WO2019026974A1 - Aluminum foil and power storage device - Google Patents

Aluminum foil and power storage device Download PDF

Info

Publication number
WO2019026974A1
WO2019026974A1 PCT/JP2018/028921 JP2018028921W WO2019026974A1 WO 2019026974 A1 WO2019026974 A1 WO 2019026974A1 JP 2018028921 W JP2018028921 W JP 2018028921W WO 2019026974 A1 WO2019026974 A1 WO 2019026974A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum foil
holes
aluminum
storage device
less
Prior art date
Application number
PCT/JP2018/028921
Other languages
French (fr)
Japanese (ja)
Inventor
千恵 金子
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019534569A priority Critical patent/JPWO2019026974A1/en
Publication of WO2019026974A1 publication Critical patent/WO2019026974A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum foil and a storage device.
  • the storage device is, for example, a lithium ion capacitor, an electric double layer capacitor, a lithium ion secondary battery, an electrolytic capacitor, and the like.
  • An aluminum foil is used as a collector which comprises the electrode (positive electrode or negative electrode) of said electrical storage device.
  • Pre-doping is a step of occluding ions in advance to the negative electrode or the positive electrode.
  • a solid electrolyte interface SEI
  • a cation charge carrier
  • the mechanical method As a method of forming a through hole in an aluminum foil, mechanical methods such as punching, meshing, expanding, meshing, etc. are known. However, in the mechanical method, the occurrence of burrs is inevitable, and the diameter (inner diameter) of the through hole formed in the aluminum foil is also large. For example, the diameter of the through hole formed by the mechanical method is 300 ⁇ m or more.
  • the through holes are formed in the aluminum foil by a masking method using a resist film
  • complicated control in processing for preventing three-dimensional dissolution of the aluminum foil is required.
  • man-hours increase and manufacturing costs increase.
  • the diameter of the through hole is large, and it is difficult to form the through hole having a diameter of micron order.
  • pores are formed in the aluminum foil by etching the aluminum foil.
  • a tunnel type described in Patent Document 1 below or a vermiculate type described in Patent Document 2 below is known.
  • worm-shaped etching pits are formed on both sides of the aluminum foil.
  • the etching pits formed on both sides of the aluminum foil communicate with each other in the vicinity of the center of the aluminum foil in the thickness direction. As a result, etching pits penetrating from the front to the back of the aluminum foil are formed in the aluminum foil.
  • the tunnel-shaped etching pits described in Patent Document 1 are formed along a specific crystal orientation ⁇ 100> of an aluminum foil. That is, the tunnel-shaped etching pits extend in a direction perpendicular to the 100 surface of the aluminum foil. Therefore, in order to form a tunnel-shaped etching pit, it is necessary to align the crystal orientation of the aluminum foil before etching by annealing of the aluminum foil. However, the annealing treatment of the aluminum foil softens the aluminum foil, making it difficult to handle the aluminum foil.
  • the length of the worm-shaped etching pit described in Patent Document 2 is about several microns. Therefore, it is difficult to form the through holes in the aluminum foil by the method described in Patent Document 2.
  • the through holes can be formed in the aluminum foil.
  • many pits that do not penetrate the aluminum foil are also formed. That is, since a part of the etching pits formed on both sides of the aluminum foil does not extend sufficiently, the etching pits do not communicate with each other in the vicinity of the central part of the aluminum foil. Therefore, a part of the etching pit does not penetrate the aluminum foil.
  • the present invention has been made in view of the above situation, and it is an object of the present invention to provide an aluminum foil excellent in pore penetration and handling (mechanical strength) and an electricity storage device provided with the aluminum foil. It is
  • the aluminum foil according to one aspect of the present invention is an aluminum foil having a thickness of greater than 0 ⁇ m and 50 ⁇ m or less, and a plurality of through holes extend from the front surface to the back surface of the aluminum foil and have a diameter of 1 ⁇ m to 100 ⁇ m.
  • the number of through holes is 10 pieces / mm 2 or more per unit area of the aluminum foil, the tensile strength of the aluminum foil is 50 N / mm 2 or more, and the mass of the aluminum foil before the through holes are formed is M0
  • the mass of the aluminum foil after the formation of the through holes is represented as M1, the wear rate RM is defined as ⁇ (M0-M1) / M0 ⁇ ⁇ 100, and the surface area of the aluminum foil is A0.
  • the sum of the open areas of the through holes formed on the surface of the aluminum foil is represented as A1, and the aperture ratio RA is defined as (A1 / A0) ⁇ 100, (RA / RM) ⁇ 10 0 is 80% or more and 100% or less.
  • the Gurley air permeability of the aluminum foil may be greater than 0 sec / 100 ml and 10 sec / 100 ml or less.
  • An electricity storage device includes the above-described aluminum foil.
  • FIG. 1 is an image showing the shape of the cross section (cross section perpendicular to the surface of the aluminum foil) of the through hole formed in the aluminum foil according to an embodiment of the present invention
  • FIG. 1 is an image taken by a scanning electron microscope Image
  • FIG. 2 is an image showing the shape of the cross section (cross section perpendicular to the surface of the aluminum foil) of the through hole formed in the aluminum foil according to another embodiment of the present invention
  • FIG. 2 is a scanning electron microscope It is an image taken.
  • FIG. 3 is a schematic cross-sectional view of an electricity storage device provided with an aluminum foil according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of the electricity storage device in a direction perpendicular to the surface of the aluminum foil.
  • FIG. 4 is a schematic view of the surface of the aluminum foil shown in FIG.
  • the aluminum foil which concerns on this embodiment is a metal foil which contains aluminum as a main component.
  • the aluminum foil may consist only of aluminum or an aluminum alloy.
  • the aluminum foil may contain other components in addition to aluminum or an aluminum alloy.
  • the aluminum foil which concerns on this embodiment may be used for at least 1 type of electrical storage device chosen from the group which consists of a lithium ion capacitor, an electric double layer capacitor, a lithium ion secondary battery, and an electrolytic capacitor.
  • the storage device 10 includes a first electrode 6, a second electrode 5 facing the first electrode 6, and a separator 7 disposed between the first electrode 6 and the second electrode 5. And an electrolytic solution 8 filled between the first electrode 6 and the second electrode 5.
  • the first electrode 6 has an aluminum foil 2 (first current collector) according to the present embodiment, and a first active material layer 4 covering the aluminum foil 2.
  • the second electrode 5 includes a second current collector 1 and a second active material layer 3 covering the second current collector 1.
  • the second current collector 1 may be made of a metal such as copper or aluminum.
  • Each of the first active material layer 4 and the second active material layer 3 faces the separator 7.
  • the separator 7 is a porous insulator.
  • the electrolytic solution 8 is a solvent (for example, an organic solvent) in which the electrolyte is dissolved, and permeates the separator 7.
  • the storage device 10 is a lithium ion capacitor or a lithium ion secondary battery
  • the electrolytic solution 8 contains lithium ions as cations constituting the electrolyte.
  • the first electrode 6 may be either a positive electrode or a negative electrode.
  • the first active material layer 4 contains an active material for the positive electrode
  • the second electrode 5 is a negative electrode
  • the second active material layer 3 contains an active material for the negative electrode.
  • the first active material layer 4 contains an active material for the negative electrode
  • the second electrode 5 is a positive electrode
  • the second active material layer 3 contains an active material for the positive electrode.
  • the active material for the positive electrode may be a carbon material such as activated carbon
  • the active material for the negative electrode may be a carbon material pre-doped with lithium ions.
  • the active material for the positive electrode may be a carbon material such as activated carbon
  • the active material for the negative electrode may also be a carbon material such as activated carbon
  • the active material for the positive electrode may be an oxide of lithium (for example, a composite oxide containing lithium), and the active material for the negative electrode is a carbon material You may
  • the first active material layer 4 and the second active material layer 3 do not exist.
  • the aluminum foil 2 (first current collector) may be an anode
  • the second current collector 1 may be a cathode (another aluminum foil).
  • the surface of the aluminum foil 2 is oxidized to form a dielectric film containing aluminum oxide on the surface of the aluminum foil 2.
  • the dielectric film covering the aluminum foil 2 faces the separator 7.
  • the aluminum foil 2 may be a cathode
  • the second current collector 1 may be an anode (another aluminum foil covered with a dielectric film).
  • FIGS. 3 and 4 a plurality of through holes P extend from the front surface to the back surface of the aluminum foil 2.
  • a part of the first active material layer 4 may enter the inside of the through hole P.
  • All of the pores formed on the surface of the aluminum foil 2 may be through holes P. However, some of the pores formed on the surface of the aluminum foil 2 may be holes (non-penetrating holes) not penetrating the aluminum foil 2.
  • FIG. 1 is a cross section of a through hole formed in an aluminum foil having a thickness of 30 ⁇ m. The diameter of the through hole (a in FIG.
  • FIG. 1 is about 30 ⁇ m.
  • FIG. 2 is a cross section of a through hole formed in an aluminum foil having a thickness of 20 ⁇ m.
  • the diameter of the through hole (a in FIG. 2) shown in FIG. 2 is about 10 ⁇ m.
  • B in FIG. 2 is an overview of another through hole.
  • 1 and 2 are images of cross sections of cured resins produced by the following replica method.
  • a solution containing uncured epoxy resin is applied to the entire surface of the aluminum foil 2.
  • a solution of resin is filled into the through holes P formed on the surface of the aluminum foil 2.
  • the aluminum foil 2 is cut in the direction perpendicular to the surface of the aluminum foil 2. Resins that cure without heating may be used. Only the aluminum portion of the cut aluminum foil 2 is dissolved and removed by an ethanol solution containing perchloric acid. That is, the cured resin remains. Sodium hydroxide may be used to dissolve the aluminum.
  • the cut surface of the cured resin from which the aluminum has been removed is photographed by a scanning electron microscope.
  • the image of the cut surface taken by the scanning electron microscope is a cured product of the resin filled in the through hole P. That is, the shape and size of the cured resin (a and b) shown in FIGS. 1 and 2 correspond to the shape and size of the through hole P formed on the surface of the aluminum foil 2.
  • the thickness T of the aluminum foil 2 is more than 0 ⁇ m and not more than 50 ⁇ m.
  • the thickness T of the aluminum foil 2 may preferably be 12 ⁇ m or more and 30 ⁇ m or less. If the aluminum foil 2 is too thin, the mechanical strength (e.g., tensile strength) of the aluminum foil 2 is reduced. As a result, the aluminum foil 2 is easily broken with the handling of the aluminum foil 2, and the productivity of the aluminum foil 2 and the storage device 10 is reduced. On the other hand, when the aluminum foil 2 is too thick, the capacity and energy density of the storage device provided with the aluminum foil 2 decrease.
  • the diameter D P of the through hole P formed in the aluminum foil 2 ions (charge carriers) need only be large enough it is possible to move and pass through the through hole P constituting the electrolyte.
  • the diameter D P of the through hole P may be, for example, several angstroms or more and 100 ⁇ m or less because ions easily move and pass through the through hole P.
  • the average value of the diameter D P of the through holes P may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the diameter D P of the through hole P is greater than 100 [mu] m, easily exit from the surface of the aluminum foil 2 to the back surface through the slurry through holes P.
  • the diameter D P of the through hole P may be rephrased as the inner diameter of the through hole P.
  • the number of through-holes P diameter D P is 1 ⁇ m or more 100 ⁇ m or less, per unit area of the aluminum foil 2, 10 or / mm 2 or more.
  • the number of through-holes P diameter D P is 1 ⁇ m or more 100 ⁇ m or less, per unit area of the aluminum foil 2, 10 / mm 2 or more 1,000,000 / mm 2 or less, 10 pieces / mm 2 or more 100,000 / mm 2 or less 10 pieces / mm 2 or more and 10000 pieces / mm 2 or less, 10 pieces / mm 2 or more and 1000 pieces / mm 2 or less, or 10 pieces / mm 2 or more and 100 pieces / mm 2 or less.
  • the unit area of the aluminum foil 2 is 1 mm 2 .
  • the number of through-holes P diameter D P is 1 ⁇ m or more 100 ⁇ m or less is in the above range, a large number of through-holes P diameter D P is several tens of ⁇ m or less than several ⁇ m is formed on the surface of the aluminum foil 2 ing. As a result, the migration distance of ions in the aluminum foil 2 is short, and the ions can be uniformly pre-doped to the aluminum foil 2 in a short time.
  • the Gurley air permeability of the aluminum foil 2 may be more than 0 sec / 100 ml and 10 sec / 100 ml or less.
  • pre-doping takes time.
  • the Gurley air permeability is in the above range, the ion penetration in the aluminum foil 2 is improved, the pre-doping time is short, and the ions are easily pre-doped into the aluminum foil 2.
  • the Gurley air permeability of the aluminum foil 2 may be preferably 0.3 sec / 100 ml or more and 1.2 sec / 100 ml or less. Gurley air permeability may be measured by the Gurley tester method according to JIS P 8117 (paper and paper board-air permeability and air resistance test method (intermediate range)-Gurley method).
  • the tensile strength of the aluminum foil 2 is 50 N / mm 2 or more.
  • the tensile strength is within the above range, the breakage of the aluminum foil 2 accompanying the handling of the aluminum foil 2 is suppressed, and the productivity of the electrode and the storage device using the aluminum foil 2 is improved.
  • the tensile strength of the aluminum foil 2 preferably 50 N / mm 2 or more 91N / mm 2 or less, or 65N / mm 2 or more 91N / mm 2 may be less.
  • the lower the tensile strength the easier the aluminum foil 2 is broken in the process of manufacturing the electrode and the storage device, the more difficult the handling of the aluminum foil 2 is, and the lower the productivity.
  • the tensile strength of the aluminum foil 2 may be measured by a tensile tester according to JIS B 7721 (tensile tester / compression tester-calibration method and verification method of force measurement system). Alternatively, the tensile strength of the aluminum foil 2 may be measured by a tensile tester according to JIS Z 2241 (Metal material tensile test method).
  • the mass of the aluminum foil 2 before the through holes P are formed is represented as M0.
  • the mass of the aluminum foil 2 after the through holes P are formed is represented as M1.
  • the wear rate RM (unit: mass%) is defined as ⁇ (M0-M1) / M0 ⁇ ⁇ 100.
  • M 0 -M 1 corresponds to the mass of aluminum removed from the aluminum foil 2 along with the formation of the through holes P in the aluminum foil 2. However, along with the formation of the through holes P, pores (non-through holes) not penetrating the aluminum foil 2 may be formed at the same time. Therefore, M 0 -M 1 is not always equal to the mass Ma of aluminum originally filled in the through hole P.
  • M0-M1 can also include the mass Mb of aluminum originally filled in the non-through holes.
  • M0-M1 is approximately equal to Ma + Mb.
  • M0 to M1 is equal to Ma, and Mb Is zero.
  • the area of the surface of the aluminum foil 2 is represented as A0.
  • the sum of the open areas of the through holes P formed in the region having an area of A0 among the surfaces of the aluminum foil 2 is represented as A1.
  • A0 includes the sum of the open areas of the through holes P formed on the surface of the aluminum foil 2.
  • the aperture ratio RA (unit: area%) is defined as (A1 / A0) ⁇ 100.
  • a 0 may not be the area AT of the entire surface of the aluminum foil 2.
  • (RA / RM) ⁇ 100 is 80% or more and 100% or less.
  • (RA / RM) ⁇ 100 is an index indicating the relative ratio of the through holes P to all the pores formed in the aluminum foil 2.
  • the ratio of the mass of aluminum removed from aluminum foil 2 along with the formation of the pores is equal to that of through holes P in the surface of aluminum foil 2. It corresponds to the ratio of the open area. That is, when all the pores formed in the aluminum foil 2 are the through holes P, M0-M1 is equal to Ma, RM is (Ma / M0) ⁇ 100, RM is equal to RA, and (RA / RM) ⁇ 100 is 100%.
  • (RA / RM) ⁇ 100 is preferably as high as possible. That is, it is preferable that the number of non-through holes be small, and it is more preferable that there be no non-through holes.
  • V0 The volume of the aluminum foil 2 before the through holes P are formed.
  • V1 The volume of the aluminum foil 2 after the through holes P are formed.
  • the volumetric loss rate RV (unit: volume%) is defined as ⁇ (V0 ⁇ V1) / V0 ⁇ ⁇ 100.
  • V 0 -V 1 corresponds to the volume of aluminum removed from the aluminum foil 2 along with the formation of the through holes P in the aluminum foil 2. However, along with the formation of the through holes P, pores (non-through holes) not penetrating the aluminum foil 2 may be formed at the same time. Therefore, V 0 -V 1 is not always equal to the volume Va of the aluminum originally filled in through hole P.
  • V0-V1 may also include the volume Vb of aluminum originally filled in the non-through holes.
  • V0-V1 is approximately equal to Va + Vb.
  • Vb Is zero.
  • the volume V of aluminum having a mass of M is equal to the mass M of aluminum divided by the true density D (M / D). That is, the volume V of aluminum is proportional to the mass M of aluminum. Therefore, the volumetric wear rate RV is substantially equal to the wear rate RM, and (RA / RV) ⁇ 100 is substantially equal to (RA / RM) ⁇ 100. That is, like (RA / RM) ⁇ 100, (RA / RV) ⁇ 100 may be 80% or more and 100% or less.
  • (RA / RM) ⁇ 100 and (RA / RV) ⁇ 100 can be indirectly specified based on the amount of change in volume (V0 ⁇ V1) of the aluminum foil 2 associated with the formation of the through hole P.
  • the product (T ⁇ A T ) of the thickness T of the aluminum foil 2 and the area A T of the entire aluminum foil 2 may be regarded as V0, and M1 / D may be regarded as V1.
  • T ⁇ A T ⁇ D is approximately equal to the mass M 0 of the aluminum foil 2 before the through holes P are formed. Therefore, even when the through holes P are formed in the aluminum foil 2, RM and (RA / RM) ⁇ 100 can be calculated from T ⁇ A T ⁇ D and M 1.
  • the total A1 of the open areas of the through holes P may be measured by analyzing the image of the surface of the aluminum foil 2 using image analysis software.
  • An image of the surface of the aluminum foil 2 may be taken with the aluminum foil 2 placed on the backlight. This is because the portion of the surface of the aluminum foil 2 through which the backlight is transmitted corresponds to the through hole P.
  • An image of the surface of the aluminum foil 2 may be taken by a digital microscope.
  • a digital microscope a digital microscope (model: KH-3000) manufactured by HIROX Co., Ltd. may be used.
  • the magnification of the digital microscope is preferably 100 times or more and 3000 times or less.
  • the image of the through hole P to be photographed looks larger than the actual through hole P. As a result, an error in the aperture area is likely to occur.
  • the area of the aluminum foil 2 that fits in one image is small, and an error in the opening area is likely to occur.
  • image analysis software “A Image Kun Ver. 2.52” manufactured by Asahi Kasei Engineering Corporation may be used. "Image A” is a registered trademark.
  • the diameter D P of the through hole P may also be determined by analyzing the image of the image analysis software.
  • the number of through holes P formed on the surface of the aluminum foil 2 may also be measured by analyzing the above image with image analysis software.
  • the aluminum foil 2 In the production of the aluminum foil 2 according to the present embodiment, it is not necessary to align the crystal orientation of the aluminum foil before etching by annealing the aluminum foil. That is, in the present embodiment, the aluminum foil 2 can be manufactured from an aluminum foil which has not been subjected to the annealing treatment. Therefore, in the present embodiment, the aluminum foil 2 has high tensile strength and is excellent in handleability.
  • the general aluminum foil mass-produced industrially may be used.
  • the aluminum foil 2 may be manufactured from a 3003 or 1085 material. Both 3003 and 1085 materials are international aluminum alloy names.
  • the method of forming the through holes P in the aluminum foil 2 may be electrolytic etching or chemical etching.
  • the through holes P may be formed in the aluminum foil 2 by a combination of electrolytic etching and chemical etching.
  • the electrolytic solution used for electrolytic etching may be, for example, an acidic solution (for example, an aqueous solution) containing at least one acid selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. A plurality of electrolytes may be combined.
  • the concentration of the acid in the electrolytic solution may be 2% by mass or more and 20% by mass or less.
  • the temperature of the electrolytic solution may be 30 ° C. or more and 80 ° C. or less.
  • the amount of electricity of the aluminum foil in the electrolytic solution may be 1 C / dm 2 or more and 1000 C / dm 2 or less.
  • the etching solution used for the chemical etching may be, for example, an acidic solution (for example, an aqueous solution) containing at least one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, chromic acid, and hydrofluoric acid. Multiple acidic solutions may be combined. The concentration of the acid in the etching solution may be 5% by mass or more and 35% by mass or less.
  • the etching solution may be, for example, an alkaline solution (for example, an aqueous solution) containing at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide and the like. Multiple alkaline solutions may be combined.
  • the concentration of the alkali compound in the etching solution may be 5% by mass or more and 35% by mass or less.
  • the temperature of the etching solution may be 30 ° C. or more and 80 ° C. or less.
  • the duration of chemical etching may be 100 seconds or more and 10000 seconds or less.
  • the elution amount of aluminum, the depth of pores formed on the surface of the aluminum foil 2, the number of through holes P, the diameter D P of the through holes P , the opening ratio RA, the wear rate RM and Gurley air permeability may be controlled.
  • Example 1 [Production of aluminum foil] A plurality of through holes were formed on the surface of the aluminum foil by electrolytic etching. The thickness T of the aluminum foil after the formation of the through holes was 50 ⁇ m or less. As an aluminum foil, 3003 material was used. No annealing treatment of the aluminum foil was performed. A hydrochloric acid solution was used as an electrolytic solution for electrolytic etching. By adjusting the concentration of hydrochloric acid in the electrolytic solution, the temperature of the electrolytic solution, the amount of electricity of the aluminum foil in the electrolytic solution, and the duration of electrolytic etching, the amount of elution of aluminum from the aluminum foil is formed on the surface of the aluminum foil The number of through holes and the diameter D P (average value) of the through holes were controlled.
  • the wear rate RM was calculated by measuring the mass of the aluminum foil before and after the electrolytic etching.
  • the wear rate RM is shown in Table 1 below.
  • the number N of the through-hole diameter D P is 1 ⁇ m or more 100 ⁇ m or less.
  • the number N of through holes is the number of through holes per unit area (1 mm 2 ) of the aluminum foil.
  • the number N of through holes was 10 / mm 2 or more.
  • Gurley air permeability of the aluminum foil was measured by the method according to JIS P 8117.
  • a Gurley type densometer (type: PA-301) manufactured by Tester Sangyo Co., Ltd. was used. Gurley air permeability is shown in Table 1 below.
  • the tensile strength of the aluminum foil was measured by a method according to JIS Z 2241 (Metal material tensile test method). For measurement, a tension and compression tester (model: MCT-1150) manufactured by A & D Co., Ltd. was used. The tensile strength is shown in Table 1 below.
  • Example 2 As aluminum foil (material before processing) of Example 2, 1085 material was used instead of 3003 material. A plurality of through holes were formed on the surface of the aluminum foil in the same manner as in Example 1 except for the difference in materials. Thickness T of the aluminum foil of Example 2 after a through-hole was formed was 50 micrometers or less. The aluminum foil of Example 2 in which the through holes were formed was evaluated in the same manner as in Example 1. The evaluation results of Example 2 are shown in Table 1 below. The number N of through holes of Example 2 measured by the above-described image analysis was 10 / mm 2 or more.
  • Comparative example 1 As aluminum foil (material before processing) of comparative example 1, 1085 material was used instead of 3003 material. In the case of Comparative Example 1, the annealing treatment of the aluminum foil was performed before the electrolytic etching. A plurality of through holes were formed on the surface of the aluminum foil in the same manner as in Example 1 except for these matters. The aluminum foil of Comparative Example 1 in which the through holes were formed was evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 1 are shown in Table 1 below.
  • Comparative example 2 As aluminum foil (material before processing) of comparative example 2, 1085 material was used instead of 3003 material. In the case of Comparative Example 2, the annealing treatment of the aluminum foil was performed before the electrolytic etching. A plurality of through holes were formed on the surface of the aluminum foil in the same manner as in Example 1 except for these matters. The aluminum foil of Comparative Example 2 in which the through holes were formed was evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 2 are shown in Table 1 below.
  • the aluminum foil which concerns on this invention is used for the electrode of electrical storage devices, such as a lithium ion capacitor, an electrical double layer capacitor, a lithium ion secondary battery, and an electrolytic capacitor, for example.

Abstract

Provided is an aluminum foil having excellent penetrability and handling properties (mechanical strength). According to the present invention, the thickness of the aluminum foil is greater than 0 μm and equal to or less than 50 μm; a plurality of through-holes extend from the surface of the aluminum foil to the rear surface; the number of the through-holes having a diameter of 1-100 μm is 10/mm2 or more per unit area of the aluminum foil; the tensile strength of the aluminum foil is 50 N/mm2 or more; the wear rate RM is defined by {(M0-M1)/M0}X100, where the mass of the aluminum foil before forming the through-holes is represented by M0, and the mass of the aluminum foil after forming the through-holes is represented by M1; the aperture ratio is defined by (A1/A0)X100, where the surface area of the aluminum foil is represented by A0, and the total aperture area of the through-holes formed in the surface of the aluminum foil is represented by A1; and (RA/RM)X100 is 80-100%.

Description

アルミニウム箔、及び蓄電デバイスAluminum foil and storage device
 本発明は、アルミニウム箔及び蓄電デバイスに関する。 The present invention relates to an aluminum foil and a storage device.
 近年、ウエアラブル機器、ハイブリッド自動車、電気自動車、電動バス等の開発に伴い、これらの電源としての蓄電デバイスの需要が増大している。蓄電デバイスとは、例えば、リチウムイオンキャパシタ、電気二重層キャパシタ、リチウムイオン二次電池及び電解コンデンサ等である。 In recent years, with the development of wearable devices, hybrid vehicles, electric vehicles, electric buses and the like, the demand for power storage devices as power sources for these has increased. The storage device is, for example, a lithium ion capacitor, an electric double layer capacitor, a lithium ion secondary battery, an electrolytic capacitor, and the like.
 上記の蓄電デバイスの電極(正極又は負極)を構成する集電体としては、アルミニウム箔が用いられる。 An aluminum foil is used as a collector which comprises the electrode (positive electrode or negative electrode) of said electrical storage device.
 蓄電デバイスのエネルギー密度を向上させるために、プレドープ(pre‐dоpe)技術を用いて負極電位を下げることが知られている。プレドープとは、予めイオンを負極又は正極に吸蔵させる工程である。例えば、カチオン(電荷キャリア)を負極へプレドープすることにより、固体電解質界面(SEI)が負極の表面に形成される。その結果、プレドープ後に行われる蓄電デバイスの初回の充放電では、カチオンがSEIの形成に消費されない。したがって、初回の充放電に伴う電荷キャリアの減少が抑制され、高い容量及びエネルギー密度が維持され易い。プレドープを効率良く行うためには、貫通孔を有する集電体を用いることが有効である。 In order to improve the energy density of the storage device, it is known to lower the negative electrode potential using a pre-dope technique. Pre-doping is a step of occluding ions in advance to the negative electrode or the positive electrode. For example, a solid electrolyte interface (SEI) is formed on the surface of the negative electrode by predoping a cation (charge carrier) to the negative electrode. As a result, in the first charge and discharge of the storage device performed after pre-doping, cations are not consumed for the formation of SEI. Therefore, the reduction of charge carriers accompanying the first charge and discharge is suppressed, and a high capacity and energy density can be easily maintained. In order to carry out pre-doping efficiently, it is effective to use a current collector having through holes.
 貫通孔をアルミニウム箔に形成する方法として、例えばパンチング加工、メッシュ加工、エキスパンド加工、網加工等の機械的手法が知られている。しかし機械的手法では、バリの発生は避けられず、アルミニウム箔に形成される貫通孔の直径(内径)も大きい。例えば、機械的手法によって形成される貫通孔の直径は、300μm以上である。 As a method of forming a through hole in an aluminum foil, mechanical methods such as punching, meshing, expanding, meshing, etc. are known. However, in the mechanical method, the occurrence of burrs is inevitable, and the diameter (inner diameter) of the through hole formed in the aluminum foil is also large. For example, the diameter of the through hole formed by the mechanical method is 300 μm or more.
 レジスト膜を用いたマスキング法によって貫通孔をアルミニウム箔に形成する場合、アルミニウム箔の三次元的な溶解を防ぐための処理等における複雑な制御が必要である。その結果、工数が増加して製造コストが増加する。またマスキング法の場合、貫通孔の直径が大きくなり、ミクロンオーダーの直径を有する貫通孔を形成することが困難である。 In the case where the through holes are formed in the aluminum foil by a masking method using a resist film, complicated control in processing for preventing three-dimensional dissolution of the aluminum foil is required. As a result, man-hours increase and manufacturing costs increase. Further, in the case of the masking method, the diameter of the through hole is large, and it is difficult to form the through hole having a diameter of micron order.
 異種金属元素が添加されたアルミニウムの標準電極電位を利用した化学的溶解手法では、アルミニウム箔の溶解量の制御が困難である。また、アルミニウム箔へ添加される微量の異種金属元素の分布状態を制御する必要であるため、アルミニウム箔の作製コストが増加する。 In the chemical dissolution method using the standard electrode potential of aluminum to which the dissimilar metal element is added, it is difficult to control the dissolution amount of the aluminum foil. Moreover, since it is necessary to control the distribution of a trace amount of dissimilar metal elements added to the aluminum foil, the production cost of the aluminum foil is increased.
 アルミ電解コンデンサ用の集電体の量産では、アルミニウム箔のエッチングによって細孔がアルミニウム箔に形成される。エッチングによって形成される細孔の形状としては、下記特許文献1に記載のトンネル形、又は下記特許文献2に記載の虫食い(vermiculate)形が知られている。 In mass production of current collectors for aluminum electrolytic capacitors, pores are formed in the aluminum foil by etching the aluminum foil. As a shape of pores formed by etching, a tunnel type described in Patent Document 1 below or a vermiculate type described in Patent Document 2 below is known.
 特許文献3に記載のエッチングでは、虫食い形のエッチングピットがアルミニウム箔の両面に形成される。アルミニウム箔の両面其々に形成されたエッチングピット同士は、厚さ方向におけるアルミニウム箔の中央部付近で連通する。その結果、アルミニウム箔の表から裏面へ貫通するエッチングピットがアルミニウム箔に形成される。 In the etching described in Patent Document 3, worm-shaped etching pits are formed on both sides of the aluminum foil. The etching pits formed on both sides of the aluminum foil communicate with each other in the vicinity of the center of the aluminum foil in the thickness direction. As a result, etching pits penetrating from the front to the back of the aluminum foil are formed in the aluminum foil.
国際公開第2011/004777号International Publication No. 2011/040777 特許第5604468号公報Patent No. 5604468 gazette 特開2015-149463号公報JP, 2015-149463, A
 特許文献1に記載のトンネル形のエッチングピットは、アルミニウム箔の特定の結晶方位<100>に沿って形成される。つまり、トンネル形のエッチングピットは、アルミニウム箔の100面に対して垂直な方向に延びる。したがって、トンネル形のエッチングピットを形成するためには、アルミニウム箔の焼鈍処理(annealing)によって、アルミニウム箔の結晶方位をエッチング前に揃える必要がある。しかし、アルミニウム箔の焼鈍処理によってアルミニウム箔が軟化してしまい、アルミニウム箔のハンドリングが困難になる。 The tunnel-shaped etching pits described in Patent Document 1 are formed along a specific crystal orientation <100> of an aluminum foil. That is, the tunnel-shaped etching pits extend in a direction perpendicular to the 100 surface of the aluminum foil. Therefore, in order to form a tunnel-shaped etching pit, it is necessary to align the crystal orientation of the aluminum foil before etching by annealing of the aluminum foil. However, the annealing treatment of the aluminum foil softens the aluminum foil, making it difficult to handle the aluminum foil.
 特許文献2に記載の虫食い形のエッチングピットの長さは、数ミクロン程度である。したがって、特許文献2に記載の方法によって貫通孔をアルミニウム箔に形成することは困難である。 The length of the worm-shaped etching pit described in Patent Document 2 is about several microns. Therefore, it is difficult to form the through holes in the aluminum foil by the method described in Patent Document 2.
 特許文献3に記載のエッチングによれば、貫通孔をアルミニウム箔に形成することができる。しかし、特許文献3に記載のエッチングでは、アルミニウム箔を貫通しない多数のピットも形成されてしまう。つまり、アルミニウム箔の両面其々に形成されたエッチングピットの一部は十分に延びないので、アルミニウム箔の中央部付近においてエッチングピット同士が連通しない。したがって、エッチングピットの一部はアルミニウム箔を貫通しない。その結果、イオンをプレドープによってアルミニウム箔の内部(深部)へ十分に吸蔵させることが困難である。例えばリチウムイオンキャパシタの場合、リチウムイオンの移動が、エッチングピットの奥で止まってしまい、リチウムイオンを負極の内部へ十分に吸蔵させることができない。 According to the etching described in Patent Document 3, the through holes can be formed in the aluminum foil. However, in the etching described in Patent Document 3, many pits that do not penetrate the aluminum foil are also formed. That is, since a part of the etching pits formed on both sides of the aluminum foil does not extend sufficiently, the etching pits do not communicate with each other in the vicinity of the central part of the aluminum foil. Therefore, a part of the etching pit does not penetrate the aluminum foil. As a result, it is difficult to cause ions to be sufficiently absorbed in the interior (deep portion) of the aluminum foil by pre-doping. For example, in the case of a lithium ion capacitor, the movement of lithium ions stops at the back of the etching pit, and lithium ions can not be sufficiently absorbed inside the negative electrode.
 本発明は、上記実情に鑑みてなされたものであり、細孔の貫通性、及びハンドリング性(機械的強度)に優れたアルミニウム箔、及び当該アルミニウム箔を備える蓄電デバイスを提供することを目的とするものである。 The present invention has been made in view of the above situation, and it is an object of the present invention to provide an aluminum foil excellent in pore penetration and handling (mechanical strength) and an electricity storage device provided with the aluminum foil. It is
 本発明者らは、従来技術の問題点に鑑みて研究を重ねた結果、上記目的を達成し、本発明に係るアルミニウム箔を完成するに至った。 As a result of repeating researches in view of the problems of the prior art, the present inventors have achieved the above object, and have completed the aluminum foil according to the present invention.
 本発明の一側面に係るアルミニウム箔は、厚さが0μmより大きく50μm以下であるアルミニウム箔であり、複数の貫通孔がアルミニウム箔の表面から裏面へ延びており、直径が1μm以上100μm以下である貫通孔の数が、アルミニウム箔の単位面積当たり、10個/mm以上であり、アルミニウム箔の引張強度が50N/mm以上であり、貫通孔が形成される前のアルミニウム箔の質量がM0と表され、貫通孔が形成された後のアルミニウム箔の質量がM1と表され、減耗率RMが、{(M0-M1)/M0}×100と定義され、アルミニウム箔の表面の面積がA0と表され、アルミニウム箔の表面に形成された貫通孔の開口面積の合計がA1と表され、開口率RAが、(A1/A0)×100と定義され、(RA/RM)×100が、80%以上100%以下である。 The aluminum foil according to one aspect of the present invention is an aluminum foil having a thickness of greater than 0 μm and 50 μm or less, and a plurality of through holes extend from the front surface to the back surface of the aluminum foil and have a diameter of 1 μm to 100 μm. The number of through holes is 10 pieces / mm 2 or more per unit area of the aluminum foil, the tensile strength of the aluminum foil is 50 N / mm 2 or more, and the mass of the aluminum foil before the through holes are formed is M0 The mass of the aluminum foil after the formation of the through holes is represented as M1, the wear rate RM is defined as {(M0-M1) / M0} × 100, and the surface area of the aluminum foil is A0. The sum of the open areas of the through holes formed on the surface of the aluminum foil is represented as A1, and the aperture ratio RA is defined as (A1 / A0) × 100, (RA / RM) × 10 0 is 80% or more and 100% or less.
 アルミニウム箔のガーレー透気度は、0sec/100mlより大きく10sec/100ml以下であってよい。 The Gurley air permeability of the aluminum foil may be greater than 0 sec / 100 ml and 10 sec / 100 ml or less.
 本発明の一側面に係る蓄電デバイスは、上記のアルミニウム箔を備える。 An electricity storage device according to one aspect of the present invention includes the above-described aluminum foil.
 本発明によれば、細孔の貫通性、及びハンドリング性(機械的強度)に優れたアルミニウム箔、及び当該アルミニウム箔を備える蓄電デバイスを提供することができる。 According to the present invention, it is possible to provide an aluminum foil excellent in pore penetration and handling properties (mechanical strength), and an electricity storage device provided with the aluminum foil.
図1は、本発明の一実施形態に係るアルミニウム箔に形成された貫通孔の断面(アルミニウム箔の表面に垂直な断面)の形状を示す画像であり、図1は、走査型電子顕微鏡によって撮影された画像である。FIG. 1 is an image showing the shape of the cross section (cross section perpendicular to the surface of the aluminum foil) of the through hole formed in the aluminum foil according to an embodiment of the present invention, and FIG. 1 is an image taken by a scanning electron microscope Image. 図2は、本発明の他の実施形態に係るアルミニウム箔に形成された貫通孔の断面(アルミニウム箔の表面に垂直な断面)の形状を示す画像であり、図2は、走査型電子顕微鏡によって撮影された画像である。FIG. 2 is an image showing the shape of the cross section (cross section perpendicular to the surface of the aluminum foil) of the through hole formed in the aluminum foil according to another embodiment of the present invention, and FIG. 2 is a scanning electron microscope It is an image taken. 図3は、本発明の一実施形態に係るアルミニウム箔を備える蓄電デバイスの模式的な断面図であり、図3は、アルミニウム箔の表面に垂直な方向における蓄電デバイスの断面図である。FIG. 3 is a schematic cross-sectional view of an electricity storage device provided with an aluminum foil according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of the electricity storage device in a direction perpendicular to the surface of the aluminum foil. 図4は、図3に示されるアルミニウム箔の表面の模式図である。FIG. 4 is a schematic view of the surface of the aluminum foil shown in FIG.
 以下、図面を参照しながら、本発明の好適な実施形態について説明する。図面において、同等の構成要素には同等の符号を付す。本発明は下記実施形態に限定されるものではない。各図に示されるX,Y及びZは、互いに直交する3つの座標軸を意味する。各図中のXYZ座標軸其々が示す方向は、各図に共通する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the drawings, equivalent components are denoted by the same reference numerals. The present invention is not limited to the following embodiments. X, Y and Z shown in each figure mean three coordinate axes orthogonal to each other. The directions indicated by the XYZ coordinate axes in the respective drawings are common to the respective drawings.
 本実施形態に係るアルミニウム箔は、主成分としてアルミニウムを含む金属箔である。アルミニウム箔は、アルミニウム又はアルミニウム合金のみからなっていてよい。アルミニウム箔は、アルミニウム又はアルミニウム合金に加えて、他の成分を含んでもよい。 The aluminum foil which concerns on this embodiment is a metal foil which contains aluminum as a main component. The aluminum foil may consist only of aluminum or an aluminum alloy. The aluminum foil may contain other components in addition to aluminum or an aluminum alloy.
 本実施形態に係るアルミニウム箔は、リチウムイオンキャパシタ、電気二重層キャパシタ、リチウムイオン二次電池及び電解コンデンサからなる群より選ばれる少なくとも一種の蓄電デバイスに用いられてよい。例えば、図3に示されるように、蓄電デバイス10は、第一電極6と、第一電極6と向かい合う第二電極5と、第一電極6及び第二電極5の間に配置されるセパレータ7と、第一電極6及び第二電極5の間に充填される電解液8と、を備える。第一電極6は、本実施形態に係るアルミニウム箔2(第一集電体)と、アルミニウム箔2を覆う第一活物質層4とを有している。第二電極5は、第二集電体1と、第二集電体1を覆う第二活物質層3とを有している。第二集電体1は、銅又はアルミニウム等の金属から構成されていてよい。第一活物質層4及び第二活物質層3それぞれは、セパレータ7に面している。セパレータ7は多孔質の絶縁体である。電解液8は、電解質が溶解した溶媒(例えば有機溶媒)であり、セパレータ7を透過する。蓄電デバイス10がリチウムイオンキャパシタ又はリチウムイオン二次電池である場合、電解液8は、電解質を構成するカチオンとして、リチウムイオンを含む。 The aluminum foil which concerns on this embodiment may be used for at least 1 type of electrical storage device chosen from the group which consists of a lithium ion capacitor, an electric double layer capacitor, a lithium ion secondary battery, and an electrolytic capacitor. For example, as illustrated in FIG. 3, the storage device 10 includes a first electrode 6, a second electrode 5 facing the first electrode 6, and a separator 7 disposed between the first electrode 6 and the second electrode 5. And an electrolytic solution 8 filled between the first electrode 6 and the second electrode 5. The first electrode 6 has an aluminum foil 2 (first current collector) according to the present embodiment, and a first active material layer 4 covering the aluminum foil 2. The second electrode 5 includes a second current collector 1 and a second active material layer 3 covering the second current collector 1. The second current collector 1 may be made of a metal such as copper or aluminum. Each of the first active material layer 4 and the second active material layer 3 faces the separator 7. The separator 7 is a porous insulator. The electrolytic solution 8 is a solvent (for example, an organic solvent) in which the electrolyte is dissolved, and permeates the separator 7. When the storage device 10 is a lithium ion capacitor or a lithium ion secondary battery, the electrolytic solution 8 contains lithium ions as cations constituting the electrolyte.
 第一電極6は、正極及び負極のいずれかであってよい。第一電極6が正極である場合、第一活物質層4は正極用の活物質を含み、第二電極5が負極であり、第二活物質層3は負極用の活物質を含む。第一電極6が負極である場合、第一活物質層4は負極用の活物質を含み、第二電極5が正極であり、第二活物質層3は正極用の活物質を含む。 The first electrode 6 may be either a positive electrode or a negative electrode. When the first electrode 6 is a positive electrode, the first active material layer 4 contains an active material for the positive electrode, the second electrode 5 is a negative electrode, and the second active material layer 3 contains an active material for the negative electrode. When the first electrode 6 is a negative electrode, the first active material layer 4 contains an active material for the negative electrode, the second electrode 5 is a positive electrode, and the second active material layer 3 contains an active material for the positive electrode.
 蓄電デバイス10がリチウムイオンキャパシタである場合、正極用の活物質は、活性炭等の炭素材料であってよく、負極用の活物質は、リチウムイオンがプレドープされた炭素材料であってよい。 When the storage device 10 is a lithium ion capacitor, the active material for the positive electrode may be a carbon material such as activated carbon, and the active material for the negative electrode may be a carbon material pre-doped with lithium ions.
 蓄電デバイス10が電気二重層キャパシタである場合、正極用の活物質は、活性炭等の炭素材料であってよく、負極用の活物質も、活性炭等の炭素材料であってよい。 When the storage device 10 is an electric double layer capacitor, the active material for the positive electrode may be a carbon material such as activated carbon, and the active material for the negative electrode may also be a carbon material such as activated carbon.
 蓄電デバイス10がリチウムイオン二次電池である場合、正極用の活物質は、リチウムの酸化物(例えば、リチウムを含む複合酸化物)であってよく、負極用の活物質は、炭素材料であってよい。 When the storage device 10 is a lithium ion secondary battery, the active material for the positive electrode may be an oxide of lithium (for example, a composite oxide containing lithium), and the active material for the negative electrode is a carbon material You may
 蓄電デバイス10がアルミニウム電解コンデンサである場合、第一活物質層4及び第二活物質層3は存在しない。蓄電デバイス10がアルミニウム電解コンデンサである場合、アルミニウム箔2(第一集電体)が陽極であってよく、第二集電体1が陰極(別のアルミニウム箔)であってよい。アルミニウム箔2が陽極である場合、アルミニウム箔2の表面を酸化することにより、酸化アルミニウムを含む誘電体膜がアルミニウム箔2の表面に形成される。アルミニウム箔2を覆う誘電体膜はセパレータ7に面する。アルミニウム箔2が陰極であってもよく、第二集電体1が陽極(誘電体膜で覆われた別のアルミニウム箔)であってもよい。 When the storage device 10 is an aluminum electrolytic capacitor, the first active material layer 4 and the second active material layer 3 do not exist. When the storage device 10 is an aluminum electrolytic capacitor, the aluminum foil 2 (first current collector) may be an anode, and the second current collector 1 may be a cathode (another aluminum foil). When the aluminum foil 2 is an anode, the surface of the aluminum foil 2 is oxidized to form a dielectric film containing aluminum oxide on the surface of the aluminum foil 2. The dielectric film covering the aluminum foil 2 faces the separator 7. The aluminum foil 2 may be a cathode, and the second current collector 1 may be an anode (another aluminum foil covered with a dielectric film).
 図3及び図4に示されるように、複数の貫通孔Pがアルミニウム箔2の表面から裏面へ延びている。第一活物質層4の一部が貫通孔Pの内部に入り込んでいてよい。アルミニウム箔2の表面に形成された細孔の全てが貫通孔Pであってよい。ただし、アルミニウム箔2の表面に形成された細孔の一部は、アルミニウム箔2を貫通していない孔(非貫通孔)であってもよい。アルミニウム箔2に形成された貫通孔Pの断面(アルミニウム箔の表面に垂直な断面)の実例は、図1及び図2に示される。図1は、厚さが30μmであるアルミニウム箔に形成された貫通孔の断面である。図1に示される貫通孔(図1中のa)の直径は、約30μmである。図2は、厚さが20μmであるアルミニウム箔に形成された貫通孔の断面である。図2に示される貫通孔(図2中のa)の直径は、約10μmである。図2中のbは、別の貫通孔の全体像である。 As shown in FIGS. 3 and 4, a plurality of through holes P extend from the front surface to the back surface of the aluminum foil 2. A part of the first active material layer 4 may enter the inside of the through hole P. All of the pores formed on the surface of the aluminum foil 2 may be through holes P. However, some of the pores formed on the surface of the aluminum foil 2 may be holes (non-penetrating holes) not penetrating the aluminum foil 2. The example of the cross section (cross section perpendicular | vertical to the surface of aluminum foil) of the through-hole P formed in the aluminum foil 2 is shown by FIG.1 and FIG.2. FIG. 1 is a cross section of a through hole formed in an aluminum foil having a thickness of 30 μm. The diameter of the through hole (a in FIG. 1) shown in FIG. 1 is about 30 μm. FIG. 2 is a cross section of a through hole formed in an aluminum foil having a thickness of 20 μm. The diameter of the through hole (a in FIG. 2) shown in FIG. 2 is about 10 μm. B in FIG. 2 is an overview of another through hole.
 図1及び図2は、以下のレプリカ法によって作製された樹脂の硬化物の断面の画像である。 1 and 2 are images of cross sections of cured resins produced by the following replica method.
 未硬化のエポキシ樹脂を含む溶液が、アルミニウム箔2の表面全体に塗布される。その結果、樹脂の溶液が、アルミニウム箔2の表面に形成された各貫通孔P内へ充填される。溶液を乾燥して樹脂を加熱により硬化した後、アルミニウム箔2の表面に対して垂直な方向にアルミニウム箔2が切断される。加熱無しで硬化する樹脂が用いられてもよい。切断されたアルミニウム箔2のうちアルミニウムの部分のみが、過塩素酸を含むエタノール溶液によって溶解され、除去される。つまり樹脂の硬化物は残存する。アルミニウムの溶解には、水酸化ナトリウムが用いられてもよい。アルミニウムが除去された樹脂の硬化物の切断面が、走査型電子顕微鏡によって撮影される。走査型電子顕微鏡によって撮影された切断面の画像は、貫通孔P内に充填された樹脂の硬化物である。つまり、図1及び図2に示される樹脂の硬化物(a及びb)の形状及び寸法は、アルミニウム箔2の表面に形成されていた貫通孔Pの形状及び寸法に相当する。 A solution containing uncured epoxy resin is applied to the entire surface of the aluminum foil 2. As a result, a solution of resin is filled into the through holes P formed on the surface of the aluminum foil 2. After the solution is dried and the resin is cured by heating, the aluminum foil 2 is cut in the direction perpendicular to the surface of the aluminum foil 2. Resins that cure without heating may be used. Only the aluminum portion of the cut aluminum foil 2 is dissolved and removed by an ethanol solution containing perchloric acid. That is, the cured resin remains. Sodium hydroxide may be used to dissolve the aluminum. The cut surface of the cured resin from which the aluminum has been removed is photographed by a scanning electron microscope. The image of the cut surface taken by the scanning electron microscope is a cured product of the resin filled in the through hole P. That is, the shape and size of the cured resin (a and b) shown in FIGS. 1 and 2 correspond to the shape and size of the through hole P formed on the surface of the aluminum foil 2.
 アルミニウム箔2の厚さTは、0μmより大きく50μm以下である。アルミニウム箔2の厚さTは、好ましくは12μm以上30μm以下であってよい。アルミニウム箔2が薄過ぎる場合、アルミニウム箔2の機械的強度(例えば引張強度)が低下する。その結果、アルミニウム箔2のハンドリングに伴ってアルミニウム箔2が破損し易く、アルミニウム箔2及び蓄電デバイス10の生産性が低下する。一方、アルミニウム箔2が厚過ぎる場合、アルミニウム箔2を備える蓄電デバイスの容量及びエネルギー密度が減少する。 The thickness T of the aluminum foil 2 is more than 0 μm and not more than 50 μm. The thickness T of the aluminum foil 2 may preferably be 12 μm or more and 30 μm or less. If the aluminum foil 2 is too thin, the mechanical strength (e.g., tensile strength) of the aluminum foil 2 is reduced. As a result, the aluminum foil 2 is easily broken with the handling of the aluminum foil 2, and the productivity of the aluminum foil 2 and the storage device 10 is reduced. On the other hand, when the aluminum foil 2 is too thick, the capacity and energy density of the storage device provided with the aluminum foil 2 decrease.
 アルミニウム箔2に形成された貫通孔Pの直径Dは、電解質を構成するイオン(電荷キャリア)が貫通孔P内を移動及び通過することが可能である程度の大きさであればよい。イオンが貫通孔P内を移動及び通過し易いという理由から、貫通孔Pの直径Dは、例えば、数Å以上100μm以下であってよい。貫通孔Pの直径Dの平均値は、例えば、1μm以上100μm以下であってよい。第一活物質層4をアルミニウム箔2の表面に形成する工程では、活物質、バインダ及び溶媒等を含むスラリーが、アルミニウム箔2の表面に塗布される。しかし、貫通孔Pの直径Dが100μmを超える場合、スラリーが貫通孔Pを通じてアルミニウム箔2の表面から裏面へ抜け易い。貫通孔Pの直径Dは、貫通孔Pの内径と言い換えられてよい。 The diameter D P of the through hole P formed in the aluminum foil 2, ions (charge carriers) need only be large enough it is possible to move and pass through the through hole P constituting the electrolyte. The diameter D P of the through hole P may be, for example, several angstroms or more and 100 μm or less because ions easily move and pass through the through hole P. The average value of the diameter D P of the through holes P may be, for example, 1 μm or more and 100 μm or less. In the step of forming the first active material layer 4 on the surface of the aluminum foil 2, a slurry containing an active material, a binder, a solvent and the like is applied to the surface of the aluminum foil 2. However, if the diameter D P of the through hole P is greater than 100 [mu] m, easily exit from the surface of the aluminum foil 2 to the back surface through the slurry through holes P. The diameter D P of the through hole P may be rephrased as the inner diameter of the through hole P.
 直径Dが1μm以上100μm以下である貫通孔Pの数は、アルミニウム箔2の単位面積当たり、10個/mm以上である。直径Dが1μm以上100μm以下である貫通孔Pの数は、アルミニウム箔2の単位面積当たり、10個/mm以上1000000個/mm以下、10個/mm以上100000個/mm以下、10個/mm以上10000個/mm以下、10個/mm以上1000個/mm以下、又は10個/mm以上100個/mm以下であってよい。アルミニウム箔2の単位面積は、1mmである。直径Dが1μm以上100μm以下である貫通孔Pの数が上記の範囲である場合、直径Dが数μm以上数十μm以下である多数の貫通孔Pがアルミニウム箔2の表面に形成されている。その結果、アルミニウム箔2におけるイオンの移動距離が短く、イオンをアルミニウム箔2に対して均一に且つ短時間でプレドープすることができる。 The number of through-holes P diameter D P is 1μm or more 100μm or less, per unit area of the aluminum foil 2, 10 or / mm 2 or more. The number of through-holes P diameter D P is 1μm or more 100μm or less, per unit area of the aluminum foil 2, 10 / mm 2 or more 1,000,000 / mm 2 or less, 10 pieces / mm 2 or more 100,000 / mm 2 or less 10 pieces / mm 2 or more and 10000 pieces / mm 2 or less, 10 pieces / mm 2 or more and 1000 pieces / mm 2 or less, or 10 pieces / mm 2 or more and 100 pieces / mm 2 or less. The unit area of the aluminum foil 2 is 1 mm 2 . If the number of through-holes P diameter D P is 1μm or more 100μm or less is in the above range, a large number of through-holes P diameter D P is several tens of μm or less than several μm is formed on the surface of the aluminum foil 2 ing. As a result, the migration distance of ions in the aluminum foil 2 is short, and the ions can be uniformly pre-doped to the aluminum foil 2 in a short time.
 アルミニウム箔2のガーレー透気度は、0sec/100mlより大きく10sec/100ml以下であってよい。ガーレー透気度が大きいほど、貫通孔Pが少なく、気体が貫通孔Pを通じてアルミニウム箔2を透過するために要する時間が長い。気体の場合と同様に、ガーレー透気度が大きいほど、イオン又はイオンの溶液が貫通孔P内を移動及び通過するために要する時間が長い。その結果、プレドープに時間がかかる。ガーレー透気度が上記の範囲内であることにより、アルミニウム箔2におけるイオンの貫通性が向上し、プレドープの時間が短く、イオンをアルミニウム箔2へプレドープし易い。同様の理由から、アルミニウム箔2のガーレー透気度は、好ましくは0.3sec/100ml以上1.2sec/100ml以下であってもよい。ガーレー透気度は、JIS P 8117(紙及び板紙‐透気度及び透気抵抗度試験方法(中間領域)‐ガーレー法)に準じたガーレー試験機法によって測定されてよい。 The Gurley air permeability of the aluminum foil 2 may be more than 0 sec / 100 ml and 10 sec / 100 ml or less. The larger the Gurley air permeability, the smaller the through holes P, and the longer it takes for the gas to permeate the aluminum foil 2 through the through holes P. As in the case of gas, the greater the Gurley air permeability, the longer it takes the ion or solution of ions to move and pass through the through holes P. As a result, pre-doping takes time. When the Gurley air permeability is in the above range, the ion penetration in the aluminum foil 2 is improved, the pre-doping time is short, and the ions are easily pre-doped into the aluminum foil 2. For the same reason, the Gurley air permeability of the aluminum foil 2 may be preferably 0.3 sec / 100 ml or more and 1.2 sec / 100 ml or less. Gurley air permeability may be measured by the Gurley tester method according to JIS P 8117 (paper and paper board-air permeability and air resistance test method (intermediate range)-Gurley method).
 アルミニウム箔2の引張強度は、50N/mm以上である。引張強度が上記の範囲内であることにより、アルミニウム箔2のハンドリングに伴うアルミニウム箔2の破損が抑制され、アルミニウム箔2を用いた電極及び蓄電デバイスの生産性が向上する。同様の理由から、アルミニウム箔2の引張強度は、好ましくは50N/mm以上91N/mm以下、又は65N/mm以上91N/mm以下であってもよい。引張強度が低いほど、電極及び蓄電デバイスの製造過程において、アルミニウム箔2が破断し易く、アルミニウム箔2のハンドリングが困難であり、生産性が低下する。アルミニウム箔2の引張強度は、JIS B 7721(引張試験機・圧縮試験機-力計測系の校正方法及び検証方法)に準じた引張試験機によって測定されてよい。またはアルミニウム箔2の引張強度は、JIS Z 2241(金属材料引張試験方法)に準じた引張試験機によって測定されてもよい。 The tensile strength of the aluminum foil 2 is 50 N / mm 2 or more. When the tensile strength is within the above range, the breakage of the aluminum foil 2 accompanying the handling of the aluminum foil 2 is suppressed, and the productivity of the electrode and the storage device using the aluminum foil 2 is improved. For the same reason, the tensile strength of the aluminum foil 2, preferably 50 N / mm 2 or more 91N / mm 2 or less, or 65N / mm 2 or more 91N / mm 2 may be less. The lower the tensile strength, the easier the aluminum foil 2 is broken in the process of manufacturing the electrode and the storage device, the more difficult the handling of the aluminum foil 2 is, and the lower the productivity. The tensile strength of the aluminum foil 2 may be measured by a tensile tester according to JIS B 7721 (tensile tester / compression tester-calibration method and verification method of force measurement system). Alternatively, the tensile strength of the aluminum foil 2 may be measured by a tensile tester according to JIS Z 2241 (Metal material tensile test method).
 貫通孔Pが形成される前のアルミニウム箔2の質量は、M0と表される。貫通孔Pが形成された後のアルミニウム箔2の質量は、M1と表される。減耗率RM(単位:質量%)は、{(M0-M1)/M0}×100と定義される。M0-M1は、アルミニウム箔2における貫通孔Pの形成に伴って、アルミニウム箔2から除去されたアルミニウムの質量に相当する。ただし、貫通孔Pの形成に伴って、アルミニウム箔2を貫通しない細孔(非貫通孔)も同時に形成され得る。したがって、M0-M1は、元々貫通孔Pに充填されていたアルミニウムの質量Maと常に等しいわけでない。M0-M1は、元々非貫通孔に充填されていたアルミニウムの質量Mbも含み得る。つまり、M0-M1は、Ma+Mbにほぼ等しい。アルミニウム箔2から除去されたアルミニウムの全てが、元々貫通孔Pに充填されていた場合、アルミニウム箔2に形成された細孔の全てが貫通孔Pであり、M0-M1はMaに等しく、Mbはゼロである。 The mass of the aluminum foil 2 before the through holes P are formed is represented as M0. The mass of the aluminum foil 2 after the through holes P are formed is represented as M1. The wear rate RM (unit: mass%) is defined as {(M0-M1) / M0} × 100. M 0 -M 1 corresponds to the mass of aluminum removed from the aluminum foil 2 along with the formation of the through holes P in the aluminum foil 2. However, along with the formation of the through holes P, pores (non-through holes) not penetrating the aluminum foil 2 may be formed at the same time. Therefore, M 0 -M 1 is not always equal to the mass Ma of aluminum originally filled in the through hole P. M0-M1 can also include the mass Mb of aluminum originally filled in the non-through holes. That is, M0-M1 is approximately equal to Ma + Mb. When all of the aluminum removed from the aluminum foil 2 is originally filled in the through holes P, all the pores formed in the aluminum foil 2 are through holes P, and M0 to M1 is equal to Ma, and Mb Is zero.
 アルミニウム箔2の表面の面積は、A0と表される。アルミニウム箔2の表面のうち面積がA0である領域内に形成された貫通孔Pの開口面積の合計は、A1と表される。A0は、アルミニウム箔2の表面に形成された貫通孔Pの開口面積の合計を包含する。開口率RA(単位:面積%)は、(A1/A0)×100と定義される。A0は、アルミニウム箔2の表面全体の面積Aでなくてよい。 The area of the surface of the aluminum foil 2 is represented as A0. The sum of the open areas of the through holes P formed in the region having an area of A0 among the surfaces of the aluminum foil 2 is represented as A1. A0 includes the sum of the open areas of the through holes P formed on the surface of the aluminum foil 2. The aperture ratio RA (unit: area%) is defined as (A1 / A0) × 100. A 0 may not be the area AT of the entire surface of the aluminum foil 2.
 (RA/RM)×100は、80%以上100%以下である。(RA/RM)×100は、アルミニウム箔2に形成された全ての細孔に対する貫通孔Pの相対的な割合を示す指標である。アルミニウム箔2に形成された細孔の全てが貫通孔Pである場合、細孔の形成に伴ってアルミニウム箔2から除去されたアルミニウムの質量の割合は、アルミニウム箔2の表面における貫通孔Pの開口面積の割合と一致する。つまり、アルミニウム箔2に形成された細孔の全てが貫通孔Pである場合、M0-M1はMaに等しく、RMは(Ma/M0)×100であり、RMはRAと等しく、(RA/RM)×100は100%である。 (RA / RM) × 100 is 80% or more and 100% or less. (RA / RM) × 100 is an index indicating the relative ratio of the through holes P to all the pores formed in the aluminum foil 2. When all the pores formed in aluminum foil 2 are through holes P, the ratio of the mass of aluminum removed from aluminum foil 2 along with the formation of the pores is equal to that of through holes P in the surface of aluminum foil 2. It corresponds to the ratio of the open area. That is, when all the pores formed in the aluminum foil 2 are the through holes P, M0-M1 is equal to Ma, RM is (Ma / M0) × 100, RM is equal to RA, and (RA / RM) × 100 is 100%.
 (RA/RM)×100が低いほど、全細孔に占める非貫通孔の割合が高く、アルミニウム箔2のガーレー透気度及び引張強度が低い傾向がある。また非貫通孔はプレドープを妨げる。したがって、(RA/RM)×100は高いほど好ましい。つまり、非貫通孔は少ないことが好ましく、非貫通孔は無いことがより好ましい。 The lower the ratio (RA / RM) × 100, the higher the proportion of non-through pores in the total pores, and the lower the Gurley air permeability and tensile strength of the aluminum foil 2 tend to be. Also, non-penetrating pores interfere with pre-doping. Therefore, (RA / RM) × 100 is preferably as high as possible. That is, it is preferable that the number of non-through holes be small, and it is more preferable that there be no non-through holes.
 貫通孔Pが形成される前のアルミニウム箔2の体積は、V0と表される。貫通孔Pが形成された後のアルミニウム箔2の体積は、V1と表される。体積減耗率RV(単位:体積%)は、{(V0-V1)/V0}×100と定義される。V0-V1は、アルミニウム箔2における貫通孔Pの形成に伴って、アルミニウム箔2から除去されたアルミニウムの体積に相当する。ただし、貫通孔Pの形成に伴って、アルミニウム箔2を貫通しない細孔(非貫通孔)も同時に形成され得る。したがって、V0-V1は、元々貫通孔Pに充填されていたアルミニウムの体積Vaと常に等しいわけでない。V0-V1は、元々非貫通孔に充填されていたアルミニウムの体積Vbも含み得る。つまり、V0-V1は、Va+Vbにほぼ等しい。アルミニウム箔2から除去されたアルミニウムの全てが、元々貫通孔Pに充填されていた場合、アルミニウム箔2に形成された細孔の全てが貫通孔Pであり、V0-V1はVaに等しく、Vbはゼロである。アルミニウムの真密度Dは一定であるので、質量がMであるアルミニウムの体積Vは、アルミニウムの質量Mを真密度Dで除した値(M/D)に等しい。つまり、アルミニウムの体積Vは、アルミニウムの質量Mに比例する。したがって、体積減耗率RVは実質的に減耗率RMに等しく、(RA/RV)×100は実質的に(RA/RM)×100に等しい。つまり、(RA/RM)×100と同様に、(RA/RV)×100は80%以上100%以下であってよい。 The volume of the aluminum foil 2 before the through holes P are formed is represented as V0. The volume of the aluminum foil 2 after the through holes P are formed is represented as V1. The volumetric loss rate RV (unit: volume%) is defined as {(V0−V1) / V0} × 100. V 0 -V 1 corresponds to the volume of aluminum removed from the aluminum foil 2 along with the formation of the through holes P in the aluminum foil 2. However, along with the formation of the through holes P, pores (non-through holes) not penetrating the aluminum foil 2 may be formed at the same time. Therefore, V 0 -V 1 is not always equal to the volume Va of the aluminum originally filled in through hole P. V0-V1 may also include the volume Vb of aluminum originally filled in the non-through holes. That is, V0-V1 is approximately equal to Va + Vb. When all of the aluminum removed from the aluminum foil 2 is originally filled in the through holes P, all the pores formed in the aluminum foil 2 are through holes P, and V0-V1 is equal to Va, Vb Is zero. Since the true density D of aluminum is constant, the volume V of aluminum having a mass of M is equal to the mass M of aluminum divided by the true density D (M / D). That is, the volume V of aluminum is proportional to the mass M of aluminum. Therefore, the volumetric wear rate RV is substantially equal to the wear rate RM, and (RA / RV) × 100 is substantially equal to (RA / RM) × 100. That is, like (RA / RM) × 100, (RA / RV) × 100 may be 80% or more and 100% or less.
 貫通孔Pの形成に伴うアルミニウム箔2の体積の変化量(V0-V1)に基づいて、(RA/RM)×100及び(RA/RV)×100を間接的に特定することができる。この場合、アルミニウム箔2の厚さTとアルミニウム箔2全体の面積Aとの積(T×A)がV0とみなされてよく、M1/DがV1とみなされてよい。貫通孔Pがアルミニウム箔2に形成された後の時点において、T×A×Dは、貫通孔Pが形成される前のアルミニウム箔2の質量M0にほぼ等しい。したがって、貫通孔Pがアルミニウム箔2に形成された後の時点においても、RM及び(RA/RM)×100をT×A×D及びM1から算出することが可能である。 (RA / RM) × 100 and (RA / RV) × 100 can be indirectly specified based on the amount of change in volume (V0−V1) of the aluminum foil 2 associated with the formation of the through hole P. In this case, the product (T × A T ) of the thickness T of the aluminum foil 2 and the area A T of the entire aluminum foil 2 may be regarded as V0, and M1 / D may be regarded as V1. At the time after the through holes P are formed in the aluminum foil 2, T × A T × D is approximately equal to the mass M 0 of the aluminum foil 2 before the through holes P are formed. Therefore, even when the through holes P are formed in the aluminum foil 2, RM and (RA / RM) × 100 can be calculated from T × A T × D and M 1.
 貫通孔Pの開口面積の合計A1は、アルミニウム箔2の表面の画像を画像解析ソフトを用いて解析することにより測定されてよい。アルミニウム箔2の表面の画像は、アルミニウム箔2がバックライト上に置かれた状態において撮影されてよい。アルミニウム箔2の表面においてバックライトが透過している部分が貫通孔Pに相当するからである。アルミニウム箔2の表面の画像は、デジタルマイクロスコープによって撮影されてよい。デジタルマイクロスコープとしては、株式会社ハイロックス製のデジタルマイクロスコープ(型式:KH-3000)が用いられてよい。デジタルマイクロスコープの倍率は、100倍以上3000倍以下であることが好ましい。100倍よりも低い倍率では、光の拡散に起因して、撮影される貫通孔Pの画像が、実際の貫通孔Pよりも大きく見える。その結果、開口面積の誤差が生じ易い。3000倍よりも高い倍率では、1枚の画像内に収まるアルミニウム箔2の面積が小さく、開口面積の誤差が生じ易い。画像解析ソフトとしては、旭化成エンジニアリング株式会社製の「A像くん Ver.2.52」が用いられてよい。「A像くん」は登録商標である。貫通孔Pの直径Dも、上記の画像を画像解析ソフトで解析することにより測定されてよい。アルミニウム箔2の表面に形成された貫通孔Pの数も、上記の画像を画像解析ソフトで解析することにより測定されてよい。 The total A1 of the open areas of the through holes P may be measured by analyzing the image of the surface of the aluminum foil 2 using image analysis software. An image of the surface of the aluminum foil 2 may be taken with the aluminum foil 2 placed on the backlight. This is because the portion of the surface of the aluminum foil 2 through which the backlight is transmitted corresponds to the through hole P. An image of the surface of the aluminum foil 2 may be taken by a digital microscope. As a digital microscope, a digital microscope (model: KH-3000) manufactured by HIROX Co., Ltd. may be used. The magnification of the digital microscope is preferably 100 times or more and 3000 times or less. At magnifications less than 100 times, due to the diffusion of light, the image of the through hole P to be photographed looks larger than the actual through hole P. As a result, an error in the aperture area is likely to occur. At a magnification higher than 3000 times, the area of the aluminum foil 2 that fits in one image is small, and an error in the opening area is likely to occur. As the image analysis software, “A Image Kun Ver. 2.52” manufactured by Asahi Kasei Engineering Corporation may be used. "Image A" is a registered trademark. The diameter D P of the through hole P, may also be determined by analyzing the image of the image analysis software. The number of through holes P formed on the surface of the aluminum foil 2 may also be measured by analyzing the above image with image analysis software.
 本実施形態に係るアルミニウム箔2の製造においては、アルミニウム箔の焼鈍処理(annealing)によって、アルミニウム箔の結晶方位をエッチング前に揃える必要がない。つまり、本実施形態にアルミニウム箔2は、焼鈍処理を経ていないアルミニウム箔から製造することができる。したがって本実施形態にアルミニウム箔2は高い引張強度を有しており、ハンドリング性に優れる。本実施形態に係るアルミニウム箔2の材料としては、工業的に量産されている一般的なアルミニウム箔を用いられてよい。例えば、3003材又は1085材からアルミニウム箔2が製造されてよい。3003材及び1085材のいずれも国際アルミニウム合金名である。 In the production of the aluminum foil 2 according to the present embodiment, it is not necessary to align the crystal orientation of the aluminum foil before etching by annealing the aluminum foil. That is, in the present embodiment, the aluminum foil 2 can be manufactured from an aluminum foil which has not been subjected to the annealing treatment. Therefore, in the present embodiment, the aluminum foil 2 has high tensile strength and is excellent in handleability. As a material of the aluminum foil 2 which concerns on this embodiment, the general aluminum foil mass-produced industrially may be used. For example, the aluminum foil 2 may be manufactured from a 3003 or 1085 material. Both 3003 and 1085 materials are international aluminum alloy names.
 貫通孔Pをアルミニウム箔2に形成する方法は、電解エッチング又は化学エッチングであってよい。電解エッチング及び化学エッチングの組み合わせによって、貫通孔Pをアルミニウム箔2に形成してもよい。 The method of forming the through holes P in the aluminum foil 2 may be electrolytic etching or chemical etching. The through holes P may be formed in the aluminum foil 2 by a combination of electrolytic etching and chemical etching.
 電解エッチングに用いる電解液は、例えば、塩酸、硝酸、硫酸、及びリン酸等からなる群より選ばれる少なくとも一種の酸を含む酸性溶液(例えば水溶液)であってよい。複数種の電解液が組み合せられてよい。電解液中の酸の濃度は、2質量%以上20質量%以下であってよい。電解液の温度は30℃以上80℃以下であってよい。電解液中のアルミニウム箔の電気量は1C/dm以上1000C/dm以下であってよい。 The electrolytic solution used for electrolytic etching may be, for example, an acidic solution (for example, an aqueous solution) containing at least one acid selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. A plurality of electrolytes may be combined. The concentration of the acid in the electrolytic solution may be 2% by mass or more and 20% by mass or less. The temperature of the electrolytic solution may be 30 ° C. or more and 80 ° C. or less. The amount of electricity of the aluminum foil in the electrolytic solution may be 1 C / dm 2 or more and 1000 C / dm 2 or less.
 化学エッチングに用いるエッチング液は、例えば、塩酸、硝酸、硫酸、リン酸、ホウ酸、クロム酸、及びフッ酸等からなる群より選ばれる少なくとも一種を含む酸性溶液(例えば水溶液)であってよい。複数種の酸性溶液が組み合せられてよい。エッチング液中の酸の濃度は5質量%以上35質量%以下であってよい。エッチング液は、例えば、水酸化ナトリウム、水酸化カリウム、及び水酸化カルシウム等からなる群より選ばれる少なくとも一種を含むアルカリ性溶液(例えば水溶液)であってもよい。複数種のアルカリ性溶液が組み合せられてよい。エッチング液中のアルカリ化合物の濃度は5質量%以上35質量%以下であってよい。エッチング液の温度は、30℃以上80℃以下であってよい。化学エッチングの継続時間は、100秒以上10000秒以下であってよい。 The etching solution used for the chemical etching may be, for example, an acidic solution (for example, an aqueous solution) containing at least one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, chromic acid, and hydrofluoric acid. Multiple acidic solutions may be combined. The concentration of the acid in the etching solution may be 5% by mass or more and 35% by mass or less. The etching solution may be, for example, an alkaline solution (for example, an aqueous solution) containing at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide and the like. Multiple alkaline solutions may be combined. The concentration of the alkali compound in the etching solution may be 5% by mass or more and 35% by mass or less. The temperature of the etching solution may be 30 ° C. or more and 80 ° C. or less. The duration of chemical etching may be 100 seconds or more and 10000 seconds or less.
 上記のエッチングの諸条件の調整によって、アルミニウムの溶出量、アルミニウム箔2の表面に形成される細孔の深さ、貫通孔Pの数、貫通孔Pの直径D、開口率RA、減耗率RM及びガーレー透気度が制御されてよい。 By adjusting the conditions of the etching described above, the elution amount of aluminum, the depth of pores formed on the surface of the aluminum foil 2, the number of through holes P, the diameter D P of the through holes P , the opening ratio RA, the wear rate RM and Gurley air permeability may be controlled.
 以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by the examples.
(実施例1)
[アルミニウム箔の作製]
 電解エッチングによって、アルミニウム箔の表面に複数の貫通孔を形成した。貫通孔が形成された後のアルミニウム箔の厚さTは、50μm以下であった。アルミニウム箔としては、3003材を用いた。アルミニウム箔の焼鈍処理は実施されなかった。電解エッチング用の電解液としては、塩酸溶液を用いた。電解液中の塩酸の濃度、電解液の温度、電解液中におけるアルミニウム箔の電気量、及び電解エッチングの継続時間の調整により、アルミニウム箔からのアルミニウムの溶出量、アルミニウム箔の表面に形成される貫通孔の数、及び貫通孔の直径D(平均値)等が制御された。
Example 1
[Production of aluminum foil]
A plurality of through holes were formed on the surface of the aluminum foil by electrolytic etching. The thickness T of the aluminum foil after the formation of the through holes was 50 μm or less. As an aluminum foil, 3003 material was used. No annealing treatment of the aluminum foil was performed. A hydrochloric acid solution was used as an electrolytic solution for electrolytic etching. By adjusting the concentration of hydrochloric acid in the electrolytic solution, the temperature of the electrolytic solution, the amount of electricity of the aluminum foil in the electrolytic solution, and the duration of electrolytic etching, the amount of elution of aluminum from the aluminum foil is formed on the surface of the aluminum foil The number of through holes and the diameter D P (average value) of the through holes were controlled.
[アルミニウム箔の評価]
 以下の各測定に基づき、貫通孔Pが形成されたアルミニウム箔を評価した。
[Evaluation of aluminum foil]
The aluminum foil in which the through-hole P was formed was evaluated based on the following each measurement.
 電解エッチングの前後においてアルミニウム箔の質量を測定することにより、減耗率RMを算出した。減耗率RMは下記表1に示される。 The wear rate RM was calculated by measuring the mass of the aluminum foil before and after the electrolytic etching. The wear rate RM is shown in Table 1 below.
 アルミニウム箔がバックライト上に置かれた状態において、アルミニウム箔の表面の画像をデジタルマイクロスコープによって撮影した。撮影された画像を画像解析ソフトで解析することによって、アルミニウム箔の表面に形成された貫通孔の直径Dの平均値、及び開口率RAを測定した。画像の撮影には、株式会社ハイロックス製のデジタルマイクロスコープ(型式:KH-3000)を用いた。デジタルマイクロスコープの倍率は、400倍に設定された。画像解析ソフトとしては、旭化成エンジニアリング株式会社製の「A像くん Ver.2.52」を用いた。貫通孔の直径Dの平均値及び開口率RAは、下記表1に示される。(RA/RM)×100も、下記表1に示される。上述の画像解析により、直径Dが1μm以上100μm以下である貫通孔の数Nを測定した。貫通孔の数Nとは、アルミニウム箔の単位面積(1mm)当たりの貫通孔の数である。貫通孔の数Nは、10個/mm以上であった。 An image of the surface of the aluminum foil was taken with a digital microscope while the aluminum foil was placed on the backlight. By analyzing the image photographed by the image analysis software, the average value of the diameter D P of the through hole formed on the surface of the aluminum foil, and was measured the aperture ratio RA. A digital microscope (model: KH-3000) manufactured by HIROX Co., Ltd. was used for photographing the image. The magnification of the digital microscope was set to 400 times. As image analysis software, "A Image Kun Ver. 2.52" manufactured by Asahi Kasei Engineering Corporation was used. The mean value of the diameter D P of the through holes and the aperture ratio RA are shown in Table 1 below. (RA / RM) × 100 is also shown in Table 1 below. By image analysis described above to determine the number N of the through-hole diameter D P is 1μm or more 100μm or less. The number N of through holes is the number of through holes per unit area (1 mm 2 ) of the aluminum foil. The number N of through holes was 10 / mm 2 or more.
 JIS P 8117に準じた方法により、アルミニウム箔のガーレー透気度を測定した。測定装置としては、テスター産業株式会社製のガーレー式デンソメータ(型式:PA-301)を用いた。ガーレー透気度は、下記表1に示される。 The Gurley air permeability of the aluminum foil was measured by the method according to JIS P 8117. As a measuring apparatus, a Gurley type densometer (type: PA-301) manufactured by Tester Sangyo Co., Ltd. was used. Gurley air permeability is shown in Table 1 below.
 JIS Z 2241(金属材料引張試験方法)に準じた方法により、アルミニウム箔の引張強度を測定した。測定には、株式会社エー・アンド・デー製の引張・圧縮試験機(型式:MCT‐1150)を用いた。引張強度は、下記表1に示される。 The tensile strength of the aluminum foil was measured by a method according to JIS Z 2241 (Metal material tensile test method). For measurement, a tension and compression tester (model: MCT-1150) manufactured by A & D Co., Ltd. was used. The tensile strength is shown in Table 1 below.
(実施例2)
 実施例2のアルミニウム箔(加工前の材料)としては、3003材の代わりに1085材を用いた。材料の違いを除いて実施例1と同様の方法で、アルミニウム箔の表面に複数の貫通孔を形成した。貫通孔が形成された後の実施例2のアルミニウム箔の厚さTは、50μm以下であった。貫通孔が形成された実施例2のアルミニウム箔を、実施例1と同様の方法で評価した。実施例2の評価結果は、下記表1に示される。上述の画像解析により測定された実施例2の貫通孔の数Nは、10個/mm以上であった。
(Example 2)
As aluminum foil (material before processing) of Example 2, 1085 material was used instead of 3003 material. A plurality of through holes were formed on the surface of the aluminum foil in the same manner as in Example 1 except for the difference in materials. Thickness T of the aluminum foil of Example 2 after a through-hole was formed was 50 micrometers or less. The aluminum foil of Example 2 in which the through holes were formed was evaluated in the same manner as in Example 1. The evaluation results of Example 2 are shown in Table 1 below. The number N of through holes of Example 2 measured by the above-described image analysis was 10 / mm 2 or more.
(比較例1)
 比較例1のアルミニウム箔(加工前の材料)としては、3003材の代わりに1085材を用いた。比較例1の場合、電解エッチングの前に、アルミニウム箔の焼鈍処理を行った。これらの事項を除いて実施例1と同様の方法で、アルミニウム箔の表面に複数の貫通孔を形成した。貫通孔が形成された比較例1のアルミニウム箔を、実施例1と同様の方法で評価した。比較例1の評価結果は、下記表1に示される。
(Comparative example 1)
As aluminum foil (material before processing) of comparative example 1, 1085 material was used instead of 3003 material. In the case of Comparative Example 1, the annealing treatment of the aluminum foil was performed before the electrolytic etching. A plurality of through holes were formed on the surface of the aluminum foil in the same manner as in Example 1 except for these matters. The aluminum foil of Comparative Example 1 in which the through holes were formed was evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 1 are shown in Table 1 below.
(比較例2)
 比較例2のアルミニウム箔(加工前の材料)としては、3003材の代わりに1085材を用いた。比較例2の場合、電解エッチングの前に、アルミニウム箔の焼鈍処理を行った。これらの事項を除いて実施例1と同様の方法で、アルミニウム箔の表面に複数の貫通孔を形成した。貫通孔が形成された比較例2のアルミニウム箔を、実施例1と同様の方法で評価した。比較例2の評価結果は、下記表1に示される。
(Comparative example 2)
As aluminum foil (material before processing) of comparative example 2, 1085 material was used instead of 3003 material. In the case of Comparative Example 2, the annealing treatment of the aluminum foil was performed before the electrolytic etching. A plurality of through holes were formed on the surface of the aluminum foil in the same manner as in Example 1 except for these matters. The aluminum foil of Comparative Example 2 in which the through holes were formed was evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 2 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1及び2其々の(RA/RM)×100及びガーレー透気度は、比較例1及び2に比べて高かった。つまり、実施例1及び2は細孔の貫通性に優れていることが確認された。実施例1及び2其々の引張強度は比較例1及び2に比べて高かった。実施例1及び2其々のアルミニウム箔はハンドリング性に優れていることが確認された。 The (RA / RM) × 100 and Gurley air permeability of Examples 1 and 2 were higher than those of Comparative Examples 1 and 2. That is, it was confirmed that Examples 1 and 2 are excellent in pore penetration. The tensile strengths of Examples 1 and 2 were higher than those of Comparative Examples 1 and 2. It was confirmed that the aluminum foils of Examples 1 and 2 were excellent in handling properties.
 本発明に係るアルミニウム箔は、例えば、リチウムイオンキャパシタ、電気二重層キャパシタ、リチウムイオン二次電池及び電解コンデンサ等の蓄電デバイスの電極に用いられる。 The aluminum foil which concerns on this invention is used for the electrode of electrical storage devices, such as a lithium ion capacitor, an electrical double layer capacitor, a lithium ion secondary battery, and an electrolytic capacitor, for example.
 1…第二集電体、2…アルミニウム箔(第一集電体)、3…第二活物質層、4…第一活物質層、5…第二電極、6…第一電極、7…セパレータ、8…電解液、10…蓄電デバイス。

 
DESCRIPTION OF SYMBOLS 1 ... 2nd current collector, 2 ... Aluminum foil (1st current collector), 3 ... 2nd active material layer, 4 ... 1st active material layer, 5 ... 2nd electrode, 6 ... 1st electrode, 7 ... Separator, 8 ... electrolyte solution, 10 ... storage device.

Claims (3)

  1.  アルミニウム箔であって、
     前記アルミニウム箔の厚さが0μmより大きく50μm以下であり、
     複数の貫通孔が前記アルミニウム箔の表面から裏面へ延びており、
     直径が1μm以上100μm以下である前記貫通孔の数が、前記アルミニウム箔の単位面積当たり、10個/mm以上であり、
     前記アルミニウム箔の引張強度が50N/mm以上であり、
     前記貫通孔が形成される前の前記アルミニウム箔の質量がM0と表され、
     前記貫通孔が形成された後の前記アルミニウム箔の質量がM1と表され、
     減耗率RMが、{(M0-M1)/M0}×100と定義され、
     前記アルミニウム箔の表面の面積がA0と表され、
     前記アルミニウム箔の表面に形成された前記貫通孔の開口面積の合計がA1と表され、
     開口率RAが、(A1/A0)×100と定義され、
     (RA/RM)×100が、80%以上100%以下である、
    アルミニウム箔。
    Aluminum foil,
    The thickness of the aluminum foil is more than 0 μm and not more than 50 μm,
    A plurality of through holes extend from the front surface to the back surface of the aluminum foil,
    The number of the through holes having a diameter of 1 μm to 100 μm is 10 / mm 2 or more per unit area of the aluminum foil,
    The tensile strength of the aluminum foil is 50 N / mm 2 or more,
    The mass of the aluminum foil before the through holes are formed is represented as M0,
    The mass of the aluminum foil after the through hole is formed is represented by M1.
    The wear rate RM is defined as {(M0−M1) / M0} × 100
    The surface area of the aluminum foil is represented as A0,
    A total of the open areas of the through holes formed on the surface of the aluminum foil is represented as A1.
    The aperture ratio RA is defined as (A1 / A0) × 100,
    (RA / RM) × 100 is 80% or more and 100% or less,
    Aluminum foil.
  2.  ガーレー透気度が0sec/100mlより大きく10sec/100ml以下である、
    請求項1に記載のアルミニウム箔。
    Gurley air permeability is greater than 0 sec / 100 ml and less than 10 sec / 100 ml,
    The aluminum foil according to claim 1.
  3.  請求項1又は2に記載のアルミニウム箔を備える、
    蓄電デバイス。

     
    An aluminum foil according to claim 1 or 2,
    Power storage device.

PCT/JP2018/028921 2017-08-01 2018-08-01 Aluminum foil and power storage device WO2019026974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019534569A JPWO2019026974A1 (en) 2017-08-01 2018-08-01 Aluminum foil and electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-149131 2017-08-01
JP2017149131 2017-08-01

Publications (1)

Publication Number Publication Date
WO2019026974A1 true WO2019026974A1 (en) 2019-02-07

Family

ID=65232982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028921 WO2019026974A1 (en) 2017-08-01 2018-08-01 Aluminum foil and power storage device

Country Status (2)

Country Link
JP (1) JPWO2019026974A1 (en)
WO (1) WO2019026974A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431348B2 (en) 2020-12-01 2024-02-14 クラレクラフレックス株式会社 Current collectors, electrodes and non-aqueous electrolyte batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051976A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Aluminum plate
WO2017018462A1 (en) * 2015-07-30 2017-02-02 富士フイルム株式会社 Aluminum plate and method for producing aluminum plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051976A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Aluminum plate
WO2017018462A1 (en) * 2015-07-30 2017-02-02 富士フイルム株式会社 Aluminum plate and method for producing aluminum plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431348B2 (en) 2020-12-01 2024-02-14 クラレクラフレックス株式会社 Current collectors, electrodes and non-aqueous electrolyte batteries

Also Published As

Publication number Publication date
JPWO2019026974A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
KR102253481B1 (en) Copper foil with excellent adhesion
JP6565000B2 (en) Method for manufacturing electrochemical device
KR102545769B1 (en) Lithium battery manufacturing method
JP2007250376A (en) Aluminum foil for current collector of lithium ion battery, and lithium ion battery using same
DE112007000960T5 (en) A porous material for an electrolyte membrane of a fuel cell, a method of manufacturing the same, an electrolyte membrane for a solid polymer fuel cell, a membrane-electrode assembly (MEA), and a fuel cell
WO2019176956A1 (en) Titanium base material, method for producing titanium base material, electrode for water electrolysis, and water electrolysis device
CN114204039A (en) Novel microporous composite foil and preparation method thereof
US11527758B2 (en) Aluminum foil and aluminum member for electrodes
EP3300141B1 (en) Method for the preparation of an electrode stack for a battery cell and battery cell
WO2019026974A1 (en) Aluminum foil and power storage device
JP2009252670A (en) Method for manufacturing all-solid lithium secondary battery
EP2386596A1 (en) Method for the production of polymeric membranes having an ordered arrangement of high-aspect-ratio nanopores, by means of heavy ion bombing
Nam et al. Collectively exhaustive MXene and graphene oxide multilayer for suppressing shuttling effect in flexible lithium sulfur battery
JP4383228B2 (en) Solid electrolytic capacitor
KR20130054997A (en) 2 secondary battery porous electrode
US9837666B2 (en) Cathode current collector for electrical energy storage device and method for manufacturing the same
JP2018074117A (en) Current collector for power storage device, electrode for power storage device, lithium ion capacitor, and method for manufacturing electrode for power storage device
KR102033518B1 (en) Nonaqueous electrolyte secondary battery
US20220352524A1 (en) Fuel cell electrode with patterned microporous layer and methods of fabricating the same
DE102015212202A1 (en) Silicon monolith graphite anode for a lithium cell
JP2011228552A (en) Electrochemical device and manufacturing method for the same
US9620299B2 (en) Capacitor
KR20180115152A (en) Unit electrode of battery solving unbalance residual stress and lithium ion polymer battery including the same
DE102016215666A1 (en) Electrode arrangement for lithium-based galvanic cells and method for their production
KR102507012B1 (en) All solid cell for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534569

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841730

Country of ref document: EP

Kind code of ref document: A1