随机接入信号的指示信息(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000049
指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000050
发送随机接入信号可用的子帧编号。
Figure PCTCN2018100636-appb-000051
发送随机接入信号可用的时隙编号。
Figure PCTCN2018100636-appb-000052
发送随机接入信号可用的***帧编号。
Figure PCTCN2018100636-appb-000053
随机接入资源的周期。
Figure PCTCN2018100636-appb-000054
多个随机接入信号发送中每一次发送采用的随机接入资源的前导格式。
Figure PCTCN2018100636-appb-000055
多个随机接入信号的发送次数(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000056
多个随机接入信号发送中每一次发送采用的前导码编号。
Figure PCTCN2018100636-appb-000057
多个随机接入信号发送中每一次发送采用的波束编号、波束组编号或波束对编号。
其中,在本公开的其他一些实施例中,第1项、第2项和/或第8项,也可以通过协议预先约定。且,第1项和第2项,也可以择一配置。
步骤602:终端根据基站发送的随机接入资源配置信息,向所述基站发送随机接入信号,具体包括:
Figure PCTCN2018100636-appb-000058
在接收到RAR之前发送1个随机接入信号。
Figure PCTCN2018100636-appb-000059
对于在接收到RAR之前发送的第一个随机接入信号,使用的时域资源为可用的时域资源中最近的一个时域资源。
Figure PCTCN2018100636-appb-000060
对于在RAR的接收时间截止且未收到RAR之后发送的多个随机接入信号,使用的时域资源为可用的时域资源中最近的一个时域资源,且该时频资源与之前发送随机接入信号的资源不同。
Figure PCTCN2018100636-appb-000061
对于在RAR的接收时间截止且未收到RAR之后发送的多个随机接入信号,在每一次发送随机接入信号时,采用指示的随机接入资源的前导格式发送。
Figure PCTCN2018100636-appb-000062
多个随机接入信号的发送次数为所述配置信息中配置的发送次数。
Figure PCTCN2018100636-appb-000063
在每一次向所述基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
Figure PCTCN2018100636-appb-000064
在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
实例五
本公开的一些实施例的随机接入方法包括步骤701-702。
步骤701:基站向终端发送随机接入资源的配置信息,该随机接入资源的配置信息包括:
Figure PCTCN2018100636-appb-000065
指示终端接收到RAR之前能够发送单个随机接入信号的指示信息(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000066
指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000067
多个随机接入信号的发送次数(也可以通过协议预先约定)。
Figure PCTCN2018100636-appb-000068
多个随机接入信号发送中每一次发送采用的随机接入资源的前导格式。发送多个随机接入信号的起始子帧编号。
Figure PCTCN2018100636-appb-000069
发送多个随机接入信号的起始时隙编号。
Figure PCTCN2018100636-appb-000070
发送多个随机接入信号的起始***帧编号。
Figure PCTCN2018100636-appb-000071
随机接入资源的周期。
Figure PCTCN2018100636-appb-000072
多个随机接入信号发送中每一次发送采用的前导码编号。
Figure PCTCN2018100636-appb-000073
多个随机接入信号发送中每一次发送采用的波束编号、波束组编号或波束对编号。
步骤702:终端根据基站发送的随机接入资源配置信息,向所述基站发送随机接入信号,具体包括:
Figure PCTCN2018100636-appb-000074
多个随机接入信号的发送次数为所述配置信息中配置的发送次数
Figure PCTCN2018100636-appb-000075
对于在RAR的接收时间截止且未收到RAR之后发送的多个随机接入信号,在每一次发送随机接入信号时,采用指示的随机接入资源的前导格式发送。
Figure PCTCN2018100636-appb-000076
在接收到RAR之前发送1个随机接入信号。
Figure PCTCN2018100636-appb-000077
对于在RAR的接收时间截止且未收到RAR之后发送的多个随机接入信号,在第一次向所述基站发送随机接入信号时,在所述起始时域位置信息对应的时域资源上发送。(如根据以下起始时域位置中的任意一项发 送,包括:发送多个随机接入信号的起始子帧编号;发送多个随机接入信号的起始时隙编号;发送多个随机接入信号的起始***帧编号)。
Figure PCTCN2018100636-appb-000078
对于在RAR的接收时间截止且未收到RAR之后发送的多个随机接入信号,从第1次随机接入信号发送的位置开始,按照所述随机接入资源的周期,逐个发送所述多个随机接入信号,且使用的时频资源与之前发送随机接入信号的资源不同。
Figure PCTCN2018100636-appb-000079
在每一次向所述基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
Figure PCTCN2018100636-appb-000080
在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
基于同一发明构思,请参考图3,本公开还提供一种基站30,包括:配置单元31,用于配置随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;和,发送单元32,用于向终端发送所述随机接入资源的配置信息。
本公开的一些实施例中,与相关的随机接入方法不同的是,基站不是向终端发送物理随机接入信道配置索引,而是生成随机接入资源的具体配置信息,并向终端发送,从而可以根据需要更加灵活地配置随机接入资源,以适应不同的应用场景,避免随机接入资源的配置浪费。
本公开的一些实施例中,所述发送随机接入信号可用的时频资源包括以下至少之一:
1)发送随机接入信号可用的时域位置信息;
2)发送随机接入信号可用的频域位置信息;
3)发送多个随机接入信号的起始时域位置信息;
4)发送多个随机接入信号的起始频域位置信息。
本公开的一些实施例中的发送多个随机接入信号是指基于波束的随机接入信号的发送,即终端可以连续的在多个随机接入资源发送多个随机接入信号,该多个随机接入信号可以采用相同的或不同的随机接入资源配置,从而保证基站能够在不同时间和不同波束上接收到终端的随机接入信号。
本公开的一些实施例中所谓的多个随机接入信号,是指至少两个随机接 入信号。
所述发送随机接入信号可用的时域位置信息和/或频域位置信息,可以是发送一个随机接入信号可用的时域位置信息和/或频域位置信息,也可以是发送多个随机接入信号可用的全部时域位置信息和/或频域位置信息。
本公开的一些实施例中,所述发送随机接入信号可用的时域位置信息可以包括以下至少之一:
11)发送随机接入信号可用的***帧编号(System frame number);
12)发送随机接入信号可用的子帧编号(Subframe number);
13)发送随机接入信号可用的时隙编号(Slot number)。
本公开的一些实施例中,所述发送多个随机接入信号的起始时域位置信息可以包括以下至少之一:
31)发送多个随机接入信号的起始***帧编号;
32)发送多个随机接入信号的起始子帧编号;
33)发送多个随机接入信号的起始时隙编号。
本公开的一些实施例中,基站配置的随机接入资源的配置信息除了发送随机接入信号可用的时频资源和随机接入资源的前导格式两种最基本和必要的配置信息之外,还可以包括其他配置信息,以使得随机接入资源的配置更加灵活。
在本公开的一些实施例中,所述随机接入资源的配置信息还包括以下至少之一:
5)终端能够发送随机接入信号的发送次数信息;
6)在接收到随机接入响应(Random Access Response,简称RAR)后是否停止发送随机接入信号的指示信息;
7)随机接入资源的周期;
8)多个随机接入信号发送中每一次发送采用的前导码编号;
9)多个随机接入信号发送中每一次发送采用的波束的编号;
10)多个随机接入信号发送中每一次发送采用的波束组的编号;
11)多个随机接入信号发送中每一次发送采用的波束对的编号。
其中,5)终端能够发送随机接入信号的发送次数信息,和/或,6)在接 收到RAR后是否停止发送随机接入信号的指示信息,也可以由协议预先约定。
本公开的一些实施例中,所述终端能够发送随机接入信号的发送次数信息可以包括以下至少之一:
51)指示终端能够发送单个随机接入信号的指示信息;
52)指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
53)指示终端能够发送多个随机接入信号的指示信息;
54)指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
55)指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
56)指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
57)多个随机接入信号的发送次数。
例如,发送次数是5,即终端可以在5个随机接入资源上连续发送5个随机接入信号。
本公开的一些实施例中,基站可以根据需要配置多种类型的随机接入资源,并向终端发送,使得随机接入资源的配置更加灵活,以适应不同的应用场景,避免随机接入资源的配置浪费。例如,在基于波束的随机接入信号的发送的场景下,可以配置“多个随机接入信号”相关的配置信息。
请参考图4,本公开还提供一种终端40,包括:接收单元41,用于接收基站发送的随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;发送单元42,用于根据所述随机接入资源的配置信息,向所述基站发送随机接入信号。
由于随机接入资源的配置信息中包括随机接入资源的前导格式,因而,终端需要采用随机接入资源的配置信息中指示的前导格式发送随机接入信号。
本公开的一些实施例中,终端根据基站配置的随机接入资源的具体配置信息,发送随机接入信号,以适应不同的应用场景,保证终端发送的随机接入信号均能够被基站接收到,同时节省终端的功耗。
本公开的一些实施例中,所述基站配置的发送随机接入信号可用的时频资源包括以下至少之一:
1)发送随机接入信号可用的时域位置信息;
2)发送随机接入信号可用的频域位置信息;
3)发送多个随机接入信号的起始时域位置信息;
4)发送多个随机接入信号的起始频域位置信息。
本公开的一些实施例中的发送多个随机接入信号是指基于波束的随机接入信号的发送,即终端可以连续的在多个随机接入资源发送多个随机接入信号,该多个随机接入信号可以采用相同的或不同的随机接入资源配置,从而保证基站能够在不同时间和不同波束上接收到终端的随机接入信号。
本公开的一些实施例中所谓的多个随机接入信号,是指至少两个随机接入信号。
所述发送随机接入信号可用的时域位置信息和/或频域位置信息,可以是发送一个随机接入信号可用的时域位置信息和/或频域位置信息,也可以是发送多个随机接入信号可用的全部时域位置信息和/或频域位置信息。
本公开的一些实施例中,所述发送随机接入信号可用的时域位置信息可以包括以下至少之一:
11)发送随机接入信号可用的***帧编号;
12)发送随机接入信号可用的子帧编号;
13)发送随机接入信号可用的时隙编号。
本公开的一些实施例中,所述发送多个随机接入信号的起始时域位置信息可以包括以下至少之一:
31)发送多个随机接入信号的起始***帧编号;
32)发送多个随机接入信号的起始子帧编号;
33)发送多个随机接入信号的起始时隙编号。
本公开的一些实施例中,基站配置的随机接入资源的配置信息除了发送随机接入信号可用的时频资源和随机接入资源的前导格式两种最基本和必要的配置信息之外,还可以包括其他配置信息,以使得随机接入资源的配置更加灵活。
在本公开的一些实施例中,所述基站配置的随机接入资源的配置信息还包括以下至少之一:
5)终端能够发送随机接入信号的发送次数信息;
6)在接收到随机接入响应(Random Access Response,简称RAR)后是否停止发送随机接入信号的指示信息;
7)随机接入资源的周期;
8)多个随机接入信号发送中每一次发送采用的前导码编号;
9)多个随机接入信号发送中每一次发送采用的波束的编号;
10)多个随机接入信号发送中每一次发送采用的波束组的编号;
11)多个随机接入信号发送中每一次发送采用的波束对的编号。
本公开的一些实施例中,所述终端能够发送随机接入信号的发送次数信息可以包括以下至少之一:
51)指示终端能够发送单个随机接入信号的指示信息;
52)指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
53)指示终端能够发送多个随机接入信号的指示信息;
54)指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
55)指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
56)指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
57)多个随机接入信号的发送次数。
例如,发送次数是5,即终端可以在5个随机接入资源上连续发送5个随机接入信号。
本公开的一些实施例中,随机接入资源的配置信息除了可以由基站配置之外,有些还可以由协议预先预定。即,本公开的一些实施例的终端还可以包括:获取单元,用于获取预先约定的随机接入资源的配置信息;其中,所述发送单元,还用于根据基站配置的随机接入资源的配置信息和预先约定的随机接入资源的配置信息,向所述基站发送随机接入信号。
本公开的一些实施例中,可选地,上述随机接入资源的配置信息中的5)终端能够发送随机接入信号的发送次数信息,和/或,6)在接收到RAR后是否停止发送随机接入信号的指示信息,也可以由协议预先约定。
在本公开的一些实施例中,当所述随机接入资源的配置信息(该随机接入资源的配置信息可以是基站配置的,也可以是预先约定的)中包括指示终端能够发送单个随机接入信号的指示信息和/或指示终端接收到RAR之前能够发送单个随机接入信号的指示信息时,所述发送单元,还用于在接收到RAR之前,从所述发送随机接入信号可用的时频资源中选择一时频资源,并在选择的时频资源上向所述基站发送一个随机接入信号。
在本公开的一些实施例中,当所述随机接入资源的配置信息(该随机接入资源的配置信息可以是基站配置的,也可以是预先约定的)中包括指示终端能够发送多个随机接入信号的指示信息和/或指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息时,所述发送单元,还用于从所述发送随机接入信号可用的时频资源中选择多个时频资源,并在选择的每一时频资源上向所述基站发送一个随机接入信号。
在本公开的一些实施例中,当所述随机接入资源的配置信息(该随机接入资源的配置信息可以是基站配置的,也可以是预先约定的)中包括多个随机接入信号的发送次数时,所述发送单元,还用于向基站发送所述发送次数个随机接入信号。
在本公开的一些实施例中,当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的前导码编号时,所述发送单元,还用于在每一次向所述基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
在本公开的一些实施例中,当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的波束、波束组或波束对的编号时,所述发送单元,还用于在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
在本公开的一些实施例中,当所述随机接入资源的配置信息中包括发送多个随机接入信号的起始时域位置信息或发送多个随机接入信号的起始频域位置信息时,所述发送单元,还用于在第一次向所述基站发送随机接入信号时,在所述起始时域位置信息或起始频域位置信息对应的时频资源上发送。
在本公开的一些实施例中,当所述随机接入资源的配置信息中包括随机 接入资源的周期时,所述发送单元,还用于按照所述随机接入资源的周期,发送所述多个随机接入信号。
在本公开的一些实施例中,当所述随机接入资源的配置信息(该随机接入资源的配置信息可以是基站配置的,也可以是预先约定的)中包括指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息或者指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息时,所述发送单元,还用于在RAR的接收时间截止且未收到RAR之后,选择与之前发送随机接入信号的随机接入资源不同的资源,发送所述多个随机接入信号。
本公开的一些实施例还提供一种基站,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现上述基站侧的随机接入方法的步骤。
本公开的一些实施例还提供一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现上述终端侧的随机接入方法的步骤。
本公开的一些实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时所述处理器实现上述基站侧的随机接入方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的一些实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时所述处理器实现上述终端侧的随机接入方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述计算机可读存储介质,可以是易失性的或非易失性的,瞬态的或非瞬态的,例如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
请参阅图5,图5是本公开的一些实施例的基站的结构示意图,能够实现上述基站侧的随机接入方法的细节,并达到相同的效果。如图5所示,基站50包括:处理器51、收发机52、存储器53、用户接口54和总线接口,
其中:
在本公开的一些实施例中,基站50还包括:存储在存储器53上并可在处理器51上运行的计算机程序,计算机程序被处理器51执行时处理器51实现如下步骤:
配置随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;
向终端发送所述随机接入资源的配置信息。
在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器51代表的一个或多个处理器和存储器53代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机52可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口54还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器51负责管理总线架构和通常的处理,存储器53可以存储处理器51在执行操作时所使用的数据。
可选地,作为一个示例,所述发送随机接入信号可用的时频资源包括以下至少之一:
发送随机接入信号可用的时域位置信息;
发送随机接入信号可用的频域位置信息;
发送多个随机接入信号的起始时域位置信息;
发送多个随机接入信号的起始频域位置信息。
可选地,作为一个示例,所述时域位置信息包括以下至少之一:***帧编号,子帧编号和时隙编号;
所述起始时域位置信息包括以下至少之一:起始***帧编号、起始子帧编号和起始时隙编号。
可选地,作为一个示例,所述随机接入资源的配置信息还包括以下至少之一:
终端能够发送随机接入信号的发送次数信息;
在接收到随机接入响应RAR后是否停止发送随机接入信号的指示信息;
随机接入资源的周期;
多个随机接入信号发送中每一次发送采用的前导码编号;
多个随机接入信号发送中每一次发送采用的波束的编号;
多个随机接入信号发送中每一次发送采用的波束组的编号;
多个随机接入信号发送中每一次发送采用的波束对的编号。
可选地,作为一个示例,所述终端能够发送随机接入信号的发送次数信息包括以下至少之一:
指示终端能够发送单个随机接入信号的指示信息;
指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
指示终端能够发送多个随机接入信号的指示信息;
指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
多个随机接入信号的发送次数。
本公开的一些实施例中,与相关的随机接入方法不同的是,基站不是向终端发送物理随机接入信道配置索引,而是生成随机接入资源的具体配置信息,并向终端发送,从而可以根据需要更加灵活地配置随机接入资源,以适应不同的应用场景,避免随机接入资源的配置浪费。
参见图6,本公开提供了一种终端60。图6所示的终端60包括:至少一个处理器61、存储器62、至少一个网络接口64以及其他用户接口63。终端60中的各个组件通过总线***65耦合在一起。可理解,总线***65用于实现这些组件之间的连接通信。总线***65除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线***65。
其中,用户接口63可以包括显示器、键盘或者点击设备(例如,鼠标, 轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开的一些实施例中的存储器62可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double DataRate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(DirectRambusRAM,DRRAM)。本文描述的***和方法的存储器62旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器62存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作***621和应用程序622。
其中,操作***621,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序622,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务,实现本公开的一些实施例方法的程序可以包含在应用程序622中。
终端60还包括:存储在存储器62上并可在处理器61上运行的计算机程序,具体地,可以是应用程序622中的计算机程序,计算机程序被处理器61执行时处理器61实现如下步骤:
接收基站发送的随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;
根据所述随机接入资源的配置信息,向所述基站发送随机接入信号。
上述本公开的一些实施例揭示的方法可以应用于处理器61中,或者由处理器61实现。处理器61可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器61中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器61可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开的一些实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开的一些实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器62,处理器61读取存储器62中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable LogicDevice,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为一个示例,所述发送随机接入信号可用的时频资源包括以下至少之一:
发送随机接入信号可用的时域位置信息;
发送随机接入信号可用的频域位置信息;
发送多个随机接入信号的起始时域位置信息;
发送多个随机接入信号的起始频域位置信息。
可选地,作为一个示例,所述时域位置信息包括以下至少之一:***帧编号,子帧编号和时隙编号;所述起始时域位置信息包括以下至少之一:起始***帧编号、起始子帧编号和起始时隙编号。
可选地,作为一个示例,所述随机接入资源的配置信息还包括以下至少之一:
终端能够发送随机接入信号的发送次数信息;
在接收到随机接入响应RAR后是否停止发送随机接入信号的指示信息;
随机接入资源的周期;
多个随机接入信号发送中每一次发送采用的前导码编号;
多个随机接入信号发送中每一次发送采用的波束的编号;
多个随机接入信号发送中每一次发送采用的波束组的编号;
多个随机接入信号发送中每一次发送采用的波束对的编号。
可选地,作为一个示例,计算机程序被处理器61执行时处理器61还可实现如下步骤:获取预先约定的随机接入资源的配置信息;根据基站配置的随机接入资源的配置信息和预先约定的随机接入资源的配置信息,向所述基站发送随机接入信号。
可选地,作为一个示例,所述预先约定的随机接入资源的配置信息包括终端能够发送随机接入信号的发送次数信息,和/或在接收到RAR后是否停止发送随机接入信号的指示信息。
可选地,作为一个示例,所述终端能够发送随机接入信号的发送次数信息包括以下至少之一:
指示终端能够发送单个随机接入信号的指示信息;
指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
指示终端能够发送多个随机接入信号的指示信息;
指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
多个随机接入信号的发送次数。
可选地,作为一个示例,计算机程序被处理器61执行时处理器61还可实现如下步骤:当所述随机接入资源的配置信息中包括指示终端能够发送单个随机接入信号的指示信息和/或指示终端接收到RAR之前能够发送单个随机接入信号的指示信息时,在接收到RAR之前,从所述发送随机接入信号可用的时频资源中选择一时频资源,并在选择的时频资源上向所述基站发送一个随机接入信号。
可选地,作为一个示例,计算机程序被处理器61执行时处理器61还可实现如下步骤:当所述随机接入资源的配置信息中包括指示终端能够发送多个随机接入信号的指示信息和/或指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息时,从所述发送随机接入信号可用的时频资源中选择多个时频资源,并在选择的每一时频资源上向所述基站发送一个随机接入信号。
可选地,作为一个示例,计算机程序被处理器61执行时处理器61还可实现如下步骤:当所述随机接入资源的配置信息中包括多个随机接入信号的发送次数时,向所述基站发送所述发送次数个随机接入信号。
可选地,作为一个示例,计算机程序被处理器61执行时处理器61还可实现如下步骤:当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的前导码编号时,在每一次向所述基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
可选地,作为一个示例,计算机程序被处理器61执行时处理器61还可实现如下步骤:当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的波束、波束组或波束对的编号时,在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
可选地,作为一个示例,计算机程序被处理器61执行时处理器61还可实现如下步骤:当所述随机接入资源的配置信息中包括发送多个随机接入信 号的起始时域位置信息或发送多个随机接入信号的起始频域位置信息时,在第一次向所述基站发送随机接入信号时,在所述起始时域位置信息或起始频域位置信息对应的时频资源上发送。
可选地,作为一个示例,计算机程序被处理器61执行时处理器61还可实现如下步骤:当所述随机接入资源的配置信息中包括随机接入资源的周期时,按照所述随机接入资源的周期,所述多个随机接入信号。
可选地,作为一个示例,计算机程序被处理器61执行时处理器61还可实现如下步骤:当所述随机接入资源的配置信息中包括指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息或者指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息时,在RAR的接收时间截止且未收到RAR之后,选择与之前发送随机接入信号的随机接入资源不同的资源,发送所述多个随机接入信号。
终端60能够实现前述实施例中终端实现的各个过程,为避免重复,这里不再赘述。
本公开的一些实施例中,终端根据基站配置的随机接入资源的具体配置信息,发送随机接入信号,以适应不同的应用场景,保证终端发送的随机接入信号均能够被基站接收到,同时节省终端的功耗。
参见图7,本公开提供了一种终端70。具体地,图7中的终端70可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等。
图7中的终端70包括射频(RadioFrequency,RF)电路71、存储器72、输入单元73、显示单元74、处理器75、WiFi(Wireless Fidelity)模块76、音频电路77、电源78。
其中,输入单元73可用于接收用户输入的数字或字符信息,以及产生与终端70的用户设置以及功能控制有关的信号输入。
具体地,本公开的一些实施例中,该输入单元73可以包括触控面板731。触控面板731,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板731上的操作),并 根据预先设定的程式驱动相应的连接装置。可选地,触控面板731可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器75,并能接收处理器75发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板731。除了触控面板731,输入单元73还可以包括其他输入设备732,其他输入设备732可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元74可用于显示由用户输入的信息或提供给用户的信息以及终端70的各种菜单界面。显示单元74可包括显示面板741,可选地,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板741。
应注意,触控面板731可以覆盖显示面板741,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器75以确定触摸事件的类型,随后处理器75根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
在本公开的一些实施例中,通过调用存储该第一存储器721内的软件程序和/或模块和/或该第二存储器722内的数据,计算机程序被处理器75执行时处理器75实现如下步骤:接收基站发送的随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;
根据所述随机接入资源的配置信息,向所述基站发送随机接入信号。
可选地,作为一个示例,所述发送随机接入信号可用的时频资源包括以下至少之一:
发送随机接入信号可用的时域位置信息;
发送随机接入信号可用的频域位置信息;
发送多个随机接入信号的起始时域位置信息;
发送多个随机接入信号的起始频域位置信息。
可选地,作为一个示例,所述时域位置信息包括以下至少之一:***帧编号,子帧编号和时隙编号;所述起始时域位置信息包括以下至少之一:起始***帧编号、起始子帧编号和起始时隙编号。
可选地,作为一个示例,所述随机接入资源的配置信息还包括以下至少之一:
终端能够发送随机接入信号的发送次数信息;
在接收到随机接入响应RAR后是否停止发送随机接入信号的指示信息;
随机接入资源的周期;
多个随机接入信号发送中每一次发送采用的前导码编号;
多个随机接入信号发送中每一次发送采用的波束的编号;
多个随机接入信号发送中每一次发送采用的波束组的编号;
多个随机接入信号发送中每一次发送采用的波束对的编号。
可选地,作为一个示例,计算机程序被处理器75执行时处理器75还可实现如下步骤:获取预先约定的随机接入资源的配置信息;根据基站配置的随机接入资源的配置信息和预先约定的随机接入资源的配置信息,向所述基站发送随机接入信号。
可选地,作为一个示例,所述预先约定的随机接入资源的配置信息包括终端能够发送随机接入信号的发送次数信息,和/或在接收到RAR后是否停止发送随机接入信号的指示信息。
可选地,作为一个示例,所述终端能够发送随机接入信号的发送次数信息包括以下至少之一:
指示终端能够发送单个随机接入信号的指示信息;
指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
指示终端能够发送多个随机接入信号的指示信息;
指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
多个随机接入信号的发送次数。
可选地,作为一个示例,计算机程序被处理器75执行时处理器75还可实现如下步骤:当所述随机接入资源的配置信息中包括指示终端能够发送单个随机接入信号的指示信息和/或指示终端接收到RAR之前能够发送单个随机接入信号的指示信息时,在接收到RAR之前,从所述发送随机接入信号可用的时频资源中选择一时频资源,并在选择的时频资源上向所述基站发送一个随机接入信号。
可选地,作为一个示例,计算机程序被处理器75执行时处理器75还可实现如下步骤:当所述随机接入资源的配置信息中包括指示终端能够发送多个随机接入信号的指示信息和/或指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息时,从所述发送随机接入信号可用的时频资源中选择多个时频资源,并在选择的每一时频资源上向所述基站发送一个随机接入信号。
可选地,作为一个示例,计算机程序被处理器75执行时处理器75还可实现如下步骤:当所述随机接入资源的配置信息中包括多个随机接入信号的发送次数时,向所述基站发送所述发送次数个随机接入信号。
可选地,作为一个示例,计算机程序被处理器75执行时处理器75还可实现如下步骤:当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的前导码编号时,在每一次向所述基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
可选地,作为一个示例,计算机程序被处理器75执行时处理器75还可 实现如下步骤:当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的波束、波束组或波束对的编号时,在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
可选地,作为一个示例,计算机程序被处理器75执行时处理器75还可实现如下步骤:当所述随机接入资源的配置信息中包括发送多个随机接入信号的起始时域位置信息或发送多个随机接入信号的起始频域位置信息时,在第一次向所述基站发送随机接入信号时,在所述起始时域位置信息或起始频域位置信息对应的时频资源上发送。
可选地,作为一个示例,计算机程序被处理器75执行时处理器75还可实现如下步骤:当所述随机接入资源的配置信息中包括随机接入资源的周期时,按照所述随机接入资源的周期,所述多个随机接入信号。
可选地,作为一个示例,计算机程序被处理器75执行时处理器75还可实现如下步骤:当所述随机接入资源的配置信息中包括指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息或者指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息时,在RAR的接收时间截止且未收到RAR之后,选择与之前发送随机接入信号的随机接入资源不同的资源,发送所述多个随机接入信号。
终端70能够实现前述实施例中终端实现的各个过程,为避免重复,这里不再赘述。
本公开的一些实施例中,终端根据基站配置的随机接入资源的具体配置信息,发送随机接入信号,以适应不同的应用场景,保证终端发送的随机接入信号均能够被基站接收到,同时节省终端的功耗。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描 述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟、光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (43)

  1. 一种随机接入方法,所述方法应用于基站并且包括:
    配置随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;
    向终端发送所述随机接入资源的配置信息。
  2. 根据权利要求1所述的随机接入方法,其中,所述发送随机接入信号可用的时频资源包括以下至少之一:
    发送随机接入信号可用的时域位置信息;
    发送随机接入信号可用的频域位置信息;
    发送多个随机接入信号的起始时域位置信息;
    发送多个随机接入信号的起始频域位置信息。
  3. 根据权利要求2所述的随机接入方法,其中,
    所述时域位置信息包括以下至少之一:***帧编号,子帧编号和时隙编号;
    所述起始时域位置信息包括以下至少之一:起始***帧编号、起始子帧编号和起始时隙编号。
  4. 根据权利要求1所述的随机接入方法,其中,所述随机接入资源的配置信息还包括以下至少之一:
    终端能够发送随机接入信号的发送次数信息;
    在接收到随机接入响应RAR后是否停止发送随机接入信号的指示信息;
    随机接入资源的周期;
    多个随机接入信号发送中每一次发送采用的前导码编号;
    多个随机接入信号发送中每一次发送采用的波束的编号;
    多个随机接入信号发送中每一次发送采用的波束组的编号;
    多个随机接入信号发送中每一次发送采用的波束对的编号。
  5. 根据权利要求4所述的随机接入方法,其中,所述终端能够发送随机接入信号的发送次数信息包括以下至少之一:
    指示终端能够发送单个随机接入信号的指示信息;
    指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
    指示终端能够发送多个随机接入信号的指示信息;
    指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
    指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
    指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
    多个随机接入信号的发送次数。
  6. 一种随机接入方法,所述方法应用于终端并且包括:
    接收基站发送的随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;
    根据所述随机接入资源的配置信息,向所述基站发送随机接入信号。
  7. 根据权利要求6所述的随机接入方法,其中,所述发送随机接入信号可用的时频资源包括以下至少之一:
    发送随机接入信号可用的时域位置信息;
    发送随机接入信号可用的频域位置信息;
    发送多个随机接入信号的起始时域位置信息;
    发送多个随机接入信号的起始频域位置信息。
  8. 根据权利要求7所述的随机接入方法,其中,
    所述时域位置信息包括以下至少之一:***帧编号,子帧编号和时隙编号;
    所述起始时域位置信息包括以下至少之一:起始***帧编号、起始子帧编号和起始时隙编号。
  9. 根据权利要求6所述的随机接入方法,其中,所述随机接入资源的配置信息还包括以下至少之一:
    终端能够发送随机接入信号的发送次数信息;
    在接收到随机接入响应RAR后是否停止发送随机接入信号的指示信息;
    随机接入资源的周期;
    多个随机接入信号发送中每一次发送采用的前导码编号;
    多个随机接入信号发送中每一次发送采用的波束的编号;
    多个随机接入信号发送中每一次发送采用的波束组的编号;
    多个随机接入信号发送中每一次发送采用的波束对的编号。
  10. 根据权利要求6所述的随机接入方法,还包括:
    获取预先约定的随机接入资源的配置信息;
    所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:
    根据基站配置的随机接入资源的配置信息和预先约定的随机接入资源的配置信息,向所述基站发送随机接入信号。
  11. 根据权利要求10所述的随机接入方法,其中,所述预先约定的随机接入资源的配置信息包括终端能够发送随机接入信号的发送次数信息,和/或在接收到RAR后是否停止发送随机接入信号的指示信息。
  12. 根据权利要求9或11所述的随机接入方法,其中,所述终端能够发送随机接入信号的发送次数信息包括以下至少之一:
    指示终端能够发送单个随机接入信号的指示信息;
    指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
    指示终端能够发送多个随机接入信号的指示信息;
    指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
    指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
    指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
    多个随机接入信号的发送次数。
  13. 根据权利要求12所述的随机接入方法,其中,当所述随机接入资源的配置信息中包括指示终端能够发送单个随机接入信号的指示信息和/或指示终端接收到RAR之前能够发送单个随机接入信号的指示信息时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:
    在接收到RAR之前,从所述发送随机接入信号可用的时频资源中选择一时频资源,并在选择的时频资源上向所述基站发送一个随机接入信号。
  14. 根据权利要求12所述的随机接入方法,其中,当所述随机接入资源的配置信息中包括指示终端能够发送多个随机接入信号的指示信息和/或指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:
    从所述发送随机接入信号可用的时频资源中选择多个时频资源,并在选择的每一时频资源上向所述基站发送一个随机接入信号。
  15. 根据权利要求12所述的随机接入方法,其中,当所述随机接入资源的配置信息中包括多个随机接入信号的发送次数时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:
    向所述基站发送所述发送次数个随机接入信号。
  16. 根据权利要求9所述的随机接入方法,其中,当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的前导码编号时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:
    在每一次向所述基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
  17. 根据权利要求9所述的随机接入方法,其中,当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的波束、波束组或波束对的编号时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:
    在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
  18. 根据权利要求7所述的随机接入方法,其中,当所述随机接入资源的配置信息中包括发送多个随机接入信号的起始时域位置信息或发送多个随机接入信号的起始频域位置信息时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:
    在第一次向所述基站发送随机接入信号时,在所述起始时域位置信息或起始频域位置信息对应的时频资源上发送。
  19. 根据权利要求9所述的随机接入方法,其中,当所述随机接入资源 的配置信息中包括随机接入资源的周期时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:
    按照所述随机接入资源的周期,所述多个随机接入信号。
  20. 根据权利要求12所述的随机接入方法,其中,当所述随机接入资源的配置信息中包括指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息或者指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息时,所述根据所述随机接入资源的配置信息,向所述基站发送随机接入信号,包括:
    在RAR的接收时间截止且未收到RAR之后,选择与之前发送随机接入信号的随机接入资源不同的资源,发送所述多个随机接入信号。
  21. 一种基站,包括:
    配置单元,用于配置随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;
    发送单元,用于向终端发送所述随机接入资源的配置信息。
  22. 根据权利要求21所述的基站,其中,所述发送随机接入信号可用的时频资源包括以下至少之一:
    发送随机接入信号可用的时域位置信息;
    发送随机接入信号可用的频域位置信息;
    发送多个随机接入信号的起始时域位置信息;
    发送多个随机接入信号的起始频域位置信息。
  23. 根据权利要求22所述的基站,其中,
    所述时域位置信息包括以下至少之一:***帧编号,子帧编号和时隙编号;
    所述起始时域位置信息包括以下至少之一:起始***帧编号、起始子帧编号和起始时隙编号。
  24. 根据权利要求21所述的基站,其中,所述随机接入资源的配置信息还包括以下至少之一:
    终端能够发送随机接入信号的发送次数信息;
    在接收到随机接入响应RAR后是否停止发送随机接入信号的指示信息;
    随机接入资源的周期;
    多个随机接入信号发送中每一次发送采用的前导码编号;
    多个随机接入信号发送中每一次发送采用的波束的编号;
    多个随机接入信号发送中每一次发送采用的波束组的编号;
    多个随机接入信号发送中每一次发送采用的波束对的编号。
  25. 根据权利要求24所述的基站,其中,所述终端能够发送随机接入信号的发送次数信息包括以下至少之一:
    指示终端能够发送单个随机接入信号的指示信息;
    指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
    指示终端能够发送多个随机接入信号的指示信息;
    指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
    指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
    指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
    多个随机接入信号的发送次数。
  26. 一种终端,包括:
    接收单元,用于接收基站发送的随机接入资源的配置信息,所述随机接入资源的配置信息至少包括发送随机接入信号可用的时频资源和随机接入资源的前导格式;
    发送单元,用于根据所述随机接入资源的配置信息,向所述基站发送随机接入信号。
  27. 根据权利要求26所述的终端,其中,所述发送随机接入信号可用的时频资源包括以下至少之一:
    发送随机接入信号可用的时域位置信息;
    发送随机接入信号可用的频域位置信息;
    发送多个随机接入信号的起始时域位置信息;
    发送多个随机接入信号的起始频域位置信息。
  28. 根据权利要求27所述的终端,其中,
    所述时域位置信息包括以下至少之一:***帧编号,子帧编号和时隙编号;
    所述起始时域位置信息包括以下至少之一:起始***帧编号、起始子帧编号和起始时隙编号。
  29. 根据权利要求26所述的终端,其中,所述随机接入资源的配置信息还包括以下至少之一:
    终端能够发送随机接入信号的发送次数信息;
    在接收到随机接入响应RAR后是否停止发送随机接入信号的指示信息;
    随机接入资源的周期;
    多个随机接入信号发送中每一次发送采用的前导码编号;
    多个随机接入信号发送中每一次发送采用的波束的编号;
    多个随机接入信号发送中每一次发送采用的波束组的编号;
    多个随机接入信号发送中每一次发送采用的波束对的编号。
  30. 根据权利要求26所述的终端,其中,还包括:
    获取单元,用于获取预先约定的随机接入资源的配置信息;
    其中,所述发送单元,还用于根据基站配置的随机接入资源的配置信息和预先约定的随机接入资源的配置信息,向所述基站发送随机接入信号。
  31. 根据权利要求30所述的终端,其中,所述预先约定的随机接入资源的配置信息包括终端能够发送随机接入信号的发送次数信息,和/或在接收到RAR后是否停止发送随机接入信号的指示信息。
  32. 根据权利要求29或31所述的终端,其中,所述终端能够发送随机接入信号的发送次数信息包括以下至少之一:
    指示终端能够发送单个随机接入信号的指示信息;
    指示终端接收到RAR之前能够发送单个随机接入信号的指示信息;
    指示终端能够发送多个随机接入信号的指示信息;
    指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息;
    指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息;
    指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息;
    多个随机接入信号的发送次数。
  33. 根据权利要求32所述的终端,其中,当所述随机接入资源的配置信息中包括指示终端能够发送单个随机接入信号的指示信息和/或指示终端接收到RAR之前能够发送单个随机接入信号的指示信息时,
    所述发送单元,还用于在接收到RAR之前,从所述发送随机接入信号可用的时频资源中选择一时频资源,并在选择的时频资源上向所述基站发送一个随机接入信号。
  34. 根据权利要求32所述的终端,其中,当所述随机接入资源的配置信息中包括指示终端能够发送多个随机接入信号的指示信息和/或指示终端在接收到RAR之前能够发送多个随机接入信号的指示信息时,
    所述发送单元,还用于从所述发送随机接入信号可用的时频资源中选择多个时频资源,并在选择的每一时频资源上向所述基站发送一个随机接入信号。
  35. 根据权利要求32所述的终端,其中,当所述随机接入资源的配置信息中包括多个随机接入信号的发送次数时,
    所述发送单元,还用于向基站发送所述发送次数个随机接入信号。
  36. 根据权利要求29所述的终端,其中,当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的前导码编号时,
    所述发送单元,还用于在每一次向所述基站发送随机接入信号时,根据该次发送对应的前导码编号,对该次发送的随机接入信号进行编码。
  37. 根据权利要求29所述的终端,其中,当所述随机接入资源的配置信息中包括多个随机接入信号发送中每一次发送采用的波束、波束组或波束对的编号时,
    所述发送单元,还用于在每一次向所述基站发送随机接入信号时,在该次发送对应的波束、波束组或波束对上发送。
  38. 根据权利要求27所述的终端,其中,当所述随机接入资源的配置信息中包括发送多个随机接入信号的起始时域位置信息或发送多个随机接入信 号的起始频域位置信息时,
    所述发送单元,还用于在第一次向所述基站发送随机接入信号时,在所述起始时域位置信息或起始频域位置信息对应的时频资源上发送。
  39. 根据权利要求29所述的终端,其中,当所述随机接入资源的配置信息中包括随机接入资源的周期时,
    所述发送单元,还用于按照所述随机接入资源的周期,发送所述多个随机接入信号。
  40. 根据权利要求32所述的终端,其中,当所述随机接入资源的配置信息中包括指示终端在RAR的接收时间截止且未收到RAR之后能够发送单个随机接入信号的指示信息或者指示终端在RAR的接收时间截止且未收到RAR之后能够发送多个随机接入信号的指示信息时,
    所述发送单元,还用于在RAR的接收时间截止且未收到RAR之后,选择与之前发送随机接入信号的随机接入资源不同的资源,发送所述多个随机接入信号。
  41. 一种基站,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现如权利要求1至5中任一项所述的随机接入方法的步骤。
  42. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现如权利要求6至20中任一项所述的随机接入方法的步骤。
  43. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时所述处理器实现如权利要求1至5中任一项所述的随机接入方法的步骤,或者,所述计算机程序被处理器执行时所述处理器实现如权利要求6至20中任一项所述的随机接入方法的步骤。
PCT/CN2018/100636 2017-08-18 2018-08-15 随机接入方法、终端和基站 WO2019034074A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18847003.3A EP3672349A4 (en) 2017-08-18 2018-08-15 DIRECT ACCESS PROCEDURE, TERMINAL DEVICE AND BASE STATION
US16/640,002 US20200260480A1 (en) 2017-08-18 2018-08-15 Random access method, ue, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710712248.4A CN109413756B (zh) 2017-08-18 2017-08-18 一种随机接入方法及装置
CN201710712248.4 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019034074A1 true WO2019034074A1 (zh) 2019-02-21

Family

ID=65362732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100636 WO2019034074A1 (zh) 2017-08-18 2018-08-15 随机接入方法、终端和基站

Country Status (4)

Country Link
US (1) US20200260480A1 (zh)
EP (1) EP3672349A4 (zh)
CN (1) CN109413756B (zh)
WO (1) WO2019034074A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109275187B (zh) * 2017-07-17 2021-01-08 维沃移动通信有限公司 一种随机接入方法、终端及计算机可读存储介质
US11895699B2 (en) * 2019-02-11 2024-02-06 Qualcomm Incorporated Listen-before-talk (LBT) type and gap signaling for back-to-back grants and multi-transmission time interval (multi-TTI) grants
CN111436158B (zh) * 2019-03-22 2023-03-28 维沃移动通信有限公司 传输物理随机接入信道信号的方法、装置和电子设备
CN112584507B (zh) * 2019-09-30 2022-05-17 华为技术有限公司 一种数据处理方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130215861A1 (en) * 2010-10-27 2013-08-22 Electronics And Telecommunications Research Institute Random access method
CN104254135A (zh) * 2013-06-27 2014-12-31 夏普株式会社 物理随机接入信道的发送和接收方法以及基站和用户设备
US20160029358A1 (en) * 2013-03-15 2016-01-28 Qualcomm Incorporated Improved random access procedure with beamforming in lte
CN106105366A (zh) * 2014-03-11 2016-11-09 Lg 电子株式会社 在无线通信***中在随机接入过程中将临时标识符分配给终端的方法及其装置
CN106255223A (zh) * 2015-06-09 2016-12-21 电信科学技术研究院 一种进行随机接入的方法和设备
CN106941730A (zh) * 2016-01-05 2017-07-11 中兴通讯股份有限公司 随机接入的控制方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9380582B2 (en) * 2012-04-16 2016-06-28 Samsung Electronics Co., Ltd. Methods and apparatus for flexible beam communications in random access in system with large number of antennas
US9999053B2 (en) * 2014-11-25 2018-06-12 Electronics And Telecommunications Research Institute Method and apparatus for configuring resources of random access channel in wireless communication system
CN107580798A (zh) * 2015-05-13 2018-01-12 Lg电子株式会社 在免授权频带中执行随机接入处理的方法和装置
CN105898883B (zh) * 2016-04-01 2019-10-11 宇龙计算机通信科技(深圳)有限公司 一种前导码的配置方法、发送方法和相关设备
CN106900074B (zh) * 2016-05-13 2019-06-14 ***通信有限公司研究院 一种随机接入方法、装置、相关设备和***
CN106060943B (zh) * 2016-07-08 2019-06-07 华中科技大学 一种多天线无线通信***的随机接入方法
CN106793146B (zh) * 2016-11-03 2018-10-16 展讯通信(上海)有限公司 用户终端及其随机接入的方法
CN107018497B (zh) * 2017-03-24 2019-05-28 电信科学技术研究院 一种寻呼方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130215861A1 (en) * 2010-10-27 2013-08-22 Electronics And Telecommunications Research Institute Random access method
US20160029358A1 (en) * 2013-03-15 2016-01-28 Qualcomm Incorporated Improved random access procedure with beamforming in lte
CN104254135A (zh) * 2013-06-27 2014-12-31 夏普株式会社 物理随机接入信道的发送和接收方法以及基站和用户设备
CN106105366A (zh) * 2014-03-11 2016-11-09 Lg 电子株式会社 在无线通信***中在随机接入过程中将临时标识符分配给终端的方法及其装置
CN106255223A (zh) * 2015-06-09 2016-12-21 电信科学技术研究院 一种进行随机接入的方法和设备
CN106941730A (zh) * 2016-01-05 2017-07-11 中兴通讯股份有限公司 随机接入的控制方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3672349A4 *

Also Published As

Publication number Publication date
EP3672349A1 (en) 2020-06-24
CN109413756A (zh) 2019-03-01
US20200260480A1 (en) 2020-08-13
EP3672349A4 (en) 2020-08-05
CN109413756B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2018113593A1 (zh) 一种波束管理信息的配置、处理方法、终端及基站
CN109474375B (zh) 一种资源调度方法、基站和终端
WO2019015458A1 (zh) Drx参数的指示方法、相关设备及***
WO2019034074A1 (zh) 随机接入方法、终端和基站
US11166195B2 (en) Method and apparatus of data processing for delivering packet data convergence protocol (PDCP) packet data
WO2018082542A1 (zh) 非连续接收参数的配置方法、移动终端及基站
US11044609B2 (en) Method and device for integrity protection
WO2019019895A1 (zh) 能力指示方法、移动终端及网络侧设备
JP2019506677A (ja) 画面ミラーリングのための方法、装置及び移動端末
WO2018121218A1 (zh) 一种业务请求处理方法和相关设备
CN109391992B (zh) 一种信号测量方法、第一移动终端及网络侧设备
WO2019015457A1 (zh) 盲检测参数获取方法、相关设备及***
WO2019024940A1 (zh) 数据传输方法及装置
EP2658304A1 (en) Setting an Optimal Ping Interval
WO2019015470A1 (zh) 测量上报方法及装置
WO2019062604A1 (zh) 利用控制资源集的预编码粒度进行信道估计的方法和设备
WO2014206328A1 (zh) 一种屏幕背景显示的控制方法和装置
US20140321446A1 (en) Connection information control method and electronic device therefor
WO2018095251A1 (zh) 一种***信息块传输方法、终端和网络侧设备
US11546788B2 (en) Configuration method and device of measurement reporting, measurement reporting method and device
CN107615826B (zh) 无线通信网络中确定网络制式的方法、接入点设备、终端设备和无线网络控制器
WO2019047786A1 (zh) 免授权传输方法、基站和终端
WO2019024890A1 (zh) 数据传输方法、数据检测方法及装置
WO2021179725A1 (zh) 上行信道传输方法、装置、基站、终端及存储介质
CN108811162B (zh) 一种***信息传输方法、终端及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018847003

Country of ref document: EP

Effective date: 20200318