WO2019029328A1 - 参考信号的配置方法及装置 - Google Patents

参考信号的配置方法及装置 Download PDF

Info

Publication number
WO2019029328A1
WO2019029328A1 PCT/CN2018/096115 CN2018096115W WO2019029328A1 WO 2019029328 A1 WO2019029328 A1 WO 2019029328A1 CN 2018096115 W CN2018096115 W CN 2018096115W WO 2019029328 A1 WO2019029328 A1 WO 2019029328A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
reference signal
index
parameter set
signaling
Prior art date
Application number
PCT/CN2018/096115
Other languages
English (en)
French (fr)
Inventor
高波
李儒岳
陈艺戬
鲁照华
袁弋非
王欣晖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18844175.2A priority Critical patent/EP3667987B1/en
Priority to EP23201656.8A priority patent/EP4387151A2/en
Priority to JP2020507556A priority patent/JP2020529804A/ja
Priority to FIEP18844175.2T priority patent/FI3667987T3/fi
Priority to KR1020207007247A priority patent/KR102394302B1/ko
Priority to ES18844175T priority patent/ES2964209T3/es
Priority to AU2018314611A priority patent/AU2018314611C1/en
Publication of WO2019029328A1 publication Critical patent/WO2019029328A1/zh
Priority to US16/785,646 priority patent/US11349630B2/en
Priority to US17/745,855 priority patent/US11804943B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • the present disclosure relates to, but is not limited to, the field of communications.
  • the ultra-wide bandwidth high frequency band (ie, millimeter wave communication) has become an important direction for the development of mobile communication in the future, attracting the attention of academic and industrial circles around the world.
  • the advantages of millimeter waves have become more and more attractive when the increasingly congested spectrum resources and physical networks are heavily accessed.
  • standards organizations such as IEEE and 3GPP, corresponding standardization work has begun.
  • high-band communication will become an important innovation point of 5G New Radio Access Technology (New RAT) with its significant advantages of large bandwidth.
  • New RAT 5G New Radio Access Technology
  • high-band communication also faces the challenge of link attenuation, specifically including large loss of propagation path, greater absorption of air absorption (especially oxygen), and heavy rain attenuation. Faced with these challenges, high-band communication systems can take advantage of the high frequency band and short antenna integration, and achieve high antenna gain and signal transmission loss through multi-antenna array and beamforming schemes to ensure link margin. And improve communication robustness.
  • the high frequency band sends a training pilot, and the terminal receives the channel and performs channel estimation. Then, the high-band receiver needs to feed back the channel state information to the training initiator, so that the transceiver can select the weights of multiple groups of transceiver antennas that can be used for multi-channel data transmission.
  • the beam indication is based on the sequence number of the transmission beam, thereby assisting the beam training at the receiving end. Beam indication by reference signals is increasingly difficult to use due to user movement and channel changes, and faces the problem of greatly increasing the reference signal overhead.
  • Embodiments of the present disclosure provide a method and an apparatus for configuring a reference signal.
  • a method for configuring a reference signal which is applied to a first communication node, and includes:
  • a configuration apparatus for a reference signal is further provided, which is applied to the first communication node, and includes:
  • a first configuration module configured to configure a first type of parameter set of the first type of reference signal index, where the first type of parameter set includes N index elements, and N is an integer greater than or equal to 1;
  • a first generation module configured to generate a first type of signaling according to the first type of parameter set, where the first type of signaling carries the first type of parameter set;
  • the first sending module is configured to send the first type of signaling to the second communications node.
  • a method for configuring a reference signal including:
  • a configuration apparatus for a reference signal is further provided, which is applied to the second communication node, and includes:
  • the first receiving module is configured to receive the first type of signaling sent by the first communications node
  • a processing module configured to determine, according to the first type of signaling, a first type of parameter set of the configured first type of reference signal index, where the first type of parameter set includes N index elements, where N is greater than or An integer equal to 1.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor configured to execute a program, wherein the program is executed to perform the method of any of the above.
  • a first type of parameter set of a first type of reference signal index is configured, where the first type of parameter set includes N index elements, and N is an integer greater than or equal to 1;
  • the first type of signaling carries the first type of parameter set, and the first type of signaling is sent to the second communication node, which solves the reference signal in the related art.
  • How to efficiently apply the index to the reference signal attribute or feature configuration operation that is, how to configure the reference signal, realize the configuration of the reference signal, and flexibly expand or revise the reference information index set.
  • FIG. 1 is a flowchart of a method of configuring a reference signal according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a reference signal correlation index set in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a reference signal channel feature indication in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a reference signal sequence combination grouping according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of joint indication of reference signal channel characteristics and resource mapping by quasi-co-location indication (PQI) and CSI-RS index elements, in accordance with an embodiment of the disclosure
  • FIG. 6 is a block diagram of a configuration apparatus of a reference signal according to an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a method for configuring a reference signal according to an embodiment of the present disclosure. As shown in FIG. 1, the flow includes the following steps. step:
  • Step S102 configuring a first type of parameter set of the first type of reference signal index, where the first type of parameter set includes N index elements, and N is an integer greater than or equal to 1;
  • Step S104 generating a first type of signaling according to the first type of parameter set, where the first type of signaling carries the first type of parameter set;
  • Step S106 sending the first type of signaling to the second communication node.
  • the second communication node receives the first type of signaling sent by the first communications node
  • a first type of parameter set of the first type of reference signal index where the first type of parameter set includes N index elements, and N is an integer greater than or equal to 1; according to the first type of parameters
  • the set generates the first type of signaling, where the first type of signaling carries the first type of parameter set; the first type of signaling is sent to the second communication node, and the index of the reference signal in the related art is solved.
  • How to efficiently apply the reference signal attribute or feature configuration operation that is, how to configure the reference signal, realize the configuration of the reference signal, and flexibly expand or revise the reference information index set.
  • the first type of parameter set includes at least one of the following parameters: mapping information of a resource element (Resource Element, RE for short), mapping information of a control channel RE, and demodulation reference signal (DeModulation Reference) Signal, referred to as DMRS) Quasi Co-Location (QCL) information; QCL information of demodulation reference signal port group (DMRS port group); Channel State Information Reference Signal (Channel State Information Reference Signal, Referred to as CSI-RS) reference signal configuration information.
  • mapping information of a resource element Resource Element, RE for short
  • mapping information of a control channel RE referred to as DMRS
  • Demodulation Reference DeModulation Reference
  • QCL QCL information of demodulation reference signal port group
  • CSI-RS Channel State Information Reference Signal
  • the first type of parameter set includes a subset of F first type parameter sets, and each subset includes G index elements, where F and G are integers greater than or equal to 1.
  • the reference signal included in the subset of the first parameter set of the G index elements is associated with one of the index elements:
  • the association refers to a reference signal corresponding to the reference signal included in the subset of the first type of parameter set, and satisfies a channel feature hypothesis, wherein the channel feature hypothesis includes one of the following: QCL hypothesis, spatial QCL hypothesis, meeting spatial reception parameter requirements.
  • the index element may include at least one of the following configuration information: an index element sequence number, a reference signal type index, a reference signal resource configuration index, a reference signal resource set index, a reference signal resource index, a reference signal port index, Resource block index, resource block burst index, resource block burst set index, measurement limit window index, time domain window index, report configuration index, beam packet index, measurement constraint, configuration constraint, and time constraint.
  • the first type of reference signal when the first type of signaling is sent to the second communication node, is a configured, measured, or reported reference signal.
  • the first type of reference signal includes at least one of: a synchronization signal block (SS block), a CSI-RS, a Sounding Reference Signal (SRS), and a physical random access channel.
  • SS block synchronization signal block
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access CHannel
  • DMRS Physical Random Access CHannel
  • the method may further include:
  • the configured index element is updated or configured according to the signaling indication.
  • the content under the serial number is the content carried by the signaling.
  • the maximum number of indexes of the first type of reference signals supported is greater than or equal to N.
  • the method may further include:
  • Generating a second type of signaling wherein the second type of signaling is used to select, activate or deactivate an index element in the first set of parameter sets or a subset of the first type of parameter set, selected or activated
  • the K index elements or the subset of the first type parameter set constitute a second type parameter set, and K is an integer greater than or equal to 1;
  • the second communication node receives the second type of signaling sent by the first communication node
  • the method may further include:
  • index elements that do not belong to the first type of parameter set are deleted.
  • the method may further include:
  • the third type parameter set includes R third type parameter sets a subset, the third set of parameter sets includes hi index elements, and R and hi are integers greater than or equal to one.
  • the method may further include:
  • Generating a third type of signaling where the third type of signaling is used to indicate an index element in the first type of parameter set, or an index element in the second type of parameter set or the third type of parameter set a set, mapped and associated with the second type of reference signal;
  • the second communication node receives the third type of signaling sent by the first communications node
  • the second type of reference signal further includes one of the following:
  • mapping information of the data channel RE mapping information of the control channel RE, DMRS port information, DMRS port group information, CSI-RS reference signal configuration information, downlink shared channel resource mapping, and quasi-co-located PQI information.
  • the method may further include:
  • the fourth type of signaling indicates an index element in the second type of parameter set, or a subset of the first type of parameter set activated or selected in the second type of parameter set Or a subset of the first set of parameter sets, or an index element of the first set of parameter sets, for demodulation and/or beam indication of data or control channels associated with the fourth type of signaling;
  • the second communication node receives the fourth type of signaling sent by the first communications node
  • the method may further include:
  • the second type of reference signal includes U second type reference signal subsets, wherein each second type of reference signal subset satisfies a channel characteristic hypothesis; an index element in the first type of parameter set, and a second type parameter
  • the number of index elements in the set or the index elements in the subset of the third type parameter set is T, where U and T are integers greater than or equal to 1, and the channel characteristic hypothesis includes one of the following: QCL hypothesis, spatial QCL hypothesis Meet the spatial receiving parameter requirements.
  • the second type of reference signal subset, or the second type of reference signal element can only be mapped with one index element.
  • mapping rule comprises at least one of the following:
  • mapping relationship is from the first communication node configuration or a predefined mapping relationship set
  • U subsets of the second type of reference signals are sequentially mapped with T index elements or subsets;
  • V is 1, or a positive number greater than 1 or less than 1, if the cumulative step is a non-integer, rounded.
  • V T / U, or V is specified by the first communication node.
  • the second type of reference signal includes at least one of the following: an UpLink DeModulation Reference Signal (UL DMRS), and a DownLink DeModulation Reference Signal (DL).
  • UL DMRS UpLink DeModulation Reference Signal
  • DL DownLink DeModulation Reference Signal
  • DMRS DownLink DeModulation Reference Signal
  • CSI-RS CSI-RS
  • SRS Tracking Reference Signal
  • TRS Tracking Reference Signal
  • the second type of reference signal corresponds to an index element in the first type parameter set or an index element in the second type parameter set or the third type parameter set subset.
  • the reference signal satisfies a channel characteristic hypothesis, wherein the channel characteristic hypothesis includes one of the following: a QCL hypothesis, a spatial QCL hypothesis, and a spatial reception parameter requirement.
  • the method may further include:
  • the signaling of the second type of parameter set is sent to the valid or the signaling of the third type of parameter set is sent to the active Y time unit or X time windows, wherein the time unit is orthogonal frequency division Orthogonal Frequency Division Multiplexing (OFDM) symbols, slots or subframes.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method may further include:
  • the channel characteristic hypothesis includes one of the following: QCL hypothesis, spatial QCL hypothesis, and meeting spatial reception parameter requirements.
  • the method may further include:
  • the third type of reference signal after activating or selecting an index element in the first type of parameter set, or adding an index element to a second type of parameter set, after the X time units or the second communication node replies the confirmation
  • the transmission is transmitted on a periodic or semi-persistent transmission window, where X is an integer greater than or equal to 0, and the time unit is an OFDM symbol, a slot or a subframe.
  • the third type of reference signal comprises at least one of the following:
  • the index indication information pool required to establish the association (combination) of the reference signal with the previous reference signal, and its associated (combined) effective time, mapping method, and beam indication serving the DL and UL reference signals (groups) simultaneously .
  • a multi-layer reference signal index indication method is constructed, and the time-frequency tracking signal and the explicit delay duration are activated, thereby realizing a one-to-one, one-to-many and many-to-many mapping relationship between the reference signal and the reference signal.
  • channel feature assumptions In this solution, there is no global beam sequence indication, and the method of flexibly expanding or revising the reference signal index set can be used for beam indication.
  • the channel characteristics that is, including physical propagation channel characteristics, such as horizontal transmission azimuth, vertical transmission azimuth, horizontal reception azimuth, vertical reception azimuth, etc., also include characteristics of radio frequency and baseband circuits, such as antenna pattern features (element pattern) ), antenna placement, and baseband time offset, frequency offset and phase noise;
  • the beam may be a resource (eg, originating precoding, terminating precoding, antenna port, antenna weight vector, antenna weight matrix, etc.), and the beam symbol may be replaced with a resource index because the beam may be associated with some time-frequency code resources. Binding on the transport.
  • the beam may also be a transmission (transmit/receive) mode; the transmission mode may include space division multiplexing, frequency domain/time domain diversity, and the like.
  • the beam indication means that the transmitting end can indicate by using the current reference signal and the antenna port and the reference signal (or reference reference signal) reported by the UE feedback and the QCL hypothesis of the antenna port.
  • the receiving beam refers to a beam of the receiving end that does not need to be indicated, or a reference signal (or a reference reference signal) that the transmitting end can report back to the UE through the current reference signal and the antenna port, and a beam of the receiving end under the QCL indication of the antenna port.
  • the parameters involved in the QCL include at least: Doppler spread, Doppler shift, delay spread, average delay, average gain, and spatial receive parameters;
  • FIG. 2 is a schematic diagram of a reference signal related index set according to an embodiment of the present disclosure.
  • a base station configures a CSI-RS resource pool (indicated in English as a CSI-RS resource pool) by using RRC signaling.
  • the configuration of the pool is communicated to each user via UE-specific RRC or system broadcast messages.
  • Each CSI-RS resource has an index information, and then the CSI-RS resource configuration (in English expressed as CSI-RS resource setting).
  • some resources are selected from the CSI-RS resource pool to form a CSI-RS resource set (in English, expressed as CSI-RS resource set).
  • a CSI-RS resource configuration may include multiple CSI-RS resource sets.
  • parameters such as element mapping, port number, and time domain behavior characteristics (eg, periodic, semi-persistent, and aperiodic) of each CSI-RS resource are configured accordingly.
  • the base station can select an ideal reference signal index, that is, transmit beam information, from the previously transmitted reference signals. Specifically, the base station configures a first set of reference indexes of the first type of reference signals, where the set includes N index elements;
  • the first type of signaling is sent to the second communication node.
  • N is an integer greater than or equal to 1;
  • the index element includes at least one or a combination of the following configuration information: an index element sequence number, a reference signal type index (indicated by a reference signal (RS) type indicator), and a reference signal resource configuration index (in English, an RS resource setting indicator).
  • Reference signal resource set index in English expressed as RS resource set indicator
  • reference signal resource index in English expressed as RS resource indicator
  • reference signal port index in English expressed as RS resource set port indicator
  • resource block index in English expressed as Block indicator
  • resource block burst index English expression is Block burst indicator
  • resource block burst set index International expression is Block burst set indicator
  • measurement limit window index English expression is Measurement restriction window indicator
  • time domain Window index in English expressed as time-domain window indicator
  • report configuration index English expression is Reporting setting indicator
  • beam grouping index English expression is Beam group indicator
  • measurement constraint English expression is Measurement restriction
  • configuration constraints in English expressed as Setting restriction
  • time constraints in English expressed as Time-domain restriction
  • the measurement constraint means that the combination of parameters such as the most recent tag-k, interference or signal measurement is constrained by the most recently measured, or the last X, or each measurement has a corresponding tag.
  • X is an integer greater than or equal to 1.
  • the base station side specifies that the reference signal index is index information for the interference measurement mode or index information for the channel measurement mode. Further, in the two types of measurement modes, the configuration of the reference signal is partially reusable.
  • the configuration constraint refers to that the most recently configured, or the most recent Y is configured, or each configuration has a corresponding tag, indicating that the latest tag-m is configured.
  • Y is an integer greater than or equal to 1.
  • the time constraint refers to the time domain window x, or the most recent time window.
  • x is the representation index for the time domain window.
  • the time domain constraint refers to a higher level index of the measurement limit window.
  • the measurement limit window index varies from 0 to 3 and cycles through the time domain cycle; and the time domain constraint is an index indicating each cycle in the periodic cycle, for example, the range of 0 to 15. It is necessary to emphasize that the periodic characteristics are considered, and therefore, the time domain window of 0 to 15 which is seen most recently from the configuration time.
  • the first type of signaling may be RRC or MAC-CE signaling.
  • the index information relates to the reference time domain reference point (eg, the previous X time domain unit, or the most recent X configured).
  • the reference time domain reference point is the transmission time of the first type of signaling; or the transmission time of the first type of signaling plus a predefined or configured time domain offset; or Configuring a time domain reference point of one cycle, and the most recent, just occurring, or soon to be transmitted time domain reference point (from the time domain reference point of the cycle) sent as the first type of signaling Time domain reference point of the reference; or, configure a time domain window of one cycle, and the time domain window that has been experienced recently, is experiencing, or is about to go through the first type of signaling (from the cycle In the time domain window) as the time domain reference point for the reference.
  • the first type of reference signal is a configured, measured or reported reference signal.
  • the first type of reference signal is one or a combination of the following: SS block, CSI-RS, SRS, PRACH, DMRS.
  • the index information may be one or a combination of: SS block index; SS block burst index; SS block burst set index; time domain window index.
  • the index information may be: Window/reporting ID+CSI-RS resource set ID+CRI (CSI-RS Resource Indicator), or Window/reporting ID+CSI- RS resource setting ID (+CSI-RS resource set ID) + CRI.
  • the window ID here may be a measurement limit window index or a report configuration index.
  • the window ID (for example, the measurement limit index) can be composed of two levels of indexes.
  • the measurement limit window index varies from 0 to 3 and cycles through the time domain cycle; and the time domain constraint is an index indicating each cycle in the periodic cycle, for example, the range of 0 to 15. It is necessary to emphasize that the periodic characteristics are considered, and therefore, the time domain window of 0 to 15 which is seen most recently from the configuration time.
  • the index information may be: Window/reporting ID+CSI-RS resource ID+CRI or Window/reporting ID+CSI-RS resource setting ID(+CSI-RS resource set ID)+CRI, or most recently CSI-RS resource setting ID+CSI-RS resource set ID+CRI under triggered CSI-RS resource setting or reporting configuration.
  • the index information may be: Window ID/SRS resource setting ID+(SRS resource set ID)+SRI (SRI indicates SRS resource indicator);
  • Aperiodic or semi-persistent SRS Window ID/SRS resource setting ID+(SRS resource set ID)+SRI, or recently triggered (SRS resource set X)+SRI.
  • the base station can reconfigure the first type of set, specific operations, including
  • the existing index element is updated according to the indication of the signaling. content.
  • the maximum per configuration is N, from the perspective of standard support, the maximum number of index elements that can be supported is greater than or equal to N.
  • FIG. 3 is a schematic diagram of a reference signal channel feature indication according to an embodiment of the present disclosure.
  • a base station sends a second type of signaling to activate or deactivate a first
  • the index elements in the class collection, and the activated K index elements constitute the second class collection.
  • the base station selects an index element to activate from the CSI-RS index set.
  • the base station can directly reconfigure the second type of set, including adding an index element to the second type set; or deleting an index element that does not belong to the first type set from the second type set.
  • the first communication node when the index element in the first class set is activated, or the index element is added to the second class set, the first communication node returns the confirmation after the X time units or after the second communication node according to the predefined transmission mode.
  • the third type of reference signal is sent directly or on a periodic or semi-continuous transmission window.
  • the third type of reference signal is required to satisfy the channel feature hypothesis with the index element in the activated first class set or the index element to the second class set. Further, the channel characteristics are assumed to be QCL hypotheses, spatial QCL hypotheses, and satisfy spatial reception parameter requirements.
  • the time unit may be an OFDM symbol, a slot or a subframe.
  • the third type of reference signal is a CSI-RS, a CSI-RS signal for time-frequency domain tracking, or a TRS.
  • the related configuration of the third type of reference signal, and activation of the index elements in the first class set, or the addition of index elements to the second class set may be pre-configured.
  • the potential transmission window of the third type of reference signal is first configured in RRC signaling (eg, relation to the SS block) to the reference reference signal, and then, for "activating the index element of the first type of reference signal, or adding
  • RRC signaling eg, relation to the SS block
  • the corresponding relationship with the SS block is first configured; then, after the index element of the first type reference signal is activated, the reference signal corresponding to the index element and an SS block satisfy the channel feature hypothesis, based on Enables the TRS signal that satisfies the channel characteristic hypothesis with the same SS block.
  • This operation can be based on pre-configuration or indicated by an additional signaling.
  • the base station instructs the index element therein to perform beam indication.
  • the number of elements in the second class set is significantly less than the first class set, so if the DCI performs beam indication, the DCI cost will be large.
  • the amplitude is reduced, for example only two bits are needed.
  • the beam indication means that the demodulation reference signal of the control or data channel and the reference signal indicated by the DCI satisfy the spatial QCL hypothesis, that is, obey the spatial reception parameter hypothesis.
  • the base station side generates a third type of signaling, indicating an index element in the second type set or a third type set subset, associated with the second type of reference signal, the association indicating, the second type of reference signal and the second type
  • the reference signal corresponding to the index element in the set or the subset of the third type set meets the channel feature hypothesis, wherein the channel feature hypothesis includes one of the following: QCL, spatial QCL parameter, spatial receive QCL parameter.
  • the third class set is constructed by selecting an index element from the second class set, and/or the first class set, and includes R third class set subsets, wherein the third class set subset includes hi Index elements.
  • the third type of set contains three subsets, wherein the third subset (ID-10) contains two index information, indicating that two different beam directions can be indicated at the same time.
  • the DCI signaling indicates that the subset in the third class set indicates that the subset in the third class set, for example, 10, indicates that the DMRS port group) is associated with the indicated reference signal index subset, that is, at least satisfies the spatial QCL hypothesis. Or, satisfy the QCL hypothesis of "Doppler spread, Doppler shift, delay spread, average delay and spatial receive parameters".
  • a CSI-RS index library ie, a first type set
  • the MAC-CE activates a CSI-RS index element (ie, a second type set), and in addition, the MAC -CE can also directly add index elements to the second type of collection.
  • the MAC-CE may choose to construct a third set of sets from the second set of sets.
  • the third type of collection contains three subsets, wherein the ID-10 subset contains two index elements.
  • the DCI signaling selects a subset from the third set of sets for a QCL hypothesis indication for the DMRS port of the PDSCH.
  • the index elements under ID-10 are mapped with DMRS port groups a and b.
  • the second type of reference signal subset, or the second type of reference signal element can only be mapped with one index element of the ID-10.
  • the second type of reference signal may be one or a combination of the following: UL DMRS, DL DMRS, CSI-RS, SRS, TRS.
  • the second type of reference signal is a U subset of the second type of reference signals, wherein each of the second type of reference signal subsets satisfies a channel characteristic hypothesis;
  • the number of index elements in the indicated second class set or index elements in the third class set subset is T;
  • the association refers to mapping a second type of reference signal subset with the indicated index element according to a predefined rule.
  • Predefined rules include one or a combination of the following:
  • the first communication node specifies a mapping relationship from the first communication node configuration or a predefined mapping relationship set.
  • U subsets of the second type of reference signals are sequentially mapped with T index elements
  • generating a second type of set or a third type of set signaling to take effect requires Y time units, or U time windows below;
  • the time unit may be an OFDM symbol, a slot or a subframe.
  • a CSI-RS index set is configured by high layer signaling, as shown in Table 1.
  • the indication includes the CSI-RS index set and the CSI-RS resource corresponding to the index element in the index set.
  • the indication of the transmit beam is indicated by the indication information of the CSI-RS resource corresponding to the index element, for example, the CSI-RS resource configuration ID+CSI-RS resource index (CRI), or the CSI-RS resource configuration ID. + CSI-RS Resource Set Index + CSI-RS Resource Index (CRI), characterizing the indication of the transmit beam.
  • the base station further configures N PQI parameter sets for indicating PDSCH RE mapping and QCL information by using high layer signaling, where each PQI parameter set includes mapping information of the data channel RE, mapping information of the control channel RE, and DMRS port.
  • the base station activates or deactivates the CSI-RS index from the CSI-RS index set and selects M parameter sets from the N PQI parameter sets, where M and N are integers greater than one. among them,
  • the DMRS port group in each PQI parameter set is configured one or in multiple activated CSI-RS indexes from the CSI-RS index set for QCL hypothesis indication under spatial reception parameters; further, if the CSI- The RS is periodic or semi-continuous and needs to be configured with its corresponding measurement limit window ID.
  • the DMRS port group in each PQI parameter set is associated with the TRS resource for QCL hypothesis indication under Doppler shift, Doppler spread, average delay, and delay spread parameters;
  • the base station indicates, by DCI signaling, an activated set of PQI parameters for demodulation of the data channel.
  • the measurement limit window index needs to be provided together with the CSI-RS index element.
  • the index indication information pool required for establishing the association (combination) of the reference signal with the previous reference signal, and the associated (combined) effective time, mapping method, and serving at the same time Beam indication of DL and UL reference signals (groups).
  • FIG. 6 is a block diagram of a configuration apparatus of a reference signal according to an embodiment of the present disclosure, which is shown in FIG. :
  • the first configuration module 62 is configured to configure a first type of parameter set of the first type of reference signal index, where the first type of parameter set includes N index elements, and N is an integer greater than or equal to 1;
  • the first generation module 64 is configured to generate the first type of signaling according to the first type of parameter set, where the first type of signaling carries the first type of parameter set;
  • the first sending module 66 is configured to send the first type of signaling to the second communications node.
  • the first type of parameter set includes at least one of the following parameters: mapping information of a data channel RE, mapping information of a control channel RE, QCL information of a DMRS port, QCL information of a DMRS port group, and CSI -RS reference signal configuration information.
  • the first type of parameter set includes a subset of F first type parameter sets, and each subset includes G index elements, where F and G are integers greater than or equal to 1.
  • the reference signal included in the subset of the first parameter set of the G index elements is associated with one of the index elements:
  • the association refers to a reference signal corresponding to the reference signal included in the subset of the first type of parameter set, and satisfies a channel feature hypothesis, wherein the channel feature hypothesis includes one of the following: QCL hypothesis, spatial QCL hypothesis, meeting spatial reception parameter requirements.
  • the index element includes at least one of the following configuration information: an index element sequence number, a reference signal type index, a reference signal resource configuration index, a reference signal resource set index, a reference signal resource index, a reference signal port index, and a resource.
  • the first type of reference signal when the first type of signaling is sent to the second communication node, is a configured, measured, or reported reference signal.
  • the first type of reference signal includes at least one of the following: SS block, CSI-RS, SRS, PRACH, DMRS.
  • the device may further include:
  • An update module configured to update an index element of a portion of the first type of parameter set, or a subset of a portion of the first type of reference signal set;
  • Deleting a module configured to delete an index element of a portion of the first type of parameter set, or a subset of a portion of the first type of reference signal set;
  • a new module is configured to add an index element to the first type of parameter set.
  • the device may further include:
  • a second configuration module configured to update or configure the configured index according to the signaling indication, if the index element sequence number configured in the first type of parameter set is consistent with the index element sequence number indicated by the signaling
  • the content under the element serial number is the content of the signaling bearer.
  • the maximum number of indexes of the first type of reference signals supported is greater than or equal to N.
  • the device may further include:
  • a second generation module configured to generate a second type of signaling, where the second type of signaling is used to select, activate, or deactivate an index element in the first type of parameter set or a child of the first type of parameter set a set of selected or activated K index elements or a subset of the first set of parameter sets constitutes a second set of parameters, K being an integer greater than or equal to 1;
  • a second sending module configured to send the second type of signaling to the second communications node.
  • the device may further include:
  • index elements that do not belong to the first type of parameter set are deleted.
  • the device may further include:
  • a selection module configured to select an index element from the second type parameter set and/or the first type parameter set to form a third type parameter set, wherein the third type parameter set includes R first A subset of three types of parameter sets, the third set of parameter sets comprising hi index elements, and R and hi are integers greater than or equal to one.
  • the device may further include:
  • a third generation module configured to generate a third type of signaling, where the third type of signaling is used to indicate an index element in the first type of parameter set, or an index element or a a third subset of parameter sets, mapped and associated with the second type of reference signals;
  • a fourth sending module configured to send the third type of signaling to the second communications node.
  • the second type of reference signal further includes one of the following:
  • mapping information of the data channel RE mapping information of the control channel RE, demodulation reference signal DMRS port information, DMRS port group information, CSI-RS reference signal configuration information, downlink shared channel resource mapping, and PQI information.
  • the device may further include:
  • a fourth generation module configured to generate a fourth type of signaling, where the fourth type of signaling indicates an index element in the second type of parameter set, or an activated or selected one of the second type of parameter set a subset of a set of parameters, or a subset of the first set of parameters, or an index element of the first set of parameters, for demodulation and/or demodulation of data or control channels associated with the fourth type of signaling Beam indication
  • a fifth sending module configured to send the fourth type of signaling to the second communications node.
  • the second type of reference signal comprises U second type reference signal subsets, wherein each second type of reference signal subset satisfies a channel characteristic hypothesis; an index in the first type of parameter set
  • the number of elements, the index element in the second type of parameter set, or the index element in the third type parameter set subset is T, where U and T are integers greater than or equal to 1, and the channel characteristic hypothesis includes one of the following: Quasi-co-location QCL hypothesis, spatial QCL hypothesis, meeting spatial reception parameter requirements.
  • the second type of reference signal subset, or the second type of reference signal element can only be mapped with one index element.
  • mapping rule comprises at least one of the following:
  • mapping relationship is from the first communication node configuration or a predefined mapping relationship set
  • U subsets of the second type of reference signals are sequentially mapped with T index elements or subsets;
  • V is 1, or a positive number greater than 1 or less than 1, if the cumulative step is a non-integer, rounded.
  • V T / U, or V is specified by the first communication node.
  • the second type of reference signal includes at least one of the following: UL DMRS, DL DMRS, CSI-RS, SRS, TRS.
  • the second type of reference signal corresponds to an index element in the first type parameter set or an index element in the second type parameter set or the third type parameter set subset.
  • the reference signal satisfies a channel characteristic hypothesis, wherein the channel characteristic hypothesis includes one of the following: a QCL hypothesis, a spatial QCL hypothesis, and a spatial reception parameter requirement.
  • the signaling of the second type of parameter set is sent to the valid or the signaling of the third type of parameter set is sent to the active Y time unit or X time windows, wherein the time unit Is an OFDM symbol, slot or subframe.
  • the device may further include:
  • a third sending module configured to: after activating or selecting an index element in the first type parameter set, or adding an index element to the second type parameter set, sending a third class that satisfies a channel feature hypothesis with the element
  • the reference signal, the channel characteristic hypothesis includes one of the following: a QCL hypothesis, a spatial QCL hypothesis, and a spatial reception parameter requirement.
  • the third sending module is configured as the third type reference signal, when an index element in the first type parameter set is activated or selected, or an index element is added to a second type parameter set.
  • the transmission is sent on a periodic or semi-persistent transmission window, where X is an integer greater than or equal to 0, and the time unit is OFDM Symbol, slot or sub-frame.
  • the third type of reference signal comprises at least one of the following:
  • the embodiment of the present disclosure further provides a configuration apparatus for a reference signal, which is applied to the second communication node, and includes:
  • the first receiving module is configured to receive the first type of signaling sent by the first communications node
  • a processing module configured to determine, according to the first type of signaling, a first type of parameter set of the configured first type of reference signal index, where the first type of parameter set includes N index elements, where N is greater than or An integer equal to 1.
  • the device may further include:
  • a second receiving module configured to receive the second type of signaling sent by the first communications node
  • the processing module is configured to: activate or deactivate an index element in the first type parameter set or a subset of the first type parameter set according to the second type signaling selection, and select or activate K indexes
  • the element or a subset of the first set of parameter sets constitutes a second set of parameters, K being an integer greater than or equal to one.
  • the device may further include:
  • a third receiving module configured to receive the third type of signaling sent by the first communications node
  • the processing module is configured to determine, according to the third type of signaling, an index element in the first type parameter set, or an index element in the second type parameter set or a third type parameter set subset, and the The second type of reference signals are mapped and associated.
  • the device may further include:
  • a fourth receiving module configured to receive the fourth type of signaling sent by the first communications node
  • the processing module is configured to determine, according to the fourth type of signaling, an index element in the second type parameter set, or a subset of the first type parameter set activated or selected in the second type parameter set, or A subset of the first set of parameter sets, or an index element of the first set of parameter sets, is used for demodulation and/or beam indication of data or control channels associated with the fourth type of signaling.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a storage medium including a stored program, wherein the program runs to execute the method of any one of the first communication node or the second communication node.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • S11 configured to configure a first type of parameter set of the first type of reference signal index, where the first type of parameter set includes N index elements, and N is an integer greater than or equal to 1;
  • S12 Generate a first type of signaling according to the first type of parameter set, where the first type of signaling carries the first type of parameter set;
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present disclosure also provide a processor configured to execute a program, wherein the program, when executed, performs the steps of any of the above methods.
  • the foregoing program is used to perform the following steps:
  • S21 configured to configure a first type of parameter index of the first type of reference signal index, where the first type of parameter set includes N index elements, where N is an integer greater than or equal to 1;
  • S22 Generate a first type of signaling according to the first type of parameter set, where the first type of signaling carries the first type of parameter set;
  • the foregoing program is used to perform the following steps:
  • S42 Determine, according to the first type of signaling, a first type of parameter set of the configured first type of reference signal index, where the first type of parameter set includes N index elements, where N is greater than or equal to 1. Integer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Stereo-Broadcasting Methods (AREA)
  • Communication Control (AREA)

Abstract

本公开提供了一种参考信号的配置方法及装置,其中,该方法包括:配置第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数;根据所述第一类参数集合生成第一类信令,其中,所述第一类信令携带所述第一类参数集合;向第二通信节点发送所述第一类信令。

Description

参考信号的配置方法及装置
相关申请的交叉引用
本申请基于申请号为201710687806.6、申请日为2017年08月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及但不限于通信领域。
背景技术
超宽带宽的高频段(即毫米波通信),成为未来移动通信发展的重要方向,吸引了全球的学术界和产业界的目光。特别是,在当下日益拥塞的频谱资源和物理网大量接入时,毫米波的优势变得越来越有吸引力,在很多标准组织,例如IEEE、3GPP都开始展开相应的标准化工作。例如,在3GPP标准组,高频段通信凭借着其大带宽的显著优势将会成为5G New Radio Access Technology(New RAT)的重要创新点。
然而,高频段通信也面临着链路衰减的挑战,具体而言,包括传播路径损失大、空气吸收(尤其是氧气)吸收更大、雨衰影响较重等。面对这些挑战,高频段通信***可以利用高频段波长较短和易于天线集成等特点,通过多天线阵列和波束赋形方案来获取高天线增益和对抗信号传输损耗,进而以确保链路余量和提升通信鲁棒性。
在天线权重(也称为,预编码、波束)训练过程中,高频段发端发送训练导频,接端接收信道并执行信道估计。然后,高频段接收端需要向训练发端反馈信道状态信息,便于实现收发端从可选的收发端天线权重对中,找到可以用于多路数据传输所需要的多组收发端天线权重对,提升整体的频谱效率。相关毫米波通信***中,波束指示是基于发送波束的序号,进而辅助接收端波束训练。通过参考信号实现波束指示,由于用户的移动和 信道的变化,越来越难以使用,而且面临着大幅度增大参考信号开销的问题。
针对相关技术中对于参考信号的索引如何高效应用于之后参考信号属性或者特征的配置操作,即如何配置参考信号的问题,尚未提出解决方案。
发明内容
本公开实施例提供了一种参考信号的配置方法及装置。
根据本公开的一个实施例,提供了一种参考信号的配置方法,应用于第一通信节点,包括:
配置第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数;
根据所述第一类参数集合生成第一类信令,其中,所述第一类信令携带所述第一类参数集合;
向第二通信节点发送所述第一类信令。
根据本公开的又一个实施例,还提供了一种参考信号的配置装置,应用于第一通信节点,包括:
第一配置模块,配置为配置第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数;
第一生成模块,配置为根据所述第一类参数集合生成第一类信令,其中,所述第一类信令携带所述第一类参数集合;
第一发送模块,配置为向第二通信节点发送所述第一类信令。
根据本公开的又一个实施例,提供了一种参考信号的配置方法,应用第二通信节点,包括:
接收第一通信节点发送的第一类信令;
根据所述第一类信令,确定配置的第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数。
根据本公开的又一个实施例,还提供了一种参考信号的配置装置,应用于第二通信节点,包括:
第一接收模块,配置为接收第一通信节点发送的第一类信令;
处理模块,配置为根据所述第一类信令,确定配置的第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本公开的又一个实施例,还提供了一种处理器,所述处理器配置为运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本公开实施例,配置第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数;根据所述第一类参数集合生成第一类信令,其中,所述第一类信令携带所述第一类参数集合;向第二通信节点发送所述第一类信令,解决了相关技术中对于参考信号的索引如何高效应用于之后参考信号属性或者特征的配置操作,即如何配置参考信号的问题,实现了对参考信号进行配置,可以灵活的扩充或修订参考信息索引集合。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开。在附图中:
图1是根据本公开实施例的参考信号的配置方法的流程图;
图2为根据本公开实施例的参考信号相关索引集合的示意图;
图3为根据本公开实施例的参考信号信道特征指示的示意图;
图4为根据本公开实施例的参考信号序号组合分组的示意图;
图5是根据本公开实施例的通过准共址指示(PQI)和CSI-RS索引元素联合指示参考信号信道特征和资源映射的示意图;
图6是根据本公开实施例的参考信号的配置装置的框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种参考信号的配置方法,应用于第一通信节点,图1是根据本公开实施例的参考信号的配置方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,配置第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数;
步骤S104,根据所述第一类参数集合生成第一类信令,其中,所述第一类信令携带所述第一类参数集合;
步骤S106,向第二通信节点发送所述第一类信令。
相应地,所述第二通信节点接收所述第一通信节点发送的第一类信令;
所述第二通信节点根据所述第一类信令,确定配置的第一类参考信号索引的所述第一类参数集合。
通过上述步骤,配置第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数;根据所述第一类参数集合生成第一类信令,其中,所述第一类信令携带所述第一类参数集合;向第二通信节点发送所述第一类信令,解决了相关技术中对于参考信号的索引如何高效应用于之后参考信号属性或者特征的配置操作,即如何配置参考信号的问题,实现了对参考信号进行配置,可以灵活的扩充或修订参考信息索引集合。
在一实施例中,所述第一类参数集合至少包括以下参数之一:数据信道资源元素(Resource Element,简称为RE)的映射信息,控制信道RE的 映射信息,解调参考信号(DeModulation Reference Signal,简称为DMRS)端口的准共址(Quasi Co-Location,简称为QCL)信息;解调参考信号端口组(DMRS port group)的QCL信息;信道状态信息参考信号(Channel State Information Reference Signal,简称为CSI-RS)参考信号配置信息。
在一实施例中,所述第一类参数集合中包含F个第一类参数集合的子集,每个子集中包含G个索引元素,其中,F和G是大于或等于1的整数。
在一实施例中,所述G个索引元素中所述第一类参数集合的子集所包含的参考信号与所述索引元素之一关联:
其中,所述关联指的是所述第一类参数集合的子集所包含的参考信号与所述索引元素对应的参考信号,满足信道特征假设,其中,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、满足空间接收参数要求。
在一实施例中,所述索引元素至少可以包括如下配置信息之一:索引元素序号、参考信号类型索引、参考信号资源配置索引、参考信号资源集合索引、参考信号资源索引、参考信号端口索引、资源块索引、资源块突发索引、资源块突发集合索引、测量限制窗口索引、时域窗索引、报告配置索引、波束分组索引、测量约束、配置约束和时间约束。
在一实施例中,在向所述第二通信节点发送所述第一类信令时,所述第一类参考信号为已配置、已测量或已报告的参考信号。
在一实施例中,所述第一类参考信号包括以下至少之一:同步信号块(SS block)、CSI-RS、信道探测参考信号(Sounding Reference Signal,简称为SRS)、物理随机接入信道信号(Physical Random Access CHannel,简称为PRACH)、DMRS。
在一实施例中,所述方法还可以包括:
更新所述第一类参数集合中的部分的索引元素,或者部分第一类参考信号集合的子集;或者,
删除所述第一类参数集合中的部分的索引元素,或者部分第一类参考信号集合的子集;或者,
新增索引元素到所述第一类参数集合。
在一实施例中,若所述第一类参数集合中已配置的索引元素序号,与所述信令指示的索引元素序号一致时,根据所述信令指示,更新或者配置已配置的索引元素序号下的内容为所述信令承载的内容。
在一实施例中,支持所述第一类参考信号索引的最大数目为大于或等于N。
在一实施例中,所述方法还可以包括:
生成第二类信令,其中,所述第二类信令用于选择,激活或去激活所述第一类参数集合中的索引元素或者第一类参数集合的子集,所选择或激活的K个索引元素或者所述第一类参数集合的子集构成第二类参数集合,K为大于或等于1的整数;
向所述第二通信节点发送所述第二类信令。
相应地,所述第二通信节点接收所述第一通信节点发送的第二类信令;
根据所述第二类信令选择,激活或去激活所述第一类参数集合中的索引元素或者第一类参数集合的子集。
在一实施例中,所述方法还可以包括:
添加索引元素到所述第二类参数集合;或者
从所述第二类参数集合中,删除不属于所述第一类参数集合的索引元素。
在一实施例中,所述方法还可以包括:
从所述第二类参数集合和所述第一类参数集合中至少之一中,选择索引元素,构成第三类参数集合,其中,所述第三类参数集合包含R个第三类参数集合子集,所述第三类参数集合子集包含hi个索引元素,R和hi是大于或等于1的整数。
在一实施例中,所述方法还可以包括:
生成第三类信令,其中,所述第三类信令用于指示所述第一类参数集合中的索引元素,或第二类参数集合中的索引元素或所述第三类参数集合子集,与所述第二类参考信号映射并且关联;
向所述第二通信节点发送所述第三类信令。
相应地,所述第二通信节点接收所述第一通信节点发送的第三类信令;
根据所述第三类信令确定所述第一类参数集合中的索引元素,或第二类参数集合中的索引元素或第三类参数集合子集,与所述第二类参考信号映射并且关联。
在一实施例中,所述第二类参考信号还包括以下之一:
数据信道RE的映射信息,控制信道RE的映射信息,DMRS端口信息,DMRS port group信息,CSI-RS参考信号配置信息,下行共享信道资源映射和准共址PQI信息。
在一实施例中,所述方法还可以包括:
生成第四类信令,其中,所述第四类信令指示所述第二类参数集合中的索引元素,或者第二类参数集合中被激活或被选择的第一类参数集合的子集,或者第一类参数集合的子集,或者第一类参数集合的索引元素,用于所述第四类信令所关联的数据或者控制信道的解调和/或波束指示;
向所述第二通信节点发送所述第四类信令。
相应地,所述第二通信节点接收所述第一通信节点发送的第四类信令;
根据所述第四类信令,确定第二类参数集合中的索引元素,或者第二类参数集合中被激活或被选择的第一类参数集合的子集,或者第一类参数集合的子集,或者第一类参数集合的索引元素,用于所述第四类信令所关联的数据或者控制信道的解调和/或波束指示。
在一实施例中,所述方法还可以包括:
所述第二类参考信号包括U个第二类参考信号子集,其中,每个第二类参考信号子集满足信道特征假设;所述第一类参数集合中的索引元素,第二类参数集合中的索引元素或者第三类参数集合子集中的索引元素的数目是T,其中,U和T是大于或等于1的整数,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、满足空间接收参数要求。
在一实施例中,所述第二类参考信号子集,或者所述第二类参考信号元素,仅能与一个索引元素映射。
在一实施例中,所述映射规则包括以下至少之一:
指定映射关系,其中,所述映射关系来自所述第一通信节点配置或者预定义的映射关系集合;
按序号从低到高的顺序或者从高到底的顺序,规定U个第二类参考信号子集,依次与以V为步进的T个索引元素或者子集映射;
按照预定义的映射图谱,U个第二类参考信号子集,依次与T个索引元素或者子集映射;
其中V为1,或者,为大于1或者小于1的正数,若累计步进为非整数时,取整。
在一实施例中,V=T/U,或者V是由所述第一通信节点指定的。
在一实施例中,所述第二类参考信号至少包括以下之一:上行解调参考信号(UpLink DeModulation Reference Signal,简称为UL DMRS)、下行解调参考信号(DownLink DeModulation Reference Signal,简称为DL DMRS)、CSI-RS、SRS、追踪参考信号(Tracking reference signal,简称为TRS)。
在一实施例中,所述第二类参考信号,与所述第一类参数集合中的索引元素或者所述第二类参数集合中的索引元素或者所述第三类参数集合子集所对应的参考信号,满足信道特征假设,其中,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、满足空间接收参数要求。
在一实施例中,所述方法还可以包括:
所述第二类参数集合的信令发送到生效或者所述第三类参数集合的信令发送到生效需要Y个时间单元或X个时间窗口,其中,所述时间单元是正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号,时隙(slot)或者子帧。
在一实施例中,所述方法还可以包括:
在激活或者选择所述第一类参数集合中的索引元素,或者添加索引元素到所述第二类参数集合后,发送与所述元素满足信道特征假设的第三类参考信号,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、 满足空间接收参数要求。
在一实施例中,所述方法可以还包括:
所述第三类参考信号,在激活或者选择所述第一类参数集合中的索引元素,或者添加索引元素到第二类参数集合时,X个时间单元后或者第二通信节点回复确认后的X个时间单元后,发送、在周期或半持续发送窗口上发送,其中,X是大于或等于0的整数,所述时间单元是OFDM符号,slot或者子帧。
在一实施例中,所述第三类参考信号包括以下至少之一:
CSI-RS,用于时频追踪的CSI-RS,TRS。
本公开实施例建立参考信号与之前参考信号的关联(组合)所需要的索引指示信息pool,以及其关联(组合)生效时间,映射方法,同时服务于DL和UL参考信号(组)的波束指示。此外,构建多层的参考信号索引指示的方法,并且配合激活时频追踪信号和明确延迟时长,进而实现了参考信号与参考信号之间一对一,一对多和多对多下的映射关系和信道特征假设。该方案,不存在全局性的波束序号指示,可以灵活的扩充或者修订参考信号索引集合的方法来进行波束指示。
所述信道特征,即包括物理传播信道特征,例如水平发送方位角,垂直发送方位角,水平接收方位角,垂直接收方位角等,也包括射频和基带电路的特征,例如天线阵子特征(element pattern),天线摆放,以及基带时偏,频偏和相位噪声等;
所述波束可以为一种资源(例如发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等),波束符号可以被替换为资源索引,因为波束可以与一些时频码资源进行传输上的绑定。波束也可以为一种传输(发送/接收)方式;所述的传输方式可以包括空分复用、频域/时域分集等。
所述的波束指示是指,发送端可以通过当前参考信号和天线端口与UE反馈报告的参考信号(或基准参考信号)和天线端口的QCL假设来进行指示。
所述的接收波束是指,无需指示的接收端的波束,或者发送端可以通 过当前参考信号和天线端口与UE反馈报告的参考信号(或基准参考信号)和天线端口的QCL指示下的接收端的波束资源;
所述的QCL涉及的参数至少包括,多普勒扩展,多普勒平移,时延拓展,平均时延,平均增益和空间接收参数;
图2为根据本公开实施例的参考信号相关索引集合的示意图,如图2所示,基站通过RRC信令,配置了CSI-RS的资源池(英文表达为CSI-RS resource pool),该资源池的配置会通过UE-specific RRC或者***广播消息告知给每个用户。每个CSI-RS resource都有一个索引信息,而后进行CSI-RS的资源配置(英文表达为CSI-RS resource setting)。具体而言,会从CSI-RS resource pool中选择一些资源,构成CSI-RS资源集合(英文表达为CSI-RS resource set)。而一个CSI-RS资源配置下可以包含多个CSI-RS资源集合。同时,每个CSI-RS资源的元素映射、端口数目、时域行为特征(例如:周期、半持续和非周期)等参数,都会被相应配置。
通过参考信号的测量和参考信号的报告,基站端可以从之前发送的参考信号中选择比较理想的参考信号索引,即发送波束信息。具体而言,基站配置第一类参考信号相关索引的第一类集合,其中集合内包括N个索引元素;
生成第一类信令,其中第一类信令携带所述的集合;
向第二通信节点发送第一类信令。
其中,N是大于或等于1的整数;
其中,索引元素至少包括如下配置信息之一或者组合:索引元素序号、参考信号类型索引(英文表达为reference signal(RS)type indicator)、参考信号资源配置索引(英文表达为RS resource setting indicator)、参考信号资源集合索引(英文表达为RS resource set indicator)、参考信号资源索引(英文表达为RS resource indicator)、参考信号端口索引(英文表达为RS resource set port indicator)、资源块索引(英文表达为Block indicator)、资源块突发索引(英文表达为Block burst indicator),资源块突发集合索引(英文表达为Block burst set indicator),测量限制窗口索引(英文表达为Measurement restriction window indicator)、时域窗索引(英文表达为time-domain window  indicator)、报告配置索引(英文表达为Reporting setting indicator)、波束分组索引(英文表达为Beam group indicator)、测量约束(英文表达为Measurement restriction)、配置约束(英文表达为Setting restriction)和时间约束(英文表达为Time-domain restriction);
其中,测量约束是指,通过最近被测量的,或者最近X个被测量的,或者每次测量都有对应的tag,指示配置最近的tag-k,干扰或者信号测量等参数的组合进行约束。X是大于或等于1的整数。进一步地,基站端明确所述参考信号索引是面向干扰测量模式下的索引信息,或者是面向信道测量模式下的索引信息。更进一步地,两种类型的测量模式下,参考信号的配置,部分是可以重用。
其中,配置约束是指,最近被配置的,或者最近Y被配置,或者每次配置都有对应的tag,指示配置最近的tag-m。Y是大于或等于1的整数。
其中,时间约束是指,时域窗口x,或者最近的时间窗口。其中x是对于时域窗口的表示索引。更进一步的,时域约束是指测量限制窗口的更高一级索引。例如,测量限制窗口索引的变化范围为0~3,并且在时域周期循环;而时域约束,是指示周期循环下每个循环的索引,例如变化范围为0~15。需要强调,考虑周期特性,因此,从配置时刻而言最近的看到的0~15的时域窗口。
其中,第一类信令可以是RRC或者MAC-CE信令。
此外,考虑索引信息均涉及到基准的时域参考点(例如,之前的X的时域单元,或者最近X个被配置的)。而,所述的基准的时域参考点,是以第一类信令的发送时刻;或者,是以第一类信令的发送时刻加上一个预定义或者配置的时域偏置;或者,配置一个周期的时域参考点,而以第一类信令发送的时刻最近的,刚发生的,或者即将发送的时域参考点(从所述的周期的时域参考点中)作为所述的基准的时域参考点;或者,配置一个周期的时域窗口,而以第一类信令发送的时刻最近已经经历的,正在经历的,或者即将经历的时域窗口(从所述的周期的时域窗口中)作为所述的基准的时域参考点。
需要说明的是,第一类参考信号是已配置、已测量或者已报告的参考 信号。并且所述的第一类参考信号为如下之一或组合:SS block、CSI-RS、SRS、PRACH、DMRS。
虽然为了讨论方便,在图2中仅仅涉及CSI-RS信号,但是这并不意味着,不可以涉及其他参考信号,以及多种参考信号组合的情况。例如,
SS block:索引信息可以是如下的之一或者组合:SS block index;SS block burst index;SS block burst set index;时域窗索引。
周期或者半持续CSI-RS:索引信息可以为:Window/reporting ID+CSI-RS resource set ID+CRI(CSI-RS资源指示(CSI-RS Resource Indicator)),或者,Window/reporting ID+CSI-RS resource setting ID(+CSI-RS resource set ID)+CRI。进一步的,这里的window ID可以是测量限制窗口索引,或者报告配置索引。更进一步的,window ID(例如测量限制索引)可以由两级索引构成。例如,测量限制窗口索引的变化范围为0~3,并且在时域周期循环;而时域约束,是指示周期循环下每个循环的索引,例如变化范围为0~15。需要强调,考虑周期特性,因此,从配置时刻而言最近的看到的0~15的时域窗口。
非周期CSI-RS:索引信息可以为:Window/reporting ID+CSI-RS resource ID+CRI或者,Window/reporting ID+CSI-RS resource setting ID(+CSI-RS resource set ID)+CRI,或者最近被触发的CSI-RS resource setting或者报告配置下的,CSI-RS resource setting ID+CSI-RS resource set ID+CRI。
周期或者半持续SRS:索引信息可以为:Window ID/SRS resource setting ID+(SRS resource set ID)+SRI(SRI表示SRS资源指示(SRS resource indicator));
非周期或者半持续SRS:Window ID/SRS resource setting ID+(SRS resource set ID)+SRI,或者最近被触发的(SRS resource set X)+SRI。
此外,通过RRC或者MAC-CE信令,基站可以重配置第一类集合,具体操作,包括
更新第一类集合中的部分的索引元素;或者,
删除第一类集合中的部分的索引元素;或者,
新增索引元素到第一类集合;
其中,为了实现重配置,因此,若第一类集合中已配置的索引元素序号,与所述信令指示的索引元素序号一致时,根据所述信令的指示,更新该已有索引元素的内容。
虽然,从配置的角度看,每次配置的最大限度是N,但是从标准支持的角度看,可支持索引元素的最大数目是大于或等于N。
图3为根据本公开实施例的参考信号信道特征指示的示意图,如图3所示,根据所配置或者重配置的第一类集合,基站发送第二类信令,来激活或者去激活第一类集合中的索引元素,而激活后的K个索引元素构成第二类集合。以CSI-RS为例,基站从CSI-RS索引集合中选择激活其中的索引元素。此外,需要强调,基站可以直接重配置第二类集合,包括,添加索引元素到第二类集合;或者从第二类集合中,删除不属于第一类集合的索引元素。
进一步地,激活第一类集合中的索引元素,或者添加索引元素到第二类集合时,第一通信节点根据预定义的传输模式,在X个时间单元后或者第二通信节点回复确认后的X个时间单元后,直接或者在周期或半持续发送窗口上发送第三类参考信号。其中,第三类参考信号需要,与所述的激活第一类集合中的索引元素,或者添加索引元素到第二类集合满足信道特征假设。更进一步的,信道特征假设为QCL假设、空间QCL假设、满足空间接收参数要求。
其中,X是大于或等于0的整数,时间单元,可以是OFDM符号,slot或者子帧。进一步的,第三类参考信号为CSI-RS,用于时频域追踪的CSI-RS信号,或者TRS。
此外,第三类参考信号的相关配置,与激活第一类集合中的索引元素,或者添加索引元素到第二类集合,可以被预先配置。例如第三类参考信号的潜在发送窗口首先在RRC信令中被配置(例如,与SS block的关系)与基准参考信号的关系,然后,对于“激活第一类参考信号的索引元素,或者添加索引元素到第二类集合”下的索引元素所代表的参考信号与基准参 考信号的对应关系,来激活第三类参考信号的发送。
例如,TRS信号配置时,首先配置与SS block的对应关系;然后,在激活第一类参考信号的索引元素后,该索引元素所对应的参考信号与某个SS block满足信道特征假设,基于此,使能与相同的SS block满足信道特征假设的TRS信号。这个操作,可以是基于预配置的,或者通过一个额外的信令进行指示。
然后,根据激活第一类集合中的索引元素,或者添加索引元素到第二类集合后的第二类集合,基站指示其中的索引元素进行波束指示。需要说明,通过从第一类集合到第二类集合的下选择,第二类集合中的元素的数目会明显少于第一类集合,因此如果在DCI进行波束指示时,DCI花销会大幅度降低,例如仅需要两个bit。所述的波束指示,是指控制或者数据信道的解调参考信号与DCI所指示的参考信号满足空间QCL假设,即服从空间接收参数假设。总之,基站端生成第三类信令,指示第二类集合中的索引元素或者第三类集合子集,与第二类参考信号关联,所述关联表示,第二类参考信号与第二类集合中的索引元素或者第三类集合子集所对应的参考信号,满足信道特征假设,其中,所述的信道特征假设,包括如下之一:QCL、空间QCL参数、空间接收QCL参数。
图4为根据本公开实施例的参考信号序号组合分组的示意图,如图4所示,图中描述了第三类集合的构造方法。具体而言,第三类集合,是由从第二类集合,和/或第一类集合中选择索引元素构造的,包含R个第三类集合子集,其中第三类集合子集包含hi个索引元素。例如,图中,第三类集合中,包含了三个子集,其中,第三个子集(ID-10)中包含了两个索引信息,表示可以同时指示两个不同的波束方向。而后,DCI信令,指示第三类集合中的子集指示第三类集合中子集,例如10,表示DMRS port group)与所指示的参考信号索引子集关联,即至少满足空间QCL假设,或者,满足“多普勒扩展,多普勒平移,时延拓展,平均时延和空间接收参数”的QCL假设。
如图4所述,首先,通过RRC信令创建和更新CSI-RS索引库(即第一类集合),而后,MAC-CE激活CSI-RS索引元素(即第二类集合),此外, MAC-CE也可以直接添加索引元素进入第二类集合。基于第二类集合,MAC-CE可以从第二类集合中,选择构造第三类集合。其中,第三类集合中,包含了三个子集,其中ID-10子集下包含了两个索引元素。DCI信令从第三类集合中选择一个子集进行对于PDSCH的DMRS端口的QCL假设指示。其中,ID-10下的索引元素与DMRS port group a和b进行映射。其中,第二类参考信号子集,或者第二类参考信号元素,仅能与一个所述ID-10的索引元素映射。
所述的第二类参考信号可以为如下之一或者组合:UL DMRS、DL DMRS、CSI-RS、SRS、TRS。
进一步地,第二类参考信号是由U个第二类参考信号子集,其中每个第二类参考信号子集满足信道特征假设;
所指示的第二类集合中的索引元素或者第三类集合子集中的索引元素的数目是T;
所述的关联是指,根据预定义规则,第二类参考信号子集与所指示的索引元素映射。
预定义规则包括如下之一或者组合:
第一通信节点指定映射关系,其中映射关系来自第一通信节点配置或者预定义的映射关系集合。
按序号从低到高的顺序或者从高到底的顺序,规定U个第二类参考信号子集,依次与以V为步进的T个索引元素映射;
按照预定义的映射图谱,U个第二类参考信号子集,依次与T个索引元素映射;
其中V可以为1,或者,为大于1或者小于1的正数,若累计步进为非整数时,可以向上、向下或者四舍五入取整。此外,若U小于T/V,则末位索引元素会被丢掉;若U大于T/V时,则循环映射。进一步地,V=T/U,或者V是由第一通信节点指定的。
此外,生成第二类集合或者第三类集合信令到其生效,需要Y个时间单元,或者下面U个时间窗口;
其中,时间单元,可以是OFDM符号,slot或者子帧。
图5是根据本公开实施例的通过PQI和CSI-RS索引元素联合指示参考信号信道特征和资源映射的示意图,如图5所示,通过高层信令配置CSI-RS索引集合,如表1所示,其中包含了CSI-RS索引集合,和索引集合中索引元素对应的CSI-RS资源的指示信息。进一步的,对于发送波束的指示,通过索引元素对应的CSI-RS资源的指示信息来指示,例如通过CSI-RS资源配置ID+CSI-RS资源索引(CRI),或者通过CSI-RS资源配置ID+CSI-RS资源集合索引+CSI-RS资源索引(CRI),表征对于发送波束的指示。
表1
Figure PCTCN2018096115-appb-000001
此外,基站还通过高层信令配置了N个PQI参数集合,用于指示PDSCH RE映射和QCL信息,其中每个PQI参数集合中包含数据信道RE的映射信息,控制信道RE的映射信息,DMRS端口的QCL信息;DMRS port group的QCL信息;CSI-RS参考信号配置信息;
然后,基站激活或者去激活来自CSI-RS索引集合中CSI-RS索引以及从N个PQI参数集合中选择M个参数集合,其中M和N是大于1的整数。其中,
每个PQI参数集合中的DMRS端口组被配置一个或在多个激活的CSI-RS索引来自CSI-RS索引集合,用于关于空间接收参数下的QCL假设指示;进一步的,如果所述CSI-RS为周期或者半持续,还需要配置其相应的测量限制窗口ID。
每个PQI参数集合中的DMRS端口组与TRS资源关联,用于关于多普 勒平移、多普勒拓展、平均时延、时延拓展参数下的QCL假设指示;
最后,基站通过DCI信令指示一个激活的PQI参数集合用于数据信道的解调。
对于将CSI-RS索引元素和TRS信息配置到PQI参数集合,如表2所示。更进一步地,如果CSI-RS为周期或者半持续参考信号,测量限制窗口索引需要与CSI-RS索引元素一并提供。
表2
Figure PCTCN2018096115-appb-000002
综上所述,基于本公开实施例提供的技术方案,建立参考信号与之前参考信号的关联(组合)所需要的索引指示信息pool,以及其关联(组合)生效时间,映射方法,同时服务于DL和UL参考信号(组)的波束指示。通过构建多层的参考信号索引指示的方法,并且配合激活时频追踪信号和明确延迟时长,进而实现了参考信号与参考信号之间一对一,一对多和多对多下的映射关系和信道特征假设。该方案,不存在全局性的波束序号指示,可以灵活的扩充或者修订参考信号索引集合的方法来进行波束指示。
实施例2
根据本公开的又一个实施例,还提供了一种参考信号的配置装置,应 用于第一通信节点,图6是根据本公开实施例的参考信号的配置装置的框图,图6所示,包括:
第一配置模块62,配置为配置第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数;
第一生成模块64,配置为根据所述第一类参数集合生成第一类信令,其中,所述第一类信令携带所述第一类参数集合;
第一发送模块66,配置为向第二通信节点发送所述第一类信令。
其中,在一实施例中,所述第一类参数集合至少包括以下参数之一:数据信道RE的映射信息,控制信道RE的映射信息,DMRS端口的QCL信息;DMRS port group的QCL信息;CSI-RS参考信号配置信息。
在一实施例中,所述第一类参数集合中包含F个第一类参数集合的子集,每个子集中包含G个索引元素,其中,F和G是大于或等于1的整数。
在一实施例中,所述G个索引元素中所述第一类参数集合的子集所包含的参考信号与所述索引元素之一关联:
其中,所述关联指的是所述第一类参数集合的子集所包含的参考信号与所述索引元素对应的参考信号,满足信道特征假设,其中,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、满足空间接收参数要求。
在一实施例中,所述索引元素至少包括如下配置信息之一:索引元素序号、参考信号类型索引、参考信号资源配置索引、参考信号资源集合索引、参考信号资源索引、参考信号端口索引、资源块索引、资源块突发索引、资源块突发集合索引、测量限制窗口索引、时域窗索引、报告配置索引、波束分组索引、测量约束、配置约束和时间约束。
在一实施例中,在向所述第二通信节点发送所述第一类信令时,所述第一类参考信号为已配置、已测量或已报告的参考信号。
在一实施例中,所述第一类参考信号包括以下至少之一:SS block、CSI-RS、SRS、PRACH、DMRS。
在一实施例中,所述装置还可以包括:
更新模块,配置为更新所述第一类参数集合中的部分的索引元素,或者部分第一类参考信号集合的子集;或者,
删除模块,配置为删除所述第一类参数集合中的部分的索引元素,或者部分第一类参考信号集合的子集;或者,
新增模块,配置为新增索引元素到所述第一类参数集合。
在一实施例中,所述装置还可以包括:
第二配置模块,配置为若所述第一类参数集合中已配置的索引元素序号,与所述信令指示的索引元素序号一致时,根据所述信令指示,更新或者配置已配置的索引元素序号下的内容为所述信令承载的内容。
在一实施例中,支持所述第一类参考信号索引的最大数目为大于或等于N。
在一实施例中,所述装置还可以包括:
第二生成模块,配置为生成第二类信令,其中,所述第二类信令用于选择,激活或去激活所述第一类参数集合中的索引元素或者第一类参数集合的子集,所选择或激活的K个索引元素或者所述第一类参数集合的子集构成第二类参数集合,K为大于或等于1的整数;
第二发送模块,配置为向所述第二通信节点发送所述第二类信令。
在一实施例中,所述装置还可以包括:
添加或删除模块,配置为添加索引元素到所述第二类参数集合;或者
从所述第二类参数集合中,删除不属于所述第一类参数集合的索引元素。
在一实施例中,所述装置还可以包括:
选择模块,配置为从所述第二类参数集合,和/或所述第一类参数集合中,选择索引元素,构成第三类参数集合,其中,所述第三类参数集合包含R个第三类参数集合子集,所述第三类参数集合子集包含hi个索引元素,R和hi是大于或等于1的整数。
在一实施例中,所述装置还可以包括:
第三生成模块,配置为生成第三类信令,其中,所述第三类信令用于指示所述第一类参数集合中的索引元素,或第二类参数集合中的索引元素或所述第三类参数集合子集,与所述第二类参考信号映射并且关联;
第四发送模块,配置为向所述第二通信节点发送所述第三类信令。
在一实施例中,所述第二类参考信号还包括以下之一:
数据信道RE的映射信息,控制信道RE的映射信息,解调参考信号DMRS端口信息,DMRS port group信息,CSI-RS参考信号配置信息,下行共享信道资源映射和PQI信息。
在一实施例中,所述装置还可以包括:
第四生成模块,配置为生成第四类信令,其中,所述第四类信令指示所述第二类参数集合中的索引元素,或者第二类参数集合中被激活或被选择的第一类参数集合的子集,或者第一类参数集合的子集,或者第一类参数集合的索引元素,用于所述第四类信令所关联的数据或者控制信道的解调和/或波束指示;
第五发送模块,配置为向所述第二通信节点发送所述第四类信令。
在一实施例中,所述第二类参考信号包括U个第二类参考信号子集,其中,每个第二类参考信号子集满足信道特征假设;所述第一类参数集合中的索引元素,第二类参数集合中的索引元素或者第三类参数集合子集中的索引元素的数目是T,其中,U和T是大于或等于1的整数,所述信道特征假设包括以下之一:准共址QCL假设、空间QCL假设、满足空间接收参数要求。
在一实施例中,所述第二类参考信号子集,或者所述第二类参考信号元素,仅能与一个索引元素映射。
在一实施例中,所述映射规则包括以下至少之一:
指定映射关系,其中,所述映射关系来自所述第一通信节点配置或者预定义的映射关系集合;
按序号从低到高的顺序或者从高到底的顺序,规定U个第二类参考信号子集,依次与以V为步进的T个索引元素或者子集映射;
按照预定义的映射图谱,U个第二类参考信号子集,依次与T个索引元素或者子集映射;
其中V为1,或者,为大于1或者小于1的正数,若累计步进为非整数时,取整。
在一实施例中,V=T/U,或者V是由所述第一通信节点指定的。
在一实施例中,所述第二类参考信号至少包括以下之一:UL DMRS、DL DMRS、CSI-RS、SRS、TRS。
在一实施例中,所述第二类参考信号,与所述第一类参数集合中的索引元素或者所述第二类参数集合中的索引元素或者所述第三类参数集合子集所对应的参考信号,满足信道特征假设,其中,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、满足空间接收参数要求。
在一实施例中,所述第二类参数集合的信令发送到生效或者所述第三类参数集合的信令发送到生效需要Y个时间单元或X个时间窗口,其中,所述时间单元是OFDM符号,slot或者子帧。
在一实施例中,所述装置还可以包括:
第三发送模块,配置为在激活或者选择所述第一类参数集合中的索引元素,或者添加索引元素到所述第二类参数集合后,发送与所述元素满足信道特征假设的第三类参考信号,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、满足空间接收参数要求。
在一实施例中,所述第三发送模块,配置为所述第三类参考信号,在激活或者选择所述第一类参数集合中的索引元素,或者添加索引元素到第二类参数集合时,X个时间单元后或者第二通信节点回复确认后的X个时间单元后,发送、在周期或半持续发送窗口上发送,其中,X是大于或等于0的整数,所述时间单元是OFDM符号,slot或者子帧。
在一实施例中,所述第三类参考信号包括以下至少之一:
CSI-RS,用于时频追踪的CSI-RS,TRS。
相应地,本公开实施例还提供了一种参考信号的配置装置,应用于第二通信节点,包括:
第一接收模块,配置为接收第一通信节点发送的第一类信令;
处理模块,配置为根据所述第一类信令,确定配置的第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数。
其中,在一实施例中,所述装置还可以包括:
第二接收模块,配置为接收所述第一通信节点发送的第二类信令;
所述处理模块,用于根据所述第二类信令选择,激活或去激活所述第一类参数集合中的索引元素或者第一类参数集合的子集,所选择或激活的K个索引元素或者所述第一类参数集合的子集构成第二类参数集合,K为大于或等于1的整数。
在一实施例中,所述装置还可以包括:
第三接收模块,配置为接收所述第一通信节点发送的第三类信令;
所述处理模块,配置为根据所述第三类信令确定所述第一类参数集合中的索引元素,或第二类参数集合中的索引元素或第三类参数集合子集,与所述第二类参考信号映射并且关联。
在一实施例中,所述装置还可以包括:
第四接收模块,配置为接收所述第一通信节点发送的第四类信令;
所述处理模块,配置为根据所述第四类信令,确定第二类参数集合中的索引元素,或者第二类参数集合中被激活或被选择的第一类参数集合的子集,或者第一类参数集合的子集,或者第一类参数集合的索引元素,用于所述第四类信令所关联的数据或者控制信道的解调和/或波束指示。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本公开的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述第一通信节点或第二通信节点任一项的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S11,配置第一类参考信号索引的第一类参数集合,其中,该第一类参数集合内包括N个索引元素,N为大于或等于1的整数;
S12,根据该第一类参数集合生成第一类信令,其中,该第一类信令携带该第一类参数集合;
S13,向第二通信节点发送该第一类信令。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S31,接收第一通信节点发送的第一类信令;
S32,根据所述第一类信令,确定配置的第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
实施例4
本公开的实施例还提供了一种处理器,该处理器配置为运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,在本实施例中,上述程序用于执行以下步骤:
S21,配置第一类参考信号索引的第一类参数集合,其中,该第一类参数集合内包括N个索引元素,N为大于或等于1的整数;
S22,根据该第一类参数集合生成第一类信令,其中,该第一类信令携带该第一类参数集合;
S23,向第二通信节点发送该第一类信令。
可选地,在本实施例中,上述程序用于执行以下步骤:
S41,接收第一通信节点发送的第一类信令;
S42,根据所述第一类信令,确定配置的第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在两个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的两个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (34)

  1. 一种参考信号的配置方法,应用于第一通信节点,包括:
    配置第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数;
    根据所述第一类参数集合生成第一类信令,其中,所述第一类信令携带所述第一类参数集合;
    向第二通信节点发送所述第一类信令。
  2. 根据权利要求1所述的方法,其中,所述第一类参数集合至少包括以下参数之一:数据信道资源元素RE的映射信息,控制信道RE的映射信息,解调参考信号DMRS端口的准共址QCL信息;解调参考信号端口组的QCL信息;信道状态信息参考信号CSI-RS参考信号配置信息。
  3. 根据权利要求1所述的方法,其中,所述第一类参数集合中包含F个第一类参数集合的子集,每个子集中包含G个索引元素,其中,F和G是大于或等于1的整数。
  4. 根据权利要求3所述的方法,其中,所述G个索引元素中所述第一类参数集合的子集所包含的参考信号与所述索引元素之一关联:
    其中,所述关联指的是所述第一类参数集合的子集所包含的参考信号与所述索引元素对应的参考信号,满足信道特征假设,其中,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、满足空间接收参数要求。
  5. 根据权利要求1所述的方法,其中,所述索引元素至少包括如下配置信息之一:索引元素序号、参考信号类型索引、参考信号资源配置索引、参考信号资源集合索引、参考信号资源索引、参考信号端口索引、资源块索引、资源块突发索引、资源块突发集合索引、测量限制窗口索引、时域窗索引、报告配置索引、波束分组索引、测量约束、配置约束和时间约束。
  6. 根据权利要求1所述的方法,其中,
    在向所述第二通信节点发送所述第一类信令时,所述第一类参考信号为已配置、已测量或已报告的参考信号。
  7. 根据权利要求1所述的方法,其中,所述第一类参考信号包括以下至少之一:同步信号块SS block、信道状态信息参考信号CSI-RS、信道探测参考信号SRS、物理随机接入信道信号PRACH、解调参考信号DMRS。
  8. 根据权利要求1至7任一项所述的方法,其中,所述方法还包括:
    更新所述第一类参数集合中的部分的索引元素,或者部分第一类参考信号集合的子集;或者,
    删除所述第一类参数集合中的部分的索引元素,或者部分第一类参考信号集合的子集;或者,
    新增索引元素到所述第一类参数集合。
  9. 根据权利要求1至7任一项所述的方法,其中,所述方法还包括:
    若所述第一类参数集合中已配置的索引元素序号,与所述信令指示的索引元素序号一致时,根据所述信令指示,更新或者配置已配置的索引元素序号下的内容为所述信令承载的内容。
  10. 根据权利要求8所述的方法,其中,
    支持所述第一类参考信号索引的最大数目为大于或等于N。
  11. 根据权利要求1所述的方法,其中,所述方法还包括:
    生成第二类信令,其中,所述第二类信令用于选择,激活或去激活所述第一类参数集合中的索引元素或者第一类参数集合的子集,所选择或激活的K个索引元素或者所述第一类参数集合的子集构成第二类参数集合,K为大于或等于1的整数;
    向所述第二通信节点发送所述第二类信令。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    添加索引元素到所述第二类参数集合;或者
    从所述第二类参数集合中,删除不属于所述第一类参数集合的索引元素。
  13. 根据权利要求1、11或12所述的方法,其中,所述方法还包括:
    从所述第二类参数集合和所述第一类参数集合中至少之一中,选择索 引元素,构成第三类参数集合,其中,所述第三类参数集合包含R个第三类参数集合子集,所述第三类参数集合子集包含hi个索引元素,R和hi是大于或等于1的整数。
  14. 根据权利要求1至7、10至12任一项所述的方法,其中,所述方法还包括:
    生成第三类信令,其中,所述第三类信令用于指示所述第一类参数集合中的索引元素,或第二类参数集合中的索引元素或第三类参数集合子集,与所述第二类参考信号映射并且关联;
    向所述第二通信节点发送所述第三类信令。
  15. 根据权14所述的方法,其中,所述第二类参考信号还包括以下之一:
    数据信道资源元素RE的映射信息,控制信道资源元素RE的映射信息,解调参考信号DMRS端口信息,解调参考信号端口组信息,信道状态信息参考信CSI-RS参考信号配置信息,下行共享信道资源映射和准共址PQI信息。
  16. 根据权1、11或12所述的方法,其中,所述方法还包括:
    生成第四类信令,其中,所述第四类信令指示第二类参数集合中的索引元素,或者第二类参数集合中被激活或被选择的第一类参数集合的子集,或者第一类参数集合的子集,或者第一类参数集合的索引元素,用于所述第四类信令所关联的数据或者控制信道的解调和/或波束指示;
    向所述第二通信节点发送所述第四类信令。
  17. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述第二类参考信号包括U个第二类参考信号子集,其中,每个第二类参考信号子集满足信道特征假设;所述的第一类参数集合中的索引元素,第二类参数集合中的索引元素或者第三类参数集合子集中的索引元素的数目是T,其中,U和T是大于或等于1的整数,所述信道特征假设包括以下之一:准共址QCL假设、空间QCL假设、满足空间接收参数要求。
  18. 根据权利要求17所述的方法,其中,所述第二类参考信号子集, 或者所述第二类参考信号元素,仅能与一个索引元素映射。
  19. 根据权利要求14所述的方法,其中,所述映射规则包括以下至少之一:
    指定映射关系,其中,所述映射关系来自所述第一通信节点配置或者预定义的映射关系集合;
    按序号从低到高的顺序或者从高到底的顺序,规定U个第二类参考信号子集,依次与以V为步进的T个索引元素或者子集映射;
    按照预定义的映射图谱,U个第二类参考信号子集,依次与T个索引元素或者子集映射;
    其中V为1,或者,大于1或者小于1的正数,若累计步进为非整数时,取整。
  20. 根据权利要求19所述的方法,其中,
    V=T/U,或者V是由所述第一通信节点指定的。
  21. 根据权利要求14所述的方法,其中,所述第二类参考信号至少包括以下之一:上行解调参考信号UL DMRS、下行解调参考信号DL DMRS、信道状态信息参考信号CSI-RS、探测参考信号SRS、追踪参考信号TRS。
  22. 根据权利要求14所述的方法,其中,所述第二类参考信号,与所述第一类参数集合中的索引元素或者所述第二类参数集合中的索引元素或者所述第三类参数集合子集所对应的参考信号,满足信道特征假设,其中,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、满足空间接收参数要求。
  23. 根据权利要求22所述的方法,其中,所述方法还包括:
    所述第二类参数集合的信令发送到生效或者所述第三类参数集合的信令发送到生效需要Y个时间单元或X个时间窗口,其中,所述时间单元是正交频分复用技术OFDM符号,时隙slot或者子帧。
  24. 根据权利要求13所述的方法,其中,所述方法还包括:
    在激活或者选择的所述第一类参数集合中的索引元素,或者添加索引 元素到所述第二类参数集合后,发送与所述元素满足信道特征假设的第三类参考信号,所述信道特征假设包括以下之一:QCL假设、空间QCL假设、满足空间接收参数要求。
  25. 根据权利要求24所述的方法,其中,所述方法还包括:
    所述第三类参考信号,在激活或者选择所述第一类参数集合中的索引元素,或者添加索引元素到第二类参数集合时,X个时间单元后或者第二通信节点回复确认后的X个时间单元后,发送、在周期或半持续发送窗口上发送,其中,X是大于或等于0的整数,所述时间单元是正交频分复用OFDM符号,时隙slot或者子帧。
  26. 根据权利要求24所述的方法,其中,所述第三类参考信号包括以下至少之一:
    信道状态信息参考信号CSI-RS,追踪参考信号TRS。
  27. 一种参考信号的配置装置,应用于第一通信节点,包括:
    第一配置模块,配置为配置第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数;
    第一生成模块,配置为根据所述第一类参数集合生成第一类信令,其中,所述第一类信令携带所述第一类参数集合;
    第一发送模块,配置为向第二通信节点发送所述第一类信令。
  28. 一种参考信号的配置方法,应用第二通信节点,包括:
    接收第一通信节点发送的第一类信令;
    根据所述第一类信令,确定配置的第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数。
  29. 根据权利要求28所述的方法,其中,所述方法还包括:
    接收所述第一通信节点发送的第二类信令;
    根据所述第二类信令选择,激活或去激活所述第一类参数集合中的索 引元素或者第一类参数集合的子集,所选择或激活的K个索引元素或者所述第一类参数集合的子集构成第二类参数集合,K为大于或等于1的整数。
  30. 根据权利要求28所述的方法,其中,所述方法还包括:
    接收所述第一通信节点发送的第三类信令;
    根据所述第三类信令确定所述第一类参数集合中的索引元素,或第二类参数集合中的索引元素或第三类参数集合子集,与所述第二类参考信号映射并且关联。
  31. 根据权利要求28所述的方法,其中,所述方法还包括:
    接收所述第一通信节点发送的第四类信令;
    根据所述第四类信令,确定第二类参数集合中的索引元素,或者第二类参数集合中被激活或被选择的第一类参数集合的子集,或者第一类参数集合的子集,或者第一类参数集合的索引元素,用于所述第四类信令所关联的数据或者控制信道的解调和/或波束指示。
  32. 一种参考信号的配置装置,应用于第二通信节点,包括:
    第一接收模块,配置为接收第一通信节点发送的第一类信令;
    处理模块,配置为根据所述第一类信令,确定配置的第一类参考信号索引的第一类参数集合,其中,所述第一类参数集合内包括N个索引元素,N为大于或等于1的整数。
  33. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至26任一项所述的方法,或者执行权利要求28至31任一项所述的方法。
  34. 一种处理器,所述处理器配置为运行程序,其中,所述程序运行时执行权利要求1至26任一项所述的方法,或者执行权利要求28至31任一项所述的方法。
PCT/CN2018/096115 2017-08-11 2018-07-18 参考信号的配置方法及装置 WO2019029328A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP18844175.2A EP3667987B1 (en) 2017-08-11 2018-07-18 Method and device for configuring reference signal
EP23201656.8A EP4387151A2 (en) 2017-08-11 2018-07-18 Method and device for configuring reference signal
JP2020507556A JP2020529804A (ja) 2017-08-11 2018-07-18 参照信号の構成方法及び装置
FIEP18844175.2T FI3667987T3 (fi) 2017-08-11 2018-07-18 Menetelmä ja laite vertailusignaalin konfiguroimiseksi
KR1020207007247A KR102394302B1 (ko) 2017-08-11 2018-07-18 참조 신호를 구성하기 위한 방법 및 디바이스
ES18844175T ES2964209T3 (es) 2017-08-11 2018-07-18 Método y dispositivo para configurar la señal de referencia
AU2018314611A AU2018314611C1 (en) 2017-08-11 2018-07-18 Method and device for configuring reference signal
US16/785,646 US11349630B2 (en) 2017-08-11 2020-02-09 Method and device for configuring reference signal
US17/745,855 US11804943B2 (en) 2017-08-11 2022-05-16 Method and device for configuring reference signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687806.6 2017-08-11
CN201710687806.6A CN108111276B (zh) 2017-08-11 2017-08-11 参考信号的配置方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/785,646 Continuation US11349630B2 (en) 2017-08-11 2020-02-09 Method and device for configuring reference signal

Publications (1)

Publication Number Publication Date
WO2019029328A1 true WO2019029328A1 (zh) 2019-02-14

Family

ID=62207204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096115 WO2019029328A1 (zh) 2017-08-11 2018-07-18 参考信号的配置方法及装置

Country Status (9)

Country Link
US (2) US11349630B2 (zh)
EP (2) EP4387151A2 (zh)
JP (1) JP2020529804A (zh)
KR (1) KR102394302B1 (zh)
CN (2) CN113541909A (zh)
AU (1) AU2018314611C1 (zh)
ES (1) ES2964209T3 (zh)
FI (1) FI3667987T3 (zh)
WO (1) WO2019029328A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11432175B2 (en) * 2017-08-11 2022-08-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Measurement reporting control method and related product
US10708919B2 (en) * 2017-11-07 2020-07-07 Qualcomm Incorporated Techniques and apparatuses for beam management to overcome maximum permissible exposure conditions
CN110166192B (zh) * 2018-02-12 2020-08-04 维沃移动通信有限公司 小区处理方法、终端设备及网络设备
CN110581726B (zh) 2018-06-08 2022-07-19 中兴通讯股份有限公司 信号的发送、信道状态信息的上报方法、装置及存储介质
CN110662294B (zh) * 2018-06-29 2020-12-25 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113507746B (zh) * 2018-07-18 2024-06-11 中兴通讯股份有限公司 一种信息元素的传输方法、装置及***
CN110739988B (zh) * 2018-07-20 2021-04-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020019218A1 (zh) 2018-07-25 2020-01-30 北京小米移动软件有限公司 传输配置方法及装置
CN110535580B (zh) 2018-08-08 2022-08-23 中兴通讯股份有限公司 传输控制方法、探测参考信号传输方法、终端、基站及介质
EP3852428A4 (en) * 2018-09-13 2022-05-11 Beijing Xiaomi Mobile Software Co., Ltd. METHOD, EQUIPMENT AND DEVICE FOR REPORTING RADIATION MEASUREMENT REPORTS AND STORAGE MEDIUM
CN110971353B (zh) * 2018-09-28 2021-12-28 华为技术有限公司 通信方法及装置
WO2020062291A1 (zh) * 2018-09-30 2020-04-02 Oppo广东移动通信有限公司 一种配置方法、通信设备及计算机可读存储介质
WO2020073203A1 (zh) 2018-10-09 2020-04-16 Oppo广东移动通信有限公司 一种资源配置方法及装置、通信设备
CN110535598B (zh) * 2018-11-12 2022-06-24 中兴通讯股份有限公司 一种确定准共址参考信号的方法和装置
WO2020143064A1 (zh) * 2019-01-11 2020-07-16 富士通株式会社 数据传输方法及装置
EP3911044A4 (en) 2019-01-11 2022-01-12 Fujitsu Limited DATA TRANSMISSION METHOD AND DEVICE
US11658781B2 (en) * 2019-05-03 2023-05-23 Qualcomm Incorporated Techniques for updating reference signals
CN111082911A (zh) * 2019-09-30 2020-04-28 中兴通讯股份有限公司 一种参考信号的接收、发送方法及装置
CN111082912B (zh) * 2019-10-12 2023-07-14 中兴通讯股份有限公司 信息确定方法及装置、电子装置和存储介质
CN113133121B (zh) * 2020-01-13 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115065451A (zh) 2020-01-19 2022-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111901838A (zh) * 2020-02-14 2020-11-06 中兴通讯股份有限公司 一种信令接收、发送方法及设备
CN113853007B (zh) * 2020-06-28 2024-05-10 华为技术有限公司 通信方法及装置
CN117254889A (zh) * 2022-06-08 2023-12-19 大唐移动通信设备有限公司 波束信息的确定方法、装置及通信设备
CN117279073A (zh) * 2022-06-14 2023-12-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2024035198A1 (ko) * 2022-08-11 2024-02-15 엘지전자 주식회사 무선 통신 시스템에서 통신을 수행하는 방법 및 이를 위한 장치
WO2024082413A1 (en) * 2022-12-15 2024-04-25 Lenovo (Beijing) Limited Method and apparatus of supporting spatial element adaption

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945447A (zh) * 2013-01-18 2014-07-23 北京三星通信技术研究有限公司 一种进行下行信道特性参数测量的方法及用户设备
US20150139001A1 (en) * 2013-11-20 2015-05-21 Feng Xue Method and apparatus for beam identification in multi-antenna systems
CN106559164A (zh) * 2015-09-18 2017-04-05 上海贝尔股份有限公司 在mmw网络中执行用户信息反馈的方法和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102082465B1 (ko) 2012-04-19 2020-02-27 삼성전자주식회사 협력 멀티-포인트 통신 시스템들에 대한 기준 심볼 포트들의 준 공존 식별을 위한 방법 및 장치
US9521664B2 (en) 2012-11-02 2016-12-13 Qualcomm Incorporated EPDCCH resource and quasi-co-location management in LTE
CN104469945B (zh) * 2013-09-12 2019-01-25 索尼公司 Nct scc的激活控制装置和方法、管理方法、以及基站装置
CN105025519B (zh) * 2014-04-30 2019-06-14 电信科学技术研究院 干扰信号测量方法及相关设备
WO2016018079A1 (ko) 2014-08-01 2016-02-04 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
KR102371961B1 (ko) 2014-11-07 2022-03-08 한국전자통신연구원 레퍼런스 신호를 전송하는 방법 및 장치, 채널 상태 정보를 측정 및 보고하는 방법 및 장치, 그리고 이를 위한 설정 방법
US10236951B2 (en) * 2015-04-10 2019-03-19 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
CN106559879B (zh) 2015-09-25 2019-08-02 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置
SG11201900448UA (en) 2016-07-28 2019-02-27 Lg Electronics Inc Method for receiving reference signal in wireless communication system and device therefor
KR102355817B1 (ko) 2017-01-17 2022-01-26 삼성전자 주식회사 이동 통신 시스템에서의 반영속적 채널 상태 보고 방법 및 장치
US10148337B2 (en) 2017-02-01 2018-12-04 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5G next radio systems
MX2019010130A (es) * 2017-02-28 2019-10-15 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de comunicacion inalambrica, dispositivo terminal y dispositivo de red.
EP3606142A4 (en) * 2017-03-21 2020-09-16 LG Electronics Inc. -1- METHOD AND APPARATUS FOR MEASURING AND REPORTING CHANNEL STATUS INFORMATION IN A WIRELESS COMMUNICATION SYSTEM
US11368950B2 (en) * 2017-06-16 2022-06-21 Asustek Computer Inc. Method and apparatus for beam management in unlicensed spectrum in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945447A (zh) * 2013-01-18 2014-07-23 北京三星通信技术研究有限公司 一种进行下行信道特性参数测量的方法及用户设备
US20150139001A1 (en) * 2013-11-20 2015-05-21 Feng Xue Method and apparatus for beam identification in multi-antenna systems
CN106559164A (zh) * 2015-09-18 2017-04-05 上海贝尔股份有限公司 在mmw网络中执行用户信息反馈的方法和装置

Also Published As

Publication number Publication date
EP3667987A4 (en) 2020-08-12
US20220278815A1 (en) 2022-09-01
US11349630B2 (en) 2022-05-31
ES2964209T3 (es) 2024-04-04
US20200252192A1 (en) 2020-08-06
US11804943B2 (en) 2023-10-31
EP3667987B1 (en) 2023-11-15
AU2018314611A1 (en) 2020-03-26
JP2020529804A (ja) 2020-10-08
KR20200047577A (ko) 2020-05-07
FI3667987T3 (fi) 2023-12-19
CN108111276A (zh) 2018-06-01
AU2018314611C1 (en) 2022-03-10
KR102394302B1 (ko) 2022-05-03
CN108111276B (zh) 2021-07-23
EP3667987A1 (en) 2020-06-17
AU2018314611B2 (en) 2021-10-07
CN113541909A (zh) 2021-10-22
EP4387151A2 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
WO2019029328A1 (zh) 参考信号的配置方法及装置
US11962535B2 (en) Method and apparatus for configuring reference signal channel characteristics, and communication device
CN109802787B (zh) 传输配置指示tci的传输方法、网络侧设备和终端设备
AU2018361151B2 (en) System and method for indicating wireless channel status
WO2019170089A1 (zh) 信息传输的方法、装置和通信节点
US11991682B2 (en) Method and apparatus for fast beam management
WO2020035069A1 (zh) 一种上行传输指示的方法、终端、基站及计算机存储介质
WO2019062399A1 (zh) 一种信息传输方法及装置
WO2020155179A1 (zh) 传输信号的方法、终端设备和网络设备
WO2019047940A1 (zh) 参考信号配置、信息的发送、信息的接收方法及装置
US11102783B2 (en) System and method for supporting beamformed sounding reference signals
WO2018137397A1 (zh) 一种配置信息的方法、装置及***
CN116235416A (zh) 用于波束测量和报告的方法和装置
RU2735309C1 (ru) Апериодическая информация о состоянии канала (csi) и организация пула ресурсов csi-опорного сигнала (rs)
CN115211048A (zh) 用于在无线通信***中发送和接收信道状态信息的方法和装置
WO2021203445A1 (zh) 一种通信方法、装置及***
WO2018196707A1 (zh) 发送和接收参考信号的方法、网络设备和终端设备
WO2018059571A1 (zh) 表征准共位置参数配置的方法和装置、发射及接收设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207007247

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018844175

Country of ref document: EP

Effective date: 20200311

ENP Entry into the national phase

Ref document number: 2018314611

Country of ref document: AU

Date of ref document: 20180718

Kind code of ref document: A