WO2019033367A1 - 一种信息发送方法和装置 - Google Patents

一种信息发送方法和装置 Download PDF

Info

Publication number
WO2019033367A1
WO2019033367A1 PCT/CN2017/097935 CN2017097935W WO2019033367A1 WO 2019033367 A1 WO2019033367 A1 WO 2019033367A1 CN 2017097935 W CN2017097935 W CN 2017097935W WO 2019033367 A1 WO2019033367 A1 WO 2019033367A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
information
indication information
user equipment
Prior art date
Application number
PCT/CN2017/097935
Other languages
English (en)
French (fr)
Inventor
韩金侠
任占阳
李振宇
张武荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/097935 priority Critical patent/WO2019033367A1/zh
Publication of WO2019033367A1 publication Critical patent/WO2019033367A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communications, and in particular, to a method and an apparatus for transmitting information.
  • LTE Long Term Evolution
  • the MulteFire performs the time domain repetition of the Physical Downlink Shared Channel (PDSCH): the evolved Node B (eNB) passes the Physical Downlink Control Channel (PDCCH) or The enhanced physical downlink control channel (EPDCCH) transmits downlink control information (Downlink Control Information, DCI) of the PDSCH, and the DCI indicates the time domain repetition number R of the PDSCH.
  • the R is greater than or equal to 1, that is, the PDSCH data is repeatedly transmitted in the R downlink subframes, and the scheduling information (or the downlink control information) of the R downlink subframes is the same.
  • the DCI is transmitted (or transmitted) through the EPDCCH, and the repetition scheme of the PDSCH can be as shown in FIG. 1. That is, the PDSCH (PDSCH1 and PDSCH2) of two subframes is simultaneously scheduled corresponding to one EPDCCH scheduling information, and therefore the positions of the time-frequency resources of the PDSCH transmitted (transmitted) by the two subframes are the same.
  • the conventional processing scheme of the prior art is to treat a subframe in which a DRS, a paging message, or system information is transmitted as an unavailable subframe, and not to transmit channel information in the subframe.
  • the frequency domain resources occupied by the System Information Block Type MulteFire1 (SIB-MF1) in the DRS of the Discovery Measurement Timing Configuration (DMTC) window are flexibly configured by the DCI. It is not a fixed system bandwidth.
  • the frequency domain resources occupied by paging messages and system messages are also flexibly configured through the corresponding DCI, and do not necessarily occupy the system bandwidth.
  • the R consecutive subframes in which the PDSCH is repeatedly transmitted include the DRS and/or the paging message and/or the subframe in which the system information is located
  • the subframe in which the DRS and/or the paging message and/or the system information are directly specified is not specified Transmission of channel information in the time domain (such as PDSCH) will result in waste of spectrum resources.
  • the transport block size (TBS) of the DRS and/or paging message and/or system information is flexible. The size of the frequency domain resources it occupies is also flexible.
  • the priority of the DRS and/or paging message and/or system information is generally higher than the PDSCH, so the subframe in which the DRS and/or paging message and/or system information is located is preferentially used for transmitting DRS and/or paging messages. And / or system information. Use at this time If the device demodulates PDSCH data by default according to the resources configured by DCI, an error may occur. If the eNB is implemented, that is, the OFDM scheduling avoids the time domain repetition of the PDSCH and the DRS and/or the paging domain message and/or the frequency domain resource collision occupied by the system information in the subframe, which will limit the scheduling flexibility of the eNB. And it is easy to introduce a scheduling delay of the repeated PDSCH.
  • the embodiment of the present invention provides a method for transmitting information, which can solve the problem that the spectrum resources are wasted because the subframe in which the DRS and/or the paging message and/or the system information are located does not transmit the time domain repeating channel information.
  • the embodiment of the present application provides a method for sending information, where the method includes: determining, by the network device, first indication information, where the first indication information is used to indicate whether the network device sends channel information in the first time-frequency resource.
  • the network device sends the first indication information to the user equipment.
  • the first time-frequency resource is used to transmit at least one of DRS, paging information, or system information, that is, the first time-frequency resource refers to a time domain resource corresponding to the DRS and/or the paging message and/or the system information.
  • the channel information refers to channel information that needs to repeatedly transmit R time domain resources, and R is an integer greater than or equal to 1.
  • the channel information is only sent on the second time-frequency resource.
  • the first time domain resource may be included in the R time domain resources.
  • the value of the first indication information is 1, it indicates that the channel information is transmitted in the first time-frequency resource.
  • the value of the first indication information is 0, it indicates that the channel information is not in the first time-frequency resource transmission.
  • the network device may explicitly indicate, by using the first indication information, whether the first time-frequency resource is used for channel information transmission.
  • the first time-frequency resource has the condition of transmitting channel information without transmitting channel information, resulting in waste of spectrum resources.
  • the embodiment of the present application can transmit channel information under the condition that the first time-frequency resource has the transmission channel information, thereby solving the problem of waste of spectrum resources caused by not transmitting the channel information.
  • determining whether to transmit channel information in the first time-frequency resource according to the first indication information does not limit scheduling flexibility of the eNB, and when the first time-frequency resource transmits channel information, the introduction time domain may be reduced. Transmission delay of repeated channel information.
  • the channel information is sent on the at least one second time-frequency resource. That is, when the first time-frequency resource is used to transmit channel information, the time-frequency resource used for transmitting channel information on the first time-frequency resource is the same as the second time-frequency resource.
  • the second time domain resource refers to a time-frequency resource corresponding to the repeatedly transmitted channel information when it is sent on the non-first time-frequency resource.
  • Time-frequency resources are resources including time domain and frequency domain, and have nothing to do with absolute time.
  • the network device sends the DCI to the user equipment by using the EPDCCH or the PDCCH, where the DCI includes the first indication information.
  • the user equipment may receive the DCI on the EPDCCH or the PDCCH to obtain the first indication information.
  • the first indication information may also be carried in the control information of other channels, or may be configured through broadcast signaling or Radio Resource Control (RRC) signaling, which is not limited in this application.
  • RRC Radio Resource Control
  • the method further includes: the network device sends the second indication information to the user equipment, where the second indication information is used to indicate the third time-frequency resource in the first time-frequency resource, and the third time-frequency resource Used to transmit channel information.
  • the user equipment may determine the third time-frequency resource according to the second indication information, and may receive the channel sent by the network device in the third time-frequency resource. information.
  • the third time-frequency resource is different from the time-frequency resource for transmitting DRS and/or paging messages and/or system information.
  • the problem that the time-frequency resource of the transmission channel information conflicts with the time-frequency resource of the transmission DRS and/or the paging message and/or the system information does not occur, and the user equipment can be prevented from receiving the channel information (or demodulating the channel data). An error occurred.
  • the second indication information may also be carried in the DCI in the EPDCCH or the PDCCH.
  • the first time-frequency resource is used to transmit the DRS
  • the channel information is the PDSCH.
  • the method further includes: the base station determines the third time-frequency resource, the third time-frequency resource is used to transmit the channel information, and the third The time-frequency resource includes available time-frequency resources other than the fourth time-frequency resource corresponding to the DRS in the first time-frequency resource in the first time-frequency resource.
  • the third time-frequency resource for transmitting the PDSCH is determined to be available when the DRS is other than the fourth time-frequency resource corresponding to the first time-frequency resource.
  • the frequency resource can avoid the conflict between the PDSCH and the DRS, and ensure that the user equipment can correctly demodulate the PDSCH data in the third time-frequency resource.
  • the third time-frequency resource is a subset of the time-frequency resource corresponding to the first time-frequency resource of the second time-frequency resource. That is, the size of the third time-frequency resource may be less than or equal to the time-frequency resource of the second time-frequency resource corresponding to the first time-frequency resource.
  • the time domain resource of the first time-frequency resource includes one of the following: one or more symbols, one or more time slots, and one or more subframes.
  • the embodiment of the present application provides a network device, including: a determining unit, configured to determine first indication information, where the first indication information is used to indicate whether the network device sends channel information in the first time-frequency resource, where is the first time
  • the frequency resource is used to transmit at least one of the discovery signal DRS, the paging information, or the system information
  • the sending unit is configured to send the first indication information to the user equipment.
  • the channel information is sent on the at least one second time-frequency resource.
  • the sending unit sends the downlink control information DCI to the user equipment by using the EPDCCH or the PDCCH, where the DCI includes the first indication information.
  • the sending unit is further configured to: send the second indication information to the user equipment, where the second indication information is used to indicate the third time-frequency resource in the first time-frequency resource, and the third time-frequency resource is used. For transmitting channel information.
  • the first time-frequency resource is used to transmit the DRS
  • the channel information is the PDSCH
  • the determining unit is further configured to determine the third time-frequency resource
  • the third time-frequency resource is used to transmit the channel information
  • the third time The frequency resource includes available time-frequency resources other than the fourth time-frequency resource corresponding to the DRS in the first time-frequency resource in the first time-frequency resource.
  • the third time-frequency resource is a subset of the time-frequency resource corresponding to the first time-frequency resource of the second time-frequency resource.
  • the time domain resource of the first time-frequency resource includes one of the following: one or more symbols, one or more time slots, and one or more subframes.
  • the embodiment of the present application provides a network device, including: a processor, configured to determine first indication information, where the first indication information is used to indicate whether the network device sends channel information in the first time-frequency resource, where The time-frequency resource is used to transmit at least one of DRS, paging information, or system information, and the transceiver is configured to send the first indication information to the user equipment.
  • the channel information is sent on the at least one second time-frequency resource.
  • the transceiver sends the downlink control information DCI to the user equipment by using the EPDCCH or the PDCCH, where the DCI includes the first indication information.
  • the transceiver is further configured to: send the second indication information to the user equipment, where the second indication information is used to indicate the third time-frequency resource in the first time-frequency resource, and the third time-frequency resource is used. For transmitting channel information.
  • the first time-frequency resource is used to transmit the DRS
  • the channel information is the PDSCH.
  • the method further includes: the base station determines the third time-frequency resource, the third time-frequency resource is used to transmit the channel information, and the third The time-frequency resource includes available time-frequency resources other than the fourth time-frequency resource corresponding to the DRS in the first time-frequency resource in the first time-frequency resource.
  • the third time-frequency resource is a subset of the time-frequency resource corresponding to the first time-frequency resource of the second time-frequency resource.
  • the time domain resource of the first time-frequency resource includes one of the following: one or more symbols, one or more time slots, and one or more subframes.
  • an embodiment of the present invention provides a device, which is in the form of a product of a chip.
  • the device includes a processor and a memory, and the memory is coupled to the processor to save necessary program instructions of the device. And data, the processor is operative to execute program instructions stored in the memory such that the apparatus performs the functions of the network device in the method described above.
  • the embodiment of the present invention provides a network device, where the network device can implement the functions performed by the network device in the foregoing method, and the function can be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the network device includes a processor and a communication interface configured to support the network device to perform corresponding functions in the above methods.
  • the communication interface is used to support communication between the network device and other network elements.
  • the network device can also include a memory for coupling with the processor that holds the necessary program instructions and data for the network device.
  • an embodiment of the present invention provides a computer readable storage medium, comprising instructions, when executed on a computer, causing a computer to perform any one of the methods provided by the first aspect.
  • an embodiment of the present invention provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform any of the methods provided by the first aspect.
  • the embodiment of the present application provides a method for sending information, where the user equipment receives first indication information that is sent by the network device, and the user equipment determines, according to the first indication information, whether to receive channel information in the first time-frequency resource.
  • the first time-frequency resource is used to transmit at least one of DRS, paging information, or system information.
  • the network device may explicitly indicate, by using the first indication information, whether the first time-frequency resource is used for channel information transmission.
  • the first time-frequency resource has the condition of transmitting channel information without transmitting channel information, resulting in spectrum resources. waste.
  • the embodiment of the present application can transmit channel information under the condition that the first time-frequency resource has the transmission channel information, thereby solving the problem of waste of spectrum resources caused by not transmitting the channel information. among them,
  • determining whether to transmit channel information in the first time-frequency resource according to the first indication information does not limit scheduling flexibility of the eNB, and when the first time-frequency resource transmits channel information, the introduction time domain may be reduced. Transmission delay of repeated channel information.
  • the channel information is sent on the at least one second time-frequency resource. That is, when the first time-frequency resource is used to transmit channel information, the time-frequency resource used for transmitting channel information on the first time-frequency resource is the same as the second time-frequency resource.
  • the second time domain resource refers to a time-frequency resource corresponding to the repeatedly transmitted channel information when it is sent on the non-first time-frequency resource.
  • Time-frequency resources are resources including time domain and frequency domain, and have nothing to do with absolute time.
  • the receiving, by the user equipment, the first indication information sent by the network device the user equipment receiving the downlink control information DCI sent by the network device by using the EPDCCH or the PDCCH, where the DCI includes the first indication information.
  • the first indication information may also be carried in the control information of other channels, or configured by using broadcast signaling or RRC signaling, which is not limited in this application.
  • the method further includes: receiving, by the user equipment, second indication information that is sent by the network device, where the second indication information is used to indicate the third time-frequency resource in the first time-frequency resource, and the third time-frequency Resources are used to transport channel information.
  • the user equipment may determine the third time-frequency resource according to the second indication information, and may receive the channel information sent by the network device in the third time-frequency resource.
  • the third time-frequency resource is different from the time-frequency resource for transmitting DRS and/or paging messages and/or system information.
  • the problem that the time-frequency resource of the transmission channel information conflicts with the time-frequency resource of the transmission DRS and/or the paging message and/or the system information does not occur, and the user equipment can be prevented from receiving the channel information (or demodulating the channel data). An error occurred.
  • the second indication information may also be carried in the DCI in the EPDCCH or the PDCCH.
  • the first time-frequency resource is used to transmit the DRS
  • the channel information is the physical downlink shared channel (PDSCH).
  • the method further includes: the user equipment determines the third time-frequency resource, and the third time-frequency resource includes the first The available time-frequency resources other than the fourth time-frequency resource corresponding to the DRS in the first time-frequency resource are removed from the time-frequency resource.
  • the third time-frequency resource for transmitting the PDSCH is determined to be available when the DRS is other than the fourth time-frequency resource corresponding to the first time-frequency resource.
  • the frequency resource can avoid the conflict between the PDSCH and the DRS, and ensure that the user equipment can correctly demodulate the PDSCH data in the third time-frequency resource.
  • the third time-frequency resource is a subset of the time-frequency resource corresponding to the first time-frequency resource of the second time-frequency resource. That is, the size of the third time-frequency resource may be less than or equal to the time-frequency resource of the second time-frequency resource corresponding to the first time-frequency resource.
  • the time domain resource of the first time-frequency resource includes one of the following: one or more symbols, one or more time slots, and one or more subframes.
  • a ninth aspect, the embodiment of the present application provides a user equipment, including: a receiving unit, configured to receive first indication information that is sent by a network device, and a determining unit, configured to determine, according to the first indication information, whether to receive the first time-frequency resource according to the first indication information.
  • a receiving unit configured to receive first indication information that is sent by a network device
  • a determining unit configured to determine, according to the first indication information, whether to receive the first time-frequency resource according to the first indication information.
  • Channel information, the first time-frequency resource is used to transmit at least one of DRS, paging information, or system information.
  • the channel information is sent on the at least one second time-frequency resource.
  • the receiving unit is configured to: receive downlink control information DCI sent by the network device by using an EPDCCH or a PDCCH, where the DCI includes first indication information.
  • the receiving unit is further configured to: receive second indication information that is sent by the network device, where the second indication information is used to indicate a third time-frequency resource in the first time-frequency resource, and the third time-frequency resource Used to transmit channel information.
  • the first time-frequency resource is used for transmitting the DRS
  • the channel information is the physical downlink shared channel (PDSCH)
  • the determining unit is further configured to: determine the third time-frequency resource, where the third time-frequency resource includes the first time
  • the available time-frequency resources other than the fourth time-frequency resource corresponding to the DRS in the first time-frequency resource are removed from the frequency resource.
  • the third time-frequency resource is a subset of the time-frequency resource corresponding to the first time-frequency resource of the second time-frequency resource.
  • the time domain resource of the first time-frequency resource includes one of the following: one or more symbols, one or more time slots, and one or more subframes.
  • the embodiment of the present application provides a user equipment, including: a transceiver, configured to receive first indication information sent by a network device, and a processor, configured to determine, according to the first indication information, whether to receive at a first time-frequency resource Channel information, the first time-frequency resource is used to transmit at least one of DRS, paging information, or system information.
  • a transceiver configured to receive first indication information sent by a network device
  • a processor configured to determine, according to the first indication information, whether to receive at a first time-frequency resource Channel information, the first time-frequency resource is used to transmit at least one of DRS, paging information, or system information.
  • the channel information is sent on the at least one second time-frequency resource.
  • the transceiver is configured to: receive downlink control information DCI sent by the network device by using an EPDCCH or a PDCCH, where the DCI includes first indication information.
  • the transceiver is further configured to: receive second indication information that is sent by the network device, where the second indication information is used to indicate a third time-frequency resource in the first time-frequency resource, and the third time-frequency resource Used to transmit channel information.
  • the first time-frequency resource is used to transmit the DRS
  • the channel information is the physical downlink shared channel (PDSCH)
  • the processor is further configured to: determine the third time-frequency resource, where the third time-frequency resource includes the first time
  • the available time-frequency resources other than the fourth time-frequency resource corresponding to the DRS in the first time-frequency resource are removed from the frequency resource.
  • the third time-frequency resource is a subset of the time-frequency resource corresponding to the first time-frequency resource of the second time-frequency resource.
  • the time domain resource of the first time-frequency resource includes one of the following: one or more symbols, one or more time slots, and one or more subframes.
  • an embodiment of the present invention provides a device, which is in the form of a product of a chip.
  • the device includes a processor and a memory, and the memory is coupled to the processor to save the necessary program of the device.
  • the instructions and data are used by the processor to execute program instructions stored in the memory such that the apparatus performs the functions of the user equipment in the method described above.
  • an embodiment of the present invention provides a user equipment, where the user equipment can implement the foregoing
  • the functions performed by the user equipment in the embodiment of the method may be implemented by hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the user equipment includes a processor and a communication interface configured to support the user equipment to perform corresponding functions in the above methods.
  • the communication interface is used to support communication between the user equipment and other network elements.
  • the user equipment can also include a memory for coupling with the processor that holds the program instructions and data necessary for the user equipment.
  • an embodiment of the present invention provides a computer readable storage medium, including instructions, when executed on a computer, causing a computer to perform any one of the methods provided in the eighth aspect.
  • an embodiment of the present invention provides a computer program product comprising instructions, which when executed on a computer, cause the computer to perform any of the methods provided by the eighth aspect.
  • the network device may explicitly indicate, by using the first indication information, whether the first time-frequency resource is used for channel information transmission.
  • the first time-frequency resource has the condition of transmitting channel information without transmitting channel information, resulting in waste of spectrum resources.
  • the embodiment of the present application can transmit channel information under the condition that the first time-frequency resource has the transmission channel information, thereby solving the problem of waste of spectrum resources caused by not transmitting the channel information.
  • determining whether to transmit channel information in the first time-frequency resource according to the first indication information does not limit scheduling flexibility of the eNB, and when the first time-frequency resource transmits channel information, the introduction time domain may be reduced. Transmission delay of repeated channel information. If it is determined that the first indication information is sent, determining that the third time-frequency resource in the first time-frequency resource is used for transmitting channel information, and the time-frequency of the third time-frequency resource and the transmission DRS and/or paging message and/or system information Different resources.
  • the problem that the time-frequency resource of the transmission channel information conflicts with the time-frequency resource of the transmission DRS and/or the paging message and/or the system information does not occur, and the user equipment can be prevented from receiving the channel information (or demodulating the channel data). An error occurred.
  • FIG. 1 is a schematic diagram of a time domain repetition according to an embodiment of the present application
  • FIG. 2a is a schematic structural diagram of a time-frequency resource of a DRS according to an embodiment of the present disclosure
  • FIG. 2b is a schematic structural diagram of a DMTC period and a DMTC window according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of signal interaction of a method for sending information according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a frequency domain resource of a subframe according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a frequency domain resource of a subframe according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a frequency domain resource of a subframe according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of signal interaction of a method for sending information according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a frequency domain resource of a subframe according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a frequency domain resource of a subframe according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of signal interaction of a method for sending information according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • DRS In the MulteFire standard, as shown in Figure 2a, it is a schematic diagram of a time-frequency resource structure of DRS.
  • the DRS can include channels and signals as described below:
  • Synchronization signal which may include Primary Synchronization Signal (PSS), MulteFire primary synchronization signal (MulteFire-PSS, MF-PSS), Secondary Synchronization Signal (SSS), and MulteFire secondary synchronization signal (MulteFire) -SSS, MF-SSS).
  • PSS Primary Synchronization Signal
  • MulteFire-PSS MulteFire primary synchronization signal
  • SSS Secondary Synchronization Signal
  • MulteFire secondary synchronization signal MulteFire secondary synchronization signal
  • MF-PBCH MulteFire Physical Broadcast Channel
  • the data channel of SIB-MF1 and its control channel occupies the full system bandwidth in the frequency domain and occupies 2 OFDM symbols in the time domain.
  • the frequency domain resources occupied by the data channel of the SIB-MF1 are indicated by the scheduling information of the control channel, occupying 10 or 12 OFDM symbols in the time domain.
  • the DRS occupies a total of 14 OFDM symbols or 12 OFDM symbols.
  • the time-frequency resources occupied by the synchronization signal and the PBCH in the DRS are fixed, and the frequency domain resources occupied by the data channel of the SIB-MF1 are not fixed.
  • one DMTC cycle includes one DMTC window.
  • the DRS transmitted in the DMTC window needs to be enhanced, that is, an Enhanced Discovery Reference Signal (eDRS) is transmitted.
  • eDRS Enhanced Discovery Reference Signal
  • the eDRS continuously transmits two subframes, and the user equipment completes the downlink initial synchronization and acquires the SIB-MF1 system information by receiving the eDRS signal in the DMTC window.
  • MulteFire specifies that if the subframe 0 outside the DMTC window has a downlink channel transmission during the DMTC period, the subframe 0 outside the DMTC window can be used to transmit the DRS signal of one subframe. That is, the DRS transmitted on the DRS transmission opportunity outside the DMTC window is not enhanced. Since the DRS transmitted outside the DMTC window is not enhanced, the terminal operating in the coverage enhancement mode cannot know in real time the frequency domain resource location of the SIB-MF1 of the DRS transmitted outside the DMTC window on the transmission subframe. That is, the frequency domain resources occupied by the SIB-MF1 data channel on the transmitting subframe in the DRS transmitted outside the DMTC window are not fixed. If the subframe in which the DRS is transmitted is encountered outside the DMTC window when the PDSCH is repeatedly transmitted, there is a case where the subframes of the other downlink transmission PDSCH are inconsistent with the frequency domain resources.
  • a fifth generation mobile communication technology 5-Generation, 5G
  • 5G fifth generation mobile communication technology
  • a future evolution system or a plurality of communication fusion systems and the like.
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC ultra-reliable and ultra-low latency communication
  • massive IoT communication massive IoT communication
  • mMTC massive IoT communication
  • FIG. 3 is a schematic diagram of a communication system to which the technical solution provided by the present invention is applied.
  • the communication system may include one or more network devices 100 (only one is shown in FIG. 1) and one or A plurality of user devices 200 (only one is shown in FIG. 1).
  • occlusion of port containers For example, occlusion of Automated Guided Vehicle (AGV), occlusion of large cargo or shelves in warehouses, etc.
  • AGV Automated Guided Vehicle
  • occlusions result in a degradation in signal quality and, therefore, require time domain repetition techniques for signal (or channel) coverage enhancement.
  • Network device 100 can be a device that can communicate with user device 200.
  • the network device 100 may include a base station, which may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be A base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), which may also be an eNB (or eNodeB) in LTE, or may be a new radio access technical (New RAT). Or a base station in NR), or a relay station or an access point, or a base station in a future 5G network.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB, NB Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • New RAT new radio access technical
  • NR New RAT
  • User device 200 may be a device that provides voice and/or other service data connectivity to a user, a handheld device with wireless connectivity, or other processing device connected to a wireless modem.
  • the user equipment can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user equipment can be a mobile terminal such as a mobile telephone (or "cellular" telephone) and a computer with a mobile terminal.
  • the user equipment may be a portable, portable, handheld, computer built-in or in-vehicle mobile device, or may be a Personal Communication Service (PCS) telephone, a cordless telephone, or a Session Initiation Protocol (SIP).
  • PCS Personal Communication Service
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the user equipment may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal, the user agent, the user device or the user equipment are not limited herein. It should be noted that, in the MulteFire, the user equipment that needs to use the coverage enhancement technology is called a user equipment working in the Wideband Coverage Enhanced/Extended (WCE) mode, which is referred to as a WCE user or a WCE device.
  • WCE Wideband Coverage Enhanced/Extended
  • FIG. 4 shows a schematic diagram of a simplified base station structure.
  • the base station includes a 401 part and a 402 part.
  • the 401 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 402 part is mainly used for baseband processing and control of base stations.
  • Section 401 can be generally referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • Section 402 is typically the control center of the base station and may generally be referred to as a processing unit.
  • the transceiver unit of the 401 part which may also be called a transceiver, or a transceiver, includes an antenna and a radio frequency unit, wherein the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in the 401 part may be regarded as a receiving unit
  • the device for implementing the transmitting function may be regarded as a transmitting unit, that is, the 401 portion includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, and the like.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • Section 402 can include one or more boards, each board can include one or more processors and one or more memories for reading and executing programs in memory to implement baseband processing functions and to base stations control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time.
  • the memory and the processor may be integrated or independently.
  • the 401 portion and the 402 portion may be integrated or independently.
  • all the functions in the 402 part can be implemented in one chip, or can be partially integrated into one chip to realize another part of the function integration in another one or more chips, which is not limited by the present invention.
  • FIG. 5 is a schematic diagram of a composition of a user equipment according to an embodiment of the present invention.
  • the user equipment may include at least one processor 51, a communication interface 52, a memory 53, and a communication bus 54.
  • the device structure shown in FIG. 5 does not constitute a limitation on the user equipment, and may include more or less components than those illustrated, or combine some components, or different component arrangements, in the embodiment of the present invention. This is not limited.
  • the processor 51 is a control center of the user equipment, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 51 is a central processing unit (CPU), may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the processor 51 can perform various functions of the user equipment by running or executing a software program stored in the memory 53, and calling data stored in the memory 53.
  • processor 51 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the user equipment may include multiple processors, such as processor 51 and processor 55 shown in FIG.
  • processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the communication interface 52 is configured to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and the like.
  • the communication interface 52 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the memory 53 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 53 can exist independently, through Communication bus 54 is coupled to processor 51.
  • the memory 53 can also be integrated with the processor 51.
  • the memory 53 is used to store a software program for executing the solution provided by the embodiment of the present invention, and is controlled by the processor 51 for execution.
  • the communication bus 54 may be an industry standard architecture (ISA) bus, a peripheral component (PCI) bus, or an extended industry standard architecture (EISA) bus.
  • ISA industry standard architecture
  • PCI peripheral component
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 5, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application provides a method for sending information, where the channel information is the PDSCH, the first time-frequency resource is used for transmitting the DRS, the network device is the eNB, and the user equipment is the WCE device as an example. As shown in FIG. 6, the method includes:
  • the eNB determines first indication information.
  • the first indication information is used to indicate whether the eNB sends the PDSCH in the first time-frequency resource, and the PDSCH is sent on the at least one second time-frequency resource.
  • the time domain resource of the first time-frequency resource includes one of: one or more symbols, one or more time slots, and one or more subframes.
  • the PDSCH can be enhanced in a time domain repeat manner.
  • the PDSCH time domain repetition is equivalent to the eNB transmitting the same PDSCH in multiple subframes such as subframe n, subframe n+1, ..., so-called the same, including the same transmission content and frequency domain resources, and the same coding and modulation mode. Wait.
  • the eNB may transmit the PDSCH of the WCE device in the subframe 8, the subframe 9, and the subframe 0.
  • subframe 0 needs to transmit DRS at this time, and the frequency domain resource used for transmitting SIB-MF1 in DRS on subframe 0 is uncertain. Therefore, it cannot be guaranteed that the subframe 0 has a frequency domain resource for transmitting the PDSCH, so that the WCE device cannot determine whether the PDSCH data needs to be demodulated in the subframe 0.
  • the embodiment of the present application may determine the first indication information according to whether the subframe 0 can transmit the PDSCH, so that the WCE device determines, according to the first indication information, whether to demodulate the PDSCH data in the subframe 0.
  • the frequency domain resource used for transmitting the PDSCH in the subframe 8 or the subframe 9 may be the second time-frequency resource, and all the frequency domain resources of the subframe 0 may be the first time-frequency resource.
  • the frequency domain resources of subframe 8, subframe 9, and subframe 0 are as shown in FIG.
  • the position of the frequency domain resource for transmitting the PDSCH in the subframe 8 and the subframe 9 overlaps with the position of the frequency domain resource occupied by the DRS in the subframe 0.
  • the value of the first indication information may be 0, indicating that the subframe 0 does not transmit the PDSCH.
  • the frequency domain resources of the subframe 8, the subframe 9, and the subframe 0 are as shown in FIG. 9, that is, the frequency domain resources used for transmitting the PDSCH in the subframe 0 and the subframe 8 and the subframe 9. Consistent.
  • the value of the first indication information may be 1 for indicating that the subframe 0 transmits the PDSCH.
  • frequency domain resources for transmitting the PDSCH on the subframe 0 are exemplarily shown.
  • frequency domain resources on subframe 0 may have control channel resources such as PDCCH and/or EPDCCH, as illustrated in FIG. 1 .
  • the embodiment of the present application can be extended to the following scenario: when the PDSCH needs to repeatedly send R subframes in the time domain, If N subframes (N is greater than or equal to 0) are used for transmitting DRS, or N subframes are used for transmitting other system information or paging information other than DRS.
  • the first indication information may indicate whether the PDSCH requiring coverage enhancement is repeatedly transmitted on the N subframes. That is, the first indication information is used to indicate whether to transmit channel information on the N first time-frequency resources, the channel information includes a PDSCH, and the first time-frequency resource is used to transmit at least one of DRS, paging information, or system information.
  • the eNB sends the first indication information to the WCE device.
  • the eNB may send the DCI to the WCE device through the EPDCCH or the PDCCH, where the DCI includes the first indication information.
  • the scheduling information of the PDSCH may also be included in the DCI. As shown in FIG. 7 , if the PDSCH of the WCE device needs to be transmitted twice, and the eNB starts channel occupation in the subframe 8, the scheduling information of the PDSCH in the DCI can be used to indicate that the WCE device is transmitted on the subframe 8 and the subframe 9. The location of the frequency domain resource of the PDSCH, the modulation and coding scheme, and the like.
  • the WCE device determines, according to the first indication information, whether to demodulate the PDSCH data in the first time-frequency resource.
  • the WCE device may demodulate the PDSCH data in the first time-frequency resource according to the scheduling information of the PDSCH in the DCI. If the first indication information is 0, the WCE device does not demodulate the PDSCH data by the first time-frequency resource.
  • the eNB may delay the time-frequency resource that sends the PDSCH to the time-frequency resource corresponding to the next subframe.
  • the eNB may postpend the subframe in which the PDSCH is transmitted to subframe 1. That is, the frequency domain resources in subframe 8, subframe 9 and subframe 1 can be used to transmit the PDSCH in the time domain. Therefore, after detecting that the first indication information is 0, the WCE device may demodulate the PDSCH data according to the scheduling information of the PDSCH in the DCI in the corresponding frequency domain resource on the subframe 1.
  • the eNB may explicitly indicate, by using the first indication information, whether the first time-frequency resource can transmit the PDSCH. If the first time-frequency resource can transmit the PDSCH, the location of the time-frequency resource used for transmitting the PDSCH in the first time-frequency resource may be the same as the location of the second time-frequency resource. In this way, the first time-frequency resource can be fully utilized and the delay caused by repeated transmission can be reduced, and the performance of the SIB-MF1 in the DRS transmitted in the first time-frequency resource can be guaranteed.
  • the first time-frequency resource when the transmitted DRS in the first time-frequency resource occupies less time-frequency resources, the first time-frequency resource has the PDSCH transmission condition but does not transmit the PDSCH, and the transmission delay is artificially introduced.
  • the embodiment of the present application may transmit the PDSCH under the condition that the first time-frequency resource has the PDSCH, thereby reducing the transmission delay and the waste of the spectrum resources caused by not transmitting the PDSCH.
  • determining whether to transmit channel information in the first time-frequency resource according to the first indication information does not limit scheduling flexibility of the eNB.
  • the scheduling delay of introducing the channel information in the time domain can be reduced.
  • a further embodiment of the present application provides a method for transmitting information, where the channel information is the PDSCH, the first time-frequency resource is used for transmitting the DRS, the network device is the eNB, and the user equipment is the WCE device as an example, as shown in FIG. ,include:
  • the eNB determines first indication information.
  • the position of the frequency domain resource in which the PDSCH is transmitted in the subframe 8 and the subframe 9 overlaps with the position of the frequency domain resource in which the DRS is transmitted in the subframe 0, and the frequency domain in the subframe 0 is idle. lack of resources To support the transmission of PDSCH.
  • the value of the first indication information may be 0, indicating that the subframe 0 does not transmit the PDSCH.
  • the frequency domain resources of the subframe 8, the subframe 9, and the subframe 0 are as shown in FIG. 12, that is, the position of the frequency domain resource in which the PDSCH is transmitted in the subframe 8 and the subframe 9 is in the subframe 0.
  • the locations of the frequency domain resources transmitting the DRS overlap, but the free frequency domain resources in subframe 0 are sufficient to support the transmission of the PDSCH.
  • the value of the first indication information may be 1 for indicating that the subframe 0 transmits the PDSCH.
  • frequency domain resource for transmitting the PDSCH on the subframe 0 is exemplarily shown.
  • frequency domain resources on subframe 0 may have control channel resources such as PDCCH and/or EPDCCH, as illustrated in FIG. 1 .
  • the eNB sends the first indication information to the WCE device.
  • the eNB may send downlink control information DCI to the WCE device through the EPDCCH or the PDCCH, where the DCI includes first indication information.
  • the scheduling information of the PDSCH may also be included in the DCI.
  • the WCE device determines, according to the first indication information, whether to demodulate the PDSCH data in the first time-frequency resource.
  • step 1001 if the first indication information is 0, the WCE device does not demodulate the PDSCH data in the first time-frequency resource. If the first indication information is 1, the WCE device demodulates the PDSCH data at the first time-frequency resource.
  • the WCE device determines a third time-frequency resource, and receives channel information on the third time-frequency resource.
  • the WCE device determines to demodulate the PDSCH data in the first time-frequency resource
  • the third time-frequency resource in the first time-frequency resource is determined, and the PDSCH data is demodulated in the third time-frequency resource.
  • the embodiment of the present application differs from the embodiment shown in FIG. 6 in that the embodiment shown in FIG. 6 is that the WCE device determines that the PDSCH scheduling information in the DCI is in the first time when the first time-frequency resource demodulates the PDSCH data. The corresponding time-frequency resources in the frequency resource demodulate the PDSCH data. In the embodiment of the present application, the WCE device determines that the third time-frequency resource in the first time-frequency resource is determined when the first time-frequency resource demodulates the PDSCH data, and demodulates the PDSCH data in the third time-frequency resource.
  • the eNB before the WCE device determines the third time-frequency resource, and before receiving the channel information on the third time-frequency resource, the eNB also needs to determine the third time-frequency resource, and send the PDSCH of the WCE device on the third time-frequency resource. .
  • the method by which the WCE device and the eNB determine the third time-frequency resource may be predefined (pre-configured).
  • the predefined method for determining the third time-frequency resource may be any one of the following two methods.
  • the second time-frequency resource that is, the time-frequency resource of the PDSCH transmitted by the scheduling information of the PDSCH in the DCI is determined. Then, the time-frequency resource of the center 6 RB of the first time-frequency resource (for example, all frequency-domain resources of subframe 0) is determined, and the time-domain resource of the 6 RB cannot be used for PDSCH transmission. Finally, the time-frequency resource for transmitting the SIB-MF1 in the first time-frequency resource is determined. Since the eNB is in the D DMTC period, the SIB-MF1 transmitted in the DMTC window and outside the DMTC window occupy the same frequency domain resource location. D is an integer greater than or equal to 1.
  • the WCE device can detect the time-frequency resource of the SIB-MF1 in the first time-frequency resource of the DMTC window by detecting the DCI of the SIB-MF1 in the DMTC window.
  • the third time-frequency resource in the first time-frequency resource can be configured as: the second time-frequency resource is in the time-frequency resource corresponding to the first time-frequency resource, except for the time-frequency resource of the central 6 RB and the transmission SIB-MF1 Time-frequency resources other than time-frequency resources. Therefore, the third time-frequency resource is a subset of the time-frequency resources corresponding to the first time-frequency resource of the second time-frequency resource.
  • the default third time-frequency resource includes a time-frequency resource other than the time-frequency resource for transmitting the DRS in the first time-frequency resource.
  • the eNB does not send a paging message on the first time-frequency resource, and does not schedule other users.
  • the WCE device may receive the second indication information sent by the eNB, and determine the third time-frequency resource according to the second indication information.
  • the second indication information may be carried in the DCI transmitted by the eNB to the WCE device through the EPDCCH or the PDCCH.
  • the second indication information is used to indicate a third time-frequency resource in the first time-frequency resource.
  • the third time-frequency resource is used to transmit the PDSCH.
  • the process of determining the third time-frequency resource may refer to method one or method two.
  • the eNB may explicitly indicate, by using the first indication information, whether the first time-frequency resource can transmit the PDSCH.
  • the first time-frequency resource has the condition of transmitting the PDSCH without transmitting the PDSCH, resulting in waste of spectrum resources.
  • the embodiment of the present application may transmit the PDSCH under the condition that the first time-frequency resource has the PDSCH for transmitting the WCE device, thereby solving the problem of waste of spectrum resources caused by not transmitting the PDSCH.
  • the WCE device may determine the third time-frequency resource for transmitting the PDSCH in the first time-frequency resource according to a predefined method, and send the solution on the third time-frequency resource. Adjust PDSCH data.
  • the third time-frequency resource is different from the time-frequency resource for transmitting DRS and/or paging messages and/or system information. In this way, the problem that the time-frequency resource of the transmission channel information conflicts with the time-frequency resource of the transmission DRS and/or the paging message and/or the system information does not occur, and the user equipment can be prevented from receiving the channel information (or demodulating the channel data). An error occurred.
  • determining whether to transmit channel information (for example, PDSCH) in the first time-frequency resource according to the first indication information does not limit scheduling flexibility of the eNB.
  • the scheduling delay of introducing the channel information in the time domain can be reduced.
  • a further embodiment of the present application provides a method for transmitting information, where the first time-frequency resource is used for transmitting the DRS, the channel information is the PDSCH, the network device is the eNB, and the user equipment is the WCE device as an example, as shown in FIG. ,include:
  • the eNB determines first indication information.
  • the first indication information is used to indicate whether the eNB sends the PDSCH in the first time-frequency resource.
  • the frequency domain resources of the subframe 8, the subframe 9, and the subframe 0 are as shown in FIG. 8, that is, the position of the time-frequency resource in which the PDSCH is transmitted in the subframe 8 and the subframe 9 is in the subframe 0.
  • the resources occupied by the DRS overlap.
  • the frequency domain resources of the subframe 8, the subframe 9, and the subframe 0 are as shown in FIG. 11, that is, the positions of the time-frequency resources in which the PDSCH is transmitted in the subframes 8 and 9 overlap with the resources occupied by the DRS in the subframe 0, and the sub-frames
  • the frequency domain resources of frame 0 idle are not sufficient to support the transmission of PDSCH.
  • the value of the first indication information may be 00 at this time, and is used to indicate that the subframe 0 does not transmit the WCE PDSCH.
  • the frequency domain resources of subframe 8, subframe 9, and subframe 0 are as shown in FIG. 12, that is, the location of the frequency domain resource in which the PDSCH is transmitted in subframe 8 and subframe 9 and the location of the frequency domain resource in which the DRS is transmitted in subframe 0. Overlapping, but the frequency domain resources of subframe 0 idle are sufficient to support the transmission of the PDSCH.
  • the value of the first indication information may be 01, 10 or 11.
  • the eNB sends the first indication information to the WCE device.
  • the WCE device determines, according to the first indication information, whether the channel information is received by the first time-frequency resource.
  • the WCE device does not demodulate the PDSCH data on the first time-frequency resource (for example, all frequency domain resources of subframe 0). If the first indication information is 01, 10 or 11, the WCE device demodulates the PDSCH data at the first time-frequency resource.
  • the WCE device determines a third time-frequency resource, and receives channel information on the third time-frequency resource.
  • the WCE device determines the third time-frequency resource, and demodulates the PDSCH data on the third time-frequency resource.
  • the WCE device may determine the third time-frequency resource according to the method 1 in step 1004, and demodulate the PDSCH data on the third time-frequency resource.
  • the WCE device may determine the third time-frequency resource according to method 2 in step 1004, and demodulate the PDSCH data on the third time-frequency resource.
  • the WCE device may receive the second indication information sent by the eNB, determine the third time-frequency resource according to the second indication information, and demodulate the PDSCH data on the third time-frequency resource.
  • the eNB may explicitly indicate whether the first time-frequency resource is used for PDSCH transmission by using the first indication information.
  • the first time-frequency resource has the condition of transmitting the PDSCH without transmitting the PDSCH, resulting in waste of spectrum resources.
  • the embodiment of the present application can transmit the PDSCH under the condition that the first time-frequency resource has the PDSCH, so as to solve the problem of waste of spectrum resources caused by not transmitting the PDSCH.
  • the WCE device may determine the third time-frequency resource for transmitting the PDSCH in the first time-frequency resource according to a predefined method, and demodulate the PDSCH on the third time-frequency resource. data.
  • the third time-frequency resource is different from the time-frequency resource for transmitting DRS and/or paging messages and/or system information. In this way, the problem that the time-frequency resource of the transmission channel information conflicts with the time-frequency resource of the transmission DRS and/or the paging message and/or the system information does not occur, and the user equipment can be prevented from receiving the channel information (or demodulating the channel data). An error occurred.
  • determining whether to transmit channel information in the first time-frequency resource according to the first indication information does not limit scheduling flexibility of the eNB.
  • the scheduling delay of introducing the channel information in the time domain can be reduced.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspective of the network device and the user equipment.
  • the network device and the user device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the algorithm steps described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may divide the function modules of the network device and the user equipment according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 14 is a schematic diagram showing a possible structure of the network device 14 involved in the foregoing embodiment.
  • the network device includes: a determining unit 1401 and a sending unit 1402.
  • the determining unit 1401 may be configured to determine the first indication information.
  • the determining unit 1401 is configured to support the network device to perform the process 601 in FIG. 6, the process 1001 in FIG. 10, and the process 1301 in FIG.
  • the sending unit 1402 is configured to support the network device to perform the process 602 in FIG. 6, the process 1002 in FIG. 10, and the process 1302 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 15 shows a possible structural diagram of the network device involved in the above embodiment.
  • the network device may include a processing module 1501, a communication module 1502, and a storage module 1503.
  • the processing module 1501 is configured to control various parts of the network device, the application device software, and the like;
  • the communication module 1502 is configured to receive commands sent by other devices by using a wireless fidelity (WiFi) communication method, or The data of the network device is sent to other devices;
  • the storage module 1503 is used to perform storage of software programs of the network device, storage of data, operation of software, and the like.
  • WiFi wireless fidelity
  • the processing module 1501 may be a processor or a controller, for example, may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1502 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1503 can be a memory.
  • the processing module 1501 may be configured to determine the first indication information.
  • the communication module 1502 is configured to send the first indication information to the user equipment, so that the user equipment determines, according to the first indication information, whether the channel information is received at the first time-frequency resource.
  • the storage module 1503 can be used to store the first indication information in the embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing a possible structure of the user equipment 16 involved in the foregoing embodiment.
  • the user equipment includes: a receiving unit 1601 and a determining unit 1602.
  • the receiving unit 1601 may be configured to receive first indication information sent by the network device.
  • the determining unit 1602 is configured to determine, according to the first indication information, whether channel information is received at the first time-frequency resource.
  • the receiving unit 1601 is configured to support the user equipment to perform the process 602 in FIG. 6, or to perform the process 1002 in FIG. 10, or to perform the process 1302 in FIG. .
  • the determining unit 1602 is configured to support the user equipment to perform the process 603 in FIG. 6, or to perform the process 1003 in FIG. 10, or to perform the process 1303 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 17 shows a possible structural diagram of the user equipment involved in the above embodiment.
  • the user equipment may include a processing module 1701, a communication module 1702, and a storage module 1703.
  • the processing module 1701 is configured to control various parts of the user equipment, the application software, and the like;
  • the communication module 1702 is configured to receive the instructions sent by the other device by using a communication method such as WiFi, or send the data of the user equipment to the other device.
  • the storage module 1703 is configured to perform storage of a software program of the user equipment, storage of data, operation of software, and the like.
  • the processing module 1701 may be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA, or the like. Programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1702 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1703 can be a memory.
  • the processing module 1701 is configured to determine, according to the first indication information, whether to receive channel information in the first time-frequency resource.
  • the communication module 1702 can be configured to receive first indication information sent by the network device.
  • the storage module 1703 can be used to store the first indication information in the embodiment of the present invention.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, removable hard disk, read-only optical disk, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息发送方法和装置,涉及通信领域,能够解决DRS和/或寻呼消息和/或***信息所在的子帧不发送时域重复的信道信息,造成的频谱资源浪费的问题。其方法为:网络设备确定第一指示信息,第一指示信息用于指示网络设备是否在第一时频资源发送信道信息,第一时频资源用于传输发现信号DRS、寻呼信息或***信息中的至少一个;网络设备向用户设备发送第一指示信息。本申请实施例应用于各种可以采用时域重复技术的通信***中。

Description

一种信息发送方法和装置 技术领域
本申请涉及通信领域,尤其涉及一种信息发送方法和装置。
背景技术
随着无线技术的不断发展,频谱资源日益稀缺。目前MulteFire联盟主要致力于研究在非授权(unlicensed)频点(或unlicensed频谱)上独立部署业务,以进一步扩展长期演进(Long Term Evolution,LTE)的产业生态。unlicensed频点上涉及的业务包括企业园区、工厂、物联网等领域。这些领域中通常会出现遮挡,导致信号质量下降,因此需要研究unlicensed频点上的覆盖增强技术。
目前,可以采用时域重复(或时域重复发送)技术对unlicensed频点或unlicensed频点上的发送信号进行覆盖增强。示例性的,MulteFire对物理下行共享信道(Physical Downlink Shared Channel,PDSCH)进行时域重复的方案为:演进型基站(evolved Node B,eNB)通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)或增强物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)发送PDSCH的下行控制信息(Downlink Control Information,DCI),DCI指示PDSCH的时域重复次数R。其中,R大于等于1,即PDSCH数据在R个下行子帧上重复发送,R个下行子帧的调度信息(或下行控制信息)相同。假设R=2,DCI通过EPDCCH传输(或发送),PDSCH的重复方案可以如图1所示。即相当于一个EPDCCH的调度信息同时调度2个子帧的PDSCH(PDSCH1和PDSCH2),因此该两个子帧传输(发送)PDSCH的时频资源的位置相同。但是,当该两个子帧中的任一个用于传输发现信号(Discovery Reference Signal,DRS)、寻呼消息或***消息时,不能保证两个子帧中可用于调度PDSCH的时频资源位置相同。对于该种情况,现有技术通常的处理方案是:将传输DRS、寻呼消息或***信息的子帧视为不可用子帧,不在该子帧传送信道信息。
对于MulteFire宽带***,MulteFire定义的发现测量定时配置(Discovery Measurement Timing Configuration,DMTC)窗外的DRS中的***信息块1(System Information BlockType MulteFire1,SIB-MF1)占用的频域资源由DCI灵活配置,通常并不是固定占满***带宽。同样,寻呼消息和***消息占用的频域资源也是通过相应的DCI灵活配置,不一定占满***带宽。当重复发送PDSCH的R个连续子帧中包含DRS和/或寻呼消息和/或***信息所在的子帧时,如果直接规定DRS和/或寻呼消息和/或***信息所在的子帧不传输时域重复的信道信息(例如PDSCH),将造成频谱资源的浪费。另外,如果默认DRS和/或寻呼消息和/或***信息所在的子帧传输PDSCH,由于DRS和/或寻呼消息和/或***信息的传输块大小(Transport Block Size,TBS)灵活可变,其所占据的频域资源大小也灵活可变。且DRS和/或寻呼消息和/或***信息的优先级一般高于PDSCH,因此DRS和/或寻呼消息和/或***信息所在的子帧会优先用于传输DRS和/或寻呼消息和/或***信息。此时用 户设备如果默认按照DCI配置的资源解调PDSCH数据时可能会发生错误。如果依赖于eNB实现,即eNB调度时避免时域重复的PDSCH与DRS和/或寻呼消息和/或***信息在所在的子帧上占用的频域资源冲突,将限制eNB的调度灵活性,且容易引入重复PDSCH的调度时延。
发明内容
本申请实施例提供一种信息发送方法,能够解决DRS和/或寻呼消息和/或***信息所在的子帧不发送时域重复的信道信息,造成的频谱资源浪费的问题。
第一方面,本申请实施例提供一种信息发送方法,该方法包括:网络设备确定第一指示信息,第一指示信息用于指示网络设备是否在第一时频资源发送信道信息。网络设备向用户设备发送第一指示信息。其中,第一时频资源用于传输DRS、寻呼信息或***信息中的至少一个,即第一时频资源是指包含DRS和/或寻呼消息和/或***信息所在的时域资源对应的时频资源。信道信息,是指需要重复发送R个时域资源的信道信息,R为大于等于1的整数。当R取值为1时,信道信息只在第二时频资源上发送。当R大于1时,第一时域资源可能包含在R个时域资源内。第一指示信息取值为1时,表示上述信道信息在第一时频资源传输。第一指示信息取值为0时,表示上述信道信息不在第一时频资源传输。
本申请实施例中,网络设备可以通过第一指示信息明确指示第一时频资源是否用于信道信息发送。相比现有技术,当第一时频资源中传输的DRS占据较少的时频资源时,第一时频资源具备传输信道信息的条件而不传输信道信息,导致频谱资源浪费。本申请实施例可以在第一时频资源具备传输信道信息的条件下传输信道信息,从而解决不传输信道信息造成的频谱资源浪费的问题。
另外,本申请实施例中,根据第一指示信息确定是否在第一时频资源发送信道信息,不会限制eNB的调度灵活性,当第一时频资源传输信道信息时,可以减少引入时域重复的信道信息的传输时延。
在一种可能的实现方式中,信道信息在至少一个第二时频资源上发送。也就是说,当第一时频资源用于传输信道信息时,第一时频资源上用于传输信道信息的时频资源与第二时频资源相同。第二时域资源,是指重复发送的信道信息在非第一时频资源上发送时对应的时频资源。时频资源为包括时域和频域的资源,与绝对时间没有关系。
在一种可能的实现方式中,网络设备通过EPDCCH或PDCCH向用户设备发送DCI,DCI包括第一指示信息。
这样一来,用户设备可以在EPDCCH或PDCCH接收DCI,以获取第一指示信息。第一指示信息也可以携带在其他信道的控制信息中,或者通过广播信令或无线资源控制(Radio Resource Control,RRC)信令配置,本申请不做限定。
在一种可能的实现方式中,该方法还包括:网络设备向用户设备发送第二指示信息,第二指示信息用于指示第一时频资源中的第三时频资源,第三时频资源用于传输信道信息。
这样一来,如果第一指示信息指示网络设备发送信道信息,用户设备可以根据第二指示信息确定第三时频资源,并可以在第三时频资源接收网络设备发送的信道 信息。第三时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源不同。如此一来,不会发生传输信道信息的时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源发生冲突的问题,可以避免用户设备接收信道信息(或解调信道数据)时发生错误。另外,第二指示信息也可以携带在EPDCCH或PDCCH中的DCI中。
在一种可能的实现方式中,第一时频资源用于传输DRS,信道信息为PDSCH,该方法还包括:基站确定第三时频资源,第三时频资源用于传输信道信息,第三时频资源包括第一时频资源中除DRS在第一时频资源中对应的第四时频资源以外的可用时频资源。
由于第一时频资源中传输的DRS的优先级高于PDSCH,因此确定用于传输PDSCH的第三时频资源为除DRS在第一时频资源中对应的第四时频资源以外的可用时频资源,可以避免PDSCH和DRS发生冲突,保证用户设备可以在第三时频资源正确的解调PDSCH数据。
在一种可能的实现方式中,第三时频资源为第二时频资源在第一时频资源对应的时频资源的子集。也就是说,第三时频资源的大小可以小于或等于第二时频资源在第一时频资源对应的时频资源。
在一种可能的实现方式中,第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
第二方面,本申请实施例提供一种网络设备,包括:确定单元,用于确定第一指示信息,第一指示信息用于指示网络设备是否在第一时频资源发送信道信息,第一时频资源用于传输发现信号DRS、寻呼信息或***信息中的至少一个;发送单元,用于向用户设备发送第一指示信息。
在一种可能的实现方式中,信道信息在至少一个第二时频资源上发送。
在一种可能的实现方式中,发送单元通过EPDCCH或PDCCH向用户设备发送下行控制信息DCI,DCI包括第一指示信息。
在一种可能的实现方式中,发送单元还用于:向用户设备发送第二指示信息,第二指示信息用于指示第一时频资源中的第三时频资源,第三时频资源用于传输信道信息。
在一种可能的实现方式中,第一时频资源用于传输DRS,信道信息为PDSCH,确定单元还用于确定第三时频资源,第三时频资源用于传输信道信息,第三时频资源包括第一时频资源中除DRS在第一时频资源中对应的第四时频资源以外的可用时频资源。
在一种可能的实现方式中,第三时频资源为第二时频资源在第一时频资源对应的时频资源的子集。
在一种可能的实现方式中,第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
第二方面及其各种可选的实现方式的技术效果可以参见第一方面及其各种可选的实现方式的技术效果,此处不再赘述。
第三方面,本申请实施例提供一种网络设备,包括:处理器,用于确定第一指示信息,第一指示信息用于指示网络设备是否在第一时频资源发送信道信息,第一 时频资源用于传输DRS、寻呼信息或***信息中的至少一个;收发器,用于向用户设备发送第一指示信息。
在一种可能的实现方式中,信道信息在至少一个第二时频资源上发送。
在一种可能的实现方式中,收发器通过EPDCCH或PDCCH向用户设备发送下行控制信息DCI,DCI包括第一指示信息。
在一种可能的实现方式中,收发器还用于:向用户设备发送第二指示信息,第二指示信息用于指示第一时频资源中的第三时频资源,第三时频资源用于传输信道信息。
在一种可能的实现方式中,第一时频资源用于传输DRS,信道信息为PDSCH,该方法还包括:基站确定第三时频资源,第三时频资源用于传输信道信息,第三时频资源包括第一时频资源中除DRS在第一时频资源中对应的第四时频资源以外的可用时频资源。
在一种可能的实现方式中,第三时频资源为第二时频资源在第一时频资源对应的时频资源的子集。
在一种可能的实现方式中,第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
第三方面及其各种可选的实现方式的技术效果可以参见第一方面及其各种可选的实现方式的技术效果,此处不再赘述。
第四方面,本发明实施例提供了一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中网络设备的功能。
第五方面,本发明实施例提供了一种网络设备,该网络设备可以实现上述方法实施例中网络设备所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该网络设备的结构中包括处理器和通信接口,该处理器被配置为支持该网络设备执行上述方法中相应的功能。该通信接口用于支持该网络设备与其他网元之间的通信。该网络设备还可以包括存储器,该存储器用于与处理器耦合,其保存该网络设备必要的程序指令和数据。
第六方面,本发明实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第七方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第八方面,本申请实施例提供一种信息发送方法,该方法包括:用户设备接收网络设备发送的第一指示信息;用户设备根据第一指示信息确定是否在第一时频资源接收信道信息,第一时频资源用于传输DRS、寻呼信息或***信息中的至少一个。
本申请实施例中,网络设备可以通过第一指示信息明确指示第一时频资源是否用于信道信息发送。相比现有技术,当第一时频资源中传输的DRS占据较少的时频资源时,第一时频资源具备传输信道信息的条件而不传输信道信息,导致频谱资源 浪费。本申请实施例可以在第一时频资源具备传输信道信息的条件下传输信道信息,从而解决不传输信道信息造成的频谱资源浪费的问题。其中,
另外,本申请实施例中,根据第一指示信息确定是否在第一时频资源发送信道信息,不会限制eNB的调度灵活性,当第一时频资源传输信道信息时,可以减少引入时域重复的信道信息的传输时延。
在一种可能的实现方式中,信道信息在至少一个第二时频资源上发送。也就是说,当第一时频资源用于传输信道信息时,第一时频资源上用于传输信道信息的时频资源与第二时频资源相同。第二时域资源,是指重复发送的信道信息在非第一时频资源上发送时对应的时频资源。时频资源为包括时域和频域的资源,与绝对时间没有关系。
在一种可能的实现方式中,用户设备接收网络设备发送的第一指示信息包括:用户设备接收网络设备通过EPDCCH或PDCCH发送的下行控制信息DCI,DCI包括第一指示信息。第一指示信息也可以携带在其他信道的控制信息中,或者通过广播信令或RRC信令配置,本申请不做限定。
在一种可能的实现方式中,该方法还包括:用户设备接收网络设备发送的第二指示信息,第二指示信息用于指示第一时频资源中的第三时频资源,第三时频资源用于传输信道信息。
这样一来,如果第一指示信息指示网络设备发送信道信息,用户设备可以根据第二指示信息确定第三时频资源,并可以在第三时频资源接收网络设备发送的信道信息。第三时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源不同。如此一来,不会发生传输信道信息的时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源发生冲突的问题,可以避免用户设备接收信道信息(或解调信道数据)时发生错误。另外,第二指示信息也可以携带在EPDCCH或PDCCH中的DCI中。
在一种可能的实现方式中,第一时频资源用于传输DRS,信道信息为物理下行共享信道PDSCH,该方法还包括:用户设备确定第三时频资源,第三时频资源包括第一时频资源中除去DRS在第一时频资源中对应的第四时频资源以外的可用时频资源。
由于第一时频资源中传输的DRS的优先级高于PDSCH,因此确定用于传输PDSCH的第三时频资源为除DRS在第一时频资源中对应的第四时频资源以外的可用时频资源,可以避免PDSCH和DRS发生冲突,保证用户设备可以在第三时频资源正确的解调PDSCH数据。
在一种可能的实现方式中,第三时频资源为第二时频资源在第一时频资源对应的时频资源的子集。也就是说,第三时频资源的大小可以小于或等于第二时频资源在第一时频资源对应的时频资源。
在一种可能的实现方式中,第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
第九方面,本申请实施例提供一种用户设备,包括:接收单元,用于接收网络设备发送的第一指示信息;确定单元,用于根据第一指示信息确定是否在第一时频资源接收信道信息,第一时频资源用于传输DRS、寻呼信息或***信息中的至少一 个。
在一种可能的实现方式中,信道信息在至少一个第二时频资源上发送。
在一种可能的实现方式中,接收单元用于:接收网络设备通过EPDCCH或PDCCH发送的下行控制信息DCI,DCI包括第一指示信息。
在一种可能的实现方式中,接收单元还用于:接收网络设备发送的第二指示信息,第二指示信息用于指示第一时频资源中的第三时频资源,第三时频资源用于传输信道信息。
在一种可能的实现方式中,第一时频资源用于传输DRS,信道信息为物理下行共享信道PDSCH,确定单元还用于:确定第三时频资源,第三时频资源包括第一时频资源中除去DRS在第一时频资源中对应的第四时频资源以外的可用时频资源。
在一种可能的实现方式中,第三时频资源为第二时频资源在第一时频资源对应的时频资源的子集。
在一种可能的实现方式中,第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
第九方面及其各种可选的实现方式的技术效果可以参见第八方面及其各种可选的实现方式的技术效果,此处不再赘述。
第十方面,本申请实施例提供一种用户设备,包括:收发器,用于接收网络设备发送的第一指示信息;处理器,用于根据第一指示信息确定是否在第一时频资源接收信道信息,第一时频资源用于传输DRS、寻呼信息或***信息中的至少一个。
在一种可能的实现方式中,信道信息在至少一个第二时频资源上发送。
在一种可能的实现方式中,收发器用于:接收网络设备通过EPDCCH或PDCCH发送的下行控制信息DCI,DCI包括第一指示信息。
在一种可能的实现方式中,收发器还用于:接收网络设备发送的第二指示信息,第二指示信息用于指示第一时频资源中的第三时频资源,第三时频资源用于传输信道信息。
在一种可能的实现方式中,第一时频资源用于传输DRS,信道信息为物理下行共享信道PDSCH,处理器还用于:确定第三时频资源,第三时频资源包括第一时频资源中除去DRS在第一时频资源中对应的第四时频资源以外的可用时频资源。
在一种可能的实现方式中,第三时频资源为第二时频资源在第一时频资源对应的时频资源的子集。
在一种可能的实现方式中,第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
第十方面及其各种可选的实现方式的技术效果可以参见第八方面及其各种可选的实现方式的技术效果,此处不再赘述。
第十一方面,本发明实施例提供了一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中用户设备的功能。
第十二方面,本发明实施例提供了一种用户设备,该用户设备可以实现上述方 法实施例中用户设备所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该用户设备的结构中包括处理器和通信接口,该处理器被配置为支持该用户设备执行上述方法中相应的功能。该通信接口用于支持该用户设备与其他网元之间的通信。该用户设备还可以包括存储器,该存储器用于与处理器耦合,其保存该用户设备必要的程序指令和数据。
第十三方面,本发明实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第八方面提供的任意一种方法。
第十四方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第八方面提供的任意一种方法。
本申请实施例中,网络设备可以通过第一指示信息明确指示第一时频资源是否用于信道信息发送。相比现有技术,当第一时频资源中传输的DRS占据较少的时频资源时,第一时频资源具备传输信道信息的条件而不传输信道信息,导致频谱资源浪费。本申请实施例可以在第一时频资源具备传输信道信息的条件下传输信道信息,从而解决不传输信道信息造成的频谱资源浪费的问题。
另外,本申请实施例中,根据第一指示信息确定是否在第一时频资源发送信道信息,不会限制eNB的调度灵活性,当第一时频资源传输信道信息时,可以减少引入时域重复的信道信息的传输时延。如果确定发送第一指示信息,可以确定第一时频资源中的第三时频资源用于传输信道信息,第三时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源不同。如此一来,不会发生传输信道信息的时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源发生冲突的问题,可以避免用户设备接收信道信息(或解调信道数据)时发生错误。
附图说明
图1为本申请实施例提供的一种时域重复的示意图;
图2a为本申请实施例提供的一种DRS的时频资源结构示意图;
图2b为本申请实施例提供的一种DMTC周期以及DMTC窗的结构示意图;
图3为本申请实施例提供的一种架构示意图;
图4为本申请实施例提供的一种网络设备的结构示意图;
图5为本申请实施例提供的一种用户设备的结构示意图;
图6为本申请实施例提供的一种信息发送的方法的信号交互示意图;
图7为本申请实施例提供的一种子帧的频域资源结构示意图;
图8为本申请实施例提供的一种子帧的频域资源结构示意图;
图9为本申请实施例提供的一种子帧的频域资源结构示意图;
图10为本申请实施例提供的一种信息发送的方法的信号交互示意图;
图11为本申请实施例提供的一种子帧的频域资源结构示意图;
图12为本申请实施例提供的一种子帧的频域资源结构示意图;
图13为本申请实施例提供的一种信息发送的方法的信号交互示意图;
图14为本申请实施例提供的一种网络设备的结构示意图;
图15为本申请实施例提供的一种网络设备的结构示意图;
图16为本申请实施例提供的一种用户设备的结构示意图;
图17为本申请实施例提供的一种用户设备的结构示意图。
具体实施方式
为了下述各实施例的描述清楚简洁,首先给出相关概念或技术的简要介绍:
DRS:在MulteFire标准中,如图2a所示,为一种DRS的时频资源结构示意图。DRS可以包括如下所述的信道和信号:
(1)同步信号,可以包括主同步信号(Primary Synchronization Signal,PSS)、MulteFire主同步信号(MulteFire-PSS,MF-PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和MulteFire辅同步信号(MulteFire-SSS,MF-SSS)。同步信号在频域上占据***带宽中心6RB,即频域上占据***带宽中心6*12个子载波,时域上占据4个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
(2)MulteFire物理广播信道(MulteFire Physical Broadcast Channel,MF-PBCH),频域上占据***带宽中心6RB,时域上占据6个OFDM符号。
(3)SIB-MF1的数据信道及其控制信道。SIB-MF1的控制信道在频域上占据全***带宽,时域上占据2个OFDM符号。SIB-MF1的数据信道占用的频域资源由控制信道的调度信息指示,时域上占据10个或12个OFDM符号。
总的来说,DRS共占用14个OFDM符号或者12个OFDM符号。DRS中的同步信号和PBCH占据的时频资源是固定的,而SIB-MF1的数据信道占用的频域资源是不固定的。
DMTC窗:如图2b所示,一个DMTC周期包括1个DMTC窗。当eNB支持覆盖增强特性时,在DMTC窗内发送的DRS需要增强,即发送增强发现信号(Enhanced Discovery Reference Signal,eDRS)。根据MulteFire目前达成的共识,在DMTC窗内,eDRS连续发送两个子帧,用户设备通过接收DMTC窗内的eDRS信号完成下行初始同步和获取SIB-MF1***信息。
MulteFire规定,在DMTC周期内,如果DMTC窗外的子帧0有下行信道发送,则DMTC窗外的子帧0可以用来发送1个子帧的DRS信号。即:在DMTC窗外的DRS发送机会上发送的DRS不进行增强。由于在DMTC窗外发送的DRS没有增强,工作于覆盖增强模式下的终端无法实时获知在DMTC窗外发送的DRS的SIB-MF1在发送子帧上的频域资源位置。即在DMTC窗外发送的DRS中SIB-MF1数据信道在发送子帧上占用的频域资源不固定。如果PDSCH重复发送时在DMTC窗外遇到发送DRS的子帧,则存在该子帧和其它下行发送PDSCH的子帧可用频域资源不一致的情况。
本申请提供的技术方案可以应用于各种可以采用时域重复技术的通信***中。例如,第五代移动通信技术(5-Generation,5G)通信***,未来演进***或者多种通信融合***等等。可以包括多种应用场景,例如,企业/工厂/车间/仓库/码头等智能化作业、机器对机器(machine to machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,uRLLC)以及海量物联网通信(massive  machine type communication,mMTC)等场景。这些场景可以包括但不限于网络设备与用户设备之间的通信场景。
图3给出了本发明提供的技术方案所适用的一种通信***示意图,该通信***可以包括一个或多个网络设备100(图1仅示出1个)以及与网络设备100连接的一个或多个用户设备200(图1仅示出1个)。网络设备100和用户设备200之间可能存在遮挡。例如,港口集装箱的遮挡、自动牵引车辆(Automated Guided Vehicle,AGV)的遮挡,仓库大型货物或货架的遮挡等。这些遮挡会导致信号质量下降,因此,需要采用时域重复技术进行信号(或信道)的覆盖增强。
网络设备100可以是能和用户设备200通信的设备。网络设备100可以包括基站,该基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的eNB(或eNodeB),还可以是新无线接入(New radio access technical,New RAT或NR)中的基站,或者中继站或接入点,或者未来5G网络中的基站等。
用户设备200可以是向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信。用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机。例如,用户设备可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,也可以是个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。用户设备也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、终端(User Terminal)、用户代理(User Agent)、用户设备或装置(User Device or User Equipment),在此不作限定。需要说明的是,MulteFire中,将需要使用覆盖增强技术的用户设备称为工作于宽带覆盖增强(Wideband Coverage Enhanced/Extended,WCE)模式的用户设备,简称WCE用户或WCE设备。
示例性的,本申请实施例还提供了一种网络设备,例如基站。图4示出了一种简化基站结构示意图。基站包括401部分以及402部分。401部分主要用于射频信号的收发以及射频信号与基带信号的转换;402部分主要用于基带处理,对基站进行控制等。401部分通常可以称为收发单元、收发机、收发电路、或者收发器等。402部分通常是基站的控制中心,通常可以称为处理单元。
401部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将401部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即401部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等, 发送单元可以称为发射机、发射器或者发射电路等。
402部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的。在一些实施例中,401部分和402部分可以是集成在一起的,也可以是独立设置的。另外,402部分中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现另外一部分功能集成在其他一个或多个芯片中实现,本发明对此不进行限定。
示例性的,图5为本发明实施例提供的一种用户设备的组成示意图,该用户设备可以包括至少一个处理器51,通信接口52,存储器53和通信总线54。需要说明的是,图5示出的设备结构并不构成对用户设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,本发明实施例对此不进行限定。下面结合图5对用户设备的各个构成部件进行具体的介绍:
处理器51是用户设备的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器51是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。其中,处理器51可以通过运行或执行存储在存储器53内的软件程序,以及调用存储在存储器53内的数据,执行用户设备的各种功能。
在具体的实现中,作为一种实施例,处理器51可以包括一个或多个CPU,例如图5中所示的CPU0和CPU1。在具体实现中,作为一种实施例,用户设备可以包括多个处理器,例如图5中所示的处理器51和处理器55。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
通信接口52,用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。通信接口52可以包括接收单元实现接收功能,以及发送单元实现发送功能。
存储器53可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器53可以独立存在,通过 通信总线54与处理器51相连接。存储器53也可以和处理器51集成在一起。其中,所述存储器53用于存储执行本发明实施例提供的方案的软件程序,并由处理器51来控制执行。
通信总线54,可以是工业标准体系结构(industry standard architecture,ISA)总线、外部设备互连(peripheral component,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例提供一种信息发送方法,以信道信息为PDSCH,第一时频资源用于传输DRS,网络设备为eNB,用户设备为WCE设备为例进行说明,如图6所示,包括:
601、eNB确定第一指示信息。
其中,第一指示信息用于指示eNB是否在第一时频资源发送PDSCH,该PDSCH在至少一个第二时频资源上发送。第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
根据目前MulteFire联盟达成的共识,eNB调度WCE设备时,可以采用时域重复的方式对PDSCH进行增强。示例性的,对PDSCH时域重复相当于eNB在子帧n,子帧n+1,…等多个子帧上发送相同的PDSCH,所谓相同,包括传输内容、频域资源相同,编码调制方式相同等。
举例来说,如图7所示,假设WCE设备的PDSCH需要重复3次发送,eNB在子帧8开始信道占用,则eNB可以在子帧8、子帧9和子帧0发送WCE设备的PDSCH。但是根据MulteFire标准,此时子帧0需要发送DRS,而子帧0上用于传输DRS中的SIB-MF1的频域资源是不确定的。因此不能保证子帧0具有传输PDSCH的频域资源,从而WCE设备无法确定是否需要在子帧0解调PDSCH数据。由此,本申请实施例可以根据子帧0是否能够传输PDSCH来确定第一指示信息,以便WCE设备根据第一指示信息确定是否在子帧0解调PDSCH数据。本申请中,子帧8或子帧9中用于传输PDSCH的频域资源可以为第二时频资源,子帧0的全部频域资源可以为第一时频资源。
根据上述举例,假设子帧8、子帧9和子帧0的频域资源如图8所示。子帧8和子帧9中用于传输PDSCH的频域资源的位置与子帧0中DRS占用的频域资源的位置重叠(overlap)。此时第一指示信息的取值可以为0,用于指示子帧0不传输该PDSCH。
在一种可能的情况中,假设子帧8、子帧9和子帧0的频域资源如图9所示,即子帧0与子帧8、子帧9中用于传输PDSCH的频域资源一致。此时第一指示信息的取值可以为1,用于指示子帧0传输PDSCH。
需要说明的是,在图7、图8和图9中,示例性的表示了子帧0上传输PDSCH的频域资源。实际***中,子帧0上的频域资源可以存在PDCCH和/或EPDCCH等控制信道资源,参见图1说明。
本申请实施例可以拓展到如下场景:当PDSCH需要时域重复发送R个子帧时, 如果其中N个子帧(N大于等于0)用于传输DRS,或N个子帧用于传输DRS之外的其他***信息或寻呼信息。第一指示信息可以指示是否在该N个子帧上重复发送需要覆盖增强的PDSCH。即第一指示信息用于指示是否在N个第一时频资源上发送信道信息,信道信息包括PDSCH,第一时频资源用于传输DRS、寻呼信息或***信息中的至少一个。
602、eNB向WCE设备发送第一指示信息。
eNB可以通过EPDCCH或PDCCH向WCE设备发送DCI,DCI包括第一指示信息。
需要说明的是,DCI中还可以包括PDSCH的调度信息。如图7所示,假设WCE设备的PDSCH需要重复2次发送,eNB在子帧8开始信道占用,则DCI中的PDSCH的调度信息可以用于指示子帧8和子帧9上用于传输WCE设备的PDSCH的频域资源的位置以及调制编码方式等。
603、WCE设备根据第一指示信息确定是否在第一时频资源解调PDSCH数据。
根据步骤601中的举例,若第一指示信息为1,WCE设备可以根据DCI中PDSCH的调度信息在第一时频资源解调PDSCH数据。若第一指示信息为0,WCE设备不在第一时频资源解调PDSCH数据。
可选的,当eNB确定第一时频资源不传输PDSCH时,eNB可以将发送PDSCH的时频资源顺延到下一个子帧对应的时频资源。如图7所示,当eNB确定子帧0不传输PDSCH时,eNB可以将发送PDSCH的子帧顺延到子帧1。即子帧8,子帧9和子帧1中的频域资源可以用于传输时域重复的PDSCH。从而,WCE设备检测到第一指示信息为0后,可以根据DCI中PDSCH的调度信息在子帧1上相应的频域资源解调PDSCH数据。
本申请实施例中,eNB可以通过第一指示信息明确指示第一时频资源是否可以传输PDSCH。如果第一时频资源可以传输PDSCH,则可以默认第一时频资源中用于传输PDSCH的时频资源的位置与第二时频资源的位置相同。如此一来,可以充分利用第一时频资源并减小重复发送引起的时延,且可以保证第一时频资源中传输DRS中的SIB-MF1的性能。相比现有技术,当第一时频资源中的发送的DRS占据较少的时频资源时,第一时频资源具备传输PDSCH的条件下但不传输PDSCH,人为的引入传输时延。本申请实施例可以在第一时频资源具备传输PDSCH的条件下传输PDSCH,从而减少传输时延,以及不发送PDSCH造成的频谱资源浪费的问题。
另外,本申请实施例中,根据第一指示信息确定是否在第一时频资源发送信道信息,不会限制eNB的调度灵活性。当第一时频资源传输信道信息时,可以减少引入时域重复的信道信息的调度时延。
本申请的又一实施例提供一种信息发送方法,以信道信息为PDSCH,第一时频资源用于传输DRS,网络设备为eNB,用户设备为WCE设备为例进行说明,如图10所示,包括:
1001、eNB确定第一指示信息。
举例来说,如图11所示,假设子帧8和子帧9中发送PDSCH的频域资源的位置与子帧0中发送DRS的频域资源的位置重叠,且子帧0中空闲的频域资源不足 以支持传输PDSCH。此时第一指示信息的取值可以为0,用于指示子帧0不传输PDSCH。
在一种可能的情况中,假设子帧8、子帧9和子帧0的频域资源如图12所示,即子帧8和子帧9中发送PDSCH的频域资源的位置与子帧0中发送DRS的频域资源的位置重叠,但子帧0中空闲的频域资源足以支持传输PDSCH。此时第一指示信息的取值可以为1,用于指示子帧0传输PDSCH。
需要说明的是,在图11和图12中,示例性的表示了子帧0上传输PDSCH的频域资源。实际***中,子帧0上的频域资源可以存在PDCCH和/或EPDCCH等控制信道资源,参见图1说明。
1002、eNB向WCE设备发送第一指示信息。
eNB可以通过EPDCCH或PDCCH向WCE设备发送下行控制信息DCI,DCI包括第一指示信息。DCI中还可以包括PDSCH的调度信息。
1003、WCE设备根据第一指示信息确定是否在第一时频资源解调PDSCH数据。
根据步骤1001中的举例,若第一指示信息为0,WCE设备不在第一时频资源解调PDSCH数据。若第一指示信息为1,WCE设备在第一时频资源解调PDSCH数据。
1004、WCE设备确定第三时频资源,并在第三时频资源上接收信道信息。
即若WCE设备确定在第一时频资源解调PDSCH数据,则确定第一时频资源中的第三时频资源,并在第三时频资源解调PDSCH数据。
本申请实施例与图6所示的实施例的区别在于,图6所示的实施例是WCE设备确定在第一时频资源解调PDSCH数据时,根据DCI中PDSCH的调度信息在第一时频资源中相应的时频资源解调PDSCH数据。而本申请实施例是WCE设备确定在第一时频资源解调PDSCH数据时,确定第一时频资源中的第三时频资源,并在第三时频资源解调PDSCH数据。
需要说明的是,WCE设备确定第三时频资源,并在第三时频资源上接收信道信息之前,eNB也需要确定第三时频资源,并在第三时频资源上发送WCE设备的PDSCH。
WCE设备和eNB确定第三时频资源的方法可以是预定义(预配置)的。举例来说,预定义的确定第三时频资源的方法可以为以下两种方法中的任一种方法。
方法一:首先,确定第二时频资源,即DCI中PDSCH的调度信息指示的传输PDSCH的时频资源。然后,确定第一时频资源(例如子帧0的全部频域资源)的中心6RB的时频资源,该6RB的时域资源不能用于PDSCH传输。最后,确定第一时频资源中传输SIB-MF1的时频资源。由于eNB在D个DMTC周期内,在DMTC窗内和DMTC窗外传输的SIB-MF1占用的频域资源位置相同。D为大于等于1的整数。从而WCE设备可以通过检测DMTC窗内SIB-MF1的DCI,以得到DMTC窗外发送DRS的第一时频资源中传输SIB-MF1的时频资源。这样一来,第一时频资源中的第三时频资源可以配置为:第二时频资源在第一时频资源对应的时频资源中,除了中心6RB的时频资源和传输SIB-MF1的时频资源以外的时频资源。由此可知,第三时频资源为第二时频资源在第一时频资源对应的时频资源的子集。
方法二:默认第三时频资源包括第一时频资源中除了发送DRS的时频资源以外的时频资源。
需要说明的是,eNB在第一时频资源上不发送寻呼消息,并且不调度其他用户。
在一种可能的设计中,WCE设备可以接收eNB发送的第二指示信息,并根据第二指示信息确定第三时频资源。第二指示信息可以携带在eNB通过EPDCCH或PDCCH向WCE设备发送的DCI中。第二指示信息用于指示第一时频资源中的第三时频资源。第三时频资源用于传输PDSCH。第三时频资源的确定过程可以参考方法一或方法二。
本申请实施例中,eNB可以通过第一指示信息明确指示第一时频资源是否能够传输PDSCH。相比现有技术,当第一时频资源中的DRS占据较少的时频资源时,第一时频资源具备传输PDSCH的条件而不传输PDSCH,导致频谱资源浪费。本申请实施例可以在第一时频资源具备传输WCE设备的PDSCH的条件下传输PDSCH,从而解决不传输PDSCH造成的频谱资源浪费的问题。而且,如果第一时频资源用于可以传输PDSCH,WCE设备可以根据预定义等方法确定第一时频资源中用于传输PDSCH的第三时频资源,并在第三时频资源上发送解调PDSCH数据。第三时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源不同。如此一来,不会发生传输信道信息的时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源发生冲突的问题,可以避免用户设备接收信道信息(或解调信道数据)时发生错误。
另外,本申请实施例中,根据第一指示信息确定是否在第一时频资源发送信道信息(例如PDSCH),不会限制eNB的调度灵活性。当第一时频资源传输信道信息时,可以减少引入时域重复的信道信息的调度时延。
本申请的又一实施例提供一种信息发送方法,以第一时频资源用于传输DRS,信道信息为PDSCH,网络设备为eNB,用户设备为WCE设备为例进行说明,如图13所示,包括:
1301、eNB确定第一指示信息。
第一指示信息用于指示eNB是否在第一时频资源发送PDSCH。
在一种可能的设计中,假设子帧8、子帧9和子帧0的频域资源如图8所示,即子帧8和子帧9中传输PDSCH的时频资源的位置与子帧0中DRS占用的资源重叠。或子帧8、子帧9和子帧0的频域资源如图11所示,即子帧8和子帧9中传输PDSCH的时频资源的位置与子帧0中DRS占用的资源重叠,且子帧0空闲的频域资源不足以支持传输PDSCH。此时第一指示信息的取值可以为00,用于指示子帧0不传输该WCE PDSCH。
假设子帧8、子帧9和子帧0的频域资源如图12所示,即子帧8和子帧9中传输PDSCH的频域资源的位置与子帧0中发送DRS的频域资源的位置重叠,但子帧0空闲的频域资源足以支持传输PDSCH。此时第一指示信息的取值可以为01、10或11。
1302、eNB向WCE设备发送第一指示信息。
具体过程可以参考步骤602。
1303、WCE设备根据第一指示信息确定是否在第一时频资源接收信道信息。
若第一指示信息为00,WCE设备不在第一时频资源(例如,子帧0的全部频域资源)上解调PDSCH数据。若第一指示信息为01、10或11,WCE设备在第一时频资源解调PDSCH数据。
1304、WCE设备确定第三时频资源,并在第三时频资源上接收信道信息。
即WCE设备确定第三时频资源,并在第三时频资源上解调PDSCH数据。
当第一指示信息的取值为01时,WCE设备可以根据步骤1004中的方法一确定第三时频资源,并在第三时频资源上解调PDSCH数据。
当第一指示信息的取值为10时,WCE设备可以根据步骤1004中的方法二确定第三时频资源,并在第三时频资源上解调PDSCH数据。
当第一指示信息的取值为11时,WCE设备可以接收eNB发送的第二指示信息,根据第二指示信息确定第三时频资源,并在第三时频资源上解调PDSCH数据。
本申请实施例中,eNB可以通过第一指示信息明确指示第一时频资源是否用于PDSCH发送。相比现有技术,当第一时频资源中的发送的DRS占据较少的时频资源时,第一时频资源具备传输PDSCH的条件而不传输PDSCH,导致频谱资源浪费。本申请实施例可以在第一时频资源具备传输PDSCH的条件下传输PDSCH,从而解决不传输PDSCH造成的频谱资源浪费的问题。而且,如果第一时频资源用于PDSCH发送,WCE设备可以根据预定义等方法确定第一时频资源中用于传输PDSCH的第三时频资源,并在第三时频资源上解调PDSCH数据。第三时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源不同。如此一来,不会发生传输信道信息的时频资源与传输DRS和/或寻呼消息和/或***信息的时频资源发生冲突的问题,可以避免用户设备接收信道信息(或解调信道数据)时发生错误。
另外,本申请实施例中,根据第一指示信息确定是否在第一时频资源发送信道信息,不会限制eNB的调度灵活性。当第一时频资源传输信道信息时,可以减少引入时域重复的信道信息的调度时延。
上述主要从网络设备和用户设备的角度对本发明实施例提供的方案进行了介绍。可以理解的是,网络设备和用户设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对网络设备和用户设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图14示出了上述实施例中所涉及的网络设备14的一种可能的结构示意图,网络设备包括:确定单元1401和发送单元1402。在本发明实施例中,确定单元1401可以用于确定第一指示信息。 在图6、图10和图13所示的方法实施例中,确定单元1401用于支持网络设备执行图6中的过程601,图10中的过程1001,图13中的过程1301。发送单元1402用于支持网络设备执行图6中的过程602,图10中的过程1002,图13中的过程1302。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。在本发明中,网络设备可以包括处理模块1501、通信模块1502和存储模块1503。其中,处理模块1501用于控制网络设备的各部分硬件装置和应用程序软件等;通信模块1502用于可使用无线保真(Wireless Fidelity,WiFi)等通讯方式接受其它设备发送的指令,也可以将网络设备的数据发送给其它设备;存储模块1503用于执行网络设备的软件程序的存储、数据的存储和软件的运行等。其中,处理模块1501可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1502可以是收发器、收发电路或通信接口等。存储模块1503可以是存储器。
在本发明实施例中,处理模块1501可以用于确定第一指示信息。
通信模块1502可以用于向用户设备发送第一指示信息,以便用户设备根据第一指示信息确定是否在第一时频资源接收信道信息。
存储模块1503可以用于存储本发明实施例中的第一指示信息。
在采用对应各个功能划分各个功能模块的情况下,图16示出了上述实施例中所涉及的用户设备16的一种可能的结构示意图,用户设备包括:接收单元1601和确定单元1602。在本发明实施例中,接收单元1601可以用于接收网络设备发送的第一指示信息。确定单元1602可以用于根据第一指示信息确定是否在第一时频资源接收信道信息。在图6、图10和图13所示的方法实施例中,接收单元1601用于支持用户设备执行图6中的过程602,或执行图10中的过程1002,或执行图13中的过程1302。确定单元1602用于支持用户设备执行图6中的过程603,或执行图10中的过程1003,或执行图13中的过程1303。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图17示出了上述实施例中所涉及的用户设备的一种可能的结构示意图。在本发明中,用户设备可以包括处理模块1701、通信模块1702和存储模块1703。其中,处理模块1701用于控制用户设备的各部分硬件装置和应用程序软件等;通信模块1702用于可使用WiFi等通讯方式接受其它设备发送的指令,也可以将用户设备的数据发送给其它设备;存储模块1703用于执行用户设备的软件程序的存储、数据的存储和软件的运行等。其中,处理模块1701可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他 可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1702可以是收发器、收发电路或通信接口等。存储模块1703可以是存储器。
在本发明实施例中,处理模块1701可以用于根据第一指示信息确定是否在第一时频资源接收信道信息。
通信模块1702可以用于接收网络设备发送的第一指示信息。
存储模块1703可以用于存储本发明实施例中的第一指示信息。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种信息发送方法,其特征在于,所述方法包括:
    网络设备确定第一指示信息,所述第一指示信息用于指示所述网络设备是否在第一时频资源发送信道信息,所述第一时频资源用于传输发现信号DRS、寻呼信息或***信息中的至少一个;
    所述网络设备向用户设备发送所述第一指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述信道信息在至少一个第二时频资源上发送。
  3. 根据权利要求1所述的方法,其特征在于,所述网络设备通过增强型物理下行控制信道EPDCCH或物理下行控制信道PDCCH向用户设备发送下行控制信息DCI,所述DCI包括所述第一指示信息。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述第一时频资源中的第三时频资源,所述第三时频资源用于传输所述信道信息。
  5. 根据权利要求2或3所述的方法,其特征在于,所述第一时频资源用于传输所述DRS,所述信道信息为PDSCH,所述方法还包括:
    所述基站确定第三时频资源,所述第三时频资源用于传输所述信道信息,所述第三时频资源包括所述第一时频资源中除所述DRS在所述第一时频资源中对应的第四时频资源以外的可用时频资源。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第三时频资源为所述第二时频资源在所述第一时频资源对应的时频资源的子集。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
  8. 一种资源发送方法,其特征在于,所述方法包括:
    用户设备接收网络设备发送的第一指示信息;
    所述用户设备根据所述第一指示信息确定是否在第一时频资源接收信道信息,所述第一时频资源用于传输发现信号DRS、寻呼信息或***信息中的至少一个。
  9. 根据权利要求8所述的方法,其特征在于,所述信道信息在至少一个第二时频资源上发送。
  10. 根据权利要求8或9所述的方法,其特征在于,所述用户设备接收网络设备发送的第一指示信息包括:
    所述用户设备接收所述网络设备通过增强型物理下行控制信道EPDCCH或物理下行控制信道PDCCH发送的下行控制信息DCI,所述DCI包括所述第一指示信息。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    所述用户设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时频资源中的第三时频资源,所述第三时频资源用于传输所述信道信息。
  12. 根据权利要求9或10所述的方法,其特征在于,所述第一时频资源用于 传输DRS,所述信道信息为物理下行共享信道PDSCH,所述方法还包括:
    所述用户设备确定第三时频资源,所述第三时频资源包括所述第一时频资源中除去所述DRS在所述第一时频资源中对应的第四时频资源以外的可用时频资源。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第三时频资源为所述第二时频资源在所述第一时频资源对应的时频资源的子集。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
  15. 一种网络设备,其特征在于,包括:
    确定单元,用于确定第一指示信息,所述第一指示信息用于指示所述网络设备是否在第一时频资源发送信道信息,所述第一时频资源用于传输发现信号DRS、寻呼信息或***信息中的至少一个;
    发送单元,用于向用户设备发送所述第一指示信息。
  16. 根据权利要求15所述的网络设备,其特征在于,所述信道信息在至少一个第二时频资源上发送。
  17. 根据权利要求15所述的网络设备,其特征在于,所述发送单元通过增强型物理下行控制信道EPDCCH或物理下行控制信道PDCCH向用户设备发送下行控制信息DCI,所述DCI包括所述第一指示信息。
  18. 根据权利要求15-17任一项所述的网络设备,其特征在于,所述发送单元还用于:
    向所述用户设备发送第二指示信息,所述第二指示信息用于指示所述第一时频资源中的第三时频资源,所述第三时频资源用于传输所述信道信息。
  19. 根据权利要求16或17所述的网络设备,其特征在于,所述第一时频资源用于传输所述DRS,所述信道信息为PDSCH,所述确定单元还用于:
    确定第三时频资源,所述第三时频资源用于传输所述信道信息,所述第三时频资源包括所述第一时频资源中除所述DRS在所述第一时频资源中对应的第四时频资源以外的可用时频资源。
  20. 根据权利要求18或19所述的网络设备,其特征在于,所述第三时频资源为所述第二时频资源在所述第一时频资源对应的时频资源的子集。
  21. 根据权利要求15-20任一项所述的网络设备,其特征在于,所述第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
  22. 一种用户设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一指示信息;
    确定单元,用于根据所述第一指示信息确定是否在第一时频资源接收信道信息,所述第一时频资源用于传输发现信号DRS、寻呼信息或***信息中的至少一个。
  23. 根据权利要求22所述的用户设备,其特征在于,所述信道信息在至少一个第二时频资源上发送。
  24. 根据权利要求22或23所述的用户设备,其特征在于,所述接收单元用于:
    接收所述网络设备通过增强型物理下行控制信道EPDCCH或物理下行控制信 道PDCCH发送的下行控制信息DCI,所述DCI包括所述第一指示信息。
  25. 根据权利要求22-24任一项所述的用户设备,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时频资源中的第三时频资源,所述第三时频资源用于传输所述信道信息。
  26. 根据权利要求23或24所述的用户设备,其特征在于,所述第一时频资源用于传输DRS,所述信道信息为物理下行共享信道PDSCH,所述确定单元还用于:
    确定第三时频资源,所述第三时频资源包括所述第一时频资源中除去所述DRS在所述第一时频资源中对应的第四时频资源以外的可用时频资源。
  27. 根据权利要求25或26所述的用户设备,其特征在于,所述第三时频资源为所述第二时频资源在所述第一时频资源对应的时频资源的子集。
  28. 根据权利要求22-27任一项所述的用户设备,其特征在于,所述第一时频资源的时域资源包括以下其中之一:一个或多个符号,一个或多个时隙,一个或多个子帧。
PCT/CN2017/097935 2017-08-17 2017-08-17 一种信息发送方法和装置 WO2019033367A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097935 WO2019033367A1 (zh) 2017-08-17 2017-08-17 一种信息发送方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097935 WO2019033367A1 (zh) 2017-08-17 2017-08-17 一种信息发送方法和装置

Publications (1)

Publication Number Publication Date
WO2019033367A1 true WO2019033367A1 (zh) 2019-02-21

Family

ID=65362789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097935 WO2019033367A1 (zh) 2017-08-17 2017-08-17 一种信息发送方法和装置

Country Status (1)

Country Link
WO (1) WO2019033367A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN105848165A (zh) * 2015-01-14 2016-08-10 中兴通讯股份有限公司 非授权资源的使用方法、***、基站及用户设备
CN106455095A (zh) * 2015-08-13 2017-02-22 电信科学技术研究院 一种数据传输方法及装置
CN106559880A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 发现信号和物理下行共享信道复用发送、接收方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848165A (zh) * 2015-01-14 2016-08-10 中兴通讯股份有限公司 非授权资源的使用方法、***、基站及用户设备
CN106455095A (zh) * 2015-08-13 2017-02-22 电信科学技术研究院 一种数据传输方法及装置
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN106559880A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 发现信号和物理下行共享信道复用发送、接收方法和设备

Similar Documents

Publication Publication Date Title
CN110830151B (zh) 反馈信息的传输方法和装置
US11109357B2 (en) Semi-persistent scheduling method, network device, and terminal device
RU2693288C2 (ru) Первое устройство связи, второе устройство связи и осуществляемые на них способы отправки и приема, соответственно, указания типа подкадра
US20210185674A1 (en) Method for transmitting configuration information and terminal device
TWI821368B (zh) 非連續傳輸的方法和設備
WO2019157936A1 (zh) 一种信号传输方法及装置
JP2021530137A (ja) 信号伝送の方法、ネットワーク装置及び端末装置
US20170339681A1 (en) Control Channel Design for Category-A Devices
US20180041314A1 (en) Data transmission method, feedback information transmission method, and related device
CN112956271A (zh) 非授权频段上ssb的传输方法和设备
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
JP2021192519A (ja) 情報伝送のための方法、端末デバイス及びネットワークデバイス
US20220132613A1 (en) Communication method and apparatus
JP2020503733A (ja) ダウンリンク制御チャネル指示方法、端末装置、およびネットワーク装置
WO2022027308A1 (en) Enhanced configured grants
WO2017139969A1 (zh) 频带配置装置、方法以及通信***
JP2022535332A (ja) データを伝送するための方法、端末デバイス及びネットワークデバイス
WO2022027294A1 (en) Mobile devices and methods for implementing enhanced configured grants
CN113498207A (zh) 用于同时ul取消和ul ci监测的***和方法
CN116391370A (zh) 无线通信期间连接状态下的多媒体广播和组播服务(mbms)传输和接收
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2019141069A1 (zh) 用于管理非授权频段的信道占用时长的方法和设备
CN110731116B (zh) 无线通信方法、终端设备和网络设备
KR20210044847A (ko) 다운링크 제어 정보 전송 방법 및 장치
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921785

Country of ref document: EP

Kind code of ref document: A1