WO2019028801A1 - 一种信号发送、接收方法及装置 - Google Patents

一种信号发送、接收方法及装置 Download PDF

Info

Publication number
WO2019028801A1
WO2019028801A1 PCT/CN2017/096960 CN2017096960W WO2019028801A1 WO 2019028801 A1 WO2019028801 A1 WO 2019028801A1 CN 2017096960 W CN2017096960 W CN 2017096960W WO 2019028801 A1 WO2019028801 A1 WO 2019028801A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble
group
uplink
uplink subframe
network device
Prior art date
Application number
PCT/CN2017/096960
Other languages
English (en)
French (fr)
Inventor
陈哲
罗之虎
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020002784-7A priority Critical patent/BR112020002784A2/pt
Priority to CN201780091512.5A priority patent/CN110692209B/zh
Priority to PCT/CN2017/096960 priority patent/WO2019028801A1/zh
Priority to JP2020506991A priority patent/JP2020530239A/ja
Priority to EP17920628.9A priority patent/EP3667960B1/en
Publication of WO2019028801A1 publication Critical patent/WO2019028801A1/zh
Priority to US16/786,408 priority patent/US11382078B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a signal transmitting and receiving method and apparatus.
  • the 3rd Generation Partnership Project (3GPP) of the Mobile Communications Standardization Organization proposes the Narrowband Internet of Things (NB-IOT) technology.
  • the device supporting NB-IoT has a bandwidth of 180 kHz when transmitting data, and supports operation in Standalone operation, Guardband operation, and In-band operation.
  • the in-band mode refers to using one or more resource blocks in one carrier to transmit NB-IoT service data in a Long Term Evolution (LTE) system, where one resource block has a bandwidth of 180 kHz.
  • LTE Long Term Evolution
  • the NB-IOT technology is divided into time division duplex (TDD) NB-IoT and frequency division duplex (FDD) NB-IoT.
  • TDD time division duplex
  • FDD frequency division duplex
  • a terminal device needs to access a base station by means of random access.
  • the FDD NB-IoT the terminal device needs to transmit a random access preamble on a narrowband Physical Random Access Channel (NPRACH) channel.
  • NPRACH Physical Random Access Channel
  • a preamble is composed of one or more repeating units, and each repeating unit is composed of four sets of symbols, each of which has a length of at least 1.4 ms, that is, a continuous uplink resource occupied by one preamble has a length of at least 5.6 ms.
  • the continuous uplink resource has a maximum length of only 3 subframes (ie, 3 ms), so the terminal device cannot send the preamble to the network device through 3 subframes.
  • the terminal device in the TDD NB-IoT, how the terminal device sends the preamble is an urgent problem to be solved.
  • the purpose of the embodiment of the present application is to provide a signal sending and receiving method and device, which are used to solve the problem that a terminal device cannot send a preamble in the TDD NB-IOT.
  • an embodiment of the present application provides a signaling method, including:
  • the terminal device generates a first symbol group that carries the first preamble; the first symbol group includes four groups of symbols;
  • the terminal device sends the first symbol group to the network device by using the K group uplink subframe; any two uplink subframes in the K group uplink subframe are not adjacent, and each group in the K group uplink subframe
  • the uplink subframe includes at least one uplink subframe, and the uplink subframe included in each group of uplink subframes is a continuous subframe, and K is a positive integer greater than 1 and less than or equal to 4.
  • the terminal device sends the first preamble to the network device through the K group uplink subframe, so that the preamble is transmitted in the TDD NB-IoT by using the K group uplink subframe without changing the hardware structure of the terminal device. Even if the terminal device works in the in-band mode of the TDD NB-IoT, the terminal device can transmit the preamble by using the uplink resources dispersed in the uplink subframe of the K group, thereby maximally maintaining the structure of the existing preamble signal, so that the TDD is supported. /FDD NB-IoT's dual-mode terminal equipment can use the same set of transmitting devices to transmit preamble signals, reducing the cost of dual-mode terminal equipment that needs to support TDD/FDD NB-IoT.
  • K is 2, and each group of uplink subframes in the K group uplink subframe is used to send two groups of symbols in the first symbol group.
  • the first symbol group is sent through two sets of uplink subframes, and the sending week of the first preamble can be minimized. Period, thereby reducing the delay of the first preamble and improving the system.
  • K is 4, and each group of uplink subframes in the K group uplink subframe is used to send one group of symbols in the first symbol group.
  • the first symbol group carrying the first preamble is transmitted through the four uplink subframes, and the preamble transmission is completed on the premise of maintaining the structure of the existing preamble signal, so that the network device can be in the TDD NB-
  • the preamble is transmitted under the IoT to improve the compatibility of the TDD NB-IoT and the TDD LTE system.
  • the method further includes: the terminal device sends a second symbol group to the network device by using the K group uplink subframe; and the second symbol group is configured to carry a second preamble code.
  • the terminal device reduces the influence of the frequency offset and the Doppler shift on the uplink synchronization performance by transmitting two preambles at the same time, and improves the uplink synchronization precision.
  • a difference between an initial subcarrier number corresponding to the second preamble and an initial subcarrier number corresponding to the first preamble is a preset value.
  • the second preamble is a preamble that is different from the first preamble randomly selected by the terminal device from the preamble set, where the preamble set includes at least two a preamble, where the preamble in the preamble set is configured for the network device.
  • an embodiment of the present application provides a terminal device, where the terminal device includes a memory, a transceiver, and a processor, where: the memory is used to store an instruction; the processor is configured to perform, according to an instruction for executing the memory, and control the transceiver. Signal reception and signal transmission, when the processor executes an instruction stored in the memory, the terminal device is configured to perform the method in any of the possible aspects of the first aspect or the first aspect described above.
  • the embodiment of the present application provides a terminal device, which is used to implement any one of the foregoing first aspect or the first aspect, including a corresponding functional module, for example, including a processing unit, a transceiver unit, a processing unit, and the like. Used to implement the steps in the above methods.
  • an embodiment of the present application provides a computer readable storage medium, where the computer storage medium stores computer readable instructions, and when the computer reads and executes the computer readable instructions, causes the computer to execute the first Aspect or method of any of the possible aspects of the first aspect.
  • the embodiment of the present application provides a computer program product, when the computer reads and executes the computer program product, causing the computer to perform the method in any one of the foregoing first aspect or the first aspect.
  • an embodiment of the present application provides a chip, where the chip is connected to a memory, for reading and executing a software program stored in the memory, to implement any of the foregoing first aspect or the first aspect.
  • the method in the design is not limited to:
  • the embodiment of the present application provides a signal receiving method, including:
  • the network device receives the first symbol group sent by the terminal device through the K group uplink subframe; any two uplink subframes in the K group uplink subframe are not adjacent, and the first symbol group is used to carry the first preamble
  • the first symbol group includes four groups of symbols; each of the K groups of uplink subframes includes at least one uplink subframe, and the uplink subframes included in each group of uplink subframes are consecutive subframes.
  • K is a positive integer greater than 1 and less than or equal to 4
  • the network device sends a random access response to the terminal device.
  • K is 2;
  • Each group of uplink subframes in the K group uplink subframe is used to send two groups of symbols in the first symbol group.
  • K is 4;
  • Each group of uplink subframes in the K group uplink subframe is used to send one group of symbols in the first symbol group.
  • the method further includes:
  • the network device receives the second symbol group by using the K group uplink subframe; the second symbol group is configured to carry the second preamble.
  • a difference between an initial subcarrier number corresponding to the second preamble and an initial subcarrier number corresponding to the first preamble is a preset value.
  • the second preamble is a preamble that is different from the first preamble randomly selected by the terminal device from the preamble set, where the preamble set includes at least two a preamble, where the preamble in the preamble set is configured for the network device.
  • an embodiment of the present application provides a network device, where the network device includes a memory, a transceiver, and a processor, where: the memory is used to store an instruction; the processor is configured to perform, according to an instruction to execute the memory storage, and control the transceiver. Signal reception and signal transmission, when the processor executes an instruction stored in the memory, the network device is operative to perform the method in any of the possible aspects of the seventh aspect or the seventh aspect described above.
  • the ninth aspect the embodiment of the present application provides a network device, which is used to implement any one of the foregoing seventh or seventh aspects, including a corresponding functional module, for example, including a processing unit, a transceiver unit, a processing unit, and the like. Used to implement the steps in the above methods.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable medium stores computer readable instructions, and when the computer reads and executes the computer readable instructions, causes the computer to execute the seventh Aspect or method of any of the possible aspects of the seventh aspect.
  • the embodiment of the present application provides a computer program product, when the computer reads and executes the computer program product, causing the computer to perform the method in any one of the seventh aspect or the seventh aspect. .
  • the embodiment of the present application provides a chip, where the chip is connected to a memory, and is configured to read and execute a software program stored in the memory, to implement any one of the seventh aspect or the seventh aspect. Possible methods in design.
  • FIG. 1 is a schematic diagram showing a system architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a bandwidth provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a bandwidth provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a signal sending method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a symbol provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of sending a preamble according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of sending a preamble according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of sending a preamble according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a preamble frequency hopping according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of sending a preamble according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • NR New Radio
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE Evolved Long Term Evolution
  • FIG. 1 is a schematic diagram showing a system architecture applicable to the embodiment of the present application.
  • the network device and the terminal device 1 to the terminal device 6 form a communication system, in which the network device sends The information is sent to one or more of the terminal devices 1 to 6 .
  • the terminal device 4 to the terminal device 6 also constitute a communication system in which the terminal device 5 can transmit information to one or more of the terminal device 4 and the terminal device 6.
  • the terminal device may communicate with the core network via the network device, where the terminal device may be a user equipment (User Equipment, UE), an access terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, or a remote station. , a remote terminal device, a mobile device, a user terminal device, a terminal device, a wireless communication device, a user agent, or a user device.
  • the access terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless device.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a network device which may be referred to as a radio access network (RAN) device, is hereinafter collectively referred to as a network device, and is mainly responsible for providing a wireless connection for the terminal device and ensuring reliable transmission of uplink and downlink data of the terminal device.
  • the network device can be a gNB (generation Node B) in a 5G system, and can be a Global System of Mobile communication (GSM) system or a base station in Code Division Multiple Access (CDMA) (Base Transceiver Station).
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or may be an evolved base station in a Long Term Evolution (LTE) system ( Evolutional Node B, eNB or eNodeB), etc.
  • NodeB Node B
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the terminal device may work in any one of an independent mode, a guard band mode, and an in-band mode, and send a preamble to the network device in any one of the foregoing modes.
  • the terminal device works in the independent mode
  • one or more carriers in the GSM network can be used to transmit the NB-IoT service data, and the bandwidth of the independent carrier is 180 kHz.
  • one or more resource blocks in one carrier in the LTE system may be used to transmit the NB-IoT service data, where the bandwidth of one resource block is 180 kHz. Specifically, it can be as shown in Figure 2.
  • an LTE carrier may be divided into multiple resource blocks, each of which has a bandwidth of 180 kHz.
  • the terminal device in the NB-IoT may use one or more resource blocks to transmit the NB-IoT service data.
  • the NB-IoT service data can be transmitted by using the carrier protection band in the LTE system, wherein the bandwidth of the occupied guard band is 180 kHz. Specifically, it can be as shown in FIG. 3.
  • the terminal device in the NB-IoT can transmit the NB-IoT service data using the protection bandwidth of the LTE carrier.
  • FIG. 4 it is a schematic flowchart of a signal sending method provided by an embodiment of the present application.
  • the method includes:
  • Step 401 The terminal device generates a first symbol group that carries a first preamble, where the first symbol group includes four groups of symbols.
  • Step 402 The terminal device sends the first symbol group to the network device by using the K group uplink subframe; any two uplink subframes in the K group uplink subframe are not adjacent, and each of the K group uplink subframes
  • the group uplink subframe includes at least one uplink subframe, and the uplink subframe included in each group uplink subframe is a continuous subframe, and K is a positive integer greater than 1 and less than or equal to 4.
  • any two sets of uplink subframes in the K group uplink subframe are not adjacent, that is, any two uplink subframes in the K group uplink subframe are discontinuous in time.
  • Step 403 The network device receives the first symbol group sent by the terminal device through the K group uplink subframe.
  • Step 404 The network device performs uplink synchronization measurement on the terminal according to the first preamble.
  • the first preamble may be randomly selected by the terminal device from the available preamble, or may be a preamble specified by the network device for the terminal device, which is not limited in this embodiment of the present application.
  • Each set of symbols in the first symbol group includes one cyclic prefix and five symbols, as shown in FIG. 5.
  • the first part of a set of symbols is a cyclic prefix.
  • the length of the cyclic prefix is 66.7 ⁇ s or 266.67 ⁇ s.
  • the cyclic prefix is followed by 5 symbols for transmitting the preamble.
  • the length of each symbol is 266.67 ⁇ s.
  • Each preamble requires 4 sets of symbols.
  • the meaning of the symbol includes, but is not limited to, Orthogonal Frequency Division Multiplexing (OFDM) symbol, Sparse Code Multiplexing Access (SCMA) symbol. Filtered Orthogonal Frequency Division Multiplexing (F-OFDM) symbols, non-Orthogonal Multiple Access (NOMA) symbols, etc., which can be determined according to actual conditions. Let me repeat.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SCMA Sparse Code Multiplexing Access
  • F-OFDM Filtered Orthogonal Frequency Division Multiplexing
  • NOMA non-Orthogonal Multiple Access
  • the K group uplink subframes may be located in the same radio frame.
  • the K group uplink subframes may not be located in the same radio frame.
  • each group of uplink subframes in the K group uplink subframe includes at least one uplink subframe, and the at least one uplink subframe is a continuous subframe.
  • the consecutive subframes are consecutive in time from the first subframe to the last subframe.
  • one radio frame includes 10 subframes, and the 10 subframes included in the radio frame are continuous in time. It is considered to be 10 consecutive subframes.
  • the NB-IOT technology needs to be compatible with the LTE system. Therefore, the subframe used in the NB-IOT technology may refer to a subframe defined in the LTE system.
  • the TDD LTE system has seven uplink-downlink configurations, which are uplink and downlink configuration 0 to uplink and downlink configuration 6, wherein the subframe used for transmitting the downlink signal is a downlink subframe, represented by D;
  • the subframe of the uplink signal is an uplink subframe, denoted by U; and the downlink subframe and the uplink subframe are separated by a special subframe, which is denoted by S.
  • the specific content of the seven uplink and downlink configurations can be referred to Table 1.
  • each group of uplink subframes may include one uplink subframe, or include two consecutive uplink subframes, or include 3 consecutive uplink subframes.
  • each group of uplink subframes in the K group uplink subframe is used to send at least one group of symbols in the first symbol group.
  • a group of uplink subframes includes one uplink subframe in the uplink subframe of the K group, in order to enable the terminal device to send a group of symbols in the first symbol group in the group of uplink subframes, according to the subcarrier spacing and The length of the symbol is inversely proportional to increase the subcarrier spacing of the uplink subframe of the group, thereby reducing the length of the symbol, thereby implementing more symbols in the uplink subframe.
  • the subcarrier spacing of the set of uplink subframes is adjusted from 15 kHz to 30 kHz, so that the number of symbols transmitted in each uplink subframe in the group of uplink subframes is increased from 14 to 28.
  • the symbols in a group of symbols can also be split. For example, in a group of uplink subframes, only the first 4 symbols of a group of symbols in the first symbol group are transmitted, and the last symbol of the group of symbols is Another set of symbols is sent in another set of uplink subframes.
  • the uplink subframe included in any one of the uplink subframes of the K group uplink subframe is composed of at least one uplink subframe included in the first 5 ms of one radio frame, or is composed of one At least one uplink subframe included in the last 5 ms of the radio frame is constructed.
  • the uplink and downlink configuration type of the radio frame is the uplink and downlink configuration 0, and the uplink subframe in the first 5 ms of the radio frame is the subframe 2, the subframe 3, and the subframe 4; Any one of the uplink subframes in the frame, where the uplink subframe may be the subframe 2 in the radio frame, or the subframe 2 and the subframe 3 in the radio frame, or the subframe 2 in the radio frame Subframe 3 and subframe 4 are constructed.
  • the uplink and downlink configuration type of the radio frame is the uplink and downlink configuration 1, and the uplink subframe in the last 5 ms of the radio frame is the subframe 7 and the subframe 8; and any group of the uplink subframes of the K group is uplinked.
  • the subframe, the group of uplink subframes may be composed of subframes 7 in the radio frame, or may be composed of subframes 7 and 8 in the radio frame.
  • K may be 2 or 3 or 4, which are respectively described below.
  • each group of uplink subframes in the K group uplink subframe may be used to send two groups of symbols in the first symbol group, or a group of uplink subframes in the K group uplink subframe.
  • the frame may be used to send three groups of symbols in the first symbol group, and another group of uplink subframes may be used to send one group of symbols in the first symbol group, thereby implementing sending by using the K group uplink subframe. 4 sets of symbols in the first symbol group.
  • FIG. 6 a schematic diagram of preamble transmission provided by an embodiment of the present application is shown.
  • the first symbol group carrying the first preamble includes a first group symbol, a second group symbol, a third group symbol, and a fourth group symbol.
  • K is 2
  • the K group uplink subframe includes the first group uplink subframe and the second group uplink subframe
  • the K group uplink subframes may be located in the same radio frame
  • each group of uplink subframes in the K group uplink subframes Includes 3 consecutive uplink subframes.
  • the first group of uplink subframes in the K group uplink subframe is used to transmit the first group symbol and the second group symbol
  • the second group uplink subframe in the K group uplink subframe is used to send the third group symbol , the fourth group of symbols.
  • a preamble may be sent multiple times.
  • the terminal device may repeatedly transmit the preamble multiple times according to the time length of one radio frame in the manner of FIG. 6.
  • the second case: K is 3
  • a group of uplink subframes in the K group uplink subframe may be used to send two groups of symbols in the first symbol group, and each group of uplink subframes in the remaining two uplink subframes may be used. Sending a set of symbols in the first symbol group.
  • FIG. 7 a schematic diagram of preamble transmission provided by an embodiment of the present application.
  • the first symbol group carrying the first preamble includes a first group symbol, a second group symbol, a third group symbol, and a fourth group symbol.
  • K is 3
  • the K group uplink subframe includes a first group uplink subframe, a second group uplink subframe, and a third group uplink subframe
  • the K group uplink subframe is located in two radio frames
  • Each group of uplink subframes includes three consecutive uplink subframes.
  • the first group of uplink subframes in the K group uplink subframe is used to transmit the first group symbol and the second group symbol; and the second group uplink subframe in the K group uplink subframe is used to send the third group symbol The third group of uplink subframes in the K group uplink subframe is used to send the fourth group of symbols.
  • a preamble may be sent multiple times.
  • the terminal device may repeatedly transmit the preamble multiple times according to the time length of two radio frames in the manner of FIG. 7.
  • the third case: K is 4
  • each group of uplink subframes in the K group uplink subframe may be used to send one group of symbols in the first symbol group.
  • FIG. 8 it is a schematic diagram of a preamble transmission provided by an embodiment of the present application.
  • the first symbol group carrying the first preamble includes a first group symbol, a second group symbol, a third group symbol, and a fourth group symbol.
  • K is 8
  • the K group uplink subframe includes a first group uplink subframe, a second group uplink subframe, a third group uplink subframe, and a fourth group uplink subframe
  • the K group uplink subframe is located in two radio frames.
  • Each group of uplink subframes in the K group uplink subframe includes three consecutive uplink subframes.
  • the first group of uplink subframes in the K group uplink subframe is used to send the first group of symbols; the second group uplink subframe in the K group uplink subframe is used to send the second group of symbols;
  • the third group of uplink subframes in the uplink subframe is used to transmit the third group of symbols; and the fourth group of uplink subframes in the K group of uplink subframes is used to send the fourth group of symbols.
  • a preamble may be sent multiple times.
  • the terminal device may repeatedly transmit the preamble multiple times according to the time length of two radio frames in the manner of FIG. 8.
  • FIG. 9 is a schematic diagram of a preamble frequency hopping provided by an embodiment of the present application.
  • the four sets of symbols carrying the preamble are represented by gray-filled rectangles and numbers, and are recorded as 1, 2, 3, and 4 in chronological order.
  • the preamble has two hopping intervals on the PRACH in one transmission period, which are 3.75 kHz and 22.5 kHz, respectively.
  • the hopping interval is an integer multiple of the subcarrier bandwidth, and the minimum hopping interval and the subcarrier bandwidth are the same.
  • the frequency hopping interval between the first group of symbols and the second group of symbols is 3.75 kHz
  • the frequency hopping interval between the third group of symbols and the fourth group of symbols is 22.5 kHz
  • the frequency hopping interval between the second set of symbols and the third set of symbols is 22.5 kHz.
  • Pseudo-random frequency hopping is used between two adjacent transmission periods, and the frequency hopping range is limited to 12 sub-carriers.
  • the terminal device may send multiple preambles at the same time.
  • the terminal device may randomly select two preambles from the preamble set, and send the selected two preambles through the K group uplink subframe, where the subcarriers of the symbol group carrying each preamble are different.
  • the terminal device may send the second symbol group to the network device by using the K group uplink subframe; the second symbol group is configured to carry the second preamble.
  • the second symbol group also includes four sets of symbols. For details, refer to the description of the first symbol group, and details are not described herein again.
  • the difference between the initial subcarrier number corresponding to the second preamble and the initial subcarrier number corresponding to the first preamble may be a preset value. Since the initial subcarrier number corresponding to each preamble can uniquely determine one preamble, after the terminal device determines the first preamble, the second preamble can be uniquely determined.
  • the preset value may be determined according to actual conditions, and details are not described herein again.
  • the second preamble may also be a preamble that is different from the first preamble that is randomly selected by the terminal device from the preamble set, where the preamble set includes at least two preambles, and the preamble in the preamble set Configuring the network device for the terminal device.
  • the preamble in the preamble set may be a complete set of all optional preambles of the terminal device, or may be a subset of all preamble sets configured by the network device, such as: a preamble included in the preamble set.
  • the code is that all the preambles whose difference between the initial subcarrier number corresponding to the preamble and the initial subcarrier number corresponding to the first preamble is not less than a preset threshold.
  • FIG. 10 is a schematic diagram of a preamble transmission according to an embodiment of the present application.
  • K is 2
  • the K group uplink subframe includes the first group uplink subframe and the second group uplink subframe
  • the K group uplink subframe may be located in the same radio frame
  • the group uplink subframe includes three consecutive uplink subframes.
  • the first symbol group carrying the first preamble includes a first group symbol, a second group symbol, a third group symbol, and a fourth group symbol.
  • the first group of uplink subframes in the K group uplink subframe is used to send the first two groups of symbols in the first symbol group carrying the first preamble, and the first two in the second symbol group carrying the second preamble a group symbol;
  • the second group uplink subframe in the K group uplink subframe is used to send the last two groups of symbols in the first symbol group carrying the first preamble, and in the second symbol group carrying the second preamble The last two sets of symbols.
  • the symbols in the first symbol group and the symbols in the second symbol group are different in the subcarriers when transmitting.
  • a preamble may be sent multiple times.
  • the terminal device may repeatedly transmit the first preamble and the second preamble multiple times according to the time length of one radio frame in the manner of FIG.
  • step 403 after the network device receives the first preamble sent by the terminal device, in step 404, the network device performs uplink synchronization measurement on the terminal device according to the first preamble, and the uplink synchronization measurement is specific.
  • the content of the application is not limited in this embodiment. For example, the difference between the actual time when the signal sent by the terminal device reaches the network device and the time predicted by the network device may be measured, and the network device may thereby The terminal device is uplink synchronized.
  • the network device may perform uplink synchronization measurement on the terminal device according to the second preamble, so as to implement uplink synchronization on the terminal by using two preambles, thereby reducing frequency offset and uplink synchronization performance. Influence, improve the accuracy of uplink synchronization.
  • the terminal device may be used to perform the operations of the terminal device in the foregoing method embodiments.
  • the terminal device 1100 includes: a processing unit 1101 and a transceiver unit 1102. .
  • the processing unit 1101 is configured to generate a first symbol group that carries the first preamble; the first symbol group includes four groups of symbols;
  • the transceiver unit 1102 is configured to send, by the K group uplink subframe, the first symbol group generated by the processing unit 1101 to the network device; any two uplink subframes in the K group uplink subframe are not adjacent.
  • Each of the uplink subframes of the K-group uplink subframe includes at least one uplink subframe, and the uplink subframes included in each group of uplink subframes are consecutive subframes, and K is a positive integer greater than 1 and less than or equal to 4.
  • K is 2;
  • Each group of uplink subframes in the K group uplink subframe is used to send two groups of symbols in the first symbol group.
  • K is 4;
  • Each group of uplink subframes in the K group uplink subframe is used to send one group of symbols in the first symbol group.
  • the transceiver unit 1102 is further configured to:
  • the K group uplink subframe Transmitting, by the K group uplink subframe, a second symbol group to the network device; the second symbol group is configured to carry a second preamble.
  • a difference between an initial subcarrier number corresponding to the second preamble and an initial subcarrier number corresponding to the first preamble is a preset value.
  • the second preamble is a preamble that is different from the first preamble randomly selected by the terminal device from the preamble set, where the preamble set includes at least two a preamble, where the preamble in the preamble set is configured for the network device.
  • the terminal device 1200 includes: a processor 1201 and a transceiver 1202.
  • the processor 1201 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor 1201 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 1203 may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory 1203 may also include a combination of the above types of memories.
  • the communication interface 1204 can be a wired communication access port, a wireless communication interface, or a combination thereof, wherein the wired communication interface can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless communication interface can be a WLAN interface.
  • the bus 1205 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one double-headed arrow is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the memory 1203 can be used to store program instructions, the processor 1201 invoking the program instructions stored in the memory 1203, can perform one or more of the steps in the above-described embodiments, or an optional implementation thereof, such that access
  • the network node 1200 implements the functions in the above method.
  • the processor 1201 is configured to generate a first symbol group that carries the first preamble; the first symbol group includes four groups of symbols;
  • the transceiver 1202 is configured to send, by the K group uplink subframe, the first symbol group generated by the processor 1201 to the network device, where any two uplink subframes in the K group uplink subframe are not adjacent.
  • Each of the uplink subframes of the K-group uplink subframe includes at least one uplink subframe, and the uplink subframes included in each group of uplink subframes are consecutive subframes, and K is a positive integer greater than 1 and less than or equal to 4. .
  • K is 2;
  • Each group of uplink subframes in the K group uplink subframe is used to send two groups of symbols in the first symbol group.
  • K is 4;
  • Each group of uplink subframes in the K group uplink subframe is used to send one group of symbols in the first symbol group.
  • the transceiver 1202 is further configured to:
  • the K group uplink subframe Transmitting, by the K group uplink subframe, a second symbol group to the network device; the second symbol group is configured to carry a second preamble.
  • a difference between an initial subcarrier number corresponding to the second preamble and an initial subcarrier number corresponding to the first preamble is a preset value.
  • the second preamble is a preamble that is different from the first preamble randomly selected by the terminal device from the preamble set, where the preamble set includes at least two a preamble, where the preamble in the preamble set is configured for the network device.
  • the network device may be configured to perform the operations of the network device in the foregoing method embodiments.
  • the network device 1300 includes: a transceiver unit 1301 and a processing unit 1302. .
  • the transceiver unit 1301 is configured to receive a first symbol group that is sent by the terminal device by using the K group uplink subframe; any two uplink subframes of the K group uplink subframe are not adjacent, and the first symbol group is used for carrying a first preamble, the first symbol group includes four groups of symbols; each of the K groups of uplink subframes includes at least one uplink subframe, and the uplink subframe included in each group of uplink subframes is For consecutive sub-frames, K is a positive integer greater than 1 and less than or equal to 4.
  • the processing unit 1302 is configured to perform uplink synchronization measurement on the terminal according to the first preamble.
  • K is 2;
  • Each group of uplink subframes in the K group uplink subframe is used to send two groups of symbols in the first symbol group.
  • K is 4;
  • Each group of uplink subframes in the K group uplink subframe is used to send one group of symbols in the first symbol group.
  • the transceiver unit 1301 is further configured to:
  • the K group uplink subframe receives, by the K group uplink subframe, a second symbol group; the second symbol group is configured to carry a second preamble.
  • a difference between an initial subcarrier number corresponding to the second preamble and an initial subcarrier number corresponding to the first preamble is a preset value.
  • the second preamble is a preamble that is different from the first preamble randomly selected by the terminal device from the preamble set, where the preamble set includes at least two a preamble, where the preamble in the preamble set is configured for the network device.
  • the network device may be used to perform the operations of the network device in the foregoing method embodiments.
  • the network device 1400 includes: a processor 1401 and a transceiver 1402.
  • the processor 1401, the transceiver 1402, the memory 1403, and the communication interface 1404 are connected to each other through the bus 1405.
  • the memory 1403 can be used to store program instructions, and the processor 1401 calls the program instructions stored in the memory 1403 to execute:
  • the transceiver 1402 is configured to receive a first symbol group that is sent by the terminal device by using the K group uplink subframe; any two uplink subframes in the K group uplink subframe are not adjacent, and the first symbol group is used to carry the first a preamble, the first symbol group includes 4 groups of symbols; each group of uplink subframes in the K group uplink subframe includes at least one uplink subframe, and each group uplink
  • the uplink subframe included in the subframe is a continuous subframe, and K is a positive integer greater than 1 and less than or equal to 4.
  • the processor 1401 performs uplink synchronization measurement on the terminal according to the first preamble.
  • K is 2;
  • Each group of uplink subframes in the K group uplink subframe is used to send two groups of symbols in the first symbol group.
  • K is 4;
  • Each group of uplink subframes in the K group uplink subframe is used to send one group of symbols in the first symbol group.
  • the transceiver 1402 is further configured to:
  • the K group uplink subframe receives, by the K group uplink subframe, a second symbol group; the second symbol group is configured to carry a second preamble.
  • a difference between an initial subcarrier number corresponding to the second preamble and an initial subcarrier number corresponding to the first preamble is a preset value.
  • the second preamble is a preamble that is different from the first preamble randomly selected by the terminal device from the preamble set, where the preamble set includes at least two a preamble, where the preamble in the preamble set is configured for the network device.
  • each device embodiment may refer to related methods in the related method embodiments. Partial understanding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号发送、接收方法及装置,其中方法包括:终端设备生成承载第一前导码的第一符号组;所述第一符号组包括4组符号;所述终端设备通过K组上行子帧向网络设备发送所述第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述K组上行子帧中每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数。

Description

一种信号发送、接收方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种信号发送、接收方法及装置。
背景技术
移动通信标准化组织第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出了窄带物联网(Narrowband Internet of Things,NB-IOT)技术。支持NB-IoT的设备,在传输数据时使用的频带的带宽为180kHz,并支持以独立模式(Standalone operation)、保护带模式(Guardband operation)、带内模式(In-band operation)工作。其中,带内模式是指,利用长期演进(Long Term Evolution,LTE)***中,一个载波内的一个或多个资源块来传输NB-IoT业务数据,其中一个资源块的带宽为180kHz。
类似于LTE,NB-IOT技术分为时分双工(time division duplex,TDD)NB-IoT和频分双工(frequency division duplex,FDD)NB-IoT。NB-IOT技术中,终端设备需要通过随机接入的方式接入基站。FDD NB-IoT中,终端设备需要在窄带物理随机接入信道(Narrowband Physical Random Access Channel,NPRACH)信道上发送随机接入前导码(preamble)。一个preamble是由一个或多个重复单元组成,每个重复单元是由4组符号组成,每组符号的长度至少为1.4ms,即一个preamble占用的连续的上行资源的时间长度至少为5.6ms。然而,对于以带内模式部署的TDD NB-IoT,连续的上行资源最多只有3个子帧的时间长度(即3ms),因此终端设备无法通过3个子帧向网络设备发送preamble。综上,TDD NB-IoT中,终端设备如何发送preamble,是一个亟待解决的问题。
发明内容
本申请实施例的目的在于提供一种信号发送、接收方法及装置,用以解决在TDD NB-IOT中,终端设备无法发送preamble的问题。
第一方面,本申请实施例提供一种信号发送方法,包括:
终端设备生成承载第一前导码的第一符号组;所述第一符号组包括4组符号;
所述终端设备通过K组上行子帧向网络设备发送所述第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述K组上行子帧中每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数。
通过上述方法,终端设备通过K组上行子帧向网络设备发送第一前导码,实现在不改变终端设备硬件结构的情况下,利用K组上行子帧在TDD NB-IoT中传输前导码。即使终端设备工作于TDD NB-IoT的带内模式,终端设备也可以利用分散在K组上行子帧中的上行资源,传输前导码,从而最大限度维持现有前导码信号的结构,使得支持TDD/FDD NB-IoT的双模终端设备能够使用同一套发射装置发送preamble信号,降低了需要支持TDD/FDD NB-IoT的双模终端设备的成本。
一种可选地实施方式中,K为2,所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的2组符号。
上述方法中,通过2组上行子帧发送第一符号组,可以尽量减少第一前导码的发送周 期,从而减少第一前导码的时延,提高***。
一种可选地实施方式中,K为4,所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的1组符号。
上述方案中,通过4组上行子帧发送承载第一前导码的第一符号组,可以实现在维持现有前导码信号结构的前提下,完成前导码的发送,使得网络设备能够在TDD NB-IoT下发送前导码,提高TDD NB-IoT与TDD LTE***的兼容性。
一种可选地实施方式中,所述方法还包括:所述终端设备通过所述K组上行子帧向所述网络设备发送第二符号组;所述第二符号组用于承载第二前导码。
上述方法中,终端设备通过同时发送两个前导码,降低频偏和多普勒频移对上行同步性能的影响,改善上行同步精度。
一种可选地实施方式中,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
一种可选地实施方式中,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
第二方面,本申请实施例提供一种终端设备,所述终端设备包括存储器、收发机和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发机进行信号接收和信号发送,当处理器执行存储器存储的指令时,终端设备用于执行上述第一方面或第一方面中任一种可能的设计中的方法。
第三方面,本申请实施例提供一种终端设备,用于实现上述第一方面或第一方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、收发单元、处理单元等,分别用于实现以上方法中的步骤。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面或第一方面中任一种可能的设计中的方法。
第五方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面中任一种可能的设计中的方法。
第六方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面或第一方面中任一种可能的设计中的方法。
第七方面,本申请实施例提供一种信号接收方法,包括:
网络设备接收终端设备通过K组上行子帧发送的第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述第一符号组用于承载第一前导码,所述第一符号组包括4组符号;所述K组上行子帧中的每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数
所述网络设备向所述终端设备发送随机接入响应。
一种可选地实施方式中,K为2;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的2组符号。
一种可选地实施方式中,K为4;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的1组符号。
一种可选地实施方式中,所述方法还包括:
所述网络设备通过所述K组上行子帧接收第二符号组;所述第二符号组用于承载第二前导码。
一种可选地实施方式中,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
一种可选地实施方式中,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
第八方面,本申请实施例提供一种网络设备,所述网络设备包括存储器、收发机和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发机进行信号接收和信号发送,当处理器执行存储器存储的指令时,网络设备用于执行上述第七方面或第七方面中任一种可能的设计中的方法。
第九方面,本申请实施例提供一种网络设备,用于实现上述第七方面或第七方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、收发单元、处理单元等,分别用于实现以上方法中的步骤。
第十方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第七方面或第七方面中任一种可能的设计中的方法。
第十一方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第七方面或第七方面中任一种可能的设计中的方法。
第十二方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第七方面或第七方面中任一种可能的设计中的方法。
附图说明
图1示例性示出了适用于本申请实施例的一种***架构示意图;
图2为本申请实施例提供的一种带宽示意图;
图3为本申请实施例提供的一种带宽示意图;
图4为本申请实施例提供的一种信号发送方法流程示意图;
图5为本申请实施例提供的一种符号示意图;
图6为本申请实施例提供的一种前导码发送示意图;
图7为本申请实施例提供的一种前导码发送示意图;
图8为本申请实施例提供的一种前导码发送示意图;
图9为本申请实施例提供的一种前导码跳频示意图;
图10为本申请实施例提供的一种前导码发送示意图;
图11为本申请实施例提供的一种终端设备结构示意图;
图12为本申请实施例提供的一种终端设备结构示意图;
图13为本申请实施例提供的一种网络设备结构示意图;
图14为本申请实施例提供的一种网络设备结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以应用于各种移动通信***,例如:新无线(New Radio,NR)***、全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、演进的长期演进(evolved Long Term Evolution,eLTE)***等其它移动通信***。
图1示例性示出了适用于本申请实施例的一种***架构示意图,如图1所示,网络设备和终端设备1~终端设备6组成一个通信***,在该通信***中,网络设备发送信息给终端设备1~终端设备6中的一个或多个终端设备。此外,终端设备4~终端设备6也组成一个通信***,在该通信***中,终端设备5可以发送信息给终端设备4、终端设备6中的一个或多个终端设备。
本申请实施例中,终端设备可以经网络设备与核心网进行通信,终端设备可以指用户设备(User Equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。接入终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。
网络设备,可以称之为无线接入网(Radio Access Network,RAN)设备,以下统称为网络设备,主要负责为终端设备提供无线连接,保证终端设备的上下行数据的可靠传输等。网络设备可为5G***中的gNB(generation Node B),可以是全球移动通讯(Global System of Mobile communication,GSM)***或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)***中的演进型基站(Evolutional Node B,eNB或eNodeB)等。
本申请实施例中,终端设备可以以独立模式、保护带模式、带内模式中的任一模式工作,并在上述任一模式工作下,向网络设备发送前导码。终端设备工作在独立模式时,可以利用GSM网络中的一个或者多个载波,来传输NB-IoT业务数据,该独立的载波的带宽为180kHz。
终端设备工作在带内模式时,可以利用LTE***中,一个载波内的一个或多个资源块来传输NB-IoT业务数据,其中一个资源块的带宽为180kHz。具体可以如图2所示。图2中,一个LTE载波可以划分多个资源块,每个资源块的带宽为180kHz,NB-IoT中的终端设备可以使用其中一个或多个资源块来传输NB-IoT业务数据。
终端设备工作在保护带模式时,可以利用LTE***中,载波的保护带传输NB-IoT业务数据,其中占用保护带的带宽为180kHz。具体可以如图3所示。图3中,NB-IoT中的终端设备可以使用LTE载波的保护带宽传输NB-IoT业务数据。
结合上述描述,如图4所示,为本申请实施例提供的一种信号发送方法流程示意图。 参见图4,该方法包括:
步骤401:终端设备生成承载第一前导码的第一符号组;所述第一符号组包括4组符号;
步骤402:终端设备通过K组上行子帧向网络设备发送所述第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述K组上行子帧中每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数。
所述K组上行子帧中的任意两组上行子帧不相邻,即所述K组上行子帧中的任意两组上行子帧在时间上不连续。
步骤403:网络设备接收终端设备通过K组上行子帧发送的第一符号组。
步骤404:网络设备根据所述第一前导码对所述终端进行上行同步测量。
步骤401中,第一前导码可以是终端设备从可使用的前导码中随机选择的,也可以是由网络设备为终端设备指定的前导码,本申请实施例对此并不限定。
第一符号组中的每组符号包括一个循环前缀以及5个符号,具体可以参考图5所示。图5中,一组符号的最前面是循环前缀,循环前缀的时间长度为66.7μs或266.67μs,循环前缀后面是用于传输前导码的5个符号,每个符号的时间长度为266.67μs。每个前导码需要4组符号。
需要说明的是,本申请实施例中,符号的含义,包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号等,具体可以根据实际情况确定,在此不再赘述。
步骤402中,所述K组上行子帧可以位于同一无线帧内,当然,所述K组上行子帧可以不位于同一无线帧内。
本申请实施例中,所述K组上行子帧中每组上行子帧包括至少一个上行子帧,所述至少一个上行子帧为连续的子帧。连续的子帧,是指从第一个子帧至最后一个子帧在时间上连续,例如,一个无线帧包括10个子帧,该无线帧所包括的10个子帧在时间上是连续的,可以认为是连续的10个子帧。本申请实施例中,NB-IOT技术需要兼容LTE***,因此NB-IOT技术中采用的子帧可以是指LTE***中定义的子帧。
目前TDD LTE***有7种上下行配置(Uplink-downlink configuration),分别为上下行配置0至上下行配置6,其中,用于传输下行信号的子帧为下行子帧,用D表示;用于传输上行信号的子帧为上行子帧,用U表示;在下行子帧和上行子帧之间用特殊子帧隔开,该特殊子帧用S表示。7种上下行配置的具体内容可以参考表1所示。
表1
Figure PCTCN2017096960-appb-000001
Figure PCTCN2017096960-appb-000002
结合表1,NB-IOT技术中,终端设备发送前导码所使用的K组上行子帧中,每组上行子帧可以包括1个上行子帧,或者包括连续的2个上行子帧,或者包括连续的3个上行子帧。
需要说明的是,K组上行子帧中的每组上行子帧用于发送所述第一符号组中的至少一组符号。当K组上行子帧中,存在一组上行子帧包括1个上行子帧时,为了使得终端设备能够在该组上行子帧中发送第一符号组中的一组符号,根据子载波间隔与符号的时间长度成反比的特点,可以增大该组上行子帧的子载波间隔,从而减小符号的时间长度,从而实现在该组上行子帧中传输更多的符号。例如,将该组上行子帧的子载波间隔由15kHz调整为30kHz,从而实现在该组上行子帧中的每个上行子帧中传输的符号数,由14个增长为28个。当然,还可以将一组符号中的符号进行拆分,例如在一组上行子帧中,只发送第一符号组中,一组符号的前4个符号,该组符号的最后1个符号与另一组符号在另一组上行子帧中发送。
本申请实施例中,所述K组上行子帧中的任意一组上行子帧中包括的上行子帧,是由一个无线帧的前5ms中包括的至少一个上行子帧构成,或者是由一个无线帧的后5ms中包括的至少一个上行子帧构成。结合表1,举例来说,无线帧的上下行配置类型为上下行配置0,该无线帧的前5ms中的上行子帧为子帧2、子帧3、子帧4;针对K组上行子帧中的任意一组上行子帧,该组上行子帧可以为该无线帧中子帧2构成,或者由该无线帧中子帧2和子帧3构成,或者由该无线帧中子帧2、子帧3和子帧4构成。
再举例来说,无线帧的上下行配置类型为上下行配置1,该无线帧的后5ms中的上行子帧为子帧7、子帧8;针对K组上行子帧中的任意一组上行子帧,该组上行子帧可以为该无线帧中子帧7构成,或者由该无线帧中子帧7和子帧8构成。
本申请实施例中,K可以为2或3或4,下面分别进行描述。
第一种情况:K为2
在该情况下,所述K组上行子帧中的每组上行子帧可以用于发送所述第一符号组中的2组符号,或者,所述K组上行子帧中的一组上行子帧可以用于发送所述第一符号组中的3组符号,另一组上行子帧可以用于发送所述第一符号组中的1组符号,从而实现通过所述K组上行子帧发送第一符号组中的4组符号。
具体的,如图6所示,为本申请实施例提供的一种前导码发送示意图。
图6中,承载第一前导码的第一符号组中包括第1组符号、第2组符号、第3组符号、第4组符号。K为2,K组上行子帧包括第1组上行子帧和第2组上行子帧,K组上行子帧可以位于同一无线帧内,所述K组上行子帧中的每组上行子帧包括连续的3个上行子帧。所述K组上行子帧中的第1组上行子帧用于发送第1组符号、第2组符号;所述K组上行子帧中的第2组上行子帧用于发送第3组符号、第4组符号。
需要说明的是,一个前导码可能会重复发送多次。结合图6,终端设备可以按照图6的方式,以1个无线帧的时间长度为周期,重复发送多次前导码。
第二种情况:K为3
在该情况下,所述K组上行子帧中的一组上行子帧可以用于发送所述第一符号组中的2组符号,其余两组上行子帧中每组上行子帧可以用于发送所述第一符号组中的1组符号。
具体的,如图7所示,为本申请实施例提供的一种前导码发送示意图。
图7中,承载第一前导码的第一符号组中包括第1组符号、第2组符号、第3组符号、第4组符号。K为3,K组上行子帧包括第1组上行子帧、第2组上行子帧和第3组上行子帧,K组上行子帧位于2个无线帧内,所述K组上行子帧中的每组上行子帧包括连续的3个上行子帧。所述K组上行子帧中的第1组上行子帧用于发送第1组符号、第2组符号;所述K组上行子帧中的第2组上行子帧用于发送第3组符号;所述K组上行子帧中的第3组上行子帧用于发送第4组符号。
需要说明的是,一个前导码可能会重复发送多次。结合图7,终端设备可以按照图7的方式,以2个无线帧的时间长度为周期,重复发送多次前导码。
第三种情况:K为4
在该情况下,所述K组上行子帧中的每组上行子帧可以用于发送所述第一符号组中的1组符号。
具体的,如图8所示,为本申请实施例提供的一种前导码发送示意图。
图8中,承载第一前导码的第一符号组中包括第1组符号、第2组符号、第3组符号、第4组符号。K为8,K组上行子帧包括第1组上行子帧、第2组上行子帧、第3组上行子帧和第4组上行子帧,K组上行子帧位于2个无线帧内,所述K组上行子帧中的每组上行子帧包括连续的3个上行子帧。所述K组上行子帧中的第1组上行子帧用于发送第1组符号;所述K组上行子帧中的第2组上行子帧用于发送第2组符号;所述K组上行子帧中的第3组上行子帧用于发送第3组符号;所述K组上行子帧中的第4组上行子帧用于发送第4组符号。
需要说明的是,一个前导码可能会重复发送多次。结合图8,终端设备可以按照图8的方式,以2个无线帧的时间长度为周期,重复发送多次前导码。
需要说明的是,本申请实施例中,承载前导码的4组符号在PRACH上是跳频传输的。具体的如图9所示,为本申请实施例提供的一种前导码跳频示意图。图9中,在每个前导码的发送周期内,承载前导码的4组符号用灰色填充矩形和数字表示,按照时间先后顺序记为1、2、3、4。前导码在一个发送周期内在PRACH上有两种跳频间隔,分别为3.75kHz和22.5kHz。跳频间隔为子载波带宽的整数倍,最小跳频间隔和子载波带宽相同。第1组符号和第2组符号之间的跳频间隔为3.75kHz,第3组符号和第4组符号之间的跳频间隔为22.5kHz。第2组符号和第3组符号之间的跳频间隔为22.5kHz。相邻两次发送周期之间采用伪随机跳频,跳频范围限制在12个子载波内。
可选的,本申请实施例中,终端设备可以同时发送多个前导码。例如,终端设备可以从前导码集合中随机选择两个前导码,并通过所述K组上行子帧发送选择的两个前导码,其中,承载每个前导码的符号组的子载波不同。
结合前面的描述,终端设备可以通过所述K组上行子帧向所述网络设备发送第二符号组;所述第二符号组用于承载第二前导码。同样的,所述第二符号组中也包括4组符号, 具体可以参考第一符号组的描述,在此不再赘述。
本申请实施例中,第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值可以为预设值。由于每个前导码对应的初始子载波号可以唯一确定一个前导码,终端设备确定第一前导码之后,可以唯一确定第二前导码。所述预设值可以根据实际情况确定,在此不再赘述。
第二前导码也可以为终端设备从前导码集合中随机选择的一个与第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。所述前导码集合中的前导码可以是终端设备所有可选的前导码的全集,也可以是网络设备配置的所有前导码集合中的一个子集,比如:所述前导码集合中包括的前导码为,前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值不小于预设阈值的所有前导码。
如图10所示,为本申请实施例提供的一种前导码发送示意图。图10中,K为2,K组上行子帧包括第1组上行子帧和第2组上行子帧,K组上行子帧可以位于同一无线帧内,所述K组上行子帧中的每组上行子帧包括连续的3个上行子帧。承载第一前导码的第一符号组中包括第1组符号、第2组符号、第3组符号、第4组符号。所述K组上行子帧中的第1组上行子帧用于发送承载第一前导码的第一符号组中的前两组符号,以及承载第二前导码的第二符号组中的前两组符号;所述K组上行子帧中的第2组上行子帧用于发送承载第一前导码的第一符号组中的后两组符号,以及承载第二前导码的第二符号组中的后两组符号。其中,第一符号组中的符号和第二符号组中的符号,在传输时,所处的子载波不同。
需要说明的是,一个前导码可能会重复发送多次。结合图10,终端设备可以按照图10的方式,以1个无线帧的时间长度为周期,重复发送多次第一前导码以及第二前导码。
最后,在步骤403中,网络设备接收到终端设备发送的第一前导码之后,在步骤404中,网络设备根据所述第一前导码对所述终端设备进行上行同步测量,上行同步测量的具体的内容,本申请实施例对此并不限定,例如可以是测量终端设备发送的信号到达网络设备的实际时间与网络设备预测的时间之间的差值,网络设备从而可以根据所述差值将所述终端设备上行同步。
网络设备在接收到第二前导码时,可以同时根据第二前导码对所述终端设备进行上行同步测量,从而实现通过两个前导码对终端进行上行同步,从而降低频偏对上行同步性能的影响,提高上行同步精度。
如图11所示,为本申请实施例提供一种终端设备结构示意图,该终端设备可以用于执行上述各方法实施例中终端设备的动作,该终端设备1100包括:处理单元1101和收发单元1102。
处理单元1101,用于生成承载第一前导码的第一符号组;所述第一符号组包括4组符号;
收发单元1102,用于通过K组上行子帧向网络设备发送所述处理单元1101生成的所述第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述K组上行子帧中每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数。
一种可选地实施方式中,K为2;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的2组符号。
一种可选地实施方式中,K为4;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的1组符号。
一种可选地实施方式中,所述收发单元1102还用于:
通过所述K组上行子帧向所述网络设备发送第二符号组;所述第二符号组用于承载第二前导码。
一种可选地实施方式中,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
一种可选地实施方式中,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
如图12所示,为本申请实施例提供一种终端设备结构示意图,该终端设备可以用于执行上述各方法实施例中终端设备的动作,该终端设备1200包括:处理器1201、收发机1202、存储器1203和通信接口1204;其中,处理器1201、收发机1202、存储器1203和通信接口1204通过总线1205相互连接。
处理器1201可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器1201还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器1203可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器1203还可以包括上述种类的存储器的组合。
通信接口1204可以为有线通信接入口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为WLAN接口。
总线1205可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条双向箭头表示,但并不表示仅有一根总线或一种类型的总线。
存储器1203可以用于存储程序指令,处理器1201调用该存储器1203中存储的程序指令,可以执行上述方案中所示实施例中的一个或多个步骤,或其中可选的实施方式,使得接入网节点1200实现上述方法中的功能。
处理器1201,用于生成承载第一前导码的第一符号组;所述第一符号组包括4组符号;
收发机1202,用于通过K组上行子帧向网络设备发送所述处理器1201元生成的所述第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述K组上行子帧中每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数。
一种可选地实施方式中,K为2;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的2组符号。
一种可选地实施方式中,K为4;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的1组符号。
一种可选地实施方式中,所述收发机1202还用于:
通过所述K组上行子帧向所述网络设备发送第二符号组;所述第二符号组用于承载第二前导码。
一种可选地实施方式中,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
一种可选地实施方式中,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
如图13所示,为本申请实施例提供一种网络设备结构示意图,该网络设备可以用于执行上述各方法实施例中网络设备的动作,该网络设备1300包括:收发单元1301和处理单元1302。
收发单元1301,用于接收终端设备通过K组上行子帧发送的第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述第一符号组用于承载第一前导码,所述第一符号组包括4组符号;所述K组上行子帧中的每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数
处理单元1302,用于根据所述第一前导码对所述终端进行上行同步测量。
一种可选地实施方式中,K为2;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的2组符号。
一种可选地实施方式中,K为4;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的1组符号。
一种可选地实施方式中,所述收发单元1301还用于:
通过所述K组上行子帧接收第二符号组;所述第二符号组用于承载第二前导码。
一种可选地实施方式中,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
一种可选地实施方式中,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
如图14所示,为本申请实施例提供一种网络设备结构示意图,该网络设备可以用于执行上述各方法实施例中网络设备的动作,该网络设备1400包括:处理器1401、收发机1402、存储器1403和通信接口1404;其中,处理器1401、收发机1402、存储器1403和通信接口1404通过总线1405相互连接,上述模块的具体内容可以参考图12中相关模块的描述,在此不再赘述。
存储器1403可以用于存储程序指令,处理器1401调用存储器1403中存储的程序指令,执行:
收发机1402,接收终端设备通过K组上行子帧发送的第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述第一符号组用于承载第一前导码,所述第一符号组包括4组符号;所述K组上行子帧中的每组上行子帧包括至少一个上行子帧,且每组上行 子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数
处理器1401,根据所述第一前导码对所述终端进行上行同步测量。
一种可选地实施方式中,K为2;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的2组符号。
一种可选地实施方式中,K为4;
所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的1组符号。
一种可选地实施方式中,所述收发机1402还用于:
通过所述K组上行子帧接收第二符号组;所述第二符号组用于承载第二前导码。
一种可选地实施方式中,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
一种可选地实施方式中,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
本申请各方法实施例之间相关部分可以相互参考;各装置实施例所提供的装置用于执行对应的方法实施例所提供的方法,故各装置实施例可以参考相关的方法实施例中的相关部分进行理解。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关硬件来完成,所述的程序可以存储于一个设备的可读存储介质中,该程序在执行时,包括上述全部或部分步骤,所述的存储介质,如:磁盘存储器、光学存储器等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,不同的实施例可以进行组合,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何组合、修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种信号发送方法,其特征在于,包括:
    终端设备生成承载第一前导码的第一符号组;所述第一符号组包括4组符号;
    所述终端设备通过K组上行子帧向网络设备发送所述第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述K组上行子帧中每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过所述K组上行子帧向所述网络设备发送第二符号组;所述第二符号组用于承载第二前导码。
  3. 根据权利要求2所述的方法,其特征在于,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
  4. 根据权利要求2所述的方法,其特征在于,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
  5. 一种信号接收方法,其特征在于,包括:
    网络设备接收终端设备通过K组上行子帧发送的第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述第一符号组用于承载第一前导码,所述第一符号组包括4组符号;所述K组上行子帧中的每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数
    所述网络设备根据所述第一前导码对所述终端进行上行同步测量。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过所述K组上行子帧接收第二符号组;所述第二符号组用于承载第二前导码。
  7. 根据权利要求6所述的方法,其特征在于,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
  8. 根据权利要求6所述的方法,其特征在于,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
  9. 一种终端设备,其特征在于,包括:
    处理单元,用于生成承载第一前导码的第一符号组;所述第一符号组包括4组符号;
    收发单元,用于通过K组上行子帧向网络设备发送所述处理单元生成的所述第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述K组上行子帧中每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数。
  10. 根据权利要求9所述的终端设备,其特征在于,所述收发单元还用于:
    通过所述K组上行子帧向所述网络设备发送第二符号组;所述第二符号组用于承载第二前导码。
  11. 根据权利要求10所述的终端设备,其特征在于,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
  12. 根据权利要求10所述的终端设备,其特征在于,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
  13. 一种网络设备,其特征在于,包括:
    收发单元,用于接收终端设备通过K组上行子帧发送的第一符号组;所述K组上行子帧中的任意两组上行子帧不相邻,所述第一符号组用于承载第一前导码,所述第一符号组包括4组符号;所述K组上行子帧中的每组上行子帧包括至少一个上行子帧,且每组上行子帧中包括的上行子帧为连续的子帧,K为大于1且小于或等于4的正整数
    处理单元,用于根据所述第一前导码对所述终端进行上行同步测量。
  14. 根据权利要求13所述的网络设备,其特征在于,所述收发单元还用于:
    通过所述K组上行子帧接收第二符号组;所述第二符号组用于承载第二前导码。
  15. 根据权利要求14所述的网络设备,其特征在于,所述第二前导码对应的初始子载波号与所述第一前导码对应的初始子载波号的差值为预设值。
  16. 根据权利要求14所述的网络设备,其特征在于,所述第二前导码为所述终端设备从前导码集合中随机选择的一个与所述第一前导码不同的前导码,所述前导码集合中包括至少两个前导码,所述前导码集合中的前导码为所述网络设备配置给所述终端设备的。
  17. 根据权利要求1至4任一权利要求所述的一种信号发送方法、权利要求5至8任一权利要求所述的一种信号接收方法、权利要求9至12任一权利要求所述的终端设备或者权利要求13至16任一权利要求所述的网络设备,其特征在于,K为2;
    所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的2组符号。
  18. 根据权利要求1至4任一权利要求所述的一种信号发送方法、权利要求5至8任一权利要求所述的一种信号接收方法、权利要求9至12任一权利要求所述的终端设备或者权利要求13至16任一权利要求所述的网络设备,其特征在于,K为4;
    所述K组上行子帧中的每组上行子帧用于发送所述第一符号组中的1组符号。
  19. 根据权利要求1至4任一权利要求所述的一种信号发送方法、权利要求5至8任一权利要求所述的一种信号接收方法、权利要求9至12任一权利要求所述的终端设备或者权利要求13至16任一权利要求所述的网络设备,其特征在于,所述K组上行子帧中的任意一组上行子帧中包括的上行子帧,是由一个无线帧的前5ms中包括的至少一个上行子帧构成,或者是由一个无线帧的后5ms中包括的至少一个上行子帧构成。
  20. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求1至4以及17至19任意一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求5至8以及17至19任意一项所述的方法。
PCT/CN2017/096960 2017-08-10 2017-08-10 一种信号发送、接收方法及装置 WO2019028801A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112020002784-7A BR112020002784A2 (pt) 2017-08-10 2017-08-10 método e dispositivo de envio de sinais e método e dispositivo de recepção de sinais
CN201780091512.5A CN110692209B (zh) 2017-08-10 2017-08-10 一种信号发送、接收方法及装置
PCT/CN2017/096960 WO2019028801A1 (zh) 2017-08-10 2017-08-10 一种信号发送、接收方法及装置
JP2020506991A JP2020530239A (ja) 2017-08-10 2017-08-10 信号送信方法および信号送信装置、ならびに信号受信方法および信号受信装置
EP17920628.9A EP3667960B1 (en) 2017-08-10 2017-08-10 Signal sending method, corresponding network device, and corresponding computer-readable storage medium
US16/786,408 US11382078B2 (en) 2017-08-10 2020-02-10 Signal sending method and apparatus, and signal receiving method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096960 WO2019028801A1 (zh) 2017-08-10 2017-08-10 一种信号发送、接收方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/786,408 Continuation US11382078B2 (en) 2017-08-10 2020-02-10 Signal sending method and apparatus, and signal receiving method and apparatus

Publications (1)

Publication Number Publication Date
WO2019028801A1 true WO2019028801A1 (zh) 2019-02-14

Family

ID=65272961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096960 WO2019028801A1 (zh) 2017-08-10 2017-08-10 一种信号发送、接收方法及装置

Country Status (6)

Country Link
US (1) US11382078B2 (zh)
EP (1) EP3667960B1 (zh)
JP (1) JP2020530239A (zh)
CN (1) CN110692209B (zh)
BR (1) BR112020002784A2 (zh)
WO (1) WO2019028801A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010676A1 (en) * 2017-07-13 2019-01-17 Zte Corporation SYSTEM AND METHOD FOR SIGNAL TRANSMISSION
WO2019098681A1 (ko) * 2017-11-14 2019-05-23 엘지전자 주식회사 시간 분할 듀플렉싱을 지원하는 협대역 iot 시스템에서 랜덤 액세스 프리앰블을 전송하기 위한 방법 및 이를 위한 장치
NZ764640A (en) * 2017-11-17 2022-04-29 Huawei Tech Co Ltd Preamble transmission method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203750A1 (ja) * 2015-06-19 2016-12-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、受信方法、送信装置、及び受信装置
CN106301738A (zh) * 2016-06-28 2017-01-04 宇龙计算机通信科技(深圳)有限公司 基于帧结构的通信方法
CN106937354A (zh) * 2015-12-30 2017-07-07 上海贝尔股份有限公司 一种用于接入控制的方法、设备与***
CN106982110A (zh) * 2016-01-15 2017-07-25 上海贝尔股份有限公司 利用LTE TDD帧结构进行NB-IoT传输帧配置的方法和装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3937551A3 (en) * 2012-01-25 2022-02-09 Comcast Cable Communications, LLC Random access channel in multicarrier wireless communications with timing advance groups
US8958342B2 (en) * 2012-04-17 2015-02-17 Ofinno Technologies, Llc Uplink transmission power in a multicarrier wireless device
CN104254135B (zh) * 2013-06-27 2020-03-31 夏普株式会社 基站和用户设备及其方法
CN108566673B (zh) * 2013-12-03 2022-04-15 索尼公司 无线通信***和在无线通信***中进行无线通信的方法
WO2015167289A1 (ko) * 2014-04-30 2015-11-05 엘지전자 주식회사 무선 통신 시스템에서 단말 간 신호를 송신하는 방법 및 이를 위한 장치
US10219274B2 (en) * 2015-04-23 2019-02-26 Marvell World Trade Ltd. Channel bonding operations in wireless communications
WO2016178418A1 (ja) * 2015-05-07 2016-11-10 株式会社 東芝 無線通信端末および無線通信方法
WO2016199989A1 (ko) * 2015-06-11 2016-12-15 엘지전자 주식회사 Tdd 기반의 무선 통신 시스템에서 복수의 서브프레임을 사용하여 통신을 수행하는 방법 및 장치
US10868658B2 (en) * 2015-09-24 2020-12-15 Lg Electronics Inc. Method and apparatus for handling various IoT network access in wireless communication system
WO2017105005A1 (ko) * 2015-12-18 2017-06-22 엘지전자 주식회사 랜덤 액세스 프리앰블을 싱글-톤 방식으로 전송하는 방법 및 무선 기기
KR102514908B1 (ko) * 2015-12-22 2023-03-28 삼성전자 주식회사 무선 통신 시스템의 d2d 신호 전송 지원을 위한 기지국 동작 방법 및 장치
CN106921468B (zh) 2015-12-28 2020-05-22 中兴通讯股份有限公司 一种信息传输方法及装置
JP6616905B2 (ja) * 2016-01-29 2019-12-04 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ランダムアクセスのための周波数ホッピング
US9661663B1 (en) * 2016-03-16 2017-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Network access of a wireless device to a communications network
CN107466101B (zh) * 2016-06-03 2021-11-09 中兴通讯股份有限公司 终端位置的确定方法及装置
US10396881B2 (en) * 2016-06-10 2019-08-27 Qualcomm Incorporated RACH design for beamformed communications
US10320551B2 (en) * 2016-06-21 2019-06-11 Marvell World Trade Ltd. Channel bonding design and signaling in wireless communications
US10291451B2 (en) * 2016-11-07 2019-05-14 Qualcomm Incorporated PRACH design for larger cell radius
CN108235444B (zh) * 2016-12-12 2021-09-10 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
US10863484B2 (en) * 2017-01-09 2020-12-08 Qualcomm Incorporated Indication of random-access channel MSG3 resource duration via random-access channel MSG2
EP3584988B1 (en) * 2017-02-15 2022-03-30 LG Electronics Inc. Signal transmission/reception method between terminal and base station in wireless communication system supporting narrowband internet of things, and device supporting same
US10454658B2 (en) * 2017-02-28 2019-10-22 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
JP2020510371A (ja) * 2017-03-22 2020-04-02 エルジー エレクトロニクス インコーポレイティド ランダムアクセス過程を行う方法及びそのための装置
US11324076B2 (en) * 2017-03-24 2022-05-03 Apple Inc. Tracking reference signals for new radio
JP7240328B2 (ja) * 2017-05-04 2023-03-15 エルジー エレクトロニクス インコーポレイティド ランダム接続過程を行う方法及びそのための装置
US11902924B2 (en) * 2017-06-02 2024-02-13 Qualcomm Incorporated Methods and apparatus related to link establishment in a wireless backhaul network
WO2019004680A1 (ko) * 2017-06-26 2019-01-03 엘지전자(주) 프래임 구조 타입 2를 지원하는 협대역 iot 시스템에서 nprach 프리앰블을 전송하기 위한 방법 및 이를 위한 장치
US11166322B2 (en) * 2017-08-09 2021-11-02 Lg Electronics Inc. Method for performing random access process and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203750A1 (ja) * 2015-06-19 2016-12-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、受信方法、送信装置、及び受信装置
CN106937354A (zh) * 2015-12-30 2017-07-07 上海贝尔股份有限公司 一种用于接入控制的方法、设备与***
CN106982110A (zh) * 2016-01-15 2017-07-25 上海贝尔股份有限公司 利用LTE TDD帧结构进行NB-IoT传输帧配置的方法和装置
CN106301738A (zh) * 2016-06-28 2017-01-04 宇龙计算机通信科技(深圳)有限公司 基于帧结构的通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667960A4 *

Also Published As

Publication number Publication date
CN110692209B (zh) 2021-01-01
US20200187197A1 (en) 2020-06-11
CN110692209A (zh) 2020-01-14
EP3667960A1 (en) 2020-06-17
JP2020530239A (ja) 2020-10-15
EP3667960B1 (en) 2023-04-05
BR112020002784A2 (pt) 2020-07-28
EP3667960A4 (en) 2020-10-28
US11382078B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
US11483820B2 (en) Data transmission method, terminal device, and network device
JP6949140B2 (ja) リソース割り当て方法、ユーザ機器、およびネットワークデバイス
EP3471481B1 (en) Method and terminal device for transmitting data
EP3567966A1 (en) Semi-static scheduling method, network device and terminal device
EP3829241A1 (en) Resource configuration method and terminal device
US11330543B2 (en) Signal sending method, signal receiving method, and apparatus
CN110035528B (zh) 一种通信方法、装置以及***
US20200187197A1 (en) Signal sending method and apparatus, and signal receiving method and apparatus
EP3595384A1 (en) Information transmission method and related device
WO2018126833A1 (zh) 无线通信的方法和设备
US11469852B2 (en) Signal sending and receiving method, and apparatus
TW201919427A (zh) 無線通訊方法、終端和網路設備
US11991684B2 (en) Data transmission method and apparatus
EP3657871A1 (en) Method, device, and system for time slot format indication
TWI797098B (zh) 傳輸信息的方法、網絡設備和終端設備
WO2018018509A1 (zh) 传输数据的方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020002784

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017920628

Country of ref document: EP

Effective date: 20200310

ENP Entry into the national phase

Ref document number: 112020002784

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200210