WO2019029085A1 - 激光投影机 - Google Patents

激光投影机 Download PDF

Info

Publication number
WO2019029085A1
WO2019029085A1 PCT/CN2017/116660 CN2017116660W WO2019029085A1 WO 2019029085 A1 WO2019029085 A1 WO 2019029085A1 CN 2017116660 W CN2017116660 W CN 2017116660W WO 2019029085 A1 WO2019029085 A1 WO 2019029085A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
region
dichroic mirror
mirror assembly
fluorescent
Prior art date
Application number
PCT/CN2017/116660
Other languages
English (en)
French (fr)
Inventor
张勇
钟强
邢哲
李巍
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2019029085A1 publication Critical patent/WO2019029085A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources

Definitions

  • the present application relates to the field of projection, and in particular to a laser projector.
  • a laser projector is a projector that uses a laser beam to transmit a projected image, and mainly includes a light source module and a light machine module.
  • the main components generally include a laser, a dichroic mirror, and a fluorescent wheel.
  • the laser is used to provide light in certain colors (usually one color or two colors), while the dichroic mirror is capable of transmitting laser light from the laser and is capable of reflecting the excitation light emitted by the fluorescent wheel.
  • the structure of the fluorescent wheel can be as shown in FIG. 1A, which can include a C1 region for exciting yellow light, a C2 region for exciting green light, and a light transmitting region, and the light emitted by the laser
  • the excited light can form three primary colors through the color filter of the color filter in the optical module, and provide illumination to the optical module as a projection light source.
  • the fluorescent wheel On the fluorescent wheel, a very small spot is formed on the fluorescent wheel.
  • the reflective fluorescent wheel when the C1 region and the C2 region are irradiated with laser light, the excited color light (yellow light or green light) is reflected by the fluorescent wheel, and then, as shown in FIG. 1B, it is a laser projection.
  • the light path of the machine, the light emitted by the laser passes through the dichroic mirror, and is focused by the lens and then irradiated onto the fluorescent wheel.
  • the fluorescent wheel can be rotated to change the position of the light emitted by the laser to the fluorescent wheel, thereby making the light source mode
  • the group inputs different colors of light to the optomechanical module.
  • the light emitted by the laser illuminates the light transmitting area on the fluorescent wheel, the light emitted by the laser is sequentially input through the reflection of the mirror 1, the mirror 2 and the mirror 3.
  • the optomechanical module when the light emitted by the laser illuminates the C1 region on the fluorescent wheel, a yellow excitation light is excited, and the yellow excitation light is irradiated onto the dichroic mirror and reflected by the dichroic mirror And input the light machine module.
  • the manner in which the green excitation light is generated can be referred to the manner in which the yellow excitation light is generated.
  • the fluorescent wheel can rotate at a high speed, and continuously input multiple color lights to the light machine module.
  • a laser projector comprising a laser, a first dichroic mirror assembly and a fluorescent wheel;
  • the laser is used to supply laser light to the fluorescent wheel
  • the first dichroic mirror assembly is configured to change an optical path of the laser by rotating to cause the laser to emit
  • the laser light is irradiated along different light paths at a position on the fluorescent wheel that is different from the axial center of the fluorescent wheel.
  • a laser projector comprising a laser, a dichroic mirror assembly, a reflective fluorescent wheel and a first mirror, wherein:
  • the laser is configured to provide a laser
  • the dichroic mirror assembly includes a first dichroic region, a second dichroic region, and a rotating shaft, the dichroic mirror assembly is disposed in a light emitting direction of the laser, and an axial direction of the rotating shaft
  • the light exiting direction of the laser is at a predetermined angle such that when the dichroic mirror assembly is rotated about the rotating shaft, the light emitted by the laser is respectively irradiated in the first dichroic region and the second a dichroic region, wherein the first dichroic region is for reflecting the laser light and transmitting the first color light, and the second dichroic region is for transmitting the laser light and reflecting the second color light;
  • the reflective fluorescent wheel includes a first fluorescent region and a second fluorescent region, the fluorescent wheel being disposed in a direction away from the laser of the dichroic mirror assembly, wherein the first fluorescent region is for receiving The laser light reflected by the first mirror to generate a first color light and to reflect the first color light to the first mirror; the second fluorescent region is configured to receive the second dichroic The laser light transmitted through the color region to generate a second color light and to reflect the second color light to the second dichroic region;
  • the first mirror is disposed in a direction of propagation of the laser light reflected by the first dichroic region, and reflects the laser light reflected by the first dichroic region to the first fluorescent region;
  • the first mirror is further configured to reflect a first color light emitted by the fluorescent wheel to the first dichroic region.
  • a laser projector comprising a laser, a first dichroic mirror assembly, a second dichroic mirror assembly, a transmissive fluorescent wheel, a first mirror, and a second mirror, wherein :
  • the laser is configured to provide a laser
  • the first dichroic mirror assembly includes a first transmissive area, a first reflective area, and a first rotating shaft, the first dichroic mirror assembly is disposed in a light exiting direction of the laser, and the first rotating shaft The axial direction is at a predetermined angle with the light exiting direction of the laser, such that when the first dichroic mirror assembly rotates around the first rotating shaft, the light emitted by the laser is respectively irradiated in the first transmission a region and the first reflective region, wherein the first transmissive region is for transmitting the laser light, and the first reflective region is for reflecting the laser light;
  • the transmissive fluorescent wheel includes a first fluorescent region and a second fluorescent region, the fluorescent wheel being disposed in a direction away from the laser of the first dichroic mirror assembly, wherein the first fluorescent region is used Receiving the laser light reflected by the first mirror to generate a first color light and transmitting the first color light to the second mirror; the second fluorescent region is for receiving the first Transmitting a laser beam transmitted through the region to generate a second color light and transmitting the second color light to the second dichroic mirror assembly;
  • the first mirror is disposed in a direction of propagation of the laser light reflected by the first reflective area, and reflects the laser light reflected by the first reflective area to the first fluorescent area;
  • the second mirror is configured to reflect the first color light emitted by the fluorescent wheel to the second dichroic mirror assembly
  • the second dichroic mirror assembly is disposed on a side of the fluorescent wheel away from the laser, the second two The color mirror assembly includes a second transmissive area, a second reflective area, and a second rotating shaft, wherein an axial direction of the second rotating shaft has a predetermined angle with a light emitting direction of the laser, and the second transmitting area is used for a transmission
  • the first color light reflected by the second mirror is used to reflect the second color light emitted by the fluorescent wheel.
  • 1A is a schematic structural view of a fluorescent wheel in the related art
  • 1B is a light path diagram of a laser projector in the related art
  • FIG. 2 is a schematic diagram of an implementation environment involved in some embodiments of the present application.
  • 3A is a schematic structural diagram of a laser projector according to some embodiments of the present application.
  • Figure 3B is a light path diagram of the laser projector shown in Figure 3A;
  • 3C is another optical path diagram of the laser projector shown in FIG. 3A;
  • 4A is a schematic structural diagram of another laser projector provided by some embodiments of the present application.
  • FIG. 4B is a schematic structural view of a fluorescent wheel in the laser projector shown in FIG. 4A;
  • FIG. 4C is a schematic structural view of a first dichroic mirror assembly in the laser projector shown in FIG. 4A;
  • FIG. 4D is a schematic structural view of another first dichroic mirror assembly in the laser projector shown in FIG. 4A;
  • 4E is an optical path diagram when the laser projector shown in FIG. 4A outputs the first color light
  • 4F is an optical path diagram of the laser projector shown in FIG. 4A when the second color light is output;
  • 4G is an optical path diagram when the laser projector shown in FIG. 4A outputs laser light emitted from a laser;
  • 4H is a schematic structural diagram of another laser projector provided by some embodiments of the present application.
  • FIG. 4I is an optical path diagram when the laser projector shown in FIG. 4H outputs the first color light
  • 4J is an optical path diagram when the laser projector shown in FIG. 4H outputs a second color light
  • 4K is a block diagram showing the structure of the laser projector shown in FIG. 4A;
  • 4L is a schematic view showing the irradiation trajectory of the laser light emitted by the laser on the fluorescent wheel when the fluorescent wheel of the laser projector shown in FIG. 4A rotates clockwise;
  • 4M is a schematic view showing the irradiation trajectory of the laser light emitted by the laser on the fluorescent wheel when the fluorescent wheel of the laser projector shown in FIG. 4A rotates counterclockwise;
  • 4N is a block diagram showing the structure of the laser projector shown in FIG. 4H.
  • the inventors have found that in the related art, when the fluorescent wheel changes the position of the light emitted by the laser to the fluorescent wheel by rotating, the trajectory of the light spot formed by the laser on the fluorescent wheel is closed. a circle, the distance between any two adjacent points on the circle is too close, the heat dissipation efficiency is poor, and the excitation light generation efficiency of the phosphor on the fluorescent wheel is negatively correlated with the temperature, which makes the excitation light of the fluorescent wheel less efficient. In turn, the light source module has low luminous efficiency.
  • FIG. 2 is a schematic diagram of an implementation environment involved in some embodiments of the present application, which may include a laser projector 10 and a projection screen 20.
  • the laser projector 10 can provide a light source to project a predetermined pattern onto the projection screen 20.
  • the projection screen 20 is used to carry a pattern projected by the laser projector 10.
  • the projection screen 20 can be made of various materials, such as polyvinyl chloride (PVC), metal, fiberglass, and glass beads, and some embodiments of the present application are not limited.
  • FIG. 3A is a schematic structural diagram of a laser projector according to some embodiments of the present application.
  • the laser projector 11 can include a laser 111, a first dichroic mirror assembly 112, and a fluorescent wheel 113.
  • the laser 111 is used to supply laser light to the fluorescent wheel 113.
  • the first dichroic mirror assembly 112 is configured to change the optical path of the laser by rotation, so that the laser light emitted by the laser 111 is irradiated along the different optical paths at a position on the fluorescent wheel 113 at a different distance from the axial center of the fluorescent wheel 113, that is, The first dichroic mirror assembly 112 changes the optical path of the laser so that the laser light emitted from the laser 111 falls on the position of the falling point on the fluorescent wheel 113 and the axis of the fluorescent wheel 113 when irradiated onto the fluorescent wheel 113 along the optical path. The distance between the hearts is different.
  • the first dichroic mirror assembly 112 may include regions having different optical characteristics (such as a transmission region capable of transmitting laser light emitted from the laser 111 and a reflection region capable of emitting laser light emitted from the laser 111, etc.), and the laser light emitted by the laser 111 is When irradiated onto regions having different optical characteristics, they may have different optical paths and be irradiated to different positions of the fluorescent wheel 113.
  • a galvanometer can also be used in place of the second dichroic mirror assembly, which at different deflection angles, the light passing through the galvanometer forms a different optical path. With a galvanometer, the yoke's axis of rotation can be perpendicular to the laser's exit direction.
  • an optical path diagram of the laser projector shown in some embodiments of the present application may be as shown in FIG. 3B, and the laser light emitted by the laser 111 is irradiated to the first dichroic mirror assembly 112.
  • the laser light When passing through the region (a region capable of transmitting laser light emitted from the laser and reflecting the light excited by the fluorescent wheel), the laser light is transmitted through the first dichroic mirror assembly 112 and then irradiated to the outer side W of the fluorescent wheel 113 (compared to the inner side N) A side away from the center of the fluorescent wheel 113) and exciting a color light that is directed toward the first dichroic mirror assembly 112 and reflected by the first dichroic mirror assembly 112 and exits into the laser projector
  • An optical component such as an optical component in a optomechanical module.
  • Another optical path diagram of the laser projector shown in some embodiments of the present application may be as shown in FIG.
  • the laser light emitted by the laser 111 is irradiated to the reflection area of the first dichroic mirror assembly 112 (which can reflect the laser light emitted by the laser and penetrate
  • the laser light is reflected by the first dichroic mirror assembly 112 toward the first mirror 116, and the laser light that is directed toward the first mirror 116 is reflected by the first mirror 116 toward the fluorescent wheel.
  • the inner side N of 113 (the side closer to the center of the fluorescent wheel 113 than the outer side W) excites another color light that is directed toward the first mirror 116 and reflected by the first mirror 116 toward the first two-direction
  • the laser projection shown in some embodiments of the present application The optical path of the camera is continuously switched between the two of FIG. 3B and FIG.
  • the spot of the laser light emitted from the laser 111 on the fluorescent wheel 113 is also continuously switched between the outer side W and the inner side N of the fluorescent wheel 113, so that The heat dissipation efficiency of the fluorescent wheel 113 is high.
  • the laser projector changes the optical path of the laser light emitted by the laser by rotating the dichroic mirror assembly, so that the laser spot formed on the fluorescent wheel by different optical paths is located at different positions of the fluorescent wheel. Position, spot at different positions can be formed when the fluorescent wheel rotates, such as two concentric circles or unclosed circles that alternately appear.
  • a closed circle is formed on the fluorescent wheel, and the discontinuous trajectory of the laser spot on the fluorescent wheel improves the heat dissipation efficiency of the fluorescent wheel, thereby improving the excitation light generation efficiency of the fluorescent wheel.
  • the problem of low efficiency of excitation light of the fluorescent wheel due to low heat dissipation efficiency of the fluorescent wheel in the related art is solved, and the luminous efficiency of the laser projector is low. The effect of improving the luminous efficiency of the laser projector is achieved.
  • FIG. 4A is a schematic structural diagram of another laser projector provided by some embodiments of the present application.
  • the laser projector is added to the laser projector shown in FIG. Some components, such that the laser projectors provided by some embodiments of the present application have better performance.
  • the laser projector 11 can also include a shaping component 114 for shaping and converging the laser light emitted by the laser 111, and the like.
  • the laser projector 11 may further include a plurality of optical path adjusting components 115a and 115b, which may be disposed in any two components of the laser projector (such as a dichroic mirror assembly, fluorescent Between the wheel, mirror, laser, etc., is used to enable light to travel according to a preset optical path.
  • a dichroic mirror assembly such as a dichroic mirror assembly, fluorescent Between the wheel, mirror, laser, etc., is used to enable light to travel according to a preset optical path.
  • the laser projector 11 may further include a plurality of mirrors.
  • the mirrors may include a first mirror 116a, a second mirror 116b, and a third mirror 116c. Used to adjust the direction of illumination of the light.
  • the laser projector 11 can further include a focus collimating assembly 117 for focusing the light directed toward the fluorescent wheel 113 and forming a spot on the fluorescent wheel 113;
  • the light emitted from the fluorescent wheel 113 (which refers to light emitted from the fluorescent wheel toward the direction away from the fluorescent wheel) is collimated to make the light into parallel light.
  • Different focus collimating assemblies are shown in the drawings at 117a, 117b, 117c and 117d.
  • the laser 111 may be a blue laser capable of emitting a blue laser, since the frequency of the blue light is the highest among the three primary colors, and the excitation efficiency of the low frequency light is excited by the high frequency light. high.
  • the laser 111 can also be a two-color laser capable of emitting two colors of laser light, which is not limited in some embodiments of the present application.
  • the first dichroic mirror assembly 112 of FIG. 4A may be in the form of a wheel.
  • the wheeled dichroic mirror assembly 112 may be driven by a power assembly 112a, which may be a motor, wherein the dichroic mirror assembly 112
  • the shaft can be included.
  • the power assembly 112a rotates, the motor drives the rotation of the rotating shaft of the dichroic mirror assembly 112, and the rotating shaft can drive the dichroic mirror assembly 112 to rotate in the axial direction of the rotating shaft, thereby changing the laser irradiation emitted by the laser 111.
  • the fluorescent wheel 113 can be driven by a power assembly 113a, which can be a motor.
  • the fluorescent wheel 113 can include a rotating shaft. When the power assembly 113a rotates, the fluorescent wheel 113 can be rotated by the rotating shaft of the fluorescent wheel 113 to change the laser 111.
  • the laser light is irradiated on the area on the fluorescent
  • the first dichroic mirror assembly 112 is in the shape of a wheel.
  • the first dichroic mirror assembly 112 can include at least one transmissive region and at least one reflection arranged along a central circumference of the first dichroic mirror assembly 112. region.
  • the laser light emitted by the laser 111 in the laser projector shown in FIG. 2 is irradiated to different regions of the first dichroic mirror assembly 112.
  • each fluorescent region in at least one fluorescent region is a fluorescent region
  • each fluorescent region in at least one fluorescent region ff include a first fluorescent region ff1 and a second fluorescent region ff2 concentrically disposed with respect to the axial center of the fluorescent wheel 113, and the distance between the first fluorescent region ff1 and the axis of the fluorescent wheel 113 is smaller than the second fluorescent region ff2
  • the distance from the axis of the fluorescent wheel 113 that is, the first fluorescent region ff1 is closer to the axis of the fluorescent wheel 113 than the second fluorescent region ff2, wherein the first fluorescent region ff1 is used to excite the first colored light
  • the first color light may be green light
  • the second fluorescent area ff2 is used to excite the second color light
  • the second color light may be yellow light.
  • the color filter After the yellow light is output to the color filter of the laser projector, the color filter is converted into red. Light. The red light is not excited directly using the fluorescent region because the excitation efficiency of the red phosphor is too low.
  • the first fluorescent region ff1 and the second fluorescent region ff2 shown in FIG. 4B are arc-shaped strips, and the size thereof is only an example, and the present application is not limited thereto.
  • the fluorescent wheel 113 further includes at least one transmission region ft, each of which is a region that is capable of transmitting laser light emitted by the laser 111. In other embodiments, the fluorescent wheel 113 may not include a transmission region.
  • the fluorescent wheel (as shown in FIG. 1A) has two regions C1 and C2 which are arranged with different phosphors.
  • the laser When rotating, the laser generates a continuous trajectory on the fluorescent wheel, and the laser is on the fluorescent wheel.
  • the excitation light generated by the trajectory at the junction of two different fluorescent regions may include excitation light generated by two fluorescent regions, which may be referred to as spoke light, which affects the quality of the light source provided by the laser projector.
  • the fluorescent wheel provided by some embodiments of the present application sets different fluorescent regions at different positions from the axis of the fluorescent wheel, and switches the position of the laser on the fluorescent wheel through the dichroic mirror, so that the laser is irradiated.
  • the different fluorescent areas of the fluorescent wheel do not produce spoke light, which improves the quality of the light source provided by the laser projector.
  • the fluorescent wheel 113 can be a reflective fluorescent wheel or a transmissive fluorescent wheel.
  • the reflective fluorescent wheel is a fluorescent wheel in which the excitation light is reflected by the fluorescent wheel after the laser is irradiated in the fluorescent region (the direction of the laser and the excitation light is opposite), and the transmissive fluorescent wheel is irradiated with the fluorescent light after the fluorescent region is irradiated with the fluorescent light.
  • the fluorescent wheel emitted by the wheel (the direction of the laser and the excitation light are the same).
  • the at least one transmission region ft includes two centrally symmetric transmission regions ft1 and ft2, and the at least one fluorescent region ff includes two fluorescent regions ffa and ffb that are centrally symmetric.
  • the two centrally symmetric fluorescent regions respectively comprise a first fluorescent region and a second fluorescent region.
  • the fluorescent wheel is a reflective fluorescent wheel
  • the structure of the first dichroic mirror assembly corresponding to the reflective fluorescent wheel and the operating principle of the laser projector are described below with reference to the accompanying drawings.
  • the first dichroic mirror assembly 112 includes along At least one set of transmissive regions and reflective regions disposed circumferentially of the center of the first dichroic mirror assembly, at least a portion of the transmissive regions being capable of reflecting a second color of light.
  • the transmission area may include two parts, a first partial area t1 and a second partial area t2, wherein The first partial region t1 is capable of transmitting laser light emitted by the laser and reflecting the second color light, and the second partial region t2 is not capable of reflecting the second color light, and the second partial region t2 may be a transparent region capable of transmitting any color light.
  • the reflective region d may include a transparent substrate and a film layer disposed on either side of the transparent substrate for realizing the function of the dichroic mirror. The reflective region d may reflect the laser light emitted by the laser and may also pass through the first color. Light.
  • the size of the first partial region, the second partial region, and the reflective region are not limited to the ratios in the drawings.
  • circumferential arrangement along the center of the first dichroic mirror assembly means that, in the first dichroic mirror assembly, on the surface of the first dichroic mirror assembly 112. Arranged on the circumference.
  • the central circumferential arrangement in the following is similar to the meaning here, and will not be described later.
  • the first partial region t1 can transmit light having a wavelength of 420 nanometers (nm) to 470 nm and reflect a wavelength of 500 nm to 670 nm.
  • both yellow and green light can be reflected by the first partial region t1, which can reduce the heat accumulation inside the laser projector, but can also only reflect the yellow light by the first partial region t1, in the second light
  • the first partial region t1 can reflect only the red light, so that the first partial region t1 can function as a color filter, which is not limited in some embodiments of the present application
  • the reflective region d can reflect light having a wavelength of 420 nm to 470 nm and pass through When the wavelength is from 500 nm to 670 nm, the actual yellow and green light can pass through the reflection area d, which can reduce the heat accumulation inside the laser projector, and can only make the green light transmit through the reflection area d.
  • the reflective area d can function as a color filter, and some embodiments of the present application are not limited.
  • the first dichroic mirror assembly 112 includes two sets of transmissive regions and reflective regions, wherein the two sets of transmissive regions and reflective regions are denoted by g1 and g2, respectively, but the first dichroic color
  • the mirror assembly 112 may also include more sets of transmissive and reflective areas or only a set of transmissive and reflective areas, and is not limited herein.
  • the first dichroic mirror assembly 112 includes four sets of transmissive regions and reflective regions, respectively represented by g1, g2, g3, and g4, where g1, g2, g3, and g4, respectively.
  • the two groups of regions that are not adjacent to each other may be symmetric with respect to the center of the first dichroic mirror assembly 112.
  • FIG. 4C For the meanings of other markers in FIG. 4C, reference may be made to FIG. 4C, and details are not described herein again.
  • the laser light emitted by the laser is sequentially irradiated in each of the groups in accordance with the rotational direction of the first dichroic mirror assembly 112, and the laser is sequentially switched.
  • the light path allows the laser to illuminate the different positions of the fluorescent wheel.
  • the rotational speed of the first dichroic mirror assembly 112 is constant, if there are more sets of regions, the faster the first dichroic mirror assembly 112 switches the optical path of the laser, the continuous trajectory of the laser on the fluorescent wheel. The shorter it will be, the higher the heat dissipation efficiency of the fluorescent wheel will be.
  • the optical path diagram when the laser projector 11 outputs the first color light may refer to FIG. 4E, wherein the laser light emitted by the laser 111 is irradiated to the reflection area of the first dichroic mirror assembly 112 (as shown in g1 of FIG. 4C).
  • the laser light can be irradiated onto the focusing collimating unit 117a via the adjustment of the optical path adjusting component 115a and the first reflecting mirror 116a, and the laser light can be irradiated by the focusing collimating component 117a.
  • the first fluorescent region of the fluorescent wheel 113 (such as ff1 in the fluorescent region ffa or ffb in FIG.
  • the combination of optical devices that generate red, green, and blue light in a laser projector may be referred to as a light source module.
  • the light source module includes at least a laser and a fluorescent wheel.
  • the portion of the laser projector that uses three colors of light to emit an image may be referred to as
  • the optomechanical module includes at least an imaging component and a projection lens, wherein the imaging component may be a Digital Micromirror Device (DMD) component or a Liquid Crystal on Silicon (LCOS) component.
  • the laser projector may further include a color filter wheel disposed between the imaging assembly and the fluorescent wheel, and the color filter wheel may be included in the light machine module or may be included in the light source module.
  • the final exiting light shown in the figures is directed to the optomechanical module.
  • FIG. 4E reference may be made to FIG. 4A, and details are not described herein again.
  • the optical path diagram when the laser projector 11 outputs the second color light may refer to FIG. 4F, in which the laser light emitted from the laser 111 is irradiated to the first partial region (such as t1 in g1 or g1 in g1 in FIG. 4C).
  • the laser light can be irradiated onto the focusing collimation assembly 117c, and the laser light is focused by the focusing collimating assembly 117c to be irradiated to the second fluorescent region of the fluorescent wheel 113 (such as ff2 in the fluorescent region ffa or ffb in FIG. 4D) and excited.
  • the second color light is reflected by the fluorescent wheel and is adjusted by the focusing collimating unit 117c and directed to the first partial area.
  • the adjusted light is reflected by the first partial area and is emitted to other components in the laser projector 11. .
  • FIG. 4F For the meanings of other marks in FIG. 4F, reference may be made to FIG. 4A, and details are not described herein again.
  • the optical path diagram of the laser projector 11 outputting the laser light emitted by the laser 111 can be referred to FIG. 4G, wherein the laser light emitted from the laser 111 is irradiated to the second partial region (as in t2 or g2 in g1 of FIG. 4C).
  • the laser can sequentially pass through the first transmission region of the fluorescent wheel 113, the third mirror 116c, the second mirror 116b, the second transmission region, the first mirror 116a, and the second portion region, and
  • the first transmission area of the fluorescent wheel 113 is symmetrically disposed with the second transmission area of the fluorescent wheel 113.
  • the first transmission area is ft1 as shown in FIG. 4B, and the second transmission is performed.
  • the area is ft2) as shown in Fig. 4B.
  • the light passes through the focusing punctual component when it is emitted toward or from the fluorescent wheel 113, and the light can be adjusted between the two components of the laser projector through the optical path adjusting component, such as being set at the first 115a between the dichroic mirror assembly 112 and the first mirror 116a, and 115b disposed between the second mirror 116b and the third mirror 116c will not be described again.
  • the first preset rotational speed of the fluorescent wheel 113 may be the same as the second preset rotational speed of the first dichroic mirror assembly.
  • the two transmission regions have the same curvature and are symmetric with respect to the center of the dichroic mirror assembly, and in the fluorescent wheel 113 illustrated in FIG. 4B.
  • the first preset rotational speed of the fluorescent wheel 113 may be the same as the second preset rotational speed of the first dichroic mirror assembly.
  • the output laser light is formed by the transmission region of the first dichroic mirror assembly, that is, the laser and the output light path of the second color light are the same.
  • the laser light can also be output through the reflective area of the first dichroic mirror assembly.
  • the structure of the first dichroic mirror assembly at this time and the working principle of the laser projector are slightly different from those detailed in the above embodiment.
  • the first dichroic mirror assembly may include at least one of the transmissive regions and the reflective regions arranged along a central circumferential direction of the first dichroic mirror assembly, the transmissive regions being further reflective The second color light, the opposite At least a portion of the shot area is permeable to the first color light.
  • the reflective area of the first dichroic mirror assembly may include a third partial area and a fourth partial area, the third partial area being transparent to the first color light, the fourth partial area being incapable of transmitting The first color light.
  • the optical path of the first color light is such that when the laser light emitted by the laser is irradiated to the third partial region and reflected, the laser light is reflected by the first mirror to the first fluorescent light of the fluorescent wheel The region and the first color light are excited, and the first color light is emitted to other components in the laser projector after passing through the third partial region.
  • the specific optical path can be seen in FIG. 4E, and details are not described herein again.
  • the optical path for outputting the second color light is such that when the laser light emitted by the laser is irradiated to the transmission region of the first dichroic mirror assembly and transmitted, the laser light can be irradiated to the second fluorescent region of the fluorescent wheel
  • the second color light is excited, and the second color light is reflected by the transmission area of the first dichroic mirror assembly and then emitted to other components in the laser projector.
  • the specific optical path can be seen in FIG. 4F, and details are not described herein again.
  • the optical path of the output laser is such that when the laser light emitted by the laser is irradiated to the fourth partial region and reflected, the laser light can sequentially pass through the second transmission region, the first transmission region and the
  • the fourth partial region is described and emitted to other components in the laser projector 11, and the first transmission region of the fluorescent wheel is symmetrically disposed with the second transmission region of the fluorescent wheel.
  • the fluorescent wheel 113 is a transmissive fluorescent wheel
  • the structure of the first dichroic mirror assembly corresponding to the transmissive fluorescent wheel and the working principle of the laser projector will be described below with reference to the accompanying drawings.
  • the laser projector 11 further includes a second dichroic mirror assembly 118 ,
  • the second dichroic mirror assembly 118 includes at least one set of transmissive regions and reflective regions arranged along a central circumference of the second dichroic mirror assembly, the transmissive region of the second dichroic mirror assembly being capable of Transmitting the first color light;
  • the reflective area of the second dichroic mirror assembly is capable of reflecting laser light emitted by the laser, and at least a portion of the reflective area of the second dichroic mirror assembly is capable of reflecting the The second color light.
  • the reflective area of the second dichroic mirror assembly includes a fifth partial area and a sixth partial area, the fifth partial area is capable of reflecting the second color light, and the sixth partial area is incapable of reflecting the second Shade.
  • the laser projector further includes a second mirror 116b disposed in a direction of propagation of the first color light for reflecting the first color light onto the second dichroic mirror assembly;
  • the first dichroic mirror assembly and the second dichroic mirror assembly are respectively disposed on both sides of the fluorescent wheel.
  • the first dichroic mirror assembly 112 rotates according to the fifth preset rotation speed
  • the second dichroic mirror assembly 118 rotates according to the sixth preset rotation speed
  • the fluorescent wheel rotates according to the seventh preset rotation speed.
  • the optical path diagram of the laser projector 11 shown in FIG. 4H for outputting the first color light may refer to FIG. 4I, wherein when the laser light emitted by the laser 111 is irradiated to the reflective area of the first dichroic mirror assembly 112 and reflected, the laser light is The first mirror 116a reflects and irradiates the first fluorescent region of the fluorescent wheel 113 and excites the first color light. After passing through the fluorescent wheel 113, the first color light is reflected by the second mirror 116b and is directed to the first mirror 116a. The transmission area of the dichroic mirror assembly 118 is transmitted through the transmission area of the second dichroic mirror assembly 118 to the other components of the laser projector 11.
  • the light passes through the focus punctual component when it is emitted toward or from the fluorescent wheel 113, and the light can be adjusted between the two components of the laser projector through the optical path adjusting component.
  • the meaning of other marks in Fig. 4I can be referred to Fig. 4A.
  • FIG. 4J The optical path diagram of the laser projector 11 shown in FIG. 4H when outputting the second color light can be referred to FIG. 4J, wherein the laser light emitted from the laser 111 is irradiated to the transmission area of the first dichroic mirror assembly 112 and transmitted through the laser. Going to the second fluorescent region of the fluorescent wheel 113 and exciting the second color light, after passing through the fluorescent wheel 113, the second color light can be directed to the fifth partial region, and the second color light is reflected by the fifth portion, and then emitted to the laser projection. Other components in the machine 11.
  • the light passes through the focus punctual component when it is emitted toward or from the fluorescent wheel 113, and the light can be adjusted between the two components of the laser projector through the optical path adjusting component, and details are not described herein. .
  • the meaning of other marks in Fig. 4J can be referred to Fig. 4A.
  • the optical path diagram of the laser projector 11 shown in FIG. 4H when outputting laser light can be referred to FIG. 4J, wherein when the laser light emitted from the laser 111 is irradiated to the transmission region of the first dichroic mirror assembly 112 and transmitted, the laser can be irradiated to the fluorescent light. After passing through the transmission area, the transmission area of the wheel 113 is irradiated to the sixth partial area of the second dichroic mirror assembly 118, and after being reflected by the sixth partial area, the laser light is emitted to the laser projector. 11 other parts.
  • the transmission area of the second dichroic mirror assembly can transmit not only the laser but also the first color light. It may be a transparent region that can transmit any color light, or a region that can only transmit laser light and first color light emitted by the laser.
  • each of the transmission regions in the fluorescent wheel 113 is similar to the pattern formed by each of the transmission regions in the first dichroic mirror assembly 112 (at this time, each of the transmission regions in the fluorescent wheel 113 is The formed pattern is similar to the pattern formed by each of the sixth partial regions of the second dichroic mirror assembly 118.
  • the sixth preset rotation speed of the second dichroic mirror assembly is the same.
  • the following first dichroic mirror assembly and second dichroic mirror assembly may be used to illuminate the laser through different optical paths on the fluorescent wheel.
  • the spot is located at different locations on the fluorescent wheel.
  • the laser light can be formed by the reflective area of the first dichroic mirror assembly.
  • the first dichroic mirror assembly includes at least one of the transmissive regions and the reflective regions arranged along a central circumferential direction of the first dichroic mirror assembly;
  • the laser projector further includes a second a dichroic mirror assembly, the second dichroic mirror assembly is in the shape of a wheel, and the second dichroic mirror assembly includes at least one group arranged along a central circumference of the second dichroic mirror assembly
  • the transmission region of the second dichroic mirror assembly is transparent to the laser light emitted by the laser, and at least a portion of the transmission region of the second dichroic mirror assembly is transparent Passing through the first color light; the reflective area of the second dichroic mirror assembly is capable of reflecting the second color light.
  • the transmission area of the second dichroic mirror assembly includes a seventh partial area and an eighth partial area, wherein the seventh partial area is transparent to the first color light, and the eighth partial area is incapable of Passing through the first color light.
  • the laser projector further includes a second mirror disposed in a direction of propagation of the first color light for reflecting the first color light onto the second dichroic mirror assembly; A dichroic mirror assembly and the second dichroic mirror assembly are respectively disposed on both sides of the fluorescent wheel.
  • the first dichroic mirror assembly rotates according to an eighth preset rotation speed
  • the second dichroic mirror assembly rotates according to a ninth preset rotation speed
  • the fluorescent wheel rotates according to a tenth preset rotation speed:
  • An optical path for outputting the first color light wherein the laser light emitted by the laser is irradiated to the first dichroic mirror assembly
  • the laser light is reflected by the first mirror to the first fluorescent area of the fluorescent wheel and excites the first color light, and the first color light is transmitted through
  • the fluorescent wheel is reflected, it is reflected by the second mirror toward the seventh partial region, and after passing through the seventh partial region, is emitted to other components in the laser projector 11.
  • the optical path for outputting the second color light is such that when the laser light emitted by the laser is irradiated to the transmission region of the first dichroic mirror and transmitted, the laser light can be irradiated to the second fluorescent region of the fluorescent wheel and excited Exchanging the second color light, after the second color light passes through the fluorescent wheel, can be directed to a reflective area of the second dichroic mirror, the second color light being used by the second dichroic mirror After the reflective area is reflected, it is emitted to other components in the laser projector 11;
  • the optical path of the output laser is such that when the laser light emitted by the laser is irradiated to the reflective area of the first dichroic mirror assembly and reflected, the laser light is reflected by the first mirror to the fluorescent wheel a transmissive region, and after transmitting through the transmissive region of the fluorescent wheel, is reflected by the second mirror toward the eighth partial region, and the laser light is emitted after passing through the seventh partial region To other components in the laser projector 11.
  • each of the optical path diagrams is exemplary.
  • the laser projector shown in FIG. 4A or FIG. 4H can also output various color lights through other optical path structures. Some embodiments of the present application do not. Make restrictions.
  • the transmissive region of the first dichroic mirror assembly 112 includes a diffuser.
  • the diffuser can be used to diffuse and homogenize the blue light beam.
  • the transmissive region of the first dichroic mirror assembly 112 can include a region provided with a diffuser and a region not provided with a diffuser, in some embodiments, the first dichroic mirror assembly 112 illustrated in FIG. 4B.
  • a diffusion sheet may be disposed in the transmission region t in the g1 region, and a diffusion sheet may not be disposed in the transmission region t in the g2 region.
  • the laser projector 11 can include a control module 119, a first dichroic mirror assembly 112, and a fluorescent wheel 113.
  • the control module 119 is for controlling the first dichroic mirror assembly 112 and the fluorescent wheel 113.
  • the control module 119 can change the direction of rotation of the fluorescent wheel each time the fluorescent wheel 113 is restarted after stopping the rotation to fully utilize the respective fluorescent regions of the fluorescent wheel to improve the life of the fluorescent wheel.
  • FIG. 4L it is a schematic diagram of the illumination trajectory of the laser light emitted by the laser 111 on the fluorescent wheel 113 when the fluorescent wheel 113 rotates clockwise in the laser projector shown in FIG.
  • the shaded portion is the illumination trajectory of the laser.
  • the blank area is the area where the laser is not irradiated. It can be seen that since the optical path of the laser is constantly changing, the position of the laser irradiation on the fluorescent wheel is also constantly changing. Therefore, both the first fluorescent area ff1 and the second fluorescent area ff2 are present. The area that is not illuminated by the laser.
  • 4M which is a schematic diagram of the trajectory of the laser light emitted by the laser 111 on the fluorescent wheel 113 when the fluorescent wheel 113 rotates clockwise in the laser projector shown in FIG. 4A, wherein the shaded portion is the illumination trajectory of the laser.
  • the blank area is a region where the laser light is not irradiated, and the first fluorescent region ff1 and the second fluorescent region ff2 also have a region that is not irradiated with the laser light.
  • the phosphors of the first fluorescent region and the second fluorescent region may be disposed only in the portions of the first fluorescent region and the second fluorescent region that can be irradiated with laser light to reduce the use of the phosphor and further It is advantageous for the fluorescent wheel to dissipate heat through the substrate, and the phosphor is disposed at the same position as the trajectory in FIG. 4L or FIG. 4M.
  • both the first fluorescent region ff1 and the second fluorescent region ff2 have an area that is not irradiated by the laser, and thus the rotation direction of the fluorescent wheel is changed when the fluorescent wheel stops rotating and then restarts. It is possible to make full use of the respective fluorescent regions of the fluorescent wheel to improve the life of the fluorescent wheel.
  • the laser projector 11 may include a control module 119, a first dichroic mirror assembly 112, and a second dichroic color. Mirror assembly 118 and fluorescent wheel 113.
  • the control module 119 is for controlling the first dichroic mirror assembly 112, the second dichroic mirror assembly 118, and the fluorescent wheel 113.
  • the control module 119 can change the direction of rotation of the fluorescent wheel each time the fluorescent wheel 113 is restarted after stopping the rotation to fully utilize the respective fluorescent regions of the fluorescent wheel to improve the life of the fluorescent wheel.
  • the laser projector changes the optical path of the laser light emitted by the laser by rotating the dichroic mirror assembly, so that the laser spot irradiated on the fluorescent wheel through different optical paths is located at different positions of the fluorescent wheel.
  • the spot at different positions can be formed when the fluorescent wheel rotates, such as two concentric circles or non-closed circles that alternately appear.
  • a closed circle is formed on the fluorescent wheel, and the discontinuous trajectory of the laser spot on the fluorescent wheel improves the heat dissipation efficiency of the fluorescent wheel, thereby improving the excitation light generation efficiency of the fluorescent wheel.
  • the problem of low efficiency of excitation light of the fluorescent wheel due to low heat dissipation efficiency of the fluorescent wheel in the related art is solved, and the luminous efficiency of the laser projector is low. The effect of improving the luminous efficiency of the laser projector is achieved.
  • the present application also provides a laser projector, as shown in FIG. 4E, comprising a laser 111, a dichroic mirror assembly 112, a reflective fluorescent wheel 113 and a first mirror 116a, wherein:
  • the laser 111 is configured to provide a laser;
  • the dichroic mirror assembly 112 includes a first dichroic region, a second dichroic region, and a rotating shaft, and the dichroic mirror assembly is disposed in a light exiting direction of the laser And the axial direction of the rotating shaft is at a predetermined angle with the light-emitting direction of the laser, so that when the dichroic mirror assembly rotates around the rotating shaft, the light emitted by the laser is respectively irradiated on the a first dichroic region and a second dichroic region, wherein the first dichroic region is for reflecting the laser light and transmitting the first color light, and the second dichroic region is for transmitting
  • the laser light reflects the second color light;
  • the reflective fluorescent wheel 113 includes a first fluorescent region and a second fluorescent region, and the fluorescent wheel is disposed in a direction away from the laser of the dichroic mirror assembly, wherein
  • the first fluorescent region is configured to receive the laser light reflected by the first mirror to generate
  • the second fluorescent region includes a phosphor setting region disposed symmetrically on the fluorescent wheel and a transmitting region symmetrically disposed at a center, wherein the phosphor setting region is configured to receive the laser and generate The second color light, the transmissive area is for transmitting the laser light, the transmissive area includes at least a first transmissive area and a second transmissive area, and the first transmissive area and the second transmissive area are centrally symmetric;
  • the laser projector further includes a mirror group disposed on a side of the fluorescent wheel away from the dichroic mirror assembly, the mirror group for receiving the first transmission area transmission a laser beam, and reflecting the laser light to transmit laser light transmitted through the first transmission region through the second transmission region and irradiating on the first mirror; the first mirror is further used for The laser light reflected by the mirror group is reflected to the second dichroic region.
  • the first fluorescent region and the second fluorescent region are opposite to an axis of the fluorescent wheel
  • the heart is concentrically disposed, and a distance between the first fluorescent region and an axis of the fluorescent wheel is smaller than a distance between the second fluorescent region and an axis of the fluorescent wheel.
  • the mirror set includes a second mirror 116b and a third mirror 116c disposed separately, the second mirror 116b being parallel to the axial direction of the dichroic mirror assembly 112,
  • the angle between the third mirror 116c and the axial direction of the dichroic mirror assembly 112 is 90 degrees.
  • the second mirror 116b and the first mirror 116a are respectively disposed on both sides of the fluorescent wheel 113, and the second mirror 116b and the first mirror 116a are disposed perpendicular to each other, and the third mirror is opposite to the third mirror.
  • the direction in which the 116c and the first mirror 116a are disposed is parallel to each other.
  • the reflecting surface of the first mirror is disposed opposite to the reflecting surface of the second mirror, and the reflecting surface of the third mirror is disposed opposite to the reflecting surface of the first mirror.
  • the axial direction of the fluorescent wheel 113 is parallel to the light exiting direction of the laser 111.
  • the angle between the axial direction of the dichroic mirror assembly 112 and the direction of light exiting the laser 111 is 45 degrees.
  • the angle between the first mirror 116a and the axial direction of the dichroic mirror assembly 112 is 90 degrees.
  • the light source module changes the optical path of the laser light emitted by the laser by rotating the dichroic mirror assembly, so that the spot of the laser irradiated on the fluorescent wheel through different optical paths is located at different positions of the fluorescent wheel. Spots at different positions can be formed when the fluorescent wheel rotates, such as two concentric circles or unclosed circles that alternately appear.
  • a closed circle is formed on the fluorescent wheel, and the discontinuous trajectory of the laser spot on the fluorescent wheel improves the heat dissipation efficiency of the fluorescent wheel, thereby improving the excitation light generation efficiency of the fluorescent wheel.
  • the problem that the excitation light generation efficiency of the fluorescent wheel is low due to the low heat dissipation efficiency of the fluorescent wheel in the related art, and the luminous efficiency of the light source module is low is solved.
  • the effect of improving the luminous efficiency of the light source module is achieved.
  • the present application also provides a laser projector, as shown in FIG. 4H, including a laser 111, a first dichroic mirror assembly 112, a second dichroic mirror assembly 118, a transmissive fluorescent wheel 113, a first mirror 116a, and a second mirror 116b, wherein:
  • the laser 111 is configured to provide a laser; the first dichroic mirror assembly 112 includes a first transmissive region, a first reflective region, and a first rotational axis, and the first dichroic mirror assembly 112 is disposed at the laser In the light-emitting direction of the 111, and the axial direction of the first rotating shaft is at a predetermined angle with the light-emitting direction of the laser 111, so that when the first dichroic mirror assembly 112 rotates around the first rotating shaft
  • the light emitted by the laser 111 is respectively irradiated on the first transmissive area and the first reflective area, wherein the first transmissive area is for transmitting the laser light, and the first reflective area is for reflecting
  • the transmissive fluorescent wheel 113 includes a first fluorescent region and a second fluorescent region, and the fluorescent wheel 113 is disposed in a direction away from the laser 111 of the first dichroic mirror assembly 112, wherein The first fluorescent region is configured to receive the laser light reflected by the first mirror 116
  • the second fluorescent region includes a phosphor setting region and a transmissive region, wherein the phosphor setting region is for receiving the laser light and generating the second color light, the transmissive region is for transmitting The laser; the second reflective area is also used to reflect the laser light transmitted by the transmissive area.
  • the first fluorescent region and the second fluorescent region are concentrically disposed with respect to an axis of the fluorescent wheel, and a distance between the first fluorescent region and an axis of the fluorescent wheel is less than a distance between the second fluorescent region and an axis of the fluorescent wheel.
  • the axial direction of the fluorescent wheel 113 is parallel to the light exiting direction of the laser 111.
  • the angle between the axial direction of the first dichroic mirror assembly 112 and the direction of light exiting the laser 111 is 45 degrees.
  • the axial direction of the second dichroic mirror assembly 118 is perpendicular to the axial direction of the first dichroic mirror assembly 112.
  • the angle between the first mirror 116a and the axial direction of the first dichroic mirror assembly 112 is 90 degrees.
  • the second mirror 116b is parallel to the axial direction of the first dichroic mirror assembly 112.
  • the light source module changes the optical path of the laser light emitted by the laser by rotating the dichroic mirror assembly, so that the spot of the laser irradiated on the fluorescent wheel through different optical paths is located at different positions of the fluorescent wheel. Spots at different positions can be formed when the fluorescent wheel rotates, such as two concentric circles or unclosed circles that alternately appear.
  • a closed circle is formed on the fluorescent wheel, and the discontinuous trajectory of the laser spot on the fluorescent wheel improves the heat dissipation efficiency of the fluorescent wheel, thereby improving the excitation light generation efficiency of the fluorescent wheel.
  • the problem that the excitation light generation efficiency of the fluorescent wheel is low due to the low heat dissipation efficiency of the fluorescent wheel in the related art, and the luminous efficiency of the light source module is low is solved.
  • the effect of improving the luminous efficiency of the light source module is achieved.
  • the terms "first”, “second”, “third” and “fourth” are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • the arrows in the drawings of the present application only indicate the running direction of at least a part of the light, and the running direction of all the light is not limited to be consistent with the drawing. Please refer to the description of each embodiment in the application document to determine the light emission in different light paths. direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Microscoopes, Condenser (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光投影机(11),属于投影领域,包括激光器(111)、第一二向色镜组件(112)和荧光轮(113);激光器(111)用于向荧光轮(113)提供激光;第一二向色镜组件(112)用于通过转动来改变激光的光路,使激光器(111)发出的激光沿着不同光路照射在荧光轮(113)上与荧光轮(113)的轴心距离不同的位置处。通过二向色镜组件(112,118)改变激光器(111)发出的激光的光路,使激光器(111)发出的激光沿着不同光路照射在荧光轮(113)上与荧光轮(113)的轴心距离不同的位置处,提高了荧光轮(113)的散热效率,进而提高了荧光轮(113)的激发光产生效率。解决了相关技术中由于荧光轮(113)的散热效率较低导致荧光轮(113)的激发光产生效率较低,进而使激光投影机(11)的发光效率较低的问题。达到了提高激光投影机(11)的发光效率的效果。

Description

激光投影机
本申请要求于2017年8月11日提交中国专利局、申请号为201710683769.1、发明名称为“光源模组和激光投影机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影领域,特别涉及一种激光投影机。
背景技术
激光投影机是一种使用激光光束来透射出投影图像的投影机,主要包括光源模组和光机模组等组件。
在一种相关技术的激光投影机的光源模组中,主要部件通常包括激光器、二向色镜以及荧光轮。激光器用于提供某些颜色(通常为一种颜色或两种颜色)的光线,而二向色镜能够透过激光器发出的激光,且能够反射荧光轮被激发而发出的激发光线。在激光器为蓝光激光器时,荧光轮的结构可以如图1A所示,其可以包括用于激发出黄色光线的C1区域、用于激发出绿色光线的C2区域和透光区域,激光器发出的光线与激发出的光线在光机模组中能够通过滤色镜的滤色而形成三基色,并作为投影光源向光机模组提供照明。此外,由于光学拓展量(英文:Etendue)守恒可知,照射在荧光轮上的光斑越小,激发光线输入到光机模组时的效率也会越高,因而通常通过透镜将激光器发出的光线聚焦到荧光轮上,在荧光轮上形成一个极小的光斑。以反射式荧光轮为例,即C1区域和C2区域受到激光照射后,激发出的色光(黄色光线或绿色光线)会被荧光轮反射,那么,如图1B所示,其为一种激光投影机的光路图,激光器发出的光线透过二向色镜,并经过透镜聚焦后照射到荧光轮上,荧光轮可以通过转动来改变激光器发出的光线照射到荧光轮上的位置,进而使光源模组向光机模组输入不同颜色的光线,在激光器发出的光线照射到荧光轮上的透光区域时,激光器发出的光线会依次经反射镜1、反射镜2和反射镜3的反射而输入光机模组,而在激光器发出的光线照射到荧光轮上的C1区域时,会激发出黄色的激发光,该黄色的激发光会照射到二向色镜上,并被二向色镜反射而输入光机模组。绿色的激发光的产生方式可以参考黄色的激发光的产生方式。在光源模组运行时,荧光轮可以高速转动,并持续不断的向光机模组输入多种色光。
发明内容
根据本申请的第一方面,提供了一种激光投影机,所述激光投影机包括激光器、第一二向色镜组件和荧光轮;
所述激光器用于向所述荧光轮提供激光;
所述第一二向色镜组件用于通过转动来改变所述激光的光路,使所述激光器发出 的激光沿着不同光路照射在所述荧光轮上的与所述荧光轮的轴心距离不同的位置处。
根据本申请的第二方面,提供一种激光投影机,包括激光器、二向色镜组件,反射式荧光轮和第一反射镜,其中:
所述激光器被配置为提供激光;
所述二向色镜组件包括第一二向色区域、第二二向色区域和转轴,所述二向色镜组件设置在所述激光器的出光方向上,且所述转轴的轴向与所述激光器的出光方向成预设夹角,以使得在所述二向色镜组件围绕所述转轴转动时,所述激光器出射的光线分别照射在所述第一二向色区域和所述第二二向色区域,其中,所述第一二向色区域用于反射所述激光并透射第一色光,所述第二二向色区域用于透射所述激光并反射第二色光;
所述反射式荧光轮包括第一荧光区域和第二荧光区域,所述荧光轮设置在所述二向色镜组件的远离所述激光器的方向上,其中,所述第一荧光区域用于接收所述第一反射镜反射的所述激光以产生第一色光,并将所述第一色光反射至所述第一反射镜;所述第二荧光区域用于接收所述第二二向色区域透射的激光以产生第二色光,并将所述第二色光反射至所述第二二向色区域;
所述第一反射镜设置在所述第一二向色区域反射的所述激光的传播方向上,并将所述第一二向色区域反射的所述激光反射到所述第一荧光区域;
所述第一反射镜还被配置为将所述荧光轮发出的第一色光反射到所述第一二向色区域。
根据本申请的第三方面,提供一种激光投影机,包括激光器、第一二向色镜组件,第二二向色镜组件、透射式荧光轮、第一反射镜以及第二反射镜,其中:
所述激光器被配置为提供激光;
所述第一二向色镜组件包括第一透射区域、第一反射区域和第一转轴,所述第一二向色镜组件设置在所述激光器的出光方向上,且所述第一转轴的轴向与所述激光器的出光方向成预设夹角,以使得在所述第一二向色镜组件围绕所述第一转轴转动时,所述激光器出射的光线分别照射在所述第一透射区域和所述第一反射区域,其中,所述第一透射区域用于透射所述激光,所述第一反射区域用于反射所述激光;
所述透射式荧光轮包括第一荧光区域和第二荧光区域,所述荧光轮设置在所述第一二向色镜组件的远离所述激光器的方向上,其中,所述第一荧光区域用于接收所述第一反射镜反射的所述激光以产生第一色光,并将所述第一色光透射至所述第二反射镜;所述第二荧光区域用于接收所述第一透射区域透射的激光以产生第二色光,并将所述第二色光透射至所述第二二向色镜组件;
所述第一反射镜设置在所述第一反射区域反射的所述激光的传播方向上,并将所述第一反射区域反射的所述激光反射到所述第一荧光区域;
所述第二反射镜被配置为将所述荧光轮发出的第一色光反射到所述第二二向色镜组件;
所述第二二向色镜组件设置在所述荧光轮的远离所述激光器的一侧,所述第二二 向色镜组件包括第二透射区域、第二反射区域和第二转轴,所述第二转轴的轴向与所述激光器的出光方向存在预设夹角,所述第二透射区域用于透射所述第二反射镜反射的所述第一色光,所述第二反射区域用于反射所述荧光轮发出的第二色光。
附图说明
为了更清楚地说明本申请一些实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是相关技术中荧光轮的结构示意图;
图1B是相关技术中一种激光投影机的光路图;
图2是本申请一些实施例所涉及的实施环境示意图;
图3A是本申请一些实施例示出的一种激光投影机的结构示意图;
图3B是图3A所示激光投影机的一种光路图;
图3C是图3A所示激光投影机的另一种光路图;
图4A是本申请一些实施例提供的另一种激光投影机的结构示意图;
图4B是图4A所示激光投影机中一种荧光轮的结构示意图;
图4C是图4A所示激光投影机中一种第一二向色镜组件的结构示意图;
图4D是图4A所示激光投影机中另一种第一二向色镜组件的结构示意图;
图4E是图4A示出的激光投影机输出第一色光时的光路图;
图4F是图4A示出的激光投影机输出第二色光时的光路图;
图4G是图4A示出的激光投影机输出激光器发出的激光时的光路图;
图4H是本申请一些实施例提供的另一种激光投影机的结构示意图;
图4I是图4H示出的激光投影机输出第一色光时的光路图;
图4J是图4H示出的激光投影机输出第二色光时的光路图;
图4K是图4A所示的激光投影机的结构框图;
图4L是图4A所示的激光投影机中荧光轮顺时针旋转时,激光器发出的激光在荧光轮上的照射轨迹示意图;
图4M是图4A所示的激光投影机中荧光轮逆时针旋转时,激光器发出的激光在荧光轮上的照射轨迹示意图;
图4N是图4H所示激光投影机的结构框图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在实现本申请的过程中,发明人发现相关技术中荧光轮通过转动来改变激光器发出的光线照射到荧光轮上的位置时,激光器发出的光线在荧光轮上形成的光斑的轨迹是一个封闭的圆圈,该圆圈上任意相邻两点之间由于距离太近,散热效率较差,而荧光轮上荧光粉的激发光产生效率和温度负相关,这使得荧光轮的激发光产生效率较低,进而使光源模组的发光效率较低。
图2是本申请一些实施例所涉及的实施环境示意图,该实施环境可以包括激光投影机10和投影幕布20。
激光投影机10可以提供光源,将预设图案投影到投影幕布20上。
投影幕布20用于承载激光投影机10投影的图案。投影幕布20可以由各种材料构成,如聚氯乙烯(Polyvinyl chloride,PVC)、金属、玻璃纤维和玻珠等,本申请一些实施例不作出限制。
图3A是本申请一些实施例示出的一种激光投影机的结构示意图。该激光投影机11可以包括激光器111、第一二向色镜组件112和荧光轮113。
激光器111用于向荧光轮113提供激光。
第一二向色镜组件112用于通过转动来改变激光的光路,使激光器111发出的激光沿着不同光路照射在荧光轮113上与荧光轮113的轴心距离不同的位置处,也就是说,第一二向色镜组件112改变了激光的光路,使得激光器111发出的激光,在沿着光路照射到荧光轮113上时,落在荧光轮113上的落点位置与荧光轮113的轴心之间的距离不同。第一二向色镜组件112可以包括具有不同光学特性的区域(如能够透过激光器111发出的激光的透过区域以及能够发射激光器111发出的激光的反射区域等),激光器111发出的激光在照射到具有不同的光学特征的区域上时,可以具有不同的光路,并照射到荧光轮113的不同位置。在一些实施例中,也可以使用振镜来代替第二二向色镜组件,其在不同偏转角度下,透过该振镜的光线形成不同的光路。采用振镜的话,振镜的转轴可以与激光器的出光方向垂直。
示例性的,以反射式荧光轮为例,本申请一些实施例示出的激光投影机的一种光路图可以如图3B所示,激光器111发出的激光照射到第一二向色镜组件112的透过区域(能够透过激光器发出的激光并反射荧光轮激发出的光线的区域)时,激光透过第一二向色镜组件112后照射到荧光轮113的外侧W(相较于内侧N远离荧光轮113中心的一侧)并激发出一种色光,该色光会射向第一二向色镜组件112并被第一二向色镜组件112反射,并出射到激光投影机中的下一光学组件,例如光机模组中的光学元件。本申请一些实施例示出的激光投影机的另一种光路图可以如图3C所示,激光器111发出的激光照射到第一二向色镜组件112的反射区域(能够反射激光器发出的激光并透过荧光轮激发出的光线的区域)时,激光会被第一二向色镜组件112反射向第一反射镜116,射向第一反射镜116的激光被第一反射镜116反射向荧光轮113的内侧N(相较于外侧W靠近荧光轮113中心的一侧)并激发出另一种色光,该色光会射向第一反射镜116并被第一反射镜116反射向第一二向色镜组件112的反射区域,该色光透过第一二向色镜组件112的反射区域后,出射到激光投影机中的下一光学组件。在第一二向色镜组件112以一定的速度转动时,本申请一些实施例示出的激光投 影机的光路会在图3B和图3C这两者之间不断的转换,激光器111发出的激光在荧光轮113上的光斑也会在荧光轮113的外侧W和内侧N之间不断转换,使得荧光轮113的散热效率较高。
综上所述,本申请一些实施例提供的激光投影机,通过转动二向色镜组件改变激光器发出的激光的光路,使激光通过不同的光路照射在荧光轮上形成的光斑位于荧光轮的不同位置,不同位置的光斑在荧光轮转动时能够形成,比如交替出现的两个同心圆圈或不封闭的圆圈等。相较于相关技术中激光的光斑在荧光轮上形成封闭的圆圈,激光的光斑在荧光轮上形成不连续的轨迹提高了荧光轮的散热效率,进而提高了荧光轮的激发光产生效率。解决了相关技术中由于荧光轮的散热效率较低导致荧光轮的激发光产生效率较低,进而使激光投影机的发光效率较低的问题。达到了提高激光投影机的发光效率的效果。
在一些实施例中,请参考图4A,其示出了本申请一些实施例提供的另一种激光投影机的结构示意图,该激光投影机在图3所示的激光投影机的基础上增加了一些部件,从而使得本申请一些实施例提供的激光投影机具有更好的性能。
在一些实施例中,该激光投影机11还可以包括整形组件114,该整形组件114用于对激光器111发出的激光进行整形以及收束等。
在一些实施例中,该激光投影机11还可以包括多个光路调整组件115a和115b,该光路调整组件115a和115b可以设置在激光投影机中任意两个组件(如二向色镜组件、荧光轮、反射镜和激光器等)之间,用于使光线能够按照预设的光路行进。
在一些实施例中,该激光投影机11还可以包括多个反射镜,在图4A中,该反射镜可以包括第一反射镜116a、第二反射镜116b和第三反射镜116c,这些反射镜用于调整光线的照射方向。
在一些实施例中,该激光投影机11还可以包括聚焦准直组件117,聚焦准直组件用于使射向荧光轮113的光线聚焦,并在荧光轮113上形成光斑;还可以用于对从荧光轮113射出的光线(该光线是指从荧光轮处向远离荧光轮方向发射的光线)进行准直,使该光线变为平行光。附图中以117a、117b、117c和117d示出不同的聚焦准直组件。
在一些实施例中,激光器111可以为能够发出蓝色激光的蓝色激光器,这是由于蓝光的频率是三基色中最高的,而用频率高的光来激发出频率低的光的激发效率较高。此外,激光器111也可以为能够发出两种颜色激光的双色激光器,本申请一些实施例不作出限制。
图4A中的第一二向色镜组件112可以呈轮状,该轮状的二向色镜组件112可以由动力组件112a驱动,该动力组件112a可以为马达,其中,二向色镜组件112中可包括转轴。该动力组件112a转动时,马达会驱动二向色镜组件112的转轴旋转,转轴可以带动二向色镜组件112以转轴的轴向为轴进行转动,进而可以改变激光器111发出的激光照射在第一二向色镜组件112上的区域。而荧光轮113可以由动力组件113a驱动,该动力组件113a可以为马达。其中荧光轮113可以包括转轴,该动力组件113a转动时,可以通过荧光轮113的转轴使荧光轮113进行旋转,改变激光器111发出的 激光照射在荧光轮113上的区域。
该第一二向色镜组件112呈轮状,该第一二向色镜组件112可以包括:沿第一二向色镜组件112的中心周向排布的至少一个透过区域和至少一个反射区域。第一二向色镜组件112在转动时,图2所示激光投影机中的激光器111发出的激光会照射到第一二向色镜组件112的不同区域。
如图4B所示,其为本申请一些实施例提供的一种荧光轮113的结构示意图,至少一个荧光区域中的每个荧光区域均为荧光区域,至少一个荧光区域ff中每个荧光区域(ffa和ffb)包括相对于荧光轮113的轴心同心设置的第一荧光区域ff1和第二荧光区域ff2,第一荧光区域ff1与荧光轮113的轴心之间的距离小于第二荧光区域ff2与荧光轮113的轴心之间的距离,也就是说,第一荧光区域ff1比第二荧光区域ff2更靠近荧光轮113的轴心,其中,第一荧光区域ff1用于激发第一色光,该第一色光可以为绿光,第二荧光区域ff2用于激发第二色光,该第二色光可以为黄光,在黄光输出到激光投影机的滤色镜后,会被滤色镜转变为红光。不直接使用荧光区域激发出红光是因为红光荧光粉的激发效率太低。需要说明的是,图4B中示出的第一荧光区域ff1和第二荧光区域ff2为弧形带,其大小仅为示例,本申请并不作出限制。
在一些实施例中,荧光轮113还包括至少一个透过区域ft,每个透过区域为能够透过激光器111发出的激光的区域。在另一些实施例中,荧光轮113可以不包含透过区域。
相关技术中的荧光轮(如图1A所示),其C1和C2两个设置不同荧光粉的区域相接,在转动时,激光会在荧光轮上产生连续的轨迹,则激光在荧光轮上两个不同荧光区域的交界处的轨迹产生的激发光可能包括两种荧光区域产生的激发光,该激发光可以称为轮辐光,轮辐光会影响激光投影机提供的光源的质量。而本申请一些实施例提供的荧光轮将不同的荧光区域设置在与荧光轮的轴心距离不同的位置处,并通过二向色镜来切换激光照射在荧光轮上的位置,使得激光照射在荧光轮的不同荧光区域时不会产生轮辐光,提高了激光投影机提供的光源的质量。
该荧光轮113可以为反射式荧光轮或透射式荧光轮。反射式荧光轮为荧光区域受到激光照射后,激发光会被荧光轮反射的荧光轮(激光和激发光的方向相反),而透射式荧光轮为荧光区域受到激光照射后,激发光透过荧光轮射出的荧光轮(激光和激发光的方向相同)。
在一些实施例中,至少一个透过区域ft包括中心对称的两个透过区域ft1和ft2,至少一个荧光区域ff包括中心对称的两个荧光区域ffa和ffb。其中,两个中心对称的荧光区域中分别包含第一荧光区和第二荧光区。
下面根据荧光轮的种类来分两种情况进行说明:
在一些实施例中,荧光轮为反射式荧光轮,下面结合附图说明对应于反射式荧光轮的第一二向色镜组件的结构以及该激光投影机的工作原理。
作为一种可行的实施方式,如图4C所示,其为图4A所示的激光投影机中一种第一二向色镜组件112的结构示意图,该第一二向色镜组件112包括沿第一二向色镜组件的中心周向排布的至少一组透过区域和反射区域,该透射区域的至少一部分能够反射第二色光。该透过区域可以包括两部分,第一部分区域t1和第二部分区域t2,其中, 第一部分区域t1能够透过激光器发出的激光并反射所述第二色光,第二部分区域t2不能够反射所述第二色光,该第二部分区域t2可以为能够透过任何色光的透明区域。反射区域d可以包括透明基材和设置在该透明基材任意一侧的用于实现二向色镜功能的膜层,该反射区域d除了可以反射激光器发出的激光,还可以透过第一色光。其中,第一部分区域、第二部分区域以及反射区域的大小并不局限于图示中的比例。需要说明的是,上文所述沿第一二向色镜组件的中心周向排布是指,在第一二向色镜组件的中,在该第一二向色镜组件112的表面上圆周上排布。下文中的中心周向排布与此处涵义类似,后文不再赘述。
在激光器发出的为蓝色激光、第一色光为绿光以及第二色光为黄光时,第一部分区域t1能够透过波长为420纳米(nm)至470nm的光线,并反射波长为500nm-670nm的光线,此时可以使黄光和绿光均会被第一部分区域t1反射,这样能够减小激光投影机内部的热量积累,但也可以仅使黄光被第一部分区域t1反射,在第二光线为黄光时第一部分区域t1可仅反射红光,这样第一部分区域t1就能够起到滤色镜的作用,本申请一些实施例不作出限制;反射区域d能够反射波长为420nm至470nm的光线,并透过波长为500nm-670nm的光线,此时实际黄光和绿光均可透过反射区域d,这样能够减小激光投影机内部的热量积累,也可以仅使绿光能够透过反射区域d,这样反射区域d就能够起到滤色镜的作用,本申请一些实施例不作出限制。
图4C示出的是第一二向色镜组件112包括两组透过区域和反射区域的情况,其中,这两组透过区域和反射区域分别用g1和g2表示,但第一二向色镜组件112也可以包括更多组透过区域和反射区域或者只包括一组透过区域和反射区域,这里并不作出限制。示例性的,如图4D所示,该第一二向色镜组件112包括4组透过区域和反射区域,这里分别用g1、g2、g3和g4表示,其中,g1、g2、g3和g4中任意不相邻的两组区域,比如g1和g3,可以关于第一二向色镜组件112的中心成中心对称,图4C中其他标记的含义可以参考图4C,在此不再赘述。
图4C示出的第一二向色镜组件112在转动时,激光器发出的激光会依照第一二向色镜组件112的转动方向依次照射在每组中的每个区域中,并依次切换激光的光路,使激光能够照射到荧光轮的不同位置。在第一二向色镜组件112的转速一定的情况下,若有更多组区域,则第一二向色镜组件112切换激光的光路的速度越快,激光在荧光轮上的连续轨迹就会越短,进而荧光轮的散热效率也会越高。
对于该激光投影机,在第一二向色镜组件按照第一预设转速转动,荧光轮按照第二预设转速转动的过程中:
图4A示出的激光投影机11输出第一色光时的光路图可以参考图4E,其中,激光器111发出的激光照射到第一二向色镜组件112的反射区域(如图4C中g1中的d或g2中的d)并被反射时,激光能够经光路调整组件115a以及第一反射镜116a的调整后照射到聚焦准直组件117a上,激光被聚焦准直组件117a聚焦后能够照射到荧光轮113的第一荧光区域(如图4D中荧光区域ffa或ffb中的ff1)并激发出第一色光,第一色光被荧光轮113反射后会被聚焦准直组件117a整形,该整形后的光束经第一反射镜116a以及光路调整组件115a的调整后照射到第一二向色镜组件112的反射区域,第一色光在透过反射区域后,出射到激光投影机11中的其他部件。在一些实施例中, 激光投影机中生成红绿蓝三色光线的光学器件的组合可以被称为光源模组,光源模组至少包括激光器和荧光轮,激光投影机中利用三色光线出射图像的部分可以被称为光机模组,光机模组至少包括成像组件和投影镜头,其中成像组件可以是数字微镜装置(Digital Micromirror Device,DMD)元件也可以是液晶附硅(Liquid Crystal on Silicon,LCOS)元件。激光投影机还可以包括设置在成像组件和荧光轮之间的滤色轮,滤色轮可以被包含在光机模组内,也可以被包含在光源模组内。在一些实施例中,附图中所示的最终的出射光线射向光机模组。图4E中其他标记的含义可以参考图4A,在此不再赘述。
图4A示出的激光投影机11输出第二色光时的光路图可以参考图4F,其中,激光器111发出的激光照射到第一部分区域(如图4C中g1中的t1或g2中的t1)并透过时,激光能够照射到聚焦准直组件117c上,激光被聚焦准直组件117c聚焦后能够照射到荧光轮113的第二荧光区域(如图4D中荧光区域ffa或ffb中的ff2)并激发出第二色光,第二色光被荧光轮反射后会被聚焦准直组件117c调整并射向第一部分区域,该调整后的光被第一部分区域反射后,出射到激光投影机11中的其他部件。图4F中其他标记的含义可以参考图4A,在此不再赘述。
图4A示出的激光投影机11输出激光器111发出的激光时的光路图可以参考图4G,其中,激光器111发出的激光照射到第二部分区域(如图4C中g1中的t2或g2中的t2)并透过时,激光能够依次经过荧光轮113的第一透过区域、第三反射镜116c、第二反射镜116b、第二透过区域、第一反射镜116a和第二部分区域,并出射到激光投影机11中的其他部件,荧光轮113的第一透过区域与荧光轮113的第二透过区域对称设置,第一透过区域为如图4B中的ft1,第二透过区域为如图4B中的ft2)。其中,光线在射向荧光轮113或从荧光轮113射出时均会透过聚焦准时组件,且光线在激光投影机中任意两个组件之间还可以经过光路调整组件调整,如设置在第一二向色镜组件112与第一反射镜116a之间的115a,以及设置在第二反射镜116b与第三反射镜116c之间的115b,此后不再赘述。
需要说明的是,在荧光轮113中的各透过区域所形成的图形与第一二向色镜组件112的各第二部分区域所形成的图形相似时,荧光轮113的第一预设转速可以和第一二向色镜组件的第二预设转速相同。示例性的,在图4C示出的第一二向色镜组件112中,两个透过区域的弧度相同且关于二向色镜组件的中心对称,以及在图4B示出的荧光轮113中的两个透过区域ft1和ft2的弧度相同且关于荧光轮113的中心对称时,若第一二向色镜组件的两个第二部分区域中任一区域的弧度与透过区域ft1的角度相同,则荧光轮113的第一预设转速可以和第一二向色镜组件的第二预设转速相同。
可以看出,在上述实施例中,是通过第一二向色镜组件的透过区域来形成输出激光,也就是说,激光与第二色光的输出光路相同。
作为另一种可行的实施方式,也可以通过第一二向色镜组件的反射区域来输出激光。此时的第一二向色镜组件的结构以及激光投影机的工作原理与上述实施例中详述的略有不同。
所述第一二向色镜组件可以包括沿所述第一二向色镜组件的中心周向排布的至少一组所述透过区域和所述反射区域,所述透过区域还能够反射所述第二色光,所述反 射区域的至少一部分能够透过所述第一色光。所述第一二向色镜组件的反射区域可以包括第三部分区域和第四部分区域,所述第三部分区域能够透过所述第一色光,所述第四部分区域不能够透过所述第一色光。
对于该激光投影机,在所述第一二向色镜组件按照第三预设转速转动,所述荧光轮按照第四预设转速转动的过程中:
其输出第一色光的光路为,所述激光器发出的激光照射到所述第三部分区域并被反射时,所述激光经所述第一反射镜反射照射到所述荧光轮的第一荧光区域并激发出所述第一色光,所述第一色光在透过所述第三部分区域后,出射到所述激光投影机中的其他部件。具体光路可参见图4E,这里不再赘述。
其输出第二色光的光路为,所述激光器发出的激光照射到所述第一二向色镜组件的透过区域并透过时,所述激光能够照射到所述荧光轮的第二荧光区域并激发出所述第二色光,所述第二色光被所述第一二向色镜组件的透过区域反射后,出射到所述激光投影机中的其他部件。具体光路可参见图4F,这里不再赘述。
其输出激光的光路为,所述激光器发出的激光照射到所述第四部分区域并被反射时,所述激光能够依次经过所述荧光轮的第二透过区域、第一透过区域和所述第四部分区域,并出射到所述激光投影机11中的其他部件,所述荧光轮的第一透过区域与所述荧光轮的第二透过区域对称设置。
在一些实施例中,荧光轮113为透射式荧光轮,下面结合附图说明对应于透射式荧光轮的第一二向色镜组件的结构以及该激光投影机的工作原理。
作为一种可行的实施方式,如图4H所示,其为本申请一些实施例提供的另一种激光投影机的结构示意图,该激光投影机11还包括第二二向色镜组件118,该第二二向色镜组件118包括沿所述第二二向色镜组件的中心周向排布的至少一组透过区域和反射区域,所述第二二向色镜组件的透过区域能够透过所述第一色光;所述第二二向色镜组件的反射区域能够反射所述激光器发出的激光,并且所述第二二向色镜组件的反射区域的至少一部分能够反射所述第二色光。所述第二二向色镜组件的反射区域包括第五部分区域和第六部分区域,所述第五部分区域能够反射所述第二色光,所述第六部分区域不能够反射所述第二色光。
所述激光投影机还包括第二反射镜116b,设置在所述第一色光的传播方向上,用于将所述第一色光反射到所述第二二向色镜组件上;所述第一二向色镜组件和所述第二二向色镜组件分别设置在所述荧光轮两侧。
对于该激光投影机,在第一二向色镜组件112按照第五预设转速转动,第二二向色镜组件118按照第六预设转速转动,荧光轮按照第七预设转速转动的过程中:
图4H所示的激光投影机11输出第一色光的光路图可以参考图4I,其中,激光器111发出的激光照射到第一二向色镜组件112的反射区域并被反射时,激光会被第一反射镜116a反射,并照射到荧光轮113的第一荧光区域并激发出第一色光,第一色光在透过荧光轮113后,被第二反射镜116b反射,并射向第二二向色镜组件118的透过区域,并在透过第二二向色镜组件118的透过区域后,出射到所述激光投影机11中的其他部件。其中,光线在射向荧光轮113或从荧光轮113射出时均会透过聚焦准时组件,且光线在激光投影机中任意两个组件之间还可以经过光路调整组件调整,在此不 再赘述。图4I中其他标记的含义可以参考图4A。
图4H所示的激光投影机11输出第二色光时的光路图可以参考图4J,其中,激光器111发出的激光照射到第一二向色镜组件112的透过区域并透过时,激光能够照射到荧光轮113的第二荧光区域并激发出第二色光,第二色光透过荧光轮113后,能够射向第五部分区域,第二色光被第五部分反射后,出射到所述激光投影机11中的其他部件。其中,光线在射向荧光轮113或从荧光轮113射出时均会透过聚焦准时组件,且光线在激光投影机中任意两个组件之间还可以经过光路调整组件调整,在此不再赘述。图4J中其他标记的含义可以参考图4A。
图4H所示的激光投影机11输出激光时的光路图可以参考图4J,其中,激光器111发出的激光照射到第一二向色镜组件112的透过区域并透过时,激光能够照射到荧光轮113的透过区域,并在透过该透过区域后,照射到第二二向色镜组件118的第六部分区域,激光在被第六部分区域反射后,出射到所述激光投影机11中的其他部件。
需要说明的是,当荧光轮为透射式荧光轮时,所述第二二向色镜组件的透过区域不仅可以透过激光,还可以透过第一色光,因此,此时透过区域可以为能够透过任何色光的透明区域,也可以为仅能够透过激光器发出的激光和第一色光的区域。
此外,在荧光轮113中的各透过区域所形成的图形与第一二向色镜组件112中的各透过区域所形成的图形相似时(此时荧光轮113中的各透过区域所形成的图形与第二二向色镜组件118中各第六部分区域所形成的图形也相似),荧光轮113的第七预设转速可以和第一二向色镜组件的第五预设转速以及第二二向色镜组件的第六预设转速均相同。
作为另一种可行的实施方式,当荧光轮为透射式荧光轮,还可以采用下面的第一二向色镜组件和第二二向色镜组件来使激光通过不同的光路照射在荧光轮上的光斑位于荧光轮的不同位置。
与前一种实施方式不同的是,在此种实施方式中,可以通过第一二向色镜组件的反射区域来形成激光。
所述第一二向色镜组件包括沿所述第一二向色镜组件的中心周向排布的至少一组所述透过区域和所述反射区域;所述激光投影机还包括第二二向色镜组件,所述第二二向色镜组件呈轮状,所述第二二向色镜组件包括:沿所述第二二向色镜组件的中心周向排布的至少一组透过区域和反射区域,所述第二二向色镜组件的透过区域能够透过所述激光器发出的激光,并且所述第二二向色镜组件的透过区域的至少一部分还能够透过所述第一色光;所述第二二向色镜组件的反射区域能够反射所述第二色光。其中,所述第二二向色镜组件的透过区域包括第七部分区域和第八部分区域,所述第七部分区域能够透过所述第一色光,所述第八部分区域不能够透过所述第一色光。
所述激光投影机还包括第二反射镜,设置在所述第一色光的传播方向上,用于将所述第一色光反射到所述第二二向色镜组件上;所述第一二向色镜组件和所述第二二向色镜组件分别设置在所述荧光轮两侧。
在所述第一二向色镜组件按照第八预设转速转动,所述第二二向色镜组件按照第九预设转速转动,所述荧光轮按照第十预设转速转动的过程中:
其输出第一色光的光路为,所述激光器发出的激光照射到所述第一二向色镜组件 的反射区域并被反射时,所述激光经所述第一反射镜反射照射到所述荧光轮的第一荧光区域并激发出所述第一色光,所述第一色光在透过所述荧光轮后,经所述第二反射镜反射射向所述第七部分区域,并在透过所述第七部分区域后,出射到所述激光投影机11中的其他部件。具体的光路图可以参照图4I,此处不再赘述。
其输出第二色光的光路为,所述激光器发出的激光照射到所述第一二向色镜的透过区域并透过时,所述激光能够照射到所述荧光轮的第二荧光区域并激发出所述第二色光,所述第二色光透过所述荧光轮后,能够射向所述第二二向色镜的反射区域,所述第二色光被所述第二二向色镜的反射区域反射后,出射到所述激光投影机11中的其他部件;
其输出激光的光路为,所述激光器发出的激光照射到所述第一二向色镜组件的反射区域并被反射时,所述激光经所述第一反射镜反射照射到所述荧光轮的透过区域,并在透过所述荧光轮的透过区域后,经所述第二反射镜反射射向所述第八部分区域,所述激光在透过所述第七部分区域后,出射到所述激光投影机11中的其他部件。
需要说明的是,上述各个光路图为示例性的,本领域技术人员通过图4A或图4H所示出的激光投影机还可以通过其他的光路结构来输出各种色光,本申请一些实施例不作出限制。
在一些实施例中,第一二向色镜组件112的透过区域包括有扩散片。该扩散片可以用于扩散匀化蓝光光束。此外,第一二向色镜组件112的透过区域可以包括设置有扩散片的区域和未设置有扩散片的区域,在一些实施例中,图4B示出的第一二向色镜组件112中的g1区域中的透过区域t中可以设置有扩散片,而g2区域中的透过区域t中可以未设置有扩散片。
在一些实施例中,如图4K所示,其为图4A所示的激光投影机的结构框图,该激光投影机11可以包括控制模块119、第一二向色镜组件112和荧光轮113。控制模块119用于控制第一二向色镜组件112和荧光轮113。控制模块119可以在荧光轮113每次停止转动后再启动时变换荧光轮的转动方向,以充分利用荧光轮的各个荧光区域,提高荧光轮的寿命。如图4L所示,其为图4A所示的激光投影机中,荧光轮113顺时针旋转时,激光器111发出的激光在荧光轮113上的照射轨迹示意图,其中的阴影部分为激光的照射轨迹,空白区域为激光未照射到的区域,可以看出,由于激光的光路在不断变化,激光照射在荧光轮的位置也在不断变化,因而,第一荧光区域ff1和第二荧光区域ff2均存在未被激光照射到的区域。又如图4M所示,其为图4A所示的激光投影机中,荧光轮113顺时针旋转时,激光器111发出的激光在荧光轮113上的轨迹示意图,其中的阴影部分为激光的照射轨迹,空白区域为激光未照射到的区域,第一荧光区域ff1和第二荧光区域ff2也存在未被激光照射到的区域。在一些实施例中,第一荧光区域和第二荧光区域的荧光粉可以仅设置在第一荧光区域和第二荧光区域中的能被激光照射到的部分,以减少荧光粉的使用,并更加有利于荧光轮通过基板进行散热,其荧光粉的设置位置可以和图4L或图4M中的轨迹相同。
由此可见,荧光轮沿一个方向旋转时,第一荧光区域ff1和第二荧光区域ff2均存在未被激光照射到的区域,因而在荧光轮停止转动后再启动时,改变荧光轮的转动方向能够充分利用荧光轮的各个荧光区域,提高荧光轮的寿命。
在一些实施例中,如图4N所示,其为图4H所示激光投影机的结构框图,该激光投影机11可以包括控制模块119、第一二向色镜组件112、第二二向色镜组件118和荧光轮113。控制模块119用于控制第一二向色镜组件112、第二二向色镜组件118和荧光轮113。控制模块119可以在荧光轮113每次停止转动后再启动时变换荧光轮的转动方向,以充分利用荧光轮的各个荧光区域,提高荧光轮的寿命。
综上所述,本申请一些实施例提供的激光投影机,通过转动二向色镜组件改变激光器发出的激光的光路,使激光通过不同的光路照射在荧光轮上的光斑位于荧光轮的不同位置,不同位置的光斑在荧光轮转动时能够形成,比如交替出现的两个同心圆圈或不封闭的圆圈等。相较于相关技术中激光的光斑在荧光轮上形成封闭的圆圈,激光的光斑在荧光轮上形成不连续的轨迹提高了荧光轮的散热效率,进而提高了荧光轮的激发光产生效率。解决了相关技术中由于荧光轮的散热效率较低导致荧光轮的激发光产生效率较低,进而使激光投影机的发光效率较低的问题。达到了提高激光投影机的发光效率的效果。
本申请还提供一种激光投影机,如图4E所示,包括激光器111、二向色镜组件112,反射式荧光轮113和第一反射镜116a,其中:
所述激光器111被配置为提供激光;所述二向色镜组件112包括第一二向色区域、第二二向色区域和转轴,所述二向色镜组件设置在所述激光器的出光方向上,且所述转轴的轴向与所述激光器的出光方向成预设夹角,以使得在所述二向色镜组件围绕所述转轴转动时,所述激光器出射的光线分别照射在所述第一二向色区域和所述第二二向色区域,其中,所述第一二向色区域用于反射所述激光并透射第一色光,所述第二二向色区域用于透射所述激光并反射第二色光;所述反射式荧光轮113包括第一荧光区域和第二荧光区域,所述荧光轮设置在所述二向色镜组件的远离所述激光器的方向上,其中,所述第一荧光区域用于接收所述第一反射镜反射的所述激光以产生第一色光,并将所述第一色光反射至所述第一反射镜;所述第二荧光区域用于接收所述第二二向色区域透射的激光以产生第二色光,并将所述第二色光反射至所述第二二向色区域;所述第一反射镜116a设置在所述第一二向色区域反射的所述激光的传播方向上,并将所述第一二向色区域反射的所述激光反射到所述第一荧光区域;所述第一反射镜116a还被配置为将所述荧光轮发出的第一色光反射到所述第一二向色区域。
在一些实施例中,所述第二荧光区域包括在所述荧光轮上中心对称设置的荧光粉设置区域和中心对称设置的透射区域,其中所述荧光粉设置区域用于接收所述激光并生成所述第二色光,所述透射区域用于透射所述激光,所述透射区域至少包括第一透射区域和第二透射区域,所述第一透射区域和所述第二透射区域中心对称;所述激光投影机还包括一反射镜组,所述反射镜组设置在所述荧光轮的远离所述二向色镜组件的一侧,所述反射镜组用于接收所述第一透射区域透射出的激光,并将所述激光反射使所述第一透射区域透射出的激光通过所述第二透射区域后照射在所述第一反射镜上;所述第一反射镜还用于,将所述反射镜组反射过来的所述激光反射到所述第二二向色区域。
在一些实施例中,所述第一荧光区域和所述第二荧光区域相对于所述荧光轮的轴 心同心设置,所述第一荧光区域与所述荧光轮的轴心之间的距离小于所述第二荧光区域与所述荧光轮的轴心之间的距离。
在一些实施例中,所述反射镜组包括分离设置的第二反射镜116b和第三反射镜116c,所述第二反射镜116b与所述二向色镜组件112的轴向相平行,所述第三反射镜116c与所述二向色镜组件112的轴向之间的夹角是90度。以图4G为例,第二反射镜116b与第一反射镜116a分别设置在荧光轮113两侧,并且,第二反射镜116b与第一反射镜116a的设置方向互相垂直,而第三反射镜116c与第一反射镜116a的设置方向则互相平行。第一反射镜的反射面与第二反射镜的反射面相对设置,第三反射镜的反射面与第一反射镜的反射面相对设置。
在一些实施例中,所述荧光轮113的轴向与所述激光器111的出光方向相平行。
在一些实施例中,所述二向色镜组件112的轴向与所述激光器111的出光方向之间的夹角是45度。
在一些实施例中,所述第一反射镜116a与所述二向色镜组件112的轴向之间的夹角是90度。
本申请一些实施例提供的激光投影机,其光源模组通过转动二向色镜组件改变激光器发出的激光的光路,使激光通过不同的光路照射在荧光轮上的光斑位于荧光轮的不同位置,不同位置的光斑在荧光轮转动时能够形成,比如交替出现的两个同心圆圈或不封闭的圆圈等。相较于相关技术中激光的光斑在荧光轮上形成封闭的圆圈,激光的光斑在荧光轮上形成不连续的轨迹提高了荧光轮的散热效率,进而提高了荧光轮的激发光产生效率。解决了相关技术中由于荧光轮的散热效率较低导致荧光轮的激发光产生效率较低,进而使光源模组的发光效率较低的问题。达到了提高光源模组的发光效率的效果。
本申请还提供一种激光投影机,如图4H所示,包括激光器111、第一二向色镜组件112,第二二向色镜组件118、透射式荧光轮113、第一反射镜116a以及第二反射镜116b,其中:
所述激光器111被配置为提供激光;所述第一二向色镜组件112包括第一透射区域、第一反射区域和第一转轴,所述第一二向色镜组件112设置在所述激光器111的出光方向上,且所述第一转轴的轴向与所述激光器111的出光方向成预设夹角,以使得在所述第一二向色镜组件112围绕所述第一转轴转动时,所述激光器111出射的光线分别照射在所述第一透射区域和所述第一反射区域,其中,所述第一透射区域用于透射所述激光,所述第一反射区域用于反射所述激光;所述透射式荧光轮113包括第一荧光区域和第二荧光区域,所述荧光轮113设置在所述第一二向色镜组件112的远离所述激光器111的方向上,其中,所述第一荧光区域用于接收所述第一反射镜116a反射的所述激光以产生第一色光,并将所述第一色光透射至所述第二反射镜116b;所述第二荧光区域用于接收所述第一透射区域透射的激光以产生第二色光,并将所述第二色光透射至所述第二二向色镜组件118;所述第一反射镜116a设置在所述第一反射区域反射的所述激光的传播方向上,并将所述第一反射区域反射的所述激光反射到所述第一荧光区域;所述第二反射镜116b被配置为将所述荧光轮113发出的第一色光反 射到所述第二二向色镜组件118;所述第二二向色镜组件118设置在所述荧光轮113的远离所述激光器111的一侧,所述第二二向色镜组件118包括第二透射区域、第二反射区域和第二转轴,所述第二转轴的轴向与所述激光器111的出光方向存在预设夹角,所述第二透射区域用于透射所述第二反射镜116b反射的第一色光,所述第二反射区域用于反射所述荧光轮113发出的第二色光。
在一些实施例中,所述第二荧光区域包括荧光粉设置区域和透射区域,其中所述荧光粉设置区域用于接收所述激光并生成所述第二色光,所述透射区域用于透射所述激光;所述第二反射区域还用于反射所述透射区域透射的激光。
在一些实施例中,所述第一荧光区域和所述第二荧光区域相对于所述荧光轮的轴心同心设置,所述第一荧光区域与所述荧光轮的轴心之间的距离小于所述第二荧光区域与所述荧光轮的轴心之间的距离。
在一些实施例中,所述荧光轮113的轴向与所述激光器111的出光方向相平行。
在一些实施例中,所述第一二向色镜组件112的轴向与所述激光器111的出光方向之间的夹角是45度。
在一些实施例中,所述第二二向色镜组件118的轴向与所述第一二向色镜组件112的轴向相互垂直。
在一些实施例中,所述第一反射镜116a与所述第一二向色镜组件112的轴向之间的夹角是90度。
在一些实施例中,所述第二反射镜116b与所述第一二向色镜组件112的轴向相平行。
本申请一些实施例提供的激光投影***,其光源模组通过转动二向色镜组件改变激光器发出的激光的光路,使激光通过不同的光路照射在荧光轮上的光斑位于荧光轮的不同位置,不同位置的光斑在荧光轮转动时能够形成,比如交替出现的两个同心圆圈或不封闭的圆圈等。相较于相关技术中激光的光斑在荧光轮上形成封闭的圆圈,激光的光斑在荧光轮上形成不连续的轨迹提高了荧光轮的散热效率,进而提高了荧光轮的激发光产生效率。解决了相关技术中由于荧光轮的散热效率较低导致荧光轮的激发光产生效率较低,进而使光源模组的发光效率较低的问题。达到了提高光源模组的发光效率的效果。
在本申请中,术语“第一”、“第二”、“第三”和“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。另外,本申请的附图中的箭头仅表示至少一部分光线的运行方向,并非限定所有光线的运行方向和附图中一致,请结合申请文件中对各实施例表述来确定不同光路中光线的射出方向。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种激光投影机,其特征在于,所述激光投影机包括激光器、第一二向色镜组件和荧光轮;
    所述激光器用于向所述荧光轮提供激光;
    所述第一二向色镜组件用于通过转动来改变所述激光的光路,使所述激光器发出的激光沿着不同光路照射在所述荧光轮上的与所述荧光轮的轴心距离不同的位置处。
  2. 根据权利要求1所述的激光投影机,其特征在于,所述第一二向色镜组件呈轮状,所述第一二向色镜组件包括:沿所述第一二向色镜组件的中心周向排布的至少一个透过区域和至少一个反射区域,所述透过区域为能够透过所述激光器发出的激光的区域,所述反射区域为能够反射所述激光器发出的激光的区域;
    所述第一二向色镜组件在转动时,所述激光器发出的激光分别照射到所述第一二向色镜组件的透过区域和反射区域;
    所述激光投影机还包括第一反射镜,设置在所述反射区域反射的所述激光器发出的激光的传播方向上,并将所述反射区域反射的所述激光器发出的激光反射到所述荧光轮上。
  3. 根据权利要求1或2所述的激光投影机,其特征在于,每个所述荧光区域包括相对于所述荧光轮的轴心同心设置的第一荧光区域和第二荧光区域,所述第一荧光区域与所述荧光轮的轴心之间的距离小于所述第二荧光区域与所述荧光轮的轴心之间的距离;所述第一荧光区域用于激发第一色光,所述第二荧光区域用于激发第二色光;
    所述荧光轮还包括至少一个透过区域,每个所述透过区域为能够透过所述激光器发出的激光的区域。
  4. 根据权利要求3所述的激光投影机,其特征在于,所述至少一个透过区域包括中心对称的两个透过区域,至少一个所述荧光区域包括中心对称的两个荧光区域。
  5. 根据权利要求4所述的激光投影机,其特征在于,所述荧光轮为反射式荧光轮,所述第一二向色镜组件包括沿所述第一二向色镜组件的中心周向排布的至少一组所述透过区域和所述反射区域,所述透过区域的至少一部分能够反射所述第二色光,所述反射区域还能够透过所述第一色光。
  6. 根据权利要求5所述的激光投影机,其特征在于,所述第一二向色镜组件的透过区域包括第一部分区域和第二部分区域,所述第一部分区域能够反射所述第二色光,所述第二部分区域不能够反射所述第二色光;
    在所述第一二向色镜组件按照第一预设转速转动,所述荧光轮按照第二预设转速转动的过程中:
    所述激光器发出的激光照射到所述第一二向色镜组件的反射区域并被反射时,所述激光经所述第一反射镜反射照射到所述荧光轮的第一荧光区域并激发出所述第一色 光,所述第一色光在透过所述反射区域后出射;
    所述激光器发出的激光照射到所述第一部分区域并透过时,所述激光能够照射到所述荧光轮的第二荧光区域并激发出所述第二色光,所述第二色光被所述第一部分区域反射后出射;
    所述激光器发出的激光照射到所述透过区域第二部分区域并透过时,所述激光能够依次经过所述荧光轮的第一透过区域、第二透过区域、所述第一反射镜和所述透过区域第二部分区域出射,所述荧光轮上的第一透过区域与所述荧光轮上的第二透过区域对称设置。
  7. 根据权利要求4所述的激光投影机,其特征在于,所述荧光轮为反射式荧光轮,所述第一二向色镜组件包括沿所述第一二向色镜组件的中心周向排布的至少一组所述透过区域和所述反射区域,所述透过区域还能够反射所述第二色光,所述反射区域的至少一部分能够透过所述第一色光。
  8. 根据权利要求7所述的激光投影机,其特征在于,所述第一二向色镜组件的反射区域包括第三部分区域和第四部分区域,所述第三部分区域能够透过所述第一色光,所述第四部分区域不能够透过所述第一色光;
    在所述第一二向色镜组件按照第三预设转速转动,所述荧光轮按照第四预设转速转动的过程中:
    所述激光器发出的激光照射到所述第三部分区域并被反射时,所述激光经所述第一反射镜反射照射到所述荧光轮的第一荧光区域并激发出所述第一色光,所述第一色光在透过所述第三部分区域后出射;
    所述激光器发出的激光照射到所述第一二向色镜组件的透过区域并透过时,所述激光能够照射到所述荧光轮的第二荧光区域并激发出所述第二色光,所述第二色光被所述第一二向色镜组件的透过区域反射后出射;
    所述激光器发出的激光照射到所述第四部分区域并被反射时,所述激光能够依次经过所述荧光轮的第二透过区域、第一透过区域和所述第四部分区域出射,所述荧光轮上的第一透过区域与所述荧光轮上的第二透过区域对称设置。
  9. 根据权利要求4所述的激光投影机,其特征在于,所述荧光轮为透射式荧光轮,所述第一二向色镜组件包括沿所述第一二向色镜组件的中心周向排布的至少一组所述透过区域和所述反射区域;
    所述激光投影机还包括第二二向色镜组件,所述第二二向色镜组件呈轮状,所述第二二向色镜组件包括:沿所述第二二向色镜组件的中心周向排布的至少一组透过区域和反射区域,所述第二二向色镜组件的透过区域能够透过所述第一色光;所述第二二向色镜组件的反射区域能够反射所述激光器发出的激光,并且所述第二二向色镜组件的反射区域的至少一部分能够反射所述第二色光;
    所述激光投影机还包括第二反射镜,设置在所述第一色光的传播方向上,用于将所述第一色光反射到所述第二二向色镜组件上;
    所述第一二向色镜组件和所述第二二向色镜组件分别设置在所述荧光轮两侧。
  10. 根据权利要求9所述的激光投影机,其特征在于,所述第二二向色镜组件的反射区域包括第五部分区域和第六部分区域,所述第五部分区域能够反射所述第二色光,所述第六部分区域不能够反射所述第二色光;
    在所述第一二向色镜组件按照第五预设转速转动,所述第二二向色镜组件按照第六预设转速转动,所述荧光轮按照第七预设转速转动的过程中:
    所述激光器发出的激光照射到所述第一二向色镜组件的反射区域并被反射时,所述激光经所述第一反射镜反射照射到所述荧光轮的第一荧光区域并激发出所述第一色光,所述第一色光在透过所述荧光轮后,经所述第二反射镜反射射向所述第二二向色镜组件的透过区域,并在透过所述第二二向色镜组件的透过区域后出射;
    所述激光器发出的激光照射到所述第一二向色镜的透过区域并透过时,所述激光能够照射到所述荧光轮的第二荧光区域并激发出所述第二色光,所述第二色光透过所述荧光轮后,能够射向所述第五部分区域,所述第二色光被所述第五部分区域反射后出射;
    所述激光器发出的激光照射到所述第一二向色镜组件的透过区域并透过时,所述激光能够照射到所述荧光轮的透过区域,并在透过所述透过区域后,照射到所述第六部分区域,所述激光在被所述第六部分区域反射后出射。
  11. 根据权利要求4所述的激光投影机,其特征在于,所述荧光轮为透射式荧光轮,所述第一二向色镜组件包括沿所述第一二向色镜组件的中心周向排布的至少一组所述透过区域和所述反射区域;
    所述激光投影机还包括第二二向色镜组件,所述第二二向色镜组件呈轮状,所述第二二向色镜组件包括:沿所述第二二向色镜组件的中心周向排布的至少一组透过区域和反射区域,所述第二二向色镜组件的透过区域能够透过所述激光器发出的激光,并且所述第二二向色镜组件的透过区域的至少一部分还能够透过所述第一色光;所述第二二向色镜组件的反射区域能够反射所述第二色光;
    所述激光投影机还包括第二反射镜,设置在所述第一色光的传播方向上,用于将所述第一色光反射到所述第二二向色镜组件上;
    所述第一二向色镜组件和所述第二二向色镜组件分别设置在所述荧光轮两侧。
  12. 根据权利要求11所述的激光投影机,其特征在于,所述第二二向色镜组件的透过区域包括第七部分区域和第八部分区域,所述第七部分区域能够透过所述第一色光,所述第八部分区域不能够透过所述第一色光;
    在所述第一二向色镜组件按照第八预设转速转动,所述第二二向色镜组件按照第九预设转速转动,所述荧光轮按照第十预设转速转动的过程中:
    所述激光器发出的激光照射到所述第一二向色镜组件的反射区域并被反射时,所述激光经所述第一反射镜反射照射到所述荧光轮的第一荧光区域并激发出所述第一色光,所述第一色光在透过所述荧光轮后,经所述第二反射镜反射射向所述第七部分区 域,并在透过所述第七部分区域后出射;
    所述激光器发出的激光照射到所述第一二向色镜的透过区域并透过时,所述激光能够照射到所述荧光轮的第二荧光区域并激发出所述第二色光,所述第二色光透过所述荧光轮后,能够射向所述第二二向色镜的反射区域,所述第二色光被所述第二二向色镜的反射区域反射后出射;
    所述激光器发出的激光照射到所述第一二向色镜组件的反射区域并被反射时,所述激光经所述第一反射镜反射照射到所述荧光轮的透过区域,并在透过所述荧光轮的透过区域后,经所述第二反射镜反射射向所述第八部分区域,所述激光在透过所述第八部分区域后出射。
  13. 根据权利要求2-12任一所述的激光投影机,其特征在于,所述第一二向色镜组件的透过区域包括有扩散片。
  14. 根据权利1-13任一所述的激光投影机,其特征在于,所述激光投影机包括控制模块,所述控制模块与所述荧光轮连接,用于在所述荧光轮停止转动后再启动时变换所述荧光轮的转动方向。
  15. 根据权利1-14任一所述的激光投影机,其特征在于,还包括:
    整形组件,所述整形组件设置于所述激光器和所述第一二向色镜之间,用于对所述激光器发出的激光进行整形和收束。
  16. 根据权利2-15任一所述的激光投影机,其特征在于,所述透过区域采用透明材质制成。
  17. 根据权利3-16任一所述的激光投影机,其特征在于,所述第一色光为绿色激发光,所述第二色光为黄色激发光。
  18. 一种激光投影机,其特征在于,包括激光器、二向色镜组件,反射式荧光轮和第一反射镜,其中:
    所述激光器被配置为提供激光;
    所述二向色镜组件包括第一二向色区域、第二二向色区域和转轴,所述二向色镜组件设置在所述激光器的出光方向上,且所述转轴的轴向与所述激光器的出光方向成预设夹角,以使得在所述二向色镜组件围绕所述转轴转动时,所述激光器出射的光线分别照射在所述第一二向色区域和所述第二二向色区域,其中,所述第一二向色区域用于反射所述激光并透射第一色光,所述第二二向色区域用于透射所述激光并反射第二色光;
    所述反射式荧光轮包括第一荧光区域和第二荧光区域,所述荧光轮设置在所述二向色镜组件的远离所述激光器的方向上,其中,所述第一荧光区域用于接收所述第一反射镜反射的所述激光以产生第一色光,并将所述第一色光反射至所述第一反射镜; 所述第二荧光区域用于接收所述第二二向色区域透射的激光以产生第二色光,并将所述第二色光反射至所述第二二向色区域;
    所述第一反射镜设置在所述第一二向色区域反射的所述激光的传播方向上,并将所述第一二向色区域反射的所述激光反射到所述第一荧光区域;
    所述第一反射镜还被配置为将所述荧光轮发出的第一色光反射到所述第一二向色区域。
  19. 根据权利要求18所述的激光投影机,其特征在于,
    所述第二荧光区域包括在所述荧光轮上中心对称设置的荧光粉设置区域和中心对称设置的透射区域,其中所述荧光粉设置区域用于接收所述激光并生成所述第二色光,所述透射区域用于透射所述激光,所述透射区域至少包括第一透射区域和第二透射区域,所述第一透射区域和所述第二透射区域中心对称;
    所述激光投影机还包括一反射镜组,所述反射镜组设置在所述荧光轮的远离所述二向色镜组件的一侧,所述反射镜组用于接收所述第一透射区域透射出的激光,并将所述激光反射使所述第一透射区域透射出的激光通过所述第二透射区域后照射在所述第一反射镜上;
    所述第一反射镜还用于,将所述反射镜组反射过来的所述激光反射到所述第二二向色区域。
  20. 根据权利要求18或19所述的激光投影机,其特征在于,所述第一荧光区域和所述第二荧光区域相对于所述荧光轮的轴心同心设置,所述第一荧光区域与所述荧光轮的轴心之间的距离小于所述第二荧光区域与所述荧光轮的轴心之间的距离。
  21. 根据权利要求18-20中任一项所述的激光投影机,其特征在于,所述荧光轮的轴向与所述激光器的出光方向相平行。
  22. 根据权利要求18-21中任一项所述的激光投影机,其特征在于,所述二向色镜组件的轴向与所述激光器的出光方向之间的夹角是45度。
  23. 根据权利要求18-22中任一项所述的激光投影机,其特征在于,所述第一反射镜与所述二向色镜组件的轴向之间的夹角是90度。
  24. 根据权利要求19-23中任一项所述的激光投影机,其特征在于,所述反射镜组包括分离设置的第二反射镜和第三反射镜,所述第二反射镜与所述二向色镜组件的轴向相平行,所述第三反射镜与所述二向色镜组件的轴向之间的夹角是90度。
  25. 一种激光投影机,其特征在于,包括激光器、第一二向色镜组件,第二二向色镜组件、透射式荧光轮、第一反射镜以及第二反射镜,其中:
    所述激光器被配置为提供激光;
    所述第一二向色镜组件包括第一透射区域、第一反射区域和第一转轴,所述第一二向色镜组件设置在所述激光器的出光方向上,且所述第一转轴的轴向与所述激光器的出光方向成预设夹角,以使得在所述第一二向色镜组件围绕所述第一转轴转动时,所述激光器出射的光线分别照射在所述第一透射区域和所述第一反射区域,其中,所述第一透射区域用于透射所述激光,所述第一反射区域用于反射所述激光;
    所述透射式荧光轮包括第一荧光区域和第二荧光区域,所述荧光轮设置在所述第一二向色镜组件的远离所述激光器的方向上,其中,所述第一荧光区域用于接收所述第一反射镜反射的所述激光以产生第一色光,并将所述第一色光透射至所述第二反射镜;所述第二荧光区域用于接收所述第一透射区域透射的激光以产生第二色光,并将所述第二色光透射至所述第二二向色镜组件;
    所述第一反射镜设置在所述第一反射区域反射的所述激光的传播方向上,并将所述第一反射区域反射的所述激光反射到所述第一荧光区域;
    所述第二反射镜被配置为将所述荧光轮发出的第一色光反射到所述第二二向色镜组件;
    所述第二二向色镜组件设置在所述荧光轮的远离所述激光器的一侧,所述第二二向色镜组件包括第二透射区域、第二反射区域和第二转轴,所述第二转轴的轴向与所述激光器的出光方向存在预设夹角,所述第二透射区域用于透射所述第二反射镜反射的所述第一色光,所述第二反射区域用于反射所述荧光轮发出的第二色光。
  26. 根据权利要求25所述的激光投影机,其特征在于,所述第二荧光区域包括荧光粉设置区域和透射区域,其中所述荧光粉设置区域用于接收所述激光并生成所述第二色光,所述透射区域用于透射所述激光;
    所述第二反射区域还用于反射所述透射区域透射的激光。
  27. 根据权利要求25或26所述的激光投影机,其特征在于,所述第一荧光区域和所述第二荧光区域相对于所述荧光轮的轴心同心设置,所述第一荧光区域与所述荧光轮的轴心之间的距离小于所述第二荧光区域与所述荧光轮的轴心之间的距离。
  28. 根据权利要求25-27中任一项所述的激光投影机,其特征在于,所述荧光轮的轴向与所述激光器的出光方向相平行。
  29. 根据权利要求25-28中任一项的激光投影机,其特征在于,所述第一二向色镜组件的轴向与所述激光器的出光方向之间的夹角是45度。
  30. 根据权利要求25-29中任一项所述的激光投影机,其特征在于,所述第二二向色镜组件的轴向与所述第一二向色镜组件的轴向相互垂直。
  31. 根据权利要求25-30中任一项所述的激光投影机,其特征在于,所述第一反射镜与所述第一二向色镜组件的轴向之间的夹角是90度。
  32. 根据权利要求25-31中任一项所述的激光投影机,其特征在于,所述第二反射镜与所述第一二向色镜组件的轴向相平行。
PCT/CN2017/116660 2017-08-11 2017-12-15 激光投影机 WO2019029085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710683769.1A CN107315311B (zh) 2017-08-11 2017-08-11 光源模组和激光投影机
CN201710683769.1 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019029085A1 true WO2019029085A1 (zh) 2019-02-14

Family

ID=60175659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116660 WO2019029085A1 (zh) 2017-08-11 2017-12-15 激光投影机

Country Status (2)

Country Link
CN (1) CN107315311B (zh)
WO (1) WO2019029085A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089448A1 (de) * 2021-05-11 2022-11-16 RIEGL Laser Measurement Systems GmbH Vorrichtung zum lenken eines lichtstrahls

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315311B (zh) * 2017-08-11 2019-09-20 青岛海信电器股份有限公司 光源模组和激光投影机
CN108535944B (zh) * 2018-04-16 2021-04-13 成都九天光学技术有限公司 激光光源及其控制方法
CN108628076A (zh) * 2018-06-25 2018-10-09 成都九天光学技术有限公司 一种高激发效率的投影机光源***
CN110967901A (zh) * 2018-09-30 2020-04-07 无锡视美乐激光显示科技有限公司 一种激光光源***及激光投影机
CN111856860B (zh) * 2019-04-24 2023-05-12 深圳光峰科技股份有限公司 光源***和显示设备
CN111856858B (zh) * 2019-04-24 2023-05-05 深圳光峰科技股份有限公司 一种光源***及投影***
CN110673328B (zh) * 2019-10-10 2021-05-07 成都极米科技股份有限公司 一种荧光轮、光源模组和投影机
CN110716380B (zh) * 2019-11-25 2021-05-18 成都极米科技股份有限公司 一种光源***及投影机
CN111025832B (zh) * 2019-12-19 2021-12-07 青岛海信激光显示股份有限公司 激光投影设备及其开机方法、关机方法
CN111736416A (zh) * 2020-07-29 2020-10-02 无锡视美乐激光显示科技有限公司 荧光光路及其控制装置、***及投影机光源
CN111752082B (zh) * 2020-07-31 2021-12-31 无锡视美乐激光显示科技有限公司 光源装置及投影***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731381B2 (ja) * 1999-05-12 2006-01-05 セイコーエプソン株式会社 液晶プロジェクタ
US20070091285A1 (en) * 2005-10-20 2007-04-26 Taiwan Micro Display Corporation LCOS optical engine illumination system
CN102722076A (zh) * 2011-03-28 2012-10-10 卡西欧计算机株式会社 投影装置及投影方法
US20130242534A1 (en) * 2011-10-13 2013-09-19 Texas Instruments Incorporated Projector light source and system, including configuration for display of 3d images
CN106886124A (zh) * 2015-12-16 2017-06-23 深圳市绎立锐光科技开发有限公司 一种分束装置、光源***及投影***
CN107315311A (zh) * 2017-08-11 2017-11-03 青岛海信电器股份有限公司 光源模组和激光投影机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041064A1 (en) * 2000-11-17 2002-05-23 Universal Imaging Corporation Rapidly changing dichroic beamsplitter
US20100202129A1 (en) * 2009-01-21 2010-08-12 Abu-Ageel Nayef M Illumination system utilizing wavelength conversion materials and light recycling
JP4711154B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
US8496352B2 (en) * 2010-02-26 2013-07-30 Texas Instruments Incorporated Wavelength conversion
US8419188B2 (en) * 2010-04-07 2013-04-16 Microvision, Inc. Dichroic wedge stack light combining apparatus, system and method
CN103186025B (zh) * 2013-03-19 2015-04-29 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731381B2 (ja) * 1999-05-12 2006-01-05 セイコーエプソン株式会社 液晶プロジェクタ
US20070091285A1 (en) * 2005-10-20 2007-04-26 Taiwan Micro Display Corporation LCOS optical engine illumination system
CN102722076A (zh) * 2011-03-28 2012-10-10 卡西欧计算机株式会社 投影装置及投影方法
US20130242534A1 (en) * 2011-10-13 2013-09-19 Texas Instruments Incorporated Projector light source and system, including configuration for display of 3d images
CN106886124A (zh) * 2015-12-16 2017-06-23 深圳市绎立锐光科技开发有限公司 一种分束装置、光源***及投影***
CN107315311A (zh) * 2017-08-11 2017-11-03 青岛海信电器股份有限公司 光源模组和激光投影机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089448A1 (de) * 2021-05-11 2022-11-16 RIEGL Laser Measurement Systems GmbH Vorrichtung zum lenken eines lichtstrahls

Also Published As

Publication number Publication date
CN107315311B (zh) 2019-09-20
CN107315311A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
WO2019029085A1 (zh) 激光投影机
JP6392934B2 (ja) 光源システム及び投影装置
JP5987368B2 (ja) 照明装置および投射装置
US9325955B2 (en) Light source apparatus and projector apparatus with optical system having reduced color irregularity
US9249949B2 (en) Lighting device and projection-type display device using the same including a color-combining prism
JP2024023800A (ja) 光源装置、画像投射装置及び光源光学系
JP6836132B2 (ja) 光学装置、光源装置、およびプロジェクター
JP7031567B2 (ja) 光源光学系、光源装置及び画像投射装置
JP6458390B2 (ja) 光源装置及びこの光源装置を備えたプロジェクタ
CN110412817B (zh) 投影装置以及照明***
JP6244558B2 (ja) 光源装置及び投写型映像表示装置
JP7460970B2 (ja) 光学ホイール、光源装置及び投影装置
JP6464644B2 (ja) 光源装置及びこの光源装置を備えたプロジェクタ
TW201348844A (zh) 數位光處理投影機
JP7413740B2 (ja) 光源装置、画像投射装置及び光源光学系
JP2016177272A (ja) 光源装置および投写型表示装置
JP6350013B2 (ja) 照明光源装置及び画像投影装置
JP7330787B2 (ja) 光源装置およびこれを備える画像投射装置
JP2018146691A (ja) 投写型映像表示装置
US11953816B2 (en) Wavelength conversion plate, light source device, and image projection apparatus
JP2023024245A (ja) 波長変換プレート、光源装置および画像投射装置
US10996457B2 (en) Wheel apparatus, light source apparatus, and projection-type image display apparatus
JP6931770B2 (ja) 蛍光体ホイール装置、光源装置、及び投写型映像表示装置
JP2017211603A (ja) 光源装置及び投写型映像表示装置
JP2016118604A (ja) 回転光学素子装置、照明装置および画像投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921274

Country of ref document: EP

Kind code of ref document: A1