WO2019031597A1 - リチウムイオン二次電池用負極材料およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材料およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019031597A1
WO2019031597A1 PCT/JP2018/030023 JP2018030023W WO2019031597A1 WO 2019031597 A1 WO2019031597 A1 WO 2019031597A1 JP 2018030023 W JP2018030023 W JP 2018030023W WO 2019031597 A1 WO2019031597 A1 WO 2019031597A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
composite material
mass
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2018/030023
Other languages
English (en)
French (fr)
Inventor
石井 伸晃
祐司 伊藤
翔太 岡村
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2019535723A priority Critical patent/JPWO2019031597A1/ja
Priority to EP18844888.0A priority patent/EP3667782A1/en
Priority to KR1020197033646A priority patent/KR20190132545A/ko
Priority to CN201880051600.7A priority patent/CN110998927A/zh
Publication of WO2019031597A1 publication Critical patent/WO2019031597A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for lithium ion secondary batteries and its use. More specifically, the present invention relates to an anode material capable of obtaining a lithium ion secondary battery excellent in charge and discharge cycle characteristics, an electrode containing the anode material, and a lithium ion secondary battery containing the anode material.
  • Graphite is generally used as a negative electrode material of a lithium ion secondary battery.
  • the theoretical capacity of graphite is 372 mAh / g. Since the theoretical capacity of Si and Sn is higher than that of graphite, a high capacity lithium ion secondary battery can be provided if Si and Sn can be used as the negative electrode material.
  • the particles containing Si and Sn have low conductivity, and the volume change due to insertion and desorption of lithium ions is large, so that the charge and discharge efficiency is sharply reduced.
  • Various materials have been proposed to solve the problem.
  • Patent Document 1 is composed of a silicon particle and a carbon precursor, and a coating layer composed of a non-graphitic carbon material is formed on the surface of the silicon particle, and the peak intensity ratio of silicon to carbon in X-ray photoelectron analysis Discloses a negative electrode material for a lithium secondary battery having a value of 0 to 0.2.
  • Patent Document 2 particles of silicon and a surface of the particles are covered with a layer of carbon, and the particles have an average particle diameter of 5 nm to 100 nm, and silicon and silicon-carbon around 100 eV in X-ray photoelectron analysis.
  • the negative electrode material for a lithium ion secondary battery is disclosed in which the area of the peak derived from silicon oxide in the vicinity of 104 eV is smaller than 25% with respect to the sum of the areas of the peaks derived from.
  • Patent Document 3 discloses a negative electrode material for a lithium secondary battery including Si particles having an average particle diameter (D 50 ) of 0.05 to 5 ⁇ m and a plurality of carbonaceous materials and having an oxygen content of 5% by weight or less. doing.
  • Patent Document 4 contains graphitic particles, amorphous carbon and silicon, has a silicon content of 40 to 80% by weight in terms of SiO 2 , and has a true density of 1.8 ⁇ 10 3 kg / m. 3 or more, tap density of 0.8 ⁇ 10 3 kg / m 3 or more, specific surface area of 8 ⁇ 10 3 m 2 / kg or less, and one peak in the vicinity of 102.5 to 107.5 eV in Si2P spectrum of XPS A composite electrode material is disclosed.
  • JP 2004-259475 A WO 2014/007161 A JP, 2008-112710, A JP 2002-231225 A
  • An object of the present invention is to provide a negative electrode material for a lithium ion secondary battery having a large discharge capacity and capable of obtaining a lithium ion secondary battery excellent in charge and discharge cycle characteristics.
  • a carbon-coated composite material comprising a composite material containing silicon-containing particles, graphite particles and amorphous carbon, and amorphous carbon for coating the composite material
  • Carbon-coated composites are The sum of the area (A) of the peak around 396 to 400 eV, the area (B) of the peak around 283 to 288 eV and the area (C) of the peak around 530 to 536 eV observed in X-ray photoelectron spectroscopy (XPS)
  • the ratio D / (A + B + C) of the area (D) of the peak in the vicinity of 99 to 105 eV to the above is 0.015 or less, and a true sphere approximation calculated based on the volume-based cumulative particle size distribution measured by laser diffraction Ratio S / T of BET specific surface area S to specific surface area T of is 7.3 or less
  • Negative electrode material for lithium ion secondary batteries are the sum of the area (A) of the peak around 396 to 400 e
  • the carbon-coated composite material has an I D / I G of 0.2 to 4 and an I Si / I D of 0.01 to 1.2 in the Raman spectrum, and (I Si / I
  • the lithium ion according to any one of [1] to [3], in which the silicon-containing particles, the graphite particles and the amorphous carbon are in close contact with each other without voids.
  • Negative electrode material for secondary battery [5] The negative electrode material for a lithium ion secondary battery according to any one of [1] to [4], further including additional graphite particles.
  • a slurry or paste comprising the negative electrode material for a lithium ion secondary battery according to any one of [1] to [5], and a binder.
  • An electrode comprising the negative electrode material for a lithium ion secondary battery according to any one of [7] [1] to [5], and a binder.
  • a lithium ion secondary battery comprising the negative electrode material for a lithium ion secondary battery according to any one of [1] to [5].
  • a method for producing a carbon-coated composite material comprising: heat-treating the obtained mixture II at 200 ° C. or more and 2000 ° C. or less. [10] The temperature at the heat treatment of the mixture I is 300 ° C. or more and 1000 ° C. or less, The production method according to [9], wherein the temperature at the heat treatment of the mixture II is 800 ° C. or more and 1500 ° C. or less.
  • the negative electrode material for a lithium ion secondary battery of the present invention can provide a lithium ion secondary battery having a large discharge capacity and excellent in charge and discharge cycle characteristics.
  • the negative electrode material for a lithium ion secondary battery of the present invention comprises a carbon-coated composite material.
  • the carbon-coated composite contains the composite and additional amorphous carbon coating the composite.
  • the composite material contains silicon-containing particles, graphite particles and amorphous carbon.
  • the silicon-containing particles are preferably particles whose surface layer contains SiO x (0 ⁇ x ⁇ 2).
  • the portion (core) other than the surface layer may be made of elemental silicon or may be made of SiO x (0 ⁇ x ⁇ 2).
  • the average thickness of the surface layer containing SiO x is preferably 0.5 nm or more and 10 nm or less. When the average thickness of the surface layer containing SiO x is 0.5 nm or more, oxidation by air or an oxidizing gas can be suppressed. Further, it is preferable that the average thickness of the surface layer containing SiO x be 10 nm or less, because an increase in irreversible capacity at the initial cycle can be suppressed. This average thickness can be measured by TEM photography.
  • the full width at half maximum of the 111 diffraction peak derived from silicon, which is observed in the X-ray diffraction by CuK ⁇ ray is preferably 0.3 ° to 0.5 ° as the scattering angle 2 ⁇ .
  • the full width at half maximum is in this range, the balance between the cycle retention rate and the initial charge and discharge efficiency is improved.
  • the full width at half maximum of the 111 diffraction peak is preferably 0.3 ° or more, more preferably 0.4 ° or more, still more preferably as the scattering angle 2 ⁇ . It is 0.5 degrees or more.
  • the full width at half maximum of the 111 diffraction peak is preferably 0.5 ° or less, more preferably 0.3 ° or less, still more preferably 0 as the scattering angle 2 ⁇ . .2 ° or less.
  • the diffraction peak of the silicon-containing particles can be measured, for example, with an X-ray diffractometer such as a powder X-ray diffractometer SmartLab (registered trademark) manufactured by Rigaku Corporation or an X-ray diffractometer XRD-6100 manufactured by Shimadzu Corporation.
  • the full width at half maximum uses CuK ⁇ radiation, tube voltage 45kV, tube current 200mA, entrance slit and exit slit are 10mm in concentration method, speed coefficient of one-dimensional detector is 2.0, angle resolution of goniometer is 1.0deg. Diffraction peaks obtained by measurement are analyzed and determined.
  • XRD analysis software such as PDXL2 manufactured by Rigaku Corporation can be used.
  • the silicon-containing particles preferably have a BET specific surface area of 50 m 2 / g or more and 200 m 2 / g or less, more preferably 140 m 2 / g or more and 200 m 2 / g or less.
  • the BET specific surface area of the silicon-containing particles is large, the particle diameter of the silicon-containing particles is small, the effect of alleviating the volumetric strain accompanying the insertion of Li into the Si crystal phase is enhanced, and the expansion and contraction due to charge and discharge are further suppressed.
  • the specific surface area is too large, the handling property tends to decrease in the manufacturing process.
  • a measuring device of BET specific surface area for example, Surface Area & Pore Size Analyzer / NOVA 4200e manufactured by Quantachrome, NOVA-1200 manufactured by Yuasa Ionics Inc., etc., relative pressure 0.1, 0 using nitrogen gas as a probe Measured by the BET multipoint method of 2 and 0.3.
  • the silicon-containing particles can contain, in addition to silicon, an element M selected from other elements in the particles.
  • the element M include nickel, copper, iron, tin, aluminum, cobalt and the like. Two or more types of elements may be contained as the element M.
  • the content of the element M is not particularly limited as long as it does not significantly inhibit the action of silicon, and is, for example, 1 mol or less per 1 mol of silicon atoms.
  • the silicon-containing particles are not particularly limited by the production method.
  • it can be manufactured by the method disclosed in WO 2012 / 000858A.
  • the amount of the silicon-containing particles contained in the composite material is preferably 6 parts by mass to 70 parts by mass, more preferably 12 parts by mass to 50 parts by mass, and still more preferably 15 parts by mass, with respect to 100 parts by mass of the composite material It is 40 parts by mass or less. This range is preferable because the balance between the volume change and the electric capacity accompanying the insertion and removal of lithium ions can be further improved.
  • the graphite particles are preferably made of artificial graphite.
  • the graphite particles are preferably in the form of flakes.
  • the 50% diameter D 50 in the volume-based cumulative particle size distribution of the graphite particles is preferably 1 ⁇ m to 50 ⁇ m, more preferably 2 ⁇ m to 20 ⁇ m, and still more preferably 3 ⁇ m to 10 ⁇ m.
  • D 50 of the graphite particles is 1 ⁇ m or more, side reactions hardly occur during charge and discharge, and when D 50 of the graphite particles is 50 ⁇ m or less, diffusion of lithium ions in the negative electrode material becomes fast, and charge and discharge speed It is preferable because it tends to improve.
  • D 50 of the graphite particles is preferably 25 ⁇ m or less.
  • D 50 is a laser diffraction particle size distribution meter, for example, Malvern Ltd. Mastersizer; measured using (Mastersizer registered trademark).
  • the graphite particles preferably have a d 002 of 0.337 nm or less.
  • d 002 is 0.337 nm or less, most of the optical structure observed with a polarization microscope is an optically anisotropic structure.
  • the graphite particles preferably have L c of 50 nm or more and 1000 nm or less.
  • L c is preferably 80 nm or more and 300 nm or less, more preferably 90 nm or more and 250 nm or less.
  • L c is preferably 50 nm or more and 250 nm or less. L c is calculated from analysis of an X-ray diffraction pattern by CuK ⁇ rays.
  • d 002 and L c can be measured using powder X-ray diffraction method, the details of which can be found in Japan Society for the Promotion of Science, 117th Committee Material, 117-71-A-1 (1963) , 117th Committee Material, 117-121-C-5 (1972), "Carbon", 1963, No. 36, pp. 25-34.
  • Graphite particles d 002 and L c can be calculated based on the diffraction peaks of the carbon-coated composite material.
  • the diffraction peak of the carbon-coated composite material can be measured, for example, by an X-ray diffractometer such as a powder X-ray diffractometer SmartLab (registered trademark) manufactured by Rigaku Corporation or an X-ray diffractometer XRD-6100 manufactured by Shimadzu Corporation.
  • an X-ray diffractometer such as a powder X-ray diffractometer SmartLab (registered trademark) manufactured by Rigaku Corporation or an X-ray diffractometer XRD-6100 manufactured by Shimadzu Corporation.
  • X-ray diffractometer such as a powder X-ray diffractometer SmartLab (registered trademark) manufactured by Rigaku Corporation or an X-ray diffractometer XRD-6100 manufactured by Shimadzu Corporation.
  • the measured diffraction peak can be analyzed by, for example, XRD analysis software such as PDXL2 of Rigaku Corporation, and after background removal and smoothing, Origin® of Light Stone Corporation
  • XRD analysis software such as PDXL2 of Rigaku Corporation
  • Origin® of Light Stone Corporation By using software having such a peak fitting function, it is possible to remove the peak of amorphous carbon and calculate d 002 and L c of the graphite particles.
  • graphite particles may be exposed to high heat to obtain amorphous carbon coated on the composite material.
  • the maximum value of the temperature at that time is 2000 ° C. or less.
  • the crystal structure of the graphite particles does not change even when exposed to heat of this temperature. Therefore, d 002 and L c of the graphite particles in the carbon-coated composite material are the same as those of the raw material.
  • the graphite particles preferably have a BET specific surface area of 0.4 m 2 / g or more and 25 m 2 / g or less, more preferably 0.5 m 2 / g or more and 20 m 2 / g or less, still more preferably 0.5 m 2 / g or more 18 m 2 / g or less.
  • the BET specific surface area is measured by a BET multipoint method with a relative pressure of 0.1, 0.2, and 0.3 using nitrogen gas as a probe.
  • a measuring device of BET specific surface area for example, Surface Area & Pore Size Analyzer / NOVA 4200e manufactured by Quantachrome, NOVA-1200 manufactured by Yuasa Ionics, etc. can be used.
  • the graphite particles have a loose bulk density (zero-time tapping) of preferably 0.1 g / cm 3 or more, and a powder density (tap density) after tapping 400 times is preferably 0.1 g / cm. It is 3 or more and 1.6 g / cm 3 or less, more preferably 0.15 g / cm 3 or more and 1.6 g / cm 3 or less, and still more preferably 0.2 g / cm 3 or more and 1.6 g / cm 3 or less.
  • the loose bulk density is a density obtained by dropping 100 g of a sample from a height of 20 cm into a measuring cylinder and measuring the volume and mass without applying vibration.
  • the tap density is the density obtained by measuring the volume and mass of 100 g of powder that has been tapped 400 times using a cantachrome autotap. These are measurement methods in accordance with ASTM B 527 and JIS K 5101-12-2.
  • the drop height of the auto tap in the tap density measurement was 5 mm.
  • a loose bulk density of 0.7 g / cm 3 or more is preferable because it tends to increase the electrode density before pressing when it is applied to the electrode. By referring to this value, it can be predicted whether or not it is possible to obtain a sufficient electrode density with one press. Further, it is preferable that the tap density is within the above range, since the electrode density reached at the time of pressing can be easily made to a desired height.
  • Artificial graphite particles can be obtained by graphitizing a carbon precursor.
  • a method of producing artificial graphite particles for example, the method disclosed in WO2014 / 003135A can be adopted.
  • Graphite particles can use coal-based coke and / or petroleum-based coke as a raw material (carbon precursor). Graphite particles are produced by heat-treating coal-based coke and / or petroleum-based coke at a temperature of preferably 2000 ° C. or more, more preferably 2500 ° C. or more. The upper limit of the heat treatment temperature is not particularly limited, but 3200 ° C. is preferable. This heat treatment is preferably performed in an inert atmosphere. The heat treatment can be performed using an Acheson graphitizer or the like. The amount of the graphite particles contained in the composite material is preferably 5 to 90 parts by mass, more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the composite material. In addition, it may be considered that the mass of the graphite particles does not change before and after the manufacturing process of the composite material.
  • amorphous carbon means carbon which is not graphitized.
  • Amorphous carbon can be produced, for example, by carbonizing a carbon precursor.
  • the carbon precursor is not particularly limited, but it is not limited to thermal heavy oil, pyrolysis oil, straight asphalt, blown asphalt, petroleum-derived substances such as tar or petroleum pitch by-produced during ethylene production, coal tar produced during coal distillation, coal
  • the heavy component obtained by distilling off the low-boiling component of tar, and a coal-derived material such as coal tar pitch are preferable, and in particular, a petroleum pitch or a coal pitch is preferable.
  • Pitch is a mixture of multiple polycyclic aromatic compounds. With the use of pitch, amorphous carbon with few impurities can be produced at a high carbonization rate. Since the pitch has a low oxygen content, it is preferable that the silicon-containing particles are not easily oxidized when carbonized.
  • the pitch has a softening point of preferably 80 ° C. or more and 300 ° C. or less.
  • a pitch having a softening point too low has a low carbonization rate, an increase in manufacturing cost, and a large number of pores because the average molecular weight of the polycyclic aromatic compound constituting it is small and the volatile content is high. It is easy to obtain amorphous carbon with a large specific surface area.
  • a pitch having a softening point that is too high tends to be difficult to mix uniformly with the silicon-containing particles due to the high viscosity.
  • the softening point of pitch can be measured by the Mettler method described in ASTM-D 3104-77.
  • the pitch of the pitch is preferably 20% by mass to 70% by mass, and more preferably 25% by mass to 60% by mass.
  • Use of a pitch having a low residual carbon ratio increases the production cost and facilitates obtaining amorphous carbon having a large specific surface area. Since the pitch having a high residual carbon ratio generally has a high viscosity, it tends to be difficult to uniformly mix the silicon-containing particles and the pitch.
  • the residual coal rate is determined by the following method.
  • the solid pitch is ground in a mortar or the like, and the ground product is subjected to mass thermal analysis under a nitrogen gas flow.
  • the ratio of the mass at 1100 ° C. to the preparation mass is defined as the residual carbon ratio.
  • the residual carbon ratio corresponds to the fixed carbon content measured at a carbonization temperature of 1100 ° C. according to JIS K2425.
  • the pitch preferably has a QI (quinoline insoluble content) content of 10% by mass or less, more preferably 5% by mass or less, and still more preferably 2% by mass or less.
  • the QI content of pitch is a value corresponding to the amount of free carbon.
  • the pitch containing a large amount of free carbon is heat-treated, the free carbon adheres to the surface of the sphere to form a three-dimensional network in the process of appearance of mesophase spheres, thereby hindering the growth of the sphere, and thus it tends to be a mosaic structure.
  • heat treatment is performed on a pitch having a small amount of free carbon, mesophase spheres grow large and tend to generate needle coke.
  • the QI content is in the above range, the battery characteristics are further improved, which is preferable.
  • the pitch preferably has a TI (toluene insoluble content) content of 10% by mass or more and 70% by mass or less.
  • the pitch with low TI content has a low average carbon weight and high volatile content because the polycyclic aromatic compound constituting it has a low carbonization rate, an increase in production cost, and a large specific surface area including many pores. Amorphous carbon is easily obtained.
  • a pitch with a high TI content has a high carbonization ratio because the average molecular weight of the polycyclic aromatic compound constituting it is high, but a pitch with a high TI content has a high viscosity, so it is difficult to mix uniformly with silicon-containing particles Tend.
  • the pitch and the other components can be uniformly mixed, and a composite material can be obtained which exhibits characteristics suitable as a negative electrode material.
  • the QI content and the TI content of pitch can be measured by the method described in JIS K2425 or a method according thereto.
  • the upper limit of the amount of amorphous carbon contained in the composite material is preferably 4 parts by mass, more preferably 6 parts by mass, and still more preferably 8 parts by mass, with respect to 100 parts by mass of the composite material. Preferably, it is 50 parts by mass, more preferably 40 parts by mass.
  • the amounts of graphite particles and amorphous carbon contained in the carbon-coated composite material can be calculated by performing thermogravimetric / differential thermal analysis measurement in an air atmosphere.
  • the mass of amorphous carbon contained in the composite material can also be calculated as the mass in terms of the residual carbon content of the carbon precursor used as the raw material.
  • residual carbon content conversion means converting the amount of carbon precursor into the amount remaining after carbonizing the carbon precursor, and the amount of residual carbon content conversion of the carbon precursor is It is calculated based on the amount of carbonaceous precursor and the residual carbon ratio.
  • the mass of the residual carbon content is a value obtained by dividing the product of the mass of the carbonaceous precursor and the residual carbon ratio [mass%] of the carbonaceous precursor by 100.
  • the additional amorphous carbon coating the composite material may have the same physical properties as those described above for the amorphous carbon contained in the composite material, or may have different physical properties as described above. It may be one. Additional amorphous carbon can be obtained by carbonizing the carbon precursor, similar to the amorphous carbon contained in the composite material.
  • the lower limit of the mass of additional amorphous carbon is preferably 0.6 / 99.4, more preferably 0.8 / 99.2, more preferably 1.0 / 99. It is 0.
  • the upper limit of the mass of additional amorphous carbon is preferably 20/80, more preferably 10/90, still more preferably 5/95, based on the mass of the composite material.
  • the carbon-coated composite material has an area (A) of a peak around 396 eV to 400 eV, an area (B) of a peak around 283 to 288 eV and a peak around 530 to 536 eV observed in X-ray photoelectron spectroscopy (XPS)
  • the ratio D / (A + B + C) of the area (D) of the peak in the vicinity of 99 eV to 105 eV with respect to the total area (C) is preferably 0.015 or less, more preferably 0.014 or less, particularly preferably 0.013 or less , Most preferably 0.008 or less.
  • the peak of A is derived from nitrogen.
  • the peak of B is derived from carbon.
  • the peak of C is derived from oxygen.
  • the peak of D is derived from silicon.
  • X-ray photoelectron spectroscopy can be performed using, for example, X-ray photoelectron spectroscopy (Quantera II) manufactured by ULVAC-PHI.
  • the area (A), the area (B), the area (C) and the area (D) can be measured under the following conditions.
  • Sample preparation The measurement sample is pressed on an aluminum plate (5 mm ⁇ ) and attached to a sample table (material: Cr-plated aluminum alloy) with a double-sided tape.
  • X-ray source Al monochrome 100 ⁇ m, 25 W, 15 kV Analysis area: 100 ⁇ m ⁇ Surface etching: None Electron and ion neutralization gun: ON Photoelectric extraction angle: 45 ° Binding energy correction: The C—C peak of the C1s spectrum is 284.6 eV.
  • the carbon-coated composite material preferably has a surface roughness S / T of 7.3 or less, more preferably 7 or less, still more preferably 6.5 or less, particularly preferably 6 or less. If the surface roughness is in this range, it is presumed that the reductive decomposition reaction of the electrolytic solution is unlikely to occur.
  • the surface roughness S / T is the ratio S / T of the BET specific surface area S to the specific surface area T of the true sphere approximation calculated based on the volume-based cumulative particle size distribution measured by the laser diffraction method.
  • the specific surface area T of a true sphere approximation is determined as follows. Measurement method: Two small cups of a measurement sample and 2 drops of nonionic surfactant (TRITON (registered trademark) -X; manufactured by Roche Applied Science) are added to 50 ml of water and ultrasonically dispersed for 3 minutes. The dispersion is charged into a laser diffraction type particle size distribution measuring device, and the volume-based cumulative particle size distribution is measured. Calculation method: Calculated by the following equation.
  • the true density can be measured by a vapor phase displacement method. In the vapor phase replacement method, the true density is calculated from the volume of helium gas occupied in a fixed volume in an environment maintained at a fixed temperature.
  • Ultrapyc 1200e manufactured by QuantaChrome can be used as an apparatus for vapor phase replacement.
  • the upper limit of the BET specific surface area of the carbon-coated composite material is preferably 3 m 2 / g, more preferably 2 m 2 / g, still more preferably 1.5 m 2 / g, and the lower limit of the BET specific surface area is preferably 0. It is .85 m 2 / g, more preferably 0.95 m 2 / g.
  • the BET specific surface area is large, the contact area with the electrolytic solution becomes large, the reductive decomposition of the electrolytic solution is promoted, and the charge and discharge efficiency tends to be lowered.
  • the BET specific surface area is small, the diffusion rate of lithium ions is reduced, which leads to the reduction of charge and discharge rates.
  • Carbon coating composite, volume-based cumulative particle size of 10% diameter D 10 in the distribution measured by the laser diffraction method is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, more preferably 2.5 ⁇ m or more. If D 10 of too small, there is a tendency that the bonding strength between the negative electrode material and the current collector is lowered, the negative electrode material during charging and discharging there is a potential for problems of peeling occurs.
  • the upper limit of D 10 may be suitably set in relation to the thickness of the electrode.
  • the carbon-coated composite material has an I D / I G (this ratio may be referred to as an R value) in a Raman spectrum, preferably 0.2 to 4, more preferably 0.4 to 3, still more preferably 0.1. 7 to 2.
  • R value is 0.2 or more
  • Si is sufficiently covered by amorphous carbon, and cycle characteristics tend to be improved.
  • the R value is 4 or less, the energy density tends to be improved.
  • the carbon-coated composite material has an I Si / I D in a Raman spectrum of preferably 0.01 to 1.2, more preferably 0.04 to 0.5. By reducing I Si / I D of the composite material, amorphous carbon tends to sufficiently coat Si and improve cycle characteristics.
  • (I Si / I D ) / (I D / I G ) in the Raman spectrum is preferably 0.05 to 0.3, more preferably 0.05 to 0.25. . If this value is higher than 0.3, the cycle resistance may be reduced due to the large amount of exposed Si. If this value is less than 0.05, the amount of Si may be too small and the electrical capacity may be reduced. By reducing I Si / I D with respect to the R value, amorphous carbon tends to sufficiently coat Si and improve cycle characteristics. Note that I D is the peak intensity of the D band (around 1350 cm ⁇ 1 ), I G is the peak intensity of the G band (around 1580 cm ⁇ 1 ), and I Si is the peak intensity of Si.
  • ID / I G and I Si / I D in the Raman spectrum of the carbon-coated composite material measure the Raman spectrum of the composite material, and the peak intensity (I DL ) of the D band (around 1350 cm -1 ) at each measurement point , Peak intensity (I GL ) of G band (around 1580 cm -1 ), peak intensity of Si (I SiL ), and arithmetic averaging of I DL / I GL and I SiL / I DL at each measurement point It is calculated.
  • the measurement depth of the Raman spectrum shallow and perform measurement.
  • the magnification of the objective lens of microscopic Raman is increased, and the laser spot diameter is decreased.
  • the conditions for mapping measurement are as follows. Measurement range: 49 points of 30 ⁇ 30 ⁇ m, 5 ⁇ m pitch Objective lens magnification: 100 ⁇ Laser spot diameter: 1 ⁇ m
  • Raman spectra of carbon-coated composite material the absorption derived from Si in the vicinity of 520 cm -1, divided into absorption from the carbon material in the vicinity of 900 ⁇ 1900 cm -1.
  • the Raman spectrum of the carbon material is a composite band in which several peaks derived from the structure of the carbon material overlap. Since the structure of the carbon material can be grasped by the ratio of each peak intensity, it is separated into each peak. This method is called peak fitting method.
  • the peak fitting method can be used by appropriately selecting a known method.
  • software for analysis of microscopic Raman may be used.
  • Spectra Manager registered trademark manufactured by JASCO Corporation can be used.
  • the analysis range for peak fitting is 300 to 1900 cm ⁇ 1 .
  • Peak fitting of the carbon material is performed by separating into the following bands. 1580 cm -1 near: G band derived from graphite structure 1350 cm -1 near: D band derived from disorder of graphite structure around 1500 cm -1 : D3 band derived from amorphous carbon around 1620 cm -1 : to disorder of graphite structure Derived D2 band around 1200 cm -1 : D4 band derived from the disorder of the graphite structure. Details are described in the reference (Carbon 43 (2005) 1731 page). The above five peaks of the carbon material are separated into six peaks in which a peak derived from Si near 520 cm ⁇ 1 is added.
  • the D2 band is separated by peak fitting to calculate the peak intensity ( IG ) of the G band.
  • NRS-5100 manufactured by JASCO Corporation can be used for measurement of a Raman spectrum.
  • the measurement conditions are as follows.
  • the peak fitting conditions are as follows.
  • amorphous carbon-coated silicon-containing particles are connected to the outer periphery of the graphite particles.
  • the amorphous carbon-coated silicon-containing particles do not exist inside the graphite particles.
  • the silicon-containing particles, the graphite particles and the amorphous carbon are in close contact with each other without voids (see FIG. 1).
  • the carbon-coated composite material used in the present invention has high conductivity between each of the graphite particles and the silicon-containing particles due to such a form. In addition, volume changes associated with expansion and contraction are buffered.
  • One form of the carbon-coated composite material includes silicon-containing particles, graphite particles, and amorphous carbon, and part of the amorphous carbon is at least two silicon-containing particles and at least one graphite particle in mutual relation. It is preferable that the two be joined together to form a composite, and the remainder of the amorphous carbon (additional amorphous carbon) be further coated on the composite. Furthermore, in the layer of amorphous carbon in the composite material, for example, one graphite particle and a plurality of silicon-containing particles are dispersed and enclosed, and the layer of amorphous carbon covering the composite material is graphite. Preferably neither particles nor silicon-containing particles are present.
  • the method for producing the carbon-coated composite material is not particularly limited as long as the carbon-coated composite material having the above-described physical properties and characteristics can be obtained.
  • a method for producing a carbon-coated composite material a preferred form is a mixture I containing silicon-containing particles, carbon precursors and graphite particles in a predetermined ratio, and heat-treated for carbonization to obtain silicon-containing particles and amorphous carbon
  • a composite material containing graphite particles is obtained, the obtained composite material and an additional carbon precursor are mixed in a predetermined ratio to obtain a mixture II, and the obtained mixture II is heat-treated for carbonization.
  • carbon precursors mention may be made of the same ones already described as carbon precursors which can be used for the production of composite materials. Of these, the pitch is preferred.
  • the respective amounts of the silicon-containing particles, the carbon precursor and the graphite particles in the mixture I become the respective amounts of the silicon-containing particles, the amorphous carbon and the graphite particles contained in the composite material as described above by heat treatment of the raw material compound. As such, it is preferable to set.
  • the residual carbon ratio is the ratio of amorphous carbon to carbon precursor formed when the carbon precursor is heat-treated.
  • the amount of carbon precursor in mixture I can be set so as to produce the desired amount of amorphous carbon based on the percentage of carbon remnants of the carbon precursor. Specifically, the amount of carbon precursor can be calculated by dividing the desired amount of amorphous carbon by the carbon remnant percentage of the carbon precursor.
  • the silicon-containing particles are preferably 6 to 70 parts by mass, more preferably 100 parts by mass in total of the amount of silicon-containing particles, the amount of residual carbon content of pitch, and the amount of graphite particles. 12 to 50 parts by mass, more preferably 15 to 40 parts by mass, containing preferably 5 to 90 parts by mass, more preferably 10 to 80 parts by mass of graphite particles, carbon precursor in terms of residual carbon content Preferably, 4 parts by mass or more, more preferably 6 parts by mass or more, further preferably 8 parts by mass or more, and preferably 50 parts by mass or less, more preferably 40 parts by mass or less.
  • a mixture I for example, the pitch which is one of the carbon precursors is melted, the molten pitch and the silicon-containing particles are mixed in an inert atmosphere, the mixture is pulverized, and the pulverized material is graphite It may be mixed with particles.
  • the carbon precursor may be dissolved into a liquid phase by a suitable method, and the silicon-containing particles and the graphite particles may be mixed and then crushed in the liquid phase.
  • the silicon-containing particles and the graphite particles may be mixed, and the mixture and the carbon precursor may be mixed to perform mechanochemical treatment.
  • a known device such as a Hybridizer (registered trademark) manufactured by Nara Machine Co., Ltd. can be used.
  • a ball mill, jet mill, rod mill, pin mill, rotary cutter mill, hammer mill, atomizer, mortar and the like can be used. It is preferable to adopt a grinding method or a mixing method that does not increase the degree of oxidation of the silicon-containing particles. In general, since it is considered that oxidation tends to progress to smaller particle size particles having a larger specific surface area, crushing of large particle size particles preferentially proceeds and using an apparatus in which pulverization of small particle size particles does not progress much More preferable.
  • the impact force tends to be transmitted preferentially to the large particle size particles and not to a large extent to the small particle size particles.
  • the means of grinding mainly by impact and shear such as a pin mill and a rotary cutter mill, tends to transmit shear force preferentially to large particle size particles and not to transmit much to small particle size particles. It is preferable to use such an apparatus and grind or mix without advancing the oxidation of the silicon-containing particles. Further, in order to suppress the progress of oxidation of the silicon-containing particles, it is preferable to carry out the above-mentioned pulverization and mixing in a non-oxidative atmosphere.
  • the non-oxidizing atmosphere an atmosphere filled with an inert gas such as argon gas or nitrogen gas can be mentioned.
  • the temperature at the heat treatment of the mixture I is 200 ° C. or more and 2000 ° C. or less, preferably 300 ° C. or more and 1000 ° C. or less, more preferably 400 ° C. or more and 800 ° C. or less.
  • the amorphous carbon coats the silicon-containing particles and the graphite particles, and the amorphous carbon is embedded between the silicon-containing particles, between the graphite particles, and between the silicon-containing particles and the graphite particles. It can be in the form of If the heat treatment temperature is too low, carbonization of the carbon precursor is not sufficiently completed, and hydrogen and oxygen may remain in the composite material, which may adversely affect battery characteristics.
  • the heat treatment of mixture I is preferably performed in a non-oxidative atmosphere.
  • a non-oxidative atmosphere an atmosphere filled with an inert gas such as argon gas or nitrogen gas can be mentioned. It is preferable to crush the heat-treated product in order to use it as an electrode active material, since the mixture I may be agglomerated by heat treatment of the mixture I.
  • a crushing method a pulperizer using an impact force such as a hammer, a jet mill using a collision of objects to be crushed and the like are preferable.
  • the composite material obtained by heat treatment of mixture I and an additional carbon precursor are mixed to obtain mixture II.
  • the amount of additional carbon precursor is preferably set such that the heat treatment of mixture II results in the amount of additional amorphous carbon coating the composite as described above.
  • the residual carbon ratio is the ratio of amorphous carbon to carbon precursor formed when the carbon precursor is heat-treated.
  • the amount of additional carbon precursor in mixture II can be set to produce the desired amount of amorphous carbon based on the percentage of carbon remnants of the carbon precursor. Specifically, the amount of additional carbon precursor can be calculated by dividing the desired amount of amorphous carbon to be coated by the carbon remnant percentage of the carbon precursor.
  • the lower limit of the ratio of the mass of the composite material to be mixed here to the mass of the residual carbon content of the additional carbon precursor is 80:20, preferably 90:10, more preferably 95: 5,
  • the upper limit is 99.4: 0.6, preferably 99.2: 0.8, more preferably 99.0: 1.0.
  • the mixing of the composite material with the additional carbon precursor (pitch) is preferably carried out in a manner that resists shear and compression.
  • a mixing method By employing such a mixing method, it is possible to prevent destruction of the composite material, exposure of silicon-containing particles, and increase in surface roughness.
  • a mixing method for example, it is possible to use an autorotation revolution mixer, a V-type mixer, or a W-type mixer.
  • Shinky Corporation's rotation and revolution mixer ARE-310 it is preferable to mix 25 g of powder for 5 minutes or more at 1000 rpm or more and 1500 rpm or less, and perform repetitive mixing while manually stirring and deforming. preferable.
  • the mixing is preferably performed in a non-oxidative atmosphere to suppress the progress of oxidation of the silicon-containing particles.
  • a non-oxidative atmosphere an atmosphere filled with an inert gas such as argon gas or nitrogen gas can be mentioned.
  • the lower limit of the heat treatment temperature of the mixture II is 200 ° C., preferably 900 ° C., more preferably 1000 ° C., and the upper limit is 2000 ° C., preferably 1500 ° C., more preferably 1200 ° C.
  • Thermal treatment of mixture II produces amorphous carbon coated on the composite material. After heat treatment of mixture II, the amorphous carbon coating may be performed multiple times by mixing the product with another carbon precursor and performing heat treatment.
  • the negative electrode material of the present invention may consist only of a carbon-coated composite material, and comprises a carbon-coated composite material and an additional graphite particle, another amorphous carbon and / or an additional silicon-containing particle. It may be
  • the additional graphite particles may be either natural graphite or artificial graphite, but the 50% diameter D 50 in the volume-based cumulative particle size distribution is preferably 1 ⁇ m to 50 ⁇ m, and d 002 is preferably 0.337 nm or less L c is preferably 50 nm or more and 1000 nm or less, and BET specific surface area is preferably 0.4 m 2 / g or more and 25 m 2 / g or less.
  • the mass ratio of the carbon-coated composite material to the additional graphite particles can be appropriately set to obtain a desired electric capacity value.
  • the additional silicon-containing particles can include the same as those described as silicon-containing particles that can be used in the production of the composite material.
  • the mass ratio of the additional silicon-containing particles to the carbon-coated composite material can be appropriately set to achieve the desired electrical capacity value.
  • amorphous carbons include carbon black, ketjen black, and the like.
  • the mass ratio of another amorphous carbon to the carbon-coated composite material can be appropriately set so as to obtain a desired electric capacity value.
  • fibrous carbon can be added to the carbon-coated composite material to produce an anode material.
  • fibrous carbon include carbon nanotubes and carbon nanofibers.
  • the mass ratio of fibrous carbon to the carbon-coated composite material can be appropriately set to obtain a desired electric capacity value.
  • Silicon-containing particles Silicon particles with a specific surface area of 70 m 2 / g Petroleum pitch: Softening point 250 ° C., TI: 48%, QI: 0.18%, residual carbon ratio 52%
  • Example 1 40 parts by mass of silicon-containing particles and 60 parts by mass of petroleum pitch were charged into a separable flask. Nitrogen gas was circulated to maintain an inert atmosphere, and the temperature was raised to 250 ° C. The disper was rotated at 1000 rpm for agitation to uniformly mix the petroleum pitch and the silicon-containing particles. After cooling and solidifying it, it was charged into a rotary cutter mill, and nitrogen gas was circulated to carry out high speed crushing at 25000 rpm for 1 minute while keeping an inert atmosphere, thereby obtaining crushed material.
  • Example 2 2 parts by mass of petroleum pitch is added to 98 parts by mass of the composite material (a) (The ratio of the mass of the composite material (a) to the mass of the petroleum pitch converted to the residual carbon content is 98.9: 1.1)
  • the mixing of 1000 rpm ⁇ 5 minutes by the revolving mixer and the mixing for 2 minutes by manual stirring were repeated twice, and the deformation was further performed for 30 seconds to obtain a mixture of the composite material (a) and the petroleum pitch.
  • the mixture was cooled to room temperature, taken out from the calcining furnace, crushed and classified with a 45 ⁇ m sieve to obtain a carbon-coated composite material (c) under the sieve.
  • Example 3 Two repetitions of 1000 rpm ⁇ 5 minutes of mixing by an autorotation revolution mixer and 2 minutes of mixing by manual stirring are performed by 1000 rpm ⁇ 3 minutes of mixing and 6000 rpm ⁇ 10 minutes of mixing by an MP mixer manufactured by Nippon Coke Co., Ltd.
  • a carbon-coated composite material (d) was obtained in the same manner as in Example 2 except for the change.
  • Comparative example 2 35.7 parts by mass of silicon-containing particles and 64.3 parts by mass of petroleum pitch were charged into a separable flask. Nitrogen gas was circulated to maintain an inert atmosphere, and the temperature was raised to 250 ° C. The disper was rotated at 1000 rpm for agitation to uniformly mix the petroleum pitch and the silicon-containing particles. After cooling and solidifying it, it was charged into a rotary cutter mill, and nitrogen gas was circulated to carry out high speed crushing at 25000 rpm for 1 minute while keeping an inert atmosphere, thereby obtaining crushed material.
  • the negative electrode paste was uniformly coated on a copper foil with a thickness of 20 ⁇ m using a doctor blade, dried on a hot plate, and then vacuum dried. It was pressed by a roll press to obtain a negative electrode sheet having an electrode mixture density of 1.6 g / cm 3 . The negative electrode sheet was punched into a circle having a diameter of 16 mm ⁇ to obtain a negative electrode piece.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • the negative electrode piece was vacuum dried at 80 ° C. for 12 hours, it was immersed in an electrolytic solution to obtain ⁇ 0.95 atm. Vacuum for 10 minutes.
  • An electrolytic solution impregnated negative electrode piece is placed on the positive electrode side of a 2320 type coin cell, a separator impregnated with the electrolytic solution is stacked thereon, and a 1.7 mm thick metal lithium punched out to 20 mm diameter is further stacked thereon Then, the negative electrode side of the coin cell was placed as a lid and caulked by a caulking machine to obtain a half cell.
  • the composite material and the artificial graphite particles were mixed to obtain a discharge capacity of 600 mAh / g to obtain a mixture.
  • 90 parts by mass of the mixture 1.2 parts by mass of carbon black (manufactured by TIMCAL), 0.4 parts by mass of vapor grown carbon fiber (VGCF (registered trademark) -H, manufactured by Showa Denko KK), carbon 0.4 parts by mass of nanotubes (fiber diameter 15 nm) and an aqueous solution containing 8 parts by mass of CMC were mixed, and they were kneaded by a rotation / revolution mixer to obtain a paste for an anode.
  • VGCF vapor grown carbon fiber
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • the negative electrode sheet and the positive electrode sheet were respectively punched out in a glove box kept in a dry argon gas atmosphere with a dew point of ⁇ 80 ° C. or less to obtain a negative electrode piece and a positive electrode piece with an area of 20 cm 2 .
  • An aluminum tab was attached to the aluminum foil of the positive electrode piece, and a nickel tab was attached to the copper foil of the negative electrode piece.
  • a polypropylene microporous film was sandwiched between the negative electrode piece and the positive electrode piece, and in that state, it was packed with an aluminum laminate. An electrolyte was poured into it, and the opening was sealed to obtain a full cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

珪素含有粒子と黒鉛粒子と非晶質炭素とを含有する複合材料と、該複合材料を被覆する追加の非晶質炭素とを含有する、炭素被覆複合材料を含んで成り、該炭素被覆複合材料は、X線光電子分光法(XPS)において観測される、396~400eV付近のピークの面積(A)、283~288eV付近のピークの面積(B)および530~536eV付近のピークの面積(C)の合計に対する、99~105eV付近のピークの面積(D)の比D/(A+B+C)が0.015以下であり、且つレーザー回折法によって測定される体積基準累積粒度分布に基づいて算出される真球近似の比表面積Tに対するBET比表面積Sの比S/Tが7.3以下である、リチウムイオン二次電池用負極材料。

Description

リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極材料及びその用途に関する。より詳細には、本発明は、充放電サイクル特性に優れたリチウムイオン二次電池を得ることができる負極材料、該負極材料を含有する電極、該負極材料を含有するリチウムイオン二次電池に関する。
 リチウムイオン二次電池の負極材料として、黒鉛が一般に用いられている。黒鉛の理論容量は372mAh/gである。SiやSnの理論容量は黒鉛のそれよりも高いので、SiやSnを負極材料として使用することができれば、高容量のリチウムイオン二次電池を提供できる。ところが、SiやSnを含有する粒子は導電性が低いうえに、リチウムイオンの挿入および脱離に伴う体積変化が大きいために充放電効率が急激に低下する。その問題を解決しようとした材料が種々提案されている。
 例えば、特許文献1は、シリコン粒子と炭素前駆体とで構成され、シリコン粒子の表面に非黒鉛質炭素材で構成された被覆層が形成され、X線光電子分析において炭素に対する珪素のピーク強度比が0~0.2であるリチウム二次電池用負極材を開示している。
 特許文献2は、珪素からなる粒子と、該粒子表面を炭素からなる層で被覆してなり、該粒子の平均粒径が5nm以上100nm以下、X線光電子分析において100eV近傍の珪素および珪素-炭素に由来するピークの面積の和に対して104eV近傍の珪素酸化物に由来するピークの面積が25%よりも小さい、リチウムイオン二次電池用負極材料を開示している。
 特許文献3は、平均粒径(D50)が0.05~5μmのSi粒子及び複数種の炭素質物質を含み、酸素含有率が5重量%以下であるリチウム二次電池用負極材料を開示している。
 特許文献4は、黒鉛質粒子、非晶質炭素及び珪素を含有してなり、SiO2換算での珪素含有量が40~80重量%であり、真密度が1.8×103kg/m3以上、タップ密度が0.8×103kg/m3以上、比表面積が8×1032/kg以下、XPSのSi2Pスペクトルにおいて102.5~107.5eV付近に一つのピークを有する複合電極材料を開示している。
特開2004-259475号公報 WO 2014/007161 A 特開2008-112710号公報 特開2002-231225号公報
 本発明の目的は、大きな放電容量を有し、かつ充放電サイクル特性に優れたリチウムイオン二次電池が得られるリチウムイオン二次電池用負極材料を提供することである。
 本発明は以下の態様を包含する。
〔1〕珪素含有粒子と黒鉛粒子と非晶質炭素とを含有する複合材料と、該複合材料を被覆する非晶質炭素とを含有する、炭素被覆複合材料を含んで成り、
 炭素被覆複合材料は、
  X線光電子分光法(XPS)において観測される、396~400eV付近のピークの面積(A)、283~288eV付近のピークの面積(B)および530~536eV付近のピークの面積(C)の合計に対する、99~105eV付近のピークの面積(D)の比D/(A+B+C)が0.015以下であり、且つ
  レーザー回折法によって測定される体積基準累積粒度分布に基づいて算出される真球近似の比表面積Tに対するBET比表面積Sの比S/Tが7.3以下である、
リチウムイオン二次電池用負極材料。
〔2〕炭素被覆複合材料は、ラマン分光スペクトルにおいて、ID/IGが0.2~4であり、ISi/IDが0.01~1.2であり、且つ(ISi/ID)/(ID/IG)が0.05~0.3である、〔1〕に記載のリチウムイオン二次電池用負極材料。
〔3〕黒鉛粒子は、d002が0.337nm以下であり、且つLcが50nm~1000nmである、〔1〕または〔2〕に記載のリチウムイオン二次電池用負極材料。
〔4〕炭素被覆複合材料は、珪素含有粒子、黒鉛粒子及び非晶質炭素が空隙を有さずに相互に密着している、〔1〕~〔3〕のいずれかひとつに記載のリチウムイオン二次電池用負極材料。
〔5〕追加の黒鉛粒子をさらに含む、〔1〕~〔4〕のいずれかひとつに記載のリチウムイオン二次電池用負極材料。
〔6〕〔1〕~〔5〕のいずれかひとつに記載のリチウムイオン二次電池用負極材料と、バインダーとを含む、スラリーまたはペースト。
〔7〕〔1〕~〔5〕のいずれかひとつに記載のリチウムイオン二次電池用負極材料と、バインダーとを含有する、電極。
〔8〕〔1〕~〔5〕のいずれかひとつに記載のリチウムイオン二次電池用負極材料を含有する、リチウムイオン二次電池。
〔9〕6~70質量部の珪素含有粒子、残炭分換算で4~50質量部のピッチおよび5~90質量部の黒鉛粒子を、珪素含有粒子の量とピッチの残炭分換算の量と黒鉛粒子の量との合計100質量部で、含む混合物Iを、200℃以上2000℃以下で熱処理して、珪素含有粒子と非晶質炭素と黒鉛粒子とを含有する複合材料を得、 得られた複合材料と追加のピッチとを、追加のピッチの残炭分換算の質量に対する複合材料の質量の比が80/20~99.4/0.6となるように、混合して混合物IIを得、 得られた混合物IIを200℃以上2000℃以下で熱処理することを含む、炭素被覆複合材料の製造方法。
〔10〕 混合物Iの熱処理時の温度が300℃以上1000℃以下であり、
 混合物IIの熱処理時の温度が800℃以上1500℃以下である、〔9〕に記載の製造方法。
 本発明のリチウムイオン二次電池用負極材料は、大きな放電容量を有し、かつ充放電サイクル特性に優れたリチウムイオン二次電池を提供することができる。
本発明の一実施態様の負極材料を使用した電極の断面像の一例である。
 本発明のリチウムイオン二次電池用負極材料は、炭素被覆複合材料を含んでなるものである。
 炭素被覆複合材料は、複合材料と、該複合材料を被覆する追加の非晶質炭素とを含有する。
 複合材料は、珪素含有粒子と黒鉛粒子と非晶質炭素とを含有するものである。
(珪素含有粒子)
 珪素含有粒子は、粒子表層がSiOx(0<x≦2)を含有するものであることが好ましい。表層以外の部分(コア)は、元素状珪素からなっていてもよいし、SiOx(0<x≦2)からなっていてもよい。SiOxを含有する表層の平均厚さは0.5nm以上10nm以下が好ましい。SiOxを含有する表層の平均厚さが0.5nm以上であると、空気や酸化性ガスによる酸化を抑制することができる。また、SiOxを含有する表層の平均厚さが10nm以下であると、初期サイクル時の不可逆容量の増加を抑制することができるので好ましい。この平均厚さはTEM写真により測定することができる。
 珪素含有粒子は、CuKα線によるX線回折において観測される、珪素由来の111回折ピークの半値全幅が、散乱角2θとして、好ましくは0.3°~0.5°である。該半値全幅がこの範囲にある場合、サイクル維持率と充放電初期効率とのバランスが向上する。また、リチウムイオン二次電池においてサイクル維持率を特に高くしたい場合、111回折ピークの半値全幅は、散乱角2θとして、好ましくは0.3°以上、より好ましくは0.4°以上、さらに好ましくは0.5°以上である。リチウムイオン二次電池において充放電初期効率を特に高くしたい場合、111回折ピークの半値全幅は、散乱角2θとして、好ましくは0.5°以下、より好ましくは0.3°以下、さらに好ましくは0.2°以下である。
 珪素含有粒子の回折ピークは、例えば、株式会社リガク製粉末X線回折装置SmartLab(登録商標)や株式会社島津製作所製X線回折装置XRD-6100といったX線回折装置で測定できる。
 半値全幅は、CuKα線を用い、管電圧45kV、管電流200mA、集中法において入射スリット及び射出スリットは10mmで、1次元検出器のスピード係数を2.0、ゴニオメータの角度分解を1.0degとして測定して得られた回折ピークを解析して決定する。解析においては、例えば株式会社リガクのPDXL2のようなXRD解析ソフトウェアを用いることができる。
 珪素含有粒子は、BET比表面積が、好ましくは50m2/g以上200m2/g以下、より好ましくは140m2/g以上200m2/g以下である。
 珪素含有粒子のBET比表面積が大きい場合、珪素含有粒子の粒子径が小さく、Si結晶相へのLiの挿入に伴う体積歪を緩和する効果が高まり、充放電に伴う膨張収縮をさらに抑制することができるので好ましいが、比表面積が大きすぎると、製造過程においてハンドリング性が低下する傾向がある。
 なお、BET比表面積の測定装置として、例えば、Quantachrome製Surface Area & Pore Size Analyzer/NOVA 4200eや、ユアサアイオニクス社製NOVA-1200などを使用し、窒素ガスをプローブとして相対圧0.1、0.2、及び0.3のBET多点法により測定する。
 珪素含有粒子は、珪素以外に、他の元素から選択される元素Mを粒子中に含むことができる。具体的に元素Mとしては、例えば、ニッケル、銅、鉄、スズ、アルミニウム、コバルト等が挙げられる。元素Mとして2種類以上の元素を含んでいても構わない。元素Mの含有量は、珪素の作用を大きく阻害しない範囲であれば特に制限はなく、例えば、珪素原子1モルに対して1モル以下である。
 珪素含有粒子は、その製法によって特に制限されない。例えば、WO2012/000858Aに開示されている方法により製造することができる。
 複合材料に含まれる珪素含有粒子の量は、複合材料100質量部に対して、好ましくは6質量部以上70質量部以下、より好ましくは12質量部以上50質量部以下、さらに好ましくは15質量部以上40質量部以下である。この範囲とすることで、リチウムイオンの挿入、脱離に伴う体積変化と電気容量のバランスがさらに向上ざれるので好ましい。
(黒鉛粒子)
 黒鉛粒子は、人造黒鉛からなるものであることが好ましい。また、黒鉛粒子は、鱗片状を成したものであることが好ましい。黒鉛粒子の体積基準累積粒度分布における50%径D50は、好ましくは1μm~50μm、より好ましくは2μm~20μm、さらに好ましくは3μm~10μmである。黒鉛粒子のD50が1μm以上であると、充放電時に副反応が生じにくく、黒鉛粒子のD50が50μm以下であると、負極材中でのリチウムイオンの拡散が速くなり、充放電速度が向上する傾向があるので好ましい。大電流発生が求められる自動車等の駆動電源の用途に用いる場合には黒鉛粒子のD50は25μm以下であることが好ましい。
 D50は、レーザー回折式粒度分布計、例えば、マルバーン製マスターサイザー(Mastersizer;登録商標)等を使用して測定する。 
 黒鉛粒子は、d002が、好ましくは0.337nm以下である。d002が小さいほど、リチウムイオンの質量当たりの挿入および脱離量が増えるので、質量エネルギー密度の向上に寄与するので好ましい。d002が0.337nm以下であると、偏光顕微鏡にて観察される光学組織の大部分が光学異方性の組織となる。
 黒鉛粒子は、Lcが、好ましくは50nm以上1000nm以下である。体積当たりエネルギー密度を特に高くしたい場合、Lcは、好ましくは80nm以上300nm以下、より好ましくは90nm以上250nm以下である。電池のサイクル特性を特に向上させたい場合、Lcは、好ましくは50nm以上250nm以下である。Lcは、CuKα線によるX線回折パターンの解析から算出される。
 d002及びLcは、粉末X線回折法を用いて測定することができ、その詳細は、日本学術振興会、第117委員会資料、117-71-A-1(1963)や日本学術振興会、第117委員会資料、117-121-C-5(1972)や「炭素」、1963、No.36、25-34頁等に記載されている。
 黒鉛粒子のd002、およびLcは、炭素被覆複合材料の回折ピークに基づいて算出することができる。炭素被覆複合材料の回折ピークは、例えば、株式会社リガク製粉末X線回折装置SmartLab(登録商標)や株式会社島津製作所製X線回折装置XRD-6100といったX線回折装置で測定できる。測定する際は、CuKα線を用い、管電圧45kV、管電流200mA、集中法において入射スリット及び射出スリットは10mmで、1次元検出器のスピード係数を2.0、ゴニオメータの角度分解を1.0degとすることで測定する。そして、測定された回折ピークを、例えば、株式会社リガクのPDXL2のようなXRD解析ソフトウェアなどによって解析でき、バックグラウンド除去、平滑化を行った上で、株式会社ライトストーンのOrigin(登録商標)のようなピークフィッティング機能を有するソフトウェアを用いることで、非晶質炭素のピーク除去を行い、黒鉛粒子のd002、Lcを算出することができる。
 なお、炭素被覆複合材料の製造においては、複合材料に被覆される非晶質炭素を得るために黒鉛粒子が高熱にさらされることがある。そのときの温度の最高値は2000℃以下である。この程度の温度の熱にさらされても、黒鉛粒子の結晶構造は変化しない。そのため、炭素被覆複合材料中の黒鉛粒子のd002及びLcは、原料のものと変わらない。
 黒鉛粒子は、BET比表面積が、好ましくは0.4m2/g以上25m2/g以下、より好ましくは0.5m2/g以上20m2/g以下、さらに好ましくは0.5m2/g以上18m2/g以下である。
 BET比表面積がこの範囲にあることにより、バインダーを過剰に使用することなく、かつ電解液と接触する面積を大きく確保でき、リチウムイオンが円滑に挿入脱離され、電池の反応抵抗を小さくすることができるので好ましい。なお、BET比表面積は、窒素ガスをプローブとして相対圧0.1、0.2、及び0.3のBET多点法により測定する。
 BET比表面積の測定装置として、例えば、Quantachrome製Surface Area & Pore Size Analyzer/NOVA 4200eや、ユアサアイオニクス社製NOVA-1200などが使用可能である。
 黒鉛粒子は、ゆるめ嵩密度(0回タッピング)が、好ましくは0.1g/cm3以上であり、400回タッピングを行った際の粉体密度(タップ密度)が、好ましくは0.1g/cm3以上1.6g/cm3以下、より好ましくは0.15g/cm3以上1.6g/cm3以下、さらに好ましくは0.2g/cm3以上1.6g/cm3以下である。
 ゆるめ嵩密度は、高さ20cmから試料100gをメスシリンダーに落下させ、振動を加えずに体積と質量を測定して得られる密度である。タップ密度は、カンタクローム製オートタップを使用して400回タッピングした100gの粉の体積と質量を測定して得られる密度である。これらはASTM B527及びJIS K5101-12-2に準拠した測定方法である。タップ密度測定におけるオートタップの落下高さは5mmとした。
 ゆるめ嵩密度が0.7g/cm3以上であると、電極へ塗工した際の、プレス前の電極密度を高める傾向があるので好ましい。この値を参照することにより、1回のプレスで十分な電極密度を得ることが可能かどうかを予測できる。また、タップ密度が上記範囲内にあることによりプレス時に到達する電極密度を所望の高さにし易いので好ましい。
 人造黒鉛粒子は、炭素前駆体を黒鉛化することによって得ることができる。人造黒鉛粒子の製造方法として、例えば、WO2014/003135Aに開示されている方法が採用可能である。
 黒鉛粒子は、原料(炭素前駆体)として石炭系コークスおよび/または石油系コークスを用いることができる。黒鉛粒子は、石炭系コークスおよび/または石油系コークスを好ましくは2000℃以上、より好ましくは2500℃以上の温度で熱処理することにより製造される。熱処理温度の上限は特に限定されないが、3200℃が好ましい。この熱処理は不活性雰囲気下で行うことが好ましい。熱処理はアチソン式黒鉛化炉などを用いて行うことができる。
 複合材料に含まれる黒鉛粒子の量は、複合材料100質量部に対して、好ましくは5~90質量部、より好ましくは10~80質量部である。なお、複合材料の製造工程の前後で、黒鉛粒子の質量は変化しないと考えてよい。
(非晶質炭素)
 本発明において、非晶質炭素は、黒鉛化されていない炭素を意味する。非晶質炭素は、例えば、炭素前駆体を炭素化することによって製造することができる。炭素前駆体は、特に限定されないが、熱重質油、熱分解油、ストレートアスファルト、ブローンアスファルト、エチレン製造時に副生するタールまたは石油ピッチなどの石油由来物質、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分、コールタールピッチなどの石炭由来物質が好ましく、特に石油系ピッチまたは石炭系ピッチが好ましい。ピッチは複数の多環芳香族化合物の混合物である。ピッチを用いると、高い炭素化率で、不純物の少ない非晶質炭素を製造できる。ピッチは酸素含有率が少ないので、炭素化する際に、珪素含有粒子が酸化されにくいので好ましい。
 ピッチは、軟化点が、好ましくは80℃以上300℃以下である。低すぎる軟化点を有するピッチは、それを構成する多環芳香族化合物の平均分子量が小さく且つ揮発分が多いので、炭素化率が低くなったり、製造コストが上がったりし、さらに細孔を多く含んだ比表面積の大きい非晶質炭素が得られやすい。高すぎる軟化点を有するピッチは、粘度が高いので、珪素含有粒子と均一に混ぜ合わせ難い傾向がある。ピッチの軟化点はASTM-D3104-77に記載のメトラー法で測定することができる。
 ピッチは、残炭率が、好ましくは20質量%以上70質量%以下、より好ましくは25質量%以上60質量%以下である。残炭率の低いピッチを用いると、製造コストが上がり、比表面積の大きい非晶質炭素が得られやすい。残炭率の高いピッチは、一般に粘度が高いので、珪素含有粒子とピッチを均一に混合させ難い傾向がある。
 残炭率は以下の方法で決定される。固体状のピッチを乳鉢等で粉砕し、粉砕物を窒素ガス流通下で質量熱分析する。仕込み質量に対する1100℃における質量の割合を残炭率と定義する。残炭率はJIS K2425において炭化温度1100℃にて測定される固定炭素分に相当する。
 ピッチは、QI(キノリン不溶分)含量が、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは2質量%以下である。ピッチのQI含量はフリーカーボン量に対応する値である。フリーカーボンを多く含むピッチを熱処理すると、メソフェーズ球体が出現してくる過程で、フリーカーボンが球体表面に付着し三次元ネットワークを形成して、球体の成長を妨げるため、モザイク状の組織となりやすい。一方、フリーカーボンが少ないピッチを熱処理すると、メソフェーズ球体が大きく成長してニードルコークスを生成しやすい。QI含量が上記の範囲にあることにより、電池特性が一層良好になるので好ましい。
 ピッチは、TI(トルエン不溶分)含量が、好ましくは10質量%以上70質量%以下である。TI含量が低いピッチは、それを構成する多環芳香族化合物の平均分子量が小さく、揮発分が多いので、炭素化率が低くなり製造コストが上昇し、細孔を多く含んだ比表面積が大きい非晶質炭素が得られやすい。TI含量が高いピッチは、それを構成する多環芳香族化合物の平均分子量が大きいので炭素化率が高くなるが、TI含量の高いピッチは粘度が高いので、珪素含有粒子と均一に混合させ難い傾向がある。TI含量が上記範囲にあることによりピッチとその他の成分とを均一に混合でき、かつ、負極材料として好適な特性を示す複合材料を得ることができる。
 ピッチのQI含量及びTI含量はJIS K2425に記載されている方法またはそれに準じた方法により測定することができる。
 複合材料に含まれる非晶質炭素の量は、複合材料100質量部に対して、上限が、好ましくは4質量部、より好ましくは6質量部、さらに好ましくは8質量部であり、下限が、好ましくは50質量部、より好ましくは40質量部である。
 炭素被覆複合材料に含まれる黒鉛粒子及び非晶質炭素の量は、空気雰囲気下で熱重量・示差熱分析測定を行って、算出することができる。複合材料に含まれる非晶質炭素の質量は、原料として用いた炭素前駆体の残炭分換算の質量として算出することもできる。
 ここで、「残炭分換算」とは、炭素前駆体の量を、炭素前駆体を炭化させた後に残る量に換算することを意味し、炭素前駆体の残炭分換算の量は、その炭素質前駆体の量と残炭率とに基づいて算出される。例えば、残炭分換算の質量とは、炭素質前駆体の質量とその炭素質前駆体の残炭率[質量%]との積を100で割った値となる。
〔追加の非晶質炭素〕
 複合材料を被覆する追加の非晶質炭素は、複合材料に含まれている非晶質炭素と、同じ上記のような物性を有するものであってもよいし、異なる上記のような物性を有するものであってもよい。追加の非晶質炭素は、複合材料に含まれている非晶質炭素と同様に、炭素前駆体を炭素化することによって得られる。
 追加の非晶質炭素の質量の下限は、複合材料の質量に対して、好ましくは0.6/99.4、より好ましくは0.8/99.2、さらに好ましくは1.0/99.0である。追加の非晶質炭素の質量の上限は、複合材料の質量に対して、好ましくは20/80、より好ましくは10/90、さらに好ましくは5/95である。
〔炭素被覆複合材料〕
 炭素被覆複合材料は、X線光電子分光法(XPS)において観測される、396eV~400eV付近のピークの面積(A)、283~288eV付近のピークの面積(B)および530~536eV付近のピークの面積(C)の合計に対する、99eV~105eV付近のピークの面積(D)の比D/(A+B+C)が、好ましくは0.015以下、より好ましくは0.014以下、特に好ましくは0.013以下、最も好ましくは0.008以下である。この範囲にあると、活物質表面での電解液の還元分解反応が抑制される傾向にある。なお、Aのピークは窒素に由来する。Bのピークは炭素に由来する。Cのピークは酸素に由来する。Dのピークは珪素に由来する。
 X線光電子分光法(XPS)は、例えば、アルバックファイ製X線光電子分光分析(QuanteraII)を用いて行うことができる。面積(A)、面積(B)、面積(C)および面積(D)は、以下の条件によって測定することができる。
 サンプル調整:測定サンプルをアルミ皿(5mmφ)にプレスし、両面テープで試料台(材質:Crめっきアルミニウム合金)に貼り付ける。
   X線源:Alモノクロ 100μm,25W,15kV
   分析面積:100μmφ
   表面エッチング:なし
   電子・イオン中和銃:ON
   光電子取り出し角度:45°
   結合エネルギー補正:C1sスペクトルのC-Cピークを284.6eVとする。
 炭素被覆複合材料は、表面粗さS/Tが、好ましくは7.3以下、より好ましくは7以下、さらに好ましくは6.5以下、特に好ましくは6以下である。表面粗さがこの範囲にあれば、電解液の還元分解反応が生じにくいと推測される。
 なお、表面粗さS/Tは、レーザー回折法によって測定される体積基準累積粒度分布に基づいて算出される真球近似の比表面積Tに対するBET比表面積Sの比S/Tである。
 真球近似の比表面積Tは、下記のようにして決定する。
 測定方法:測定サンプルを極小型スパーテル2杯、非イオン性界面活性剤(TRITON(登録商標)-X;Roche Applied Science製)2滴を水50mlに添加し、3分間超音波分散させる。この分散液をレーザー回折式粒度分布測定器に投入し、体積基準累積粒度分布を測定する。
 算出方法:下記式により算出する。
Figure JPOXMLDOC01-appb-I000001
 なお、真密度は、気相置換法により測定することができる。気相置換法は、一定温度に保たれた環境内で、一定の容積中に占めるヘリウムガスの体積から真密度を算出するものである。気相置換法の装置としては、例えばQuantaChrome製のUltrapyc 1200eを使用することができる。
 炭素被覆複合材料は、BET比表面積の上限が、好ましくは3m2/g、より好ましくは2m2/g、さらに好ましくは1.5m2/gであり、BET比表面積の下限が、好ましくは0.85m2/g、より好ましくは0.95m2/gである。BET比表面積が大きいと電解液との接触面積が大きくなり、電解液の還元分解が促進され、充放電効率が低下する傾向がある。また、BET比表面積が小さい場合には、リチウムイオンの拡散速度が低下し、充放電速度の低下につながる。
 炭素被覆複合材料は、レーザー回折法によって測定される体積基準累積粒度分布における10%径D10が、好ましくは1μm以上、より好ましくは2μm以上、さらに好ましくは2.5μm以上である。D10が小さくなりすぎると、負極材料と集電体との結着力が低下する傾向があり、充放電時に負極材料が剥離する問題が生じる可能性がある。D10の上限は電極の厚さとの関係で適宜設定することができる。
 炭素被覆複合材料は、ラマンスペクトルにおけるID/IG(この比をR値ということがある。)が、好ましくは0.2~4、より好ましくは0.4~3、さらに好ましくは0.7~2である。R値が0.2以上であると、非晶質炭素によってSiが十分被覆され、サイクル特性が向上する傾向がある。R値が4以下であると、エネルギー密度が向上する傾向がある。
 炭素被覆複合材料は、ラマンスペクトルにおけるISi/IDが、好ましくは0.01~1.2、より好ましくは0.04~0.5である。複合材料のISi/IDを小さくすることで、非晶質炭素によってSiが十分被覆され、サイクル特性が向上する傾向がある。
 また、炭素被覆複合材料は、ラマンスペクトルにおける(ISi/ID)/(ID/IG)が、好ましくは0.05~0.3、より好ましくは0.05~0.25である。この値が0.3より高いと、露出しているSiが多いためサイクル耐性が低下する場合がある。この値が0.05より小さいと、Si量が少なすぎるため電気容量が小さくなる場合がある。R値に対するISi/IDを小さくすることで、非晶質炭素によってSiが十分被覆され、サイクル特性が向上する傾向がある。
 なお、IDは、Dバンド(1350cm-1付近)のピーク強度であり、IGは、Gバンド(1580cm-1付近)のピーク強度であり、ISiは、Siのピーク強度である。
 炭素被覆複合材料のラマンスペクトルにおけるID/IGおよびISi/IDは、複合材料のラマンスペクトルをマッピング測定し、各測定ポイントにおけるDバンド(1350cm-1付近)のピーク強度(IDL)、Gバンド(1580cm-1付近)のピーク強度(IGL)、Siのピーク強度(ISiL)を決定し、各測定ポイントのIDL/IGLおよびISiL/IDLを算術平均することによって算出される。
 Siの被覆状態や分布状態を把握するため、ラマンスペクトルの測定深さを浅めにして測定することが好ましい。測定深さを浅くするために、顕微ラマンの対物レンズの倍率を高くし、レーザスポット径は小さくする。マッピング測定の条件は、以下のとおりとする。
   測定範囲:30×30μm、5μmピッチの49点測定
   対物レンズの倍率:100倍
   レーザーのスポット径:1μm
 炭素被覆複合材料のラマンスペクトルは、520cm-1付近のSi由来の吸収と、900~1900cm-1付近の炭素材料由来の吸収に分けられる。
 炭素材料のラマンスペクトルは、炭素材料の構造に由来するいくつかのピークが重なり合った複合バンドである。炭素材料の構造はそれぞれのピーク強度の比で把握する事ができるので、それぞれのピークに分離する。この方法はピークフィッティング法と呼ばれている。
 ピークフィッティング法は公知の方法を適宜選択して用いる事が出来る。通常は、顕微ラマンの解析用のソフトウェアを用いればよい。例えば、日本分光社製Spectra Manager(登録商標)を使用することができる。ピークフィッティングする解析範囲は、300~1900cm-1である。
 炭素材料のピークフィッティングは、下記の各バンドに分離することで行う。
   1580cm-1付近:黒鉛構造に由来するGバンド
   1350cm-1付近:黒鉛構造の乱れに由来するDバンド
   1500cm-1付近:非晶質炭素に由来するD3バンド
   1620cm-1付近:黒鉛構造の乱れに由来するD2バンド
   1200cm-1付近:黒鉛構造の乱れに由来するD4バンド。
詳細は、参考文献(Carbon43(2005)1731頁)に記載されている。
 上記の炭素材料の5つのピークに、520cm-1付近のSi由来のピークを加えた6つのピークに分離する。
 炭素材料のラマンスペクトルにおいて、D2バンドに由来するショルダー様のスペクトルを持つときは、D2バンドをピークフィッティングで分離して、Gバンドのピーク強度(IG)を算出する。
 ラマンスペクトルの測定は、例えば、日本分光社製NRS-5100を用いることが可能である。測定条件は下記の通りである。
   レーザー:532.36nm
   レーザー強度:10%
   対物レンズ:100倍(レーザースポット径約1μm)
   露光時間:10秒
   積算時間:2回
   宇宙線除去:実施
   測定サンプル:ガラス板上に複合体粉体をのせて、ガラス板で軽く押さえて表面を水平にして測定。
 ピークフィッティング条件は下記の通りである。
   解析ソフト:日本分光社製Spectra Manager(登録商標)中の炭素分析
   解析範囲:300~1900cm-1
   分離するピーク:515cm-1、1250cm-1、1340cm-1、1500cm-1、1575cm-1、1610cm-1
 好ましい形態の炭素被覆複合材料は、非晶質炭素で被覆された珪素含有粒子が黒鉛粒子の外周部に連結されている。
 炭素被覆複合材料は、非晶質炭素で被覆された珪素含有粒子が黒鉛粒子の内部に存在しない方が好ましい。
 さらに好ましい形態の炭素被覆複合材料は、珪素含有粒子、黒鉛粒子及び非晶質炭素が空隙を有さずに相互に密着している(図1参照)。
 本発明に用いられる炭素被覆複合材料は、このような形態によって、黒鉛粒子および珪素含有粒子のそれぞれの間の導電性が高い。また、膨張および収縮に伴う体積変化が緩衝される。
 炭素被覆複合材料の一形態としては、珪素含有粒子と黒鉛粒子と非晶質炭素とを含有し且つ非晶質炭素の一部が少なくとも2つの珪素含有粒子と少なくとも1つの黒鉛粒子との相互の間に在って両者を繋ぎ合わせて複合材料を成しており、さらに非晶質炭素の残部(追加の非晶質炭素)が複合材料を被覆していることが好ましい。さらに、複合材料中の非晶質炭素の層には、例えば、一つの黒鉛粒子と複数の珪素含有粒子が分散して包み込まれており、複合材料を被覆する非晶質炭素の層には黒鉛粒子および珪素含有粒子がともに存在しないことが好ましい。
(炭素被覆複合材料の製造法)
 炭素被覆複合材料の製造法は、前記物性および特徴を有する炭素被覆複合材料が得られる方法であれば特に制限されない。
 炭素被覆複合材料の製造法として、好ましい形態は、珪素含有粒子、炭素前駆体および黒鉛粒子を所定の割合で含む混合物Iを炭素化のための熱処理をして珪素含有粒子と非晶質炭素と黒鉛粒子とを含有する複合材料を得、 得られた複合材料と追加の炭素前駆体とを所定の割合で混合して混合物IIを得、 得られた混合物IIを炭素化のための熱処理をすることを含む。炭素前駆体としては、複合材料の製造に使用することができる炭素前駆体として既に説明したものと同じものを挙げることができる。これらのうちピッチが好ましい。
 混合物Iにおける珪素含有粒子、炭素前駆体および黒鉛粒子のそれぞれの量は、原料化合物の熱処理によって、上述した、複合材料に含まれる珪素含有粒子、非晶質炭素および黒鉛粒子のそれぞれの量になるように、設定することが好ましい。残炭率は、炭素前駆体を熱処理したときに生成する非晶質炭素の炭素前駆体に対する割合である。炭素前駆体の残炭率に基づいて、所望量の非晶質炭素が生成するように、混合物I中での炭素前駆体の量を設定することができる。具体的に、炭素前駆体の量は、非晶質炭素の所望量を炭素前駆体の残炭率で除することによって算出できる。
 混合物Iには、珪素含有粒子の量とピッチの残炭分換算の量と黒鉛粒子の量との合計100質量部に対して、珪素含有粒子が、好ましくは6~70質量部、より好ましくは12~50質量部、さらに好ましくは15~40質量部含まれ、黒鉛粒子が、好ましくは5~90質量部、より好ましくは10~80質量部含まれ、炭素前駆体が、残炭分換算で、好ましくは4質量部以上、より好ましくは6質量部以上、さらに好ましくは8質量部以上で、且つ好ましくは50質量部以下、より好ましくは40質量部以下含まれる。
 混合物Iを得るために、例えば、炭素前駆体の一つであるピッチを溶融させ、該溶融ピッチと珪素含有粒子とを不活性雰囲気にて混合し、該混合物を粉砕し、該粉砕物を黒鉛粒子と混合してもよい。
 混合物Iを得るために、例えば、炭素前駆体を適当な方法により溶解して液相とし、該液相中で珪素含有粒子と黒鉛粒子を混合し、次いで粉砕してもよい。
 混合物Iを得るために、例えば、珪素含有粒子と黒鉛粒子とを混合し、該混合物と炭素前駆体とを混合してメカノケミカル処理を行ってもよい。メカノケミカル処理においては、例えば、奈良機械製ハイブリダイザー(登録商標)などの公知の装置を用いることができる。
 粉砕や混合のために、ボールミル、ジェットミル、ロッドミル、ピンミル、ロータリーカッターミル、ハンマーミル、アトマイザー、乳鉢等の公知の装置を用いることができる。珪素含有粒子の酸化度合いが高くならないような粉砕方法や混合方法を採用することが好ましい。一般的に、酸化は比表面積の大きい小粒径粒子ほど進みやすいと考えられるため、大粒径粒子の粉砕が優先的に進行し、小粒径粒子の粉砕があまり進まない装置を用いることがより好ましい。例えば、ロッドミル、ハンマーミルなどのような、主に衝撃によって粉砕する手段は、衝撃力が大粒径粒子に優先的に伝わり、小粒径粒子にあまり多く伝わらない傾向がある。ピンミル、ロータリーカッターミルなどのような、主に衝撃とせん断によって粉砕する手段は、せん断力が大粒径粒子に優先的に伝わり、小粒径粒子にあまり多く伝わらない傾向がある。このような装置を使用し、珪素含有粒子の酸化を進ませずに、粉砕や混合をすることが好ましい。また、珪素含有粒子の酸化の進行を抑えるために、前記の粉砕や混合は非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。
 混合物Iの熱処理時の温度は、200℃以上2000℃以下、好ましくは300℃以上1000℃以下、より好ましくは400℃以上800℃以下である。この熱処理によって、非晶質炭素が珪素含有粒子や黒鉛粒子を被覆し、非晶質炭素が、珪素含有粒子相互の間、黒鉛粒子相互の間および珪素含有粒子と黒鉛粒子との間に入り込み連結した形態にすることができる。熱処理温度が低すぎると炭素前駆体の炭素化が十分に終了せず、複合材料中に水素や酸素が残留し、それらが電池特性に悪影響を及ぼすことがある。逆に熱処理温度が高すぎると結晶化が進みすぎて充電特性が低下したり、珪素と炭素とが結合してLiイオンに対し不活性な状態を生じさせたりすることがある。混合物Iの熱処理は、非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。混合物Iの熱処理による融着で塊になっていることがあるので、熱処理品を電極活物質として用いるために、解砕することが好ましい。解砕方法としては、ハンマーなどの衝撃力を利用したパルベライザー、被解砕物同士の衝突を利用したジェットミルなどが好ましい。
 次に、混合物Iの熱処理によって得られる複合材料と、追加の炭素前駆体(例えば、ピッチ)とを混ぜ合わせて混合物IIを得る。追加の炭素前駆体の量は、混合物IIの熱処理によって、上述した、複合材料を被覆する追加の非晶質炭素の量になるように設定することが好ましい。残炭率は、炭素前駆体を熱処理したときに生成する非晶質炭素の炭素前駆体に対する割合である。炭素前駆体の残炭率に基づいて、所望量の非晶質炭素が生成するように、混合物II中での追加の炭素前駆体の量を設定することができる。具体的に、追加の炭素前駆体の量は、被覆される非晶質炭素の所望量を炭素前駆体の残炭率で除することによって算出できる。
 ここで混合される複合材料の質量と、追加の炭素前駆体の残炭分換算の質量との比は、下限が、80:20、好ましくは90:10、より好ましくは95:5であり、上限が、99.4:0.6、好ましくは99.2:0.8、より好ましく99.0:1.0である。
 複合材料と追加の炭素前駆体(ピッチ)との混合は、せん断力や圧縮力がかかりにくい方法で行うことが好ましい。このような混合方法を採用することにより、複合材料の破壊、珪素含有粒子の露出、表面粗さの増加を防ぐことが可能となる。このような混合方法としては、例えば、自転公転ミキサー、V型混合機、W型混合機を用いることが可能である。例えば、株式会社シンキーの自転公転ミキサーARE-310を使用する場合には、粉体25gを1000rpm以上1500rpm以下で5分以上混合し、手動での撹拌、デフォーミングを行いながら繰り返し混合を行うのが好ましい。珪素含有粒子の酸化の進行を抑えるために、混合は非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。
 混合物IIの熱処理時の温度は、下限が、200℃、好ましくは900℃、より好ましくは1000℃であり、上限が、2000℃、好ましくは1500℃、より好ましくは1200℃である。混合物IIの熱処理によって、複合材料に被覆された非晶質炭素が生成する。混合物IIの熱処理の後、生成物を別の炭素前駆体と混合し、熱処理を行うことによって、非晶質炭素の被覆を複数回行ってもよい。
 本発明の負極材料は、炭素被覆複合材料のみからなるものであってもよいし、炭素被覆複合材料と、追加の黒鉛粒子、別の非晶質炭素および/または追加の珪素含有粒子とを含んでなるものであってもよい。
 追加の黒鉛粒子は、天然黒鉛でも人造黒鉛でも採用可能であるが、体積基準累積粒度分布における50%径D50が、好ましくは1μm~50μmであり、d002が、好ましくは0.337nm以下であり、Lcが、好ましくは50nm以上1000nm以下であり、BET比表面積が、好ましくは0.4m2/g以上25m2/g以下である。炭素被覆複合材料と、追加の黒鉛粒子との質量比は、所望の電気容量値になるように適宜設定することができる。
 追加の珪素含有粒子としては、複合材料の製造に使用することができる珪素含有粒子として説明したものと同じものを挙げることができる。炭素被覆複合材料に対する追加の珪素含有粒子の質量比は、所望の電気容量値になるように適宜設定することができる。
 別の非晶質炭素としては、カーボンブラック、ケッチェンブラックなどを挙げることができる。炭素被覆複合材料に対する別の非晶質炭素の質量比は、所望の電気容量値になるように適宜設定することができる。
 さらに、炭素被覆複合材料に、繊維状炭素を添加して負極材料を製造することができる。繊維状炭素としては、カーボンナノチューブ、カーボンナノファイバなどを挙げることができる。炭素被覆複合材料に対する繊維状炭素の質量比は、所望の電気容量値になるように適宜設定することができる。
 以下に実施例および比較例を示し、本発明をより具体的に説明する。なお、実施例は説明のための単なる例示であって、本発明は実施例によって何等制限されるものではない。
 本実施例および比較例において用いた材料は以下のとおりである。
 珪素含有粒子:比表面積70m2/gの珪素粒子
 石油ピッチ:軟化点250℃、TI:48%、QI:0.18%、残炭率52%
 黒鉛粒子:d002=0.336nm、Lc=130nm、D50=7μm
(実施例1)
 珪素含有粒子40質量部と、石油ピッチ60質量部とをセパラブルフラスコに投入した。窒素ガスを流通させて不活性雰囲気を保ち、250℃まで昇温した。ディスパを1000rpmで回転させて撹拌し、石油ピッチと珪素含有粒子とを均一に混合させた。これを冷却し固化させた後、ロータリーカッターミルに投入し、窒素ガスを流通させて不活性雰囲気を保ちつつ25000rpmで1分間高速解砕させて、解砕物を得た。
 得られた解砕物47.5質量部(ピッチの質量を残炭分換算すると33.8質量部)と黒鉛粒子66.2質量部とをロータリーカッターミルに投入し、窒素ガスを流通させて不活性雰囲気を保ちつつ25000rpmで1分間高速撹拌して混ぜ合わせた。 これを焼成炉に入れ、窒素ガス流通下で、150℃/hで600℃まで昇温し、600℃にて1時間保持した。室温まで冷やした後、焼成炉から取り出して解砕し、45μmの篩にて分級して、篩下に複合材料(a)を得た。
 複合材料(a)94質量部に石油ピッチ6質量部を添加し(複合材料(a)の質量と、残炭分換算した石油ピッチの質量との比は96.8:3.2)、自転公転ミキサーによる1000rpm×5分間の混合と手動撹拌による2分間の混合とを2回繰り返し、さらに30秒間のデフォーミングを行って、複合材料(a)と石油ピッチとの混合物を得た。これを焼成炉に入れ、窒素ガス流通下で、150℃/hで1050℃まで上げ、1050℃にて1時間保持した。室温まで冷やし、焼成炉から取り出し、解砕し、45μmの篩にて分級して、篩下に炭素被覆複合材料(b)を得た。
(実施例2)
 複合材料(a)98質量部に石油ピッチ2質量部を添加し(複合材料(a)の質量と、残炭分換算した石油ピッチの質量との比は98.9:1.1)、自転公転ミキサーによる1000rpm×5分間の混合と手動撹拌による2分間の混合とを2回繰り返し、さらに30秒間のデフォーミングを行って、複合材料(a)と石油ピッチとの混合物を得た。これを焼成炉に入れ、窒素ガス流通下で、150℃/hで1050℃まで上げ、1050℃にて1時間保持した。室温まで冷やし、焼成炉から取り出し、解砕し、45μmの篩にて分級して、篩下に炭素被覆複合材料(c)を得た。
(実施例3)
 自転公転ミキサーによる1000rpm×5分間の混合と手動撹拌による2分間の混合との2回の繰り返しを、日本コークス工業社製MPミキサーによる、1000rpm×3分間の混合と6000rpm×10分間の混合とに変えた以外は実施例2と同じ方法で炭素被覆複合材料(d)を得た。
(比較例1)
 複合材料(a)98質量部に石油ピッチ2質量部を添加する代わりに、複合材料(a)99質量部に石油ピッチ1質量部を添加した(複合材料(a)の質量と、残炭分換算した石油ピッチの質量との比は99.5:0.5)以外は、実施例2と同じ方法で炭素被覆複合材料(e)を得た。
(比較例2)
 珪素含有粒子35.7質量部と、石油ピッチ64.3質量部とをセパラブルフラスコに投入した。窒素ガスを流通させて不活性雰囲気を保ち、250℃まで昇温した。ディスパを1000rpmで回転させて撹拌し、石油ピッチと珪素含有粒子とを均一に混合させた。これを冷却し固化させた後、ロータリーカッターミルに投入し、窒素ガスを流通させて不活性雰囲気を保ちつつ25000rpmで1分間高速解砕させ、解砕物を得た。
 得られた解砕物56質量部(ピッチの質量を残炭分換算すると39質量部)と黒鉛粒子61質量部とをロータリーカッターミルに投入し、窒素ガスを流通させて不活性雰囲気を保ちつつ25000rpmで1分間高速撹拌して混ぜ合わさせた。これを焼成炉に入れ、窒素ガス流通下で、150℃/hで600℃まで昇温し、600℃にて1時間保持した。室温まで冷やした後、焼成炉から取り出して解砕し、45μmの篩にて分級して、篩下に複合材料(f)を得た。 
(比較例3)
 複合材料(a)を焼成炉に入れ、窒素ガス流通下で、150℃/hで1050℃まで昇温し、1050℃にて1時間保持した。室温まで冷やし、焼成炉から取り出し、解砕し、45μmの篩にて分級して、篩下に複合材料(g)を得た。
 実施例および比較例で得られた炭素被覆複合材料(b)~(e)、複合材料(f)、(g)について、各種物性値を前述した条件で測定した。電池特性の評価は、下記に記載の条件で実施した。測定結果を表3および表4に記載した。
(電池特性の評価)
1.放電容量の測定
 炭素被覆複合材料(実施例1~3、比較例1)又は複合材料(比較例2~3)90質量部と、カーボンブラック(TIMCAL社製)3質量部と、気相成長法炭素繊維(VGCF(登録商標)-H,昭和電工株式会社製)2質量部と、カルボキシメチルセルロース(CMC)2.5質量部を含有する水溶液とを混合し、自転・公転ミキサーにて混練し負極用ペーストを得た。該負極用ペーストを厚み20μmの銅箔上にドクターブレードを用いて均一に塗布し、ホットプレートにて乾燥させ、次いで真空乾燥させた。それをロールプレス機にてプレスして電極合剤密度が1.6g/cm3の負極シートを得た。負極シートを直径16mmφの円形に打ち抜き、負極片を得た。
 エチレンカーボネート、エチルメチルカーボネート及びジエチルカーボネートが体積比3:5:2で混合された混合溶媒に、ビニレンカーボネート(VC)1質量%およびフルオロエチレンカーボネート(FEC)10質量%を混合し、さらにこれに電解質LiPF6を1mol/Lの濃度で溶解させて電解液を得た。
 負極片を80℃,12時間真空乾燥したのち、電解液に浸し、-0.95atm.で10分間真空含侵を行った。2320型のコインセルの正極側に電解液を含侵した負極片を置き、その上に電解液を含侵したセパレータを積層し、さらにその上に20mmφに打ち抜いた1.7mm厚の金属リチウムを積層し、コインセルの負極側を蓋として載せて、カシメ機によってかしめ、ハーフセルを得た。
 このハーフセルに、先ず、0.1Cで定電流充電を行った。10mVに達した時点から定電圧充電を行った。0.01Cに達した時点で充電を止めた。次いで、0.1Cで定電流放電を行った。電圧1.5Vに達した時点で放電を止めた。放電電気量を活物質質量で除して、放電容量を算出した。
2.放電量維持率の測定
 Li(Ni0.6Mn0.2Co0.2)O2 48質量部と、カーボンブラック(TIMCAL社製)1質量部と、ポリフッ化ビニリデン(PVdF)1質量部とに、N-メチル-ピロリドンを適量加えながら攪拌・混合し、正極用ペーストを得た。正極用ペーストを厚さ20μmのアルミ箔上にロールコーターにより、15.4mg/cm2程度塗布し、乾燥させた。次いで、それを加圧ロールにてプレスし、電極合剤密度が3.3~3.5g/cm3の正極シートを得た。
 複合材料と人造黒鉛粒子とを放電容量が600mAh/gになるように混合して混合物を得た。該混合物90質量部と、カーボンブラック(TIMCAL社製)1.2質量部と、気相成長法炭素繊維(VGCF(登録商標)-H,昭和電工株式会社製)0.4質量部と、カーボンナノチューブ(繊維径15nm)0.4質量部と、CMC8質量部を含有する水溶液とを混合し、自転・公転ミキサーにて混練して、負極用ペーストを得た。
 正極シートの容量(QC)に対する負極シートの容量(QA)の比QC/QAが、1.2となるように厚さを調整して、負極用ペーストを厚み20μmの銅箔上にドクターブレードを用いて均一に塗布し、ホットプレートで乾燥させ、次いで真空乾燥させた。それをロールプレス機にてプレスして電極密度が1.6g/cm3の負極シートを得た。
 エチレンカーボネート、エチルメチルカーボネート及びジエチルカーボネートが体積比3:5:2で混合された混合溶媒に、ビニレンカーボネート(VC)1質量%およびフルオロエチレンカーボネート(FEC)1質量%を混合し、さらにこれに電解質LiPF6を1mol/Lの濃度で溶解させて電解液を得た。
 露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で、負極シートと正極シートをそれぞれ打ち抜いて面積20cm2の負極片及び正極片を得た。正極片のアルミ箔にアルミタブを、負極片の銅箔にニッケルタブをそれぞれ取り付けた。ポリプロピレン製マイクロポーラスフィルムを負極片と正極片との間に挟み入れ、その状態でアルミラミネートにてパックした。それに電解液を注入し、開口部を封止して、フルセルを得た。
 このフルセルに、表1に示す要領で前段階充放電を行った。前段階充放電を実施した後、表2に示す要領で充放電を481サイクル繰り返した。第450サイクル目の放電容量を第1サイクル目の放電容量で除したものを放電量維持率とした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (10)

  1.  珪素含有粒子と黒鉛粒子と非晶質炭素とを含有する複合材料と、該複合材料を被覆する追加の非晶質炭素とを含有する、炭素被覆複合材料を含んで成り、
     炭素被覆複合材料は、
      X線光電子分光法(XPS)において観測される、396~400eV付近のピークの面積(A)、283~288eV付近のピークの面積(B)および530~536eV付近のピークの面積(C)の合計に対する、99~105eV付近のピークの面積(D)の比D/(A+B+C)が0.015以下であり、且つ
      レーザー回折法によって測定される体積基準累積粒度分布に基づいて算出される真球近似の比表面積Tに対するBET比表面積Sの比S/Tが7.3以下である、
    リチウムイオン二次電池用負極材料。
  2.  炭素被覆複合材料は、
     ラマン分光スペクトルにおいて、
      ID/IGが0.2~4であり、
      ISi/IDが0.01~1.2であり、且つ
      (ISi/ID)/(ID/IG)が0.05~0.3である、
    請求項1に記載のリチウムイオン二次電池用負極材料。
  3.  黒鉛粒子は、
      d002が0.337nm以下であり、且つ
      Lcが50nm~1000nmである、
    請求項1または2に記載のリチウムイオン二次電池用負極材料。
  4.  炭素被覆複合材料は、珪素含有粒子、黒鉛粒子及び非晶質炭素が空隙を有さずに相互に密着している、請求項1~3のいずれかひとつに記載のリチウムイオン二次電池用負極材料。
  5.  追加の黒鉛粒子をさらに含む、請求項1~4のいずれかひとつに記載のリチウムイオン二次電池用負極材料。
  6.  請求項1~5のいずれかひとつに記載のリチウムイオン二次電池用負極材料と、バインダーとを含む、スラリーまたはペースト。
  7.  請求項1~5のいずれかひとつに記載のリチウムイオン二次電池用負極材料と、バインダーとを含有する、電極。
  8.  請求項1~5のいずれかひとつに記載のリチウムイオン二次電池用負極材料を含有する、リチウムイオン二次電池。
  9.  6~70質量部の珪素含有粒子、残炭分換算で4~50質量部のピッチおよび5~90質量部の黒鉛粒子を、珪素含有粒子の量とピッチの残炭分換算の量と黒鉛粒子の量との合計100質量部で、含む混合物Iを、200℃以上2000℃以下で熱処理して、珪素含有粒子と非晶質炭素と黒鉛粒子とを含有する複合材料を得、
     得られた複合材料と追加のピッチとを、追加のピッチの残炭分換算の質量に対する複合材料の質量の比が80/20~99.4/0.6となるように、混合して混合物IIを得、次いで
     得られた混合物IIを200℃以上2000℃以下で熱処理することを含む、
    炭素被覆複合材料の製造方法。
  10.  混合物Iの熱処理時の温度が300℃以上1000℃以下であり、
     混合物IIの熱処理時の温度が800℃以上1500℃以下である、請求項9に記載の製造方法。
PCT/JP2018/030023 2017-08-10 2018-08-10 リチウムイオン二次電池用負極材料およびリチウムイオン二次電池 WO2019031597A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019535723A JPWO2019031597A1 (ja) 2017-08-10 2018-08-10 リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
EP18844888.0A EP3667782A1 (en) 2017-08-10 2018-08-10 Lithium ion secondary battery negative electrode material and lithium ion secondary battery
KR1020197033646A KR20190132545A (ko) 2017-08-10 2018-08-10 리튬이온 2차전지용 부극 재료 및 리튬이온 2차전지
CN201880051600.7A CN110998927A (zh) 2017-08-10 2018-08-10 锂离子二次电池用负极材料和锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017155537 2017-08-10
JP2017-155537 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031597A1 true WO2019031597A1 (ja) 2019-02-14

Family

ID=65272283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030023 WO2019031597A1 (ja) 2017-08-10 2018-08-10 リチウムイオン二次電池用負極材料およびリチウムイオン二次電池

Country Status (6)

Country Link
EP (1) EP3667782A1 (ja)
JP (1) JPWO2019031597A1 (ja)
KR (1) KR20190132545A (ja)
CN (1) CN110998927A (ja)
TW (1) TW201921794A (ja)
WO (1) WO2019031597A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029543A (zh) * 2019-11-28 2020-04-17 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
CN112678801A (zh) * 2019-10-17 2021-04-20 拓米(成都)应用技术研究院有限公司 纳米非晶C-Si-C复合材料及其制造方法和制造装置
WO2021241749A1 (ja) * 2020-05-28 2021-12-02 昭和電工株式会社 炭素-シリコン複合体
WO2021241751A1 (ja) * 2020-05-28 2021-12-02 昭和電工株式会社 複合粒子、その製造方法およびその用途
JP2022522704A (ja) * 2019-11-04 2022-04-20 コリア メタル シリコン カンパニー, リミテッド シリコン複合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464804A (zh) * 2022-02-10 2022-05-10 珠海冠宇电池股份有限公司 一种负极材料及含有该负极材料的锂离子电池

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231225A (ja) 2001-02-01 2002-08-16 Hitachi Chem Co Ltd 複合電極材料とその製造方法、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2004259475A (ja) 2003-02-24 2004-09-16 Osaka Gas Co Ltd リチウム二次電池用負極材とその製造方法、及びそれを用いたリチウム二次電池
JP2008112710A (ja) 2006-10-03 2008-05-15 Hitachi Chem Co Ltd リチウム二次電池用負極材料、これを用いたリチウム二次電池用負極及びリチウム二次電池
WO2012000858A1 (en) 2010-06-29 2012-01-05 Umicore Submicron sized silicon powder with low oxygen content
WO2012141166A1 (ja) * 2011-04-11 2012-10-18 横浜ゴム株式会社 導電性高分子/多孔質炭素材料複合体およびそれを用いた電極材料
JP2013101920A (ja) * 2011-10-14 2013-05-23 Toyota Industries Corp リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
WO2013094668A1 (ja) * 2011-12-22 2013-06-27 三洋電機株式会社 非水電解質二次電池
WO2013099263A1 (ja) * 2011-12-27 2013-07-04 パナソニック株式会社 非水電解質二次電池
WO2014003135A1 (ja) 2012-06-29 2014-01-03 昭和電工株式会社 炭素材料、電池電極用炭素材料、及び電池
WO2014007161A1 (ja) 2012-07-06 2014-01-09 東レ株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用複合負極材料、リチウムイオン二次電池負極用樹脂組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2014519135A (ja) * 2012-05-02 2014-08-07 昭和電工株式会社 リチウムイオン電池用負極材およびその用途
JP2015185491A (ja) * 2014-03-26 2015-10-22 三洋電機株式会社 非水電解質二次電池
JP2016126976A (ja) * 2015-01-08 2016-07-11 株式会社Gsユアサ リチウム二次電池
JP2016167352A (ja) * 2015-03-09 2016-09-15 日立マクセル株式会社 リチウムイオン二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053395A1 (ja) 2010-10-19 2012-04-26 ダイキン工業株式会社 非水電解液

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231225A (ja) 2001-02-01 2002-08-16 Hitachi Chem Co Ltd 複合電極材料とその製造方法、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2004259475A (ja) 2003-02-24 2004-09-16 Osaka Gas Co Ltd リチウム二次電池用負極材とその製造方法、及びそれを用いたリチウム二次電池
JP2008112710A (ja) 2006-10-03 2008-05-15 Hitachi Chem Co Ltd リチウム二次電池用負極材料、これを用いたリチウム二次電池用負極及びリチウム二次電池
WO2012000858A1 (en) 2010-06-29 2012-01-05 Umicore Submicron sized silicon powder with low oxygen content
WO2012141166A1 (ja) * 2011-04-11 2012-10-18 横浜ゴム株式会社 導電性高分子/多孔質炭素材料複合体およびそれを用いた電極材料
JP2013101920A (ja) * 2011-10-14 2013-05-23 Toyota Industries Corp リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
WO2013094668A1 (ja) * 2011-12-22 2013-06-27 三洋電機株式会社 非水電解質二次電池
WO2013099263A1 (ja) * 2011-12-27 2013-07-04 パナソニック株式会社 非水電解質二次電池
JP2014519135A (ja) * 2012-05-02 2014-08-07 昭和電工株式会社 リチウムイオン電池用負極材およびその用途
WO2014003135A1 (ja) 2012-06-29 2014-01-03 昭和電工株式会社 炭素材料、電池電極用炭素材料、及び電池
WO2014007161A1 (ja) 2012-07-06 2014-01-09 東レ株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用複合負極材料、リチウムイオン二次電池負極用樹脂組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2015185491A (ja) * 2014-03-26 2015-10-22 三洋電機株式会社 非水電解質二次電池
JP2016126976A (ja) * 2015-01-08 2016-07-11 株式会社Gsユアサ リチウム二次電池
JP2016167352A (ja) * 2015-03-09 2016-09-15 日立マクセル株式会社 リチウムイオン二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"117th Committee material 117-71-A-1(1963) Japan Society for the Promotion of Science", 117TH COMMITTEE MATERIAL 117-121-C-5 (1972) JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE, AND ''CARBON, vol. 36, 1963, pages 25 - 34
CARBON, vol. 43, 2005, pages 1731

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112678801A (zh) * 2019-10-17 2021-04-20 拓米(成都)应用技术研究院有限公司 纳米非晶C-Si-C复合材料及其制造方法和制造装置
CN112678801B (zh) * 2019-10-17 2022-06-21 拓米(成都)应用技术研究院有限公司 纳米非晶C-Si-C复合材料及其制造方法和制造装置
JP2022522704A (ja) * 2019-11-04 2022-04-20 コリア メタル シリコン カンパニー, リミテッド シリコン複合体の製造方法
JP7345556B2 (ja) 2019-11-04 2023-09-15 コリア メタル シリコン カンパニー, リミテッド シリコン複合体の製造方法
CN111029543A (zh) * 2019-11-28 2020-04-17 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
WO2021241749A1 (ja) * 2020-05-28 2021-12-02 昭和電工株式会社 炭素-シリコン複合体
WO2021241751A1 (ja) * 2020-05-28 2021-12-02 昭和電工株式会社 複合粒子、その製造方法およびその用途
JPWO2021241751A1 (ja) * 2020-05-28 2021-12-02

Also Published As

Publication number Publication date
TW201921794A (zh) 2019-06-01
JPWO2019031597A1 (ja) 2020-02-27
KR20190132545A (ko) 2019-11-27
CN110998927A (zh) 2020-04-10
EP3667782A1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP5956690B2 (ja) リチウムイオン電池用負極材及びその用途
JP6703988B2 (ja) リチウムイオン電池用負極材及びその用途
JP6442419B2 (ja) リチウムイオン二次電池用負極活物質
WO2019031597A1 (ja) リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
EP3540829A1 (en) Negative electrode material and lithium-ion battery
JP5473886B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池負極およびリチウムイオン二次電池
KR102102099B1 (ko) 비수계 이차 전지용 탄소재, 그 탄소재를 사용한 부극 및 비수계 이차 전지
JP2019087541A (ja) 複合体の製造方法及びリチウムイオン電池用負極材
JPWO2018047939A1 (ja) リチウムイオン二次電池用負極材
WO2007000982A1 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
WO2019131862A1 (ja) リチウムイオン二次電池用負極材
JP6619123B2 (ja) リチウムイオン二次電池用負極材
EP3694033B1 (en) Negative electrode material for lithium ion secondary cell, method for producing same, paste for negative electrode, negative electrode sheet, and lithium ion secondary cell
WO2019131864A1 (ja) リチウムイオン二次電池用負極材
WO2020138313A1 (ja) リチウムイオン二次電池の負極用の複合粒子
WO2020129879A1 (ja) 全固体リチウムイオン電池用負極合材および全固体リチウムイオン電池
WO2019131860A1 (ja) リチウムイオン二次電池用負極材
JP2020107405A (ja) 電池電極用黒鉛材料及びその製造方法
WO2019131863A1 (ja) リチウムイオン二次電池用負極材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535723

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197033646

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844888

Country of ref document: EP

Effective date: 20200310