WO2019031605A1 - Fused ring compound - Google Patents

Fused ring compound Download PDF

Info

Publication number
WO2019031605A1
WO2019031605A1 PCT/JP2018/030086 JP2018030086W WO2019031605A1 WO 2019031605 A1 WO2019031605 A1 WO 2019031605A1 JP 2018030086 W JP2018030086 W JP 2018030086W WO 2019031605 A1 WO2019031605 A1 WO 2019031605A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
mmol
ring
layer
Prior art date
Application number
PCT/JP2018/030086
Other languages
French (fr)
Japanese (ja)
Inventor
森中裕太
田中剛
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN201880051882.0A priority Critical patent/CN110997648B/en
Priority to KR1020207003370A priority patent/KR102556378B1/en
Publication of WO2019031605A1 publication Critical patent/WO2019031605A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/36Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/92Naphthofurans; Hydrogenated naphthofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/08Hydrogen atoms or radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/08Hydrogen atoms or radicals containing only hydrogen and carbon atoms
    • C07D333/10Thiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/74Naphthothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present disclosure relates to fused ring compounds.
  • dibenzo [g, p] chrysene compound may be used as a material for an organic electroluminescent element, there are few reported examples of the dibenzo [g, p] chrysene compound, and the study has not been sufficiently conducted.
  • Patent Document 1 discloses various monoamine derivatives, and a dibenzo [g, p] chrysene compound substituted with a diphenylamino group as one of them. Furthermore, Patent Document 2 and Patent Document 3 disclose dibenzo [g, p] chrysene compounds substituted with an aromatic hydrocarbon group and a triazyl group, respectively.
  • one aspect of the present disclosure is directed to providing a fused ring compound that exhibits excellent driving voltage, luminous efficiency, and / or device life.
  • the fused ring compound according to one aspect of the present disclosure is a fused ring compound represented by Formula (1):
  • One of these rings represents a ring fused to a substituted or unsubstituted benzene ring;
  • Each of A 1 to A 3 independently represents a charge transporting group;
  • k1 to k3 are each independently an integer of 0 or more and 4 or less; When k1 to k3 are integers of 2 or more, the plurality of A 1 to A 3 may be the same or different.
  • FIG. 6 is a schematic cross-sectional view showing an example of another laminated configuration of the organic electroluminescent device according to an embodiment of the present disclosure (a configuration of Device Example 1).
  • the arylaminodibenzo [g, p] chrysene according to Patent Document 1 has a low glass transition temperature and a poor device life.
  • the drive voltage exhibits sufficient performance but a low triplet excitation level and / or from a light emitting layer. It was found that the current efficiency is inferior due to the low electron stopping power, and an improvement is necessary.
  • the fused ring compound according to an aspect of the present disclosure is a skeleton in which one benzene ring in the skeleton of dibenzo [g, p] chrysene is replaced with a furan-based or thiophene-based ring or the like.
  • This skeleton has the effect of expanding the ⁇ conjugated system of dibenzo [g, p] chrysene, and since more ⁇ electron systems than dibenzo [g, p] chrysene contribute to charge transport, the electron transport material, hole
  • the present inventors speculate that the present invention is applicable to various materials such as transport materials and light emitting materials. That is, it is inferred that the fused ring compound according to one aspect of the present disclosure has a specific skeleton, and is derived from this skeleton to exert various effects required for each layer constituting the organic electroluminescent element. Ru.
  • the fused ring compound according to one aspect of the present disclosure is a fused ring compound represented by Formula (1):
  • One of these rings represents a ring fused to a substituted or unsubstituted benzene ring;
  • Each of A 1 to A 3 independently represents a charge transporting group;
  • k1 to k3 are each independently an integer of 0 or more and 4 or less; When k1 to k3 are integers of 2 or more, the plurality of A 1 to A 3 may be the same or different.
  • a 1 to A 3 , k 1 to k 3 and X in the fused ring compound represented by the formula (1) are as follows.
  • Each of A 1 to A 3 independently represents a charge transporting group.
  • the charge transporting group is a substituent having a function of transporting a charge.
  • the charge is a hole, an electron, or both.
  • charge transporting group each independently, (A-1) deuterium atom, (a-2) fluorine atom, bromine atom, iodine atom, (a-3) trifluoromethyl group, (a-4) hexafluoroethyl group, (a-5) cyano group (A-6) nitro group, (a-7) hydroxyl group, (a-8) thiol group, (A-9) an optionally substituted monocyclic hydrocarbon ring having 6 to 30 carbon atoms, a linked or fused aromatic hydrocarbon group, (A-10) a C3-C36 monocyclic, linked or fused heteroaromatic group which may have a substituent, (A-11) phosphine oxide group which may have a substituent, (A-12) silyl group which may have a substituent, (A-13) a boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms, (A-14) a linear or branched alkyl group having
  • R 1 to R 3 are each independently (R-1) hydrogen atom, (r-2) deuterium atom, (R-3) an optionally substituted monocyclic hydrocarbon ring having 6 to 30 carbon atoms, a linked or fused aromatic hydrocarbon group, (R-4) a C3-C36 monocyclic, linked, or fused heteroaromatic group which may have a substituent, or (R-5) represents a linear or branched alkyl group having 1 to 18 carbon atoms; Y is each independently A phenylene group which may be substituted by a methyl group or a phenyl group, Naphthylene group which may be substituted by methyl group or phenyl group, A biphenylene group which may be substituted by a methyl group or a phenyl group, or Represents a single bond; n represents 1 or 2; When Y is a single bond, n is 1 and When Y is not a single bond, n is 1 or 2; When n
  • a 1 to A 3 may be substituted by one substituent or may be substituted by two or more substituents.
  • the hydrogen group is not particularly limited, and examples thereof include phenyl group, biphenylyl group, terphenylyl group, naphthyl group, fluorenyl group, anthryl group, phenanthryl group, benzofluorenyl group, triphenylenyl group, spirobifluorene. Nyl group, diphenylfluorenyl group, and dibenzo [g, p] chrysenyl group, and the like.
  • the C6 to C30 monocyclic, linked or fused aromatic hydrocarbon group is a C6 to C18 monocyclic, linked or fused aromatic hydrocarbon group.
  • each of the substituents is independently a fluorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group or a thiol group.
  • a phosphine oxide group which may have a substituent, a silyl group which may have a substituent, a boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms, It is preferable that it is an 18 linear or branched alkyl group, or a linear or branched alkoxy group having 1 to 18 carbon atoms.
  • phosphine oxide group an unsubstituted phosphine oxide group and a phosphine oxide group having a substituent can be mentioned. It is preferably a phosphine oxide group having a substituent.
  • the phosphine oxide group having a substituent is preferably a monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 18 carbon atoms, or a phosphine oxide group having a condensed heteroaromatic group. Although it does not specifically limit specifically, For example, the group substituted by two aryl groups, such as diphenyl phosphine oxide, is mentioned.
  • silyl group examples include unsubstituted silyl groups and silyl groups having a substituent. It is preferable that it is a silyl group having a substituent.
  • the silyl group having a substituent is preferably a monocyclic, linked, or fused aromatic hydrocarbon group having 6 to 18 carbon atoms, or a silyl group having a fused heteroaromatic group. Although it does not specifically limit specifically, For example, the group substituted by three aryl groups, such as a triphenyl silyl group, is mentioned.
  • the boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms is not particularly limited, and examples thereof include dihydroxyboryl group (-B (OH) 2 ), 4, 4, 5 And 5-tetramethyl- [1,3,2] -dioxabororanyl group, 5,5-dimethyl- [1,3,2] -dioxaborinane group and the like.
  • the linear or branched alkyl group having 1 to 18 carbon atoms is not particularly limited, and examples thereof include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec- Examples thereof include butyl, tert-butyl, pentyl, n-hexyl, cyclohexyl, octyl, decyl, dodecyl and octadecyl groups.
  • the linear or branched alkoxy group having 1 to 18 carbon atoms is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, and a sec- Examples include butoxy, tert-butoxy, pentyloxy, n-hexyloxy, cyclohexyloxy, octyloxy, decyloxy, dodecyloxy, octadecyloxy and the like.
  • C3-C36 monocyclic, linked or fused heteroaromatic group Is not particularly limited, and is a single ring having 3 to 36 carbon atoms, which contains at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom on an aromatic ring, a linkage, or It is a fused heteroaromatic group.
  • the heteroaromatic group is not particularly limited, and examples thereof include pyrrolyl group, thienyl group, furyl group, imidazolyl group, pyrazolyl group, thiazolyl group, isothiazolyl group, oxazolyl group, isoxazolyl group, pyridyl group, and phenyl.
  • each of the substituents is independently a cyano group, a fluorine atom, a trifluoromethyl group, a linear or branched chain having 1 to 18 carbon atoms. It is preferable that it is an alkyl group of the above, or a linear or branched alkoxy group having 1 to 18 carbon atoms.
  • the linear or branched alkyl group having 1 to 18 carbon atoms is not particularly limited, but is the same as the linear or branched alkyl group having 1 to 18 carbon atoms exemplified in (a-9) described above The thing is mentioned.
  • the linear or branched alkoxy group having 1 to 18 carbon atoms is not particularly limited, but is the same as the linear or branched alkoxy group having 1 to 18 carbon atoms exemplified in (a-9) described above The thing is mentioned.
  • examples of the phosphine oxide group include unsubstituted phosphine oxide groups and phosphine oxide groups having a substituent. It is preferably a phosphine oxide group having a substituent.
  • the phosphine oxide group having a substituent is not particularly limited, and examples thereof include the same as the phosphine oxide group exemplified in (a-9) described above.
  • silyl group examples include unsubstituted silyl groups and silyl groups having a substituent. It is preferable that it is a silyl group having a substituent.
  • the silyl group having a substituent is not particularly limited, and examples thereof include the same as the silyl group exemplified in (a-9) described above.
  • the group is not particularly limited, and examples thereof include the same as the boronyl group exemplified in (a-9) described above.
  • the linear alkyl group having 1 to 18 carbon atoms is not particularly limited. The same ones as the linear or branched alkyl group having 1 to 18 carbon atoms exemplified in the above (a-9) can be mentioned.
  • the linear or branched alkoxy group having 1 to 18 carbon atoms is not particularly limited, For example, the same ones as the linear or branched alkoxy group having 1 to 18 carbon atoms exemplified in the above (a-9) can be mentioned.
  • R 1 to R 3 each independently have (r-1) hydrogen atom, (r-2) deuterium atom, (r-3) substituent A monocyclic, linked or fused aromatic hydrocarbon group having 6 to 30 carbon atoms, (r-4) a monocyclic, linked or fused heteroaromatic group having 3 to 36 carbon atoms, Or (r-5) represents a linear or branched alkyl group having 1 to 18 carbon atoms.
  • R 1 to R 3 may be substituted by one substituent or may be substituted by two or more substituents.
  • R 1 to R 3 each represent an aromatic hydrocarbon group having a substituent or a heteroaromatic group having a substituent
  • the substituents each independently represent a deuterium atom, a fluorine atom, or a carbon number It is preferably a linear or branched alkyl group of 1 to 18, a linear or branched alkoxy group of 1 to 18 carbon atoms, 9-carbazolyl group, a dibenzothienyl group or a dibenzofuranyl group.
  • (R-3) monocyclic, linked, or fused aromatic hydrocarbon group having 6 to 30 carbon atoms
  • a monocyclic, linked, or fused ring having 6 to 30 carbon atoms The definition of the aromatic hydrocarbon group of the ring is, except for the definition of the substituent thereof, the definition of the monocyclic, linked or fused aromatic hydrocarbon group having 6 to 30 carbon atoms shown in the above (a-9) Is the same as
  • the aromatic hydrocarbon group of (r-3) has a substituent
  • the substituent is preferably a deuterium atom, a fluorine atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms.
  • the linear or branched alkyl group having 1 to 18 carbon atoms is not particularly limited, but is the same as the linear alkyl group having 1 to 18 carbon atoms exemplified in (a-9) described above It can be mentioned.
  • the linear or branched alkoxy group having 1 to 18 carbon atoms is not particularly limited, but is the same as the linear or branched alkoxy group having 1 to 18 carbon atoms exemplified in (a-9) described above The thing is mentioned.
  • (R-4) C3-C36 monocyclic, linked or fused heteroaromatic group
  • C3-C36 monocyclic, linked or fused ring The definition of the heteroaromatic group is the same as the C3-C36 monocyclic, linked or fused heteroaromatic group exemplified in (a-10) above, except for the definition of the substituent It can be mentioned. Further, it is more preferable that the heteroaromatic group is a C3-C20 monocyclic, linked or fused heteroaromatic group.
  • the substituent is preferably a deuterium atom, a fluorine atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms. Linear or branched alkoxy group, 9-carbazolyl group, dibenzothienyl group, dibenzofuranyl group, N, N-diphenylamino group, or N, N-bis (4-biphenylyl) -amino group preferable.
  • These substituents are not particularly limited, and for example, have the same definition as the substituent of (r-3) described above.
  • R-5 linear or branched alkyl group having 1 to 18 carbon atoms
  • the definition of the linear or branched alkyl group having 1 to 18 carbon atoms is the same as the above (a) Same as the definition shown in -9).
  • Y is a phenylene group which may be substituted by a methyl group or a phenyl group; a naphthylene group which may be substituted by a methyl group or a phenyl group; a methyl group or a phenyl group Or a single bond.
  • the phenylene group is not particularly limited, and examples thereof include a 1,2-phenylene group, a 1,3-phenylene group, and a 1,4-phenylene group.
  • the above-mentioned naphthylene group is not particularly limited, and examples thereof include naphthalene-1,2-diyl group, naphthalene-1,4-diyl group, naphthalene-1,8-diyl group, and naphthalene-2,3- Diyl group etc. are mentioned.
  • the biphenylene group is not particularly limited.
  • biphenyl-4,4'-diyl group, biphenyl-4,3'-diyl group, biphenyl-4,2'-diyl group, biphenyl-3 for example.
  • 3'-diyl group, biphenyl-3,2'-diyl group, biphenyl-2,2'-diyl group and the like are mentioned.
  • n 1 or 2.
  • n 1 or 2.
  • Y is not a single bond
  • n is 1 or 2.
  • two R 1 and two R 2 are present, but they may be identical to or different from each other.
  • Each of k1 to k3 is independently an integer of 0 to 4. In the case k1 ⁇ k3 is an integer of 2 or more, but A 1 ⁇ A 3 there are a plurality, the plurality of A 1 ⁇ A 3 may be the same as each other or may be different.
  • the sum (k1 + k2 + k3) of k1 to k3 is preferably 3 or less, more preferably 2 or less, and particularly preferably 0 or 1.
  • the molecular weight decreases as compared to the compound in which the sum of k1 to k3 is 4 or more. As a result, the sublimation temperature of the compound is lowered, and the heat stability at the time of sublimation is improved, which is preferable.
  • k1 and k2 are preferably 0 or 1, and more preferably 0 from the viewpoint of achieving excellent charge transportability in the organic electroluminescent device.
  • k3 is preferably 0, 1 or 2 and more preferably 1 from the viewpoint of achieving excellent charge transportability in the organic electroluminescent device.
  • the fused ring compound represented by the above formula (1) is particularly preferably one in which k1 and k2 are 0 and k3 is 1 from the viewpoint of realizing excellent charge transportability in an organic electroluminescent device.
  • X is A furan ring which may have a substituent, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring or a dibenzothiophene ring; or One of these rings represents a ring fused to a substituted or unsubstituted benzene ring.
  • the substituent which the above furan ring, thiophene ring, benzofuran ring, benzothiophene ring, dibenzofuran ring or dibenzothiophene ring may have is not particularly limited, but, for example, the above-mentioned (a-1) And the substituents shown in (a-16) can be mentioned.
  • Examples of the substituted benzene ring include a benzene ring substituted with a phenyl group, a biphenylyl group, or a pyridyl group.
  • the fused ring compound represented by the formula (1) is preferably a fused ring compound represented by any one of the formulas (3) to (22).
  • a 1 to A 3 and k 1 to k 3 have the same definitions as A 1 to A 3 and k 1 to k 3 in the formula (1), respectively;
  • Each of A 4 and A 5 independently represents a charge transporting group; k4 is an integer of 0 or more and 4 or less; k5 is an integer of 0 or more and 2 or less; When k1 to k5 are integers of 2 or more, the plurality of A 1 to A 5 may be the same or different.
  • k4 is an integer of 0 or more and 4 or less.
  • k5 is an integer of 0 or more and 2 or less.
  • k4 is preferably 0, 1 or 2 and more preferably 0 from the viewpoint of realizing excellent charge transportability in the organic electroluminescent device.
  • k5 is preferably 0 or 1, and more preferably 0, from the viewpoint of realizing excellent charge transportability in the organic electroluminescent device.
  • the sum (k1 + k2 + k3) of k1 to k3 is preferably 3 or less, more preferably 2 or less, 0 or 1. Being particularly preferred.
  • k1, k2, k4 and k5 are 0 and k3 is 1 from the viewpoint of realizing excellent charge transportability in organic electroluminescent devices. Is preferred.
  • the charge transporting group represented by A 4 and A 5 has the same definition as the charge transporting group represented by A 1 to A 3 in the formula (1), and the same applies to a preferable range.
  • a 1 to A 5 may be substituted by one substituent or may be substituted by two or more substituents.
  • a 1 to A 5 are an aromatic hydrocarbon group having a substituent or a heteroaromatic group having a substituent
  • the substituents are each independently exemplified in the above (a-9) The same thing as a substituent is mentioned.
  • a 1 to A 5 are not particularly limited, and examples of the groups (1) to (24) shown below can be given as preferable examples.
  • a 1 to A 5 are each independently from the viewpoint of easy availability of raw materials: Phenyl group, biphenylyl group, pyridylphenyl group, terphenylyl group, naphthyl group, phenanthryl group, pyrenyl group, 9,9-spirobi [9H-fluorenyl] group, triphenylenyl group, dibenzothienyl group, dibenzofuranyl group, pyridyl group, pyrimidyl group Or a group in which these groups are substituted with a cyano group, a nitro group, a hydroxyl group, a thiol group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group or a methoxy group; A fluorenyl group, a benzofluorenyl group, an anthryl group,
  • the fused ring compound represented by the formula (1) is shown below, but the fused ring compound is not limited to these compounds.
  • Tables B-1 to B-7 have the skeletons of (3A) to (22B) shown in Table A-1 to Table A-4, and the substituent A 3 which the skeleton has is Table B
  • m represents an arbitrary integer of 1 to 251. That is, the compound of (NA-m) indicates the compounds of (NA-1) to (NF-251).
  • N represents an arbitrary integer of 3 to 22.
  • N 3 ⁇ 6, (NA -1), (NB-1), (NC-1) is, A 3 is deuterium (D) atoms.
  • D deuterium
  • ND -1 ND -1
  • NE-1 NE-1
  • NF-1 A 3 is hydrogen (H) atoms.
  • N 7 ⁇ 22, (NA -1) is, A 3 is deuterium (D) atoms.
  • N 7 ⁇ 22, (NB -1) is, A 3 is hydrogen (H) atoms.
  • the fused ring compound represented by the formula (1) is synthesized according to the following route using a compound represented by the formula (23a) or (23b) described later as a starting material from the viewpoint of yield and purity at the time of production Is preferred.
  • a 1 to A 3 , and k 1 to k 3 have the same definitions as in the above formula (1); ⁇ and ⁇ are mutually different and each represent a boronyl group which may have a saturated hydrocarbon group of 2 to 10 carbon atoms, or a halogen atom (chlorine, bromine or iodine).
  • X, A 1 ⁇ A 3, and the preferred range of k 1 ⁇ k 3 is, X in Formula (1), the same as the preferable range of A 1 ⁇ A 3, and k 1 ⁇ k 3.
  • a phenanthrene compound represented by the formula (23a) and a compound represented by the formula (23c), or a phenanthrene compound represented by the formula (23b) and a compound represented by the formula (23d) Is coupled in the presence of a palladium catalyst, optionally using a base, to obtain a phenanthrene compound represented by the formula (23).
  • the phenanthrene compound represented by Formula (23) obtained can be intramolecularly cyclized, and the fused ring compound represented by said Formula (1) can be obtained.
  • the phenanthrene compound be oxidized or irradiated with an oxidizing agent to cause an intramolecular cyclization reaction.
  • Formula (1) obtained by the above route has a halogen atom (fluorine, chlorine, bromine or iodine) or a boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms If necessary, additional coupling reactions may be performed.
  • halogen atom fluorine, chlorine, bromine or iodine
  • boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms If necessary, additional coupling reactions may be performed.
  • the boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms is not particularly limited, but the saturated hydrocarbon having 2 to 10 carbon atoms exemplified in (a-9) described above The same thing as the boronyl group which may have a group is mentioned.
  • the compounds represented by the formulas (23a) to (23d) can be synthesized based on known methods, or commercially available compounds can be used.
  • a known coupling reaction can be used, and as the base and the palladium catalyst, known ones can be used.
  • the phenanthrene compound represented by the formula (23) has a furan ring which may have a substituent, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring or a dibenzothiophene ring; or one of these rings is
  • X which is a ring ringed with a substituted or unsubstituted benzene ring.
  • X is a ring other than the above-mentioned ring (for example, X is a benzene ring or a naphthalene ring).
  • the intramolecular cyclization is preferably performed by oxidation with an oxidizing agent or oxidation with light irradiation.
  • an oxidizing agent ferric chloride (FeCl 3 ), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), molybdenum chloride (MoCl 5 ), aluminum chloride (AlCl 3 ), or [bis (Trifluoroacetoxy) iodo] benzene (PIFA) is preferred.
  • iodine (I 2 ) and 1,2-epoxypropane or 1,2-epoxybutane iodine (I 2 ) and 1,2-epoxypropane or 1,2-epoxybutane.
  • the phenanthrene compound according to one aspect of the present disclosure is a phenanthrene compound represented by Formula (23):
  • a furan ring which may have a substituent, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring, or One of these rings represents a ring fused to a substituted or unsubstituted benzene ring;
  • Each of A 1 to A 3 independently represents a substituent;
  • k1 to k3 are each independently an integer of 0 or more and 4 or less; When k1 to k3 are integers of 2 or more, the plurality of A 1 to A 3 may be the same or different.
  • the phenanthrene compound represented by the formula (23) is specifically represented by the following formulas (3i) to (18i) from the viewpoint of obtaining the fused ring compound represented by the formula (1) in high yield and high purity.
  • the phenanthrene compound represented by these is preferable.
  • a 1 to A 5 and k 1 to k 5 have the same definitions as in the formulas (3) to (22), and the same applies to the preferred ranges.
  • Preferred phenanthrene compounds represented by formulas (3i) to (18i) are exemplified below based on the skeletons described in Tables C-1 to C-3, but this embodiment is limited to these compounds. It is not something to be done.
  • Preferred phenanthrene compounds have the skeletons of (3iA) to (18iB) shown in Tables C-1 to C-3, and the substituent A 3 which the skeleton has is shown in Tables B-1 to B-. It is a compound of (NiA-m) which is a group shown in 5.
  • m is an arbitrary integer of 1 to 167.
  • the (NiA-m) compound means a compound of (NiA-1) to (NiF-167).
  • N represents an arbitrary integer of 3 to 18.
  • N 3 ⁇ 6, (NiA -1), (NiB-1), (NiC-1) is, A 3 is deuterium (D) atoms.
  • N 3 ⁇ 6, (NiD -1), (NiE-1), (NiF-1) is, A 3 is hydrogen (H) atoms.
  • N 7 ⁇ 18, (NiA -1) is, A 3 is deuterium (D) atoms.
  • N 7 ⁇ 18, (NiB -1) is, A 3 is hydrogen (H) atoms.
  • the fused ring compound represented by the formula (1) can be used as a material for an organic electroluminescent device. Therefore, the material for an organic electroluminescent device according to an aspect of the present disclosure includes the fused ring compound represented by Formula (1).
  • the fused ring compound represented by the formula (1) is preferably highly pure in terms of charge transport properties and device life. Specifically, it is preferable that the amount of impurities such as halogen atoms and transition metal elements and impurities such as manufacturing raw materials and byproducts be as small as possible.
  • the material for an organic electroluminescent device containing the fused ring compound represented by the formula (1) is a hole transporting layer (each layer having a hole transporting property between the anode and the light emitting layer, specifically, A hole injection layer, a hole transport layer, etc., a light emitting layer, or an electron transporting layer (each layer having an electron transporting property between the cathode and the light emitting layer, specifically, electron injection Layer, an electron transport layer, etc. can be mentioned as a material which forms. Among these, it is particularly preferable to use as a material of the hole transport layer, the light emitting layer or the electron transport layer.
  • the fused ring compound represented by Formula (1) is 1st positive It may be used as a material for either or both of the hole transport layer (anode side) and the second hole transport layer (cathode side).
  • the fused ring compound represented by the formula (1) is used as a material of a hole transportable layer of an organic electroluminescent device, a material of a light emitting layer, or a material of an electron transportable layer, conventionally used Known fluorescent light emitting materials, phosphorescent light emitting materials, or thermally activated delayed fluorescent light emitting materials can be used for the light emitting layer.
  • the light emitting layer may be formed of only one kind of light emitting material, or one or more kinds of light emitting materials may be doped in the host material.
  • the hole transporting layer containing the fused ring compound represented by the formula (1) may be a single layer, or may be a laminated structure comprising a plurality of layers.
  • the hole transporting layer may be composed of the fused ring compound represented by the formula (1), and further contains one or more known materials in addition to the fused ring compound May be
  • a layer containing one or more known materials is further laminated.
  • Examples of such known materials include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl, N, N'-diphenyl-N, N'-bis (3-methylphenyl)- [1,1′-biphenyl] -4,4′-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolyl Aminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane Bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'
  • the fused ring compound represented by the formula (1) When used as a material of the light emitting layer of the organic electroluminescent device, the fused ring compound may be used alone or may be doped in a known light emitting host material It may be used as it is, or may be used by doping a known light emitting dopant.
  • Examples of methods for forming an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer containing the fused ring compound represented by the formula (1) include a vacuum evaporation method and a spin coating method. Known methods such as cast method can be applied.
  • the material for an organic electroluminescent device used for coating methods such as spin coating and casting includes an organic solvent in addition to the fused ring compound represented by the formula (1).
  • the organic solvent is not particularly limited, and examples thereof include monochlorobenzene and orthodichlorobenzene.
  • the organic solvent may be a combination of two or more of these. It is preferable that an organic solvent is selected to exhibit a desired coating performance, and the viscosity and concentration of the material for an organic electroluminescent element be adjusted.
  • An organic electroluminescent device includes a layer including the fused ring compound represented by the above-described formula (1).
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of an organic electroluminescent device according to an aspect of the present disclosure.
  • the organic electroluminescent device according to the present embodiment will be described with reference to FIG.
  • the organic electroluminescent element shown in FIG. 1 has a so-called bottom emission type element structure
  • the organic electroluminescent element according to one aspect of the present disclosure is limited to the bottom emission type element structure. is not. That is, the organic electroluminescent device according to one aspect of the present disclosure may be a top emission type device configuration, or may be another known device configuration.
  • the basic structure of the organic electroluminescent device 100 is as follows: substrate 1, anode 2, hole injection layer 3, charge generation layer 4, hole transport layer 5, light emitting layer 6, electron transport layer 7, electron injection layer 8, And the cathode 9 in this order.
  • some of these layers may be omitted, and conversely, other layers may be added.
  • the charge generation layer 4 may be omitted, and the hole transport layer 5 may be directly provided on the hole injection layer 3, and a hole blocking layer is provided between the light emitting layer 6 and the electron transport layer 7.
  • a single layer having a combination of functions of a plurality of layers such as an electron injection / transport layer having the function of the electron injection layer and the function of the electron transport layer in a single layer, It may be a configuration provided instead of
  • one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer have the formula (1)
  • the layer containing the fused ring compound represented by the formula (1) is a known material together with the fused ring compound. It may contain any one or more selected from the above. Further, among the hole injecting layer, the hole transporting layer, the light emitting layer, the electron transporting layer, and the electron injecting layer, a layer not containing the fused ring compound represented by the formula (1) is selected from known materials. It is preferable to contain any 1 or more types.
  • the anode 2 and the cathode 9 of the organic electroluminescent element 100 are connected to a power supply via an electrical conductor. By applying a voltage between the anode 2 and the cathode 9, the organic electroluminescent device 100 operates and emits light.
  • Holes are injected into the organic electroluminescent device 100 at the anode 2 and electrons are injected into the organic electroluminescent device 100 at the cathode 9.
  • the anode 2 is provided in contact with the substrate 1.
  • the electrode in contact with the substrate is conveniently referred to as the lower electrode.
  • the present embodiment is not limited to such a configuration, and instead of the anode, a cathode may be provided in contact with the substrate to be a lower electrode, and the substrate and the anode or the cathode are not in contact.
  • the anode or the cathode may be laminated on the substrate through another layer.
  • the light transmittance of the substrate may be appropriately selected according to the light emission direction (the direction in which light is extracted) of the intended organic electroluminescent element. That is, the substrate may or may not be light transmissive (or may be opaque to light having a predetermined wavelength). Whether or not the substrate has optical transparency can be confirmed, for example, by whether or not light derived from the light emission of the organic electroluminescent element is observed from the substrate in a desired amount or more.
  • a transparent glass plate or a plastic plate is generally employed as a substrate having light transmittance.
  • the substrate is not limited to these.
  • the substrate may, for example, be a composite structure comprising multiple material layers.
  • Anode 2 is provided on the substrate 1.
  • the anode is formed of a material that transmits or substantially transmits the light.
  • the transparent material used for the anode is not particularly limited.
  • ITO Indium-tin oxide
  • IZO Indium-zinc oxide
  • tin oxide aluminum ⁇
  • Doped type tin oxide magnesium-indium oxide, nickel-tungsten oxide, other metal oxides; metal nitrides such as gallium nitride; metal selenides such as zinc selenide; and metal sulfides such as zinc sulfide Etc.
  • the anode can be modified with plasma deposited fluorocarbons.
  • transmission characteristic of an anode is unimportant, and arbitrary transparent, opaque or reflective electroconductive materials can be used as a material of an anode. Therefore, gold, iridium, molybdenum, palladium, platinum etc. are mentioned as an example of the material used for the anode in this case.
  • Hole transportable layer (hole injection layer 3, hole transport layer 5) >> A hole transportable layer is provided between the anode 2 and the light emitting layer 6.
  • the hole transporting layer is a layer having a hole transporting property provided between the anode and the light emitting layer, and is a hole injecting layer, a hole transporting layer or the like. A plurality of hole transporting layers may be provided between the anode and the light emitting layer.
  • the hole injection layer or the hole transport layer has a function of transferring holes injected from the anode to the light emitting layer. By interposing the layers between the anode and the light emitting layer, holes are injected into the light emitting layer with a lower electric field.
  • the hole transport layer is composed of a single layer in the embodiment shown in FIG.
  • first hole transport layer on the anode side and a second hole transport layer on the cathode side It may be composed of
  • the first hole transport layer is a layer having an excellent hole transportability compared to the second hole transport layer
  • the second hole transport layer is the first positive hole transport layer. It is preferable that it is a layer excellent in electron stopping power compared with a hole transport layer.
  • the second hole transport layer may also be generally referred to as an electron blocking layer.
  • a hole transport layer (which may be the above-described function-separated first hole transport layer and second hole transport layer), a hole injection layer, and One or more selected from the group consisting of the light emitting layer is one including the fused ring compound represented by the formula (1).
  • the hole transport layer containing the fused ring compound represented by the formula (1), the hole injection layer, and the fused ring compound are any one or more selected from materials having known hole transportability. May be contained.
  • the positive hole transport layer which does not contain the condensed ring compound represented by Formula (1) a positive hole injection layer contains arbitrary 1 or more types selected from the material which has a well-known hole transportability. Is preferred.
  • the material having a known hole transportability is not particularly limited, but, for example, a triazole derivative, an oxadiazole derivative, an imidazole Derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative, amino substituted chalcone derivative, oxazole derivative, styrylanthracene derivative, fluorenone derivative, hydrazone derivative, stilbene derivative, silazane derivative, aniline based copolymer And conductive polymer oligomers, in particular thiophene oligomers.
  • porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds are preferable, and aromatic tertiary amine compounds are particularly preferable.
  • aromatic tertiary amine compound and the styrylamine compound include the above-mentioned known hole transporting materials.
  • Inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • the hole injection layer and the hole transport layer may have a single layer structure composed of one or more selected from the above materials and the fused ring compound represented by the formula (1), and a plurality of layers having the same composition or different compositions.
  • the laminated structure which consists of these may be sufficient.
  • a charge generation layer may be provided between the hole injection layer 3 and the hole transport layer 5.
  • the material of the charge generation layer is not particularly limited, and, for example, dipyrazino [2,3-f: 2 ′, 3′-h] quinoxaline-2,3,6,7,10,11-hexa And carbonitrile (HAT-CN).
  • a light emitting layer 6 is provided between the hole transport layer 5 and the electron transport layer 7 or a hole blocking layer described later.
  • the light emitting layer comprises a fluorescent light emitting material, or a thermally activated delayed fluorescent light emitting material, and light emission occurs as a result of recombination of electron-hole pairs in this region.
  • the light emitting layer may consist of a single material containing both small molecules and polymers, but more generally consists of a host material doped with a guest compound.
  • the emission mainly originates from the dopant and can have any color.
  • Examples of the host material include compounds having a biphenyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, a pyrenyl group, or an anthranyl group. More specifically, DPVBi (4,4'-bis (2,2-diphenylvinyl) -1,1'-biphenyl), BCzVBi (4,4'-bis (9-ethyl-3-carbazovinylene) 1, 1′-biphenyl), TBADN (2-tert-butyl-9,10-di (2-naphthyl) anthracene), ADN (9,10-di (2-naphthyl) anthracene), CBP (4,4′-bis) (Carbazol-9-yl) biphenyl), CDBP (4,4'-bis (carbazol-9-yl) -2,2'-dimethylbiphenyl), 2- (9-phenylcarbazol-3
  • the host material may be an electron transport material described later, a material having a hole transportability described above, another material that supports hole-electron recombination (support), or a combination of these materials.
  • the fluorescent dopant for example, anthracene, pyrene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylene pyran compound, thiopyran compound, polymethine compound, pyrilium, thiapyrilium compound, fluorene derivative, periflanthene derivative, indenoperylene Derivatives, bis (azinyl) amine boron compounds, bis (azinyl) methane compounds, carbostyril compounds, fused ring compounds represented by the formula (1) and the like can be mentioned.
  • the fluorescent dopant may be a combination of two or more selected from these.
  • phosphorescent dopants include organometallic complexes of transition metals such as iridium, platinum, palladium, and osmium.
  • the fluorescent dopant and the phosphorescent dopant include Alq 3 (tris (8-hydroxyquinoline) aluminum), DPAVBi (4,4′-bis [4- (di-p-tolylamino) styryl] biphenyl), perylene, bis [4 2- (4-n-Hexylphenyl) quinoline] (acetylacetonate) iridium (III), Ir (PPy) 3 (tris (2-phenylpyridine) iridium (III)), and FIrPic (bis (3,5-) Difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)), 1,6-pyrenediamine, N 1 , N 6 -bis ([1,1′-biphenyl] -3-) Yl) -N 1 , N 6 -bis (4-dibenzofuranyl)-and the like.
  • Alq 3 tris (8-
  • the light emitting layer may have a single layer structure, or may have a laminated structure including a plurality of layers having the same composition or different compositions.
  • Electron Transportable Layer (Electron Transport Layer 7, Electron Injection Layer 8)
  • the electron transport layer 7 is provided between the electron injection layer 8 and the light emitting layer 6.
  • the electron transport layer has a function of transferring electrons injected from the electron injection layer to the light emitting layer. By interposing the electron transport layer between the electron injection layer and the light emitting layer, electrons are injected into the light emitting layer with a lower electric field.
  • the electron transport layer is composed of a single layer in the embodiment shown in FIG. 1, it is composed of a plurality of layers, for example, the first electron transport layer on the anode side and the second electron transport layer on the cathode side. It is also good.
  • the second electron transport layer is a layer excellent in electron transport ability as compared with the first hole transport layer, and the first electron transport layer is compared with the second electron transport layer It is preferable that the layer has an excellent hole blocking ability.
  • the first electron transport layer may be generally referred to as a hole blocking layer.
  • the hole blocking layer can improve carrier balance.
  • the electron transport layer contains an electron transport material.
  • Electron transporting materials include lithium 8-hydroxyquinolinate (Liq), zinc bis (8-hydroxyquinolinate), bis (8-hydroxyquinolinate) copper, bis (8-hydroxyquinolinate) manganese, Tris (8-hydroxyquinolinate) aluminum, tris (2-methyl-8-hydroxyquinolinate) aluminum, tris (8-hydroxyquinolinate) gallium, bis (10-hydroxybenzo [h] quinolinate) beryllium, Bis (10-hydroxybenzo [h] quinolinate) zinc, bis (2-methyl-8-quinolinate) chlorogallium, bis (2-methyl-8-quinolinate) (o-cresolate) gallium, bis (2-methyl-8) -Quinolinate) -1-naphtholate aluminum or bis (2- 2- (3-quinolinate) -2-naphtholate gallium, 2- [3- (9-phenanthrenyl) -5- (3-pyridinyl) phenyl] -4,6-diphenyl-1
  • the electron injection layer can improve the electron injection property, and can improve the device characteristics (for example, luminous efficiency, constant voltage drive, or high durability).
  • Preferred compounds for the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrandioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, Antron etc. are mentioned.
  • the above-mentioned metal complexes alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, SiO 2 , AlO, SiN, SiN, SiON, AlON, GeO, Inorganic compounds such as various oxides such as LiO, LiON, TiO, TiON, TaO, TaON, TaN, C, nitrides, or oxynitrides can also be used.
  • a cathode 9 is provided on the electron injection layer 8.
  • a cathode can be formed from arbitrary electroconductive materials.
  • Preferred cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium , Lithium / aluminum mixtures, rare earth metals and the like.
  • the organic electroluminescent device 100 is selected from the group consisting of the hole injection layer 8, the hole transport layer 7, the light emitting layer 6, the electron transport layer 5, and the electron injection layer 3 as described above.
  • One or more of them include the fused ring compound represented by the formula (1).
  • the fused ring compound represented by the formula (1) is an organic electroluminescent device, particularly a phosphorescent organic electroluminescent device, as compared with the compound using dibenzo [g, p] chrysene described in Patent Documents 1 to 3.
  • organic electroluminescence excellent in driving voltage, light emitting efficiency, and / or element life depending on the layer used A device is obtained.
  • driving voltage and luminous efficiency can be obtained by replacing the dibenzo [g, p] chrysene compound in the conventional organic electroluminescent device with the fused ring compound represented by the formula (1). It is possible to provide an organic electroluminescent device excellent in device lifetime and / or device lifetime.
  • the material for an organic electroluminescent device according to still another aspect of the present disclosure is used as a hole transport material, adjacent light emission is obtained as compared with the case where conventional dibenzo [g, p] chrysene is used. It has the effect of preventing the leak of electrons from the layer. Therefore, according to the further another aspect of this indication, the material for organic electroluminescent elements which contributes to preparation of the organic electroluminescent element excellent in luminous efficiency can be provided.
  • the material for an organic electroluminescence device when used as a light emitting material, adjacent positive ones are used as compared with the case where conventional dibenzo [g, p] chrysene is used. It has the effect of more rapidly accepting holes from the hole transport layer and electrons from the electron transport layer. Therefore, according to the further another aspect of this indication, the material for organic electroluminescent elements which contributes to preparation of the organic electroluminescent element excellent in luminous efficiency can be provided.
  • the material for an organic electroluminescent device when used as an electron transport material, the material for electrons is used as compared to the case where conventional dibenzo [g, p] chrysene is used. It has the effect of improving the durability. Therefore, according to the further another aspect of this indication, the material for organic electroluminescent elements which contributes to preparation of the organic electroluminescent element excellent in element lifetime can be provided.
  • the fused ring compound according to one aspect of the present disclosure can be used as a material for an organic electroluminescent device, for example, a hole injection material, a hole transport material, a light emitting layer material, an electron transport material, and an electron injection material.
  • the organic electroluminescent device using the fused ring compound is excellent in driving voltage, luminous efficiency or device life.
  • the fused ring compound is not limited to use in organic electroluminescent devices, and can be applied to the field of organic photoconductive materials such as electrophotographic photosensitive members, photoelectric conversion devices, solar cells, and image sensors. is there.
  • a first aspect of the present disclosure is a fused ring compound represented by the formula (1):
  • X is A furan ring, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring which may have a substituent, or
  • One of these rings represents a ring fused to a substituted or unsubstituted benzene ring;
  • Each of A 1 to A 3 independently represents a charge transporting group;
  • k1 to k3 are each independently an integer of 0 or more and 4 or less; When k1 to k3 are integers of 2 or more, the plurality of A 1 to A 3 may be the same or different.
  • the second aspect of the present disclosure is A 1 to A 3 are each independently Deuterium atom, fluorine atom, bromine atom, iodine atom, cyano group, nitro group, hydroxyl group, thiol group, An aromatic hydrocarbon group having 6 to 30 carbon atoms, which may have a substituent, 6 to 30 carbon atoms, a linkage, or a fused ring, A C3-C36 monocyclic, linked, or fused heteroaromatic group which may have a substituent, Phosphine oxide group which may have a substituent, Silyl group which may have a substituent, A boronyl group optionally having a saturated hydrocarbon group of 2 to 10 carbon atoms, A linear or branched alkyl group having 1 to 18 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, or
  • the fused ring compound according to the first aspect is a group represented by the above formula (2) or the above (2 ′):
  • a third aspect of the present disclosure is the fused ring compound according to the first or second aspect, wherein the total of k1 to k3 is 3 or less.
  • a fourth aspect of the present disclosure is the fused ring compound according to any one of the first to third, which is a fused ring compound represented by any one of the formulas (3) to (22).
  • a 1 to A 3 and k 1 to k 3 have the same definitions as A 1 to A 3 and k 1 to k 3 in the formula (1), respectively;
  • Each of A 4 and A 5 independently represents a charge transporting group; k4 is an integer of 0 or more and 4 or less; k5 is an integer of 0 or more and 2 or less; When k1 to k5 are integers of 2 or more, the plurality of A 1 to A 5 may be the same or different.
  • aqueous layer and the organic layer are separated, and the obtained organic layer is dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain a viscous liquid containing 4- (2-bromo-4-chlorophenyl) dibenzothiophene. I got .6g. Next, 22.6 g of the viscous liquid, 12.4 g (55.9 mmol) of 9-phenanthreneboronic acid, and 464 mg of tetrakis (triphenylphosphine) palladium (0) were added to a 300 mL two-necked round bottom flask under a nitrogen stream.
  • the precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 985 mg (1.60 mmol) of a yellow powder of compound (10B-154) (yield 88.9%, HPLC purity 98.8%) .
  • the sublimation temperature of the compound (10B-154) was 350 ° C., and it was confirmed that the compound (10B-154) of the sublimation product was in the form of powder.
  • the precipitated solid was collected by filtration and washed with pure water and methanol.
  • the yellow powder of compound (11A-154) was isolated by recrystallization (o-xylene / methanol) of the residue to isolate 652 mg (1.00 mmol) of a yellow powder (yield 73.7%, HPLC purity 99.0%) .
  • the sublimation temperature of the compound (11A-154) was 360 ° C., and it was confirmed that the compound of sublimate (11A-154) was in the form of powder.
  • the precipitated solid was collected by filtration and washed with pure water and methanol. 0.90 g (1.39 mmol) of yellow powder of compound (11B-154) was isolated by recrystallization (o-xylene / methanol) of the residue (yield 69.6%, HPLC purity 96.6) %).
  • the sublimation temperature of the compound (11B-154) was 360 ° C., and it was confirmed that the compound (11B-154) of the sublimation product was in the form of powder.
  • the precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 1.46 g (2.20 mmol) of a yellow powder of compound (12B-154) (yield 85.1%, HPLC purity 99.4). %).
  • the sublimation temperature of the compound (12B-154) was 355 ° C., and it was confirmed that the compound (12B-154) of the sublimate was powdery.
  • the precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 0.83 g (1.27 mmol) of a yellow powder of compound (15B-154) (yield 73.39%, HPLC purity 99.9). %).
  • the sublimation temperature of the compound (15B-154) was 355 ° C., and it was confirmed that the compound (15B-154) of the sublimation product was in the form of powder.
  • the precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 1.04 g (1.56 mmol) of a yellow powder of compound (16B-154) (yield 83.7%, HPLC purity 99.8). %).
  • the sublimation temperature of the compound (16B-154) was 350 ° C., and it was confirmed that the compound (16B-154) of the sublimate was powdery.
  • the precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (toluene / methanol) to isolate 1.86 g (3.58 mmol) of a pale yellow powder of compound (7B-25) (yield 89.0%, HPLC purity 98.5%) .
  • the sublimation temperature of the compound (7B-25) was 315 ° C., and it was confirmed that the compound of the sublimation product (7B-25) was powdery.
  • the aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure.
  • the residue was recrystallized (o-xylene / methanol) to isolate 2.49 g (3.63 mmol) of a pale yellow powder of compound (7B-170) (yield 91%, HPLC purity 93.5%) .
  • the sublimation temperature of the compound (7B-170) was 350 ° C., and it was confirmed that the compound (7B-170) of the sublimate was glassy.
  • the aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (toluene / hexane (1/1 (v / v))) to isolate 0.85 g (1.20 mmol) of a pale yellow powder of compound (7B-240). 60.1%, HPLC purity 97.4%).
  • the sublimation temperature of the compound (7B-240) was 350 ° C., and it was confirmed that the compound (7B-240) of the sublimate was in the form of powder.
  • the aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
  • the residue was recrystallized (o-xylene / methanol) to isolate 1.46 g (1.98 mmol) of a yellow powder of compound (11A-170) (yield 79.2%, HPLC purity 99.6%) ).
  • the sublimation temperature of the compound (11A-170) was 360 ° C., and it was confirmed that the compound of sublimate (11A-170) was glassy.
  • Recrystallization Example 1 After dissolving 10 mg of a compound (4iF-1) having an HPLC purity of 92.6% in 2 mL of chloroform, 1 mL of the solution was withdrawn with a syringe and charged into a 5 mL sample tube through filter filtration. Next, 2 mL of methanol was added to the filtrate, and the mixture was stirred for 10 seconds to confirm that no precipitation had occurred. Thereafter, the sample tube was attached with a lid and sealed. After 24 hours, the presence or absence of precipitation of the compound (4iF-1) was confirmed in the solution in the sealed sample tube. The results are shown in Table 1.
  • the fused ring compound according to the present embodiment is high in crystallinity, and is advantageous for the production process using recrystallization.
  • Comparative Example 2 3- (4,6-diphenyl-1,3,5-triazyl) dibenzo [g, p] chrysene (a compound disclosed in Patent Document 3) represented by the following formula (X2) was synthesized.
  • the sublimation temperature of the compound (X2) was 310 ° C., and it was confirmed that the compound (X2) of the sublimation product was in the form of powder.
  • Comparative Example 3 3- (1-biphenyl-4-yl) dibenzo [g, p] chrysene (a compound disclosed in Patent Document 2) represented by the following formula (X3) was synthesized.
  • the sublimation temperature of the compound (X3) was 310 ° C., and it was confirmed that the compound (X3) of the sublimate was glassy.
  • Comparative Example 4 3- (Diphenylamino) dibenzo [g, p] chrysene (a compound disclosed in Patent Document 1) represented by the following formula (X4) was synthesized.
  • the sublimation temperature of the compound (X4) was 310 ° C., and it was confirmed that the compound (X4) of the sublimate was glassy.
  • the fused ring compound according to this embodiment has a high glass transition temperature and a triplet excitation level.
  • FIG. 2 is a schematic cross-sectional view showing an example of another laminated configuration of the electroluminescent device according to an aspect of the present disclosure.
  • the structural formula of the compound used for preparation of an organic electroluminescent element and its abbreviation are as follows.
  • a glass substrate with an ITO transparent electrode in which an indium tin oxide (ITO) film (film thickness of 110 nm) having a width of 2 mm was patterned in stripes was prepared. Then, the substrate was washed with isopropyl alcohol and then subjected to surface treatment by ozone ultraviolet ray washing.
  • ITO indium tin oxide
  • Each layer was vacuum-deposited by a vacuum deposition method on the surface-treated substrate after cleaning to form each layer in layers.
  • Each organic material and metal material were deposited by resistance heating.
  • the glass substrate was introduced into a vacuum deposition tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa. Then, in accordance with the film forming conditions of each layer, they were manufactured in the following order.
  • HTL-1 was deposited to a thickness of 10 nm at a rate of 0.15 nm / sec to prepare a first hole transport layer.
  • HTL-2 was deposited to a thickness of 10 nm at a rate of 0.15 nm / sec to prepare a second hole transport layer (electron blocking layer).
  • the second hole transport layer is a layer that also functions as an electron blocking layer that blocks the inflow of electrons.
  • EML-1 and EML-2 were deposited to a thickness of 25 nm at a ratio of 5:95 (mass ratio) to prepare a light emitting layer.
  • the deposition rate was 0.18 nm / sec.
  • ETL-1 was deposited to a thickness of 5 nm at a rate of 0.15 nm / sec to prepare a first electron transport layer (hole blocking layer).
  • the first electron transport layer is a layer that also functions as a hole blocking layer that blocks the flow of holes.
  • An electron injecting layer was formed by depositing Liq at a rate of 0.01 nm / sec for 1 nm.
  • a metal mask was disposed to be orthogonal to the ITO stripes on the substrate, and a cathode (cathode layer) was formed.
  • the cathode was formed into a two-layer structure by depositing silver / magnesium (mass ratio 1/10) and silver in this order at 80 nm and 20 nm, respectively.
  • the deposition rate of silver / magnesium was 0.5 nm / sec, and the deposition rate of silver was 0.2 nm / sec.
  • an organic electroluminescent device having a light emitting area of 4 mm 2 having a laminated structure as shown in FIG. 2 was produced.
  • each film thickness was measured by a stylus type film thickness measurement meter (DEKTAK manufactured by Bruker).
  • this element was sealed in a glove box under a nitrogen atmosphere with an oxygen and water concentration of 1 ppm or less.
  • the sealing was performed using a glass sealing cap and a film formation substrate (element) using a bisphenol F-type liquid epoxy resin (manufactured by Nagase ChemteX Corp.).
  • a direct current was applied to the organic electroluminescent device produced as described above, and the light emission characteristic was evaluated using a luminance meter (LUMINANCE METER BM-9 manufactured by TOPCON).
  • V voltage
  • cd / A current efficiency
  • the device life (h) was measured by measuring the luminance decay time during continuous lighting when the prepared organic electroluminescent device was driven at an initial luminance of 1000 cd / m 2 , and it was necessary to reduce the luminance (cd / m 2 ) by 5%. The time taken was measured.
  • the obtained measurement results are shown in Table 2.
  • the voltage, current efficiency, and device life are relative values with the result in device comparison example 1 described later as a reference value (100).
  • Element Example 7 A device example-1 is the same as the device example-1, except that the compound (11A-25) is used instead of the EML-2, and ETL-2 is used instead of the compound (10B-154). An organic electroluminescent device was produced and evaluated. The obtained measurement results are shown in Table 6. The voltage, current efficiency, and device life are relative values with the result in device comparison example 2 described later as a reference value (100).
  • Element Example 11 The steps from (preparation of substrate 1 and anode 2) to (preparation of first hole transport layer 51) were conducted in the same manner as in Example 1.
  • Second Hole Transport Layer 52 The compound (7B-25) was deposited to a thickness of 40 nm at a rate of 0.15 nm / sec to prepare a second hole transport layer (electron blocking layer).
  • a light emitting layer was formed by depositing Hex-Ir (piq) 2 (acac) and EML-3 at a ratio of 8: 92 (mass ratio) to a thickness of 35 nm.
  • the deposition rate was 0.18 nm / sec.
  • ETL-2 and Liq were deposited to a thickness of 30 nm at a ratio of 50:50 (mass ratio) to prepare a first electron transport layer.
  • the deposition rate was 0.15 nm / sec.
  • Element Comparison Example 3 An organic electroluminescent device was produced and evaluated in the same manner as in Device Example 11 except that the compound (X3) was used instead of the compound (7B-25) in Device Example 11. The obtained measurement results are shown in Table 7.
  • Element Example 12 An organic electroluminescent device was produced and evaluated in the same manner as in Device Example 11 except that the compound (7B-170) was used instead of the compound (7B-25) in the device example-11. The obtained measurement results are shown in Table 8. The voltage and current efficiency are relative values with the result in the element comparative example 4 described later as a reference value (100).
  • Example 13 The steps from (Production of Substrate 1, Anode 2) to (Production of Charge Generating Layer 4) were carried out in the same manner as in Example 1.
  • HTL-1 was deposited to a thickness of 85 nm at a rate of 0.15 nm / sec to prepare a first hole transport layer.
  • Second Hole Transport Layer 52 The compound (7B-233) was deposited to a thickness of 60 nm at a rate of 0.15 nm / sec to prepare a second hole transport layer (electron blocking layer).
  • a light emitting layer was formed by depositing Hex-Ir (piq) 2 (acac) and EML-4 at a ratio of 2:98 (mass ratio) to a thickness of 35 nm.
  • the deposition rate was 0.18 nm / sec.
  • ETL-2 and Liq were deposited to a thickness of 30 nm at a ratio of 50:50 (mass ratio) to prepare a first electron transport layer.
  • the deposition rate was 0.15 nm / sec.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Led Devices (AREA)

Abstract

Provided is a fused ring compound which exhibits excellent charge transport ability. A fused ring compound which is represented by formula (1) and has a specific structure.

Description

縮合環化合物Fused ring compound
 本開示は、縮合環化合物に関する。 The present disclosure relates to fused ring compounds.
 有機エレクトロルミネッセンス素子用の材料として、ジベンゾ[g,p]クリセン化合物が使用されることがあるが、該ジベンゾ[g,p]クリセン化合物の報告例は少なく、その研究は十分になされていない。 Although a dibenzo [g, p] chrysene compound may be used as a material for an organic electroluminescent element, there are few reported examples of the dibenzo [g, p] chrysene compound, and the study has not been sufficiently conducted.
 特許文献1は、種々のモノアミン誘導体を開示しており、その中の1つとしてジフェニルアミノ基で置換されたジベンゾ[g,p]クリセン化合物を開示している。さらに、特許文献2及び特許文献3は、それぞれ、芳香族炭化水素基、及びトリアジル基で置換されたジベンゾ[g,p]クリセン化合物を開示している。 Patent Document 1 discloses various monoamine derivatives, and a dibenzo [g, p] chrysene compound substituted with a diphenylamino group as one of them. Furthermore, Patent Document 2 and Patent Document 3 disclose dibenzo [g, p] chrysene compounds substituted with an aromatic hydrocarbon group and a triazyl group, respectively.
国際公開第2012/018120号International Publication No. 2012/018120 日本国特許第5685832号明細書Japanese Patent No. 5685832 Specification 米国特許出願公開第2015/0318486号US Patent Application Publication No. 2015/0318486
 上記ジベンゾ[g,p]クリセン化合物について、本発明者等はさらなる検討を重ねた。その結果、特許文献1~3にかかるジベンゾ[g,p]クリセン化合物は、有機エレクトロルミネッセンス用材料として、さらなる改善の余地があることがわかった。
 そこで、本開示の一態様は、優れた駆動電圧、発光効率、および/または素子寿命を発揮する縮合環化合物を提供することに向けられている。
The present inventors conducted further studies on the above dibenzo [g, p] chrysene compound. As a result, it was found that the dibenzo [g, p] chrysene compounds according to Patent Documents 1 to 3 have room for further improvement as materials for organic electroluminescence.
Thus, one aspect of the present disclosure is directed to providing a fused ring compound that exhibits excellent driving voltage, luminous efficiency, and / or device life.
 本開示の一態様にかかる縮合環化合物は、式(1)で表される縮合環化合物である: The fused ring compound according to one aspect of the present disclosure is a fused ring compound represented by Formula (1):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、
  Xは、
   置換基を有していてもよい、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、または、
   これらの環の1つが、置換もしくは無置換のベンゼン環と縮環した環を表し;
  A~Aは、それぞれ独立して、電荷輸送性基を表し;
  k1~k3は、それぞれ独立して、0以上4以下の整数であり;
  k1~k3が2以上の整数である場合、複数のA~Aは、同一であっても異なっていてもよい。
During the ceremony
X is
A furan ring, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring which may have a substituent, or
One of these rings represents a ring fused to a substituted or unsubstituted benzene ring;
Each of A 1 to A 3 independently represents a charge transporting group;
k1 to k3 are each independently an integer of 0 or more and 4 or less;
When k1 to k3 are integers of 2 or more, the plurality of A 1 to A 3 may be the same or different.
 本開示の一態様によれば、優れた駆動電圧、発光効率、および/または素子寿命を発揮する縮合環化合物を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a fused ring compound that exhibits excellent driving voltage, luminous efficiency, and / or device life.
本開示の一態様にかかる有機エレクトロルミネッセンス素子の積層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated structure of the organic electroluminescent element concerning one aspect of this indication. 本開示の一態様にかかる有機エレクトロルミネッセンス素子の他の積層構成の例(素子実施例-1の構成)を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing an example of another laminated configuration of the organic electroluminescent device according to an embodiment of the present disclosure (a configuration of Device Example 1).
 特許文献1~3について本発明者等がさらなる検討を重ねたところ、以下の知見を得た。
 特許文献1にかかるアリールアミノジベンゾ[g,p]クリセンは、ガラス転移温度が低く、素子寿命に劣る。また、特許文献1にかかるアリールアミノジベンゾ[g,p]クリセンを正孔輸送材料として用いると、駆動電圧は充分な性能を発揮するものの、低い三重項励起準位、および/または発光層からの電子阻止能が低いという理由により、電流効率の面で劣っており、改善が必要であることがわかった。
 特許文献2にかかるビフェニル基を有するジベンゾ[g,p]クリセンを正孔輸送材料として用いると、駆動電圧は充分な性能を発揮するものの、電流効率および素子寿命の面で劣っており、改善が必要であることがわかった。また、特許文献2にかかるビフェニル基を有するジベンゾ[g,p]クリセンを発光層の材料として用いると、電流効率は充分な性能を発揮するものの、駆動電圧の面で改善が必要であることがわかった。
 特許文献3にかかるトリアジル基を有するジベンゾ[g,p]クリセンを電子輸送材料として用いると、駆動電圧、電流効率は充分な性能を発揮するものの、素子寿命の面で劣っており、改善が必要であることがわかった。
As the inventors of the present invention conducted further studies on Patent Documents 1 to 3, the following findings were obtained.
The arylaminodibenzo [g, p] chrysene according to Patent Document 1 has a low glass transition temperature and a poor device life. In addition, when arylaminodibenzo [g, p] chrysene according to Patent Document 1 is used as a hole transport material, the drive voltage exhibits sufficient performance but a low triplet excitation level and / or from a light emitting layer. It was found that the current efficiency is inferior due to the low electron stopping power, and an improvement is necessary.
When dibenzo [g, p] chrysene having a biphenyl group according to Patent Document 2 is used as a hole transport material, the drive voltage exhibits sufficient performance but is inferior in terms of current efficiency and device life, and the improvement is It turned out that it was necessary. In addition, when dibenzo [g, p] chrysene having a biphenyl group according to Patent Document 2 is used as a material of the light emitting layer, although current efficiency exhibits sufficient performance, improvement is necessary in terms of driving voltage. all right.
When dibenzo [g, p] chrysene having a triazyl group according to Patent Document 3 is used as an electron transport material, although drive voltage and current efficiency exhibit sufficient performance, they are inferior in terms of element life and need improvement It turned out that it was.
 本発明者等は特許文献1~3における種々の問題について検討を重ねた結果、特定の骨格を有する縮合環化合物であれば、当該特定の骨格に由来してかかる問題を解決し得ることを見出した。本開示の一態様にかかる縮合環化合物は、ジベンゾ[g,p]クリセンの骨格における1つのベンゼン環を、フラン系もしくはチオフェン系の環などで置き換えた骨格である。この骨格は、ジベンゾ[g,p]クリセンのπ共役系を拡張させた効果により、ジベンゾ[g,p]クリセンよりも多くのπ電子系が電荷輸送に寄与するため、電子輸送材料、正孔輸送材料、発光材料等の種々の材料に適用可能であると本発明者等は推測している。すなわち、本開示の一態様にかかる縮合環化合物は、特定の骨格を有し、この骨格に由来して、有機エレクトロルミネッセンス素子を構成する各層に求められる種々の効果を発揮していると推察される。 As a result of repeating studies on various problems in Patent Documents 1 to 3, the present inventors have found that a condensed ring compound having a specific skeleton can solve the problem derived from the specific skeleton. The The fused ring compound according to an aspect of the present disclosure is a skeleton in which one benzene ring in the skeleton of dibenzo [g, p] chrysene is replaced with a furan-based or thiophene-based ring or the like. This skeleton has the effect of expanding the π conjugated system of dibenzo [g, p] chrysene, and since more π electron systems than dibenzo [g, p] chrysene contribute to charge transport, the electron transport material, hole The present inventors speculate that the present invention is applicable to various materials such as transport materials and light emitting materials. That is, it is inferred that the fused ring compound according to one aspect of the present disclosure has a specific skeleton, and is derived from this skeleton to exert various effects required for each layer constituting the organic electroluminescent element. Ru.
 以下、本開示の一態様にかかる縮合環化合物をさらに詳細に説明する。 Hereinafter, the fused ring compound according to one aspect of the present disclosure will be described in more detail.
<縮合環化合物>
 本開示の一態様にかかる縮合環化合物は、式(1)で表される縮合環化合物である:
<Fused ring compound>
The fused ring compound according to one aspect of the present disclosure is a fused ring compound represented by Formula (1):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中、
  Xは、
   置換基を有していてもよい、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、または、
   これらの環の1つが、置換もしくは無置換のベンゼン環と縮環した環を表し;
  A~Aは、それぞれ独立して、電荷輸送性基を表し;
  k1~k3は、それぞれ独立して、0以上4以下の整数であり;
  k1~k3が2以上の整数である場合、複数のA~Aは、同一であっても異なっていてもよい。
During the ceremony
X is
A furan ring, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring which may have a substituent, or
One of these rings represents a ring fused to a substituted or unsubstituted benzene ring;
Each of A 1 to A 3 independently represents a charge transporting group;
k1 to k3 are each independently an integer of 0 or more and 4 or less;
When k1 to k3 are integers of 2 or more, the plurality of A 1 to A 3 may be the same or different.
 式(1)で表される縮合環化合物におけるA~A、k1~k3、Xの定義はつぎのとおりである。 The definitions of A 1 to A 3 , k 1 to k 3 and X in the fused ring compound represented by the formula (1) are as follows.
<<A~Aについて>>
 A~Aは、それぞれ独立して、電荷輸送性基を表す。電荷輸送性基とは、電荷を輸送する機能を有する置換基である。電荷とは、正孔、電子、またはその両方である。
<< About A 1 to A 3 >>
Each of A 1 to A 3 independently represents a charge transporting group. The charge transporting group is a substituent having a function of transporting a charge. The charge is a hole, an electron, or both.
 前記電荷輸送性基としては、それぞれ独立して、
  (a-1)重水素原子、(a-2)フッ素原子、臭素原子、ヨウ素原子、(a-3)トリフルオロメチル基、(a-4)ヘキサフルオロエチル基、(a-5)シアノ基、(a-6)ニトロ基、(a-7)ヒドロキシル基、(a-8)チオール基、
  (a-9)置換基を有していてもよい炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基、
  (a-10)置換基を有していてもよい炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基、
  (a-11)置換基を有していてもよいホスフィンオキシド基、
  (a-12)置換基を有していてもよいシリル基、
  (a-13)炭素数2~10の飽和炭化水素基を有していてもよいボロニル基、
  (a-14)炭素数1~18の直鎖もしくは分岐のアルキル基、
  (a-15)炭素数1~18の直鎖もしくは分岐のアルコキシ基、または、
  (a-16)式(2)もしくは(2’)で表される基、であることが好ましい:
As the charge transporting group, each independently,
(A-1) deuterium atom, (a-2) fluorine atom, bromine atom, iodine atom, (a-3) trifluoromethyl group, (a-4) hexafluoroethyl group, (a-5) cyano group (A-6) nitro group, (a-7) hydroxyl group, (a-8) thiol group,
(A-9) an optionally substituted monocyclic hydrocarbon ring having 6 to 30 carbon atoms, a linked or fused aromatic hydrocarbon group,
(A-10) a C3-C36 monocyclic, linked or fused heteroaromatic group which may have a substituent,
(A-11) phosphine oxide group which may have a substituent,
(A-12) silyl group which may have a substituent,
(A-13) a boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms,
(A-14) a linear or branched alkyl group having 1 to 18 carbon atoms,
(A-15) a linear or branched alkoxy group having 1 to 18 carbon atoms, or
(A-16) a group represented by the formula (2) or (2 ′):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、
  R~Rは、それぞれ独立して、
   (r-1)水素原子、(r-2)重水素原子、
   (r-3)置換基を有していてもよい炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基、
   (r-4)置換基を有していてもよい炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基、または、
   (r-5)炭素数1~18の直鎖若しくは分岐のアルキル基を表し;
  Yは、それぞれ独立して、
   メチル基もしくはフェニル基で置換されていてもよいフェニレン基、
   メチル基もしくはフェニル基で置換されていてもよいナフチレン基、
   メチル基もしくはフェニル基で置換されていてもよいビフェニレン基、または、
   単結合を表し;
  nは、1または2を表し、
   Yが単結合の場合、nは1であり、
   Yが単結合ではない場合、nは1または2であり;
  nが2の場合、複数のR~Rは、同一であっても異なっていてもよい。
During the ceremony
R 1 to R 3 are each independently
(R-1) hydrogen atom, (r-2) deuterium atom,
(R-3) an optionally substituted monocyclic hydrocarbon ring having 6 to 30 carbon atoms, a linked or fused aromatic hydrocarbon group,
(R-4) a C3-C36 monocyclic, linked, or fused heteroaromatic group which may have a substituent, or
(R-5) represents a linear or branched alkyl group having 1 to 18 carbon atoms;
Y is each independently
A phenylene group which may be substituted by a methyl group or a phenyl group,
Naphthylene group which may be substituted by methyl group or phenyl group,
A biphenylene group which may be substituted by a methyl group or a phenyl group, or
Represents a single bond;
n represents 1 or 2;
When Y is a single bond, n is 1 and
When Y is not a single bond, n is 1 or 2;
When n is 2, the plurality of R 1 to R 2 may be the same or different.
 A~Aが置換基を有する場合、A~Aは、1つの置換基で置換されていてもよく、2つ以上の置換基で置換されていてもよい。 When A 1 to A 3 have a substituent, A 1 to A 3 may be substituted by one substituent or may be substituted by two or more substituents.
(a-9):炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基
 式(1)において、炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基としては、特に限定されるものではないが、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、フルオレニル基、アントリル基、フェナントリル基、ベンゾフルオレニル基、トリフェニレニル基、スピロビフルオレニル基、ジフェニルフルオレニル基、およびジベンゾ[g,p]クリセニル基、等が挙げられる。また、炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基が、炭素数6~18の単環、連結、若しくは縮環の芳香族炭化水素基であることが好ましい。
(A-9): monocyclic, linked, or fused aromatic hydrocarbon group having 6 to 30 carbon atoms In Formula (1), monocyclic, linked, or fused aromatic hydrocarbon of 6 to 30 carbon atoms The hydrogen group is not particularly limited, and examples thereof include phenyl group, biphenylyl group, terphenylyl group, naphthyl group, fluorenyl group, anthryl group, phenanthryl group, benzofluorenyl group, triphenylenyl group, spirobifluorene. Nyl group, diphenylfluorenyl group, and dibenzo [g, p] chrysenyl group, and the like. In addition, it is preferable that the C6 to C30 monocyclic, linked or fused aromatic hydrocarbon group is a C6 to C18 monocyclic, linked or fused aromatic hydrocarbon group.
 なお、(a-9)の芳香族炭化水素基が置換基を有する場合、該置換基は、それぞれ独立して、フッ素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、ヒドロキシル基、チオール基、置換基を有していてもよいホスフィンオキシド基、置換基を有していてもよいシリル基、炭素数2~10の飽和炭化水素基を有していてもよいボロニル基、炭素数1~18の直鎖もしくは分岐のアルキル基、または、炭素数1~18の直鎖もしくは分岐のアルコキシ基であることが好ましい。 When the aromatic hydrocarbon group of (a-9) has a substituent, each of the substituents is independently a fluorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group or a thiol group. A phosphine oxide group which may have a substituent, a silyl group which may have a substituent, a boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms, It is preferable that it is an 18 linear or branched alkyl group, or a linear or branched alkoxy group having 1 to 18 carbon atoms.
 ホスフィンオキシド基としては、無置換のホスフィンオキシド基、置換基を有するホスフィンオキシド基が挙げられる。置換基を有するホスフィンオキシド基であることが好ましい。
 置換基を有するホスフィンオキシド基としては、炭素数6~18の単環、連結、若しくは縮環の芳香族炭化水素基、または、縮環のヘテロ芳香族基を有するホスフィンオキシド基が好ましい。具体的には、特に限定されるものではないが、例えば、ジフェニルホスフィンオキシド等、2つのアリール基で置換された基が挙げられる。
As a phosphine oxide group, an unsubstituted phosphine oxide group and a phosphine oxide group having a substituent can be mentioned. It is preferably a phosphine oxide group having a substituent.
The phosphine oxide group having a substituent is preferably a monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 18 carbon atoms, or a phosphine oxide group having a condensed heteroaromatic group. Although it does not specifically limit specifically, For example, the group substituted by two aryl groups, such as diphenyl phosphine oxide, is mentioned.
 シリル基としては、無置換のシリル基、置換基を有するシリル基が挙げられる。置換基を有するシリル基であることが好ましい。
 置換基を有するシリル基としては、炭素数6~18の単環、連結、若しくは縮環の芳香族炭化水素基、または、縮環のヘテロ芳香族基を有するシリル基が好ましい。具体的には、特に限定されるものではないが、例えば、トリフェニルシリル基等、3つのアリール基で置換された基が挙げられる。
Examples of the silyl group include unsubstituted silyl groups and silyl groups having a substituent. It is preferable that it is a silyl group having a substituent.
The silyl group having a substituent is preferably a monocyclic, linked, or fused aromatic hydrocarbon group having 6 to 18 carbon atoms, or a silyl group having a fused heteroaromatic group. Although it does not specifically limit specifically, For example, the group substituted by three aryl groups, such as a triphenyl silyl group, is mentioned.
 炭素数2~10の飽和炭化水素基を有していてもよいボロニル基としては、特に限定されるものではないが、例えば、ジヒドロキシボリル基(-B(OH))、4,4,5,5-テトラメチル-[1,3,2]-ジオキサボロラニル基、5,5-ジメチル-[1,3,2]-ジオキサボリナン基等が挙げられる。 The boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms is not particularly limited, and examples thereof include dihydroxyboryl group (-B (OH) 2 ), 4, 4, 5 And 5-tetramethyl- [1,3,2] -dioxabororanyl group, 5,5-dimethyl- [1,3,2] -dioxaborinane group and the like.
 炭素数1~18の直鎖もしくは分岐のアルキル基としては、特に限定されるものではないが、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、n-ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基、およびオクタデシル基等が挙げられる。 The linear or branched alkyl group having 1 to 18 carbon atoms is not particularly limited, and examples thereof include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec- Examples thereof include butyl, tert-butyl, pentyl, n-hexyl, cyclohexyl, octyl, decyl, dodecyl and octadecyl groups.
 炭素数1~18の直鎖もしくは分岐のアルコキシ基としては、特に限定されるものではないが、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、およびオクタデシルオキシ基等が挙げられる。 The linear or branched alkoxy group having 1 to 18 carbon atoms is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, and a sec- Examples include butoxy, tert-butoxy, pentyloxy, n-hexyloxy, cyclohexyloxy, octyloxy, decyloxy, dodecyloxy, octadecyloxy and the like.
(a-10):炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基
 式(1)において、炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基としては、特に限定されるものではないが、酸素原子、窒素原子、及び硫黄原子からなる群より選ばれる少なくとも1つの原子を芳香環上に含有する炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基である。該ヘテロ芳香族基としては、特に限定されるものではないが、例えば、ピロリル基、チエニル基、フリル基、イミダゾリル基、ピラゾリル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、ピリジル基、フェニルピリジル基、ピリジルフェニル基、ピリミジル基、ピラジル基、1,3,5-トリアジル基、1,3,5-トリアジルフェニル基、1,3,5-トリアジルビフェニリル基、4,6-ジフェニル-1,3,5-トリアジル基、インドリル基、ベンゾチエニル基、ベンゾフラニル基、ベンゾイミダゾリル基、インダゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基、2,1,3-ベンゾチアジアゾリル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、2,1,3-ベンゾオキサジアゾリル基、キノリル基、イソキノリル基、キノキサリル基、キナゾリル基、カルバゾリル基、9-フェニルカルバゾリル基、9-(4-ビフェニリル)カルバゾリル基、ジベンゾチエニル基、ジベンゾフラニル基、フェノキサジニル基、フェノチアジニル基、フェナジン基、およびチアントレニル基等が挙げられる。
 なお、(a-10)のヘテロ芳香族基が置換基を有する場合、該置換基は、それぞれ独立して、シアノ基、フッ素原子、トリフルオロメチル基、炭素数1~18の直鎖もしくは分岐のアルキル基、または、炭素数1~18の直鎖もしくは分岐のアルコキシ基であることが好ましい。炭素数1~18の直鎖もしくは分岐のアルキル基としては、特に限定されるものではないが、前述した(a-9)で例示した炭素数1~18の直鎖もしくは分岐のアルキル基と同じものが挙げられる。炭素数1~18の直鎖もしくは分岐のアルコキシ基としては、特に限定されるものではないが、前述した(a-9)で例示した炭素数1~18の直鎖もしくは分岐のアルコキシ基と同じものが挙げられる。
(A-10): C3-C36 monocyclic, linked or fused heteroaromatic group In the formula (1), C3-C36 monocyclic, linked or fused heteroaromatic group Is not particularly limited, and is a single ring having 3 to 36 carbon atoms, which contains at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom on an aromatic ring, a linkage, or It is a fused heteroaromatic group. The heteroaromatic group is not particularly limited, and examples thereof include pyrrolyl group, thienyl group, furyl group, imidazolyl group, pyrazolyl group, thiazolyl group, isothiazolyl group, oxazolyl group, isoxazolyl group, pyridyl group, and phenyl. Pyridyl, pyridylphenyl, pyrimidyl, pyrazyl, 1,3,5-triazyl, 1,3,5-triazylphenyl, 1,3,5-triazylbiphenylyl, 4,6-diphenyl -1,3,5-Triazyl group, indolyl group, benzothienyl group, benzofuranyl group, benzoimidazolyl group, indazolyl group, benzothiazolyl group, benzoisothiazolyl group, 2,1,3-benzothiadiazolyl group, benzoxazolate Group, benzisoxazolyl group, 2,1,3-benzoxadiazolyl Group, quinolyl group, isoquinolyl group, quinoxalyl group, quinazolyl group, carbazolyl group, 9-phenylcarbazolyl group, 9- (4-biphenylyl) carbazolyl group, dibenzothienyl group, dibenzofuranyl group, phenoxazinyl group, phenothiazinyl group , Phenazine group, tianthrenyl group and the like.
When the heteroaromatic group of (a-10) has a substituent, each of the substituents is independently a cyano group, a fluorine atom, a trifluoromethyl group, a linear or branched chain having 1 to 18 carbon atoms. It is preferable that it is an alkyl group of the above, or a linear or branched alkoxy group having 1 to 18 carbon atoms. The linear or branched alkyl group having 1 to 18 carbon atoms is not particularly limited, but is the same as the linear or branched alkyl group having 1 to 18 carbon atoms exemplified in (a-9) described above The thing is mentioned. The linear or branched alkoxy group having 1 to 18 carbon atoms is not particularly limited, but is the same as the linear or branched alkoxy group having 1 to 18 carbon atoms exemplified in (a-9) described above The thing is mentioned.
(a-11):ホスフィンオキシド基
 式(1)において、ホスフィンオキシド基としては、無置換のホスフィンオキシド基、置換基を有するホスフィンオキシド基が挙げられる。置換基を有するホスフィンオキシド基であることが好ましい。
 置換基を有するホスフィンオキシド基としては、特に限定されるものではないが、例えば、前述した(a-9)で例示したホスフィンオキシド基と同じものが挙げられる。
(A-11): Phosphine oxide group In the formula (1), examples of the phosphine oxide group include unsubstituted phosphine oxide groups and phosphine oxide groups having a substituent. It is preferably a phosphine oxide group having a substituent.
The phosphine oxide group having a substituent is not particularly limited, and examples thereof include the same as the phosphine oxide group exemplified in (a-9) described above.
(a-12):シリル基
 式(1)において、シリル基としては、無置換のシリル基、置換基を有するシリル基が挙げられる。置換基を有するシリル基であることが好ましい。
 置換基を有するシリル基としては、特に限定されるものではないが、例えば、前述した(a-9)で例示したシリル基と同じものが挙げられる。
(A-12): Silyl group In the formula (1), examples of the silyl group include unsubstituted silyl groups and silyl groups having a substituent. It is preferable that it is a silyl group having a substituent.
The silyl group having a substituent is not particularly limited, and examples thereof include the same as the silyl group exemplified in (a-9) described above.
(a-13):炭素数2~10の飽和炭化水素基を有していてもよいボロニル基
 式(1)において、炭素数2~10の飽和炭化水素基を有していてもよいボロニル基としては、特に限定されるものではないが、例えば、前述した(a-9)で例示したボロニル基と同じものが挙げられる。
(A-13): Boronyl group optionally having a saturated hydrocarbon group having 2 to 10 carbon atoms Boronyl group optionally having a saturated hydrocarbon group having 2 to 10 carbon atoms in the formula (1) The group is not particularly limited, and examples thereof include the same as the boronyl group exemplified in (a-9) described above.
(a-14):炭素数1~18の直鎖もしくは分岐のアルキル基
 式(1)において、炭素数1~18の直鎖のアルキル基としては、特に限定されるものではないが、例えば、前述した(a-9)で例示した炭素数1~18の直鎖もしくは分岐のアルキル基と同じものが挙げられる。
(A-14): a linear or branched alkyl group having 1 to 18 carbon atoms In the formula (1), the linear alkyl group having 1 to 18 carbon atoms is not particularly limited. The same ones as the linear or branched alkyl group having 1 to 18 carbon atoms exemplified in the above (a-9) can be mentioned.
(a-15):炭素数1~18の直鎖もしくは分岐のアルコキシ基
 式(1)において、炭素数1~18の直鎖もしくは分岐のアルコキシ基としては、特に限定されるものではないが、例えば、前述した(a-9)で例示した炭素数1~18の直鎖もしくは分岐のアルコキシ基と同じものが挙げられる。
(A-15): a linear or branched alkoxy group having 1 to 18 carbon atoms In the formula (1), the linear or branched alkoxy group having 1 to 18 carbon atoms is not particularly limited, For example, the same ones as the linear or branched alkoxy group having 1 to 18 carbon atoms exemplified in the above (a-9) can be mentioned.
(a-16):式(2)および(2’)で表される基
 上述のとおり、上記A~Aは、上記式(2)または(2’)で表される基であってもよい。式(2)および(2’)において、Y、R~R、nの定義はつぎのとおりである。
(A-16): Group represented by Formula (2) and (2 ′) As described above, the above A 1 to A 3 are groups represented by the above Formula (2) or (2 ′) It is also good. In formulas (2) and (2 ′), the definitions of Y, R 1 to R 3 and n are as follows.
<<<R~Rについて>>>
 式(2)および(2’)において、R~Rは、それぞれ独立して、(r-1)水素原子、(r-2)重水素原子、(r-3)置換基を有していてもよい炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基、(r-4)炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基、または、(r-5)炭素数1~18の直鎖若しくは分岐のアルキル基を表す。
 R~Rが置換基を有する場合、R~Rは、1つの置換基で置換されていてもよく、2つ以上の置換基で置換されていてもよい。
<<< About R 1 to R 3 >>
In formulas (2) and (2 ′), R 1 to R 3 each independently have (r-1) hydrogen atom, (r-2) deuterium atom, (r-3) substituent A monocyclic, linked or fused aromatic hydrocarbon group having 6 to 30 carbon atoms, (r-4) a monocyclic, linked or fused heteroaromatic group having 3 to 36 carbon atoms, Or (r-5) represents a linear or branched alkyl group having 1 to 18 carbon atoms.
When R 1 to R 3 have a substituent, R 1 to R 3 may be substituted by one substituent or may be substituted by two or more substituents.
 R~Rが、置換基を有する芳香族炭化水素基、または、置換基を有するヘテロ芳香族基である場合、該置換基は、それぞれ独立して、重水素原子、フッ素原子、炭素数1~18の直鎖もしくは分岐のアルキル基、炭素数1~18の直鎖もしくは分岐のアルコキシ基、9-カルバゾリル基、ジベンゾチエニル基、または、ジベンゾフラニル基であることが好ましい。 When R 1 to R 3 each represent an aromatic hydrocarbon group having a substituent or a heteroaromatic group having a substituent, the substituents each independently represent a deuterium atom, a fluorine atom, or a carbon number It is preferably a linear or branched alkyl group of 1 to 18, a linear or branched alkoxy group of 1 to 18 carbon atoms, 9-carbazolyl group, a dibenzothienyl group or a dibenzofuranyl group.
 (r-3):炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基
 式(2)および(2’)において、炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基の定義は、その置換基の定義を除き、上記(a-9)において示した炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基の定義と同じである。
 なお、(r-3)の芳香族炭化水素基が置換基を有する場合、該置換基は、重水素原子、フッ素原子、炭素数1~18の直鎖もしくは分岐のアルキル基、炭素数1~18の直鎖もしくは分岐のアルコキシ基、9-カルバゾリル基、ジベンゾチエニル基、ジベンゾフラニル基、N,N-ジフェニルアミノ基、またはN,N-ビス(4-ビフェニルイル)-アミノ基であることが好ましい。
(R-3): monocyclic, linked, or fused aromatic hydrocarbon group having 6 to 30 carbon atoms In the formulas (2) and (2 ′), a monocyclic, linked, or fused ring having 6 to 30 carbon atoms The definition of the aromatic hydrocarbon group of the ring is, except for the definition of the substituent thereof, the definition of the monocyclic, linked or fused aromatic hydrocarbon group having 6 to 30 carbon atoms shown in the above (a-9) Is the same as
When the aromatic hydrocarbon group of (r-3) has a substituent, the substituent is preferably a deuterium atom, a fluorine atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms. 18 linear or branched alkoxy group, 9-carbazolyl group, dibenzothienyl group, dibenzofuranyl group, N, N-diphenylamino group, or N, N-bis (4-biphenylyl) -amino group Is preferred.
 炭素数1~18の直鎖もしくは分岐のアルキル基としては、特に限定されるものではないが、前述した(a-9)で例示した炭素数1~18の直鎖のアルキル基と同じものが挙げられる。 The linear or branched alkyl group having 1 to 18 carbon atoms is not particularly limited, but is the same as the linear alkyl group having 1 to 18 carbon atoms exemplified in (a-9) described above It can be mentioned.
 炭素数1~18の直鎖もしくは分岐のアルコキシ基としては、特に限定されるものではないが、前述した(a-9)で例示した炭素数1~18の直鎖もしくは分岐のアルコキシ基と同じものが挙げられる。 The linear or branched alkoxy group having 1 to 18 carbon atoms is not particularly limited, but is the same as the linear or branched alkoxy group having 1 to 18 carbon atoms exemplified in (a-9) described above The thing is mentioned.
 (r-4):炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基
 式(2)および(2’)において、炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基の定義は、その置換基の定義を除き、前述した(a-10)で例示した炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基と同じものが挙げられる。また、炭素数3~20の単環、連結、若しくは縮環のヘテロ芳香族基であることがより好ましい。
 なお、(r-4)のヘテロ芳香族基が置換基を有する場合、該置換基は、重水素原子、フッ素原子、炭素数1~18の直鎖もしくは分岐のアルキル基、炭素数1~18の直鎖もしくは分岐のアルコキシ基、9-カルバゾリル基、ジベンゾチエニル基、ジベンゾフラニル基、N,N-ジフェニルアミノ基、またはN,N-ビス(4-ビフェニルイル)-アミノ基であることが好ましい。これらの置換基は、特に限定されるものではないが、例えば、前述した(r-3)の置換基と同じ定義である。
(R-4): C3-C36 monocyclic, linked or fused heteroaromatic group In the formulas (2) and (2 '), C3-C36 monocyclic, linked or fused ring The definition of the heteroaromatic group is the same as the C3-C36 monocyclic, linked or fused heteroaromatic group exemplified in (a-10) above, except for the definition of the substituent It can be mentioned. Further, it is more preferable that the heteroaromatic group is a C3-C20 monocyclic, linked or fused heteroaromatic group.
When the heteroaromatic group (r-4) has a substituent, the substituent is preferably a deuterium atom, a fluorine atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms. Linear or branched alkoxy group, 9-carbazolyl group, dibenzothienyl group, dibenzofuranyl group, N, N-diphenylamino group, or N, N-bis (4-biphenylyl) -amino group preferable. These substituents are not particularly limited, and for example, have the same definition as the substituent of (r-3) described above.
 (r-5):炭素数1~18の直鎖若しくは分岐のアルキル基
 式(2)および(2’)において、炭素数1~18の直鎖若しくは分岐のアルキル基の定義は、上記(a-9)において示した定義と同じである。
(R-5): linear or branched alkyl group having 1 to 18 carbon atoms In the formulas (2) and (2 ′), the definition of the linear or branched alkyl group having 1 to 18 carbon atoms is the same as the above (a) Same as the definition shown in -9).
<<<Yについて>>>
 式(2)および(2’)において、Yは、メチル基もしくはフェニル基で置換されていてもよいフェニレン基;メチル基もしくはフェニル基で置換されていてもよいナフチレン基;メチル基、もしくはフェニル基で置換されていてもよいビフェニレン基;または単結合を表す。
 前記フェニレン基としては、特に限定されるものではないが、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基等が挙げられる。
 前記ナフチレン基としては、特に限定されるものではないが、例えば、ナフタレン-1,2-ジイル基、ナフタレン-1,4-ジイル基、ナフタレン-1,8-ジイル基、ナフタレン-2,3-ジイル基等が挙げられる。
 前記ビフェニレン基としては、特に限定されるものではないが、例えば、ビフェニル-4,4’-ジイル基、ビフェニル-4,3’-ジイル基、ビフェニル-4,2’-ジイル基、ビフェニル-3,3’-ジイル基、ビフェニル-3,2’-ジイル基、ビフェニル-2,2’-ジイル基等が挙げられる。
<<< About Y >>>
In formulas (2) and (2 ′), Y is a phenylene group which may be substituted by a methyl group or a phenyl group; a naphthylene group which may be substituted by a methyl group or a phenyl group; a methyl group or a phenyl group Or a single bond.
The phenylene group is not particularly limited, and examples thereof include a 1,2-phenylene group, a 1,3-phenylene group, and a 1,4-phenylene group.
The above-mentioned naphthylene group is not particularly limited, and examples thereof include naphthalene-1,2-diyl group, naphthalene-1,4-diyl group, naphthalene-1,8-diyl group, and naphthalene-2,3- Diyl group etc. are mentioned.
The biphenylene group is not particularly limited. For example, biphenyl-4,4'-diyl group, biphenyl-4,3'-diyl group, biphenyl-4,2'-diyl group, biphenyl-3, for example. , 3'-diyl group, biphenyl-3,2'-diyl group, biphenyl-2,2'-diyl group and the like.
<<<nについて>>>
 前記式(2)において、nは、1又は2を表す。Yが単結合の場合、nは1である。Yが単結合ではない場合、nは1又は2である。
 なお、nが2である場合、R及びRは2つずつ存在するが、互いに同一であってもよく、異なっていてもよい。
<<< About n >>>
In the formula (2), n represents 1 or 2. When Y is a single bond, n is 1. When Y is not a single bond, n is 1 or 2.
When n is 2, two R 1 and two R 2 are present, but they may be identical to or different from each other.
<<<k1~k3について>>>
 k1~k3は、それぞれ独立して、0~4の整数である。
 なお、k1~k3が2以上の整数である場合、A~Aは複数存在するが、複数のA~Aは互いに同一であってもよく、異なっていてもよい。
 k1~k3の合計(k1+k2+k3)が、3以下であることが好ましく、2以下であることがより好ましく、0または1であることが特に好ましい。k1~k3の合計が3以下であると、k1~k3の合計が4以上の化合物と比較して分子量が小さくなる。その結果、化合物の昇華温度が低くなり、昇華時の耐熱安定性が向上するため好ましい。
<<< About k1 to k3 >>>
Each of k1 to k3 is independently an integer of 0 to 4.
In the case k1 ~ k3 is an integer of 2 or more, but A 1 ~ A 3 there are a plurality, the plurality of A 1 ~ A 3 may be the same as each other or may be different.
The sum (k1 + k2 + k3) of k1 to k3 is preferably 3 or less, more preferably 2 or less, and particularly preferably 0 or 1. When the sum of k1 to k3 is 3 or less, the molecular weight decreases as compared to the compound in which the sum of k1 to k3 is 4 or more. As a result, the sublimation temperature of the compound is lowered, and the heat stability at the time of sublimation is improved, which is preferable.
 k1およびk2は、有機エレクトロルミネッセンス素子における優れた電荷輸送能を実現する観点から、0、又は1であることが好ましく、0であることがより好ましい。
 k3は、有機エレクトロルミネッセンス素子における優れた電荷輸送能を実現する観点から、0、1又は2であることが好ましく、1であることがより好ましい。
 上記式(1)で表される縮合環化合物については、有機エレクトロルミネッセンス素子における優れた電荷輸送能を実現する観点から、k1およびk2が0、且つk3が1のものが特に好ましい。
k1 and k2 are preferably 0 or 1, and more preferably 0 from the viewpoint of achieving excellent charge transportability in the organic electroluminescent device.
k3 is preferably 0, 1 or 2 and more preferably 1 from the viewpoint of achieving excellent charge transportability in the organic electroluminescent device.
The fused ring compound represented by the above formula (1) is particularly preferably one in which k1 and k2 are 0 and k3 is 1 from the viewpoint of realizing excellent charge transportability in an organic electroluminescent device.
<<Xについて>>
 上記式(1)において、Xは、
  置換基を有していてもよいフラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、またはジベンゾチオフェン環;または、
  これらの環の1つが、置換もしくは無置換のベンゼン環と縮環した環を表す。
 前記フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、またはジベンゾチオフェン環が有していてもよい置換基としては、特に限定されるものではないが、例えば、前記(a-1)~(a-16)で示した置換基が挙げられる。
<< About X >>
In the above formula (1), X is
A furan ring which may have a substituent, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring or a dibenzothiophene ring; or
One of these rings represents a ring fused to a substituted or unsubstituted benzene ring.
The substituent which the above furan ring, thiophene ring, benzofuran ring, benzothiophene ring, dibenzofuran ring or dibenzothiophene ring may have is not particularly limited, but, for example, the above-mentioned (a-1) And the substituents shown in (a-16) can be mentioned.
 置換のベンゼン環としては、フェニル基、ビフェニリル基、またはピリジル基で置換されたベンゼン環等が挙げられる。 Examples of the substituted benzene ring include a benzene ring substituted with a phenyl group, a biphenylyl group, or a pyridyl group.
<<式(3)~(22)>>
 式(1)で表される縮合環化合物は、式(3)~(22)のいずれか1つで表される縮合環化合物あることが好ましい。
<< Equations (3) to (22) >>
The fused ring compound represented by the formula (1) is preferably a fused ring compound represented by any one of the formulas (3) to (22).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式中、
  A~Aおよびk~kは、それぞれ、式(1)におけるA~Aおよびk~kと同じ定義であり;
  AおよびAは、それぞれ独立して、電荷輸送性基を表し;
  k4は、0以上4以下の整数であり;
  k5は、0以上2以下の整数であり;
  k1~k5が2以上の整数である場合、複数のA~Aは、同一であっても異なっていてもよい。
During the ceremony
A 1 to A 3 and k 1 to k 3 have the same definitions as A 1 to A 3 and k 1 to k 3 in the formula (1), respectively;
Each of A 4 and A 5 independently represents a charge transporting group;
k4 is an integer of 0 or more and 4 or less;
k5 is an integer of 0 or more and 2 or less;
When k1 to k5 are integers of 2 or more, the plurality of A 1 to A 5 may be the same or different.
<<<k1~k5について>>>
 k4は、0以上4以下の整数である。
 k5は、0以上2以下の整数である。
 なお、k1~k5が2以上の整数である場合、A~Aは複数存在するが、互いに同一であってもよく、異なっていてもよい。
 k4は、有機エレクトロルミネッセンス素子における優れた電荷輸送能を実現する観点から、0、1、又は2であることが好ましく、0であることがより好ましい。
 k5は、有機エレクトロルミネッセンス素子における優れた電荷輸送能を実現する観点から、0、又は1であることが好ましく、0であることがより好ましい。
<<< About k1 to k5 >>>
k4 is an integer of 0 or more and 4 or less.
k5 is an integer of 0 or more and 2 or less.
When k1 to k5 are integers of 2 or more, although a plurality of A 1 to A 5 exist, they may be the same or different.
k4 is preferably 0, 1 or 2 and more preferably 0 from the viewpoint of realizing excellent charge transportability in the organic electroluminescent device.
k5 is preferably 0 or 1, and more preferably 0, from the viewpoint of realizing excellent charge transportability in the organic electroluminescent device.
 式(3)~(22)においても、式(1)と同様に、k1~k3の合計(k1+k2+k3)が、3以下であることが好ましく、2以下であることがより好ましく、0または1であることが特に好ましい。
 上記式(3)~(22)で表される縮合環化合物については、有機エレクトロルミネッセンス素子における優れた電荷輸送能を実現する観点から、k1、k2、k4、およびk5が0、且つk3が1のものが好ましい。
In formulas (3) to (22), as in formula (1), the sum (k1 + k2 + k3) of k1 to k3 is preferably 3 or less, more preferably 2 or less, 0 or 1. Being particularly preferred.
With respect to the fused ring compounds represented by the above formulas (3) to (22), k1, k2, k4 and k5 are 0 and k3 is 1 from the viewpoint of realizing excellent charge transportability in organic electroluminescent devices. Is preferred.
<<<A~Aについて>>>
 AおよびAで表される電荷輸送性基は、式(1)におけるA~Aで表される電荷輸送性基と同じ定義であり、好ましい範囲についても同じである。
>>> For <<< A 1 ~ A 5
The charge transporting group represented by A 4 and A 5 has the same definition as the charge transporting group represented by A 1 to A 3 in the formula (1), and the same applies to a preferable range.
 A~Aが置換基を有する場合、A~Aは、1つの置換基で置換されていてもよく、2つ以上の置換基で置換されていてもよい。 When A 1 to A 5 have a substituent, A 1 to A 5 may be substituted by one substituent or may be substituted by two or more substituents.
 A~Aが、置換基を有する芳香族炭化水素基、または、置換基を有するヘテロ芳香族基である場合、該置換基は、それぞれ独立して、上記(a-9)で例示した置換基と同じものが挙げられる。 When A 1 to A 5 are an aromatic hydrocarbon group having a substituent or a heteroaromatic group having a substituent, the substituents are each independently exemplified in the above (a-9) The same thing as a substituent is mentioned.
 A1~Aの具体例としては、特に限定されるものではないが、例えば、以下に示す(1)~(24)の基等が好ましい例として挙げられる。 Specific examples of A 1 to A 5 are not particularly limited, and examples of the groups (1) to (24) shown below can be given as preferable examples.
(1):メチル基、エチル基、フッ素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、ヒドロキシル基、チオール基、重水素原子 (1): methyl group, ethyl group, fluorine atom, bromine atom, iodine atom, cyano group, nitro group, hydroxyl group, thiol group, deuterium atom
(2):フェニル基、4-メチルフェニル基、3-メチルフェニル基、2-メチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,6-ジメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基 (2): phenyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 3,4-dimethylphenyl group, 3 2, 5-dimethylphenyl, 2, 6-dimethylphenyl, 2, 3, 5-trimethylphenyl, 2, 3, 6-trimethylphenyl, 2, 4, 6-trimethylphenyl, 3, 4, 5 -Trimethylphenyl group
(3):4-ビフェニル基、3-ビフェニル基、2-ビフェニル基、2-メチル-1,1’-ビフェニル-4-イル基、3-メチル-1,1’-ビフェニル-4-イル基、2’-メチル-1,1’-ビフェニル-4-イル基、3’-メチル-1,1’-ビフェニル-4-イル基、4’-メチル-1,1’-ビフェニル-4-イル基、2,6-ジメチル-1,1’-ビフェニル-4-イル基、2,2’-ジメチル-1,1’-ビフェニル-4-イル基、2,3’-ジメチル-1,1’-ビフェニル-4-イル基、2,4’-ジメチル-1,1’-ビフェニル-4-イル基、3,2’-ジメチル-1,1’-ビフェニル-4-イル基、2’,3’-ジメチル-1,1’-ビフェニル-4-イル基、2’,4’-ジメチル-1,1’-ビフェニル-4-イル基、2’,5’-ジメチル-1,1’-ビフェニル-4-イル基、2’,6’-ジメチル-1,1’-ビフェニル-4-イル基、4-フェニルビフェニル基、2-フェニルビフェニル基 (3): 4-biphenyl group, 3-biphenyl group, 2-biphenyl group, 2-methyl-1,1'-biphenyl-4-yl group, 3-methyl-1,1'-biphenyl-4-yl group , 2'-methyl-1,1'-biphenyl-4-yl group, 3'-methyl-1,1'-biphenyl-4-yl group, 4'-methyl-1,1'-biphenyl-4-yl group Group, 2,6-dimethyl-1,1'-biphenyl-4-yl group, 2,2'-dimethyl-1,1'-biphenyl-4-yl group, 2,3'-dimethyl-1,1 ' -Biphenyl-4-yl group, 2,4'-dimethyl-1,1'-biphenyl-4-yl group, 3,2'-dimethyl-1,1'-biphenyl-4-yl group, 2 ', 3 '-Dimethyl-1,1'-biphenyl-4-yl group, 2', 4'-dimethyl-1,1'-biphenyl- -Yl group, 2 ', 5'-dimethyl-1,1'-biphenyl-4-yl group, 2', 6'-dimethyl-1,1'-biphenyl-4-yl group, 4-phenylbiphenyl group, 2-phenylbiphenyl group
(4):1-ナフチル基、2-ナフチル基、2-メチルナフタレン-1-イル基、4-メチルナフタレン-1-イル基、6-メチルナフタレン-2-イル基、4-(1-ナフチル)フェニル基、4-(2-ナフチル)フェニル基、3-(1-ナフチル)フェニル基、3-(2-ナフチル)フェニル基、3-メチル-4-(1-ナフチル)フェニル基、3-メチル-4-(2-ナフチル)フェニル基、4-(2-メチルナフタレン-1-イル)フェニル基、3-(2-メチルナフタレン-1-イル)フェニル基、4-フェニルナフタレン-1-イル基、4-(2-メチルフェニル)ナフタレン-1-イル基、4-(3-メチルフェニル)ナフタレン-1-イル基、4-(4-メチルフェニル)ナフタレン-1-イル基、6-フェニルナフタレン-2-イル基、4-(2-メチルフェニル)ナフタレン-2-イル基、4-(3-メチルフェニル)ナフタレン-2-イル基、4-(4-メチルフェニル)ナフタレン-2-イル基 (4): 1-naphthyl group, 2-naphthyl group, 2-methylnaphthalen-1-yl group, 4-methylnaphthalen-1-yl group, 6-methylnaphthalen-2-yl group, 4- (1-naphthyl) group ) Phenyl group, 4- (2-naphthyl) phenyl group, 3- (1-naphthyl) phenyl group, 3- (2-naphthyl) phenyl group, 3-methyl-4- (1-naphthyl) phenyl group, 3- Methyl-4- (2-naphthyl) phenyl group, 4- (2-methylnaphthalen-1-yl) phenyl group, 3- (2-methylnaphthalen-1-yl) phenyl group, 4-phenylnaphthalen-1-yl group Group, 4- (2-methylphenyl) naphthalen-1-yl group, 4- (3-methylphenyl) naphthalen-1-yl group, 4- (4-methylphenyl) naphthalen-1-yl group, 6-phenyl group Naphthalene 2-yl group, 4- (2-methylphenyl) naphthalen-2-yl group, 4- (3-methylphenyl) naphthalene-2-yl group, 4- (4-methylphenyl) naphthalen-2-yl group
(5):2-フルオレニル基、9,9-ジメチル-2-フルオレニル基、9,9’-スピロビフルオレニル基、9-フェナントリル基、2-フェナントリル基、11,11’-ジメチルベンゾ[a]フルオレン-9-イル基、11,11’-ジメチルベンゾ[a]フルオレン-3-イル基、11,11’-ジメチルベンゾ[b]フルオレン-9-イル基、11,11’-ジメチルベンゾ[b]フルオレン-3-イル基、11,11’-ジメチルベンゾ[c]フルオレン-9-イル基、11,11’-ジメチルベンゾ[c]フルオレン-2-イル基、3-フルオランテニル基、8-フルオランテニル基 (5): 2-fluorenyl group, 9,9-dimethyl-2-fluorenyl group, 9,9'-spirobifluorenyl group, 9-phenanthryl group, 2-phenanthryl group, 11,11'-dimethylbenzo [ a) fluoren-9-yl group, 11,11'-dimethylbenzo [a] fluoren-3-yl group, 11,11'-dimethylbenzo [b] fluoren-9-yl group, 11,11'-dimethylbenzo group [B] fluoren-3-yl group, 11,11'-dimethylbenzo [c] fluoren-9-yl group, 11,11'-dimethylbenzo [c] fluoren-2-yl group, 3-fluoranthenyl group , 8-fluoranthenyl group
(6):1-イミダゾリル基、2-フェニル-1-イミダゾリル基、2-フェニル-3,4-ジメチル-1-イミダゾリル基、2,3,4-トリフェニル-1-イミダゾリル基、2-(2-ナフチル)-3,4-ジメチル-1-イミダゾリル基、2-(2-ナフチル)-3,4-ジフェニル-1-イミダゾリル基、1-メチル-2-イミダゾリル基、1-エチル-2-イミダゾリル基、1-フェニル-2-イミダゾリル基、1-メチル-4-フェニル-2-イミダゾリル基、1-メチル-4,5-ジメチル-2-イミダゾリル基、1-メチル-4,5-ジフェニル-2-イミダゾリル基、1-フェニル-4,5-ジメチル-2-イミダゾリル基、1-フェニル-4,5-ジフェニル-2-イミダゾリル基、1-フェニル-4,5-ジビフェニリル-2-イミダゾリル基 (6): 1-imidazolyl group, 2-phenyl-1-imidazolyl group, 2-phenyl-3,4-dimethyl-1-imidazolyl group, 2,3,4-triphenyl-1-imidazolyl group, 2- (2-) 2-Naphthyl) -3,4-dimethyl-1-imidazolyl, 2- (2-naphthyl) -3,4-diphenyl-1-imidazolyl, 1-methyl-2-imidazolyl, 1-ethyl-2- Imidazolyl group, 1-phenyl-2-imidazolyl group, 1-methyl-4-phenyl-2-imidazolyl group, 1-methyl-4,5-dimethyl-2-imidazolyl group, 1-methyl-4,5-diphenyl- 2-imidazolyl group, 1-phenyl-4,5-dimethyl-2-imidazolyl group, 1-phenyl-4,5-diphenyl-2-imidazolyl group, 1-phenyl-4,5-dibiphenyl -2-imidazolyl group
(7):1-メチル-3-ピラゾリル基、1-フェニル-3-ピラゾリル基、1-メチル-4-ピラゾリル基、1-フェニル-4-ピラゾリル基、1-メチル-5-ピラゾリル基、1-フェニル-5-ピラゾリル基 (7): 1-methyl-3-pyrazolyl group, 1-phenyl-3-pyrazolyl group, 1-methyl-4-pyrazolyl group, 1-phenyl-4-pyrazolyl group, 1-methyl-5-pyrazolyl group, 1 -Phenyl-5-pyrazolyl group
(8):2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基 (8): 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group
(9):2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基 (9): 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group
(10):2-ピリジル基、3-メチル-2-ピリジル基、4-メチル-2-ピリジル基、5-メチル-2-ピリジル基、6-メチル-2-ピリジル基、3-ピリジル基、4-メチル-3-ピリジル基、4-ピリジル基、2-ピリミジル基、2,2’-ビピリジン-3-イル基、2,2’-ビピリジン-4-イル基、2,2’-ビピリジン-5-イル基、2,3’-ビピリジン-3-イル基、2,3’-ビピリジン-4-イル基、2,3’-ビピリジン-5-イル基、5-ピリミジル基、ピラジル基、1,3,5-トリアジル基、4,6-ジフェニル-1,3,5-トリアジン-2-イル基 (10): 2-pyridyl group, 3-methyl-2-pyridyl group, 4-methyl-2-pyridyl group, 5-methyl-2-pyridyl group, 6-methyl-2-pyridyl group, 3-pyridyl group, 4-Methyl-3-pyridyl group, 4-pyridyl group, 2-pyrimidyl group, 2,2'-bipyridin-3-yl group, 2,2'-bipyridin-4-yl group, 2,2'-bipyridine- 5-yl group, 2,3'-bipyridin-3-yl group, 2,3'-bipyridin-4-yl group, 2,3'-bipyridin-5-yl group, 5-pyrimidyl group, pyrazyl group, 1 , 3,5-triazyl group, 4,6-diphenyl-1,3,5-triazin-2-yl group
(11):1-ベンゾイミダゾリル基、2-メチル-1-ベンゾイミダゾリル基、2-フェニル-1-ベンゾイミダゾリル基、1-メチル-2-ベンゾイミダゾリル基、1-フェニル-2-ベンゾイミダゾリル基、1-メチル-5-ベンゾイミダゾリル基、1,2-ジメチル-5-ベンゾイミダゾリル基、1-メチル-2-フェニル-5-ベンゾイミダゾリル基、1-フェニル-5-ベンゾイミダゾリル基、1,2-ジフェニル-5-ベンゾイミダゾリル基、1-メチル-6-ベンゾイミダゾリル基、1,2-ジメチル-6-ベンゾイミダゾリル基、1-メチル-2-フェニル-6-ベンゾイミダゾリル基、1-フェニル-6-ベンゾイミダゾリル基、1,2-ジフェニル-6-ベンゾイミダゾリル基、1-メチル-3-インダゾリル基、1-フェニル-3-インダゾリル基 (11): 1-benzoimidazolyl group, 2-methyl-1-benzoimidazolyl group, 2-phenyl-1-benzoimidazolyl group, 1-methyl-2-benzoimidazolyl group, 1-phenyl-2-benzoimidazolyl group, 1-methyl-5 -Benzoimidazolyl group, 1,2-dimethyl-5-benzoimidazolyl group, 1-methyl-2-phenyl-5-benzoimidazolyl group, 1-phenyl-5-benzoimidazolyl group, 1,2-diphenyl-5-benzoimidazolyl group, 1- Methyl-6-benzoimidazolyl group, 1,2-dimethyl-6-benzoimidazolyl group, 1-methyl-2-phenyl-6-benzoimidazolyl group, 1-phenyl-6-benzoimidazolyl group, 1,2-diphenyl-6-benzoimidazolyl group , 1-methyl-3-indazolyl group, 1 Phenyl-3-indazolyl group
(12):2-ベンゾチアゾリル基、4-ベンゾチアゾリル基、5-ベンゾチアゾリル基、6-ベンゾチアゾリル基、7-ベンゾチアゾリル基、3-ベンゾイソチアゾリル基、4-ベンゾイソチアゾリル基、5-ベンゾイソチアゾリル基、6-ベンゾイソチアゾリル基、7-ベンゾイソチアゾリル基、2,1,3-ベンゾチアジアゾール-4-イル基、2,1,3-ベンゾチアジアゾール-5-イル基 (12): 2-benzothiazolyl group, 4-benzothiazolyl group, 5-benzothiazolyl group, 6-benzothiazolyl group, 7-benzothiazolyl group, 3-benzoisothiazolyl group, 4-benzoisothiazolyl group, 5-benzoisothiazole group Ryl group, 6-benzoisothiazolyl group, 7-benzoisothiazolyl group, 2,1,3-benzothiadiazol-4-yl group, 2,1,3-benzothiadiazol-5-yl group
(13):2-ベンゾオキサゾリル基、4-ベンゾオキサゾリル基、5-ベンゾオキサゾリル基、6-ベンゾオキサゾリル基、7-ベンゾオキサゾリル基、3-ベンゾイソオキサゾリル基、4-ベンゾイソオキサゾリル基、5-ベンゾイソオキサゾリル基、6-ベンゾイソオキサゾリル基、7-ベンゾイソオキサゾリル基、2,1,3-ベンゾオキサジアゾリル-4-イル基、2,1,3-ベンゾオキサジアゾリル-5-イル基 (13): 2-benzoxazolyl group, 4-benzoxazolyl group, 5-benzoxazolyl group, 6-benzoxazolyl group, 7-benzoxazolyl group, 3-benzoisoxazolyl group Group, 4-benzoisoxazolyl group, 5-benzoisoxazolyl group, 6-benzoisoxazolyl group, 7-benzoisoxazolyl group, 2,1,3-benzooxadiazolyl- 4-yl group, 2,1,3-benzoxadiazolyl-5-yl group
(14):2-キノリル基、3-キノリル基、5-キノリル基、6-キノリル基、1-イソキノリル基、4-イソキノリル基、5-イソキノリル基、2-キノキサリル基、3-フェニル-2-キノキサリル基、6-キノキサリル基、2,3-ジメチル-6-キノキサリル基、2,3-ジフェニル-6-キノキサリル基、2-キナゾリル基、4-キナゾリル基、2-アクリジニル基、9-アクリジニル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-5-イル基 (14): 2-quinolyl, 3-quinolyl, 5-quinolyl, 6-quinolyl, 1-isoquinolyl, 4-isoquinolyl, 5-isoquinolyl, 2-quinoxalyl, 3-phenyl-2- Quinoxalyl group, 6-quinoxalyl group, 2,3-dimethyl-6-quinoxalyl group, 2,3-diphenyl-6-quinoxalyl group, 2-quinazolyl group, 4-quinazolyl group, 2-acridinyl group, 9-acridinyl group, 1,10-phenanthrolin-3-yl group, 1,10-phenanthrolin-5-yl group
(15):2-チエニル基、3-チエニル基、2-ベンゾチエニル基、3-ベンゾチエニル基、2-ジベンゾチエニル基、4-ジベンゾチエニル基 (15): 2-thienyl group, 3-thienyl group, 2-benzothienyl group, 3-benzothienyl group, 2-dibenzothienyl group, 4-dibenzothienyl group
(16):2-フラニル基、3-フラニル基、2-ベンゾフラニル基、3-ベンゾフラニル基、2-ジベンゾフラニル基、4-ジベンゾフラニル基 (16): 2-furanyl group, 3-furanyl group, 2-benzofuranyl group, 3-benzofuranyl group, 2-dibenzofuranyl group, 4-dibenzofuranyl group
(17):9-メチルカルバゾール-2-イル基、9-メチルカルバゾール-3-イル基、9-メチルカルバゾール-4-イル基、9-フェニルカルバゾール-2-イル基、9-フェニルカルバゾール-3-イル基、9-フェニルカルバゾール-4-イル基、9-ビフェニルカルバゾール-2-イル基、9-ビフェニルカルバゾール-3-イル基、9-ビフェニルカルバゾール-4-イル基 (17): 9-methylcarbazol-2-yl group, 9-methylcarbazol-3-yl group, 9-methylcarbazol-4-yl group, 9-phenylcarbazol-2-yl group, 9-phenylcarbazole-3 -Yl group, 9-phenylcarbazol-4-yl group, 9-biphenylcarbazol-2-yl group, 9-biphenylcarbazol-3-yl group, 9-biphenylcarbazol-4-yl group
(18):2-チアントリル基、10-フェニルフェノチアジン-3-イル基、10-フェニルフェノチアジン-2-イル基、10-フェニルフェノキサジン-3-イル基、10-フェニルフェノキサジン-2-イル基 (18): 2-thianthryl group, 10-phenylphenothiazin-3-yl group, 10-phenylphenothiazin-2-yl group, 10-phenylphenoxazin-3-yl group, 10-phenylphenoxazin-2-yl group
(19):1-メチルインドール-2-イル基、1-フェニルインドール-2-イル基、9-フェニルカルバゾール-4-イル基 (19): 1-methylindol-2-yl group, 1-phenylindol-2-yl group, 9-phenylcarbazol-4-yl group
(20):4-(2-ピリジル)フェニル基、4-(3-ピリジル)フェニル基、4-(4-ピリジル)フェニル基、3-(2-ピリジル)フェニル基、3-(3-ピリジル)フェニル基、3-(4-ピリジル)フェニル基 (20): 4- (2-pyridyl) phenyl group, 4- (3-pyridyl) phenyl group, 4- (4-pyridyl) phenyl group, 3- (2-pyridyl) phenyl group, 3- (3-pyridyl) group ) Phenyl group, 3- (4- pyridyl) phenyl group
(21):4-(2-フェニルイミダゾール-1-イル)フェニル基、4-(1-フェニルイミダゾール-2-イル)フェニル基、4-(2,3,4-トリフェニルイミダゾール-1-イル)フェニル基、4-(1-メチル-4,5-ジフェニルイミダゾール-2-イル)フェニル基、4-(2-メチルベンゾイミダゾール-1-イル)フェニル基、4-(2-フェニルベンゾイミダゾール-1-イル)フェニル基、4-(1-メチルベンゾイミダゾール-2-イル)フェニル基、4-(2-フェニルベンゾイミダゾール-1-イル)フェニル基、3-(2-メチルベンゾイミダゾール-1-イル)フェニル基、3-(2-フェニルベンゾイミダゾール-1-イル)フェニル基、3-(1-メチルベンゾイミダゾール-2-イル)フェニル基、3-(1-フェニルベンゾイミダゾール-1-イル)フェニル基 (21): 4- (2-phenylimidazol-1-yl) phenyl group, 4- (1-phenylimidazol-2-yl) phenyl group, 4- (2,3,4-triphenylimidazol-1-yl) group ) Phenyl group, 4- (1-methyl-4,5-diphenylimidazol-2-yl) phenyl group, 4- (2-methylbenzimidazol-1-yl) phenyl group, 4- (2-phenylbenzimidazole- 1-yl) phenyl group, 4- (1-methylbenzoimidazol-2-yl) phenyl group, 4- (2-phenylbenzimidazol-1-yl) phenyl group, 3- (2-methylbenzimidazole-1-yl) ) Phenyl group, 3- (2-phenylbenzimidazol-1-yl) phenyl group, 3- (1-methylbenzimidazol-2-yl) phenyl group 3- (1-phenyl-benzimidazol-1-yl) phenyl group
(22):4-(3,5-ジフェニルトリアジン-1-イル)フェニル基、4-(2-チエニル)フェニル基、4-(2-フラニル)フェニル基、5-フェニルチオフェン-2-イル基、5-フェニルフラン-2-イル基、4-(5-フェニルチオフェン-2-イル)フェニル基、4-(5-フェニルフラン-2-イル)フェニル基、3-(5-フェニルチオフェン-2-イル)フェニル基、3-(5-フェニルフラン-2-イル)フェニル基、4-(2-ベンゾチエニル)フェニル基、4-(3-ベンゾチエニル)フェニル基、3-(2-ベンゾチエニル)フェニル基、3-(3-ベンゾチエニル)フェニル基、4-(2-ジベンゾチエニル)フェニル基、4-(4-ジベンゾチエニル)フェニル基、3-(2-ジベンゾチエニル)フェニル基、3-(4-ジベンゾチエニル)フェニル基、4-(2-ジベンゾフラニル)フェニル基、4-(4-ジベンゾフラニル)フェニル基、3-(2-ジベンゾフラニル)フェニル基、3-(4-ジベンゾフラニル)フェニル基、5-フェニルピリジン-2-イル基、4-フェニルピリジン-2-イル基、5-フェニルピリジン-3-イル基、4-(9-カルバゾリル)フェニル基、3-(9-カルバゾリル)フェニル基 (22): 4- (3,5-diphenyltriazin-1-yl) phenyl group, 4- (2-thienyl) phenyl group, 4- (2-furanyl) phenyl group, 5-phenylthiophen-2-yl group , 5-phenylfuran-2-yl group, 4- (5-phenylthiophen-2-yl) phenyl group, 4- (5-phenylfuran-2-yl) phenyl group, 3- (5-phenylthiophene-2) -Yl) phenyl group, 3- (5-phenylfuran-2-yl) phenyl group, 4- (2-benzothienyl) phenyl group, 4- (3-benzothienyl) phenyl group, 3- (2-benzothienyl group ) Phenyl group, 3- (3-benzothienyl) phenyl group, 4- (2-dibenzothienyl) phenyl group, 4- (4-dibenzothienyl) phenyl group, 3- (2-dibenzothienyl) phenyl group Group, 3- (4-dibenzothienyl) phenyl group, 4- (2-dibenzofuranyl) phenyl group, 4- (4-dibenzofuranyl) phenyl group, 3- (2-dibenzofuranyl) phenyl group, 3 -(4-dibenzofuranyl) phenyl group, 5-phenylpyridin-2-yl group, 4-phenylpyridin-2-yl group, 5-phenylpyridin-3-yl group, 4- (9-carbazolyl) phenyl group , 3- (9-Carbazolyl) phenyl group
(23):2-ジベンゾ[g,p]クリセニル基、3-ジベンゾ[g,p]クリセニル基、2-(7-フェニル)ジベンゾ[g,p]クリセニル基、3-(7-フェニル)ジベンゾ[g,p]クリセニル基 (23): 2-dibenzo [g, p] chrysenyl group, 3-dibenzo [g, p] chrysenyl group, 2- (7-phenyl) dibenzo [g, p] chrysenyl group, 3- (7-phenyl) dibenzo [G, p] chrysenyl group
(24):N,N-ジフェニルアミノ基、N,N-ビス(4-ビフェニルイル)-アミノ基、N,N-ビス(3-ビフェニルイル)-アミノ基、N-フェニル-4-ビフェニルアミノ基、N-フェニル-3-ビフェニルアミノ基、N-(4-ビフェニル)-4-p-ターフェニルアミノ基、N-[4-(カルバゾール-9-イル)フェニル]-4-ビフェニルアミノ基、N-[1,1’-ビフェニル]-4-イル-N,N-ジフェニル-1,3-ベンゼンジアミノ基、4-トリフェニルアミノ基、3-トリフェニルアミノ基、4-(4’,4’’-ジフェニル)トリフェニルアミノ基、3-(4’,4’’-ジフェニル)トリフェニルアミノ基、N,N,N,N-テトラフェニル-1,3-ベンゼンジアミノ基、4-(フェニルアミノ)トリフェニルアミノ基 (24): N, N-diphenylamino group, N, N-bis (4-biphenylyl) -amino group, N, N-bis (3-biphenylyl) -amino group, N-phenyl-4-biphenylamino Group, N-phenyl-3-biphenylamino group, N- (4-biphenyl) -4-p-terphenylamino group, N- [4- (carbazol-9-yl) phenyl] -4-biphenylamino group, N 3- [1,1'-biphenyl] -4-yl-N 1 , N 1 -diphenyl-1,3-benzenediamino group, 4-triphenylamino group, 3-triphenylamino group, 4- (4 ', 4''-diphenyl) triphenylamino group, 3- (4', 4 ''-diphenyl) triphenylamino group, N 1 , N 1 , N 3 , N 3 -tetraphenyl-1,3-benzene Diamino group, 4- (pheny Amino) triphenyl amino group
 式(3)~(22)で表される縮合環化合物において、A~Aは、原料入手の容易性の点で、それぞれ独立して、
フェニル基、ビフェニリル基、ピリジルフェニル基、テルフェニリル基、ナフチル基、フェナントリル基、ピレニル基、9,9-スピロビ[9H-フルオレニル]基、トリフェニレニル基、ジベンゾチエニル基、ジベンゾフラニル基、ピリジル基、ピリミジル基、または、これらの基が、シアノ基、ニトロ基、ヒドロキシル基、チオール基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、もしくはメトキシ基で置換された基;
フルオレニル基、ベンゾフルオレニル基、アントリル基、ジベンゾ[g,p]クリセニル基、カルバゾリル基、または、これらの基が、シアノ基、ニトロ基、ヒドロキシル基、チオール基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、メトキシ基、もしくはフェニル基で置換された基;
4,6-ジフェニル-1,3,5-トリアジン-2-イル基、(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル基、4,6-ビス(4-ビフェニリル)-1,3,5-トリアジン-2-イル基、4,6-ビス(3-ビフェニリル)-1,3,5-トリアジン-2-イル基、シアノ基、ニトロ基、ヒドロキシル基、チオール基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ジフェニルホスフィンオキシド、トリフェニルシリル基、ジヒドロキシボリル基(-B(OH))、4,4,5,5-テトラメチル-[1,3,2]-ジオキサボロラニル基、5,5-ジメチル-[1,3,2]-ジオキサボリナン基、メチル基、N,N-ジフェニルアミノ基、N,N-ビス(4-ビフェニリル)アミノ基、N-[1,1’-ビフェニル]-4-イル-N,N-ジフェニル-1,3-ベンゼンジアミノ基、N-フェニル-3-ビフェニリルアミノ基、4-トリフェニルアミノ基、3-トリフェニルアミノ基、4-(4’,4’’-ジフェニル)トリフェニルアミノ基、3-(4’,4’’-ジフェニル)トリフェニルアミノ基、N,N,N,N-テトラフェニル-1,3-ベンゼンジアミノ基、又は4-(フェニルアミノ)トリフェニルアミノ基であることが好ましい。
In the fused ring compounds represented by the formulas (3) to (22), A 1 to A 5 are each independently from the viewpoint of easy availability of raw materials:
Phenyl group, biphenylyl group, pyridylphenyl group, terphenylyl group, naphthyl group, phenanthryl group, pyrenyl group, 9,9-spirobi [9H-fluorenyl] group, triphenylenyl group, dibenzothienyl group, dibenzofuranyl group, pyridyl group, pyrimidyl group Or a group in which these groups are substituted with a cyano group, a nitro group, a hydroxyl group, a thiol group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group or a methoxy group;
A fluorenyl group, a benzofluorenyl group, an anthryl group, a dibenzo [g, p] chrysenyl group, a carbazolyl group, or these groups are a cyano group, a nitro group, a hydroxyl group, a thiol group, a fluorine atom, a chlorine atom, a bromine A group substituted with an atom, an iodine atom, a methyl group, a methoxy group or a phenyl group;
4,6-Diphenyl-1,3,5-triazin-2-yl group, (4,6-diphenyl-1,3,5-triazin-2-yl) phenyl group, 4,6-bis (4-biphenylyl) ) -1,3,5-Triazin-2-yl group, 4,6-bis (3-biphenylyl) -1,3,5-triazin-2-yl group, cyano group, nitro group, hydroxyl group, thiol group , Fluorine atom, chlorine atom, bromine atom, iodine atom, diphenyl phosphine oxide, triphenylsilyl group, dihydroxyboryl group (-B (OH) 2 ), 4,4,5,5-tetramethyl- [1,3, 2] -Dioxabororanyl group, 5,5-dimethyl- [1,3,2] -dioxaborinane group, methyl group, N, N-diphenylamino group, N, N-bis (4-biphenylyl) amino group , N 3- [1, 1 '-Biphenyl] -4-yl-N 1 , N 1 -diphenyl-1,3-benzenediamino group, N-phenyl-3-biphenylylamino group, 4-triphenylamino group, 3-triphenylamino group, 4- (4 ', 4''- diphenyl) triphenyl amino group, 3- (4', 4 '' - diphenyl) triphenyl amino group, N 1, N 1, N 3, N 3 - tetraphenyl -1 It is preferable that it is 3, 3-benzenediamino group or 4- (phenylamino) triphenylamino group.
 以下に、式(1)で表される縮合環化合物について、好ましい化合物を例示するが、該縮合環化合物はこれらの化合物に限定されるものではない。
 表B-1~B-7は、表A-1~表A-4に示された(3A)~(22B)の骨格を有し、かつ、該骨格が有する置換基Aが、表B-1~B-7に示された基である、(NA-m)の化合物を示している。
 ここで、mは1~251の任意の整数を示している。すなわち、(NA-m)の化合物とは、(NA-1)~(NF-251)の化合物を示している。また、Nは3~22の任意の整数を表す。
 したがって、例えば、m=2である(NA-2)という化合物の場合、N=3のときは、(3A)の骨格を有し、該骨格が有する置換基AがF原子である(3A-2)の化合物を示している。
Preferable examples of the fused ring compound represented by the formula (1) are shown below, but the fused ring compound is not limited to these compounds.
Tables B-1 to B-7 have the skeletons of (3A) to (22B) shown in Table A-1 to Table A-4, and the substituent A 3 which the skeleton has is Table B The compound of (NA-m), which is a group represented by -1 to B-7, is shown.
Here, m represents an arbitrary integer of 1 to 251. That is, the compound of (NA-m) indicates the compounds of (NA-1) to (NF-251). Also, N represents an arbitrary integer of 3 to 22.
Thus, for example, in the case of a compound of (NA-2) where m = 2, when N = 3, it has a skeleton of (3A), and the substituent A 3 of the skeleton is an F atom (3A The compound of -2) is shown.
 ただし、N=3~6の場合、(NA-1)、(NB-1)、(NC-1)は、Aが重水素(D)原子である。N=3~6の場合、(ND-1)、(NE-1)、(NF-1)は、Aが水素(H)原子である。
 N=7~22の場合、(NA-1)は、Aが重水素(D)原子である。N=7~22の場合、(NB-1)は、Aが水素(H)原子である。
However, in the case of N = 3 ~ 6, (NA -1), (NB-1), (NC-1) is, A 3 is deuterium (D) atoms. For N = 3 ~ 6, (ND -1), (NE-1), (NF-1) is, A 3 is hydrogen (H) atoms.
For N = 7 ~ 22, (NA -1) is, A 3 is deuterium (D) atoms. For N = 7 ~ 22, (NB -1) is, A 3 is hydrogen (H) atoms.
 なお、N=7~22の場合、(NC-1)~(NC-251)、(ND-1)~(ND-251)、(NE-1)~(NE-251)、(NF-1)~(NF-251)は存在しない。 When N = 7 to 22, (NC-1) to (NC-251), (ND-1) to (ND-251), (NE-1) to (NE-251), (NF-1) ) To (NF-251) do not exist.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
<縮合環化合物の製造方法>
 式(1)で表される縮合環化合物は、製造時における収量及び純度の観点から、後述する式(23a)又は(23b)で表される化合物を出発原料とした下記のルートにより、合成することが好ましい。
<Method of producing fused ring compound>
The fused ring compound represented by the formula (1) is synthesized according to the following route using a compound represented by the formula (23a) or (23b) described later as a starting material from the viewpoint of yield and purity at the time of production Is preferred.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式中、
  X、A~A、及びk~kは、前記式(1)と同じ定義であり;
  α及びβは、互いに異なり、それぞれ、炭素数2~10の飽和炭化水素基を有していてもよいボロニル基、又はハロゲン原子(塩素、臭素、もしくはヨウ素)を表す。
 X、A~A、及びk~kの好ましい範囲は、前記式(1)におけるX、A~A、及びk~kの好ましい範囲と同じである。
During the ceremony
X, A 1 to A 3 , and k 1 to k 3 have the same definitions as in the above formula (1);
α and β are mutually different and each represent a boronyl group which may have a saturated hydrocarbon group of 2 to 10 carbon atoms, or a halogen atom (chlorine, bromine or iodine).
X, A 1 ~ A 3, and the preferred range of k 1 ~ k 3 is, X in Formula (1), the same as the preferable range of A 1 ~ A 3, and k 1 ~ k 3.
 即ち、式(23a)で表されるフェナントレン化合物と、式(23c)で表される化合物とを、または、式(23b)で表されるフェナントレン化合物と、式(23d)で表される化合物とをパラジウム触媒存在下、必要に応じて塩基を用いてカップリング反応させ、式(23)で表されるフェナントレン化合物を得る。更に、得られた式(23)で表されるフェナントレン化合物を分子内環化して、前記式(1)で表される縮合環化合物を得ることができる。分子内環化は、フェナントレン化合物に対して、酸化剤による酸化あるいは光照射を行って、分子内環化反応させることが好ましい。 That is, a phenanthrene compound represented by the formula (23a) and a compound represented by the formula (23c), or a phenanthrene compound represented by the formula (23b) and a compound represented by the formula (23d) Is coupled in the presence of a palladium catalyst, optionally using a base, to obtain a phenanthrene compound represented by the formula (23). Furthermore, the phenanthrene compound represented by Formula (23) obtained can be intramolecularly cyclized, and the fused ring compound represented by said Formula (1) can be obtained. In the intramolecular cyclization, it is preferable that the phenanthrene compound be oxidized or irradiated with an oxidizing agent to cause an intramolecular cyclization reaction.
 上記のルートで得られた前記式(1)が、ハロゲン原子(フッ素、塩素、臭素、もしくはヨウ素)、又は炭素数2~10の飽和炭化水素基を有していてもよいボロニル基を有している場合には、必要に応じて追加のカップリング反応を行ってもよい。 Formula (1) obtained by the above route has a halogen atom (fluorine, chlorine, bromine or iodine) or a boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms If necessary, additional coupling reactions may be performed.
 炭素数2~10の飽和炭化水素基を有していてもよいボロニル基としては、特に限定されるものではないが、前述した(a-9)で例示した炭素数2~10の飽和炭化水素基を有していてもよいボロニル基と同じものが挙げられる。 The boronyl group which may have a saturated hydrocarbon group having 2 to 10 carbon atoms is not particularly limited, but the saturated hydrocarbon having 2 to 10 carbon atoms exemplified in (a-9) described above The same thing as the boronyl group which may have a group is mentioned.
 式(23a)~(23d)で表される化合物は、公知の方法に基づいて合成することができ、あるいは市販されている化合物を用いることもできる。 The compounds represented by the formulas (23a) to (23d) can be synthesized based on known methods, or commercially available compounds can be used.
 式(23a)で表される化合物と式(23c)で表される化合物とのカップリング反応、及び式(23b)で表される化合物と式(23d)で表される化合物とのカップリング反応としては、公知のカップリング反応を利用することができ、前記の塩基、及びパラジウム触媒についても、公知のものを用いることができる。 Coupling reaction of a compound represented by the formula (23a) with a compound represented by the formula (23c), and coupling reaction of a compound represented by the formula (23b) with a compound represented by the formula (23d) As the catalyst, a known coupling reaction can be used, and as the base and the palladium catalyst, known ones can be used.
 式(23)で表されるフェナントレン化合物は、置換基を有していてもよいフラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、もしくはジベンゾチオフェン環;または、これらの環の1つが、置換もしくは無置換のベンゼン環と宿環した環であるXを有することにより、結晶性が向上するという効果を奏する。そのため、Xが、上記の環以外の環の場合(例えば、Xが、ベンゼン環又はナフタレン環など)と比較して、再結晶化による大量製造に有利である。 The phenanthrene compound represented by the formula (23) has a furan ring which may have a substituent, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring or a dibenzothiophene ring; or one of these rings is The effect of improving crystallinity is exhibited by having X, which is a ring ringed with a substituted or unsubstituted benzene ring. Therefore, it is advantageous for mass production by recrystallization as compared with the case where X is a ring other than the above-mentioned ring (for example, X is a benzene ring or a naphthalene ring).
 分子内環化は、酸化剤による酸化又は光照射による酸化によって行うことが好ましい。
 酸化剤としては、塩化第二鉄(FeCl)、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)、塩化モリブデン(MoCl)、塩化アルミニウム(AlCl)、又は[ビス(トリフルオロアセトキシ)ヨード]ベンゼン(PIFA)であることが好ましい。
 光照射による酸化の場合、添加剤として、
  ヨウ素(I)及び1,2-エポキシプロパン、又は
  1,2-エポキシブタンを、添加することが好ましい。
The intramolecular cyclization is preferably performed by oxidation with an oxidizing agent or oxidation with light irradiation.
As the oxidizing agent, ferric chloride (FeCl 3 ), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), molybdenum chloride (MoCl 5 ), aluminum chloride (AlCl 3 ), or [bis (Trifluoroacetoxy) iodo] benzene (PIFA) is preferred.
In the case of oxidation by light irradiation, as an additive,
It is preferred to add iodine (I 2 ) and 1,2-epoxypropane or 1,2-epoxybutane.
<フェナントレン化合物>
 本開示の一態様にかかるフェナントレン化合物は、式(23)で表されるフェナントレン化合物である:
<Phenanthrene Compound>
The phenanthrene compound according to one aspect of the present disclosure is a phenanthrene compound represented by Formula (23):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式中、
  Xは、
   置換基を有していてもよいフラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、または、
   これらの環の1つが、置換もしくは無置換のベンゼン環と縮環した環を表し;
  A~Aは、それぞれ独立して、置換基を表し;
  k1~k3は、それぞれ独立して、0以上4以下の整数であり;
  k1~k3が2以上の整数である場合、複数のA~Aは、同一であっても異なっていてもよい。
During the ceremony
X is
A furan ring which may have a substituent, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring, or
One of these rings represents a ring fused to a substituted or unsubstituted benzene ring;
Each of A 1 to A 3 independently represents a substituent;
k1 to k3 are each independently an integer of 0 or more and 4 or less;
When k1 to k3 are integers of 2 or more, the plurality of A 1 to A 3 may be the same or different.
 式(23)で表されるフェナントレン化合物については、式(1)で表される縮合環化合物を高収率及び高純度で得る観点から、具体的には、下記式(3i)~(18i)で表されるフェナントレン化合物が好ましい。 The phenanthrene compound represented by the formula (23) is specifically represented by the following formulas (3i) to (18i) from the viewpoint of obtaining the fused ring compound represented by the formula (1) in high yield and high purity. The phenanthrene compound represented by these is preferable.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式中、
  A~A、及びk~kは、前記式(3)~(22)と同じ定義であり、好ましい範囲についても同じである。
During the ceremony
A 1 to A 5 and k 1 to k 5 have the same definitions as in the formulas (3) to (22), and the same applies to the preferred ranges.
 以下に、式(3i)~(18i)で表されるフェナントレン化合物について、表C-1~C-3に記載の骨格をもとに好ましい化合物を例示するが、本態様はこれらの化合物に限定されるものではない。
 好ましいフェナントレン化合物とは、表C-1~C-3に示された(3iA)~(18iB)の骨格を有し、かつ、該骨格が有する置換基Aが、表B-1~B-5に示された基である、(NiA-m)の化合物である。
 ここで、フェナントレン化合物においては、mは1~167の任意の整数を示している。すなわち、(NiA-m)の化合物とは、(NiA-1)~(NiF-167)の化合物を示している。また、Nは3~18の任意の整数を表す。なお、mは1~167の任意の整数であるため、表B-5に示されたm=161~200の置換基のうち、m=161~167で示された置換基Aを有するものが、好ましいフェナントレン化合物である。
 例えば、m=2である(NiA-2)という化合物の場合、N=3のときは、(3iA)の骨格を有し、該骨格が有する置換基AがF原子である(3iA-2)の化合物を示している。
Preferred phenanthrene compounds represented by formulas (3i) to (18i) are exemplified below based on the skeletons described in Tables C-1 to C-3, but this embodiment is limited to these compounds. It is not something to be done.
Preferred phenanthrene compounds have the skeletons of (3iA) to (18iB) shown in Tables C-1 to C-3, and the substituent A 3 which the skeleton has is shown in Tables B-1 to B-. It is a compound of (NiA-m) which is a group shown in 5.
Here, in the phenanthrene compound, m is an arbitrary integer of 1 to 167. That is, the (NiA-m) compound means a compound of (NiA-1) to (NiF-167). Also, N represents an arbitrary integer of 3 to 18. In addition, since m is any integer of 1 to 167, among the substituents of m = 161 to 200 shown in Table B-5, those having a substituent A 3 shown by m = 161 to 167 Is a preferred phenanthrene compound.
For example, in the case of a compound of (NiA-2) where m = 2, when N = 3, it has a skeleton of (3iA) and the substituent A 3 of the skeleton is an F atom (3iA-2) The compound of) is shown.
 ただし、N=3~6の場合、(NiA-1)、(NiB-1)、(NiC-1)は、Aが重水素(D)原子である。N=3~6の場合、(NiD-1)、(NiE-1)、(NiF-1)は、Aが水素(H)原子である。
 N=7~18の場合、(NiA-1)は、Aが重水素(D)原子である。N=7~18の場合、(NiB-1)は、Aが水素(H)原子である。
However, in the case of N = 3 ~ 6, (NiA -1), (NiB-1), (NiC-1) is, A 3 is deuterium (D) atoms. For N = 3 ~ 6, (NiD -1), (NiE-1), (NiF-1) is, A 3 is hydrogen (H) atoms.
For N = 7 ~ 18, (NiA -1) is, A 3 is deuterium (D) atoms. For N = 7 ~ 18, (NiB -1) is, A 3 is hydrogen (H) atoms.
 なお、N=7~18の場合、(NiC-1)~(NiC-167)、(NiD-1)~(NiD-167)、(NiE-1)~(NiE-167)、(NiF-1)~(NiF-167)は存在しない。 When N = 7 to 18, (NiC-1) to (NiC-167), (NiD-1) to (NiD-167), (NiE-1) to (NiE-167), (NiF-1) ) To (NiF-167) do not exist.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 これらの化合物の中でも、m=1~5である化合物(NiA-1)~(NiF-5)が特に好ましい。 Among these compounds, compounds (NiA-1) to (NiF-5) in which m = 1 to 5 are particularly preferable.
<有機エレクトロルミネッセンス素子用材料>
 式(1)で表される縮合環化合物は、有機エレクトロルミネッセンス素子用材料として使用することができる。したがって、本開示の一態様にかかる有機エレクトロルミネッセンス素子用材料は、式(1)で表される縮合環化合物を含む。なお、式(1)で表される縮合環化合物は、電荷輸送特性や素子寿命の点で、高純度であることが好ましい。具体的には、ハロゲン原子や遷移金属元素による不純物や、製造原料や副生成物等の不純物が極力少ないものが好ましい。
<Material for Organic Electroluminescent Device>
The fused ring compound represented by the formula (1) can be used as a material for an organic electroluminescent device. Therefore, the material for an organic electroluminescent device according to an aspect of the present disclosure includes the fused ring compound represented by Formula (1). The fused ring compound represented by the formula (1) is preferably highly pure in terms of charge transport properties and device life. Specifically, it is preferable that the amount of impurities such as halogen atoms and transition metal elements and impurities such as manufacturing raw materials and byproducts be as small as possible.
 式(1)で表される縮合環化合物を含む有機エレクトロルミネッセンス素子用材料は、正孔輸送性の層(陽極と発光層との間の正孔輸送性を有する各層であり、具体的には、正孔注入層、正孔輸送層等が挙げられる)、発光層、又は電子輸送性の層(陰極と発光層との間の電子輸送性を有する各層であり、具体的には、電子注入層、電子輸送層等が挙げられる)を形成する材料として用いることができる。これらの中でも、正孔輸送層、発光層又は電子輸送層の材料として用いられることが特に好ましい。なお、正孔輸送層が第一正孔輸送層と第二正孔輸送層とからなる2層に機能分離された構成である場合、式(1)で表される縮合環化合物は第一正孔輸送層(陽極側)および第二正孔輸送層(陰極側)のいずれか一方、あるいは両方の材料として用いられてもよい。 The material for an organic electroluminescent device containing the fused ring compound represented by the formula (1) is a hole transporting layer (each layer having a hole transporting property between the anode and the light emitting layer, specifically, A hole injection layer, a hole transport layer, etc., a light emitting layer, or an electron transporting layer (each layer having an electron transporting property between the cathode and the light emitting layer, specifically, electron injection Layer, an electron transport layer, etc. can be mentioned as a material which forms. Among these, it is particularly preferable to use as a material of the hole transport layer, the light emitting layer or the electron transport layer. In addition, when it is the structure by which the positive hole transport layer was functionally separated into two layers which consist of a 1st positive hole transport layer and a 2nd positive hole transport layer, the fused ring compound represented by Formula (1) is 1st positive It may be used as a material for either or both of the hole transport layer (anode side) and the second hole transport layer (cathode side).
 式(1)で表される縮合環化合物を、有機エレクトロルミネッセンス素子の正孔輸送性の層の材料、発光層の材料、又は電子輸送性の層の材料として使用する際には、従来から使用されている公知の蛍光発光材料、燐光発光材料、又は熱活性化遅延蛍光発光材料を発光層に使用することができる。発光層は1種類の発光材料のみで形成されていてもよく、ホスト材料中に1種類以上の発光材料がドープされていてもよい。 When the fused ring compound represented by the formula (1) is used as a material of a hole transportable layer of an organic electroluminescent device, a material of a light emitting layer, or a material of an electron transportable layer, conventionally used Known fluorescent light emitting materials, phosphorescent light emitting materials, or thermally activated delayed fluorescent light emitting materials can be used for the light emitting layer. The light emitting layer may be formed of only one kind of light emitting material, or one or more kinds of light emitting materials may be doped in the host material.
 式(1)で表される縮合環化合物を含む正孔輸送性の層は、単層であってもよく、複数の層からなる積層構成であってもよい。単層の場合、正孔輸送性の層は式(1)で表される縮合環化合物からなっていてもよいし、該縮合環化合物に加えてさらに1種類以上の公知の材料を含有していてもよい。積層構成である場合は、単層の場合に加えてさらに1種類以上の公知の材料を含む層が積層されてなる。当該公知の材料としては、例えば、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-〔1,1’-ビフェニル〕-4,4’-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、4,4’-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、4,4’,4’’-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)、3-[4-[1,1’-ビフェニル-4-イル](9,9-ジメチルフルオレン-2-イル)アミノ]フェニル]-9-フェニル-9H-カルバゾール、及び4,4’-ビス[N-フェニル-N-(9-フェニルカルバゾール-3-イル)アミノ]-1,1’-ビフェニル]、N,N-ビス[4-(ジベンゾフラン-4-イル)フェニル]-N-(p-テルフェニル-4-イル)アミン等の公知の正孔輸送性の材料が挙げられる。 The hole transporting layer containing the fused ring compound represented by the formula (1) may be a single layer, or may be a laminated structure comprising a plurality of layers. In the case of a single layer, the hole transporting layer may be composed of the fused ring compound represented by the formula (1), and further contains one or more known materials in addition to the fused ring compound May be In the case of a laminated structure, in addition to the single layer, a layer containing one or more known materials is further laminated. Examples of such known materials include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl, N, N'-diphenyl-N, N'-bis (3-methylphenyl)- [1,1′-biphenyl] -4,4′-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolyl Aminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane Bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N'-di (4-methoxyphenyl) -4,4 -Diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadriphenyl, N, N, N-tri (p-tolyl ) Amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N-diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy -4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), 4,4 ', 4' '-Tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA), 3- [4- [1,1'-biphenyl-4-yl] (9 9-Dimethylfluoren-2-yl) amino] phenyl] -9-phenyl-9H-carbazole and 4,4′-bis [N-phenyl-N- (9-phenylcarbazol-3-yl) amino] -1 Known hole transporting materials such as 1,1′-biphenyl], N, N-bis [4- (dibenzofuran-4-yl) phenyl] -N- (p-terphenyl-4-yl) amine Be
 式(1)で表される縮合環化合物を有機エレクトロルミネッセンス素子の発光層の材料として使用する場合には、該縮合環化合物を単独で使用してもよいし、公知の発光ホスト材料にドープして使用してもよいし、公知の発光ドーパントをドープして使用してもよい。 When the fused ring compound represented by the formula (1) is used as a material of the light emitting layer of the organic electroluminescent device, the fused ring compound may be used alone or may be doped in a known light emitting host material It may be used as it is, or may be used by doping a known light emitting dopant.
 式(1)で表される縮合環化合物を含有する電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができる。 Examples of methods for forming an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer containing the fused ring compound represented by the formula (1) include a vacuum evaporation method and a spin coating method. Known methods such as cast method can be applied.
 スピンコート法、キャスト法等の塗布法に用いられる有機エレクトロルミネッセンス素子用材料は、式(1)で表される縮合環化合物に加えて、有機溶媒を含む。有機溶媒としては特に制限はないが、例えば、モノクロロベンゼン及びオルトジクロロベンゼンなどが挙げられる。有機溶媒はこれらを2種以上組み合わせたものであってもよい。所望の塗工性能を発揮するべく有機溶媒が選択されて、有機エレクトロルミネッセンス素子用材料の粘度や濃度が調整されていることが好ましい。 The material for an organic electroluminescent device used for coating methods such as spin coating and casting includes an organic solvent in addition to the fused ring compound represented by the formula (1). The organic solvent is not particularly limited, and examples thereof include monochlorobenzene and orthodichlorobenzene. The organic solvent may be a combination of two or more of these. It is preferable that an organic solvent is selected to exhibit a desired coating performance, and the viscosity and concentration of the material for an organic electroluminescent element be adjusted.
<有機エレクトロルミネッセンス素子>
 本開示の一態様にかかる有機エレクトロルミネッセンス素子は、上記した式(1)で表される縮合環化合物を含む層を備える。
<Organic electroluminescent device>
An organic electroluminescent device according to an aspect of the present disclosure includes a layer including the fused ring compound represented by the above-described formula (1).
 図1は、本開示の一態様にかかる有機エレクトロルミネッセンス素子の積層構成の一例を示す概略断面図である。以下、図1を参照しながら本態様にかかる有機エレクトロルミネッセンス素子について説明する。なお、図1に示す有機エレクトロルミネッセンス素子は、いわゆるボトムエミッション型の素子構成を有したものであると、本開示の一態様にかかる有機エレクトロルミネッセンス素子はボトムエミッション型の素子構成に限定されるものではない。すなわち、本開示の一態様にかかる有機エレクトロルミネッセンス素子は、トップエミッション型の素子構成であってもよく、その他の公知の素子構成であってもよい。 FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of an organic electroluminescent device according to an aspect of the present disclosure. Hereinafter, the organic electroluminescent device according to the present embodiment will be described with reference to FIG. In addition, when the organic electroluminescent element shown in FIG. 1 has a so-called bottom emission type element structure, the organic electroluminescent element according to one aspect of the present disclosure is limited to the bottom emission type element structure. is not. That is, the organic electroluminescent device according to one aspect of the present disclosure may be a top emission type device configuration, or may be another known device configuration.
 有機エレクトロルミネッセンス素子100の基本的な構造としては、基板1、陽極2、正孔注入層3、電荷発生層4、正孔輸送層5、発光層6、電子輸送層7、電子注入層8、及び陰極9をこの順で含む。ただし、これらの層のうちの一部の層が省略されていてもよく、また逆に他の層が追加されていてもよい。例えば、電荷発生層4が省略され、正孔注入層3上に正孔輸送層5が直接設けられていてもよく、発光層6と電子輸送層7との間に正孔阻止層が設けられていてもよい。また、例えば電子注入層の機能と電子輸送層の機能とを単一の層で併せ持つ電子注入・輸送層のような、複数の層が有する機能を併せ持った単一の層を、当該複数の層の代わりに備えた構成であってもよい。 The basic structure of the organic electroluminescent device 100 is as follows: substrate 1, anode 2, hole injection layer 3, charge generation layer 4, hole transport layer 5, light emitting layer 6, electron transport layer 7, electron injection layer 8, And the cathode 9 in this order. However, some of these layers may be omitted, and conversely, other layers may be added. For example, the charge generation layer 4 may be omitted, and the hole transport layer 5 may be directly provided on the hole injection layer 3, and a hole blocking layer is provided between the light emitting layer 6 and the electron transport layer 7. It may be In addition, for example, a single layer having a combination of functions of a plurality of layers, such as an electron injection / transport layer having the function of the electron injection layer and the function of the electron transport layer in a single layer, It may be a configuration provided instead of
 そして、本態様にかかる有機エレクトロルミネッセンス素子において、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層からなる群より選ばれる1つ以上の層は、式(1)で表される縮合環化合物を含む。 In the organic electroluminescent device according to this aspect, one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer have the formula (1) And a fused ring compound represented by
 正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層のうち、式(1)で表される縮合環化合物を含む層は、該縮合環化合物と共に、公知の材料の中から選択される任意の1種以上を含有していてもよい。また、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層のうち、式(1)で表される縮合環化合物を含まない層は、公知の材料の中から選択される任意の1種以上を含有することが好ましい。 Of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer, the layer containing the fused ring compound represented by the formula (1) is a known material together with the fused ring compound. It may contain any one or more selected from the above. Further, among the hole injecting layer, the hole transporting layer, the light emitting layer, the electron transporting layer, and the electron injecting layer, a layer not containing the fused ring compound represented by the formula (1) is selected from known materials. It is preferable to contain any 1 or more types.
 有機エレクトロルミネッセンス素子を構成する各層の詳細については後述する。 Details of each layer constituting the organic electroluminescent element will be described later.
 有機エレクトロルミネッセンス素子100の陽極2及び陰極9は、電気的な導体を介して電源に接続されている。陽極2と陰極9との間に電圧を印加することにより、有機エレクトロルミネッセンス素子100は作動、発光する。 The anode 2 and the cathode 9 of the organic electroluminescent element 100 are connected to a power supply via an electrical conductor. By applying a voltage between the anode 2 and the cathode 9, the organic electroluminescent device 100 operates and emits light.
 正孔は陽極2で有機エレクトロルミネッセンス素子100内に注入され、電子は陰極9で有機エレクトロルミネッセンス素子100内に注入される。 Holes are injected into the organic electroluminescent device 100 at the anode 2 and electrons are injected into the organic electroluminescent device 100 at the cathode 9.
 なお、本態様にかかる有機エレクトロルミネッセンス素子100は、陽極2が基板1に接して設けられている。基板と接触する電極は便宜上、下側電極と呼ばれる。ただし、本態様はかかる構成に限定されるものではなく、陽極に代えて陰極が基板に接して設けられて下側電極となっていてもよく、基板と陽極または陰極とが接しておらず、陽極または陰極が他の層を介して基板上に積層されていてもよい。 In the organic electroluminescent element 100 according to the present embodiment, the anode 2 is provided in contact with the substrate 1. The electrode in contact with the substrate is conveniently referred to as the lower electrode. However, the present embodiment is not limited to such a configuration, and instead of the anode, a cathode may be provided in contact with the substrate to be a lower electrode, and the substrate and the anode or the cathode are not in contact. The anode or the cathode may be laminated on the substrate through another layer.
<<基板1>>
 基板は、意図される有機エレクトロルミネッセンス素子の発光方向(光が取り出される方向)に応じて光透過性を適宜選択すればよい。すなわち、基板は光透過性を有していてもよく、有していなくても(所定の波長を有する光に対して不透明であっても)よい。基板が光透過性を有するか否かは、例えば、当該基板から有機エレクトロルミネッセンス素子の発光に由来する光が所望の量以上観察されるか否かにより確認できる。
 光透過性を有する基板として、透明ガラス板又はプラスチック板が一般的に採用される。ただし、基板はこれらに何ら限定されるものではない。基板は、例えば、多重の材料層を含む複合構造であってもよい。
<< Substrate 1 >>
The light transmittance of the substrate may be appropriately selected according to the light emission direction (the direction in which light is extracted) of the intended organic electroluminescent element. That is, the substrate may or may not be light transmissive (or may be opaque to light having a predetermined wavelength). Whether or not the substrate has optical transparency can be confirmed, for example, by whether or not light derived from the light emission of the organic electroluminescent element is observed from the substrate in a desired amount or more.
A transparent glass plate or a plastic plate is generally employed as a substrate having light transmittance. However, the substrate is not limited to these. The substrate may, for example, be a composite structure comprising multiple material layers.
<<陽極2>>
 基板1上には陽極2が設けられている。
 発光が陽極を通過して取り出される構成の有機エレクトロルミネッセンス素子の場合、陽極は当該発光を通すか又は実質的に通す材料で形成される。
<< Anode 2 >>
An anode 2 is provided on the substrate 1.
In the case of an organic electroluminescent device configured to emit light through the anode, the anode is formed of a material that transmits or substantially transmits the light.
 陽極に用いられる透明材料としては、特に限定されるものではないが、例えば、インジウム-錫酸化物(ITO;Indium Tin Oxide)、インジウム-亜鉛酸化物(IZO;Indium Zinc Oxide)、酸化錫、アルミニウム・ドープ型酸化錫、マグネシウム-インジウム酸化物、ニッケル-タングステン酸化物、その他の金属酸化物;窒化ガリウム等の金属窒化物;セレン化亜鉛等の金属セレン化物;および硫化亜鉛;等の金属硫化物などが挙げられる。
 陽極は、プラズマ蒸着されたフルオロカーボンで改質することができる。
 なお、陰極側のみから光を取り出す構成の有機エレクトロルミネッセンス素子の場合、陽極の透過特性は重要ではなく、陽極の材料として透明、不透明又は反射性の任意の導電性材料を使用することができる。したがって、この場合の陽極に用いられる材料の一例としては、金、イリジウム、モリブデン、パラジウム、白金等が挙げられる。
The transparent material used for the anode is not particularly limited. For example, indium-tin oxide (ITO; Indium Tin Oxide), indium-zinc oxide (IZO; Indium Zinc Oxide), tin oxide, aluminum・ Doped type tin oxide, magnesium-indium oxide, nickel-tungsten oxide, other metal oxides; metal nitrides such as gallium nitride; metal selenides such as zinc selenide; and metal sulfides such as zinc sulfide Etc.
The anode can be modified with plasma deposited fluorocarbons.
In addition, in the case of the organic electroluminescent element of the structure which takes out light only from the cathode side, the permeation | transmission characteristic of an anode is unimportant, and arbitrary transparent, opaque or reflective electroconductive materials can be used as a material of an anode. Therefore, gold, iridium, molybdenum, palladium, platinum etc. are mentioned as an example of the material used for the anode in this case.
<<正孔輸送性の層(正孔注入層3、正孔輸送層5)>>
 陽極2と発光層6との間には、正孔輸送性の層が設けられている。
<< Hole transportable layer (hole injection layer 3, hole transport layer 5) >>
A hole transportable layer is provided between the anode 2 and the light emitting layer 6.
 正孔輸送性の層とは、陽極と発光層との間に設けられた正孔輸送性を有する層であり、正孔注入層、正孔輸送層等である。正孔輸送性の層が陽極と発光層との間に複数設けられていてもよい。正孔注入層や正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有する。これらの層を陽極と発光層との間に介在させることにより、正孔がより低い電界で発光層に注入される。
 なお、正孔輸送層は、図1に示す実施形態においては単層からなっているが、複数層、例えば、陽極側の第一正孔輸送層と、陰極側の第二正孔輸送層とからなっていてもよい。この2層構成の正孔輸送層の場合、第一正孔輸送層が第二正孔輸送層と比較して正孔輸送能に優れた層であり、第二正孔輸送層が第一正孔輸送層と比較して電子阻止能に優れた層であることが好ましい。第二正孔輸送層は、一般に電子阻止層と称されることもある。
The hole transporting layer is a layer having a hole transporting property provided between the anode and the light emitting layer, and is a hole injecting layer, a hole transporting layer or the like. A plurality of hole transporting layers may be provided between the anode and the light emitting layer. The hole injection layer or the hole transport layer has a function of transferring holes injected from the anode to the light emitting layer. By interposing the layers between the anode and the light emitting layer, holes are injected into the light emitting layer with a lower electric field.
The hole transport layer is composed of a single layer in the embodiment shown in FIG. 1, but a plurality of layers, for example, a first hole transport layer on the anode side and a second hole transport layer on the cathode side It may be composed of In the case of the two-layer hole transport layer, the first hole transport layer is a layer having an excellent hole transportability compared to the second hole transport layer, and the second hole transport layer is the first positive hole transport layer. It is preferable that it is a layer excellent in electron stopping power compared with a hole transport layer. The second hole transport layer may also be generally referred to as an electron blocking layer.
 本開示の一態様にかかる有機エレクトロルミネッセンス素子において、正孔輸送層(前述した、機能分離された第一正孔輸送層および第二正孔輸送層であってもよい)、正孔注入層および発光層からなる群より選ばれる1つ以上は、前記式(1)で表される縮合環化合物を含むものである。 In an organic electroluminescent device according to an aspect of the present disclosure, a hole transport layer (which may be the above-described function-separated first hole transport layer and second hole transport layer), a hole injection layer, and One or more selected from the group consisting of the light emitting layer is one including the fused ring compound represented by the formula (1).
 式(1)で表される縮合環化合物を含む正孔輸送層、正孔注入層は、該縮合環化合物と共に、公知の正孔輸送性を有する材料の中から選択される任意の1種以上を含有していてもよい。また、式(1)で表される縮合環化合物を含まない正孔輸送層、正孔注入層は、公知の正孔輸送性を有する材料の中から選択される任意の1種以上を含有することが好ましい。 The hole transport layer containing the fused ring compound represented by the formula (1), the hole injection layer, and the fused ring compound are any one or more selected from materials having known hole transportability. May be contained. Moreover, the positive hole transport layer which does not contain the condensed ring compound represented by Formula (1), a positive hole injection layer contains arbitrary 1 or more types selected from the material which has a well-known hole transportability. Is preferred.
 公知の正孔輸送性を有する材料(正孔注入材料、正孔輸送材料、電子阻止材料等を含む)としては、特に限定されるものではないが、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、および、導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。これらのうち、ポルフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物が好ましく、特に芳香族第三級アミン化合物が好ましい。 The material having a known hole transportability (including a hole injection material, a hole transport material, an electron blocking material and the like) is not particularly limited, but, for example, a triazole derivative, an oxadiazole derivative, an imidazole Derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative, amino substituted chalcone derivative, oxazole derivative, styrylanthracene derivative, fluorenone derivative, hydrazone derivative, stilbene derivative, silazane derivative, aniline based copolymer And conductive polymer oligomers, in particular thiophene oligomers. Among these, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds are preferable, and aromatic tertiary amine compounds are particularly preferable.
 上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、前記の公知の正孔輸送性の材料が挙げられる。
 又、p型-Si、p型-SiCなどの無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
Representative examples of the aromatic tertiary amine compound and the styrylamine compound include the above-mentioned known hole transporting materials.
Inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 正孔注入層および正孔輸送層は、上記材料および式(1)で表される縮合環化合物から選ばれる1種以上からなる単層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。
<<電荷発生層4>>
The hole injection layer and the hole transport layer may have a single layer structure composed of one or more selected from the above materials and the fused ring compound represented by the formula (1), and a plurality of layers having the same composition or different compositions. The laminated structure which consists of these may be sufficient.
<< Charge Generation Layer 4 >>
 正孔注入層3と正孔輸送層5との間には、電荷発生層が設けられていてもよい。
 電荷発生層の材料としては、特に制限されるものではないが、例えば、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)が挙げられる。
A charge generation layer may be provided between the hole injection layer 3 and the hole transport layer 5.
The material of the charge generation layer is not particularly limited, and, for example, dipyrazino [2,3-f: 2 ′, 3′-h] quinoxaline-2,3,6,7,10,11-hexa And carbonitrile (HAT-CN).
<<発光層6>>
 正孔輸送層5と電子輸送層7または後述する正孔阻止層との間には、発光層6が設けられている。
<< Light emitting layer 6 >>
A light emitting layer 6 is provided between the hole transport layer 5 and the electron transport layer 7 or a hole blocking layer described later.
 発光層は、蛍光発光材料、又は熱活性化遅延蛍光発光材料を含み、この領域で電子・正孔対が再結合された結果として発光を生ずる。 The light emitting layer comprises a fluorescent light emitting material, or a thermally activated delayed fluorescent light emitting material, and light emission occurs as a result of recombination of electron-hole pairs in this region.
 発光層は、低分子及びポリマー双方を含む単一材料からなっていてもよいが、より一般的には、ゲスト化合物でドーピングされたホスト材料からなっている。発光は主としてドーパントから生じ、任意の色を有することができる。 The light emitting layer may consist of a single material containing both small molecules and polymers, but more generally consists of a host material doped with a guest compound. The emission mainly originates from the dopant and can have any color.
 ホスト材料としては、例えば、ビフェニル基、フルオレニル基、トリフェニルシリル基、カルバゾール基、ピレニル基、又はアントラニル基を有する化合物が挙げられる。より具体的には、DPVBi(4,4’-ビス(2,2-ジフェニルビニル)-1,1’-ビフェニル)、BCzVBi(4,4’-ビス(9-エチル-3-カルバゾビニレン)1,1’-ビフェニル)、TBADN(2-ターシャルブチル-9,10-ジ(2-ナフチル)アントラセン)、ADN(9,10-ジ(2-ナフチル)アントラセン)、CBP(4,4’-ビス(カルバゾール-9-イル)ビフェニル)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、2-(9-フェニルカルバゾール-3-イル)-9-[4-(4-フェニルフェニルキナゾリン-2-イル)カルバゾール、9,10-ビス(ビフェニル)アントラセン、2-(10-フェニル-9-アントラセニル)ベンゾ[b]ナフト[2,3-d]フラン、および式(1)表される縮合環化合物等が挙げられる。 Examples of the host material include compounds having a biphenyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, a pyrenyl group, or an anthranyl group. More specifically, DPVBi (4,4'-bis (2,2-diphenylvinyl) -1,1'-biphenyl), BCzVBi (4,4'-bis (9-ethyl-3-carbazovinylene) 1, 1′-biphenyl), TBADN (2-tert-butyl-9,10-di (2-naphthyl) anthracene), ADN (9,10-di (2-naphthyl) anthracene), CBP (4,4′-bis) (Carbazol-9-yl) biphenyl), CDBP (4,4'-bis (carbazol-9-yl) -2,2'-dimethylbiphenyl), 2- (9-phenylcarbazol-3-yl) -9- [4- (4-phenylphenylquinazolin-2-yl) carbazole, 9,10-bis (biphenyl) anthracene, 2- (10-phenyl-9-anthracenyl) benzo [b Naphtho [2,3-d] furan, and the formula (1) fused ring compounds represented the like.
 ホスト材料としては、後述する電子輸送材料、前述した正孔輸送性を有する材料、正孔・電子再結合を助ける(サポート)別の材料、又はこれら材料の組み合わせであってもよい。 The host material may be an electron transport material described later, a material having a hole transportability described above, another material that supports hole-electron recombination (support), or a combination of these materials.
 蛍光ドーパントとしては、例えば、アントラセン、ピレン、テトラセン、キサンテン、ペリレン、ルブレン、クマリン、ローダミン、キナクリドン、ジシアノメチレンピラン化合物、チオピラン化合物、ポリメチン化合物、ピリリウム、チアピリリウム化合物、フルオレン誘導体、ペリフランテン誘導体、インデノペリレン誘導体、ビス(アジニル)アミンホウ素化合物、ビス(アジニル)メタン化合物、カルボスチリル化合物、式(1)表される縮合環化合物等が挙げられる。蛍光ドーパントはこれらから選ばれる2種以上を組み合わせたものであってもよい。 As the fluorescent dopant, for example, anthracene, pyrene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylene pyran compound, thiopyran compound, polymethine compound, pyrilium, thiapyrilium compound, fluorene derivative, periflanthene derivative, indenoperylene Derivatives, bis (azinyl) amine boron compounds, bis (azinyl) methane compounds, carbostyril compounds, fused ring compounds represented by the formula (1) and the like can be mentioned. The fluorescent dopant may be a combination of two or more selected from these.
 燐光ドーパントとしては、例えば、イリジウム、白金、パラジウム、オスミウム等の遷移金属の有機金属錯体が挙げられる。 Examples of phosphorescent dopants include organometallic complexes of transition metals such as iridium, platinum, palladium, and osmium.
 蛍光ドーパント及び燐光ドーパントの具体例としては、Alq3(トリス(8-ヒドロキシキノリン)アルミニウム)、DPAVBi(4,4’-ビス[4-(ジ-p-トリルアミノ)スチリル]ビフェニル)、ペリレン、ビス[2-(4-n-ヘキシルフェニル)キノリン](アセチルアセトナート)イリジウム(III)、Ir(PPy)3(トリス(2-フェニルピリジン)イリジウム(III))、及びFIrPic(ビス(3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)イリジウム(III)))、1,6-ピレンジアミン,N,N-ビス([1,1’-ビフェニル]-3-イル)-N,N-ビス(4-ジベンゾフラニル)-等が挙げられる。 Specific examples of the fluorescent dopant and the phosphorescent dopant include Alq 3 (tris (8-hydroxyquinoline) aluminum), DPAVBi (4,4′-bis [4- (di-p-tolylamino) styryl] biphenyl), perylene, bis [4 2- (4-n-Hexylphenyl) quinoline] (acetylacetonate) iridium (III), Ir (PPy) 3 (tris (2-phenylpyridine) iridium (III)), and FIrPic (bis (3,5-) Difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)), 1,6-pyrenediamine, N 1 , N 6 -bis ([1,1′-biphenyl] -3-) Yl) -N 1 , N 6 -bis (4-dibenzofuranyl)-and the like.
 発光層は単層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。 The light emitting layer may have a single layer structure, or may have a laminated structure including a plurality of layers having the same composition or different compositions.
<<電子輸送性の層(電子輸送層7、電子注入層8)>>
 電子輸送層7は、電子注入層8と、発光層6との間に設けられている。
<< Electron Transportable Layer (Electron Transport Layer 7, Electron Injection Layer 8) >>
The electron transport layer 7 is provided between the electron injection layer 8 and the light emitting layer 6.
 電子輸送層は、電子注入層より注入された電子を発光層に伝達する機能を有する。電子輸送層を電子注入層と発光層との間に介在させることにより、電子がより低い電界で発光層に注入される。
 なお、電子輸送層は、図1に示す態様においては単層からなっているが、複数層、例えば、陽極側の第一電子輸送層と、陰極側の第二電子輸送層とからなっていてもよい。この2層構成の電子輸送層の場合、第二電子輸送層が第一正孔輸送層と比較して電子輸送能に優れた層であり、第一電子輸送層が第二電子輸送層と比較して正孔阻止能に優れた層であることが好ましい。第一電子輸送層は、一般に正孔阻止層と称されることもある。正孔阻止層は、キャリアバランスを改善させることができる。
The electron transport layer has a function of transferring electrons injected from the electron injection layer to the light emitting layer. By interposing the electron transport layer between the electron injection layer and the light emitting layer, electrons are injected into the light emitting layer with a lower electric field.
Although the electron transport layer is composed of a single layer in the embodiment shown in FIG. 1, it is composed of a plurality of layers, for example, the first electron transport layer on the anode side and the second electron transport layer on the cathode side. It is also good. In the case of this two-layer electron transport layer, the second electron transport layer is a layer excellent in electron transport ability as compared with the first hole transport layer, and the first electron transport layer is compared with the second electron transport layer It is preferable that the layer has an excellent hole blocking ability. The first electron transport layer may be generally referred to as a hole blocking layer. The hole blocking layer can improve carrier balance.
 電子輸送層は電子輸送性材料を含む。電子輸送性材料としては、8-ヒドロキシキノリナートリチウム(Liq)、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)クロロガリウム、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)-1-ナフトラートアルミニウム、又はビス(2-メチル-8-キノリナート)-2-ナフトラートガリウム、2-[3-(9-フェナントレニル)-5-(3-ピリジニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン、及び2-(4,’’-ジ-2-ピリジニル[1,1’:3’,1’’-テルフェニル]-5-イル)-4,6-ジフェニル-1,3,5-トリアジン、BCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)、Bphen(4,7-ジフェニル-1,10-フェナントロリン)、BAlq(ビス(2-メチル-8-キノリノラート)-4-(フェニルフェノラート)アルミニウム)、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム)、および式(1)表される縮合環化合物等が挙げられる。 The electron transport layer contains an electron transport material. Electron transporting materials include lithium 8-hydroxyquinolinate (Liq), zinc bis (8-hydroxyquinolinate), bis (8-hydroxyquinolinate) copper, bis (8-hydroxyquinolinate) manganese, Tris (8-hydroxyquinolinate) aluminum, tris (2-methyl-8-hydroxyquinolinate) aluminum, tris (8-hydroxyquinolinate) gallium, bis (10-hydroxybenzo [h] quinolinate) beryllium, Bis (10-hydroxybenzo [h] quinolinate) zinc, bis (2-methyl-8-quinolinate) chlorogallium, bis (2-methyl-8-quinolinate) (o-cresolate) gallium, bis (2-methyl-8) -Quinolinate) -1-naphtholate aluminum or bis (2- 2- (3-quinolinate) -2-naphtholate gallium, 2- [3- (9-phenanthrenyl) -5- (3-pyridinyl) phenyl] -4,6-diphenyl-1,3,5-triazine, and 2 -(4, ′ ′-di-2-pyridinyl [1,1 ′: 3 ′, 1 ′ ′-terphenyl] -5-yl) -4,6-diphenyl-1,3,5-triazine, BCP ( 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), BAlq (bis (2-methyl-8-quinolinolato) -4- (4) And phenyl fused on a ring), bis (10-hydroxybenzo [h] quinolinate) beryllium), and a fused ring compound represented by the formula (1).
 電子注入層は、電子注入性を向上させ、素子特性(例えば、発光効率、定電圧駆動、又は高耐久性)を向上させることができる。
 電子注入層の材料として望ましい化合物としては、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等が挙げられる。また、上記した金属錯体やアルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ハロゲン化物、希土類ハロゲン化物、SiO、AlO、SiN、SiON、AlON、GeO、LiO、LiON、TiO、TiON、TaO、TaON、TaN、Cなどの各種酸化物、窒化物、または酸化窒化物のような無機化合物等も使用できる。
The electron injection layer can improve the electron injection property, and can improve the device characteristics (for example, luminous efficiency, constant voltage drive, or high durability).
Preferred compounds for the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrandioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, Antron etc. are mentioned. Also, the above-mentioned metal complexes, alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, SiO 2 , AlO, SiN, SiN, SiON, AlON, GeO, Inorganic compounds such as various oxides such as LiO, LiON, TiO, TiON, TaO, TaON, TaN, C, nitrides, or oxynitrides can also be used.
<<陰極9>>
 電子注入層8上には陰極9が設けられている。
 陽極を通過した発光のみが取り出される構成の有機エレクトロルミネッセンス素子の場合、前述したように陰極は任意の導電性材料から形成することができる。望ましい陰極材料としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
<< Cathode 9 >>
A cathode 9 is provided on the electron injection layer 8.
In the case of the organic electroluminescent element of the structure from which only the light emission which passed the anode is taken out, as mentioned above, a cathode can be formed from arbitrary electroconductive materials. Preferred cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium , Lithium / aluminum mixtures, rare earth metals and the like.
 以上説明した本態様にかかる有機エレクトロルミネッセンス素子100は、前述したように、正孔注入層8、正孔輸送層7、発光層6、電子輸送層5、及び電子注入層3からなる群より選ばれる1つ以上は、式(1)で表される縮合環化合物を含む。 The organic electroluminescent device 100 according to this aspect described above is selected from the group consisting of the hole injection layer 8, the hole transport layer 7, the light emitting layer 6, the electron transport layer 5, and the electron injection layer 3 as described above. One or more of them include the fused ring compound represented by the formula (1).
 式(1)で表される縮合環化合物は、特許文献1~3に記載のジベンゾ[g,p]クリセンを用いた化合物と比較して、有機エレクトロルミネッセンス素子、特に燐光発光性の有機エレクトロルミネッセンス素子における正孔輸送層、発光層、蛍光発光性の発光層、または電子輸送層に用いた場合、用いた層に応じて、駆動電圧、発光効率、および/または素子寿命に優れた有機エレクトロルミネッセンス素子が得られる。 The fused ring compound represented by the formula (1) is an organic electroluminescent device, particularly a phosphorescent organic electroluminescent device, as compared with the compound using dibenzo [g, p] chrysene described in Patent Documents 1 to 3. When used in a hole transporting layer, a light emitting layer, a fluorescent light emitting layer, or an electron transporting layer in an element, organic electroluminescence excellent in driving voltage, light emitting efficiency, and / or element life depending on the layer used A device is obtained.
 したがって、本開示の他の態様によれば、従来の有機エレクトロルミネッセンス素子におけるジベンゾ[g,p]クリセン化合物を、式(1)で表される縮合環化合物で置き換えることで、駆動電圧、発光効率、および/または素子寿命に優れた有機エレクトロルミネッセンス素子を提供することができる。 Therefore, according to another aspect of the present disclosure, driving voltage and luminous efficiency can be obtained by replacing the dibenzo [g, p] chrysene compound in the conventional organic electroluminescent device with the fused ring compound represented by the formula (1). It is possible to provide an organic electroluminescent device excellent in device lifetime and / or device lifetime.
 また、本開示のさらに他の態様にかかる有機エレクトロルミネッセンス素子用材料は、正孔輸送材料として用いたときに、従来のジベンゾ[g,p]クリセンを用いた場合と比較して、隣接する発光層からの電子の漏れだしを防ぐ効果がある。そのため、本開示のさらに他の態様によれば、発光効率に優れた有機エレクトロルミネッセンス素子の作製に資する、有機エレクトロルミネッセンス素子用材料を提供することができる。 In addition, when the material for an organic electroluminescent device according to still another aspect of the present disclosure is used as a hole transport material, adjacent light emission is obtained as compared with the case where conventional dibenzo [g, p] chrysene is used. It has the effect of preventing the leak of electrons from the layer. Therefore, according to the further another aspect of this indication, the material for organic electroluminescent elements which contributes to preparation of the organic electroluminescent element excellent in luminous efficiency can be provided.
 また、本開示のさらに他の態様にかかる有機エレクトロルミネッセンス素子用材料によれば、発光材料として用いたときに、従来のジベンゾ[g,p]クリセンを用いた場合と比較して、隣接する正孔輸送層からの正孔、および電子輸送層からの電子をより速やかに受容する効果がある。そのため、本開示のさらに他の態様によれば、発光効率に優れた有機エレクトロルミネッセンス素子の作製に資する、有機エレクトロルミネッセンス素子用材料を提供することができる。 In addition, according to the material for an organic electroluminescence device according to still another aspect of the present disclosure, when used as a light emitting material, adjacent positive ones are used as compared with the case where conventional dibenzo [g, p] chrysene is used. It has the effect of more rapidly accepting holes from the hole transport layer and electrons from the electron transport layer. Therefore, according to the further another aspect of this indication, the material for organic electroluminescent elements which contributes to preparation of the organic electroluminescent element excellent in luminous efficiency can be provided.
 また、本開示のさらに他の態様にかかる有機エレクトロルミネッセンス素子用材料によれば、電子輸送材料として用いたときに、従来のジベンゾ[g,p]クリセンを用いた場合と比較して、電子に対する耐久性が向上する効果がある。そのため、本開示のさらに他の態様によれば、素子寿命に優れた有機エレクトロルミネッセンス素子の作製に資する、有機エレクトロルミネッセンス素子用材料を提供することができる。 In addition, according to the material for an organic electroluminescent device according to still another aspect of the present disclosure, when used as an electron transport material, the material for electrons is used as compared to the case where conventional dibenzo [g, p] chrysene is used. It has the effect of improving the durability. Therefore, according to the further another aspect of this indication, the material for organic electroluminescent elements which contributes to preparation of the organic electroluminescent element excellent in element lifetime can be provided.
 本開示の一態様にかかる縮合環化合物は、有機エレクトロルミネッセンス素子用材料、例えば、正孔注入材料、正孔輸送材料、発光層材料、電子輸送材料、電子注入材料として利用可能である。該縮合環化合物を用いた有機エレクトロルミネッセンス素子は、駆動電圧、発光効率、または素子寿命に優れる。さらに該縮合環化合物は、有機エレクトロルミネッセンス素子への利用に限られるものではなく、電子写真感光体、光電変換素子、太陽電池、およびイメージセンサー等の有機光導電材料への分野にも応用可能である。 The fused ring compound according to one aspect of the present disclosure can be used as a material for an organic electroluminescent device, for example, a hole injection material, a hole transport material, a light emitting layer material, an electron transport material, and an electron injection material. The organic electroluminescent device using the fused ring compound is excellent in driving voltage, luminous efficiency or device life. Furthermore, the fused ring compound is not limited to use in organic electroluminescent devices, and can be applied to the field of organic photoconductive materials such as electrophotographic photosensitive members, photoelectric conversion devices, solar cells, and image sensors. is there.
 本開示の第1の態様は、前記式(1)で表される縮合環化合物である:
 式中、
  Xは、
   置換基を有していてもよい、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、または、
   これらの環の1つが、置換もしくは無置換のベンゼン環と縮環した環を表し;
  A~Aは、それぞれ独立して、電荷輸送性基を表し;
  k1~k3は、それぞれ独立して、0以上4以下の整数であり;
  k1~k3が2以上の整数である場合、複数のA~Aは、同一であっても異なっていてもよい。
A first aspect of the present disclosure is a fused ring compound represented by the formula (1):
During the ceremony
X is
A furan ring, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring which may have a substituent, or
One of these rings represents a ring fused to a substituted or unsubstituted benzene ring;
Each of A 1 to A 3 independently represents a charge transporting group;
k1 to k3 are each independently an integer of 0 or more and 4 or less;
When k1 to k3 are integers of 2 or more, the plurality of A 1 to A 3 may be the same or different.
 本開示の第2の態様は、
 A~Aが、それぞれ独立して、
  重水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、ヒドロキシル基、チオール基、
  置換基を有していてもよい炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基、
  置換基を有していてもよい炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基、
  置換基を有していてもよいホスフィンオキシド基、
  置換基を有していてもよいシリル基、
  炭素数2~10の飽和炭化水素基を有していてもよいボロニル基、
  炭素数1~18の直鎖もしくは分岐のアルキル基、炭素数1~18の直鎖もしくは分岐のアルコキシ基、または、
  上記式(2)もしくは上記(2’)で表される基である、上記第1の態様に記載の縮合環化合物である:
 式中、
  R~Rは、それぞれ独立して、
   水素原子、重水素原子、
   置換基を有していてもよい炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基、
   置換基を有していてもよい炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基、または、
   炭素数1~18の直鎖若しくは分岐のアルキル基を表し;
  Yは、それぞれ独立して、
   メチル基もしくはフェニル基で置換されていてもよいフェニレン基、
   メチル基もしくはフェニル基で置換されていてもよいナフチレン基、
   メチル基もしくはフェニル基で置換されていてもよいビフェニレン基、または、
   単結合を表し;
  nは、1または2を表し、
   Yが単結合の場合、nは1であり、
   Yが単結合ではない場合、nは1または2であり;
  nが2の場合、複数のR~Rは、同一であっても異なっていてもよい。
The second aspect of the present disclosure is
A 1 to A 3 are each independently
Deuterium atom, fluorine atom, bromine atom, iodine atom, cyano group, nitro group, hydroxyl group, thiol group,
An aromatic hydrocarbon group having 6 to 30 carbon atoms, which may have a substituent, 6 to 30 carbon atoms, a linkage, or a fused ring,
A C3-C36 monocyclic, linked, or fused heteroaromatic group which may have a substituent,
Phosphine oxide group which may have a substituent,
Silyl group which may have a substituent,
A boronyl group optionally having a saturated hydrocarbon group of 2 to 10 carbon atoms,
A linear or branched alkyl group having 1 to 18 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, or
The fused ring compound according to the first aspect is a group represented by the above formula (2) or the above (2 ′):
During the ceremony
R 1 to R 3 are each independently
Hydrogen atom, deuterium atom,
An aromatic hydrocarbon group having 6 to 30 carbon atoms, which may have a substituent, 6 to 30 carbon atoms, a linkage, or a fused ring,
A C3-C36 monocyclic, linked or fused heteroaromatic group which may have a substituent, or
Represents a linear or branched alkyl group having 1 to 18 carbon atoms;
Y is each independently
A phenylene group which may be substituted by a methyl group or a phenyl group,
Naphthylene group which may be substituted by methyl group or phenyl group,
A biphenylene group which may be substituted by a methyl group or a phenyl group, or
Represents a single bond;
n represents 1 or 2;
When Y is a single bond, n is 1 and
When Y is not a single bond, n is 1 or 2;
When n is 2, the plurality of R 1 to R 2 may be the same or different.
 本開示の第3の態様は、k1~k3の合計が、3以下である、上記第1または第2の態様に記載の縮合環化合物である。 A third aspect of the present disclosure is the fused ring compound according to the first or second aspect, wherein the total of k1 to k3 is 3 or less.
 本開示の第4の態様は、前記式(3)~(22)のいずれか1つで表される縮合環化合物である、上記第1~第3のいずれか1つに記載の縮合環化合物である:
 式中、
  A~Aおよびk~kは、それぞれ、式(1)におけるA~Aおよびk~kと同じ定義であり;
  AおよびAは、それぞれ独立して、電荷輸送性基を表し;
  k4は、0以上4以下の整数であり;
  k5は、0以上2以下の整数であり;
  k1~k5が2以上の整数である場合、複数のA~Aは、同一であっても異なっていてもよい。
A fourth aspect of the present disclosure is the fused ring compound according to any one of the first to third, which is a fused ring compound represented by any one of the formulas (3) to (22). Is:
During the ceremony
A 1 to A 3 and k 1 to k 3 have the same definitions as A 1 to A 3 and k 1 to k 3 in the formula (1), respectively;
Each of A 4 and A 5 independently represents a charge transporting group;
k4 is an integer of 0 or more and 4 or less;
k5 is an integer of 0 or more and 2 or less;
When k1 to k5 are integers of 2 or more, the plurality of A 1 to A 5 may be the same or different.
 以下、本開示の各態様を実施例に基づきさらに詳細に説明するが、本開示の各態様はこれらの実施例に何ら限定されて解釈されるものではない。
 なお、本実施例で用いた分析機器及び測定方法を以下に列記する。
Hereinafter, each aspect of the present disclosure will be described in more detail based on examples, but each aspect of the present disclosure is not to be construed as being limited to these examples.
The analytical instrument and the measuring method used in this example are listed below.
[材料純度測定(HPLC分析)]
  測定装置:東ソー製 マルチステーションLC-8020
  測定条件:カラム Inertsil ODS-3V
       (4.6mmΦ×250mm)
  検出器 UV検出(波長 254nm)
  溶離液 メタノール/テトラヒドロフラン=9/1(v/v比)
[NMR測定]
  測定装置:バリアン社製 Gemini200
[質量分析]
  質量分析装置:日立製作所 M-80B
  測定方法:FD-MS分析
[有機エレクトロルミネッセンス素子の発光特性]
  測定装置:トプコンテクノハウス社製LUMINANCEMETER(BM-9)
[Material purity measurement (HPLC analysis)]
Measuring device: Tosoh multi station LC-8020
Measurement conditions: Column Inertsil ODS-3V
(4.6 mm × x 250 mm)
Detector UV detection (wavelength 254 nm)
Eluent methanol / tetrahydrofuran = 9/1 (v / v ratio)
[NMR measurement]
Measuring device: Varian Gemini 200
[Mass spectrometry]
Mass spectrometer: Hitachi M-80B
Measurement method: FD-MS analysis [emission characteristics of organic electroluminescent device]
Measuring device: LUCONANCE METER (BM-9) manufactured by Topcon Technohouse
[実施例-1](化合物(3iE-1の合成) Example 1 (Compound (Synthesis of 3iE-1))
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 窒素気流下、20mLのガラス容器に、9-(2-ブロモフェニル)-フェナントレン 333mg(1.00mmol)、5-メチルフラン-2-ボロン酸ピナコールエステル 250mg(1.20mmol)、酢酸パラジウム 2.0mg(0.01mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 9.5mg(0.02mmol)、1,4-ジオキサン 2mL、及び濃度2Mのリン酸カリウム水溶液 1mLを加え、75℃で2日間攪拌した。室温まで冷却後、メタノール10mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(3iE-1)の灰色粉末を206mg(0.61mmol)単離した(収率61.0%、HPLC純度99.4%)。 333 mg (1.00 mmol) of 9- (2-bromophenyl) -phenanthrene, 250 mg (1.20 mmol) of 5-methylfuran-2-boronic acid pinacol ester, 2.0 mg of palladium acetate in a 20 mL glass container under a nitrogen stream (0.01 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (Xphos) 9.5 mg (0.02 mmol), 1,4-dioxane 2 mL, and potassium phosphate at a concentration of 2 M 1 mL of aqueous solution was added and stirred at 75 ° C. for 2 days. After cooling to room temperature, 10 mL of methanol is added and stirred, and the precipitated solid is collected by filtration and washed with pure water and methanol to isolate 206 mg (0.61 mmol) of gray powder of compound (3iE-1) (Yield 61.0%, HPLC purity 99.4%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.76(d,2H),8.00(dd,1H),7.87(dd,1H),7.72-7.60(m,4H),7.53-7.49(m,2H),7.43-7.32(m,3H),5.52(dd,1H),5.14(d,1H),2.17(s,3H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.76 (d, 2 H), 8.00 (dd, 1 H), 7.87 (dd, 1 H), 7.72-7.60 (m, 4 H), 7 .53-7.49 (m, 2H), 7.43-7.32 (m, 3H), 5.52 (dd, 1H), 5.14 (d, 1H), 2.17 (s, 3H) )
[実施例-2](化合物(3iE-3の合成) Example 2 (Compound (Synthesis of 3iE-3)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 窒素気流下、20mLのガラス容器に、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 368mg(1.00mmol)、5-メチルフラン-2-ボロン酸ピナコールエステル 261mg(1.30mmol)、酢酸パラジウム 2mg(0.01mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 9.5mg(0.02mmol)、1,4-ジオキサン 1mL、及び濃度2Mのリン酸カリウム水溶液 1mLを加え、75℃で3日間攪拌した。室温まで冷却後、メタノール10mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(3iE-3)の灰色粉末を383mg(1.04mmol)単離した(収率>99.9%、HPLC純度94.0%)。 In a 20 mL glass container under a nitrogen stream, 368 mg (1.00 mmol) of 9- (2-bromo-4-chlorophenyl) -phenanthrene, 261 mg (1.30 mmol) of 5-methylfuran-2-boronic acid pinacol ester, palladium acetate 2 mg (0.01 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (Xphos) 9.5 mg (0.02 mmol), 1 mL of 1,4-dioxane, and 2 M phosphoric acid 1 mL of potassium aqueous solution was added and stirred at 75 ° C. for 3 days. After cooling to room temperature, 10 mL of methanol is added and stirred, and the precipitated solid is collected by filtration and washed with pure water and methanol to isolate 383 mg (1.04 mmol) of gray powder of compound (3iE-3) (Yield> 99.9%, HPLC purity 94.0%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.94-8.91(m,2H),8.04-7.99(m,1H),7.90(d,1H),7.78-7.65(m,4H),7.55-7.48(m,2H),7.40-7.32(m,2H),5.72(dd,1H),5.11(d,1H),2.11(s,3H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.94-8.91 (m, 2H), 8.04-7.99 (m, 1H), 7.90 (d, 1H), 7.78- 7.65 (m, 4 H), 7.55 to 7.48 (m, 2 H), 7.40 to 7. 32 (m, 2 H), 5.72 (dd, 1 H), 5.11 (d, 5 h) 1H), 2.11 (s, 3H)
[実施例-3](化合物(4iF-1の合成) Example 3 (Compound (Synthesis of 4iF-1))
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 窒素気流下、20mLのガラス容器に、9-(2-ブロモフェニル)-フェナントレン 333mg(1.00mmol)、5-フェニル-2-チエニルボロン酸 245mg(1.20mmol)、酢酸パラジウム 4.5mg(0.02mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 19mg(0.04mmol)、テトラヒドロフラン 2mL、及び濃度2Mのリン酸カリウム水溶液 1mLを加え、50℃で16時間攪拌した。室温まで冷却後、メタノール15mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(4iF-1)の無色粉末を279mg(0.68mmol)単離した(収率68.0%、HPLC純度92.6%)。 333 mg (1.00 mmol) of 9- (2-bromophenyl) -phenanthrene, 245 mg (1.20 mmol) of 5-phenyl-2-thienylboronic acid, 4.5 mg (0 .02 mmol), 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos) 19 mg (0.04 mmol), 2 mL of tetrahydrofuran, and 1 mL of 2 M aqueous solution of potassium phosphate at 50 ° C. Stir for 16 hours. After cooling to room temperature, 15 mL of methanol is added and stirred, and the precipitated solid is collected by filtration and washed with pure water and methanol to isolate 279 mg (0.68 mmol) of colorless powder of compound (4iF-1) (Yield 68.0%, HPLC purity 92.6%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.73(d,2H),7.87(dd,1H),7.77(d,1H),7.71(s,1H),7.70-7.50(m,5H),7.46-7.40(m,3H),7.34-7.32(m,2H),7.23-7.21(m,2H),7.17-7.14(m,1H),6.79(d,1H),6.53(d,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.73 (d, 2 H), 7.87 (dd, 1 H), 7.77 (d, 1 H), 7.71 (s, 1 H), 7. 70-7 .50 (m, 5 H), 7.46-7.40 (m, 3 H), 7.34-7. 32 (m, 2 H), 7.23-7. 21 (m, 2 H), 7.17 -7.14 (m, 1 H), 6.79 (d, 1 H), 6.53 (d, 1 H)
[実施例-4](化合物(7iB-3の合成) Example 4 (Compound (Synthesis of 7iB-3))
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 窒素気流下、20mLのガラス容器に、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 368mg(1.00mmol)、ベンゾフラン-2-ボロン酸 194mg(1.20mmol)、酢酸パラジウム 4.5mg(0.02mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 19mg(0.04mmol)、テトラヒドロフラン 2mL、及び濃度2Mのリン酸カリウム水溶液 1mLを加え、50℃で16時間攪拌した。室温まで冷却後、メタノール20mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(7iB-3)の無色粉末を382mg(0.94mmol)単離した(収率94.0%、HPLC純度93.0%)。 In a 20 mL glass container under a stream of nitrogen, 368 mg (1.00 mmol) of 9- (2-bromo-4-chlorophenyl) -phenanthrene, 194 mg (1.20 mmol) of benzofuran-2-boronic acid, and 4.5 mg (0 .02 mmol), 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos) 19 mg (0.04 mmol), 2 mL of tetrahydrofuran, and 1 mL of 2 M aqueous solution of potassium phosphate at 50 ° C. Stir for 16 hours. After cooling to room temperature, 20 mL of methanol is added and stirred, and the precipitated solid is collected by filtration and washed with pure water and methanol to isolate 382 mg (0.94 mmol) of colorless powder of compound (7iB-3) (Yield 94.0%, HPLC purity 93.0%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.95(dd,2H),8.17(d,1H),8.04(dd,1H),7.88(s,1H),7.79-7.76(m,1H),7.72-7.65(m,3H),7.51-7.46(m,2H),7.43-7.39(m,2H),7.24-7.18(m,2H),7.05-7.01(m,1H),5.88(d,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.95 (dd, 2 H), 8. 17 (d, 1 H), 8.04 (dd, 1 H), 7.88 (s, 1 H), 7.79 -7.76 (m, 1H), 7.72-7.65 (m, 3H), 7.51-7.46 (m, 2H), 7.43-7.39 (m, 2H), 7 .24-7.18 (m, 2H), 7.05 to 7.01 (m, 1H), 5.88 (d, 1H)
[実施例-5](化合物(8iB-3の合成) Example 5 (Compound (Synthesis of 8iB-3))
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 窒素気流下、20mLのガラス容器に、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 368mg(1.00mmol)、ベンゾチオフェン-2-ボロン酸 214mg(1.20mmol)、酢酸パラジウム 4.5mg(0.02mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 19mg(0.04mmol)、テトラヒドロフラン 2mL、及び濃度2Mのリン酸カリウム水溶液 1mLを加え、75℃で4日間攪拌した。室温まで冷却後、メタノール10mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(8iB-3)の無色粉末を175mg(0.42mmol)単離した(収率42.0%、HPLC純度92.4%)。 In a 20 mL glass container under a nitrogen stream, 368 mg (1.00 mmol) of 9- (2-bromo-4-chlorophenyl) -phenanthrene, 214 mg (1.20 mmol) of benzothiophene-2-boronic acid, 4.5 mg of palladium acetate 0.02 mmol), 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos) 19 mg (0.04 mmol), 2 mL of tetrahydrofuran, and 1 mL of an aqueous solution of 2 M potassium phosphate at a concentration of 75 ° C. The solution was stirred for 4 days. After cooling to room temperature, 10 mL of methanol is added and stirred, and the precipitated solid is collected by filtration and washed with pure water and methanol to isolate 175 mg (0.42 mmol) of colorless powder of compound (8iB-3) (Yield 42.0%, HPLC purity 92.4%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.71(d,2H),7.85(dd,1H),7.82(d,1H),7.71-7.66(m,2H),7.63-7.37(m,8H),7.16-7.09(m,2H),7.04(d,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.71 (d, 2 H), 7.85 (dd, 1 H), 7.82 (d, 1 H), 7.71-7. 66 (m, 2 H), 7 .63-7.37 (m, 8H), 7.16-7.09 (m, 2H), 7.04 (d, 1H)
[実施例-6](化合物(9iB-3の合成) Example 6 (Compound (Synthesis of 9iB-3))
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 窒素気流下、20mLのガラス容器に、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 368mg(1.00mmol)、ベンゾフラン-3-ボロン酸 194mg(1.20mmol)、酢酸パラジウム 2.0mg(0.01mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 9.5mg(0.02mmol)、1,4-ジオキサン 2mL、及び濃度2Mのリン酸カリウム水溶液 1mLを加え、105℃で2日間攪拌した。室温まで冷却後、メタノール10mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(9iB-3)の無色粉末を404mg(0.99mmol)単離した(収率99.9%、HPLC純度90.6%)。 In a 20 mL glass container under a nitrogen stream, 368 mg (1.00 mmol) 9- (2-bromo-4-chlorophenyl) -phenanthrene, 194 mg (1.20 mmol) benzofuran-3-boronic acid, 2.0 mg palladium acetate .01 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (Xphos) 9.5 mg (0.02 mmol), 1 mL of 1,4-dioxane, and 1 mL of a 2 M aqueous solution of potassium phosphate Was added and stirred at 105 ° C. for 2 days. After cooling to room temperature, 10 mL of methanol is added and stirred, and the precipitated solid is collected by filtration and washed with pure water and methanol to isolate 404 mg (0.99 mmol) of colorless powder of compound (9iB-3) (Yield 99.9%, HPLC purity 90.6%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.68(dd,2H),7.80-7.78(m,2H),7.71-7.45(m,8H),7.37-7.33(m,1H),7.29-7.21(m,3H),6.89(s,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.68 (dd, 2H), 7.80-7.78 (m, 2H), 7.71-7.45 (m, 8H), 7.37-7. 33 (m, 1 H), 7.29-7. 21 (m, 3 H), 6.89 (s, 1 H)
[実施例-7](化合物(10iB-3の合成) Example 7 (Compound (Synthesis of 10iB-3)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 窒素気流下、20mLのガラス容器に、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 9.41g(25.59mmol)、ベンゾチオフェン-3-ボロン酸 5.01g(28.14mmol)、酢酸パラジウム 115mg(0.51mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 486mg(1.02mmol)、テトラヒドロフラン 25mL、及び濃度2Mの炭酸カリウム水溶液 15mLを加え70℃で16時間攪拌した。室温まで冷却後、クロロホルム 100mLを添加し、撹拌した。水層と有機層を分液し、得られた有機層を無水硫酸マグネシウムで乾燥後、減圧下に濃縮した。残渣を再結晶(クロロホルム/メタノール)することにより、化合物(10iB-3)の無色粉末を6.83g(16.23mmol)単離した(収率63.4%、HPLC純度97.3%)。 9.41 g (25.59 mmol) of 9- (2-bromo-4-chlorophenyl) -phenanthrene, 5.01 g (28.14 mmol) of benzothiophene-3-boronic acid in a 20 mL glass container under nitrogen stream, palladium acetate 115 mg (0.51 mmol), 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos) 486 mg (1.02 mmol), 25 mL of tetrahydrofuran, and 15 mL of 2 M aqueous potassium carbonate solution are added to 70 ° C. The mixture was stirred for 16 hours. After cooling to room temperature, 100 mL of chloroform was added and stirred. The aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was recrystallized (chloroform / methanol) to isolate 6.83 g (16.23 mmol) of a colorless powder of compound (10iB-3) (yield 63.4%, HPLC purity 97.3%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.61(d,1H),7.81(d,1H),7.71(d,1H),7.67-7.65(m,2H),7.63-7.59(m,2H),7.55-7.49(m,5H),7.35-7.24(m,3H),6.83(s,6.83)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.61 (d, 1 H), 7.81 (d, 1 H), 7.71 (d, 1 H), 7.67-7.65 (m, 2 H) , 7.63-7.59 (m, 2H), 7.55-7.49 (m, 5H), 7.35-7.24 (m, 3H), 6.83 (s, 6.83)
[合成例-1](4-(2-ブロモ-4-クロロフェニル)ジベンゾフランの合成) Synthesis Example 1 (Synthesis of 4- (2-bromo-4-chlorophenyl) dibenzofuran)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 窒素気流下、200mLの二口ナスフラスコに、2-ブロモ-4-クロロ-1-ヨードベンゼン 12.4g(39.2mmol)、ジベンゾフラン-4-ボロン酸 9.98g(47.1mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 453mg(0.39mmol)、トルエン 30mL、エタノール 3mL、及び濃度2Mの炭酸セシウム水溶液 30mLを加え、100℃で2日間攪拌した。室温まで冷却後、純水を100mL添加し攪拌した。水層と有機層を分液し、得られた有機層を無水硫酸ナトリウムで乾燥後、減圧下に濃縮した。残渣を再結晶(酢酸エチル/メタノール)することにより、4-(2-ブロモ-4-クロロフェニル)ジベンゾフランの無色粉末を5.86g(16.4mmol)単離した(収率41・8%、HPLC純度99.8%)。 In a 200 mL two-necked round-bottomed flask under a stream of nitrogen, 12.4 g (39.2 mmol) of 2-bromo-4-chloro-1-iodobenzene, 9.98 g (47.1 mmol) of dibenzofuran-4-boronic acid, tetrakis Triphenylphosphine) palladium (0) 453 mg (0.39 mmol), 30 mL of toluene, 3 mL of ethanol, and 30 mL of a 2 M aqueous solution of cesium carbonate were added, and the mixture was stirred at 100 ° C. for 2 days. After cooling to room temperature, 100 mL of pure water was added and stirred. The aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was recrystallized (ethyl acetate / methanol) to isolate 5.86 g (16.4 mmol) of a colorless powder of 4- (2-bromo-4-chlorophenyl) dibenzofuran (yield: 41.8%, HPLC) Purity 99.8%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.23(dd,1H),8.21(dd,1H),7.98(d,1H),7.69-7.63(m,2H),7.59(m,1H),7.54-7.49(m,2H),7.46-7.41(m,2H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.23 (dd, 1 H), 8.21 (dd, 1 H), 7.98 (d, 1 H), 7.69-7.63 (m, 2 H) , 7.59 (m, 1 H), 7.5 4-7. 49 (m, 2 H), 7.4 6-7.41 (m, 2 H)
[実施例-8](化合物(11iA-3の合成) Example 8 (Synthesis of Compound (11iA-3))
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 窒素気流下、20mLのガラス容器に、4-(2-ブロモ-4-クロロフェニル)ジベンゾフラン 35.8mg(0.10mmol)、9-フェナントレンボロン酸 27.0mg(0.12mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 2.0mg(1.73μmol)、トルエン 1.0mL、エタノール 0.2mL、及び濃度2Mの炭酸セシウム水溶液 1.0mLを加え、100℃で2日間攪拌した。室温まで冷却後、メタノールを10mL添加し、析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(11iA-3)の灰色粉末を27.8mg(0.61mmol)単離した(収率61.1%、HPLC純度97.1%)。 In a 20 mL glass container under a stream of nitrogen, 35.8 mg (0.10 mmol) of 4- (2-bromo-4-chlorophenyl) dibenzofuran, 27.0 mg (0.12 mmol) of 9-phenanthreneboronic acid, tetrakis (triphenylphosphine) 2.) 2.0 mg (1.73 μmol) of palladium (0), 1.0 mL of toluene, 0.2 mL of ethanol, and 1.0 mL of a 2 M aqueous solution of cesium carbonate were added, and the mixture was stirred at 100 ° C. for 2 days. After cooling to room temperature, 10 mL of methanol is added, and the precipitated solid is collected by filtration and washed with pure water and methanol to isolate 27.8 mg (0.61 mmol) of gray powder of compound (11iA-3) (Yield 61.1%, HPLC purity 97.1%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.69-8.66(m,2H),7.93(d,1H),7.82(d,1H),7.79-7.76(m,4H),7.66-7.64(m,2H),7.61-7.51(m,3H),7.44-7.48(m,3H),7.29-7.25(m,1H),7.19(d,1H),7.03(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.69-8.66 (m, 2 H), 7.93 (d, 1 H), 7.82 (d, 1 H), 7.79-7. 76 ( m, 4H), 7.66-7.64 (m, 2H), 7.61-7.51 (m, 3H), 7.44-4.48 (m, 3H), 7.29-7. 25 (m, 1 H), 7.19 (d, 1 H), 7.03 (t, 1 H)
[実施例-9](化合物(11iB-3の合成) [Example 9] (Compound (Synthesis of 11iB-3)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 窒素気流下、20mLのガラス容器に、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 7.34g(19.97mmol)、ジベンゾフラン-4-ボロン酸 5.08g(23.96mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 231mg(0.29mmol)、トルエン 15mL、エタノール 3mL、及び濃度2Mの炭酸セシウム水溶液 15mLを加え、100℃で18時間攪拌した。室温まで冷却後、メタノールを50mL添加し、析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(11iB-3)の灰色粉末を7.63g(16.77mmol)単離した(収率84.0%、HPLC純度94.9%)。 In a 20 mL glass container under a stream of nitrogen, 7.34 g (19.97 mmol) of 9- (2-bromo-4-chlorophenyl) -phenanthrene, 5.08 g (23.96 mmol) of dibenzofuran-4-boronic acid, tetrakis (triol) 231 mg (0.29 mmol) of phenylphosphine) palladium (0), 15 mL of toluene, 3 mL of ethanol, and 15 mL of a 2 M aqueous solution of cesium carbonate were added, and the mixture was stirred at 100 ° C. for 18 hours. After cooling to room temperature, 50 mL of methanol is added, and the precipitated solid is collected by filtration and washed with pure water and methanol to isolate 7.63 g (16.77 mmol) of gray powder of compound (11iB-3) (Yield 84.0%, HPLC purity 94.9%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.68(t,2H),7.94(d,1H),7.81-7.77(m,3H),7.74-7.50(m,7H),7.45-7.38(m,3H),7.29-7.22(m,2H),7.05(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.68 (t, 2 H), 7.94 (d, 1 H), 7.81-7. 77 (m, 3 H), 7.74-7. 50 (m, 7H), 7.45 to 7.38 (m, 3H), 7.29 to 7.22 (m, 2H), 7.05 (t, 1H)
[実施例-10](化合物(12iA-3の合成) Example 10 (Compound (Synthesis of 12iA-3)
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 窒素気流下、300mLの二口ナスフラスコに、2-ブロモ-4-クロロ-1-ヨードベンゼン 17.7g(55.9mmol)、ジベンゾチオフェン-4-ボロン酸 14.0g(61.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 647mg(0.56mmol)、トルエン 55mL、エタノール 5mL、及び濃度2Mの炭酸カリウム水溶液 40mLを加え、100℃で2日間攪拌した。室温まで冷却後、純水を100mL添加し攪拌した。水層と有機層を分液し、得られた有機層を無水硫酸ナトリウムで乾燥後、減圧下に濃縮することで、4-(2-ブロモ-4-クロロフェニル)ジベンゾチオフェンを含む粘性液体を22.6g得た。次に、窒素気流下、300mLの二口ナスフラスコに、上記粘性液体 22.6g、9-フェナントレンボロン酸 12.4g(55.9mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 647mg(0.56mmol)、テトラヒドロフラン 60mL、及び濃度2Mの炭酸セシウム水溶液 30mLを加え、75℃で3日間攪拌した。室温まで冷却後、メタノール 100mL、及び純水50mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(アセトン/ヘキサン)することにより、化合物(12iA-3)の灰色粉末を16.3g(34.7mmol)単離した(収率62.1%、HPLC純度98.1%)。 In a 300 mL two-necked round bottom flask under a nitrogen stream, 17.7 g (55.9 mmol) of 2-bromo-4-chloro-1-iodobenzene, 14.0 g (61.5 mmol) of dibenzothiophene-4-boronic acid, tetrakis (Triphenylphosphine) palladium (0) 647 mg (0.56 mmol), 55 mL of toluene, 5 mL of ethanol, and 40 mL of aqueous 2 M potassium carbonate solution were added, and the mixture was stirred at 100 ° C. for 2 days. After cooling to room temperature, 100 mL of pure water was added and stirred. The aqueous layer and the organic layer are separated, and the obtained organic layer is dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain a viscous liquid containing 4- (2-bromo-4-chlorophenyl) dibenzothiophene. I got .6g. Next, 22.6 g of the viscous liquid, 12.4 g (55.9 mmol) of 9-phenanthreneboronic acid, and 464 mg of tetrakis (triphenylphosphine) palladium (0) were added to a 300 mL two-necked round bottom flask under a nitrogen stream. 56 mmol), 60 mL of tetrahydrofuran, and 30 mL of a 2 M aqueous solution of cesium carbonate were added, and the mixture was stirred at 75 ° C. for 3 days. After cooling to room temperature, 100 mL of methanol and 50 mL of pure water were added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. 16.3 g (34.7 mmol) of gray powder of compound (12iA-3) was isolated by recrystallization (acetone / hexane) of the residue (yield 62.1%, HPLC purity 98.1%) .
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.58(dd,2H),8.01(dd,1H),7.83(dd,1H),7.78-7.74(m,3H),7.68-7.39(m,10H),6.93-6.92(m,2H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.58 (dd, 2 H), 8.01 (dd, 1 H), 7.83 (dd, 1 H), 7.78-7.74 (m, 3 H), 7 .68-7.39 (m, 10H), 6.93-6.92 (m, 2H)
[実施例-11](化合物(12iB-3の合成) Example 11 (Compound (Synthesis of 12iB-3)
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 窒素気流下、300mLの二口ナスフラスコに、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 14.7g(40.0mmol)、ジベンゾチオフェン-4-ボロン酸 11.0g(48.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 462mg(0.40mmol)、トルエン 40mL、エタノール 4mL、及び濃度2Mの炭酸カリウム水溶液 30mLを加え、100℃で3日間時間攪拌した。室温まで冷却後、クロロホルム及び純水を添加し、撹拌した。水層と有機層を分液し、得られた有機層を無水硫酸ナトリウムで乾燥後、減圧下に濃縮した。残差を再結晶(クロロホルム/メタノール)することにより、化合物(12iB-3)の灰色粉末を15.2g(32.3mmol)単離した(収率80.7%、HPLC純度96.2%)。 14.7 g (40.0 mmol) of 9- (2-bromo-4-chlorophenyl) -phenanthrene, 11.0 g (48.0 mmol) of dibenzothiophene-4-boronic acid in a 300 mL two-necked flask under nitrogen stream 462 mg (0.40 mmol) of tetrakis (triphenylphosphine) palladium (0), 40 mL of toluene, 4 mL of ethanol, and 30 mL of a 2 M aqueous solution of potassium carbonate were added, and the mixture was stirred at 100 ° C. for 3 days. After cooling to room temperature, chloroform and pure water were added and stirred. The aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. 15.2 g (32.3 mmol) of gray powder of compound (12iB-3) was isolated by recrystallization (chloroform / methanol) of the residue (yield 80.7%, HPLC purity 96.2%) .
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.60-8.57(m,2H),8.04-8.01(m,1H),7.88-7.71(m,4H),7.65-7.39(m,10H),7.64(d,2H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.60-8.57 (m, 2H), 8.04-8.01 (m, 1H), 7.88-7.71 (m, 4H), 7. 65-7.39 (m, 10 H), 7.64 (d, 2 H)
[実施例-12](化合物(13iB-3の合成) Example 12 (Compound (Synthesis of 13iB-3)
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 窒素気流下、100mLの二口ナスフラスコに、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 7.35g(20.0mmol)、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ジベンゾフラン 10.1g(24.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 231mg(0.20mmol)、テトラヒドロフラン 30mL、及び濃度2Mの炭酸カリウム水溶液 20mLを加え、75℃で15時間攪拌した。室温まで冷却後、メタノール 50mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(クロロホルム/メタノール)することにより、化合物(13iB-3)の灰色粉末を4.86g(10.7mmol)単離した(収率53.4%、HPLC純度94.4%)。 7.25 g (20.0 mmol) of 9- (2-bromo-4-chlorophenyl) -phenanthrene, 3- (4,4,5,5-tetramethyl-1) in a 100 mL two-necked eggplant flask under a nitrogen stream. Add 10.1 g (24.0 mmol) of 3,2-dioxaborolan-2-yl) dibenzofuran, 231 mg (0.20 mmol) of tetrakis (triphenylphosphine) palladium (0), 30 mL of tetrahydrofuran, and 20 mL of a 2 M aqueous solution of potassium carbonate The mixture was stirred at 75 ° C. for 15 hours. After cooling to room temperature, 50 mL of methanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The gray powder of the compound (13iB-3) was isolated by recrystallization (chloroform / methanol) to isolate 4.86 g (10.7 mmol) of the gray powder (yield 53.4%, HPLC purity 94.4%). .
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.64(t,2H),7.74(d,2H),7.68(dd,1H),7.64-7.39(m,11H),7.35(dt,1H),7.22(dt,1H),7.10(dd,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.64 (t, 2 H), 7.74 (d, 2 H), 7.68 (dd, 1 H), 7.64-7. 39 (m, 11 H), 7 .35 (dt, 1 H), 7.22 (dt, 1 H), 7. 10 (dd, 1 H)
[実施例-13](化合物(15iB-3の合成) [Example 13] (Compound (Synthesis of 15iB-3)
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 窒素気流下、100mLの二口ナスフラスコに、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 5.88g(16.0mmol)、2-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ジベンゾフラン 5.88g(20.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 185mg(0.16mmol)、テトラヒドロフラン 30mL、及び濃度2Mの炭酸カリウム水溶液 20mLを加え、75℃で16時間攪拌した。室温まで冷却後、メタノール 50mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(クロロホルム/メタノール)することにより、化合物(15iB-3)の灰色粉末を5.80g(12.7mmol)単離した(収率79.6%、HPLC純度98.1%)。 In a 100 mL two-necked eggplant flask under a nitrogen stream, 5.88 g (16.0 mmol) of 9- (2-bromo-4-chlorophenyl) -phenanthrene, 2- (4,4,5,5-tetramethyl-1, 5.28 g (20.0 mmol) of 3,2-dioxaborolan-2-yl) dibenzofuran, 185 mg (0.16 mmol) of tetrakis (triphenylphosphine) palladium (0), 30 mL of tetrahydrofuran, and 20 mL of an aqueous solution of potassium carbonate having a concentration of 2 M are added. The mixture was stirred at 75 ° C. for 16 hours. After cooling to room temperature, 50 mL of methanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The gray powder of the compound (15iB-3) was isolated by recrystallization (chloroform / methanol) to isolate 5.80 g (12.7 mmol) of the gray powder (yield 79.6%, HPLC purity 98.1%). .
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.63(t,2H),7.83(dd,2H),7.74-7.68(m,3H),7.66(d,1H),7.62-7.43(m,8H),7.37(dt,1H),7.27-7.23(m,1H),7.13-7.07(m,2H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.63 (t, 2 H), 7.83 (dd, 2 H), 7.74-7. 68 (m, 3 H), 7. 66 (d, 1 H), 7 .62-7.43 (m, 8 H), 7.37 (dt, 1 H), 7. 27-7. 23 (m, 1 H), 7.13-7. 07 (m, 2 H)
[実施例-14](化合物(16iB-3の合成) [Example 14] (Compound (Synthesis of 16iB-3)
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 窒素気流下、20mLのガラス容器に、9-(2-ブロモ-4-クロロフェニル)-フェナントレン 367mg(1.00mmol)、ジベンゾチオフェン-3-ボロン酸ピナコールエステル 310mg(1.00mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 12mg(0.01mmol)、トルエン 1.0mL、エタノール 0.1mL、及び濃度2Mの炭酸セシウム水溶液 1.0mLを加え、100℃で3日間攪拌した。室温まで冷却後、メタノールを10mL添加し、析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(クロロホルム/メタノール)することで、化合物(16iB-3)の灰色粉末を322mg(0.68mmol)単離した(収率68.4%、HPLC純度98.4%)。 In a 20 mL glass container under a nitrogen stream, 367 mg (1.00 mmol) of 9- (2-bromo-4-chlorophenyl) -phenanthrene, 310 mg (1.00 mmol) of dibenzothiophene-3-boronic acid pinacol ester, tetrakis (triphenyl) Phosphine) Palladium (0) 12 mg (0.01 mmol), 1.0 mL of toluene, 0.1 mL of ethanol, and 1.0 mL of a 2 M aqueous solution of cesium carbonate were added, and the mixture was stirred at 100 ° C. for 3 days. After cooling to room temperature, 10 mL of methanol was added, and the precipitated solid was collected by filtration and washed with pure water and methanol. The residual powder was recrystallized (chloroform / methanol) to isolate 322 mg (0.68 mmol) of a gray powder of compound (16iB-3) (yield 68.4%, HPLC purity 98.4%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.76(t,2H),8.32(dd,1H),8.04(dd,1H),7.93-7.90(m,2H),7.79(s,1H),7.78(d,1H),7.67-7.35(m,10H),7.17(dd,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.76 (t, 2 H), 8.32 (dd, 1 H), 8.04 (dd, 1 H), 7.93-7. 90 (m, 2 H) , 7.79 (s, 1 H), 7.78 (d, 1 H), 7.67-7. 35 (m, 10 H), 7.17 (dd, 1 H)
[合成例-2](9-(2-ブロモ-5-クロロフェニル)-フェナントレンの合成) Synthesis Example 2 (Synthesis of 9- (2-bromo-5-chlorophenyl) -phenanthrene)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 窒素気流下、1Lの三口ナスフラスコに、9-フェナントレンボロン酸 99.1g(446.4mmol)、1-ブロモ-4-クロロ-2-ヨードベンゼン 198.3g(624.9mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 5.16g(4.46mmol)、1,4-ジオキサン 100mL、及び濃度2Mの炭酸セシウム水溶液 225mLを加え、100℃で16時間攪拌した。室温まで冷却後、クロロホルム及び純水を添加し、撹拌した。水層と有機層を分液し、得られた有機層を無水硫酸ナトリウムで乾燥後、減圧下に濃縮した。残差を再結晶(トルエン/メタノール)することで、9-(2-ブロモ-5-クロロフェニル)-フェナントレンの薄黄色粉末を124.1g(337.6mmol)単離した(収率75.62%、HPLC純度99.3%)。 99.1 g (446.4 mmol) of 9-phenanthreneboronic acid, 198.3 g (624.9 mmol) of 1-bromo-4-chloro-2-iodobenzene, and tetrakis (triphenyl) in a 1 L three-necked flask under nitrogen stream. 5.16 g (4.46 mmol) of phosphine) palladium (0), 100 mL of 1,4-dioxane, and 225 mL of a 2 M aqueous solution of cesium carbonate were added, and the mixture was stirred at 100 ° C. for 16 hours. After cooling to room temperature, chloroform and pure water were added and stirred. The aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was recrystallized (toluene / methanol) to isolate 124.1 g (337.6 mmol) of a pale yellow powder of 9- (2-bromo-5-chlorophenyl) -phenanthrene (yield 75.62%) , HPLC purity 99.3%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.78(d,1H),8.75(d,1H),7.91(dd,1H),7.73-7.63(m,5H),7.55(t,1H),7.49-7.47(m,1H),7.44(d,1H),7.33(dd,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.78 (d, 1 H), 8.75 (d, 1 H), 7.91 (dd, 1 H), 7.73-7.63 (m, 5 H), 7 .55 (t, 1 H), 7.49-7.47 (m, 1 H), 7.44 (d, 1 H), 7.33 (dd, 1 H)
[実施例-15](化合物(17iA-3の合成) Example 15 (Synthesis of Compound (17iA-3))
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 窒素気流下、50mLの二口ナスフラスコに、9-(2-ブロモ-5-クロロフェニル)-フェナントレン 22.06g(60.0mmol)、1-ジベンゾフランボロン酸 16.98g(80.0mmol)、酢酸パラジウム 269mg(1.20mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 1.14g(2.40mmol)、テトラヒドロフラン 100mL、及び濃度2Mの炭酸カリウム水溶液 100mLを加え、75℃で1日間攪拌した。室温まで冷却後、メタノール 100mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(o-キシレン/メタノール)することにより、化合物(17iA-3)の無色粉末を21.69g(47.7mmol)単離した(収率79.5%、HPLC純度99.1%)。 22.06 g (60.0 mmol) of 9- (2-bromo-5-chlorophenyl) -phenanthrene, 16.98 g (80.0 mmol) of 1-dibenzofuranboronic acid, and palladium acetate in a 50 mL two-necked flask under nitrogen stream Add 269 mg (1.20 mmol), 1.14 g (2.40 mmol) of 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos), 100 mL of tetrahydrofuran, and 100 mL of aqueous 2 M potassium carbonate solution The mixture was stirred at 75 ° C. for 1 day. After cooling to room temperature, 100 mL of methanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 21.69 g (47.7 mmol) of a colorless powder of compound (17iA-3) (yield 79.5%, HPLC purity 99.1) %).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.79-8.59(m,2H),8.05-8.03(m,1H),7.81-7.65(m,7H),7.60-7.51(m,2H),7.45-7.25(m,5H),7.06-6.63(m,2H
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.79-8.59 (m, 2 H), 8.05-8.03 (m, 1 H), 7.81-7. 65 (m, 7 H), 7. 60-7.51 (m, 2 H), 7.45-7. 25 (m, 5 H), 7.06-6.63 (m, 2 H)
[実施例-16](化合物(3E-3の合成) [Example 16] (Synthesis of Compound (3E-3))
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 窒素気流下、20mLのシュレンク管に、化合物(3iE-3) 37mg(0.10mmol)、クロロホルム 1mLを加えた。この溶を撹拌しながら0℃に冷却し、濃度3Mの塩化第二鉄(FeCl)/ニトロメタン溶液 0.26mLを加え、0℃のまま5分間撹拌した。次いで、反応溶液にメタノールを3mL添加し撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄することで、茶色の粉末5.5mgを得た。この粉末のHPLC測定から、粉末中に化合物(3E-3)が50%含まれていることを確認した。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 366(M+)
37 mg (0.10 mmol) of compound (3iE-3) and 1 mL of chloroform were added to a 20 mL Schlenk tube under a nitrogen stream. The solution was cooled to 0 ° C. while stirring, 0.26 mL of 3 M ferric chloride (FeCl 3 ) / nitromethane solution was added, and the mixture was stirred at 0 ° C. for 5 minutes. Then, 3 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol to obtain 5.5 mg of a brown powder. From the HPLC measurement of this powder, it was confirmed that the powder contains 50% of the compound (3E-3).
Compound identification was performed by FDMS.
FDMS (m / z); 366 (M +)
[実施例-17](化合物(4F-1の合成) [Example 17] (Compound (Synthesis of 4F-1)
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 窒素気流下、20mLのシュレンク管に、化合物(4iF-1) 41mg(0.10mmol)、クロロホルム 2mL、及びニトロメタン 0.5mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 198mg(1.10mmol)を加え、0℃のまま25分間撹拌した。次いで、反応溶液にメタノールを5mL添加し撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(4F-1)の薄黄色粉末を17mg(0.04mmol)単離した(収率42.0%、HPLC純度96.2%)。 Under a nitrogen stream, 41 mg (0.10 mmol) of compound (4iF-1), 2 mL of chloroform, and 0.5 mL of nitromethane were added to a 20 mL Schlenk tube. The solution was cooled to 0 ° C. with stirring, 198 mg (1.10 mmol) of ferric chloride (FeCl 3 ) was added, and the solution was stirred at 0 ° C. for 25 minutes. Then, 5 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration, and washed with pure water and methanol to isolate 17 mg (0.04 mmol) of a pale yellow powder of compound (4F-1) (yield 42.0%, HPLC purity 96) .2%).
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);8.88-8.86(m,1H),8.81(d,1H),8.77-8.73(m,3H),8.51(s,1H),8.27(dd,1H),7.86-7.84(m,2H),7.75-7.59(m,6H),7.49(t,2H),7.39(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.88-8.86 (m, 1 H), 8.81 (d, 1 H), 8.77-8.73 (m, 3 H), 8.51 (s, 1 5 1H), 8.27 (dd, 1H), 7.86-7.84 (m, 2H), 7.75-7.59 (m, 6H), 7.49 (t, 2H), 7.39 (T, 1H)
[実施例-18](化合物(7B-3の合成) Example 18 (Synthesis of Compound (7B-3))
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 窒素気流下、20mLのシュレンク管に、化合物(7iB-3) 405mg(1.00mmol)、クロロホルム 15mL、及びニトロメタン 0.5mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 1.14g(7.00mmol)を加え、0℃のまま20分間撹拌した。次いで、反応溶液にメタノールを5mL、純水を10mL、クロロホルムを10mL添加し攪拌した。水層と有機層を分液し、得られた有機層を無水硫酸マグネシウムで乾燥後、減圧下に濃縮した。残渣を再結晶(クロロホルム/メタノール)することにより、化合物(7B-3)の薄黄色粉末を364mg(0.90mmol)単離した(収率90%、HPLC純度96.3%)。 In a nitrogen stream, to a 20 mL Schlenk tube, 405 mg (1.00 mmol) of the compound (7iB-3), 15 mL of chloroform, and 0.5 mL of nitromethane were added. The solution was cooled to 0 ° C. with stirring, 1.14 g (7.00 mmol) of ferric chloride (FeCl 3 ) was added, and the mixture was stirred at 0 ° C. for 20 minutes. Then, 5 mL of methanol, 10 mL of pure water, and 10 mL of chloroform were added to the reaction solution and stirred. The aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was recrystallized (chloroform / methanol) to isolate 364 mg (0.90 mmol) of a pale yellow powder of compound (7B-3) (yield 90%, HPLC purity 96.3%).
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);8.95(d,1H),8.79(d,1H),8.75-8.71(m,2H),8.65-8.63(m,1H),8.60(d,1H),8.38(d,1H),7.81-7.75(m,2H),7.71-7.63(m,3H),7.60(dd,1H),7.53(t,1H),7.39(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.95 (d, 1 H), 8.79 (d, 1 H), 8.75 to 8.71 (m, 2 H), 8.65 to 8.63 (m, 1H), 8.60 (d, 1H), 8.38 (d, 1H), 7.81-7.75 (m, 2H), 7.71-7. 63 (m, 3H), 7.60 (Dd, 1 H), 7.53 (t, 1 H), 7. 39 (t, 1 H)
[実施例-19](化合物(8B-3の合成) [Example 19] (Synthesis of Compound (8B-3))
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 窒素気流下、20mLのシュレンク管に、化合物(8iB-3) 168mg(0.40mmol)、クロロホルム 4mL、及びニトロメタン 0.5mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 453mg(2.80mmol)を加え、0℃のまま20分間撹拌した。次いで、反応溶液にメタノールを15mL添加し撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(8B-3)の薄黄色粉末を30mg(0.07mmol)単離した(収率18.0%、HPLC純度96.8%)。 In a 20 mL Schlenk tube under a nitrogen stream, 168 mg (0.40 mmol) of the compound (8iB-3), 4 mL of chloroform, and 0.5 mL of nitromethane were added. The solution was cooled to 0 ° C. with stirring, 453 mg (2.80 mmol) of ferric chloride (FeCl 3 ) was added, and the mixture was stirred at 0 ° C. for 20 minutes. Next, 15 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol to isolate 30 mg (0.07 mmol) of a pale yellow powder of compound (8B-3) (yield 18.0%, HPLC purity 96) .8%).
 化合物の同定は、H-NMR測定により行った。
 H-NMR(DMSO-d);8.91(dd,1H),8.85(d,1H),8.80(d,1H),8.61(dd,1H),8.55(d,1H),8.36(d,1H),8.26(d,2H),7.82-7.78(m,4H),7.61(t,1H),7.56(t,1H),7.43(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.91 (dd, 1 H), 8.85 (d, 1 H), 8.80 (d, 1 H), 8.61 (dd, 1 H), 8.55 (D, 1 H), 8. 36 (d, 1 H), 8. 26 (d, 2 H), 7.82-7. 78 (m, 4 H), 7.61 (t, 1 H), 7.56 ( t, 1 H), 7.43 (t, 1 H)
[実施例-20](化合物(9B-3の合成) Example 20 (Synthesis of Compound (9B-3))
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 窒素気流下、20mLのシュレンク管に、化合物(9iB-3) 340mg(0.84mmol)、クロロホルム 5mL、及びニトロメタン 0.5mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 953mg(7.00mmol)を加え、0℃のまま30分間撹拌した。次いで、反応溶液にメタノールを5mL添加し撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄することで、化合物(9B-3)の無色粉末を248mg(0.62mmol)単離した(収率73.0%、HPLC純度90.5%)。 Under a nitrogen stream, to a 20 mL Schlenk tube, 340 mg (0.84 mmol) of the compound (9iB-3), 5 mL of chloroform, and 0.5 mL of nitromethane were added. The solution was cooled to 0 ° C. with stirring, 953 mg (7.00 mmol) of ferric chloride (FeCl 3 ) was added, and the mixture was stirred at 0 ° C. for 30 minutes. Then, 5 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol to isolate 248 mg (0.62 mmol) of a colorless powder of compound (9B-3) (yield 73.0%, HPLC purity 90. 5%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);8.83(dd,1H),8.89(d,1H),8.78-8.70(m,4H),8.49-8.46(m,1H),7.92-7.56(m,8H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 8.83 (dd, 1 H), 8.89 (d, 1 H), 8.78-8.70 (m, 4 H), 8.49-8.46 (m, 1H), 7.92 to 7.56 (m, 8H)
[実施例-21](化合物(10B-3の合成) [Example 21] (Synthesis of Compound (10B-3))
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 窒素気流下、1Lの三口ナスフラスコに、化合物(10iB-3) 6.87g(16.32mmol)、クロロホルム 160mL、及びニトロメタン 15mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 16.41g(101.2mmol)を加え、0℃のまま25分間撹拌した。次いで、反応溶液にメタノールを200mL添加し撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(クロロホルム/メタノール)することにより、化合物(10B-3)の黄色粉末を6.35g(15.16mmol)単離した(収率92.9%、HPLC純度97.3%)。 6.87 g (16.32 mmol) of compound (10iB-3), 160 mL of chloroform, and 15 mL of nitromethane were added to a 1 L three-necked eggplant flask under nitrogen stream. The solution was cooled to 0 ° C. with stirring, 16.41 g (101.2 mmol) of ferric chloride (FeCl 3 ) was added, and the solution was stirred at 0 ° C. for 25 minutes. Next, 200 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. 6.35 g (15.16 mmol) of a yellow powder of compound (10B-3) was isolated by recrystallization (chloroform / methanol) of the residue (yield 92.9%, HPLC purity 97.3%) .
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.31-9.29(m,1H),8.99(d,1H),8.81-8.77(m,3H),8.72(d,1H),8.64(d,1H),8.07(d,1H),7.82-7.77(m,2H),7.72-7.53(m,5H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.31-9.29 (m, 1 H), 8.99 (d, 1 H), 8.81-8.77 (m, 3 H), 8.72 (d, 1H), 8.64 (d, 1H), 8.07 (d, 1H), 7.82-7.77 (m, 2H), 7.72-7.53 (m, 5H)
[実施例-22](化合物(11A-3の合成) Example 22 (Synthesis of Compound (11A-3))
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 窒素気流下、300mLの二口ナスフラスコに、化合物(11iA-3) 5.63g(12.4mmol)、クロロホルム 80mL、及びニトロメタン 12mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 11.64g(71.8mmol)を加え、0℃のまま15分間撹拌した。次いで、反応溶液にメタノールを200mL添加し撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残渣を再結晶(トルエン/メタノール)することで、化合物(11A-3)の薄黄色粉末を4.12g(9.11mmol)単離した(収率73.6%、HPLC純度97.2%)。 In a 300 mL two-necked eggplant-shaped flask under nitrogen stream, 5.63 g (12.4 mmol) of the compound (11iA-3), 80 mL of chloroform, and 12 mL of nitromethane were added. The solution was cooled to 0 ° C. with stirring, 11.64 g (71.8 mmol) of ferric chloride (FeCl 3 ) was added, and the solution was stirred at 0 ° C. for 15 minutes. Next, 200 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (toluene / methanol) to isolate 4.12 g (9.11 mmol) of a pale yellow powder of compound (11A-3) (yield 73.6%, HPLC purity 97.2%) .
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);9.75(d,1H),8.76-8.66(m,6H),8.20(d,1H),8.12-8.10(m,1H),7.87(d,1H),7.79(dd,1H),7.75-7.65(m,4H),7.58(dt,1H),7.47(dt,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.75 (d, 1 H), 8.76-8.66 (m, 6 H), 8. 20 (d, 1 H), 8. 12-8. 10 (m, 1H), 7.87 (d, 1 H), 7.79 (dd, 1 H), 7.75-7. 65 (m, 4 H), 7.58 (dt, 1 H), 7.47 (dt, 1 H) )
[実施例-23](化合物(11B-3の合成) [Example 23] (Synthesis of Compound (11B-3))
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 窒素気流下、300mLの二口ナスフラスコに、化合物(11iB-3) 7.53g(16.6mmol)、クロロホルム 120mL、及びニトロメタン 15mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 16.34g(101.0mmol)を加え、0℃のまま20分間撹拌した。次いで、反応溶液にメタノールを150mL添加し撹拌した。析出した固体をろ過で回収し、再結晶(トルエン/メタノール)することで、化合物(11B-3)の黄色粉末を6.00g(13.25mmol)単離した(収率79.8%、HPLC純度97.6%)。 Under a nitrogen stream, 7.53 g (16.6 mmol) of compound (11iB-3), 120 mL of chloroform, and 15 mL of nitromethane were added to a 300 mL two-necked eggplant flask. The solution was cooled to 0 ° C. with stirring, 16.34 g (101.0 mmol) of ferric chloride (FeCl 3 ) was added, and the solution was stirred at 0 ° C. for 20 minutes. Then, 150 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and recrystallized (toluene / methanol) to isolate 6.00 g (13.25 mmol) of a yellow powder of compound (11B-3) (yield 79.8%, HPLC) Purity 97.6%).
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);9.80(d,1H),8.76-8.61(m,6H),8.21(d,1H),8.12-8.10(m,1H),7.91(d,1H),7.75-7.56(m,6H),7.47(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.80 (d, 1 H), 8.76-8.61 (m, 6 H), 8.21 (d, 1 H), 8.12-8. 10 (m, 1H), 7.91 (d, 1 H), 7.75-7.56 (m, 6 H), 7.47 (t, 1 H)
[実施例-24](化合物(12A-3の合成) [Example 24] (Synthesis of Compound (12A-3))
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 窒素気流下、300mLの二口ナスフラスコに、化合物(12iA-3) 16.30g(34.61mmol)、クロロホルム 80mL、及びニトロメタン 38mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 34.80g(214.6mmol)を加え、0℃のまま1時間撹拌した。次いで、反応溶液にメタノールを200mL添加し撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残渣を再結晶(トルエン/メタノール)することで、化合物(12A-3)の薄黄色粉末を13.07g(27.86mmol)単離した(収率80.5%)。 16.30 g (34.61 mmol) of the compound (12iA-3), 80 mL of chloroform, and 38 mL of nitromethane were added to a 300 mL two-necked eggplant flask under a nitrogen stream. The solution was cooled to 0 ° C. with stirring, 34.80 g (214.6 mmol) of ferric chloride (FeCl 3 ) was added, and the solution was stirred at 0 ° C. for 1 hour. Next, 200 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (toluene / methanol) to isolate 13.07 g (27.86 mmol) of a pale yellow powder of compound (12A-3) (yield 80.5%).
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);9.31(d,1H),8.80-8.71(m,4H),8.59(d,1H),8.42(d,1H),8.36-8.26(m,1H),8.08-8.04(m,1H),7.80-7.50(m,8H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.31 (d, 1 H), 8.80-8.71 (m, 4 H), 8.59 (d, 1 H), 8.42 (d, 1 H), 8 .36-8.26 (m, 1H), 8.08-8.04 (m, 1H), 7.80-7.50 (m, 8H)
[実施例-25](化合物(12B-3の合成) [Example 25] (Compound (Synthesis of 12B-3)
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 窒素気流下、300mLの二口ナスフラスコに、化合物(12iB-3) 15.05g(31.95mmol)、クロロホルム 80mL、及びニトロメタン 32mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 32.13g(198.1mmol)を加え、0℃のまま1時間撹拌した。次いで、反応溶液にメタノールを400mL添加し撹拌した。析出した固体をろ過で回収し、再結晶(トルエン/メタノール)することで、化合物(12B-3)の黄色粉末を14.99G(32.00mmol)単離した(収率>99.9%)。 Under a nitrogen gas flow, 15.05 g (31.95 mmol) of compound (12iB-3), 80 mL of chloroform, and 32 mL of nitromethane were added to a 300 mL two-necked eggplant flask. The solution was cooled to 0 ° C. with stirring, 32.13 g (198.1 mmol) of ferric chloride (FeCl 3 ) was added, and the mixture was stirred at 0 ° C. for 1 hour. Next, 400 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and recrystallized (toluene / methanol) to isolate 14.99 G (32.00 mmol) of a yellow powder of compound (12B-3) (yield> 99.9%) .
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);9.26(d,1H),8.79(d,1H),8.76(d,1H),8.74-8.71(m,4H),8.65-8.62(m,1H),8.41(d,1H),8.32-8.00(m,1H),7.76(dd,1H),7.73-7.66(m,4H),7.58-7.56(m,2H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.26 (d, 1 H), 8.79 (d, 1 H), 8.76 (d, 1 H), 8.74-8.71 (m, 4 H), 8 .65-8.62 (m, 1 H), 8.41 (d, 1 H), 8.32-8.00 (m, 1 H), 7.76 (dd, 1 H), 7.73-7.66 (M, 4 H), 7.58-7.56 (m, 2 H)
[実施例-26](化合物(13B-3の合成) [Example 26] (Synthesis of Compound (13B-3))
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 窒素気流下、300mLの二口ナスフラスコに、化合物(13iB-3) 6.58g(14.46mmol)、クロロホルム 150mL、及びニトロメタン 15mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 14.54g(89.67mmol)を加え、0℃のまま20分間撹拌した。次いで、反応溶液にメタノールを200mL添加し撹拌した。析出した固体をろ過で回収し、再結晶(o-キシレン/メタノール)することで、化合物(13B-3)の黄色粉末を5.08g(11.23mmol)単離した(収率77.6%)。 6.58 g (14.46 mmol) of compound (13iB-3), 150 mL of chloroform, and 15 mL of nitromethane were added to a 300 mL two-necked eggplant flask under a nitrogen stream. The solution was cooled to 0 ° C. with stirring, 14.54 g (89.67 mmol) of ferric chloride (FeCl 3 ) was added, and the mixture was stirred at 0 ° C. for 20 minutes. Next, 200 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and recrystallized (o-xylene / methanol) to isolate 5.08 g (11.23 mmol) of a yellow powder of compound (13B-3) (yield 77.6%) ).
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);9.20(s,1H),8.79(dd,1H),8.74(dt,2H),8.70(s,1H),8.67(d,1H),8.63(d,1H),8.59(dd,1H),8.07(d,1H),7.76-7.53(m,7H),7.40(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.20 (s, 1 H), 8.79 (dd, 1 H), 8.74 (dt, 2 H), 8.70 (s, 1 H), 8.67 (d , 1H), 8.63 (d, 1 H), 8.59 (dd, 1 H), 8.07 (d, 1 H), 7.76-7.53 (m, 7 H), 7.40 (t, 1H)
[実施例-27](化合物(15B-3の合成) [Example 27] (Synthesis of Compound (15B-3))
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 窒素気流下、1Lの三口ナスフラスコに、化合物(15iB-3) 5.78g(12.7mmol)、クロロホルム 120mL、及びニトロメタン 13mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 12.77g(78.7mmol)を加え、0℃のまま30分間撹拌した。次いで、反応溶液にメタノールを150mL添加し撹拌した。析出した固体をろ過で回収し、再結晶(o-キシレン/メタノール)することで、化合物(15B-3)の黄色粉末を4.40g(9.72mmol)単離した(収率76.6%、HPLC純度96.7%)。 Under a nitrogen stream, 5.78 g (12.7 mmol) of the compound (15iB-3), 120 mL of chloroform, and 13 mL of nitromethane were added to a 1 L three-necked eggplant flask. The solution was cooled to 0 ° C. with stirring, 12.77 g (78.7 mmol) of ferric chloride (FeCl 3 ) was added, and the mixture was stirred at 0 ° C. for 30 minutes. Then, 150 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and recrystallized (o-xylene / methanol) to isolate 4.40 g (9.72 mmol) of a yellow powder of compound (15B-3) (yield 76.6%) , HPLC purity 96.7%).
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);9.11(s,1H),8.77(s,2H),8.75-8.70(m,3H),8.58(t,2H),8.19(d,1H),7.73-7.53(m,7H),7.46(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.11 (s, 1 H), 8.77 (s, 2 H), 8.75-8.70 (m, 3 H), 8.58 (t, 2 H), 8 .19 (d, 1 H), 7.73 to 7.53 (m, 7 H), 7.46 (t, 1 H)
[実施例-28](化合物(16B-3の合成) [Example 28] (Synthesis of Compound (16B-3))
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 窒素気流下、300mLの二口ナスフラスコに、化合物(16iB-3) 4.7.1mg(0.10mmol)、クロロホルム 2mL、及びニトロメタン 0.5mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 169mg(1.04mmol)を加え、0℃のまま30分間撹拌した。次いで、反応溶液にメタノールを5mL添加し撹拌した。析出した固体をろ過で回収することで、化合物(16B-3)の黄色粉末を30.0mg(0.064mmol)単離した(収率64.0%、HPLC純度98.1%)。 Under a nitrogen stream, 4.7.1 mg (0.10 mmol) of the compound (16iB-3), 2 mL of chloroform, and 0.5 mL of nitromethane were added to a 300 mL two-necked eggplant flask. The solution was cooled to 0 ° C. with stirring, 169 mg (1.04 mmol) of ferric chloride (FeCl 3 ) was added, and the mixture was stirred at 0 ° C. for 30 minutes. Then, 5 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration to isolate 30.0 mg (0.064 mmol) of a yellow powder of compound (16B-3) (yield 64.0%, HPLC purity 98.1%).
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);9.33(s,1H),9.10(s,1H),8.81(d,1H),8.78-8.71(m,3H),8.62-8.59(m,1H),8.47(dd,1H),7.91(dd,1H),7.76-7.51(m,7H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.33 (s, 1 H), 9.10 (s, 1 H), 8.81 (d, 1 H), 8.78-8.71 (m, 3 H), 8 .62-8.59 (m, 1 H), 8.47 (dd, 1 H), 7.91 (dd, 1 H), 7.76-7.51 (m, 7 H)
[実施例-29](化合物(17A-3の合成) [Example 29] (Synthesis of Compound (17A-3))
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 窒素気流下、1Lの三口ナスフラスコに、化合物(17iA-3) 15.93g(35.0mmol)、クロロホルム 300mL、及びニトロメタン 35mLを加えた。この溶液を撹拌しながら0℃に冷却し、塩化第二鉄(FeCl) 34.06g(210.0mmol)を加え、0℃のまま30分間撹拌した。次いで、反応溶液にメタノールを150mL添加し撹拌した。析出した固体をろ過で回収し、再結晶(o-キシレン/エタノール)することで、化合物(17A-3)の黄色粉末を10.85g(23.95mmol)単離した(収率68.4%、HPLC純度99.9%)。 Under nitrogen flow, 15.93 g (35.0 mmol) of compound (17iA-3), 300 mL of chloroform, and 35 mL of nitromethane were added to a 1 L three-necked eggplant flask. The solution was cooled to 0 ° C. with stirring, 34.06 g (210.0 mmol) of ferric chloride (FeCl 3 ) was added, and the mixture was stirred at 0 ° C. for 30 minutes. Then, 150 mL of methanol was added to the reaction solution and stirred. The precipitated solid was collected by filtration and recrystallized (o-xylene / ethanol) to isolate 10.85 g (23.95 mmol) of a yellow powder of compound (17A-3) (yield 68.4%) , HPLC purity 99.9%).
 化合物の同定は、H-NMR測定により行った。
 H-NMR(CDCl);9.06(d,1H),8.81(d,1H),8.73-8.68(m,5H),8.64(d,1H),7.91(d,1H),7.73-7.64(m,6H),7.55(dt,1H),7.41(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.06 (d, 1 H), 8.81 (d, 1 H), 8.73-8.68 (m, 5 H), 8.64 (d, 1 H), 7 .91 (d, 1 H), 7.73-7. 64 (m, 6 H), 7.55 (dt, 1 H), 7.41 (t, 1 H)
[実施例-30](化合物(7B-1)及び化合物(7B-123)の合成) Example 30 Synthesis of Compound (7B-1) and Compound (7B-123)
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 窒素気流下、100mLの二口ナスフラスコに、化合物(7B-3) 3.23g(8.02mmol)、ビス(ピナコラト)ジボロン 2.24g(8.82mmol)、酢酸カリウム 2.36g(24.06mmol)、酢酸パラジウム 36mg(0.16mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 153mg(0.32mmol)、及びテトラヒドロフラン 40mLを加え、70℃で270分間攪拌した。室温まで冷却後、ろ過を実施し、回収したろ液を減圧下で濃縮した。残差をシリカゲルカラムクロマトグラフィー(クロロホルム/ヘキサン(1/4(v/v)))で精製し、化合物(7B-1)の無色粉末 380mg(1.03mmol、収率12.9%、HPLC純度97.8%)、及び化合物(7B-123)の黄色粉末 0.97g(1.96mmol、収率24.5%、HPLC純度99.6%)をそれぞれ単離した。 3.23 g (8.02 mmol) of compound (7B-3), 2.24 g (8.82 mmol) of bis (pinacolato) diboron, 2.36 g (24.06 mmol) of potassium acetate in a 100 mL two-necked round-bottomed flask under nitrogen stream , 36 mg (0.16 mmol) of palladium acetate, 153 mg (0.32 mmol) of 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (Xphos), and 40 mL of tetrahydrofuran, and added at 70 ° C. for 270 minutes. It stirred. After cooling to room temperature, filtration was performed, and the collected filtrate was concentrated under reduced pressure. The residue is purified by silica gel column chromatography (chloroform / hexane (1/4 (v / v))), and 380 mg (1.03 mmol, yield 12.9%, HPLC purity) of colorless powder of compound (7B-1) 97.8%) and 0.97 g (1.96 mmol, yield 24.5%, HPLC purity 99.6%) of a yellow powder of compound (7B-123) were isolated, respectively.
 化合物の同定はH-NMR測定により行った。
 H-NMR(化合物(7B-1),CDCl);8.98(d,1H),8.90(d,1H),8.77-8.71(m,3H),8.65(d,1H),8.39(d,1H),7.81-7.63(m,7H),7.51(t,1H),7.38(t,1H)
 H-NMR(化合物(7B-123),CDCl);9.16(d,1H),8.99(dd,1H),8.87(d,1H),8.77-8.72(m,3H),8.38(d,1H),8.08(dd,1H),7.81-7.62(m,5H),7.51(dt,1H),7.38(dt,1H),1.46(s,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (compound (7B-1), CDCl 3 ); 8.98 (d, 1 H), 8. 90 (d, 1 H), 8.77-8.71 (m, 3 H), 8.65 (D, 1 H), 8.39 (d, 1 H), 7.81-7. 63 (m, 7 H), 7.51 (t, 1 H), 7. 38 (t, 1 H)
1 H-NMR (compound (7B-123), CDCl 3 ); 9.16 (d, 1 H), 8.99 (dd, 1 H), 8.87 (d, 1 H), 8.77-8.72 (M, 3H), 8.38 (d, 1 H), 8.08 (dd, 1 H), 7.81-7. 62 (m, 5 H), 7.51 (dt, 1 H), 7.38 ( dt, 1H), 1.46 (s, 12H)
[実施例-31](化合物(10B-123)の合成) [Example 31] (Synthesis of Compound (10B-123))
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 窒素気流下、100mLの二口ナスフラスコに、化合物(10B-3) 3.35g(8.00mmol)、ビス(ピナコラト)ジボロン 2.44g(9.60mmol)、酢酸カリウム 2.36g(24.1mmol)、酢酸パラジウム 36mg(0.16mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 153mg(0.32mmol)、及びトルエン 40mLを加え、110℃で16時間攪拌した。室温まで冷却後、ろ過を実施し、回収したろ液を減圧下で濃縮した。残差をヘキサンで洗浄することにより、化合物(10B-123)の黄色粉末 4.14gを単離した(収率>99.9%、HPLC純度97.6%)。 3.35 g (8.00 mmol) of compound (10B-3), 2.44 g (9.60 mmol) of bis (pinacolato) diboron, 2.36 g (24.1 mmol) of potassium acetate in a 100 mL two-necked round-bottomed flask under nitrogen stream , 36 mg (0.16 mmol) of palladium acetate, 153 mg (0.32 mmol) of 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (Xphos), and 40 mL of toluene, and the reaction is carried out at 110 ° C. for 16 hours. It stirred. After cooling to room temperature, filtration was performed, and the collected filtrate was concentrated under reduced pressure. The residue was washed with hexane to isolate 4.14 g of a yellow powder of compound (10B-123) (yield> 99.9%, HPLC purity 97.6%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.55(s,1H),9.35-9.33(m,1H),8.98(d,1H),8.86(d,1H),8.80-8.72(m,3H),8.05(t,2H),7.82-7.78(m,2H),7.72-7.63(m,3H),7.55(t,1H),1.46(s,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.55 (s, 1 H), 9.35-9.33 (m, 1 H), 8.98 (d, 1 H), 8.86 (d, 1 H), 8 .80-8.72 (m, 3H), 8.05 (t, 2H), 7.82-7.78 (m, 2H), 7.72-7.63 (m, 3H), 7.55 (T, 1 H), 1. 46 (s, 12 H)
[実施例-32](化合物(11A-123)の合成) [Example 32] (Synthesis of Compound (11A-123))
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 窒素気流下、100mLの二口ナスフラスコに、化合物(11A-3) 1.36g(3.00mmol)、ビス(ピナコラト)ジボロン 0.91g(3.60mmol)、酢酸カリウム 0.88g(9.0mmol)、酢酸パラジウム 13.5mg(0.06mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 57mg(0.12mmol)、及びトルエン 60mLを加え、110℃で21時間攪拌した。室温まで冷却後、ろ過を実施し、回収したろ液を減圧下で濃縮した。残差をヘキサンで洗浄することにより、化合物(11A-123)の黄色粉末 1.65g(3.00mmol)を単離した(収率>99.9%、HPLC純度96.0%)。 1.36 g (3.00 mmol) of compound (11A-3), 0.91 g (3.60 mmol) of bis (pinacolato) diboron, 0.88 g (9.0 mmol) of potassium acetate in a 100 mL two-necked round-bottomed flask under nitrogen stream ), 13.5 mg (0.06 mmol) of palladium acetate, 57 mg (0.12 mmol) of 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos), and 60 mL of toluene, and Stir for 21 hours. After cooling to room temperature, filtration was performed, and the collected filtrate was concentrated under reduced pressure. The residue was washed with hexane to isolate 1.65 g (3.00 mmol) of a yellow powder of compound (11A-123) (yield> 99.9%, HPLC purity 96.0%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.70(d,1H),9.15(s,1H),8.68-8.60(m,5H),8.16(d,1H),8.10(d,1H),8.01(d,1H),7.80(d,1H),7.64-7.57(m,4H),7.48(dt,1H),7.37(dt,1H),1.31(s,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.70 (d, 1 H), 9.15 (s, 1 H), 8.68-8. 60 (m, 5 H), 8. 16 (d, 1 H), 8 7. 10 (d, 1 H), 8.0 1 (d, 1 H), 7. 80 (d, 1 H), 7.64-7. 57 (m, 4 H), 7.48 (dt, 1 H), 7. 37 (dt, 1 H), 1.31 (s, 12 H)
[実施例-33](化合物(11B-123)の合成) Example 33 (Synthesis of Compound (11B-123))
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 窒素気流下、100mLの二口ナスフラスコに、化合物(11B-3) 2.49g(5.50mmol)、ビス(ピナコラト)ジボロン 1.67g(6.60mmol)、酢酸カリウム 1.62g(16.5mmol)、酢酸パラジウム 29.6mg(0.13mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 124mg(0.26mmol)、及びトルエン 110mLを加え、110℃で18時間攪拌した。室温まで冷却後、ろ過を実施し、回収したろ液を減圧下で濃縮した。残差をヘキサンで洗浄することにより、化合物(11B-123)の黄色粉末 2.60g(4.78mmol)を単離した(収率86.9%、HPLC純度98.1%)。 2.49 g (5.50 mmol) of compound (11B-3), 1.67 g (6.60 mmol) of bis (pinacolato) diboron, 1.62 g (16.5 mmol) of potassium acetate in a 100 mL two-necked round-bottomed flask under nitrogen stream ), 29.6 mg (0.13 mmol) of palladium acetate, 124 mg (0.26 mmol) of 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos), and 110 mL of toluene are added, Stir for 18 hours. After cooling to room temperature, filtration was performed, and the collected filtrate was concentrated under reduced pressure. The residue was washed with hexane to isolate 2.60 g (4.78 mmol) of a yellow powder of compound (11B-123) (yield 86.9%, HPLC purity 98.1%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);10.25(s,1H),8.74-8.63(m,6H),8.14-8.06(m,3H),7.88(d,1H),7.70-7.60(m,4H),7.56(dt,1H),7.44(dt,1H),1.49(s,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 10.25 (s, 1 H), 8.74-8.63 (m, 6 H), 8.14-8.06 (m, 3 H), 7.88 (d, 1 H), 7. 7-7. 60 (m, 4 H), 7.5 6 (dt, 1 H), 7.4 4 (dt, 1 H), 1. 49 (s, 12 H)
[実施例-34](化合物(12A-123)の合成) [Example 34] (Synthesis of Compound (12A-123))
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 窒素気流下、100mLの二口ナスフラスコに、化合物(12A-3) 7.00g(14.93mmol)、ビス(ピナコラト)ジボロン 4.17g(16.42mmol)、酢酸カリウム 4.40g(44.79mmol)、酢酸パラジウム 67mg(0.30mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 286mg(0.60mmol)、及びトルエン 50mLを加え、110℃で17時間攪拌した。室温まで冷却後、ろ過を実施し、回収したろ液を減圧下で濃縮した。残差をヘキサンで洗浄することにより、化合物(12A-123)の黄色粉末 8.61gを単離した(収率>99.9%)。 In a 100 mL two-necked round-bottomed flask under a nitrogen stream, 7.00 g (14.93 mmol) of compound (12A-3), 4.17 g (16.42 mmol) of bis (pinacolato) diboron, 4.40 g (44.79 mmol) of potassium acetate ), Palladium acetate 67 mg (0.30 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (Xphos) 286 mg (0.60 mmol), and 50 mL of toluene are added, and the reaction is carried out at 110 ° C. for 17 hours. It stirred. After cooling to room temperature, filtration was performed, and the collected filtrate was concentrated under reduced pressure. The residue was washed with hexane to isolate 8.61 g of a yellow powder of compound (12A-123) (yield> 99.9%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.31(d,1H),9.24(s,1H),8.80(d,1H),8.75-8.71(m,4H),8.42(d,1H),8.32-8.30(m,1H),8.22(dd,1H),8.06-8.03(m,1H),7.73-7.64(m,4H),7.56-7.54(m,2H),1.38(s,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.31 (d, 1 H), 9.24 (s, 1 H), 8.80 (d, 1 H), 8.75-8.71 (m, 4 H), 8 .42 (d, 1 H), 8.32-8.30 (m, 1 H), 8.22 (dd, 1 H), 8.06-8.03 (m, 1 H), 7.73-7. (M, 4 H), 7.56-7.54 (m, 2 H), 1. 38 (s, 12 H)
[実施例-35](化合物(12B-123)の合成) Example 35 (Synthesis of Compound (12B-123))
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 窒素気流下、100mLの二口ナスフラスコに、化合物(12B-3) 6.98g(14.88mmol)、ビス(ピナコラト)ジボロン 7.56g(29.77mmol)、酢酸カリウム 4.38g(44.64mmol)、酢酸パラジウム 67mg(0.30mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 286mg(0.60mmol)、及びトルエン 30mLを加え、110℃で3時間攪拌した。室温まで冷却後、ろ過を実施し、回収したろ液を減圧下で濃縮した。残差をヘキサンで洗浄することにより、化合物(12B-123)の黄色粉末 4.98g(8.88mmol)を単離した(収率59.7%)。 6.98 g (14.88 mmol) of compound (12B-3), 7.56 g (29.77 mmol) of bis (pinacolato) diboron, 4.38 g (44.64 mmol) of potassium acetate in a 100 mL two-necked eggplant flask under a nitrogen stream. ), Palladium acetate 67 mg (0.30 mmol), 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos) 286 mg (0.60 mmol), and 30 mL of toluene are added, and the reaction is carried out at 110 ° C. for 3 hours. It stirred. After cooling to room temperature, filtration was performed, and the collected filtrate was concentrated under reduced pressure. The residue was washed with hexane to isolate 4.98 g (8.88 mmol) of a yellow powder of compound (12B-123) (yield 59.7%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.80(s,1H),8.79-8.68(m,6H),8.40(d,1H),8.32-8.30(m,1H),8.11-8.08(m,2H),7.73-7.65(m,4H),7.58-7.54(m,2H),1.48(s,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.80 (s, 1 H), 8.79-8.68 (m, 6 H), 8.40 (d, 1 H), 8.32-8.30 (m, 1H), 8.11 to 8.08 (m, 2H), 7.73-7.65 (m, 4H), 7.58 to 7.54 (m, 2H), 1.48 (s, 12H)
[実施例-36](化合物(15B-123)の合成) [Example 36] (Synthesis of Compound (15B-123))
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 窒素気流下、100mLの二口ナスフラスコに、化合物(15B-3) 2.00g(4.42mmol)、ビス(ピナコラト)ジボロン 1.23g(4.86mmol)、酢酸カリウム 1.30g(13.26mmol)、酢酸パラジウム 20mg(0.09mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 84mg(0.18mmol)、及びトルエン 30mLを加え、110℃で22時間攪拌した。室温まで冷却後、ろ過を実施し、回収したろ液を減圧下で濃縮した。残差をヘキサンで洗浄することにより、化合物(15B-123)の黄色粉末 2.24g(4.11mol)を単離した(収率93.1%,HPLC純度94.4%)。 In a 100 mL two-necked round-bottomed flask under a stream of nitrogen, 2.00 g (4.42 mmol) of compound (15B-3), 1.23 g (4.86 mmol) of bis (pinacolato) diboron, 1.30 g (13.26 mmol) of potassium acetate ), 20 mg (0.09 mmol) of palladium acetate, 84 mg (0.18 mmol) of 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos), and 30 mL of toluene are added, and the reaction is carried out at 110 ° C for 22 hours. It stirred. After cooling to room temperature, filtration was performed, and the collected filtrate was concentrated under reduced pressure. The residue was washed with hexane to isolate 2.24 g (4.11 mol) of a yellow powder of compound (15B-123) (yield 93.1%, HPLC purity 94.4%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.39(s,1H),9.28(s,1H),8.83-8.82(m,2H),8.74-8.67(m,4H),8.27(d,1H),8.04(dd,1H),7.74-7.62(m,5H),7.55(dt,1H),7.46(dt,1H),1.48(s,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.39 (s, 1 H), 9.28 (s, 1 H), 8.83 to 8.82 (m, 2 H), 8.74 to 8.67 (m, 4H), 8.27 (d, 1 H), 8.04 (dd, 1 H), 7.74-7.62 (m, 5 H), 7.55 (dt, 1 H), 7.46 (dt, 1 H) ), 1.48 (s, 12 H)
[実施例-37](化合物(16B-123)の合成) Example 37 (Synthesis of Compound (16B-123))
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 窒素気流下、100mLの二口ナスフラスコに、化合物(16B-3) 6.00g(12.1mmol)、ビス(ピナコラト)ジボロン 3.68g(14.52mmol)、酢酸カリウム 3.56g(36.3mmol)、酢酸パラジウム 54mg(0.24mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 229mg(0.48mmol)、及びトルエン 200mLを加え、110℃で17時間攪拌した。室温まで冷却後、ろ過を実施し、回収したろ液を減圧下で濃縮した。残差をヘキサンで洗浄することにより、化合物(16B-123)の黄色粉末 5.30g(9.46mol)を単離した(収率78.8%,HPLC純度92.7%)。 In a 100 mL two-necked round-bottomed flask under a nitrogen stream, 6.00 g (12.1 mmol) of compound (16B-3), 3.68 g (14.52 mmol) of bis (pinacolato) diboron, 3.56 g (36.3 mmol) of potassium acetate , 54 mg (0.24 mmol) of palladium acetate, 229 mg (0.48 mmol) of 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (Xphos), and 200 mL of toluene, and the reaction is carried out at 110 ° C. for 17 hours. It stirred. After cooling to room temperature, filtration was performed, and the collected filtrate was concentrated under reduced pressure. The residue was washed with hexane to isolate 5.30 g (9.46 mol) of a yellow powder of compound (16B-123) (yield 78.8%, HPLC purity 92.7%).
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.54(s,1H),9.31(s,1H),9.09(s,1H),8.80-8.66(m,5H),8.54(dd,1H),8.06(dd,1H),7.90(dd,1H),7.74-7.52(m,6H),1.49(s,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.54 (s, 1 H), 9.31 (s, 1 H), 9.09 (s, 1 H), 8.80-8.66 (m, 5 H), 8 .54 (dd, 1H), 8.06 (dd, 1H), 7.90 (dd, 1H), 7.74-7.52 (m, 6H), 1.49 (s, 12H)
[実施例-38](化合物(10B-154の合成) Example 38 (Synthesis of Compound (10B-154))
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 窒素気流下、100mLの二口ナスフラスコに、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン 482mg(1.80mmol)、化合物(10B-123) 1.02g(2.00mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 23mg(0.020mmol)、テトラヒドロフラン 40mL、及び濃度2Mの炭酸カリウム水溶液 2mLを加え、70℃で16時間攪拌した。室温まで冷却後、メタノール 200mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(o-キシレン/メタノール)することにより、化合物(10B-154)の黄色粉末を985mg(1.60mmol)単離した(収率88.9%、HPLC純度98.8%)。化合物(10B-154)の昇華温度は、350℃であり、昇華品の化合物(10B-154)は粉末状であることを確認した。 In a 100 mL two-necked eggplant flask under nitrogen stream, 482 mg (1.80 mmol) of 2-chloro-4,6-diphenyl-1,3,5-triazine, 1.02 g (2.00 mmol) of the compound (10B-123) Then, 23 mg (0.020 mmol) of tetrakis (triphenylphosphine) palladium (0), 40 mL of tetrahydrofuran and 2 mL of a 2 M aqueous solution of potassium carbonate were added, and the mixture was stirred at 70 ° C. for 16 hours. After cooling to room temperature, 200 mL of methanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 985 mg (1.60 mmol) of a yellow powder of compound (10B-154) (yield 88.9%, HPLC purity 98.8%) . The sublimation temperature of the compound (10B-154) was 350 ° C., and it was confirmed that the compound (10B-154) of the sublimation product was in the form of powder.
 化合物の同定はH-NMR測定により行った。
 H-NMR(THF-d);10.72(d,1H),9.44-9.41(m,1H),9.28(d,1H),9.13(d,1H),9.07(dd,1H),8.97-8.93(m,5H),8.90-8.93(dt,2H),8.23(d,1H),7.90-7.83(m,3H),7.79-7.64(m,9H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (THF-d 8 ); 10.72 (d, 1 H), 9.44-9. 41 (m, 1 H), 9.28 (d, 1 H), 9. 13 (d, 1 H) , 9.07 (dd, 1H), 8.97-8.93 (m, 5H), 8.95-8.93 (dt, 2H), 8.23 (d, 1H), 7.90-7 .83 (m, 3H), 7.79-7.64 (m, 9H)
[実施例-39](化合物(11A-154の合成) Example 39 (Synthesis of Compound (11A-154))
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 窒素気流下、100mLの二口ナスフラスコに、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン 365mg(1.36mmol)、化合物(10B-123) 816mg(1.50mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 31mg(0.027mmol)、テトラヒドロフラン 30mL、及び濃度2Mの炭酸カリウム水溶液 5mLを加え、70℃で17時間攪拌した。室温まで冷却後、エタノール 100mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(o-キシレン/メタノール)することにより、化合物(11A-154)の黄色粉末を652mg(1.00mmol)単離した(収率73.7%、HPLC純度99.0%)。化合物(11A-154)の昇華温度は、360℃であり、昇華品の化合物(11A-154)は粉末状であることを確認した。 In a 100 mL two-necked eggplant flask under a nitrogen stream, 365 mg (1.36 mmol) of 2-chloro-4,6-diphenyl-1,3,5-triazine, 816 mg (1.50 mmol) of a compound (10B-123), tetrakis 31 mg (0.027 mmol) of (triphenylphosphine) palladium (0), 30 mL of tetrahydrofuran and 5 mL of aqueous 2 M potassium carbonate solution were added, and the mixture was stirred at 70 ° C. for 17 hours. After cooling to room temperature, 100 mL of ethanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The yellow powder of compound (11A-154) was isolated by recrystallization (o-xylene / methanol) of the residue to isolate 652 mg (1.00 mmol) of a yellow powder (yield 73.7%, HPLC purity 99.0%) . The sublimation temperature of the compound (11A-154) was 360 ° C., and it was confirmed that the compound of sublimate (11A-154) was in the form of powder.
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);10.35(d,1H),10.04(d,1H),9.20(dd,1H),9.00-8.98(m,1H),8.87-8.77(m,8H),8.27(d,1H),8.14(d,1H),7.91(d,1H),7.83-7.81(m,2H),7.75-7.59(m,9H),7.50-7.46(m,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 10.35 (d, 1 H), 10.04 (d, 1 H), 9.20 (dd, 1 H), 9.00-8.98 (m, 1 H), 8 .87-8.77 (m, 8 H), 8. 27 (d, 1 H), 8. 14 (d, 1 H), 7. 91 (d, 1 H), 7.83-7.81 (m, 2 H) ), 7.75 to 7.59 (m, 9 H), 7. 50 to 7.46 (m, 1 H)
[実施例-40](化合物(11A-162の合成) [Example 40] (Synthesis of Compound (11A-162))
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 窒素気流下、100mLの二口ナスフラスコに、2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン 0.42g(1.09mmol)、化合物(11A-123) 0.59g(1.31mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 26mg(0.022mmol)、テトラヒドロフラン 10mL、及び濃度2Mの炭酸カリウム水溶液 10mLを加え、70℃で18時間攪拌した。室温まで冷却後、エタノール 20mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とエタノールで洗浄した。残差を再結晶(o-キシレン/エタノール)することにより、化合物(11A-162)の黄色粉末を0.29g(0.39mmol)単離した(収率36.2%、HPLC純度99.8%)。 In a 100 mL two-necked eggplant flask under a stream of nitrogen, 0.42 g (1.09 mmol) of 2- (3-bromophenyl) -4,6-diphenyl-1,3,5-triazine, compound (11A-123) 0 .59 g (1.31 mmol), 26 mg (0.022 mmol) of tetrakis (triphenylphosphine) palladium (0), 10 mL of tetrahydrofuran and 10 mL of a 2 M aqueous solution of potassium carbonate were added, and the mixture was stirred at 70 ° C. for 18 hours. After cooling to room temperature, 20 mL of ethanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and ethanol. The residue was recrystallized (o-xylene / ethanol) to isolate 0.29 g (0.39 mmol) of a yellow powder of compound (11A-162) (yield 36.2%, HPLC purity 99.8) %).
 化合物の同定はH-NMR測定により行った。
 H-NMR(THF-d);9.54(d,1H),9.33(s,1H),9.27(s,1H),8.94-8.80(m,10H),8.60(d,1H),8.46(dd,1H),8.35(dd,1H),8.15-8.12(m,2H),7.78-7.58(m,13H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (THF-d 8 ); 9.54 (d, 1 H), 9.33 (s, 1 H), 9.27 (s, 1 H), 8.94-8.80 (m, 10 H) , 8.60 (d, 1 H), 8.46 (dd, 1 H), 8. 35 (dd, 1 H), 8.15 to 8.12 (m, 2 H), 7.78 to 7.58 (m , 13H)
[実施例-41](化合物(11B-154の合成) Example 41 (Synthesis of Compound (11B-154))
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 窒素気流下、100mLの二口ナスフラスコに、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン 535mg(2.00mmol)、化合物(11B-123) 1.20g(2.20mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 46mg(0.04mmol)、テトラヒドロフラン 30mL、及び濃度2Mの炭酸カリウム水溶液 5mLを加え、70℃で18時間攪拌した。室温まで冷却後、エタノール 100mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(o-キシレン/メタノール)することにより、化合物(11B-154)の黄色粉末を0.90g(1.39mmol)単離した(収率69.6%、HPLC純度96.6%)。化合物(11B-154)の昇華温度は、360℃であり、昇華品の化合物(11B-154)は粉末状であることを確認した。 In a 100 mL two-necked eggplant flask under a stream of nitrogen, 535 mg (2.00 mmol) of 2-chloro-4,6-diphenyl-1,3,5-triazine, 1.20 g (2.20 mmol) of the compound (11B-123) 46 mg (0.04 mmol) of tetrakis (triphenylphosphine) palladium (0), 30 mL of tetrahydrofuran, and 5 mL of a 2 M aqueous solution of potassium carbonate were added, and the mixture was stirred at 70 ° C. for 18 hours. After cooling to room temperature, 100 mL of ethanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. 0.90 g (1.39 mmol) of yellow powder of compound (11B-154) was isolated by recrystallization (o-xylene / methanol) of the residue (yield 69.6%, HPLC purity 96.6) %). The sublimation temperature of the compound (11B-154) was 360 ° C., and it was confirmed that the compound (11B-154) of the sublimation product was in the form of powder.
 化合物の同定はH-NMR測定により行った。
 H-NMR(THF-d);11.50(d,1H),9.15(dd,1H),9.06-9.03(m,4H),9.01(d,1H),8.87-8.80(m,5H),8.41(d,1H),8.28(d,1H),8.08(d,1H),7.79-7.69(m,11H),7.55(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (THF-d 8 ); 11.50 (d, 1 H), 9.15 (dd, 1 H), 9.06-9.03 (m, 4 H), 9.01 (d, 1 H) , 8.87-8.80 (m, 5 H), 8.41 (d, 1 H), 8. 28 (d, 1 H), 8.08 (d, 1 H), 7.79-7.69 (m , 11 H), 7.55 (t, 1 H)
[実施例-42](化合物(12A-162の合成) [Example 42] (Synthesis of Compound (12A-162))
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 窒素気流下、100mLの二口ナスフラスコに、2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン 0.78g(2.00mmol)、化合物(12A-123) 1.13g(2.40mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 46mg(0.04mmol)、テトラヒドロフラン 20mL、及び濃度2Mの炭酸カリウム水溶液 20mLを加え、70℃で18時間攪拌した。室温まで冷却後、エタノール 40mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とエタノールで洗浄した。残差を再結晶(o-キシレン/エタノール)することにより、化合物(12A-162)の黄色粉末を1.07g(1.44mmol)単離した(収率72.2%、HPLC純度98.7%)。 In a 100 mL two-necked eggplant flask under a nitrogen stream, 0.78 g (2.00 mmol) of 2- (3-bromophenyl) -4,6-diphenyl-1,3,5-triazine, compound (12A-123) 1 .13 g (2.40 mmol), 46 mg (0.04 mmol) of tetrakis (triphenylphosphine) palladium (0), 20 mL of tetrahydrofuran and 20 mL of aqueous 2 M potassium carbonate solution were added, and stirred at 70 ° C. for 18 hours. After cooling to room temperature, 40 mL of ethanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and ethanol. The residue was recrystallized (o-xylene / ethanol) to isolate 1.07 g (1.44 mmol) of a yellow powder of compound (12A-162) (yield 72.2%, HPLC purity 98.7). %).
 化合物の同定はH-NMR測定により行った。
 H-NMR(THF-d);9.54(d,1H),9.33(t,1H),9.27(d,1H),8.94-8.80(m,10H),8.60(d,1H),8.46(dd,1H),8.35(dd,1H),8.15-8.12(m,2H),7.78-7.58(m,13H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (THF-d 8 ); 9.54 (d, 1 H), 9.33 (t, 1 H), 9.27 (d, 1 H), 8.94-8.80 (m, 10 H) , 8.60 (d, 1 H), 8.46 (dd, 1 H), 8. 35 (dd, 1 H), 8.15 to 8.12 (m, 2 H), 7.78 to 7.58 (m , 13H)
[実施例-43](化合物(12B-154の合成) Example 43 (Synthesis of Compound (12B-154))
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 窒素気流下、100mLの二口ナスフラスコに、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン 690mg(2.58mmol)、化合物(12B-123) 1.73g(3.09mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 60mg(0.052mmol)、テトラヒドロフラン 40mL、及び濃度2Mの炭酸カリウム水溶液 2mLを加え、70℃で18時間攪拌した。室温まで冷却後、エタノール 100mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(o-キシレン/メタノール)することにより、化合物(12B-154)の黄色粉末を1.46g(2.20mmol)単離した(収率85.1%、HPLC純度99.4%)。化合物(12B-154)の昇華温度は、355℃であり、昇華品の化合物(12B-154)は粉末状であることを確認した。 In a 100 mL two-necked eggplant flask under a nitrogen stream, 690 mg (2.58 mmol) of 2-chloro-4,6-diphenyl-1,3,5-triazine, 1.73 g (3.09 mmol) of a compound (12B-123) 60 mg (0.052 mmol) of tetrakis (triphenylphosphine) palladium (0), 40 mL of tetrahydrofuran, and 2 mL of aqueous 2 M potassium carbonate solution were added, and the mixture was stirred at 70 ° C. for 18 hours. After cooling to room temperature, 100 mL of ethanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 1.46 g (2.20 mmol) of a yellow powder of compound (12B-154) (yield 85.1%, HPLC purity 99.4). %). The sublimation temperature of the compound (12B-154) was 355 ° C., and it was confirmed that the compound (12B-154) of the sublimate was powdery.
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);11.00(d,1H),9.09(dd,1H),9.02-8.98(m,5H),8.86(d,1H),8.82-8.74(m,4H),8.50(d,1H),8.40-8.38(m,1H),8.15-8.12(m,1H),7.76-7.61(m,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 11.00 (d, 1 H), 9.09 (dd, 1 H), 9.02-8.98 (m, 5 H), 8.86 (d, 1 H), 8 .82-8.74 (m, 4H), 8.50 (d, 1 H), 8.40-8.38 (m, 1 H), 8.15-8.12 (m, 1 H), 7.76 -7.61 (m, 12H)
[実施例-44](化合物(15B-154の合成) Example 44 (Synthesis of Compound (15B-154))
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 窒素気流下、100mLの二口ナスフラスコに、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン 455mg(1.73mmol)、化合物(15B-123) 1.13g(2.08mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 40mg(0.034mmol)、テトラヒドロフラン 30mL、及び濃度2Mの炭酸カリウム水溶液 2mLを加え、70℃で18時間攪拌した。室温まで冷却後、エタノール 100mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(o-キシレン/メタノール)することにより、化合物(15B-154)の黄色粉末を0.83g(1.27mmol)単離した(収率73.39%、HPLC純度99.9%)。化合物(15B-154)の昇華温度は、355℃であり、昇華品の化合物(15B-154)は粉末状であることを確認した。 In a 100 mL two-necked eggplant flask under a nitrogen stream, 455 mg (1.73 mmol) of 2-chloro-4,6-diphenyl-1,3,5-triazine, 1.13 g (2.08 mmol) of the compound (15B-123) 40 mg (0.034 mmol) of tetrakis (triphenylphosphine) palladium (0), 30 mL of tetrahydrofuran, and 2 mL of aqueous 2 M potassium carbonate solution were added, and the mixture was stirred at 70 ° C. for 18 hours. After cooling to room temperature, 100 mL of ethanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 0.83 g (1.27 mmol) of a yellow powder of compound (15B-154) (yield 73.39%, HPLC purity 99.9). %). The sublimation temperature of the compound (15B-154) was 355 ° C., and it was confirmed that the compound (15B-154) of the sublimation product was in the form of powder.
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);10.25(d,1H),9.52(s,1H),9.01(dd,1H),8.94-8.87(m,7H),8.78-8.74(m,3H),8.31(d,1H),7.77-7.67(m,11H),7.59(dt,1H),7.51(dt,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 10.25 (d, 1 H), 9.52 (s, 1 H), 9.01 (dd, 1 H), 8.94-8.87 (m, 7 H), 8 .78-8.74 (m, 3 H), 8.31 (d, 1 H), 7.77-7.67 (m, 11 H), 7.59 (dt, 1 H), 7.51 (dt, 1 H) )
[実施例-45](化合物(16B-154の合成) Example 45 Compound (Synthesis of 16B-154)
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 窒素気流下、100mLの二口ナスフラスコに、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン 500mg(1.86mmol)、化合物(16B-123) 1.25g(2.23mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 52mg(0.045mmol)、テトラヒドロフラン 20mL、及び濃度2Mの炭酸カリウム水溶液 5mLを加え、70℃で15時間攪拌した。室温まで冷却後、アセトン 100mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差を再結晶(o-キシレン/メタノール)することにより、化合物(16B-154)の黄色粉末を1.04g(1.56mmol)単離した(収率83.7%、HPLC純度99.8%)。化合物(16B-154)の昇華温度は、350℃であり、昇華品の化合物(16B-154)は粉末状であることを確認した。 In a 100 mL two-necked eggplant flask under a nitrogen stream, 500 mg (1.86 mmol) of 2-chloro-4,6-diphenyl-1,3,5-triazine, 1.25 g (2.23 mmol) of the compound (16B-123) 52 mg (0.045 mmol) of tetrakis (triphenylphosphine) palladium (0), 20 mL of tetrahydrofuran and 5 mL of aqueous 2 M potassium carbonate solution were added, and the mixture was stirred at 70 ° C. for 15 hours. After cooling to room temperature, 100 mL of acetone was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 1.04 g (1.56 mmol) of a yellow powder of compound (16B-154) (yield 83.7%, HPLC purity 99.8). %). The sublimation temperature of the compound (16B-154) was 350 ° C., and it was confirmed that the compound (16B-154) of the sublimate was powdery.
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);10.29(d,1H),9.69(s,1H),9.17(s,1H),9.02(dd,1H),8.94-8.83(m,6H),8.78-8.74(m,3H),8.56(dd,1H),7.95(dd,1H),7.78-7.56(m,12H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 10.29 (d, 1 H), 9.69 (s, 1 H), 9.17 (s, 1 H), 9.02 (dd, 1 H), 8.94-8 .83 (m, 6 H), 8.78-8.74 (m, 3 H), 8.56 (dd, 1 H), 7.95 (dd, 1 H), 7.78-7.56 (m, 12 H) )
[実施例-46](化合物(17A-162の合成) Example 46 (Synthesis of Compound (17A-162))
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 窒素気流下、100mLの二口ナスフラスコに、化合物(17A-123) 0.75g(1.65mmol)、2,4-ジフェニル-6-[3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン 0.86g(1.98mmol)、酢酸パラジウム 7.4mg(0.033mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 31mg(0.066mmol)、テトラヒドロフラン 15mL、及び濃度2Mの炭酸カリウム水溶液 15mLを加え、70℃で18時間攪拌した。室温まで冷却後、エタノール 30mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とエタノールで洗浄した。残差を再結晶(o-キシレン/エタノール)することにより、化合物(17A-162)の黄色粉末を1.03g(1.42mmol)単離した(収率86.2%、HPLC純度99.8%)。化合物(17A-162)の昇華温度は、355℃であり、昇華品の化合物(17A-162)は粉末状であることを確認した。 In a 100 mL two-necked eggplant flask under a nitrogen stream, 0.75 g (1.65 mmol) of the compound (17A-123), 2,4-diphenyl-6- [3- (4,4,5,5-tetramethyl- 0.86 g (1.98 mmol) of 1,3,2-dioxaborolan-2-yl) phenyl] -1,3,5-triazine, 7.4 mg (0.033 mmol) of palladium acetate, 2-dicyclohexylphosphino-2 ′ Then, 31 mg (0.066 mmol) of 4,4 ′, 6′-triisopropylbiphenyl (Xphos), 15 mL of tetrahydrofuran and 15 mL of a 2 M aqueous solution of potassium carbonate were added, and the mixture was stirred at 70 ° C. for 18 hours. After cooling to room temperature, 30 mL of ethanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and ethanol. The residue was recrystallized (o-xylene / ethanol) to isolate 1.03 g (1.42 mmol) of a yellow powder of compound (17A-162) (yield 86.2%, HPLC purity 99.8) %). The sublimation temperature of the compound (17A-162) was 355 ° C., and it was confirmed that the compound (17A-162) of the sublimation product was in the form of powder.
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.30(d,1H),9.21(s,1H),9.13(d,1H),8.95(dd,1H),8.89-8.75(m,10H),8.13(dd,1H),8.44(m,1H),7.94(d,1H),7.76-7.71(m,6H),7.65-7.56(m,7H),7.46(dt,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.30 (d, 1 H), 9.21 (s, 1 H), 9. 13 (d, 1 H), 8.95 (dd, 1 H), 8.89-8 .75 (m, 10H), 8.13 (dd, 1 H), 8.44 (m, 1 H), 7.94 (d, 1 H), 7.76-7.71 (m, 6 H), 7.. 65-7.56 (m, 7 H), 7.46 (dt, 1 H)
[実施例-47](化合物(7B-25)の合成) Example 47 (Synthesis of Compound (7B-25))
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 窒素気流下、50mLのシュレンク管に、化合物(7B-3) 1.61g(4.00mmol)、4-ビフェニルボロン酸 871mg(4.40mmol)、酢酸パラジウム 18mg(0.08mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 76mg(0.16mmol)、1,4-ジオキサン 25mL、及び濃度2Mのリン酸カリウム水溶液 3mLを加え、105℃で22時間攪拌した。室温まで冷却後、メタノール15mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残渣を再結晶(トルエン/メタノール)することで、化合物(7B-25)の薄黄色粉末を1.86g(3.58mmol)単離した(収率89.0%、HPLC純度98.5%)。化合物(7B-25)の昇華温度は、315℃であり、昇華品の化合物(7B-25)は粉末状であることを確認した。 Compound (7B-3) 1.61 g (4.00 mmol), 4-biphenylboronic acid 871 mg (4.40 mmol), palladium acetate 18 mg (0.08 mmol), 2-dicyclohexylphoshine in a 50 mL Schlenk tube under nitrogen stream 76 mg (0.16 mmol) of Fino-2 ', 4', 6'-triisopropylbiphenyl (Xphos), 25 mL of 1,4-dioxane, and 3 mL of a 2 M aqueous solution of potassium phosphate were added and stirred at 105 ° C. for 22 hours . After cooling to room temperature, 15 mL of methanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (toluene / methanol) to isolate 1.86 g (3.58 mmol) of a pale yellow powder of compound (7B-25) (yield 89.0%, HPLC purity 98.5%) . The sublimation temperature of the compound (7B-25) was 315 ° C., and it was confirmed that the compound of the sublimation product (7B-25) was powdery.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);9.01-8.90(m,5H),8.80-8.77(m,1H),8.36(d,1H),8.25(dd,1H),8.14(d,2H),8.04(d,1H),7.93-7.79(m,8H),7.67-7.63(m,1H),7.56-7.50(m,3H),7.45-7.41(m,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 9.01-8.90 (m, 5 H), 8.80-8. 77 (m, 1 H), 8. 36 (d, 1 H), 8. 25 (m) dd, 1 H), 8. 14 (d, 2 H), 8.0 4 (d, 1 H), 7.93-7. 79 (m, 8 H), 7. 67-7. 63 (m, 1 H), 7 .56-7.50 (m, 3 H), 7.45-7.41 (m, 1 H)
[実施例-48](化合物(11A-25)の合成) [Example 48] (Synthesis of Compound (11A-25))
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 窒素気流下、50mLのシュレンク管に、化合物(11A-3) 1.36g(3.00mmol)、4-ビフェニルボロン酸 713mg(3.60mmol)、酢酸パラジウム 14mg(0.06mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 57mg(0.12mmol)、1,4-ジオキサン 20mL、及び濃度2Mのリン酸カリウム水溶液 2mLを加え、105℃で22時間攪拌した。室温まで冷却後、メタノール30mLを添加し、撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残渣を再結晶(トルエン/メタノール)することで、化合物(11A-25)の薄黄色粉末を0.96g(1.69mmol)単離した(収率56.3%、HPLC純度99.1%)。化合物(11A-25)の昇華温度は、345℃であり、昇華品の化合物(11A-25)は粉末状であることを確認した。 1.36 g (3.00 mmol) of compound (11A-3), 713 mg (3.60 mmol) of 4-biphenylboronic acid, 14 mg (0.06 mmol) of palladium acetate, and 2-dicyclohexylphoshine in a 50 mL Schlenk tube under nitrogen stream Fino-2 ', 4', 6'-triisopropylbiphenyl (Xphos) 57 mg (0.12 mmol), 20 mL of 1,4-dioxane, and 2 mL of a 2 M aqueous solution of potassium phosphate were added and stirred at 105 ° C. for 22 hours . After cooling to room temperature, 30 mL of methanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (toluene / methanol) to isolate 0.96 g (1.69 mmol) of a pale yellow powder of compound (11A-25) (yield 56.3%, HPLC purity 99.1%) . It was confirmed that the sublimation temperature of the compound (11A-25) was 345 ° C., and the compound (11A-25) of the sublimation product was in the form of powder.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);9.84(d,1H),9.02(d,1H),8.95-8.93(m,2H),8.81-8.72(m,3H),8.52(d,1H),8.37(d,1H),8.33(dd,1H),8.08(d,1H),8.00(d,2H),7.88-7.76(m,8H),7.69(dt,1H),7.57(dt,1H),7.51(t,2H),7.40(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 9.84 (d, 1 H), 9.02 (d, 1 H), 8.95 to 8.93 (m, 2 H), 8.81 to 8.72 ( m, 3H), 8.52 (d, 1 H), 8.37 (d, 1 H), 8.33 (dd, 1 H), 8.08 (d, 1 H), 8.00 (d, 2 H), 7.88-7.76 (m, 8 H), 7.69 (dt, 1 H), 7.57 (dt, 1 H), 7.51 (t, 2 H), 7.40 (t, 1 H)
[実施例-49](化合物(11B-25)の合成) Example 49 (Synthesis of Compound (11B-25))
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 窒素気流下、50mLのシュレンク管に、化合物(11B-3) 1.59g(3.50mmol)、4-ビフェニルボロン酸 0.90g(4.55mmol)、酢酸パラジウム 16mg(0.07mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 67mg(0.14mmol)、1,4-ジオキサン 20mL、及び濃度2Mのリン酸カリウム水溶液 3mLを加え、105℃で4日間攪拌した。室温まで冷却後、メタノール100mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄した。残渣を再結晶(o-キシレン/メタノール)することで、化合物(11B-25)の黄色粉末を1.73g(3.04mmol)単離した(収率86.7%、HPLC純度97.4%)。化合物(11B-25)の昇華温度は、345℃であり、昇華品の化合物(11B-25)はガラス状であることを確認した。 1.59 g (3.50 mmol) of compound (11B-3), 0.90 g (4.55 mmol) of 4-biphenylboronic acid, 16 mg (0.07 mmol) of palladium acetate, in a 50 mL Schlenk tube under nitrogen stream Add 67mg (0.14mmol) of dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos), 20mL of 1,4-dioxane, and 3mL of 2M aqueous potassium phosphate solution, and then 4 days at 105 ° C It stirred. After cooling to room temperature, 100 mL of methanol was added and stirred, and the precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 1.73 g (3.04 mmol) of a yellow powder of compound (11B-25) (yield 86.7%, HPLC purity 97.4%) ). It was confirmed that the sublimation temperature of the compound (11B-25) was 345 ° C., and the compound (11B-25) of the sublimation product was glassy.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);10.07(d,1H),8.94-8.91(m,2H),8.86(d,1H),8.76-8.71(m,3H),8.52(d,1H),8.36(d,1H),8.24(dd,1H),8.18-8.14(m,2H),8.10(d,1H),7.98(d,2H),7.85-7.76(m,6H),7.68(dt,1H),7.58-7.52(m,3H),7.44(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 10.07 (d, 1 H), 8.94 to 8.91 (m, 2 H), 8.86 (d, 1 H), 8.76 to 8.71 ( m, 3 H), 8.5 2 (d, 1 H), 8. 36 (d, 1 H), 8.2 4 (dd, 1 H), 8. 18-8. 14 (m, 2 H), 8. 10 (d , 1H), 7.98 (d, 2H), 7.85-7.76 (m, 6H), 7.68 (dt, 1H), 7.58-7.52 (m, 3H), 7. 44 (t, 1 H)
[実施例-50](化合物(13B-25)の合成) Example 50 (Synthesis of Compound (13B-25))
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 窒素気流下、50mLのシュレンク管に、化合物(13B-3) 1.81g(4.00mmol)、4-ビフェニルボロン酸 0.95g(4.80mmol)、酢酸パラジウム 18mg(0.08mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 76mg(0.16mmol)、1,4-ジオキサン 20mL、及び濃度2Mのリン酸カリウム水溶液 3mLを加え、100℃で22時間攪拌した。室温まで冷却後、エタノール200mLを加えて撹拌し、析出した固体をろ過で回収し、純水とエタノールで洗浄した。残渣を再結晶(o-キシレン)することで、化合物(13B-25)の黄色粉末を1.37g(2.40mmol)単離した(収率60.0%、HPLC純度97.1%)。化合物(13B-25)の昇華温度は、345℃であり、昇華品の化合物(13B-25)はガラス状であることを確認した。 Compound (13B-3) 1.81 g (4.00 mmol), 4-biphenylboronic acid 0.95 g (4.80 mmol), palladium acetate 18 mg (0.08 mmol), 2-phenylboronic acid in a 50 mL Schlenk tube under nitrogen stream Add 76 mg (0.16 mmol) of dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos), 20 mL of 1,4-dioxane, and 3 mL of 2 M aqueous potassium phosphate solution, and add 22 hours at 100 ° C. It stirred. After cooling to room temperature, 200 mL of ethanol was added and stirred, and the precipitated solid was collected by filtration and washed with pure water and ethanol. The residue was recrystallized (o-xylene) to isolate 1.37 g (2.40 mmol) of a yellow powder of compound (13B-25) (yield 60.0%, HPLC purity 97.1%). It was confirmed that the sublimation temperature of the compound (13B-25) was 345 ° C., and the compound (13B-25) of the sublimation product was glassy.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);9.23(s,1H),8.97(d,1H),8.88(s,1H),8.83-8.73(m,5H),8.08(dd,1H),7.96-7.93(m,3H),7.82-7.80(m,2H),7.74-7.65(m,7H),7.56-7.49(m,3H),7.43-7.38(m,2H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 9.23 (s, 1 H), 8.97 (d, 1 H), 8.88 (s, 1 H), 8.83-8. 73 (m, 5 H) , 8.08 (dd, 1H), 7.96-7.93 (m, 3H), 7.82-7.80 (m, 2H), 7.74-7.65 (m, 7H), 7 .56-7.49 (m, 3H), 7.43-7.38 (m, 2H)
[実施例-51](化合物(15B-25)の合成) Example 51 (Synthesis of Compound (15B-25))
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 窒素気流下、50mLのシュレンク管に、化合物(15B-3) 1.81g(4.00mmol)、4-ビフェニルボロン酸 0.95g(4.80mmol)、酢酸パラジウム 18mg(0.08mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 76mg(0.16mmol)、1,4-ジオキサン 20mL、及び濃度2Mのリン酸カリウム水溶液 3mLを加え、100℃で22時間攪拌した。室温まで冷却後、エタノー100mLを加えて撹拌し、析出した固体をろ過で回収し、純水とエタノールで洗浄した。残渣を再結晶(o-キシレン)することで、化合物(15B-25)の黄色粉末を1.78g(3.13mmol)単離した(収率78.2%、HPLC純度99.6%)。化合物(15B-25)の昇華温度は、345℃であり、昇華品の化合物(15B-25)はガラス状であることを確認した。 Compound (15B-3) 1.81 g (4.00 mmol), 4-biphenylboronic acid 0.95 g (4.80 mmol), palladium acetate 18 mg (0.08 mmol), 2- (50B) Schlenk tube under nitrogen stream Add 76 mg (0.16 mmol) of dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos), 20 mL of 1,4-dioxane, and 3 mL of 2 M aqueous potassium phosphate solution, and add 22 hours at 100 ° C. It stirred. After cooling to room temperature, 100 mL of ethanol was added and stirred, and the precipitated solid was collected by filtration and washed with pure water and ethanol. The residue was recrystallized (o-xylene) to isolate 1.78 g (3.13 mmol) of a yellow powder of compound (15B-25) (yield 78.2%, HPLC purity 99.6%). The sublimation temperature of the compound (15B-25) was 345 ° C., and it was confirmed that the compound of the sublimation product (15B-25) was glassy.
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.27(s,1H),9.01(d,1H),8.01(s,1H),8.00(dd,1H),8.75-8.72(m,4H),8.21(dd,1H),7.98-7.96(m,2H),7.90(dd,1H),7.83-7.80(m,2H),7.74-7.62(m,7H),7.56-7.50(m,3H),7.47-7.40(m,2H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.27 (s, 1 H), 9.01 (d, 1 H), 8.01 (s, 1 H), 8.00 (dd, 1 H), 8.75-8 .72 (m, 4 H), 8.21 (dd, 1 H), 7.98-7.96 (m, 2 H), 7. 90 (dd, 1 H), 7.83-7. 80 (m, 2 H) ), 7.74-7.62 (m, 7H), 7.56-7.50 (m, 3H), 7.47-7.40 (m, 2H)
[実施例-52](化合物(16B-25)の合成) [Example 52] (Synthesis of Compound (16B-25))
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 窒素気流下、50mLのシュレンク管に、化合物(16B-3) 1.12g(2.39mmol)、4-ビフェニルボロン酸 0.57g(2.86mmol)、酢酸パラジウム 11mg(0.047mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 45mg(0.094mmol)、1,4-ジオキサン 20mL、及び濃度2Mのリン酸カリウム水溶液 2mLを加え、100℃で22時間攪拌した。室温まで冷却後、エタノー100mLを加えて撹拌し、析出した固体をろ過で回収し、純水とエタノールで洗浄した。残渣を再結晶(o-キシレン/エタノール)することで、化合物(16B-25)の黄色粉末を0.85g(1.46mmol)単離した(収率60.9%、HPLC純度98.1%)。化合物(16B-25)の昇華温度は、360℃であり、昇華品の化合物(16B-25)はガラス状であることを確認した。 In a 50 mL Schlenk tube under a stream of nitrogen, 1.12 g (2.39 mmol) of compound (16B-3), 0.57 g (2.86 mmol) of 4-biphenylboronic acid, 11 mg (0.047 mmol) of palladium acetate, 2- Add 45mg (0.094mmol) of dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl (Xphos), 20mL of 1,4-dioxane, and 2mL of 2M aqueous potassium phosphate solution, and add 22 hours at 100 ° C. It stirred. After cooling to room temperature, 100 mL of ethanol was added and stirred, and the precipitated solid was collected by filtration and washed with pure water and ethanol. The residue was recrystallized (o-xylene / ethanol) to isolate 0.85 g (1.46 mmol) of a yellow powder of compound (16B-25) (yield 60.9%, HPLC purity 98.1%) ). It was confirmed that the sublimation temperature of the compound (16B-25) was 360 ° C., and the compound (16B-25) of the sublimation product was glassy.
 化合物の同定はH-NMR測定により行った。
 H-NMR(CDCl);9.49(s,1H),9.13(s,1H),9.08(d,1H),8.81-8.73(m,5H),8.48(dd,1H),7.99-7.97(m,2H),7.92(dt,2H),7.84-7.82(m,2H),7.75-7.66(m,6H),7.59-7.50(m,4H),7.42(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 9.49 (s, 1 H), 9. 13 (s, 1 H), 9.08 (d, 1 H), 8.81-8.73 (m, 5 H), 8 .48 (dd, 1 H), 7.99-7.97 (m, 2 H), 7. 92 (dt, 2 H), 7.84-7.82 (m, 2 H), 7.75-7.66 (M, 6H), 7.59-7.50 (m, 4H), 7.42 (t, 1H)
[実施例-53](化合物(7B-170)の合成) Example 53 (Synthesis of Compound (7B-170))
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 窒素気流下、100mLのシュレンク管に、化合物(7B-3) 1.61g(4.00mmol)、N,N-ビスビフェニルアミン 1.54g(4.80mmol)、ナトリウム-tert-ブトキシド 0.59g(6.00mmol)、及びo-キシレン 40mLを加え、得られたスラリー状の反応液に酢酸パラジウム 18mg(0.08mmol)、及びトリ-tert-ブチルホスフィン 32mg(0.16mmol)を添加して140℃4時間攪拌した。室温まで冷却後、純水を25mL添加し攪拌した。水層と有機層を分液し、得られた有機層を無水硫酸マグネシウムで乾燥後、減圧下に濃縮した。残渣を再結晶(o-キシレン/メタノール)することにより、化合物(7B-170)の薄黄色粉末を2.49g(3.63mmol)単離した(収率91%、HPLC純度93.5%)。化合物(7B-170)の昇華温度は、350℃であり、昇華品の化合物(7B-170)はガラス状であることを確認した。 In a 100 mL Schlenk tube under a nitrogen stream, 1.61 g (4.00 mmol) of the compound (7B-3), 1.54 g (4.80 mmol) of N, N-bisbiphenylamine, 0.59 g of sodium tert-butoxide ( C. 6.00 mmol) and 40 mL of o-xylene were added, and 18 mg (0.08 mmol) of palladium acetate and 32 mg (0.16 mmol) of tri-tert-butylphosphine were added to the obtained slurry-like reaction solution to obtain 140.degree. Stir for 4 hours. After cooling to room temperature, 25 mL of pure water was added and stirred. The aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was recrystallized (o-xylene / methanol) to isolate 2.49 g (3.63 mmol) of a pale yellow powder of compound (7B-170) (yield 91%, HPLC purity 93.5%) . The sublimation temperature of the compound (7B-170) was 350 ° C., and it was confirmed that the compound (7B-170) of the sublimate was glassy.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.94-8.81(m,4H),8.72-8.69(m,1H),8.30(d,1H),8.07(d,1H),7.93(d,1H),7.83-7.73(m,12H),7.57-7.35(m,13H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.94-8.81 (m, 4 H), 8.72-8.69 (m, 1 H), 8.30 (d, 1 H), 8.07 (m d, 1 H), 7.93 (d, 1 H), 7.8 3-7. 73 (m, 12 H), 7.57-7. 35 (m, 13 H)
[実施例-54](化合物(7B-233)の合成) Example 54 (Synthesis of Compound (7B-233))
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 窒素気流下、50mLのシュレンク管に、化合物(7B-3) 0.81g(2.00mmol)、N,N,N,N-テトラフェニル-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,3-ベンゼンジアミン 1.19g(2.20mmol)、酢酸パラジウム 9mg(0.04mol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 38mg(0.08mmol)、1,4-ジオキサン 30mL、及び濃度2Mの炭酸カリウム水溶液 2mLを加え、70℃で18時間攪拌した。室温まで冷却後、メタノール150mLを加えて撹拌した。析出した固体をろ過で回収し、純水とメタノールで洗浄した。残差をシリカゲルカラムクロマトグラフィー(トルエン/ヘキサン(1/1(v/v)))で精製し、化合物(7B-233)の薄黄色粉末を0.59g(0.75mmol)単離した(収率37.7%、HPLC純度99.8%)。化合物(7B-233)の昇華温度は、345℃であり、昇華品の化合物(7B-233)はガラス状であることを確認した。 In a 50 mL Schlenk tube under a stream of nitrogen, 0.81 g (2.00 mmol) of the compound (7B-3), N 1 , N 1 , N 3 , N 3 -tetraphenyl-5- (4,4,5,5) -Tetramethyl-1,3,2-dioxaborolan-2-yl) -1,3-benzenediamine 1.19 g (2.20 mmol), palladium acetate 9 mg (0.04 mol), 2-dicyclohexylphosphino-2 ', 38 mg (0.08 mmol) of 4 ′, 6′-triisopropylbiphenyl (Xphos), 30 mL of 1,4-dioxane, and 2 mL of a 2 M aqueous solution of potassium carbonate were added and stirred at 70 ° C. for 18 hours. After cooling to room temperature, 150 mL of methanol was added and stirred. The precipitated solid was collected by filtration and washed with pure water and methanol. The residue was purified by silica gel column chromatography (toluene / hexane (1/1 (v / v))) to isolate 0.59 g (0.75 mmol) of a pale yellow powder of compound (7B-233). 37.7%, HPLC purity 99.8%). The sublimation temperature of the compound (7B-233) was 345 ° C., and it was confirmed that the compound (7B-233) of the sublimation product was glassy.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.86-8.80(m,2H),8.74(d,1H),8.70(d,1H),8.54(d,1H),8.39(s,1H),8.22(d,1H),8.86(d,1H),7.79(t,1H),7.74-7.58(m,4H),7.55(t,1H),7.42(t,1H),7.36-7.30(m,8H),7.18-7.12(m,8H),7.08-7.00(m,6H),6.70(t,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.86-8.80 (m, 2H), 8.74 (d, 1H), 8.70 (d, 1H), 8.54 (d, 1H) , 8.39 (s, 1 H), 8.22 (d, 1 H), 8.86 (d, 1 H), 7.79 (t, 1 H), 7.74-7. 58 (m, 4 H), 7.55 (t, 1 H), 7.42 (t, 1 H), 7.36-7. 30 (m, 8 H), 7. 18-7. 12 (m, 8 H), 7.08-7. 00 (m, 6 H), 6. 70 (t, 1 H)
[実施例-55](化合物(7B-234)の合成) Example 55 (Synthesis of Compound (7B-234))
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 窒素気流下、50mLのシュレンク管に、化合物(7B-3) 0.81g(2.00mmol)、N,N-ジ(4-ビフェニルイル)-4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)アニリン 1.26g(2.40mmol)、酢酸パラジウム 9mg(0.04mol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(Xphos) 38mg(0.08mmol)、テトラヒドロフラン 20mL、及び濃度2Mの炭酸カリウム水溶液 20mLを加え、70℃で18時間攪拌した。室温まで冷却後、エタノール40mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄した。残渣を再結晶(o-キシレン/エタノール)することで、化合物(7B-234)の黄色粉末を1.34g(1.76mmol)単離した(収率87.9%、HPLC純度99.1%)。化合物(7B-234)の昇華温度は、360℃であり、昇華品の化合物(7B-234)は粉末状であることを確認した。 In a 50 mL Schlenk tube under a stream of nitrogen, 0.81 g (2.00 mmol) of the compound (7B-3), N, N-di (4-biphenylyl) -4- (4,4,5,5-tetramethyl) -1,3,2-Dioxaborolan-2-yl) aniline 1.26 g (2.40 mmol), palladium acetate 9 mg (0.04 mol), 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl 38 mg (0.08 mmol) of (X phos), 20 mL of tetrahydrofuran and 20 mL of 2 M aqueous potassium carbonate solution were added, and the mixture was stirred at 70 ° C. for 18 hours. After cooling to room temperature, 40 mL of ethanol was added and stirred, and the precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / ethanol) to isolate 1.34 g (1.76 mmol) of a yellow powder of compound (7B-234) (yield 87.9%, HPLC purity 99.1%) ). The sublimation temperature of the compound (7B-234) was 360 ° C., and it was confirmed that the compound of the sublimation product (7B-234) was in the form of powder.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.96-8.89(m,4H),8.83(d,1H),8.77-8.74(m,1H),8.34(d,1H),8.17(dd,1H),8.03-8.00(m,3H),7.88-7.76(m,4H),7.72-7.67(m,8H),7.63(t,1H),7.52-7.44(m,5H),7.37-7.24(m,8H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.96-8.89 (m, 4 H), 8.83 (d, 1 H), 8.77-8.74 (m, 1 H), 8.34 (m d, 1 H), 8. 17 (dd, 1 H), 8.03-8.00 (m, 3 H), 7.88-7. 76 (m, 4 H), 7.72-7. 67 (m, 5 H) 8H), 7.63 (t, 1 H), 7.52-7.44 (m, 5 H), 7.37-7.24 (m, 8 H)
[実施例-56](化合物(7B-240)の合成) [Example-56] (Synthesis of Compound (7B-240))
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 窒素気流下、100mLのシュレンク管に、化合物(7B-3) 0.80g(2.00mmol)、4-(フェニルアミノ)トリフェニルアミン 0.74g(2.40mmol)、ナトリウム-tert-ブトキシド 0.29g(3.00mmol)、及びo-キシレン 30mLを加え、得られたスラリー状の反応液に酢酸パラジウム 9.0mg(0.04mmol)、及びトリ-tert-ブチルホスフィン 16mg(0.08mmol)を添加して140℃で17時間攪拌した。室温まで冷却後、純水を25mL添加し攪拌した。水層と有機層を分液し、得られた有機層を無水硫酸マグネシウムで乾燥後、減圧下に濃縮した。残差をシリカゲルカラムクロマトグラフィー(トルエン/ヘキサン(1/1(v/v)))で精製し、化合物(7B-240)の薄黄色粉末を0.85g(1.20mmol)単離した(収率60.1%、HPLC純度97.4%)。化合物(7B-240)の昇華温度は、350℃であり、昇華品の化合物(7B-240)は粉末状であることを確認した。 In a 100 mL Schlenk tube under a stream of nitrogen, 0.80 g (2.00 mmol) of the compound (7B-3), 0.74 g (2.40 mmol) of 4- (phenylamino) triphenylamine, sodium-tert-butoxide 0. 29 g (3.00 mmol) and 30 mL of o-xylene were added, and 9.0 mg (0.04 mmol) of palladium acetate and 16 mg (0.08 mmol) of tri-tert-butylphosphine were added to the obtained slurry-like reaction liquid The mixture was then stirred at 140 ° C. for 17 hours. After cooling to room temperature, 25 mL of pure water was added and stirred. The aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (toluene / hexane (1/1 (v / v))) to isolate 0.85 g (1.20 mmol) of a pale yellow powder of compound (7B-240). 60.1%, HPLC purity 97.4%). The sublimation temperature of the compound (7B-240) was 350 ° C., and it was confirmed that the compound (7B-240) of the sublimate was in the form of powder.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);8.91-8.86(m,2H),8.81(dd,1H),8.68(d,1H),8.60-8.56(m,1H),8.28(d,1H),7.95(d,1H),7.91(d,1H),7.82-7.72(m,4H),7.56(dt,1H),7.46-7.39(m,4H),7.30-7.18(m,8H),7.08(d,4H),6.96(t,2H),6.90(t,1H),6.73(dd,1H),6.67(dd,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 8.91-8.86 (m, 2H), 8.81 (dd, 1 H), 8.68 (d, 1 H), 8.60-8.56 ( m, 1 H), 8. 28 (d, 1 H), 7. 95 (d, 1 H), 7. 91 (d, 1 H), 7.82-7.72 (m, 4 H), 7.56 (dt , 1 H), 7.46-7.39 (m, 4 H), 7.30-7. 18 (m, 8 H), 7.08 (d, 4 H), 6.96 (t, 2 H), 6. 90 (t, 1 H), 6.73 (dd, 1 H), 6.67 (dd, 1 H)
[実施例-57](化合物(11A-170)の合成) Example 57 (Synthesis of Compound (11A-170))
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 窒素気流下、100mLのシュレンク管に、化合物(11A-3) 1.13g(2.50mmol)、N,N-ビスビフェニルアミン 0.96g(3.00mmol)、ナトリウム-tert-ブトキシド 0.37g(3.75mmol)、及びo-キシレン 25mLを加え、得られたスラリー状の反応液に酢酸パラジウム 11mg(0.05mmol)、及びトリ-tert-ブチルホスフィン 20mg(0.10mmol)を添加して140℃で4時間攪拌した。室温まで冷却後、純水を25mL添加し攪拌した。水層と有機層を分液し、得られた有機層を無水硫酸ナトリウムで乾燥後、減圧下に濃縮した。残渣を再結晶(o-キシレン/メタノール)することにより、化合物(11A-170)の黄色粉末を1.46g(1.98mmol)単離した(収率79.2%、HPLC純度99.6%)。化合物(11A-170)の昇華温度は、360℃であり、昇華品の化合物(11A-170)はガラス状であることを確認した。 1.13 g (2.50 mmol) of compound (11A-3), 0.96 g (3.00 mmol) of N, N-bisbiphenylamine, 0.37 g of sodium tert-butoxide in a 100 mL Schlenk tube under a nitrogen stream. C. 3.75 mmol) and 25 mL of o-xylene are added, and 11 mg (0.05 mmol) of palladium acetate and 20 mg (0.10 mmol) of tri-tert-butylphosphine are added to the obtained slurry-like reaction solution, and the temperature is 140.degree. The mixture was stirred for 4 hours. After cooling to room temperature, 25 mL of pure water was added and stirred. The aqueous layer and the organic layer were separated, and the obtained organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was recrystallized (o-xylene / methanol) to isolate 1.46 g (1.98 mmol) of a yellow powder of compound (11A-170) (yield 79.2%, HPLC purity 99.6%) ). The sublimation temperature of the compound (11A-170) was 360 ° C., and it was confirmed that the compound of sublimate (11A-170) was glassy.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);9.15(s,1H),8.87(d,2H),8.82(d,1H),8.30(d,1H),8.15-8.10(m,4H),7.89(s,2H),7.88-7.79(m,2H),7.66(dt,1H),7.48-7.32(m,8H),7.20-7.15(m,4H),7.11-7.09(m,6H),6.74(d,2H),6.64(d,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 9.15 (s, 1 H), 8.87 (d, 2 H), 8.82 (d, 1 H), 8.30 (d, 1 H), 8.15 -8. 10 (m, 4H), 7.89 (s, 2H), 7.88-7.79 (m, 2H), 7.66 (dt, 1H), 7.48-7.32 (m , 8H), 7.20-7.15 (m, 4H), 7.11-7.09 (m, 6H), 6.74 (d, 2H), 6.64 (d, 1H)
[実施例-58](化合物(11B-170)の合成) Example 58 (Synthesis of Compound (11B-170))
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 窒素気流下、100mLのシュレンク管に、化合物(11B-3) 1.59g(3.50mmol)、N,N-ビスビフェニルアミン 1.57g(4.90mmol)、ナトリウム-tert-ブトキシド 0.51g(5.25mmol)、及びo-キシレン 35mLを加え、得られたスラリー状の反応液に酢酸パラジウム 16mg(0.07mmol)、及びトリ-tert-ブチルホスフィン 28mg(0.14mmol)を添加して140℃で4時間攪拌した。室温まで冷却後、メタノール30mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄した。残渣を再結晶(o-キシレン/メタノール)することにより、化合物(11B-170)の黄色粉末を1.83g(2.48mmol)単離した(収率70.8%、HPLC純度96.7%)。化合物(11B-170)の昇華温度は、360℃であり、昇華品の化合物(11B-170)はガラス状であることを確認した。 1.59 g (3.50 mmol) of compound (11B-3), 1.57 g (4.90 mmol) of N, N-bisbiphenylamine, 0.51 g of sodium-tert-butoxide in a 100 mL Schlenk tube under a nitrogen stream. C. 5.25 mmol) and 35 mL of o-xylene were added, and 16 mg (0.07 mmol) of palladium acetate and 28 mg (0.14 mmol) of tri-tert-butylphosphine were added to the obtained slurry-like reaction solution to obtain 140.degree. The mixture was stirred for 4 hours. After cooling to room temperature, 30 mL of methanol was added and stirred, and the precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 1.83 g (2.48 mmol) of a yellow powder of compound (11B-170) (yield 70.8%, HPLC purity 96.7%) ). The sublimation temperature of the compound (11B-170) was 360 ° C., and it was confirmed that the compound of sublimate (11B-170) was glassy.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);9.33(d,1H),8.87(d,2H),8.68-8.63(m,4H),8.40(d,1H),8.23(d,1H),7.84-7.72(m,12H),7.60(dd,1H),7.52-7.37(m,11H),7.27(dt,1H),7.22(d,1H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 9.33 (d, 1 H), 8.87 (d, 2 H), 8. 68-8. 63 (m, 4 H), 8. 40 (d, 1 H) , 8.23 (d, 1 H), 7.84-7. 72 (m, 12 H), 7. 60 (dd, 1 H), 7.52-7.37 (m, 11 H), 7.27 (dt , 1H), 7.22 (d, 1H)
[実施例-59](化合物(17A-170)の合成) [Example-59] (Synthesis of Compound (17A-170))
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 窒素気流下、100mLのシュレンク管に、化合物(17A-3) 1.81g(4.00mmol)、N,N-ビスビフェニルアミン 1.56g(4.80mmol)、ナトリウム-tert-ブトキシド 0.58g(6.00mmol)、及びo-キシレン 40mLを加え、得られたスラリー状の反応液に酢酸パラジウム 18mg(0.08mmol)、及びトリ-tert-ブチルホスフィン 32mg(0.16mmol)を添加して140℃で18時間攪拌した。室温まで冷却後、メタノール30mLを加えて撹拌し、析出した固体をろ過で回収し、純水とメタノールで洗浄した。残渣を再結晶(o-キシレン/メタノール)することにより、化合物(17A-170)の黄色粉末を2.56g(3.47mmol)単離した(収率86.63%、HPLC純度99.0%)。化合物(17A-170)の昇華温度は、340℃であり、昇華品の化合物(17A-170)はガラス状であることを確認した。 In a 100 mL Schlenk tube under a nitrogen stream, 1.81 g (4.00 mmol) of the compound (17A-3), 1.56 g (4.80 mmol) of N, N-bisbiphenylamine, 0.58 g of sodium tert-butoxide ( C. 6.00 mmol) and 40 mL of o-xylene were added, and 18 mg (0.08 mmol) of palladium acetate and 32 mg (0.16 mmol) of tri-tert-butylphosphine were added to the obtained slurry-like reaction solution to obtain 140.degree. The mixture was stirred for 18 hours. After cooling to room temperature, 30 mL of methanol was added and stirred, and the precipitated solid was collected by filtration and washed with pure water and methanol. The residue was recrystallized (o-xylene / methanol) to isolate 2.56 g (3.47 mmol) of a yellow powder of compound (17A-170) (yield 86.63%, HPLC purity 99.0%) ). The sublimation temperature of the compound (17A-170) was 340 ° C., and it was confirmed that the compound of the sublimate (17A-170) was glassy.
 化合物の同定はH-NMR測定により行った。
 H-NMR(DMSO-d);9.09(d,1H),8.85-8.78(m,3H),8.74-8.72(m,1H),8.68(d,1H),8.38(d,1H),8.16(d,1H),8.07(d,1H),7.87(d,1H),7.78-7.69(m,10H),7.75-7.60(m,2H),7.52-7.45(m,7H),7.38-7.33(m,6H)
The identification of the compound was performed by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 9.09 (d, 1 H), 8.85-8.78 (m, 3 H), 8.74-8.72 (m, 1 H), 8.68 (m, 1 H) d, 1 H), 8. 38 (d, 1 H), 8. 16 (d, 1 H), 8.07 (d, 1 H), 7. 87 (d, 1 H), 7.78-7.69 (m , 10H), 7.75-7.60 (m, 2H), 7.52-7.45 (m, 7H), 7.38-7.33 (m, 6H)
[再結晶実施例-1]
 HPLC純度92.6%の化合物(4iF-1) 10mgをクロロホルム 2mLに溶解させた後、該溶液から1mLをシリンジで抜き取り、フィルターろ過を通じて5mLのサンプル管に投入した。次に、メタノール 2mLを該ろ液に加え10秒間撹拌し、沈殿が生じていないことを確認した。その後、サンプル管にフタを取り付けて密閉した。
 24時間後、該密閉のサンプル管内の溶液中に、化合物(4iF-1)の析出有無を確認した。結果を表1に示す。
Recrystallization Example 1
After dissolving 10 mg of a compound (4iF-1) having an HPLC purity of 92.6% in 2 mL of chloroform, 1 mL of the solution was withdrawn with a syringe and charged into a 5 mL sample tube through filter filtration. Next, 2 mL of methanol was added to the filtrate, and the mixture was stirred for 10 seconds to confirm that no precipitation had occurred. Thereafter, the sample tube was attached with a lid and sealed.
After 24 hours, the presence or absence of precipitation of the compound (4iF-1) was confirmed in the solution in the sealed sample tube. The results are shown in Table 1.
[再結晶実施例-2~13]
 再結晶実施例-1において、化合物(4iF-1)の代わりに、順に、HPLC純度93.0%の化合物(7iB-3)]、HPLC純度92.4%の化合物(8iB-3)]、HPLC純度90.6%の化合物(9iB-3)]、HPLC純度97.3%の化合物(10iB-3)]、HPLC純度97.1%の化合物(11iA-3)]、HPLC純度94.9%の化合物(11iB-3)]、HPLC純度98.1%の化合物(12iA-3)]、HPLC純度96.2%の化合物(12iB-3)]、HPLC純度94.4%の化合物(13iB-3)]、HPLC純度98.1%の化合物(15iB-3)]、HPLC純度98.4%の化合物(16iB-3)]、HPLC純度99.1%の化合物(17iB-3)を用いた以外は、再結晶実施例-1と同じ方法でそれぞれ評価した。結果を表1に示した。
[Recrystallization Example 2 to 13]
In Recrystallization Example 1, instead of the compound (4iF-1), a compound (7iB-3) of 93.0% purity by HPLC, a compound (8iB-3) of 92.4% of HPLC purity, HPLC purity 90.6% compound (9iB-3)], HPLC purity 97.3% compound (10iB-3)], HPLC purity 97.1% compound (11iA-3)], HPLC purity 94.9 % Compound (11iB-3)], HPLC purity 98.1% compound (12iA-3)], HPLC purity 96.2% compound (12iB-3)], HPLC purity 94.4% compound (13iB) -3), HPLC purity 98.1% compound (15iB-3)], HPLC purity 98.4% compound (16iB-3)], HPLC purity 99.1% compound (17iB-3) Except for They were evaluated respectively in the same manner as recrystallization Example -1. The results are shown in Table 1.
[再結晶比較例-1~4]
 再結晶実施例-1において、化合物(4iF-1)の代わりに、順に、HPLC純度98.3%の9-[4-クロロ-2-(2-ナフチル)]-フェナントレン(Z1);HPLC純度97.1%の9-[4-クロロ-2-(1-ナフチル)]-フェナントレン(Z2)];HPLC純度99.2%の9-(4-クロロビフェニル-2-イル)-フェナントレン(Z3)];HPLC純度94.7%の9-(3-クロロビフェニル-6-イル)-フェナントレン(Z4)を用いた以外は、再結晶実施例-1と同じ方法でそれぞれ評価した。結果を表1に示した。
[Recrystallization Comparative Examples 1 to 4]
In Recrystallization Example 1, 9- [4-chloro-2- (2-naphthyl)]-phenanthrene (Z1) having an HPLC purity of 98.3% in place of the compound (4iF-1); HPLC purity 97.1% 9- [4-chloro-2- (1-naphthyl)]-phenanthrene (Z2) !; HPLC purity 99.2% 9- (4-chlorobiphenyl-2-yl) -phenanthrene (Z3) HPLC evaluation was carried out in the same manner as in Recrystallization Example 1 except that 9- (3-chlorobiphenyl-6-yl) -phenanthrene (Z4) having a purity of 94.7% was used. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000093
 化合物(Z1)~(Z4)と比較すると、本態様にかかる縮合環化合物は、結晶性が高く、再結晶を用いた製造プロセスに有利である。 Compared with the compounds (Z1) to (Z4), the fused ring compound according to the present embodiment is high in crystallinity, and is advantageous for the production process using recrystallization.
[比較例-1]
 上述した実施例と同様の手法を用いて、下記式(X1)で表される3-クロロジベンゾ[g,p]クリセンを合成した。
Comparative Example 1
3-chlorodibenzo [g, p] chrysene represented by the following formula (X1) was synthesized using the same method as the above-mentioned example.
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
[比較例-2]
 下記式(X2)で表される3-(4,6-ジフェニル-1,3,5-トリアジル)ジベンゾ[g,p]クリセン(特許文献3に開示された化合物)を合成した。化合物(X2)の昇華温度は、310℃であり、昇華品の化合物(X2)は粉末状であることを確認した。
Comparative Example 2
3- (4,6-diphenyl-1,3,5-triazyl) dibenzo [g, p] chrysene (a compound disclosed in Patent Document 3) represented by the following formula (X2) was synthesized. The sublimation temperature of the compound (X2) was 310 ° C., and it was confirmed that the compound (X2) of the sublimation product was in the form of powder.
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
[比較例-3]
 下記式(X3)で表される3-(1-ビフェニル-4-イル)ジベンゾ[g,p]クリセン(特許文献2に開示された化合物)を合成した。化合物(X3)の昇華温度は、310℃であり、昇華品の化合物(X3)はガラス状であることを確認した。
Comparative Example 3
3- (1-biphenyl-4-yl) dibenzo [g, p] chrysene (a compound disclosed in Patent Document 2) represented by the following formula (X3) was synthesized. The sublimation temperature of the compound (X3) was 310 ° C., and it was confirmed that the compound (X3) of the sublimate was glassy.
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
[比較例-4]
 下記式(X4)で表される3-(ジフェニルアミノ)ジベンゾ[g,p]クリセン(特許文献1に開示された化合物)を合成した。化合物(X4)の昇華温度は、310℃であり、昇華品の化合物(X4)はガラス状であることを確認した。
Comparative Example 4
3- (Diphenylamino) dibenzo [g, p] chrysene (a compound disclosed in Patent Document 1) represented by the following formula (X4) was synthesized. The sublimation temperature of the compound (X4) was 310 ° C., and it was confirmed that the compound (X4) of the sublimate was glassy.
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000100
 化合物(X1)、(X3)、および(X4)と比較すると、本態様にかかる縮合環化合物は、高いガラス転移温度及び三重項励起準位を有していることが分かる。 In comparison with the compounds (X1), (X3), and (X4), it can be seen that the fused ring compound according to this embodiment has a high glass transition temperature and a triplet excitation level.
[素子実施例-1 (化合物(10B-154)の素子評価)]
 次に、得られた化合物(10B-154)を用いて、図2に示す積層構成を有する有機エレクトロルミネッセンス素子を作製した。図2は本開示の一態様にかかるエレクトロルミネッセンス素子の他の積層構成の例を示す概略断面図である。有機エレクトロルミネッセンス素子の作製に用いた化合物の構造式及びその略称は以下のとおりである。
Element Example 1 Element Evaluation of Compound (10B-154)
Then, using the obtained compound (10B-154), an organic electroluminescent device having a laminated structure shown in FIG. 2 was produced. FIG. 2 is a schematic cross-sectional view showing an example of another laminated configuration of the electroluminescent device according to an aspect of the present disclosure. The structural formula of the compound used for preparation of an organic electroluminescent element and its abbreviation are as follows.
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
(基板1、陽極2の作製)
 陽極をその表面に備えた基板として、2mm幅の酸化インジウム-スズ(ITO)膜(膜厚110nm)がストライプ状にパターンされたITO透明電極付きガラス基板を用意した。ついで、この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄により表面処理を行った。
(Production of substrate 1 and anode 2)
As a substrate having an anode on the surface, a glass substrate with an ITO transparent electrode in which an indium tin oxide (ITO) film (film thickness of 110 nm) having a width of 2 mm was patterned in stripes was prepared. Then, the substrate was washed with isopropyl alcohol and then subjected to surface treatment by ozone ultraviolet ray washing.
(真空蒸着の準備)
 洗浄後の表面処理が施された基板上に、真空蒸着法で各層の真空蒸着を行い、各層を積層形成した。各有機材料および金属材料は抵抗加熱方式により成膜した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。そして、以下の順で、各層の成膜条件に従ってそれぞれ作製した。
(Preparation for vacuum deposition)
Each layer was vacuum-deposited by a vacuum deposition method on the surface-treated substrate after cleaning to form each layer in layers. Each organic material and metal material were deposited by resistance heating.
First, the glass substrate was introduced into a vacuum deposition tank, and the pressure was reduced to 1.0 × 10 −4 Pa. Then, in accordance with the film forming conditions of each layer, they were manufactured in the following order.
(正孔注入層3の作製)
 昇華精製したHILを0.15nm/秒の速度で50nm成膜し、正孔注入層を作製した。
(Preparation of hole injection layer 3)
Sublimation-purified HIL was deposited to a thickness of 50 nm at a rate of 0.15 nm / sec to prepare a hole injection layer.
(電荷発生層4の作製)
 昇華精製したHATを0.05nm/秒の速度で5nm成膜し、電荷発生層を作製した。
(Preparation of Charge Generating Layer 4)
A sublimation-purified HAT was deposited to a thickness of 5 nm at a rate of 0.05 nm / sec to prepare a charge generation layer.
(第一正孔輸送層51の作製)
 HTL-1を0.15nm/秒の速度で10nm成膜し、第一正孔輸送層を作製した。
(Preparation of First Hole Transport Layer 51)
HTL-1 was deposited to a thickness of 10 nm at a rate of 0.15 nm / sec to prepare a first hole transport layer.
(第二正孔輸送層52の作製)
 HTL-2を0.15nm/秒の速度で10nm成膜し、第二正孔輸送層(電子阻止層)を作製した。この第二正孔輸送層は、電子の流入を阻止する電子阻止層としても機能する層である。
(Preparation of Second Hole Transport Layer 52)
HTL-2 was deposited to a thickness of 10 nm at a rate of 0.15 nm / sec to prepare a second hole transport layer (electron blocking layer). The second hole transport layer is a layer that also functions as an electron blocking layer that blocks the inflow of electrons.
(発光層6の作製)
 EML-1及びEML-2を5:95(質量比)の割合で25nm成膜し、発光層を作製した。成膜速度は0.18nm/秒であった。
(Preparation of light emitting layer 6)
EML-1 and EML-2 were deposited to a thickness of 25 nm at a ratio of 5:95 (mass ratio) to prepare a light emitting layer. The deposition rate was 0.18 nm / sec.
(第一電子輸送層71の作製)
 ETL-1を0.15nm/秒の速度で5nm成膜し、第一電子輸送層(正孔阻止層)を作製した。この第一電子輸送層は、正孔の流入を阻止する正孔阻止層としても機能する層である。
(Preparation of First Electron Transport Layer 71)
ETL-1 was deposited to a thickness of 5 nm at a rate of 0.15 nm / sec to prepare a first electron transport layer (hole blocking layer). The first electron transport layer is a layer that also functions as a hole blocking layer that blocks the flow of holes.
(第二電子輸送層72の作製)
 化合物(10B-154)及びLiqを50:50(質量比)の割合で25nm成膜し、第二電子輸送層を作製した。成膜速度は0.15nm/秒であった。
(Preparation of Second Electron Transport Layer 72)
The compound (10B-154) and Liq were formed into a film of 25 nm at a ratio of 50:50 (mass ratio) to prepare a second electron transport layer. The deposition rate was 0.15 nm / sec.
(電子注入層8の作製)
 Liqを0.01nm/秒の速度で1nm成膜し、電子注入層を作製した。
(Preparation of electron injection layer 8)
An electron injecting layer was formed by depositing Liq at a rate of 0.01 nm / sec for 1 nm.
(陰極9の作製)
 最後に、基板上のITOストライプと直行するようにメタルマスクを配し、陰極(陰極層)を成膜した。陰極は、銀/マグネシウム(質量比1/10)と銀とを、この順番で、それぞれ80nmと20nmとで成膜し、2層構造とした。銀/マグネシウムの成膜速度は0.5nm/秒、銀の成膜速度は0.2nm/秒であった。
(Production of Cathode 9)
Finally, a metal mask was disposed to be orthogonal to the ITO stripes on the substrate, and a cathode (cathode layer) was formed. The cathode was formed into a two-layer structure by depositing silver / magnesium (mass ratio 1/10) and silver in this order at 80 nm and 20 nm, respectively. The deposition rate of silver / magnesium was 0.5 nm / sec, and the deposition rate of silver was 0.2 nm / sec.
 以上により、図2に示すような積層構成を有する発光面積4mm有機エレクトロルミネッセンス素子を作製した。なお、それぞれの膜厚は、触針式膜厚測定計(Bruker社製DEKTAK)で測定した。 From the above, an organic electroluminescent device having a light emitting area of 4 mm 2 having a laminated structure as shown in FIG. 2 was produced. In addition, each film thickness was measured by a stylus type film thickness measurement meter (DEKTAK manufactured by Bruker).
 さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気のグローブボックス内で封止した。封止は、ガラス製の封止キャップと成膜基板(素子)とを、ビスフェノールF型液状エポキシ樹脂(ナガセケムテックス社製)を用いて行った。 Furthermore, this element was sealed in a glove box under a nitrogen atmosphere with an oxygen and water concentration of 1 ppm or less. The sealing was performed using a glass sealing cap and a film formation substrate (element) using a bisphenol F-type liquid epoxy resin (manufactured by Nagase ChemteX Corp.).
 上記のようにして作製した有機エレクトロルミネッセンス素子に直流電流を印加し、輝度計(TOPCON社製LUMINANCE METER BM-9)を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、電流効率(cd/A)を測定した。素子寿命(h)は、作製した有機エレクトロルミネッセンス素子を初期輝度1000cd/mで駆動したときの連続点灯時の輝度減衰時間を測定し、輝度(cd/m)が5%減じるまでに要した時間を測定した。得られた測定結果を表2に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子比較例-1における結果を基準値(100)とした相対値である。 A direct current was applied to the organic electroluminescent device produced as described above, and the light emission characteristic was evaluated using a luminance meter (LUMINANCE METER BM-9 manufactured by TOPCON). As light emission characteristics, voltage (V) and current efficiency (cd / A) were measured when a current density of 10 mA / cm 2 was passed. The device life (h) was measured by measuring the luminance decay time during continuous lighting when the prepared organic electroluminescent device was driven at an initial luminance of 1000 cd / m 2 , and it was necessary to reduce the luminance (cd / m 2 ) by 5%. The time taken was measured. The obtained measurement results are shown in Table 2. The voltage, current efficiency, and device life are relative values with the result in device comparison example 1 described later as a reference value (100).
[素子実施例-2~6、素子比較例-1]
 素子実施例-1において、化合物(10B-154)の代わりに、順に、化合物(11A-154)、化合物(11B-154)、化合物(12B-154)、化合物(15B-154)、化合物(16B-154)、化合物(X2)を用いた以外は、素子実施例-1と同じ方法で有機エレクトロルミネッセンス素子を作製し、それぞれ評価した。得られた測定結果を表5に示す。
[Device Examples 2 to 6, Device Comparative Example 1]
In element example 1, in place of compound (10B-154), compound (11A-154), compound (11B-154), compound (12B-154), compound (15B-154), compound (16B) An organic electroluminescent device was produced and evaluated in the same manner as in Device Example 1 except that the compound (X2) was used. The obtained measurement results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000102
[素子実施例-7]
 素子実施例-1において、EML-2の代わりに、化合物(11A-25)を用い、化合物(10B-154)の代わりにETL-2を用いた以外は、素子実施例-1と同じ方法で有機エレクトロルミネッセンス素子を作製し、評価した。得られた測定結果を表6に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子比較例-2における結果を基準値(100)とした相対値である。
Element Example 7
A device example-1 is the same as the device example-1, except that the compound (11A-25) is used instead of the EML-2, and ETL-2 is used instead of the compound (10B-154). An organic electroluminescent device was produced and evaluated. The obtained measurement results are shown in Table 6. The voltage, current efficiency, and device life are relative values with the result in device comparison example 2 described later as a reference value (100).
[素子実施例-8~10]
 素子実施例-7において、化合物(11A-25)の代わりに、順に、化合物(13B-25)、化合物(15B-25)、化合物(16B-25)を用いた以外は、素子実施例-10と同じ方法で有機エレクトロルミネッセンス素子を作製し、それぞれ評価した。得られた測定結果を表6に示す。
[Device Example-8 to 10]
Element Example 10 except for using Compound (13B-25), Compound (15B-25), and Compound (16B-25) in place of Compound (11A-25) in Element Example 7 The organic electroluminescent element was produced by the same method as, and evaluated, respectively. The obtained measurement results are shown in Table 6.
[素子比較例-2]
 素子実施例-7において、化合物(11A-25)の代わりに、化合物(X3)を用いた以外は、素子実施例-7と同じ方法で有機エレクトロルミネッセンス素子を作製し、評価した。得られた測定結果を表6に示す。
[Device Comparative Example 2]
An organic electroluminescent device was produced and evaluated in the same manner as in Device Example 7 except for using Compound (X3) in place of Compound (11A-25) in Device Example 7. The obtained measurement results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000103
[素子実施例-11]
 (基板1、陽極2の作製)から(第一正孔輸送層51の作製)までは、実施例-1と同様の手順で作製した。
Element Example 11
The steps from (preparation of substrate 1 and anode 2) to (preparation of first hole transport layer 51) were conducted in the same manner as in Example 1.
(第二正孔輸送層52の作製)
 化合物(7B-25)を0.15nm/秒の速度で40nm成膜し、第二正孔輸送層(電子阻止層)を作製した。
(Preparation of Second Hole Transport Layer 52)
The compound (7B-25) was deposited to a thickness of 40 nm at a rate of 0.15 nm / sec to prepare a second hole transport layer (electron blocking layer).
(発光層6の作製)
 Hex-Ir(piq)2(acac)及びEML-3を8:92(質量比)の割合で35nm成膜し、発光層を作製した。成膜速度は0.18nm/秒であった。
(Preparation of light emitting layer 6)
A light emitting layer was formed by depositing Hex-Ir (piq) 2 (acac) and EML-3 at a ratio of 8: 92 (mass ratio) to a thickness of 35 nm. The deposition rate was 0.18 nm / sec.
(第一電子輸送層71の作製)
 ETL-2及びLiqを50:50(質量比)の割合で30nm成膜し、第一電子輸送層を作製した。成膜速度は0.15nm/秒であった。
(Preparation of First Electron Transport Layer 71)
ETL-2 and Liq were deposited to a thickness of 30 nm at a ratio of 50:50 (mass ratio) to prepare a first electron transport layer. The deposition rate was 0.15 nm / sec.
(第二電子輸送層72の作製)
 素子実施例-11において、第二電子輸送層72は作製しなかった。
(Preparation of Second Electron Transport Layer 72)
In the device example-11, the second electron transport layer 72 was not produced.
(電子注入層8の作製)から(陰極9の作製)までは、実施例-1と同様の手順で作製した。 The steps from (Production of Electron Injection Layer 8) to (Production of Cathode 9) were carried out in the same manner as in Example 1.
 発光特性として、電流密度10mA/cmを流した時の電圧(V)、電流効率(cd/A)を測定した。素子寿命(h)は、作製した有機エレクトロルミネッセンス素子を初期輝度2000cd/mで駆動したときの連続点灯時の輝度減衰時間を測定し、輝度(cd/m)が20%減じるまでに要した時間を測定した。得られた測定結果を表7に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子比較例-3における結果を基準値(100)とした相対値である。 As light emission characteristics, voltage (V) and current efficiency (cd / A) were measured when a current density of 10 mA / cm 2 was passed. The device life (h) was measured by measuring the luminance decay time during continuous lighting when the manufactured organic electroluminescent device was driven at an initial luminance of 2000 cd / m 2 , and it was necessary to reduce the luminance (cd / m 2 ) by 20%. The time taken was measured. The obtained measurement results are shown in Table 7. The voltage, current efficiency, and device life are relative values with the result in device comparison example 3 described later as a reference value (100).
[素子比較例-3]
 素子実施例-11において、化合物(7B-25)の代わりに、化合物(X3)を用いた以外は、素子実施例-11と同じ方法で有機エレクトロルミネッセンス素子を作製し、評価した。得られた測定結果を表7に示す。
Element Comparison Example 3
An organic electroluminescent device was produced and evaluated in the same manner as in Device Example 11 except that the compound (X3) was used instead of the compound (7B-25) in Device Example 11. The obtained measurement results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000104
[素子実施例-12]
 素子実施例-11において、化合物(7B-25)の代わりに、化合物(7B-170)を用いた以外は、素子実施例-11と同じ方法で有機エレクトロルミネッセンス素子を作製し、評価した。得られた測定結果を表8に示す。なお、電圧、及び電流効率は、後述の素子比較例-4における結果を基準値(100)とした相対値である。
Element Example 12
An organic electroluminescent device was produced and evaluated in the same manner as in Device Example 11 except that the compound (7B-170) was used instead of the compound (7B-25) in the device example-11. The obtained measurement results are shown in Table 8. The voltage and current efficiency are relative values with the result in the element comparative example 4 described later as a reference value (100).
[素子比較例-4]
 素子実施例-12において、化合物(7B-170)の代わりに、化合物(X4)を用いた以外は、素子実施例-12と同じ方法で有機エレクトロルミネッセンス素子を作製し、評価した。得られた測定結果を表8に示す。
[Device Comparative Example 4]
An organic electroluminescent device was produced and evaluated in the same manner as in Device Example 12 except that the compound (X4) was used instead of the compound (7B-170) in Device Example 12. The obtained measurement results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000105
[素子実施例-13]
 (基板1、陽極2の作製)から(電荷発生層4の作製)までは、実施例-1と同様の手順で作製した。
Element Example 13
The steps from (Production of Substrate 1, Anode 2) to (Production of Charge Generating Layer 4) were carried out in the same manner as in Example 1.
(第一正孔輸送層51の作製)
 HTL-1を0.15nm/秒の速度で85nm成膜し、第一正孔輸送層を作製した。
(Preparation of First Hole Transport Layer 51)
HTL-1 was deposited to a thickness of 85 nm at a rate of 0.15 nm / sec to prepare a first hole transport layer.
(第二正孔輸送層52の作製)
 化合物(7B-233)を0.15nm/秒の速度で60nm成膜し、第二正孔輸送層(電子阻止層)を作製した。
(Preparation of Second Hole Transport Layer 52)
The compound (7B-233) was deposited to a thickness of 60 nm at a rate of 0.15 nm / sec to prepare a second hole transport layer (electron blocking layer).
(発光層6の作製)
 Hex-Ir(piq)2(acac)及びEML-4を2:98(質量比)の割合で35nm成膜し、発光層を作製した。成膜速度は0.18nm/秒であった。
(Preparation of light emitting layer 6)
A light emitting layer was formed by depositing Hex-Ir (piq) 2 (acac) and EML-4 at a ratio of 2:98 (mass ratio) to a thickness of 35 nm. The deposition rate was 0.18 nm / sec.
(第一電子輸送層71の作製)
 ETL-2及びLiqを50:50(質量比)の割合で30nm成膜し、第一電子輸送層を作製した。成膜速度は0.15nm/秒であった。
(Preparation of First Electron Transport Layer 71)
ETL-2 and Liq were deposited to a thickness of 30 nm at a ratio of 50:50 (mass ratio) to prepare a first electron transport layer. The deposition rate was 0.15 nm / sec.
(第二電子輸送層72の作製)
 素子実施例-13において、第二電子輸送層72は作製しなかった。
(Preparation of Second Electron Transport Layer 72)
In the device example-13, the second electron transport layer 72 was not produced.
(電子注入層8の作製)から(陰極9の作製)までは、実施例-1と同様の手順で作製した。 The steps from (Production of Electron Injection Layer 8) to (Production of Cathode 9) were carried out in the same manner as in Example 1.
 発光特性として、電流密度10mA/cmを流した時の電圧(V)、電流効率(cd/A)を測定した。素子寿命(h)は、作製した有機エレクトロルミネッセンス素子を初期輝度5000cd/mで駆動したときの連続点灯時の輝度減衰時間を測定し、輝度(cd/m)が3%減じるまでに要した時間を測定した。得られた測定結果を表9に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子比較例-5における結果を基準値(100)とした相対値である。 As light emission characteristics, voltage (V) and current efficiency (cd / A) were measured when a current density of 10 mA / cm 2 was passed. Device lifetime (h) measures the continuous luminance decay time at the time of lighting when the organic electroluminescent device produced was driven at an initial luminance 5000 cd / m 2, is needed to luminance (cd / m 2) is reduced 3% The time taken was measured. The obtained measurement results are shown in Table 9. The voltage, current efficiency, and device life are relative values with the result in device comparison example 5 described later as a reference value (100).
[素子実施例-14~16、素子比較例-5]
 素子実施例-13において、化合物(7B-233)の代わりに、順に、化合物(7B-234)、化合物(7B-240)、化合物(17A-170)、化合物(X4)を用いた以外は、素子実施例-13と同じ方法で有機エレクトロルミネッセンス素子を作製し、それぞれ評価した。得られた測定結果を表9に示す。
[Element Examples 14 to 16, Element Comparative Example 5]
In Device Example 13 except for using Compound (7B-234), Compound (7B-240), Compound (17A-170), and Compound (X4) in order instead of Compound (7B-233), The organic electroluminescent devices were produced in the same manner as in Device Example 13 and evaluated. The obtained measurement results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000106
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2017年8月10日に出願された日本国特許出願2017-156113号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2017-156113 filed on Aug. 10, 2017 are incorporated herein by reference and incorporated as disclosure of the specification of the present invention. It is a thing.
1.基板、2.陽極、3.正孔注入層、4.電荷発生層、5.正孔輸送層、6.発光層、7.電子輸送層、8.電子注入層、9.陰極、51.第一正孔輸送層、52.第二正孔輸送層、100.有機エレクトロルミネッセンス素子 1. Substrate, 2. Anode, 3. Hole injection layer, 4. Charge generation layer, 5. Hole transport layer, 6. Light emitting layer, 7. Electron transport layer, 8. Electron injection layer, 9. A cathode, 51. A first hole transport layer, 52. A second hole transport layer, 100. Organic electroluminescent device

Claims (4)

  1.  式(1)で表される縮合環化合物:
    Figure JPOXMLDOC01-appb-C000001
     式中、
      Xは、
       置換基を有していてもよい、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、または、
       これらの環の1つが、置換もしくは無置換のベンゼン環と縮環した環を表し;
      A~Aは、それぞれ独立して、電荷輸送性基を表し;
      k1~k3は、それぞれ独立して、0以上4以下の整数であり;
      k1~k3が2以上の整数である場合、複数のA~Aは、同一であっても異なっていてもよい。
    The fused ring compound represented by the formula (1):
    Figure JPOXMLDOC01-appb-C000001
    During the ceremony
    X is
    A furan ring, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring which may have a substituent, or
    One of these rings represents a ring fused to a substituted or unsubstituted benzene ring;
    Each of A 1 to A 3 independently represents a charge transporting group;
    k1 to k3 are each independently an integer of 0 or more and 4 or less;
    When k1 to k3 are integers of 2 or more, the plurality of A 1 to A 3 may be the same or different.
  2.  A~Aが、それぞれ独立して、
      重水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、ヒドロキシル基、チオール基、
      置換基を有していてもよい炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基、
      置換基を有していてもよい炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基、
      置換基を有していてもよいホスフィンオキシド基、
      置換基を有していてもよいシリル基、
      炭素数2~10の飽和炭化水素基を有していてもよいボロニル基、
      炭素数1~18の直鎖もしくは分岐のアルキル基、炭素数1~18の直鎖もしくは分岐のアルコキシ基、または、
      式(2)もしくは(2’)で表される基である、請求項1に記載の縮合環化合物:
    Figure JPOXMLDOC01-appb-C000002
     式中、
      R~Rは、それぞれ独立して、
       水素原子、重水素原子、
       置換基を有していてもよい炭素数6~30の単環、連結、若しくは縮環の芳香族炭化水素基、
       置換基を有していてもよい炭素数3~36の単環、連結、若しくは縮環のヘテロ芳香族基、または、
       炭素数1~18の直鎖若しくは分岐のアルキル基を表し;
      Yは、それぞれ独立して、
       メチル基もしくはフェニル基で置換されていてもよいフェニレン基、
       メチル基もしくはフェニル基で置換されていてもよいナフチレン基、
       メチル基もしくはフェニル基で置換されていてもよいビフェニレン基、または、
       単結合を表し;
      nは、1または2を表し、
       Yが単結合の場合、nは1であり、
       Yが単結合ではない場合、nは1または2であり;
      nが2の場合、複数のR~Rは、同一であっても異なっていてもよい。
    A 1 to A 3 are each independently
    Deuterium atom, fluorine atom, bromine atom, iodine atom, cyano group, nitro group, hydroxyl group, thiol group,
    An aromatic hydrocarbon group having 6 to 30 carbon atoms, which may have a substituent, 6 to 30 carbon atoms, a linkage, or a fused ring,
    A C3-C36 monocyclic, linked, or fused heteroaromatic group which may have a substituent,
    Phosphine oxide group which may have a substituent,
    Silyl group which may have a substituent,
    A boronyl group optionally having a saturated hydrocarbon group of 2 to 10 carbon atoms,
    A linear or branched alkyl group having 1 to 18 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, or
    The fused ring compound according to claim 1, which is a group represented by the formula (2) or (2 '):
    Figure JPOXMLDOC01-appb-C000002
    During the ceremony
    R 1 to R 3 are each independently
    Hydrogen atom, deuterium atom,
    An aromatic hydrocarbon group having 6 to 30 carbon atoms, which may have a substituent, 6 to 30 carbon atoms, a linkage, or a fused ring,
    A C3-C36 monocyclic, linked or fused heteroaromatic group which may have a substituent, or
    Represents a linear or branched alkyl group having 1 to 18 carbon atoms;
    Y is each independently
    A phenylene group which may be substituted by a methyl group or a phenyl group,
    Naphthylene group which may be substituted by methyl group or phenyl group,
    A biphenylene group which may be substituted by a methyl group or a phenyl group, or
    Represents a single bond;
    n represents 1 or 2;
    When Y is a single bond, n is 1 and
    When Y is not a single bond, n is 1 or 2;
    When n is 2, the plurality of R 1 to R 2 may be the same or different.
  3.  k1~k3の合計が、3以下である、請求項1または2に記載の縮合環化合物。 The fused ring compound according to claim 1 or 2, wherein the sum of k1 to k3 is 3 or less.
  4.  式(3)~(22)のいずれか1つで表される縮合環化合物である、請求項1~3のいずれか1項に記載の縮合環化合物:
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
     式中、
      A~Aおよびk~kは、それぞれ、式(1)におけるA~Aおよびk~kと同じ定義であり;
      AおよびAは、それぞれ独立して、電荷輸送性基を表し;
      k4は、0以上4以下の整数であり;
      k5は、0以上2以下の整数であり;
      k1~k5が2以上の整数である場合、複数のA~Aは、同一であっても異なっていてもよい。
    The fused ring compound according to any one of claims 1 to 3, which is a fused ring compound represented by any one of formulas (3) to (22):
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    During the ceremony
    A 1 to A 3 and k 1 to k 3 have the same definitions as A 1 to A 3 and k 1 to k 3 in the formula (1), respectively;
    Each of A 4 and A 5 independently represents a charge transporting group;
    k4 is an integer of 0 or more and 4 or less;
    k5 is an integer of 0 or more and 2 or less;
    When k1 to k5 are integers of 2 or more, the plurality of A 1 to A 5 may be the same or different.
PCT/JP2018/030086 2017-08-10 2018-08-10 Fused ring compound WO2019031605A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880051882.0A CN110997648B (en) 2017-08-10 2018-08-10 Condensed ring compound
KR1020207003370A KR102556378B1 (en) 2017-08-10 2018-08-10 condensed ring compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156113 2017-08-10
JP2017156113 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031605A1 true WO2019031605A1 (en) 2019-02-14

Family

ID=65272075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030086 WO2019031605A1 (en) 2017-08-10 2018-08-10 Fused ring compound

Country Status (4)

Country Link
JP (1) JP7127418B2 (en)
KR (1) KR102556378B1 (en)
CN (1) CN110997648B (en)
WO (1) WO2019031605A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018854A (en) * 2019-12-24 2020-04-17 陕西莱特光电材料股份有限公司 Compound, organic electroluminescent device, and electronic device
WO2020111140A1 (en) * 2018-11-28 2020-06-04 東ソー株式会社 Fused ring compound, production method therefor, and organic electroluminescence element material
WO2021206502A1 (en) * 2020-04-09 2021-10-14 주식회사 엘지화학 Organic light-emitting element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6967433B2 (en) * 2017-11-27 2021-11-17 エスケーマテリアルズジェイエヌシー株式会社 Organic electroluminescent device
EP4342883A1 (en) 2021-06-11 2024-03-27 Tosoh Corporation Photoelectric conversion element material for imaging element and photoelectric conversion element for imaging element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182737A (en) * 2002-12-03 2004-07-02 Canon Inc Organic light-emitting device based on fused conjugated compound
JP2016525512A (en) * 2013-07-10 2016-08-25 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Organic compound, organic optoelectronic device and display device
CN108084124A (en) * 2017-11-02 2018-05-29 中节能万润股份有限公司 A kind of class new Organic Electro Luminescent Materials in the wrong and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685832B2 (en) * 2009-05-29 2015-03-18 Jnc株式会社 Dibenzo [g, p] chrysene compound, light emitting layer material containing the compound, and organic electroluminescence device using the same
US8968887B2 (en) * 2010-04-28 2015-03-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
EP2602243A1 (en) 2010-08-05 2013-06-12 Idemitsu Kosan Co., Ltd. Monoamine derivative and organic electroluminescent element using same
KR101866851B1 (en) * 2010-12-24 2018-06-14 에스에프씨 주식회사 Heterocyclic compounds and organic light-emitting diode including the same
KR20150126526A (en) 2014-05-02 2015-11-12 삼성디스플레이 주식회사 Organic light emitting device
CN108699058B (en) 2015-12-21 2022-07-08 出光兴产株式会社 Hetero-fused phenylquinazolines and their use in electronic devices
WO2018016742A1 (en) * 2016-07-20 2018-01-25 주식회사 엘지화학 Novel heterocyclic compound and organic light-emitting device using same
US10392387B2 (en) 2017-05-19 2019-08-27 Arizona Board Of Regents On Behalf Of Arizona State University Substituted benzo[4,5]imidazo[1,2-a]phenanthro[9,10-c][1,8]naphthyridines, benzo[4,5]imidazo[1,2-a]phenanthro[9,10-c][1,5]naphthyridines and dibenzo[f,h]benzo[4,5]imidazo[2,1-a]pyrazino[2,3-c]isoquinolines as thermally assisted delayed fluorescent materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182737A (en) * 2002-12-03 2004-07-02 Canon Inc Organic light-emitting device based on fused conjugated compound
JP2016525512A (en) * 2013-07-10 2016-08-25 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. Organic compound, organic optoelectronic device and display device
CN108084124A (en) * 2017-11-02 2018-05-29 中节能万润股份有限公司 A kind of class new Organic Electro Luminescent Materials in the wrong and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111140A1 (en) * 2018-11-28 2020-06-04 東ソー株式会社 Fused ring compound, production method therefor, and organic electroluminescence element material
CN111018854A (en) * 2019-12-24 2020-04-17 陕西莱特光电材料股份有限公司 Compound, organic electroluminescent device, and electronic device
WO2021206502A1 (en) * 2020-04-09 2021-10-14 주식회사 엘지화학 Organic light-emitting element

Also Published As

Publication number Publication date
JP2019034933A (en) 2019-03-07
CN110997648B (en) 2023-12-19
KR102556378B1 (en) 2023-07-18
JP7127418B2 (en) 2022-08-30
KR20200038464A (en) 2020-04-13
CN110997648A (en) 2020-04-10

Similar Documents

Publication Publication Date Title
JP6374905B2 (en) Compound having indenocarbazole ring structure and organic electroluminescence device
TWI699350B (en) Organic electroluminescent device
JP7135536B2 (en) condensed ring compound
CN107709285B (en) Arylamine compound and organic electroluminescent device
JP2020111569A (en) Organic electroluminescent element, and organic electroluminescent element polycyclic compound
JP7127418B2 (en) Fused ring compound, its production method, and its production intermediate
JP6814156B2 (en) Organic electroluminescence device
CN107078226B (en) Organic electroluminescent device
WO2010113743A1 (en) Light-emitting element material and light-emitting element
JP6274000B2 (en) Arylamine compounds and uses thereof
TWI741047B (en) Organic electroluminescent device
JP7135428B2 (en) condensed ring compound
JP2018062505A (en) Novel carbazole compound and application thereof
JP7363045B2 (en) Triphenylene compounds and their uses
JP7066979B2 (en) Carbazole compounds with di-substituted benzene and their uses
JP7443668B2 (en) Fused ring compounds, their production methods, and their production intermediates
JP7310132B2 (en) Condensed ring compounds and materials for organic electroluminescence devices
TW202219244A (en) Organic electroluminescent device
JP7234532B2 (en) Dibenzo[g,p]chrysene compound
JP7143670B2 (en) Triphenylene compound and use thereof
JP6370225B2 (en) Compound having indenoacridan ring structure and organic electroluminescence device
WO2019131691A1 (en) Fused-ring compound and material for organic electroluminescent element
WO2023013615A1 (en) Amine compound, hole injection layer and organic electroluminescent element
WO2019189037A1 (en) Fused-ring compound, method for producing same, and production intermediate thereof
WO2022211123A1 (en) Transverse current suppressing material, carbazole compound, hole injection layer, and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844471

Country of ref document: EP

Kind code of ref document: A1