WO2019025911A1 - 半導体装置、および半導体装置の作製方法 - Google Patents

半導体装置、および半導体装置の作製方法 Download PDF

Info

Publication number
WO2019025911A1
WO2019025911A1 PCT/IB2018/055578 IB2018055578W WO2019025911A1 WO 2019025911 A1 WO2019025911 A1 WO 2019025911A1 IB 2018055578 W IB2018055578 W IB 2018055578W WO 2019025911 A1 WO2019025911 A1 WO 2019025911A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
conductor
oxide
transistor
region
Prior art date
Application number
PCT/IB2018/055578
Other languages
English (en)
French (fr)
Inventor
山崎舜平
松林大介
浅見良信
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US16/630,977 priority Critical patent/US20200227562A1/en
Priority to KR1020207003875A priority patent/KR102608084B1/ko
Priority to CN201880050764.8A priority patent/CN110998808B/zh
Priority to JP2019533720A priority patent/JP7232764B2/ja
Priority to KR1020237040618A priority patent/KR20230168211A/ko
Publication of WO2019025911A1 publication Critical patent/WO2019025911A1/ja
Priority to JP2023024496A priority patent/JP2023057165A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Definitions

  • One embodiment of the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • one embodiment of the present invention relates to a semiconductor wafer, a module, and an electronic device.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • a semiconductor circuit such as a transistor, a semiconductor circuit, an arithmetic device, and a memory device are one embodiment of a semiconductor device.
  • Display devices liquid crystal display devices, light emitting display devices, etc.
  • projection devices lighting devices
  • electro-optical devices power storage devices
  • storage devices semiconductor circuits
  • imaging devices electronic devices, and the like may have semiconductor devices in some cases. .
  • one embodiment of the present invention is not limited to the above technical field.
  • One aspect of the invention disclosed in the present specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • the CPU is a group of semiconductor elements including a semiconductor integrated circuit (at least a transistor and a memory) separated from a semiconductor wafer and in which an electrode serving as a connection terminal is formed.
  • IC chips Semiconductor circuits (IC chips) such as LSIs, CPUs, and memories are mounted on a circuit board, for example, a printed wiring board, and used as one of components of various electronic devices.
  • a technique of forming a transistor by using a semiconductor thin film formed on a substrate having an insulating surface has attracted attention.
  • the transistor is widely applied to electronic devices such as integrated circuits (ICs) and image display devices (also simply referred to as display devices).
  • ICs integrated circuits
  • image display devices also simply referred to as display devices.
  • silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, oxide semiconductors have attracted attention as other materials.
  • a transistor including an oxide semiconductor is known to have extremely small leakage current in a non-conduction state.
  • a low power consumption CPU or the like to which a characteristic that a leak current of a transistor including an oxide semiconductor is low is applied is disclosed (see Patent Document 1).
  • Patent Document 2 a method of manufacturing a transistor including an oxide semiconductor by embedding a gate electrode in an opening and the like is disclosed (see Patent Document 2).
  • oxide semiconductor for example, not only single-component metal oxides such as indium oxide and zinc oxide but also multi-component metal oxides are known.
  • oxides of multi-element metals in particular, research on In-Ga-Zn oxide (hereinafter also referred to as IGZO) has been actively conducted.
  • Non-Patent Documents 1 to 3 a c-axis aligned crystalline (CAAC) structure and an nc (nanocrystalline) structure which are neither single crystal nor amorphous are found in an oxide semiconductor (see Non-Patent Documents 1 to 3) ).
  • Non-Patent Document 1 and Non-Patent Document 2 also disclose a technique for manufacturing a transistor using an oxide semiconductor having a CAAC structure.
  • non-patent documents 4 and 5 show that even oxide semiconductors that are less crystalline than the CAAC structure and the nc structure have minute crystals.
  • Non-Patent Document 6 a transistor using IGZO as an active layer has extremely low off-state current (see Non-Patent Document 6), and LSIs and displays utilizing its characteristics have been reported (see Non-Patent Document 7 and Non-Patent Document 8) ).
  • An object of one embodiment of the present invention is to provide a semiconductor device which can be miniaturized or highly integrated.
  • An object of one embodiment of the present invention is to provide a semiconductor device having favorable electrical characteristics.
  • An object of one embodiment of the present invention is to provide a semiconductor device having favorable frequency characteristics.
  • An object of one embodiment of the present invention is to provide a semiconductor device with high reliability.
  • An object of one embodiment of the present invention is to provide a semiconductor device with high productivity.
  • An object of one embodiment of the present invention is to provide a semiconductor device capable of holding data for a long time.
  • An object of one embodiment of the present invention is to provide a semiconductor device with high information writing speed.
  • An object of one embodiment of the present invention is to provide a semiconductor device with high design freedom.
  • An object of one embodiment of the present invention is to provide a semiconductor device capable of suppressing power consumption.
  • An object of one embodiment of the present invention is to provide a novel semiconductor device.
  • One aspect of the present invention is an oxide, a first conductor and a second conductor spaced apart from each other on the oxide, and a first conductor and a second conductor.
  • a semiconductor device is characterized in that the first film thickness is thinner than the second film thickness.
  • the second insulator includes the third insulator and the fourth insulator
  • the third insulator includes an oxide, a first conductor, a second conductor, And the first insulator and the third conductor
  • the fourth insulator includes the first conductor, the second conductor, and the first insulator;
  • the fifth insulator is disposed between the oxide, the first conductor, and the second conductor, and the first insulator, and the fifth insulator, and the fifth insulator is aluminum and It may be an oxide containing at least one of hafnium.
  • the oxide preferably contains In, an element M (M is Al, Ga, Y, or Sn), and Zn.
  • a first oxide, a first conductor spaced apart from each other on the first oxide, and a second conductor, and a first conductor A first insulator disposed on the body and the second conductor, wherein the opening is formed so as to overlap between the first conductor and the second conductor, and a third insulator disposed in the opening And a second insulator disposed between the first conductor, the first oxide, the second conductor, the first insulator, and the third conductor.
  • the second insulator has a first film thickness between the first oxide and the third conductor, and the first insulator or the second conductor and the third conductor Between the first film thickness and the second film thickness Thinner than the second thickness, is a semiconductor device according to claim.
  • the third insulator is disposed between the first oxide, the first conductor, and the second conductor, and the first insulator, and the third insulator is And oxides containing at least one of aluminum and hafnium.
  • the fourth insulator is disposed between the first conductor, the second conductor, the first insulator, and the second oxide, and the fourth insulator is May be an oxide containing at least one of aluminum and hafnium.
  • the first oxide and the second oxide include In, an element M (M is Al, Ga, Y, or Sn), and Zn.
  • the top surface of the first insulator, the top surface of the third conductor, and the top surface of the second insulator may be substantially coincident with each other.
  • the sixth insulator is disposed in contact with the top surface of the first insulator, the top surface of the third conductor, and the top surface of the second insulator, and the sixth insulator is It may be an oxide containing aluminum.
  • the first conductor and the second conductor may be aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium It is preferable to have at least one of zirconium, beryllium, indium, ruthenium, iridium, strontium and lanthanum.
  • the first conductor and the second conductor may be tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, strontium and ruthenium It is preferable to have an oxide containing at least one of oxides containing lanthanum and nickel.
  • a semiconductor device which can be miniaturized or highly integrated can be provided.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device having favorable frequency characteristics can be provided.
  • a semiconductor device with high reliability can be provided.
  • a semiconductor device with high productivity can be provided.
  • a semiconductor device capable of holding data for a long time can be provided.
  • a semiconductor device with high data writing speed can be provided.
  • a semiconductor device with a high degree of freedom in design can be provided.
  • a semiconductor device capable of suppressing power consumption can be provided.
  • a novel semiconductor device can be provided.
  • FIG. 7A and 7B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A to 7C are a top view and a cross-sectional view illustrating the method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 7A and 7B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 7A and 7B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 7A and 7B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 7A and 7B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 7A and 7B are a top view and a cross-sectional view of a memory device according to one embodiment of the present invention.
  • FIG. 16 is a circuit diagram of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a schematic view of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a schematic view of a memory device according to one embodiment of the present invention.
  • FIG. 18 is a cross-sectional view illustrating a structure of a memory device of one embodiment of the present invention.
  • FIG. 18 is a cross-sectional view illustrating a structure of a memory device of one embodiment of the present invention.
  • FIG. 18 is a block diagram illustrating a configuration example of a memory device according to one embodiment of the present invention.
  • FIG. 18 is a circuit diagram illustrating a configuration example of a memory device according to one embodiment of the present invention.
  • FIG. 18 is a circuit diagram illustrating a configuration example of a memory device according to one embodiment of the present invention.
  • FIG. 18 is a block diagram illustrating a configuration example of a memory device according to one embodiment of the present invention.
  • 5A and 5B are a block diagram and a circuit diagram illustrating a configuration example of a memory device according to one embodiment of the present invention.
  • FIG. 7 illustrates an electronic device according to one embodiment of the present invention.
  • FIG. 7 illustrates an electronic device according to one embodiment of the present invention.
  • FIG. 7 illustrates an electronic device according to one embodiment of the present invention.
  • FIG. 7 illustrates an electronic device according to one embodiment of the present invention.
  • the size, layer thicknesses, or areas may be exaggerated for clarity. Therefore, it is not necessarily limited to the scale.
  • the drawings schematically show ideal examples, and are not limited to the shapes or values shown in the drawings.
  • a layer, a resist mask, and the like may be unintentionally reduced by a process such as etching, but may be omitted for ease of understanding.
  • the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and repeated description may be omitted.
  • the hatch pattern may be the same and no reference numeral may be given.
  • the description of some of the components may be omitted particularly in a top view (also referred to as a "plan view") or a perspective view.
  • the description of some hidden lines may be omitted.
  • the ordinal numbers given as the first, second and the like are used for convenience and do not indicate the order of steps or the order of layers. Therefore, for example, “first” can be appropriately replaced with “second” or “third” and the like.
  • the ordinal numbers described in this specification and the like may not match the ordinal numbers used to specify one embodiment of the present invention.
  • the present invention is not limited to a predetermined connection relationship, for example, the connection relationship shown in the figure or the sentence, and anything other than the connection relationship shown in the figure or the sentence is also described in the figure or the sentence.
  • X and Y each denote an object (eg, a device, an element, a circuit, a wiring, an electrode, a terminal, a conductive film, a layer, or the like).
  • an element for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, or the like
  • An element e.g., a switch, a transistor, a capacitive element, an inductor
  • a resistance element e.g., a diode, a display element, a light emitting element, a load, and the like.
  • an element for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, or the like
  • the switch has a function of controlling on and off. That is, the switch has a function of turning on (on) or non-conducting (off) and controlling whether current flows or not. Alternatively, the switch has a function of selecting and switching a path through which current flows.
  • X and Y are electrically connected, the case where X and Y are directly connected shall be included.
  • a circuit for example, a logic circuit (for example, an inverter, a NAND circuit, a NOR circuit, etc.) that enables functional connection of X and Y, signal conversion Circuits (DA converter circuit, AD converter circuit, gamma correction circuit, etc.), potential level converter circuits (power supply circuits (boost circuit, step-down circuit etc.), level shifter circuits for changing the potential level of signals, etc.) voltage source, current source, switching Circuits, amplifier circuits (circuits that can increase signal amplitude or current amount, etc., operational amplifiers, differential amplifier circuits, source follower circuits, buffer circuits, etc.), signal generation circuits, memory circuits, control circuits, etc.
  • a logic circuit for example, an inverter, a NAND circuit, a NOR circuit, etc.
  • signal conversion Circuits DA converter circuit, AD converter circuit, gamma correction circuit, etc.
  • potential level converter circuits power supply circuits (boost circuit, step-down circuit etc.)
  • X and Y are functionally connected if the signal output from X is transmitted to Y. Do. Note that when X and Y are functionally connected, the case where X and Y are directly connected and the case where X and Y are electrically connected are included.
  • a transistor is an element having at least three terminals of a gate, a drain, and a source. Then, there is a region where a channel is formed between the drain (the drain terminal, the drain region, or the drain electrode) and the source (the source terminal, the source region, or the source electrode). Current can flow between the source and the drain. Note that in this specification and the like, a region where a channel is formed refers to a region through which current mainly flows.
  • the functions of the source and the drain may be switched when adopting transistors of different polarities or when the direction of current changes in circuit operation. Therefore, in the present specification and the like, the terms “source” and “drain” may be used interchangeably.
  • a channel length is, for example, a region where a semiconductor (or a portion through which current flows in the semiconductor when the transistor is on) and a gate electrode overlap with each other in a top view of the transistor, or a channel is formed
  • the distance between the source (source region or source electrode) and the drain (drain region or drain electrode) in the region does not necessarily have the same value in all regions. That is, the channel length of one transistor may not be determined to one value. Therefore, in the present specification, the channel length is any one value, maximum value, minimum value, or average value in a region where a channel is formed.
  • the channel width is, for example, a region where a semiconductor (or a portion through which current flows in the semiconductor when the transistor is on) and a gate electrode overlap with each other or a region where a channel is formed; The length of the part facing each other. Note that in one transistor, the channel width may not be the same in all regions. That is, the channel width of one transistor may not be determined to one value. Therefore, in the present specification, the channel width is taken as any one value, maximum value, minimum value, or average value in the region where the channel is formed.
  • the channel width in the region where the channel is actually formed (hereinafter, also referred to as “effective channel width”) and the channel width shown in the top view of the transistor (hereinafter, “apparently” Channel width) and may be different.
  • the effective channel width may be larger than the apparent channel width, and the effect may not be negligible.
  • the ratio of the channel formation region formed on the side surface of the semiconductor may be large. In that case, the effective channel width is larger than the apparent channel width.
  • the apparent channel width may be referred to as “surrounded channel width (SCW)”.
  • the term “channel width only” may refer to an enclosed channel width or an apparent channel width.
  • the term “channel width” may refer to an effective channel width. Note that the channel length, channel width, effective channel width, apparent channel width, enclosed channel width and the like can be determined by analyzing a cross-sectional TEM image or the like.
  • the impurity of a semiconductor means, for example, elements other than the main components of the semiconductor.
  • an element having a concentration of less than 0.1 atomic% can be said to be an impurity.
  • the inclusion of impurities may cause, for example, an increase in the DOS (Density of States) of the semiconductor, or a decrease in crystallinity.
  • the semiconductor is an oxide semiconductor
  • examples of the impurity that changes the characteristics of the semiconductor include a group 1 element, a group 2 element, a group 13 element, a group 14 element, a group 15 element, and an oxide semiconductor.
  • transition metals other than the main components thereof such as hydrogen, lithium, sodium, silicon, boron, phosphorus, carbon, nitrogen and the like.
  • water may also function as an impurity.
  • oxygen vacancies may be formed, for example, by the addition of impurities.
  • the impurity that changes the characteristics of the semiconductor include oxygen, a group 1 element excluding hydrogen, a group 2 element, a group 13 element, and a group 15 element.
  • the silicon oxynitride film is a film having a higher oxygen content than nitrogen as the composition.
  • oxygen is 55 atomic% or more and 65 atomic% or less
  • nitrogen is 1 atomic% or more and 20 atomic% or less
  • silicon is 25 atomic% or more and 35 atomic% or less
  • hydrogen is 0.1 atomic% or more and 10 atomic% or less It refers to what is included in the concentration range.
  • the silicon nitride oxide film is a film having a nitrogen content higher than that of oxygen as the composition thereof.
  • nitrogen is 55 atomic percent or more and 65 atomic percent or less
  • oxygen is 1 atomic percent or more and 20 atomic percent or less
  • silicon is 25 atomic percent or more and 35 atomic percent or less
  • hydrogen is 0.1 atomic percent or more and 10 atomic percent or less It refers to what is included in the concentration range.
  • membrane and the term “layer” can be interchanged with each other.
  • conductive layer to the term “conductive film”.
  • insulating film to the term “insulating layer”.
  • the term “insulator” can be reworded as an insulating film or an insulating layer. Further, the term “conductor” can be rephrased as a conductive film or a conductive layer. Further, the term “semiconductor” can be reworded as a semiconductor film or a semiconductor layer.
  • transistors shown in the present specification and the like are field effect transistors except when explicitly stated.
  • transistors shown in this specification and the like are n-channel transistors unless otherwise specified. Therefore, the threshold voltage (also referred to as “Vth”) is assumed to be greater than 0 V except when explicitly stated.
  • parallel means the state in which two straight lines are arrange
  • substantially parallel refers to a state in which two straight lines are arranged at an angle of ⁇ 30 degrees or more and 30 degrees or less.
  • vertical means a state in which two straight lines are arranged at an angle of 80 degrees or more and 100 degrees or less. Therefore, the case of 85 degrees or more and 95 degrees or less is also included.
  • substantially perpendicular refers to a state in which two straight lines are disposed at an angle of 60 degrees or more and 120 degrees or less.
  • a barrier film is a film having a function of suppressing permeation of impurities such as hydrogen and oxygen, and in the case where the barrier film has conductivity, it is called a conductive barrier film. There is.
  • the metal oxide is a metal oxide in a broad sense.
  • Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductor or simply OS), and the like.
  • oxide semiconductors also referred to as oxide semiconductor or simply OS
  • the metal oxide may be referred to as an oxide semiconductor. That is, in the case of describing an OS FET or an OS transistor, it can be said to be a transistor having an oxide or an oxide semiconductor.
  • normally-off means that the current per 1 ⁇ m of the channel width flowing in the transistor is 1 ⁇ 10 ⁇ 20 at room temperature when no potential is applied to the gate or the ground potential is applied to the gate. A or less, 1 ⁇ 10 ⁇ 18 A or less at 85 ° C., or 1 ⁇ 10 ⁇ 16 A or less at 125 ° C.
  • Embodiment 1 Hereinafter, an example of a semiconductor device including the transistor 200 according to one embodiment of the present invention will be described.
  • 1A, 1B, and 1C are a top view and a cross-sectional view of a transistor 200 and a periphery of the transistor 200 according to one embodiment of the present invention.
  • FIG. 1A is a top view of a semiconductor device including the transistor 200.
  • FIG. 1B and 1C are cross-sectional views of the semiconductor device.
  • FIG. 1B is a cross-sectional view of a portion indicated by an alternate long and short dash line A1-A2 in FIG. 1A, and is also a cross-sectional view in the channel length direction of the transistor 200.
  • 1C is a cross-sectional view of a portion indicated by an alternate long and short dash line A3-A4 in FIG. 1A, and is also a cross-sectional view in the channel width direction of the transistor 200. Note that in the top view of FIG. 1A, some elements are omitted for clarity of the drawing.
  • the semiconductor device of one embodiment of the present invention includes the transistor 200, the insulator 210 functioning as an interlayer film, the insulator 212, and the insulator 281. Further, the transistor 200 includes the conductor 203 electrically connected to the transistor 200 and functioning as a wiring, and the conductor 240 functioning as a plug (conductors 240 a and 240 b).
  • a conductor 203a is formed in contact with the inner wall of the opening of the insulator 212, and a conductor 203b is formed inside the conductor 203.
  • the height of the top surface of the conductor 203 and the height of the top surface of the insulator 212 can be approximately the same.
  • the conductor 203 has a stacked structure of the conductor 203a and the conductor 203b; however, the present invention is not limited to this.
  • the conductor 203 may be provided as a single layer or a stacked structure of three or more layers. In the case where the structure has a stacked structure, ordinal numbers may be assigned in order of formation to be distinguished.
  • the conductor 240 is in contact with the insulator 244, the insulator 280, the insulator 274, and the inner wall of the opening of the insulator 281, and the first conductor of the conductor 240 is formed.
  • a second conductor is formed.
  • the height of the top surface of the conductor 240 and the height of the top surface of the insulator 281 can be approximately the same.
  • the transistor 200 illustrates a structure in which the first conductor of the conductor 240 and the second conductor of the conductor 240 are stacked, the present invention is not limited to this.
  • the conductor 240 may be provided as a single layer or a stacked structure of three or more layers. In the case where the structure has a stacked structure, ordinal numbers may be assigned in order of formation to be distinguished.
  • Transistor 200 As shown in FIG. 1, the transistors 200 are separated from each other on an oxide 230a disposed on a substrate (not shown), an oxide 230b disposed on the oxide 230a, and an oxide 230b.
  • the insulator 230 disposed between the conductor 260, the oxide 230b, the conductor 242a, the conductor 242b, and the insulator 280, and the conductor 260, the oxide 230b, the conductor
  • An oxide 230 c is disposed between the body 242 a, the conductor 242 b, the insulator 280, and the insulator 250.
  • the insulator 244 is preferably provided between the oxide 230 a, the oxide 230 b, the conductor 242 a, the conductor 242 b, and the insulator 280.
  • the conductor 260 may have a conductor 260a provided inside the insulator 250 and a conductor 260b provided so as to be embedded inside the conductor 260a. preferable.
  • the insulator 274 is preferably provided over the insulator 280, the conductor 260, and the insulator 250.
  • the oxide 230a, the oxide 230b, and the oxide 230c may be collectively referred to as the oxide 230.
  • the conductor 242 a and the conductor 242 b may be collectively referred to as a conductor 242.
  • the transistor 200 a structure in which three layers of an oxide 230a, an oxide 230b, and an oxide 230c are stacked in a region where a channel is formed (hereinafter, also referred to as a channel formation region) and in the vicinity thereof is shown.
  • the present invention is not limited to this.
  • a single layer of the oxide 230b, a two-layer structure of the oxide 230b and the oxide 230a, a two-layer structure of the oxide 230b and the oxide 230c, or a stacked structure of four or more layers may be provided.
  • the conductor 260 is illustrated as a stacked-layer structure of two layers, but the present invention is not limited to this.
  • the conductor 260 may have a single-layer structure or a stacked structure of three or more layers.
  • the conductor 260 functions as a gate electrode of the transistor, and the conductor 242a and the conductor 242b function as a source electrode or a drain electrode, respectively.
  • the conductor 260 is formed to be embedded in the opening of the insulator 280 and the region sandwiched between the conductor 242 a and the conductor 242 b.
  • the arrangement of the conductor 260, the conductor 242a, and the conductor 242b is selected in a self-aligned manner with respect to the opening of the insulator 280. That is, in the transistor 200, the gate electrode can be arranged between the source electrode and the drain electrode in a self-aligned manner.
  • the conductor 260 can be formed without providing a positioning margin, so that the area occupied by the transistor 200 can be reduced.
  • the semiconductor device can be miniaturized and highly integrated.
  • the conductor 260 since the conductor 260 is formed in a self-aligned manner in the region between the conductor 242a and the conductor 242b, the conductor 260 does not have a region overlapping with the conductor 242a or the conductor 242b. Thus, parasitic capacitance formed between the conductor 260 and the conductor 242a and the conductor 242b can be reduced. Thus, the switching speed of the transistor 200 can be improved, and the transistor 200 can have high frequency characteristics.
  • the transistor 200 includes an insulator 214 disposed on the insulator 212, an insulator 216 disposed on the insulator 214, and a conductive disposed so as to be embedded in the insulator 214 and the insulator 216.
  • a metal oxide which functions as an oxide semiconductor is used for the oxide 230 (the oxide 230a, the oxide 230b, and the oxide 230c) including a channel formation region. It is preferred to use.
  • the transistor 200 in which an oxide semiconductor is used for a channel formation region has extremely low leakage current in a non-conduction state; thus, a semiconductor device with low power consumption can be provided. Further, an oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for the transistor 200 included in a highly integrated semiconductor device.
  • In-M-Zn oxide as the oxide 230 (the element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium It is preferable to use a metal oxide such as one or more selected from hafnium, tantalum, tungsten, or magnesium.
  • a metal oxide such as one or more selected from hafnium, tantalum, tungsten, or magnesium.
  • an In-Ga oxide or an In-Zn oxide may be used as the oxide 230.
  • the carrier density when an impurity such as hydrogen, nitrogen, or a metal element is present in the oxide 230, the carrier density may be increased to reduce resistance. In addition, when the concentration of oxygen contained in the oxide 230 is lowered, the carrier density may be increased, and the resistance may be lowered.
  • the conductor 242 (the conductor 242 a and the conductor 242 b) which is provided on and in contact with the oxide 230 and functions as a source electrode or a drain electrode has a function of absorbing oxygen of the oxide 230 or an oxide
  • the oxide layer 230 has a function of supplying an impurity such as hydrogen, nitrogen, or a metal element to the oxide layer 230, a low resistance region may be partially formed in the oxide 230.
  • the insulator 244 is provided to suppress oxidation of the conductor 242.
  • the insulator 244 is not necessarily provided if the conductor 242 does not significantly reduce the conductivity when it absorbs an oxidation resistant material or oxygen.
  • FIG. 2 shows an enlarged view of a region 239 which is surrounded by an alternate long and short dash line in FIG. 1 (B).
  • the insulator 250 has a thickness T1 between the oxide 230b and the conductor 260, and a thickness T2 between the conductor 242a or 242b and the conductor 260.
  • the film thickness T1 is preferably smaller than the film thickness T2.
  • the insulator 250 located between the oxide 230b and the conductor 260 is a single layer, and the conductors 242 and 260 are made of It is preferable to make the insulator 250 located between them into a laminated structure.
  • the number of stacked insulators 250 located between the conductor 242 and the conductor 260 is the oxide 230 b and the number of stacked conductors The number may be greater than the number of stacked insulators 250 located between the bodies 260.
  • the film thickness T2 of the insulator 250 By making the film thickness T2 of the insulator 250 larger than the film thickness T1 in this manner, parasitic capacitance between the conductor 260 and the conductor 242 can be reduced, and the transistor 200 having high frequency characteristics can be provided. . Further, since the film thickness T1 is thin, the electric field from the gate electrode is not weakened, so that the transistor 200 having favorable electrical characteristics can be provided.
  • a conductor 242 is provided in contact with the oxide 230, and a region 243 (a region having a low resistance is provided in the vicinity of the interface of the oxide 230 with the conductor 242). 243a and region 243b) are formed.
  • the oxide 230 includes a region 234 which functions as a channel formation region of the transistor 200, a part of the region 243, and a region 231 (the regions 231a and 231b) which functions as a source region or a drain region. And a region 232 (a region 232a and a region 232b) which function as junction regions.
  • the region 243 has a low oxygen concentration or contains hydrogen, nitrogen, an impurity such as a metal element, or the like to increase the carrier concentration and reduce the resistance. It is. That is, the region 231 is a region with high carrier density and low resistance as compared to the region 234.
  • the region 234 functioning as a channel formation region is a high resistance region in which the carrier density is low because the oxygen concentration is higher or the impurity concentration is lower in the region 231 than in the region 243 in particular.
  • the oxygen concentration in the region 232 is preferably equal to or higher than the oxygen concentration in the region 231, and is preferably equal to or lower than the oxygen concentration in the region 234.
  • the impurity concentration of the region 232 is preferably equal to or lower than the impurity concentration of the region 231, and preferably equal to or higher than the impurity concentration of the region 234.
  • the region 243 which is a low resistance region contains a metal element, aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, and the like in addition to the metal element contained in the oxide 230. It is preferable to have any one or more metal elements selected from metal elements such as molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium and lanthanum. .
  • the region 243 is formed in the vicinity of the interface between the oxide 230 b and the conductor 242 in the film thickness direction of the oxide 230 b, but the invention is not limited thereto.
  • the region 243 may have a thickness substantially the same as the thickness of the oxide 230 b or may be formed in the oxide 230 a.
  • the region 243 is formed in the regions 231 and 232 in FIG. 2, the present invention is not limited to this. For example, it may be formed only in the region 231, or may be formed in the region 231 and a part of the region 232, or in the region 231, the region 232 and a part of the region 234. It may be formed.
  • the concentrations of metal elements and impurity elements such as hydrogen and nitrogen detected in each region are not limited to stepwise changes in each region, and are continuously changed (also referred to as gradation) in each region. May be That is, the concentration of the metal element and the impurity element such as hydrogen and nitrogen may be reduced as the region is closer to the channel formation region.
  • the conductor 242 for example, aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, or the like can be used as the conductor 242. It is preferable to use a material containing at least one of a metal element that enhances conductivity such as manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum, and an impurity.
  • a metal element that enhances conductivity such as manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum, and an impurity.
  • the conductive film 242A to be the conductor 242 a material, a deposition method, or the like in which an impurity such as an element forming an oxygen vacancy or an element trapped in an oxygen vacancy is implanted is used for the oxide 230.
  • an impurity such as an element forming an oxygen vacancy or an element trapped in an oxygen vacancy is implanted
  • the oxide 230 a material, a deposition method, or the like in which an impurity such as an element forming an oxygen vacancy or an element trapped in an oxygen vacancy is implanted.
  • an impurity such as an element forming an oxygen vacancy or an element trapped in an oxygen vacancy is implanted
  • the oxide 230 a material, a deposition method, or the like in which an impurity such as an element forming an oxygen vacancy or an element trapped in an oxygen vacancy is implanted.
  • hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, a rare gas and the like can be mentioned
  • the transistor including an oxide semiconductor when impurities and oxygen vacancies are present in a region of the oxide semiconductor in which a channel is formed, the electrical characteristics are easily changed and the reliability might be deteriorated.
  • oxygen vacancies when oxygen vacancies are included in the region in the oxide semiconductor in which a channel is formed, the transistor is likely to be normally on. Therefore, it is preferable that oxygen deficiency in the region 234 where the channel is formed be reduced as much as possible.
  • the insulator 250 in close proximity to the oxide 230 preferably contains more oxygen (also referred to as excess oxygen) than oxygen in the stoichiometric composition. Oxygen in the insulator 250 can be diffused to the oxide 230, so that oxygen vacancies in the oxide 230 can be reduced and normally on conversion of the transistor can be suppressed.
  • oxygen in the insulator 250 and the insulator 280 diffuses into the region 234 of the oxide 230, whereby oxygen vacancies in the region 234 of the oxide 230 can be reduced.
  • an oxide is preferably deposited by a sputtering method as the insulator 274 in contact with the top surfaces of the insulator 250 and the insulator 280.
  • a sputtering method for forming an oxide an insulator containing a large amount of oxygen and few impurities such as water or hydrogen can be formed.
  • the insulator 274 aluminum oxide is preferably used as the insulator 274.
  • ions and sputtered particles are present between the target and the substrate.
  • the target is connected to a power supply and given a potential E0.
  • the substrate is given a potential E1 such as a ground potential.
  • the substrate may be electrically floating.
  • Ions in the plasma are accelerated by the potential difference E2-E0 and collide with the target to repel particles sputtered from the target.
  • the sputtered particles adhere to and deposit on the film formation surface to form a film.
  • part of ions may be recoiled by the target, pass through a film formed as recoil ions, and be taken into the insulator 250 and the insulator 280 in contact with the deposition surface.
  • ions in the plasma are accelerated by the potential difference E2-E1 and strike the film formation surface. At this time, some ions reach the inside of the insulator 280. Ions are taken into insulator 250 and insulator 280, whereby a region where ions are taken is formed in insulator 280. That is, when the ions are ions including oxygen, an excess oxygen region is formed in the insulator 250 and the insulator 280.
  • an excess oxygen region can be formed in the insulator 250 and the insulator 280.
  • Excess oxygen in insulator 250 and insulator 280 can be supplied to oxide 230, such as by heat treatment, to compensate for oxygen vacancies in region 234 of oxide 230.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, or silicon oxide having a void is preferably used.
  • Materials such as silicon oxynitride tend to form excess oxygen regions.
  • oxide 230 tends to be less likely to form an excess oxygen region even if an oxide film formed by sputtering is formed on oxide 230. There is. Therefore, by providing the insulator 280 having the excess oxygen region around the region 234 of the oxide 230, the excess oxygen of the insulator 280 can be effectively supplied to the region 234 of the oxide 230.
  • a semiconductor device having a transistor with a large on current can be provided.
  • a semiconductor device having a transistor with low off current can be provided.
  • a semiconductor device can be provided which has stable electrical characteristics and suppressed reliability while suppressing fluctuations in the electrical characteristics.
  • the conductor 203 is extended in the channel width direction as shown in FIGS. 1A and 1C, and functions as a wiring for applying a potential to the conductor 205. Note that the conductor 203 is preferably provided so as to be embedded in the insulator 212.
  • the conductor 205 is disposed so as to overlap with the oxide 230 and the conductor 260.
  • the conductor 205 may be provided on and in contact with the conductor 203.
  • the conductor 205 is preferably provided so as to be embedded in the insulator 214 and the insulator 216.
  • the conductor 260 may function as a first gate (also referred to as a top gate) electrode.
  • the conductor 205 may function as a second gate (also referred to as a bottom gate) electrode.
  • the Vth of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without interlocking.
  • Vth of the transistor 200 can be larger than 0 V and off current can be reduced. Therefore, when a negative potential is applied to the conductor 205, the drain current when the potential applied to the conductor 260 is 0 V can be smaller than when no potential is applied.
  • the conductor 205 over the conductor 203, the distance between the conductor 260 having the function of the first gate electrode and the wiring and the conductor 203 can be appropriately designed. That is, by providing the insulator 214, the insulator 216, and the like between the conductor 203 and the conductor 260, the parasitic capacitance between the conductor 203 and the conductor 260 is reduced, and the conductor 203 and the conductor 260 are formed. The withstand voltage between them can be increased.
  • the switching speed of the transistor 200 can be improved, and a transistor with high frequency characteristics can be provided.
  • the reliability of the transistor 200 can be improved. Therefore, the thicknesses of the insulator 214 and the insulator 216 are preferably large. Note that the extension direction of the conductor 203 is not limited to this. For example, the conductor 203 may extend in the channel length direction of the transistor 200.
  • the conductor 205 is disposed so as to overlap with the oxide 230 and the conductor 260 as illustrated in FIG.
  • the conductor 205 may be larger than the region 234 in the oxide 230.
  • the conductor 205 is preferably extended also in a region outside the end portion of the region 234 of the oxide 230 which intersects the channel width direction. That is, it is preferable that the conductor 205 and the conductor 260 overlap with each other through an insulator outside the side surface of the oxide 230 in the channel width direction.
  • the electric field generated from the conductor 260 and the electric field generated from the conductor 205 are connected to form a channel formed in the oxide 230
  • the area can be covered.
  • the channel formation region of the region 234 can be electrically surrounded by the electric field of the conductor 260 having a function as the first gate electrode and the electric field of the conductor 205 having a function as the second gate electrode.
  • a structure of a transistor which electrically surrounds a channel formation region by an electric field of the first gate electrode and the second gate electrode is referred to as a surrounded channel (S-channel) structure.
  • the conductor 205 is in contact with the inner wall of the opening of the insulator 214 and the insulator 216, the conductor 205a is formed, and the conductor 205b is formed further inside.
  • the heights of the top surfaces of the conductors 205a and 205b and the top surface of the insulator 216 can be approximately the same.
  • the transistor 200 illustrates a structure in which the conductor 205a and the conductor 205b are stacked, the present invention is not limited to this.
  • the conductor 205 may be provided as a single layer or a stacked structure of three or more layers. In the case where the structure has a stacked structure, ordinal numbers may be assigned in order of formation to be distinguished.
  • the conductor 205a or the conductor 203a can diffuse impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2 and the like), copper atoms, and the like. It is preferable to use a conductive material having a suppressing function (the above-mentioned impurities are difficult to permeate). Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one of oxygen atom, oxygen molecule, and the like) (the above-described oxygen is hardly transmitted).
  • the function of suppressing the diffusion of impurities or oxygen is a function of suppressing the diffusion of any one or all of the above-described impurities or oxygen.
  • the conductor 205a or the conductor 203a has a function of suppressing the diffusion of oxygen
  • the conductor 205b or the conductor 203b can be suppressed from being oxidized to be lowered in conductivity.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide or the like is preferably used. Therefore, as the conductor 205a or the conductor 203a, the above conductive material may be formed as a single layer or a stack. Accordingly, diffusion of impurities such as hydrogen and water to the transistor 200 side through the conductor 203 and the conductor 205 can be suppressed.
  • the conductor 205 b is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component. Note that although the conductor 205 b is illustrated as a single layer, a layered structure may be used, and for example, titanium, titanium nitride, and the above conductive material may be stacked.
  • the conductor 203b functions as a wiring, it is preferable to use a conductor having higher conductivity than the conductor 205b.
  • a conductor having higher conductivity For example, a conductive material containing copper or aluminum as a main component can be used.
  • the conductor 203 b may have a stacked structure, for example, a stack of titanium or titanium nitride and the above conductive material.
  • copper is preferably used for the conductor 203 b.
  • Copper is preferably used for wiring and the like because it has low resistance.
  • copper is easily diffused; thus, diffusion to the oxide 230 may deteriorate the electrical characteristics of the transistor 200. Therefore, for example, by using a material such as aluminum oxide or hafnium oxide with low copper permeability for the insulator 214, copper diffusion can be suppressed.
  • the conductor 205, the insulator 214, and the insulator 216 may not necessarily be provided. In that case, part of the conductor 203 can function as a second gate electrode.
  • the insulator 210 and the insulator 214 preferably function as a barrier insulating film which suppresses impurities such as water or hydrogen from entering the transistor 200 from the substrate side. Therefore, the insulator 210 and the insulator 214 can diffuse impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2, and the like), copper atoms, and the like. It is preferable to use an insulating material having a suppressing function (the above-mentioned impurities are difficult to transmit). Alternatively, it is preferable to use an insulating material having a function of suppressing the diffusion of oxygen (eg, at least one of oxygen atoms, oxygen molecules, and the like) (the above oxygen is difficult to permeate).
  • oxygen eg, at least one of oxygen atoms, oxygen molecules, and the like
  • the insulator 210 aluminum oxide or the like is preferably used as the insulator 210, and silicon nitride or the like is preferably used as the insulator 214. Accordingly, diffusion of impurities such as hydrogen and water from the substrate side to the transistor 200 side with respect to the insulator 210 and the insulator 214 can be suppressed. Alternatively, diffusion of oxygen contained in the insulator 224 or the like to the substrate side than the insulator 210 and the insulator 214 can be suppressed.
  • the insulator 214 can be provided between the conductor 203 and the conductor 205.
  • the metal can be prevented from diffusing into a layer above the insulator 214 by providing silicon nitride or the like as the insulator 214. .
  • the insulator 212, the insulator 216, the insulator 280, and the insulator 281 each functioning as an interlayer film preferably have a lower dielectric constant than the insulator 210 or the insulator 214.
  • parasitic capacitance generated between wirings can be reduced.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT Insulators such as strontium titanate (SrTiO 3 ) or (Ba, Sr) TiO 3 (BST) can be used in a single layer or stacked layers.
  • PZT Insulators such as strontium titanate (SrTiO 3 ) or (Ba, Sr) TiO 3 (BST) can be used in a single layer or stacked layers.
  • aluminum oxide, bismuth oxide, germanium oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided.
  • silicon oxide, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 220, the insulator 222, the insulator 224, and the insulator 250 have a function as a gate insulator.
  • the insulator 224 in contact with the oxide 230 is preferably an insulator that contains oxygen at a higher proportion than the stoichiometric composition. That is, it is preferable that an excess oxygen region be formed in the insulator 224. By providing the insulator including such excess oxygen in contact with the oxide 230, oxygen vacancies in the oxide 230 can be reduced and the reliability of the transistor 200 can be improved.
  • an oxide material from which part of oxygen is released by heating is preferably used as the insulator having an excess oxygen region.
  • the oxide from which oxygen is released by heating is a desorption amount of oxygen of at least 1.0 ⁇ 10 18 atoms / cm 3 , preferably 1 in terms of oxygen atom in TDS (thermal desorption spectroscopy) analysis. It is an oxide film having a concentration of not less than 0 ⁇ 10 19 atoms / cm 3 , more preferably not less than 2.0 ⁇ 10 19 atoms / cm 3 , or not less than 3.0 ⁇ 10 20 atoms / cm 3 .
  • the surface temperature of the film at the time of TDS analysis is preferably in the range of 100 ° C. to 700 ° C., or 100 ° C. to 400 ° C.
  • the insulator 222 has a function of suppressing diffusion of oxygen (eg, at least one of oxygen atom, oxygen molecule, and the like) (the above-described oxygen is hardly transmitted). Is preferred.
  • oxygen included in the oxide 230 is preferably not diffused to the insulator 220 side.
  • the conductor 205 can be inhibited from reacting with the insulator 224 and oxygen in the oxide 230.
  • the insulator 222 is, for example, a so-called high material such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO 3 (BST). It is preferable to use an insulator containing a -k material in a single layer or a stack. As the miniaturization and higher integration of transistors progress, problems such as leakage current may occur due to thinning of the gate insulator. By using a high-k material for the insulator functioning as a gate insulator, it is possible to reduce the gate potential at the time of transistor operation while maintaining the physical thickness.
  • a so-called high material such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO 3 (B
  • an insulator containing an oxide of one or both of aluminum and hafnium which is an insulating material having a function of suppressing diffusion of impurities, oxygen, and the like (the above oxygen is difficult to transmit).
  • an insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like.
  • the insulator 222 is formed using such a material, the insulator 222 suppresses the release of oxygen from the oxide 230 and the entry of impurities such as hydrogen from the peripheral portion of the transistor 200 to the oxide 230. Act as a layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided.
  • silicon oxide, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 220 is preferably thermally stable.
  • silicon oxide and silicon oxynitride are thermally stable, a combination of an insulator with a high-k material and an insulator 220 provides a stacked structure with high thermal stability and high dielectric constant. Can.
  • the insulator 220, the insulator 222, and the insulator 224 may have a stacked structure of two or more layers.
  • the invention is not limited to the laminated structure made of the same material, but may be a laminated structure made of different materials.
  • the oxide 230 includes an oxide 230a, an oxide 230b over the oxide 230a, and an oxide 230c over the oxide 230b.
  • the oxide 230a under the oxide 230b, diffusion of impurities from the structure formed below the oxide 230a to the oxide 230b can be suppressed.
  • the oxide 230c over the oxide 230b, diffusion of impurities from the structure formed above the oxide 230c to the oxide 230b can be suppressed.
  • the oxide 230 preferably has a stacked-layer structure of oxides having different atomic ratios of metal atoms.
  • the atomic ratio of the element M in the constituent elements is larger than the atomic ratio of the element M in the constituent elements of the metal oxide used for the oxide 230b.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the oxide 230c a metal oxide which can be used for the oxide 230a or the oxide 230b can be used.
  • the energy at the lower end of the conduction band of the oxide 230a and the oxide 230c be higher than the energy at the lower end of the conduction band of the oxide 230b.
  • the electron affinity of the oxide 230a and the oxide 230c be smaller than the electron affinity of the oxide 230b.
  • the energy level at the lower end of the conduction band changes gently.
  • the energy level at the bottom of the conduction band at the junction of the oxide 230a, the oxide 230b, and the oxide 230c can be said to be continuously changed or connected continuously.
  • the density of defect states in the mixed layer formed at the interface between the oxide 230 a and the oxide 230 b and at the interface between the oxide 230 b and the oxide 230 c may be lowered.
  • the oxide layer 230a and the oxide layer 230b, and the oxide layer 230b and the oxide layer 230c have a common element other than oxygen (which is a main component), whereby a mixed layer with low defect state density is formed. can do.
  • the oxide 230b is an In-Ga-Zn oxide
  • an In-Ga-Zn oxide, a Ga-Zn oxide, gallium oxide, or the like may be used as the oxide 230a and the oxide 230c.
  • the main route of the carrier may be the oxide 230b.
  • the oxide 230 a and the oxide 230 c described above the density of defect states in the interface between the oxide 230 a and the oxide 230 b and the interface between the oxide 230 b and the oxide 230 c can be reduced. Therefore, the influence of interface scattering on carrier conduction is reduced, and the transistor 200 can obtain high on-state current.
  • the oxide 230 includes a region 231 and a region 234. Note that at least part of the region 231 includes a region in contact with the conductor 242.
  • the region 231a or the region 231b functions as a source region or a drain region.
  • the region 234 functions as a region in which a channel is formed.
  • a region 232 which functions as a bonding region may be provided between the region 231 and the region 234.
  • a metal oxide which functions as an oxide semiconductor (hereinafter, also referred to as an oxide semiconductor) is preferably used.
  • the metal oxide to be the region 234 one having a band gap of 2 eV or more, preferably 2.5 eV or more is preferably used.
  • the off-state current of the transistor can be reduced.
  • a transistor including an oxide semiconductor has extremely low leakage current in a non-conduction state; thus, a semiconductor device with low power consumption can be provided. Further, an oxide semiconductor can be formed by a sputtering method or the like and thus can be used for a transistor included in a highly integrated semiconductor device.
  • a conductor 242 (a conductor 242 a and a conductor 242 b) functioning as a source electrode and a drain electrode is provided over the oxide 230 b.
  • the conductor 242 aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, It is preferable to use a metal element selected from lanthanum or an alloy containing the above-described metal element as a component, or an alloy in which the above-described metal element is combined.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, etc. are used. Is preferred.
  • tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel are difficult to oxidize. It is preferable because it is a conductive material or a material which maintains conductivity even by absorbing oxygen.
  • the oxygen concentration in the region 243 may be reduced.
  • a metal compound layer containing a metal contained in the conductor 242 and a component of the oxide 230 may be formed in the region 243. In such a case, the carrier density of the region 243 is increased, and the region 243 becomes a low resistance region.
  • the region between the conductor 242 a and the conductor 242 b is formed to overlap with the opening of the insulator 280.
  • the conductor 260 can be disposed between the conductor 242a and the conductor 242b in a self-aligned manner.
  • the insulator 244 is provided to cover the conductor 242 and suppresses oxidation of the conductor 242. At this time, the insulator 244 may be provided to cover the side surface of the oxide 230 and to be in contact with the insulator 224.
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, or magnesium may be used. it can.
  • hafnium oxide an oxide containing aluminum and hafnium (hafnium aluminate), or the like, which is an insulator containing one or both oxides of aluminum and hafnium
  • hafnium aluminate has higher heat resistance than the hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in the heat history in a later step.
  • the insulator 244 is not an essential component in the case where the conductivity is not significantly reduced even if the conductor 242 has oxidation resistance or absorbs oxygen. It may be appropriately designed according to the transistor characteristics to be obtained.
  • the insulator 250 functions as a gate insulator.
  • the insulator 250 is preferably disposed in contact with the inner side (upper surface and side surface) of the oxide 230c.
  • the insulator 250 is preferably formed using an insulator from which oxygen is released by heating.
  • the desorption amount of oxygen in terms of molecular oxygen is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1.0 ⁇ 10 19. It is an oxide film which has atoms / cm 3 or more, more preferably 2.0 ⁇ 10 19 atoms / cm 3 or more, or 3.0 ⁇ 10 20 atoms / cm 3 or more.
  • the surface temperature of the film at the time of TDS analysis is preferably in the range of 100 ° C. to 700 ° C.
  • silicon oxide having excess oxygen silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and vacancies.
  • Silicon oxide can be used.
  • silicon oxide and silicon oxynitride are preferable because they are stable to heat.
  • the insulator 250 By providing an insulator from which oxygen is released by heating in contact with the top surface of the oxide 230c as the insulator 250, oxygen is effectively transferred from the insulator 250 to the region 234 of the oxide 230b through the oxide 230c. Can be supplied. Further, similarly to the insulator 224, the concentration of impurities such as water or hydrogen in the insulator 250 is preferably reduced. The thickness of the insulator 250 is preferably 1 nm or more and 20 nm or less.
  • the insulator 250 is provided not only between the oxide 230 b and the conductor 260 but also between the conductor 242 and the conductor 260.
  • the conductor 242 is electrically conductive. It is preferable to make the film thickness of the insulator 250 located between the bodies 260 thicker than the film thickness of the insulator 250 located between the oxide 230 b and the conductor 260.
  • the insulator 250 located between the conductor 242 and the conductor 260 may have a two-layer structure, and the insulator 250 located between the oxide 230 b and the conductor 260 may have a single-layer structure.
  • an insulating film to be the first insulator is formed inside the oxide film 230C to be the oxide 230c, and the insulating film is anisotropically etched to form only the inner wall of the oxide film 230C. Form a first insulator.
  • the insulator 250 located between the oxide 230 b and the conductor 260 has a single-layer structure, and the insulator 250 is located between the conductor 242 and the conductor 260.
  • the insulator 250 has a two-layer structure.
  • the thickness of the insulator 250 located between the conductor 242 and the conductor 260 can be larger than the thickness of the insulator 250 located between the oxide 230 b and the conductor 260.
  • a metal oxide may be provided between the insulator 250 and the conductor 260 in order to efficiently supply the oxide 230 with excess oxygen of the insulator 250.
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 250 to the conductor 260.
  • the diffusion of excess oxygen from the insulator 250 to the conductor 260 is suppressed. That is, the decrease in the amount of excess oxygen supplied to the oxide 230 can be suppressed.
  • the oxidation of the conductor 260 due to excess oxygen can be suppressed.
  • the metal oxide may have a function as part of a gate insulator. Therefore, in the case of using silicon oxide, silicon oxynitride, or the like for the insulator 250, it is preferable to use a metal oxide which is a high-k material having a high relative dielectric constant.
  • a metal oxide which is a high-k material having a high relative dielectric constant By forming the gate insulator to have a stacked structure of the insulator 250 and the metal oxide, a stacked structure that is stable to heat and has a high relative dielectric constant can be obtained. Therefore, while maintaining the physical thickness of the gate insulator, it is possible to reduce the gate potential applied at the time of transistor operation. In addition, it is possible to reduce the equivalent oxide thickness (EOT) of the insulator that functions as a gate insulator.
  • EOT equivalent oxide thickness
  • hafnium oxide an oxide containing aluminum and hafnium (hafnium aluminate), or the like, which is an insulator containing one or both oxides of aluminum and hafnium, is preferably used.
  • hafnium aluminate has higher heat resistance than the hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in the heat history in a later step.
  • the metal oxide is not an essential component. It may be appropriately designed according to the transistor characteristics to be obtained.
  • the conductor 260 functioning as the first gate electrode is illustrated as a two-layer structure in FIG. 1, but may be a single-layer structure or a stacked structure of three or more layers.
  • the conductor 260a diffuses impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2 etc.), copper atoms, etc. It is preferable to use a conductive material having a suppressing function. Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (eg, at least one of oxygen atom, oxygen molecule, and the like).
  • the conductor 260a has a function of suppressing the diffusion of oxygen
  • the oxygen contained in the insulator 250 can suppress the oxidation of the conductor 260b and the decrease in conductivity.
  • a conductive material having a function of suppressing oxygen diffusion for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used.
  • the conductor 260 b is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component.
  • a conductor with high conductivity For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used.
  • the conductor 260b may have a stacked structure, for example, a stacked structure of titanium and titanium nitride and the above conductive material.
  • the conductor 260 in the region, it is preferable to overlap with the conductor 205 through the insulator 250. That is, in the outside of the side surface of the oxide 230, the conductor 205, the insulator 250, and the conductor 260 preferably form a stacked structure.
  • the electric field generated from the conductor 260 and the electric field generated from the conductor 205 are connected to form a channel formed in the oxide 230
  • the area can be covered.
  • the channel formation region of the region 234 can be electrically surrounded by the electric field of the conductor 260 having a function as the first gate electrode and the electric field of the conductor 205 having a function as the second gate electrode. .
  • the insulator 280 is provided on the conductor 242 via the insulator 244.
  • the insulator 280 preferably has an excess oxygen region.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide having voids It is preferable to have a resin or the like.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • silicon oxide and silicon oxide having holes are preferable because an excess oxygen region can be easily formed in a later step.
  • insulator 280 preferably has an excess oxygen region.
  • oxygen in the insulator 280 can be efficiently supplied to the region 234 of the oxide 230 through the oxide 230c.
  • concentration of impurities such as water or hydrogen in the insulator 280 is preferably reduced.
  • the top surface of the insulator 280 be approximately coincident with the top surface of the conductor 260 and the top surface of the insulator 250.
  • the insulator 274 is preferably provided in contact with the top surface of the insulator 280, the top surface of the conductor 260, and the top surface of the insulator 250.
  • an excess oxygen region can be provided for the insulator 250 and the insulator 280.
  • oxygen can be supplied to the oxide 230 from the excess oxygen region.
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, or the like is used as the insulator 274.
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, or the like is used as the insulator 274.
  • the aluminum oxide film formed by the sputtering method can have not only an oxygen supply source but also a function as a barrier film of an impurity such as hydrogen.
  • the insulator 274 supplies oxygen to the insulator 280, and an impurity such as hydrogen from above the insulator 274 is an insulator 280. It can control that it mixes in the side.
  • an insulator 281 which functions as an interlayer film is preferably provided over the insulator 274.
  • the insulator 281 preferably has a reduced concentration of impurities such as water or hydrogen in the film, similarly to the insulator 224 and the like.
  • the conductor 240 a and the conductor 240 b are provided in openings formed in the insulator 281, the insulator 274, the insulator 280, and the insulator 244.
  • the conductor 240 a and the conductor 240 b are provided opposite to each other with the conductor 260 interposed therebetween. Note that the heights of the top surfaces of the conductor 240 a and the conductor 240 b may be on the same plane as the top surface of the insulator 281.
  • a first conductor of the conductor 240 a is formed in contact with the inner wall of the opening of the insulator 281, the insulator 274, the insulator 280, and the insulator 244.
  • the conductor 242a is positioned at least at a part of the bottom of the opening, and the conductor 240a is in contact with the conductor 242a.
  • the first conductor of the conductor 240 b is formed in contact with the insulator 281, the insulator 274, the insulator 280, and the inner wall of the opening of the insulator 244.
  • the conductor 242 b is positioned at least at a part of the bottom of the opening, and the conductor 240 b is in contact with the conductor 242 b.
  • FIG. 3A illustrates a cross-sectional view of a portion indicated by an alternate long and short dash line A5-A6 in FIG. 1A, that is, a source region or a drain region of the transistor 200.
  • the conductor 240a (conductor 240b) is in contact with at least the top surface and the side surface of the conductor 242a (conductor 242b), and further in contact with the side surface of the oxide 230b and the side surface of the oxide 230a. Is preferred.
  • the conductor 240a (conductor 240b) is preferably in contact with one or both of the side surface on the A5 side and the side surface on the A6 side on the side surface of the oxide 230 which intersects the channel width direction.
  • the conductor 240a (conductor 240b) may be in contact with the side surface on the A1 side (A2 side) on the side surface of the oxide 230 that intersects the channel length direction.
  • FIG. 3B shows an example in which the mask alignment in the lithography method is deviated in the A5 direction when forming an opening for exposing a part of the conductor 242a (conductor 242b).
  • Conductor 240a (conductor 240b) is formed even if misalignment occurs by making the width of the opening larger than the width of conductor 242a (conductor 242b), oxide 230b, and oxide 230a in the channel width direction. ) Can be in contact with the top and side surfaces of the conductor 242a (conductor 242b), the side surface of the oxide 230b, and the side surface of the oxide 230a, and a good contact can be obtained.
  • the conductor 240 a and the conductor 240 b may have a stacked structure.
  • the conductor 205a or the like can be a conductor in contact with the oxide 230a, the oxide 230b, the conductor 242, the insulator 244, the insulator 280, the insulator 274, and the insulator 281.
  • a conductive material having a function of suppressing permeation of impurities such as water or hydrogen.
  • tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, ruthenium oxide or the like is preferably used.
  • a conductive material having a function of suppressing permeation of impurities such as water or hydrogen may be used in a single layer or a stack.
  • impurities such as hydrogen and water from above the insulator 281 can be prevented from being mixed into the oxide 230 through the conductor 240a and the conductor 240b.
  • a conductor that functions as a wiring may be disposed in contact with the top surface of the conductor 240a and the top surface of the conductor 240b. It is preferable to use a conductive material whose main component is tungsten, copper, or aluminum as the conductor functioning as the wiring.
  • the conductor may have a stacked structure, for example, a stack of titanium and titanium nitride and the above conductive material. Note that as in the case of the conductor 203 or the like, the conductor may be formed so as to be embedded in an opening provided in an insulator.
  • a substrate for forming the transistor 200 for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as a yttria stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate may be, for example, a semiconductor substrate of silicon, germanium or the like, or a compound semiconductor substrate of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide or gallium oxide.
  • the conductive substrate there is a semiconductor substrate having an insulator region inside the aforementioned semiconductor substrate, for example, an SOI (Silicon On Insulator) substrate.
  • the conductive substrate there are a graphite substrate, a metal substrate, an alloy substrate, a conductive resin substrate and the like.
  • a substrate provided with a conductor or a semiconductor on an insulator substrate a substrate provided with a conductor or an insulator on a semiconductor substrate, a substrate provided with a semiconductor or an insulator on the conductor substrate, and the like.
  • those provided with elements on these substrates may be used.
  • the elements provided on the substrate include a capacitor, a resistor, a switch, a light-emitting element, a memory element, and the like.
  • a flexible substrate may be used as the substrate.
  • a method for providing a transistor on a flexible substrate there is a method in which the transistor is peeled off after being manufactured on a non-flexible substrate and transposed to a substrate which is a flexible substrate.
  • a release layer may be provided between the non-flexible substrate and the transistor.
  • the substrate may have stretchability.
  • the substrate may have the property of returning to its original shape when bending or pulling is stopped. Alternatively, it may have the property that it does not return to its original shape.
  • the substrate has, for example, a region having a thickness of 5 ⁇ m to 700 ⁇ m, preferably 10 ⁇ m to 500 ⁇ m, and more preferably 15 ⁇ m to 300 ⁇ m.
  • the substrate When the substrate is thinned, the weight of the semiconductor device including the transistor can be reduced.
  • the substrate when the substrate is made thin, it may have elasticity even when using glass or the like, or may return to its original shape when bending or pulling is stopped. Therefore, an impact or the like applied to the semiconductor device on the substrate due to a drop or the like can be alleviated. That is, a robust semiconductor device can be provided.
  • a substrate which is a flexible substrate for example, a metal, an alloy, a resin or glass, or a fiber thereof can be used. Further, as the substrate, a sheet, a film, a foil or the like in which fibers are woven may be used. As the substrate which is a flexible substrate has a low coefficient of linear expansion, deformation due to the environment is preferably suppressed.
  • a substrate which is a flexible substrate for example, a material having a linear expansion coefficient of 1 ⁇ 10 ⁇ 3 / K or less, 5 ⁇ 10 ⁇ 5 / K or less, or 1 ⁇ 10 ⁇ 5 / K or less may be used.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic. In particular, aramid is suitable as a flexible substrate because it has a low coefficient of linear expansion.
  • the insulator includes, for example, an insulating oxide, a nitride, an oxynitride, a nitride oxide, a metal oxide, a metal oxynitride, a metal nitride oxide, and the like.
  • the thinning of the gate insulator may cause problems such as leakage current.
  • a high-k material for the insulator that functions as a gate insulator voltage reduction during transistor operation can be achieved while maintaining the physical thickness.
  • a material having a low relative dielectric constant for an insulator functioning as an interlayer film parasitic capacitance generated between wirings can be reduced. Therefore, depending on the function of the insulator, the material may be selected.
  • oxides of gallium oxide, hafnium oxide, zirconium oxide, aluminum and hafnium, oxynitrides of aluminum and hafnium, oxides of silicon and hafnium, silicon and hafnium can be used. And the like, or nitrides having silicon and hafnium.
  • silicon oxide and silicon oxynitride are thermally stable. Therefore, for example, by combining with a resin, it is possible to obtain a laminated structure having a low thermal conductivity and a low dielectric constant.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate or acrylic.
  • silicon oxide and silicon oxynitride can be combined with an insulator with high relative permittivity to form a stacked structure with high thermal stability and high relative permittivity.
  • the transistor including an oxide semiconductor electrical characteristics of the transistor can be stabilized by being surrounded by an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen for example, boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium
  • An insulator containing lanthanum, neodymium, hafnium, or tantalum may be used in a single layer or a stack.
  • aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide as an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen.
  • metal oxides such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like can be used.
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, or magnesium is used. be able to.
  • silicon nitride or silicon nitride containing oxygen, that is, silicon nitride, silicon nitride oxide, or the like can be used.
  • aluminum oxide has high barrier properties and can suppress the diffusion of hydrogen and nitrogen even if it is a thin film of 0.5 nm or more and 3.0 nm or less.
  • hafnium oxide has lower barrier properties than aluminum oxide, the barrier properties can be enhanced by increasing the film thickness. Therefore, by adjusting the film thickness of hafnium oxide, it is possible to adjust the appropriate addition amount of hydrogen and nitrogen.
  • the insulator 250 and the insulator 224 which function as gate insulators are preferably insulators having an excess oxygen region.
  • oxygen vacancies in the oxide 230 can be compensated.
  • an insulator containing one or more oxides of aluminum, hafnium, and gallium can be used as the insulator 222 which functions as part of a gate insulator.
  • aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used as the insulator containing one or both of the oxides of aluminum and hafnium.
  • the insulator 220 silicon oxide or silicon oxynitride which is stable against heat is preferably used.
  • the gate insulator has a laminated structure of a heat-stable film and a film with a high relative dielectric constant, so that the thin film of the equivalent oxide thickness (EOT) of the gate insulator is maintained while maintaining the physical film thickness.
  • EOT equivalent oxide thickness
  • the on current can be improved without weakening the influence of the electric field from the gate electrode. Further, by keeping the distance between the gate electrode and the region where the channel is formed by the physical thickness of the gate insulator, the leakage current between the gate electrode and the channel formation region can be suppressed. .
  • Each of the insulator 212, the insulator 216, the insulator 280, and the insulator 281 preferably includes an insulator with a low relative dielectric constant.
  • the insulator 212, the insulator 216, the insulator 280, and the insulator 281 are silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, carbon, and It is preferable to have a silicon oxide to which nitrogen is added, a silicon oxide having holes, a resin, or the like.
  • the insulator 212, the insulator 216, the insulator 280, and the insulator 281 are silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, carbon, and It is preferable to have a layered structure of a silicon oxide to which nitrogen is added, or a silicon oxide having holes and a resin. Silicon oxide and silicon oxynitride are thermally stable, and thus, when combined with a resin, a stacked structure with a thermally stable and low dielectric constant can be obtained. Examples of the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen can be used.
  • an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen can be used.
  • an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen can be used.
  • a metal oxide such as tantalum, silicon nitride oxide, silicon nitride, or the like may be used.
  • Conductor aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum
  • a material containing one or more metal elements selected from the above can be used.
  • a semiconductor with high electrical conductivity typically a polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • a plurality of conductive layers formed of the above materials may be stacked.
  • a stacked structure in which a material containing a metal element described above and a conductive material containing oxygen are combined may be used.
  • a stacked structure in which the material containing the metal element described above and the conductive material containing nitrogen are combined may be used.
  • a stacked structure in which the above-described material containing a metal element, the conductive material containing oxygen, and the conductive material containing nitrogen are combined may be used.
  • a stacked structure in which a material containing the above-described metal element and a conductive material containing oxygen are combined is used for a conductor functioning as a gate electrode.
  • a conductive material containing oxygen may be provided on the channel formation region side.
  • a conductor functioning as a gate electrode a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed is preferably used.
  • a conductive material containing the above-described metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon were added.
  • Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • the conductor 260, the conductor 203, the conductor 205, the conductor 242, and the conductor 240 aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, or the like can be used.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, etc. are used. Is preferred.
  • tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel are difficult to oxidize.
  • a semiconductor with high electrical conductivity typically a polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • metal oxides As the oxide 230, a metal oxide which functions as an oxide semiconductor (hereinafter, also referred to as an oxide semiconductor) is preferably used. Hereinafter, metal oxides applicable to the oxide 230 according to the present invention will be described.
  • the metal oxide preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc. In addition to them, aluminum, gallium, yttrium or tin is preferably contained. In addition, one or more selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, or magnesium may be included.
  • the metal oxide is an In-M-Zn oxide having indium, an element M and zinc.
  • the element M is aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium and the like.
  • the element M a plurality of the aforementioned elements may be combined in some cases.
  • metal oxides having nitrogen may also be collectively referred to as metal oxides.
  • a metal oxide having nitrogen may be referred to as metal oxynitride.
  • CAC Cloud-Aligned Composite
  • CAAC c-axis aligned crystal
  • CAC Cloud-Aligned Composite
  • the CAC-OS or CAC-metal oxide has a conductive function in part of the material and an insulating function in part of the material, and functions as a semiconductor throughout the material.
  • the conductive function is a function of flowing electrons (or holes) serving as a carrier
  • the insulating function is a carrier. It is a function that does not flow electrons.
  • a function of switching can be imparted to the CAC-OS or the CAC-metal oxide by causing the conductive function and the insulating function to be complementary to each other.
  • CAC-OS or CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-mentioned conductive function
  • the insulating region has the above-mentioned insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material.
  • the conductive region may be observed as connected in a cloud shape with a blurred periphery.
  • the conductive region and the insulating region are each dispersed in the material with a size of 0.5 nm or more and 10 nm or less, preferably 0.5 nm or more and 3 nm or less There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide is composed of a component having a wide gap resulting from the insulating region and a component having a narrow gap resulting from the conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having the narrow gap acts complementarily to the component having the wide gap, and the carrier also flows to the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the above-described CAC-OS or CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on current, and high field effect mobility can be obtained in the on state of the transistor.
  • CAC-OS or CAC-metal oxide can also be called a matrix composite (matrix composite) or a metal matrix composite (metal matrix composite).
  • Oxide semiconductors can be divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • non-single crystal oxide semiconductor for example, c-axis aligned crystalline oxide semiconductor (CAAC-OS), polycrystalline oxide semiconductor, nanocrystalline oxide semiconductor (nc-OS), pseudo amorphous oxide semiconductor (a-like) OS: amorphous-like oxide semiconductor), and amorphous oxide semiconductor.
  • the CAAC-OS has c-axis orientation, and a plurality of nanocrystals are connected in the a-b plane direction to form a strained crystal structure.
  • distortion refers to a portion where the orientation of the lattice arrangement changes between the region in which the lattice arrangement is aligned and the region in which another lattice arrangement is aligned in the region where the plurality of nanocrystals are connected.
  • the nanocrystals are based on hexagons, but may not be regular hexagons and may be non-hexagonal. Moreover, distortion may have a lattice arrangement such as pentagon and heptagon. Note that in the CAAC-OS, it is difficult to confirm clear crystal grain boundaries (also referred to as grain boundaries) even in the vicinity of strain. That is, it is understood that the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the a-b plane direction, or that the bonding distance between atoms is changed due to metal element substitution. It is for.
  • a CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer containing element M, zinc and oxygen (hereinafter referred to as (M, Zn) layer) are stacked. It tends to have a structure (also referred to as a layered structure).
  • In layer a layer containing indium and oxygen
  • M, Zn zinc and oxygen
  • indium and the element M can be substituted with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as a (In, M, Zn) layer.
  • indium in the In layer is substituted with the element M, it can also be represented as an (In, M) layer.
  • CAAC-OS is a highly crystalline metal oxide. On the other hand, it is difficult to confirm clear crystal grain boundaries in CAAC-OS, so it can be said that the decrease in electron mobility due to crystal grain boundaries does not easily occur. In addition, since crystallinity of a metal oxide may be lowered due to mixing of impurities or generation of defects, CAAC-OS has a metal with few impurities or defects (also referred to as oxygen vacancy (V 2 O )). It can be said that it is an oxide. Therefore, the metal oxide having a CAAC-OS has stable physical properties. Therefore, a metal oxide having a CAAC-OS is resistant to heat and has high reliability.
  • the nc-OS has periodicity in atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • nc-OS has no regularity in crystal orientation among different nanocrystals. Therefore, no orientation can be seen in the entire film. Therefore, the nc-OS may not be distinguished from the a-like OS or the amorphous oxide semiconductor depending on the analysis method.
  • IGZO indium-gallium-zinc oxide
  • IGZO indium-gallium-zinc oxide
  • IGZO tends to be difficult to grow crystals in the atmosphere, so smaller crystals (for example, the above-mentioned nanocrystals) than large crystals (here, crystals of a few mm or crystals of a few cm) But may be structurally stable.
  • the a-like OS is a metal oxide having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a wrinkle or low density region. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS.
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one embodiment of the present invention may have two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • a metal oxide with low carrier density is preferably used for the transistor.
  • the impurity concentration in the metal oxide film may be lowered to lower the density of defect states.
  • a low impurity concentration and a low density of defect levels are referred to as high purity intrinsic or substantially high purity intrinsic.
  • the metal oxide has a carrier density of less than 8 ⁇ 10 11 / cm 3 , preferably less than 1 ⁇ 10 11 / cm 3 , more preferably less than 1 ⁇ 10 10 / cm 3 , and 1 ⁇ 10 ⁇ 9 / cm 3. It should be cm 3 or more.
  • the trap state density may also be low.
  • the charge trapped in the trap level of the metal oxide may take a long time to disappear and behave as if it were fixed charge. Therefore, a transistor including a metal oxide with a high trap state density in a channel formation region may have unstable electrical characteristics.
  • the impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • a thin film with high crystallinity is preferably used as the metal oxide used for the semiconductor of the transistor.
  • the stability or the reliability of the transistor can be improved.
  • the thin film include thin films of single crystal metal oxides or thin films of polycrystalline metal oxides.
  • a high temperature or laser heating step is required to form a thin film of monocrystalline metal oxide or a thin film of polycrystalline metal oxide on a substrate. Therefore, the cost of the manufacturing process increases, and the throughput also decreases.
  • CAAC-IGZO In-Ga-Zn oxide
  • nc-IGZO In-Ga-Zn oxide having an nc structure was discovered (see Non-Patent Document 3).
  • nc-IGZO has periodicity in atomic arrangement in a minute area (for example, an area of 1 nm or more and 3 nm or less) and regularity in crystal orientation is not observed between different areas. There is.
  • Non-Patent Document 4 and Non-Patent Document 5 show the transition of the average crystal size by the irradiation of an electron beam to the thin films of the above-described CAAC-IGZO, nc-IGZO, and IGZO with low crystallinity.
  • a low crystalline IGZO thin film crystalline IGZO of about 1 nm has been observed even before electron beam irradiation. Therefore, it is reported here that in IGZO, the presence of a completely amorphous structure could not be confirmed.
  • the thin film of CAAC-IGZO and the thin film of nc-IGZO have high stability to electron beam irradiation as compared with the thin film of IGZO having low crystallinity. Therefore, it is preferable to use a thin film of CAAC-IGZO or a thin film of nc-IGZO as a semiconductor of the transistor.
  • a transistor using a metal oxide has extremely low leakage current in the non-conductive state, specifically, the off-state current per ⁇ m channel width of the transistor is on the order of yA / ⁇ m (10 -24 A / ⁇ m).
  • Non-Patent Document 6 For example, a low power consumption CPU or the like to which a characteristic that a leak current of a transistor using a metal oxide is low is disclosed (see Non-Patent Document 7).
  • Non-Patent Document 8 application of a transistor using a metal oxide to a display device utilizing a characteristic that a leak current of the transistor is low has been reported (see Non-Patent Document 8).
  • the displayed image is switched several tens of times per second.
  • the number of times of switching images per second is called a refresh rate.
  • the refresh rate may be referred to as a drive frequency.
  • Such fast screen switching which is difficult for human eyes to perceive, is considered as the cause of eye fatigue. Therefore, it has been proposed to reduce the number of image rewrites by reducing the refresh rate of the display device.
  • power consumption of the display device can be reduced by driving with a lower refresh rate.
  • Such a driving method is called idling stop (IDS) driving.
  • IDS idling stop
  • the discovery of the CAAC structure and the nc structure contributes to the improvement of the electrical characteristics and reliability of a transistor using a metal oxide having a CAAC structure or an nc structure, as well as to the cost reduction and the throughput improvement of the manufacturing process.
  • researches on application of the transistor to a display device and an LSI using the characteristic that the leakage current of the transistor is low have been advanced.
  • the concentration of silicon or carbon in the metal oxide and the concentration of silicon or carbon in the vicinity of the interface with the metal oxide are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the metal oxide contains an alkali metal or an alkaline earth metal
  • a defect level may be formed to generate a carrier. Therefore, a transistor in which a metal oxide containing an alkali metal or an alkaline earth metal is used for a channel formation region is likely to be normally on. For this reason, it is preferable to reduce the concentration of alkali metal or alkaline earth metal in the metal oxide.
  • the concentration of alkali metal or alkaline earth metal in the metal oxide obtained by SIMS is 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen in the channel formation region is preferably reduced as much as possible.
  • the nitrogen concentration in the metal oxide is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less, in SIMS. Preferably, it is 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in the metal oxide reacts with oxygen bonded to a metal atom to form water, which may form an oxygen vacancy.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons that are carriers may be generated.
  • a part of hydrogen may be bonded to oxygen which is bonded to a metal atom to generate an electron which is a carrier. Therefore, a transistor using a metal oxide that contains hydrogen is likely to be normally on.
  • hydrogen contained in the metal oxide may form a shallow defect level (sDOS) in the metal oxide.
  • Shallow defect states refer to interface states located near the lower end of the conduction band.
  • Shallow defect states are presumed to exist near the boundary between the high density region and the low density region in the metal oxide.
  • the high density region and the low density region in the metal oxide are distinguished by the amount of hydrogen contained in the region. That is, the high density region is a region containing more hydrogen as compared to the low density region.
  • a micro crack is easily generated due to the stress strain between the both regions, and oxygen vacancy and indium dangling bond are generated in the vicinity of the crack. It is presumed that shallow defect levels are formed due to the localization of impurities such as hydrogen or water.
  • the high density region in the metal oxide may be higher in crystallinity than the low density region.
  • the high density region in the metal oxide may have a higher film density than the low density region.
  • the metal oxide contains indium, gallium and zinc
  • the high density region contains indium, gallium and zinc
  • the low density region contains indium, zinc and , May have.
  • the low density region may have a lower percentage of gallium than the high density region.
  • the shallow defect level is presumed to be due to oxygen deficiency. It is presumed that as oxygen deficiency in the metal oxide increases, deep defect levels (dDOS: deep level Density of States) also increase with shallow defect levels. This is because deep defect levels are also considered to be oxygen deficiency.
  • the deep defect level refers to a defect level located near the center of the band gap.
  • the shallow defect levels may be controlled to some extent by adjusting the temperature at the time of film formation of the metal oxide. Specifically, the shallow defect level can be reduced by setting the temperature for film formation of the metal oxide to 170 ° C. or near, preferably 130 ° C. or near, more preferably room temperature.
  • shallow defect states of the metal oxide affect the electrical characteristics of a transistor in which the metal oxide is used for the semiconductor layer. That is, due to the shallow defect states, in the drain current-gate voltage (Id-Vg) characteristics of the transistor, the change of the drain current Id relative to the gate voltage Vg becomes gentle, and the rise characteristic from the off state to the on state of the transistor is improved.
  • the S value (Subthreshold Swing, also referred to as SS), which is one of the criteria, is deteriorated. This is considered to be because electrons were trapped in shallow defect levels.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , more preferably 5 ⁇ 10 18 atoms / cm. It is less than 3 and more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • FIG. 4 to FIG. 13 shows a top view.
  • (B) in each drawing is a cross-sectional view corresponding to a portion indicated by an alternate long and short dash line A1-A2 illustrated in (A), and is also a cross-sectional view in the channel length direction of the transistor 200.
  • (C) in each drawing is a cross-sectional view corresponding to a portion indicated by dashed dotted line A3-A4 in (A), and is also a cross-sectional view in the channel width direction of the transistor 200.
  • one part element is abbreviate
  • a substrate (not shown) is prepared, and an insulator 210 is formed on the substrate.
  • the film formation of the insulator 210 may be performed by sputtering, chemical vapor deposition (CVD), molecular beam epitaxy (MBE), pulsed laser deposition (PLD), or ALD. This can be performed using an atomic layer deposition (Atomic Layer Deposition) method or the like.
  • the CVD method can be classified into a plasma enhanced CVD (PECVD) method using plasma, a thermal CVD (TCVD: thermal CVD) method using heat, a photo CVD method using light, etc. . Furthermore, it can be divided into metal CVD (MCVD: Metal CVD) and metal organic CVD (MOCVD: Metal Organic CVD) depending on the source gas used.
  • PECVD plasma enhanced CVD
  • TCVD thermal CVD
  • MCVD Metal CVD
  • MOCVD Metal Organic CVD
  • the plasma CVD method provides high quality films at relatively low temperatures.
  • the thermal CVD method is a film formation method capable of reducing plasma damage to an object to be processed because plasma is not used.
  • a wiring, an electrode, an element (such as a transistor or a capacitor), or the like included in a semiconductor device may be charged up by receiving charge from plasma. At this time, wirings, electrodes, elements, and the like included in the semiconductor device may be broken by the stored charge.
  • a thermal CVD method which does not use plasma, such plasma damage does not occur, so that the yield of the semiconductor device can be increased.
  • the thermal CVD method since plasma damage does not occur during film formation, a film with few defects can be obtained.
  • the ALD method is also a film formation method capable of reducing plasma damage to an object to be processed. Further, in the ALD method, since plasma damage does not occur during film formation, a film with few defects can be obtained. Some precursors used in the ALD method include impurities such as carbon. For this reason, the film provided by the ALD method may contain a large amount of impurities such as carbon, as compared with a film provided by another film formation method. In addition, quantification of impurities can be performed using X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the CVD method and the ALD method are film forming methods in which a film is formed by a reaction on the surface of an object to be processed unlike a film forming method in which particles released from a target or the like are deposited. Therefore, the film forming method is less susceptible to the shape of the object to be processed, and has good step coverage.
  • the ALD method since the ALD method has excellent step coverage and uniformity of thickness, it is suitable for coating the surface of an opening with a high aspect ratio.
  • the ALD method may be preferably used in combination with another deposition method such as a CVD method having a high deposition rate.
  • the CVD method and the ALD method can control the composition of the obtained film by the flow rate ratio of the source gas.
  • a film having any composition can be formed depending on the flow rate ratio of the source gas.
  • a film whose composition is continuously changed can be formed by changing the flow ratio of the source gas while forming the film.
  • aluminum oxide is deposited as the insulator 210 by a sputtering method.
  • the insulator 210 may have a multilayer structure.
  • an aluminum oxide film may be formed by a sputtering method, and an aluminum oxide film may be formed by an ALD method over the aluminum oxide.
  • an aluminum oxide film may be formed by an ALD method, and an aluminum oxide film may be formed by a sputtering method over the aluminum oxide.
  • the insulator 212 is formed over the insulator 210.
  • the insulator 212 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is deposited as the insulator 212 by a CVD method.
  • an opening reaching the insulator 210 is formed in the insulator 212.
  • the openings include, for example, grooves and slits.
  • the region in which the opening is formed may be referred to as an opening.
  • wet etching may be used to form the openings, it is preferable to use dry etching for fine processing.
  • the insulator 210 it is preferable to select an insulator that functions as an etching stopper film at the time of forming the opening by etching the insulator 212.
  • a silicon oxide film is used as the insulator 212 which forms an opening
  • a silicon nitride film, an aluminum oxide film, or a hafnium oxide film may be used as the insulator 210 which functions as an etching stopper film.
  • a conductive film to be the conductor 203a is formed.
  • the conductive film preferably includes a conductor having a function of suppressing permeation of oxygen.
  • tantalum nitride, tungsten nitride, titanium nitride, or the like can be used.
  • a stacked film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, and a molybdenum-tungsten alloy can be used.
  • the conductive film to be the conductor 203a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a conductive film to be the conductor 203a a film in which titanium nitride is stacked over tantalum nitride or tantalum nitride is formed by sputtering.
  • a metal nitride as the conductor 203a, even if a metal that easily diffuses such as copper is used in the conductor 203b described later, the metal can be prevented from diffusing out of the conductor 203a.
  • a conductive film to be the conductor 203b is formed over the conductive film to be the conductor 203a.
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a low-resistance conductive material such as copper is formed as the conductive film to be the conductor 203 b.
  • CMP treatment is performed to remove part of the conductive film to be the conductor 203 a and the conductive film to be the conductor 203 b, thereby exposing the insulator 212.
  • the conductive film to be the conductor 203a and the conductive film to be the conductor 203b remain only in the opening. Accordingly, the conductor 203 including the conductor 203a and the conductor 203b whose top surface is flat can be formed (see FIG. 4). Note that part of the insulator 212 may be removed by the CMP treatment.
  • the insulator 214 is formed over the insulator 212 and the conductor 203.
  • the insulator 214 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon nitride is formed as the insulator 214 by a CVD method. In this manner, by using an insulator that is less likely to transmit copper such as silicon nitride as the insulator 214, even if a metal that easily diffuses copper such as copper is used for the conductor 203b, the metal is a layer higher than the insulator 214 Can be suppressed.
  • the insulator 216 is formed over the insulator 214.
  • the insulator 216 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is deposited as the insulator 216 by a CVD method.
  • an opening which reaches the conductor 203 is formed in the insulator 214 and the insulator 216.
  • wet etching may be used to form the openings, it is preferable to use dry etching for fine processing.
  • a conductive film to be the conductor 205a is formed.
  • the conductive film preferably contains a conductive material having a function of suppressing permeation of oxygen.
  • a conductive material having a function of suppressing permeation of oxygen for example, tantalum nitride, tungsten nitride, titanium nitride, or the like can be used.
  • a stacked film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, and a molybdenum-tungsten alloy can be used.
  • the conductive film to be the conductor 205a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tantalum nitride is formed by a sputtering method as a conductive film to be the conductor 205a.
  • a conductive film to be the conductor 205b is formed over the conductive film to be the conductor 205a.
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed by a CVD method as a conductive film to be the conductor 205b, and tungsten is formed over the titanium nitride film by a CVD method.
  • CMP treatment is performed to remove part of the conductive film to be the conductor 205 a and the conductive film to be the conductor 205 b, thereby exposing the insulator 216.
  • the conductive film to be the conductor 205a and the conductor 205b remains only in the opening.
  • the conductor 205 including the conductor 205a and the conductor 205b with a flat top surface can be formed (see FIG. 4). Note that part of the insulator 216 may be removed by the CMP treatment.
  • the insulator 220 is formed over the insulator 216 and the conductor 205.
  • the insulator 220 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is deposited as the insulator 220 by a CVD method.
  • the insulator 222 is formed over the insulator 220.
  • an insulator containing an oxide of one or both of aluminum and hafnium may be deposited.
  • aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used as the insulator containing one or both of the oxides of aluminum and hafnium.
  • An insulator containing one or both oxides of aluminum and hafnium has barrier properties against oxygen, hydrogen, and water.
  • the insulator 222 has a barrier property to hydrogen and water, diffusion of hydrogen and water contained in a structure provided in the periphery of the transistor 200 to the inside of the transistor 200 through the insulator 222 is suppressed. , And the formation of oxygen vacancies in the oxide 230 can be suppressed.
  • the insulator 222 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 224 is formed over the insulator 222.
  • the insulator 224 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is deposited as the insulator 224 by a CVD method.
  • heat treatment is preferably performed.
  • the heat treatment may be performed at 250 ° C. to 650 ° C., preferably 300 ° C. to 500 ° C., more preferably 320 ° C. to 450 ° C.
  • the heat treatment is performed in a nitrogen or inert gas atmosphere or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas. Further, the heat treatment may be performed under reduced pressure.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to compensate for desorbed oxygen. Good.
  • heat treatment is performed at a temperature of 400 ° C. for one hour in a nitrogen atmosphere after film formation of the insulator 224.
  • impurities such as hydrogen and water contained in the insulator 224 can be removed, and the like.
  • the heat treatment can also be performed at each timing after the insulator 220 is formed and after the insulator 222 is formed.
  • the heat treatment conditions described above can be used for the heat treatment, it is preferable that the heat treatment after the deposition of the insulator 220 be performed in an atmosphere containing nitrogen.
  • plasma treatment including oxygen may be performed under reduced pressure.
  • plasma treatment containing oxygen for example, it is preferable to use a device having a power supply for generating high density plasma using microwaves.
  • the substrate side may have a power supply for applying an RF (Radio Frequency).
  • RF Radio Frequency
  • high density plasma high density oxygen radicals can be generated, and by applying RF to the substrate side, oxygen radicals generated by high density plasma can be efficiently introduced into the insulator 224. it can.
  • plasma treatment including oxygen may be performed to compensate for the released oxygen. Note that impurities such as hydrogen and water contained in the insulator 224 can be removed by appropriately selecting the conditions of the plasma treatment. In that case, the heat treatment may not be performed.
  • an insulator that functions as a stopper at the time of etching the insulator 280, the insulator 244A, and the conductor 242B may be formed over the insulator 224 in a later step.
  • an insulator that can be used for the insulator 222 may be used.
  • the insulator can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. After the film formation of the insulator, the above-described heat treatment may be performed.
  • an oxide film 230A to be the oxide 230a and an oxide film 230B to be the oxide 230b are sequentially formed (see FIG. 4).
  • the oxide film is preferably formed continuously without being exposed to the air environment. By forming the film without opening to the atmosphere, impurities or moisture from the air environment can be prevented from adhering to the oxide film 230A and the oxide film 230B, and the vicinity of the interface between the oxide film 230A and the oxide film 230B can be It can be kept clean.
  • the oxide film 230A and the oxide film 230B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • oxide film 230A and the oxide film 230B are formed by sputtering
  • oxygen or a mixed gas of oxygen and a rare gas is used as a sputtering gas.
  • a sputtering gas By increasing the proportion of oxygen contained in the sputtering gas, excess oxygen in the oxide film to be formed can be increased.
  • an In-M-Zn oxide target can be used, for example.
  • the proportion of oxygen contained in the sputtering gas of the oxide film 230A may be 70% or more, preferably 80% or more, and more preferably 100%.
  • an oxygen-deficient oxide semiconductor can be formed by deposition with the proportion of oxygen contained in the sputtering gas being 1% to 30%, preferably 5% to 20%. It is formed.
  • a transistor in which an oxygen-deficient oxide semiconductor is used for a channel formation region can achieve relatively high field-effect mobility.
  • heat treatment may be performed.
  • the above-described heat treatment conditions can be used.
  • impurities such as hydrogen and water in the oxide film 230A and the oxide film 230B can be removed.
  • treatment for 1 hour at a temperature of 400 ° C. in an oxygen atmosphere is continuously performed.
  • the conductive film 242A is formed over the oxide film 230B.
  • the conductive film 242A is made of aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum It is preferable to use a metal element selected from or an alloy containing the above-described metal element as a component, or an alloy in which the above-described metal element is combined.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, etc. are used. Is preferred.
  • tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel are difficult to oxidize.
  • the conductive film 242A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductive film 242A is processed to form a hard mask for processing the oxide film 230A and the oxide film 230B.
  • the conductive film 242A may be processed by a lithography method. Further, dry etching or wet etching can be used for the processing. Machining by dry etching is suitable for micromachining.
  • the resist is exposed through a mask.
  • the exposed area is removed or left using a developer to form a resist mask.
  • the conductor, the semiconductor, the insulator, or the like can be processed into a desired shape by etching through the resist mask.
  • the resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • a liquid immersion technique may be used in which a liquid (for example, water) is filled and exposed between the substrate and the projection lens.
  • an electron beam or an ion beam may be used instead of the light described above.
  • the mask for resist exposure described above is unnecessary because writing is performed directly on the resist.
  • the resist mask can be removed by dry etching treatment such as ashing, wet etching treatment, wet etching treatment after dry etching treatment, dry etching treatment after wet etching treatment, or the like. .
  • the conductive film 242A is etched using a resist mask to form a conductor 242B which functions as a hard mask (see FIG. 5).
  • the resist mask may be removed and then the oxide film may be processed, or may be performed with the resist mask left. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after the etching of the oxide film, in the present embodiment, the conductor 242B is not processed because the conductor 242B is further processed to form a source electrode and a drain electrode. .
  • a capacitively coupled plasma (CCP) etching apparatus having a parallel plate electrode can be used as a dry etching apparatus.
  • the capacitive coupling type plasma etching apparatus having a parallel plate type electrode may be configured to apply a high frequency power to one of the parallel plate type electrodes.
  • a plurality of different high frequency power supplies may be applied to one of the parallel plate electrodes.
  • a high frequency power supply of the same frequency may be applied to each of the parallel plate electrodes.
  • high-frequency power supplies having different frequencies may be applied to the parallel plate electrodes.
  • a dry etching apparatus having a high density plasma source can be used.
  • an inductively coupled plasma (ICP) etching apparatus can be used as a dry etching apparatus having a high density plasma source.
  • the oxide film 230A and the oxide film 230B are processed into an island shape using the conductor 242B as a hard mask to form an oxide 230a and an oxide 230b (see FIG. 5). Note that part of the insulator 224 may be removed in the processing process.
  • the oxide 230 a and the oxide 230 b are formed so that at least part thereof overlaps with the conductor 205.
  • the side surfaces of the oxide 230 a and the oxide 230 b are preferably substantially perpendicular to the top surface of the insulator 222.
  • the side surfaces of the oxide 230 a and the oxide 230 b are substantially perpendicular to the top surface of the insulator 222, reduction in area and density can be achieved when the plurality of transistors 200 is provided.
  • the angle between the side surface of the oxide 230 a and the side surface of the oxide 230 b and the top surface of the insulator 222 may be acute. In that case, the larger the angle between the side surface of the oxide 230a and the side surface of the oxide 230b and the top surface of the insulator 222, the better.
  • a curved surface is provided between the side surfaces of the oxide 230a, the oxide 230b, and the conductor 242B, and the top surface of the conductor 242B. That is, the end of the side surface and the end of the upper surface are preferably curved (hereinafter, also referred to as a round shape).
  • the curved surface has, for example, a radius of curvature of 3 nm or more and 10 nm or less, preferably 5 nm or more and 6 nm or less at an end portion of the conductor 242B.
  • the conductor 242B can be used as a hard mask and a dry etching method or a wet etching method can be used. Machining by dry etching is suitable for micromachining.
  • impurities derived from an etching gas or the like may be attached or diffused to side surfaces or inside of the oxide 230a, the oxide 230b, and the like.
  • the impurities include, for example, fluorine or chlorine.
  • the cleaning method may be wet cleaning using a cleaning solution or the like, plasma treatment using plasma, or cleaning by heat treatment, and the above cleaning may be performed in combination as appropriate.
  • cleaning treatment may be performed using an aqueous solution prepared by diluting oxalic acid, phosphoric acid, hydrogen peroxide water, hydrofluoric acid or the like with carbonated water or pure water.
  • ultrasonic cleaning may be performed using pure water or carbonated water. In this embodiment, ultrasonic cleaning using pure water or carbonated water is performed.
  • heat treatment may be performed.
  • the heat treatment conditions the above-described heat treatment conditions can be used.
  • the heat treatment is preferably performed in an atmosphere containing no oxygen.
  • the heat treatment may be performed in an atmosphere containing oxygen.
  • an insulator 244A is formed over the insulator 224, the oxide 230a, the oxide 230b, and the conductor 242B (see FIG. 6).
  • the insulator 244A preferably functions as an insulating barrier, and an insulator including one or both of an oxide of aluminum and hafnium is preferably deposited.
  • aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used as the insulator containing one or both of the oxides of aluminum and hafnium.
  • the insulator 244A having a barrier property can suppress the oxidation of the conductor 242B.
  • the insulator 244A is not necessarily provided.
  • the insulator 244A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 280 is formed over the insulator 244A.
  • the insulator 280 preferably includes an insulator with a low relative dielectric constant.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide having pores, or resin It is preferable to have.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, or silicon oxide having holes is preferably used as the insulator 280 because an excess oxygen region can be easily formed in the insulator 280 in a later step.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • the film formation of the insulator 280 can be performed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a spin coating method, a dip method, a droplet discharge method (such as an inkjet method), a printing method (such as screen printing or offset printing), a doctor knife method, a roll coater method, a curtain coater method, or the like can be used.
  • silicon oxynitride is deposited as the insulator 280 by a CVD method.
  • the insulator 280 is preferably formed so that the top surface has flatness.
  • the top surface of the insulator 280 may have flatness immediately after film formation.
  • the insulator 280 may have flatness by removing the insulator or the like from the top surface so as to be parallel to a reference surface such as the back surface of the substrate after film formation.
  • Such processing is called planarization processing.
  • the planarization process includes a CMP process, a dry etching process, and the like. In this embodiment, a CMP process is used as the planarization process.
  • the upper surface of the insulator 280 may not necessarily have flatness.
  • the insulator 280 is processed so as to have at least a region overlapping with the conductor 205 to form an opening 245 (see FIG. 7).
  • wet etching may be used to form the opening, it is preferable to use dry etching from the viewpoint that microfabrication is possible and that the side surface of the insulator 280 can be processed substantially vertically.
  • the opening 245 is preferably formed by forming a hard mask over the insulator 280.
  • the hard mask may use a conductor or an insulator.
  • the insulator 244A and the conductor 242B are processed to form the insulator 244 and the conductor 242 (the conductor 242a and the conductor 242b) (see FIG. 8). It is preferable to use dry etching capable of anisotropic etching for the processing.
  • dry etching capable of anisotropic etching for the processing.
  • the side surface of the oxide 230a, the surface, the side surface of the oxide 230b, and part of the surface of the insulator 224 are exposed.
  • part of the insulator 224 may be etched by the processing.
  • the cross section of the surface where the conductor 242a and the conductor 242b face each other may have a tapered shape. On the other hand, the cross section may have a substantially vertical shape.
  • the conductor 242a and the conductor 242b are formed using the insulator 280 and / or the hard mask as a mask.
  • the opening 245 formed in the insulator 280 overlaps with the region between the conductor 242a and the conductor 242b.
  • the conductor 260 can be disposed between the conductor 242a and the conductor 242b in a self-aligned manner in a later step.
  • heat treatment is preferably performed.
  • the heat treatment may be performed at 250 ° C. to 650 ° C., preferably 300 ° C. to 500 ° C., more preferably 320 ° C. to 450 ° C.
  • the heat treatment is performed in a nitrogen or inert gas atmosphere.
  • the heat treatment may be performed in an atmosphere containing oxygen.
  • the heat treatment may be performed under reduced pressure. For example, heat treatment is performed at a temperature of 400 ° C. for one hour in a nitrogen atmosphere.
  • the heat treatment By the heat treatment, impurities such as hydrogen and water contained in the oxide 230a and the oxide 230b can be removed. Further, damage caused to the oxide 230 a or the oxide 230 b in dry etching in the above processing can be recovered. In the case where heat treatment is performed in an atmosphere containing oxygen, oxygen can be added to the oxide 230a and the oxide 230b.
  • the above metal element can be diffused from the conductor 242 to the oxide 230 by the heat treatment, whereby the metal element can be added to the oxide 230. Further, oxygen in the vicinity of the interface between the oxide 230 and the conductor 242 may be absorbed by the conductor 242. As a result, the vicinity of the interface between the oxide 230 and the conductor 242 becomes a metal compound, which reduces the resistance. At that time, a part of the oxide 230 and the above-described metal element may be alloyed. By alloying part of the oxide 230 and the metal element, the metal element added to the oxide 230 is in a relatively stable state, so that a highly reliable semiconductor device can be provided. Note that in FIG. 8B, regions 243 a and 243 b are denoted by dotted lines as an example of the above-described low-resistance region of the oxide 230.
  • the regions 243 a and 243 b are provided so as to be diffused in the depth direction in the vicinity of the conductor 242 of the oxide 230 b, the present invention is not limited thereto.
  • the region 243a and the region 243b may be formed in the entire oxide 230b or in the oxide 230a in the depth direction.
  • the regions 243 a and 243 b are formed in regions (regions 231 and 232 shown in FIG. 2) diffused in the horizontal direction from the conductor 242 in the horizontal direction, the present invention It is not limited to this.
  • the region 243a and the region 243b may be formed only in the region (region 231) overlapping with the conductor 242, or in a region (portion of the region 234) overlapping with part of the conductor 260 to be formed in a later step. May also be formed.
  • hydrogen in the oxide 230 diffuses into the region 231 shown in FIG. 2 and enters the oxygen vacancies present in the region 231, resulting in a relatively stable state.
  • hydrogen in the oxygen vacancy existing in the region 234 is released from the oxygen vacancy by heat treatment at 250 ° C. or higher, diffused into the region 231, and enters the oxygen vacancy existing in the region 231, and is relatively stable. Become. Therefore, the heat treatment makes the region 231 lower in resistance, and the region 234 is highly purified (reduction of impurities such as water and hydrogen) and is higher in resistance.
  • heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment may be performed at 250 ° C. to 650 ° C., preferably 300 ° C. to 500 ° C., more preferably 320 ° C. to 450 ° C.
  • the region 231 of the oxide 230 is n-type and has a low resistance.
  • the oxygen concentration in the region 231 may be lower than the oxygen concentration in the region 234.
  • the oxygen concentration in the region 232 may be higher than or equal to the oxygen concentration in the region 231 and lower than or equal to the oxygen concentration in the region 234.
  • the hydrogen concentration in the region 231 may be higher than the hydrogen concentration in the region 234.
  • the hydrogen concentration in the region 232 may be higher than or equal to the hydrogen concentration in the region 234 and lower than or equal to the hydrogen concentration in the region 231.
  • an oxide film 230C to be the oxide 230c is formed over the insulator 280 so as to have a region in contact with the side surface of the oxide 230a, the top and side surfaces of the oxide 230b, the side surface of the conductor 242, and the side surface of the insulator 280.
  • a film is formed (see FIG. 9).
  • the oxide film 230C can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230C may be formed by a film formation method similar to that of the oxide film 230A or the oxide film 230B in accordance with the characteristics desired for the oxide 230c.
  • an insulator 250A is formed on the oxide film 230C (see FIG. 9).
  • the insulator 250A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxynitride is preferably deposited by a CVD method.
  • the film-forming temperature at the time of forming the insulator 250A into a film is 350 degreeC or more and less than 450 degreeC, especially about 400 degreeC.
  • oxygen can be introduced into the insulator 250A by exciting the oxygen with microwaves, generating high-density oxygen plasma, and exposing the insulator 250A to the oxygen plasma.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the heat treatment the water concentration and the hydrogen concentration of the insulator 250A can be reduced.
  • the conductor 242 and the conductor 260 formed in a later step can form parasitic capacitance. That is, the insulating film provided on the side surface of the conductor 242 can function as a dielectric of the parasitic capacitance.
  • the insulating film functions as a gate insulator of the transistor 200, the insulating film is preferably formed using a thin film of 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less.
  • the insulating film In order to thicken the insulating film provided on the side surface of the conductor 242 to such an extent that the parasitic capacitance can be ignored, it is preferable that the insulating film has a laminated structure of two or more layers at least on the side surface of the conductor 242.
  • anisotropic etching be performed on the insulator 250A to form the insulator 250B on the side surface of the conductor 242 and the side surface of the insulator 280 via the oxide film 230C (see FIG. 10).
  • an insulator 250C is formed to cover the oxide film 230C and the insulator 250B (see FIG. 11).
  • the insulator 250C can be formed of a similar material using a device similar to the insulator 250A.
  • the insulator 250C can be provided above the oxide 230b, and the insulator 250B and the insulator 250C can be provided on the side surfaces of the conductor 242. That is, on the side surface of the conductor 242, an insulator thicker than the insulator above the oxide 230b can be provided.
  • the conductive films 260A and 260B are sequentially formed (see FIG. 11).
  • the conductive films 260A and 260B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride may be formed as the conductive film 260A
  • tungsten may be formed as the conductive film 260B.
  • a metal nitride may be formed by a CVD method or a sputtering method.
  • a metal nitride for the conductive film 260A, it is possible to prevent the conductivity of the conductive film 260B from being oxidized due to the oxygen contained in the insulator 250C.
  • a transistor with low driving voltage can be provided.
  • heat treatment can be performed.
  • the heat treatment conditions described above can be used for the heat treatment. Note that heat treatment may not be performed in some cases.
  • a low resistance region may be formed in the oxide 230 b.
  • the conductive film 260B, the conductive film 260A, the insulator 250B, the insulator 250C, and the oxide film 230C are processed and planarized to obtain the conductor 260 (the conductor 260a and the conductor 260b) and the insulator 250.
  • the insulator 250a and the insulator 250b) and the oxide 230c are formed (see FIG. 12).
  • the planarization treatment includes a method in which the conductive film 260B, the conductive film 260A, the insulator 250B, the insulator 250C, and the oxide film 230C are polished by a CMP method, a method in which an etch back method is used, or the like. Note that the conductive film 260B, the conductive film 260A, the insulator 250B, the insulator 250C, and the oxide film 230C do not have to be processed at one time, and may be processed while changing the conditions as appropriate.
  • the conductor 260 is formed to be embedded in the opening of the insulator 280 and the region between the conductor 242a and the conductor 242b. Since the formation of the conductor 260 is performed in a self-aligned manner without using a lithography method, it is not necessary to provide a margin for alignment of the conductor 260. Accordingly, the area occupied by the transistor 200 can be reduced, and the semiconductor device can be miniaturized and highly integrated. In addition, since the lithography process is not required, productivity improvement can be expected by process simplification.
  • the conductor 260 can have a shape with a high aspect ratio.
  • the conductor 260 is provided so as to be embedded in the opening of the insulator 280, even if the conductor 260 has a shape with a high aspect ratio, the conductor 260 is formed without collapsing in the process. Can.
  • the conductor 260 is formed so that at least a part thereof overlaps with the conductor 205, the oxide 230a, and the oxide 230b.
  • the top surface of the insulator 280, the top surface of the conductor 260, the top surface of the insulator 250, and the top surface of the oxide 230c be substantially aligned by the processing.
  • the insulator 250b is disposed between the oxide 230b, the conductor 242a (conductor 242b), the insulator 280, and the conductor 260, and the insulator 250a is a conductor 242a (conductor 242b).
  • the insulator 280 and the insulator 250b includes the insulator 250 b between the oxide 230 b and the conductor 260, and includes the insulator 250 a and the insulator 250 b between the conductor 242 and the conductor 260.
  • the film thickness T1 of the insulator 250 can be smaller than the film thickness T2 by manufacturing the transistor 200 by the above method.
  • parasitic capacitance between the conductor 260 and the conductor 242 can be reduced, and the transistor 200 with high frequency characteristics can be provided.
  • the method for manufacturing the insulator 250 using the insulator 250a and the insulator 250b is described in this embodiment, the method for manufacturing a semiconductor device described in this embodiment is not limited thereto.
  • the region corresponding to the bottom of the opening 245 of the insulator 250A may not be completely removed, but the film thickness of the region may be reduced.
  • the insulator 250 having a thickness T1 thinner than the thickness T2 can be formed using only the insulator 250A.
  • the configuration of the transistor 200 is not limited to this. If the number of stacked layers of the insulator 250 located between the conductor 242 and the conductor 260 is larger than the number of stacked layers of the insulator 250 located between the oxide 230 b and the conductor 260, three insulators 250 are provided. It may be composed of layers or more.
  • the insulator 274 is formed over the insulator 280 and the conductor 260 (see FIG. 13).
  • the insulator 274 it is preferable to use an oxide of one or both of aluminum and hafnium having a barrier property.
  • oxygen can be introduced to the insulator 250 and the insulator 280 while the insulator 274 is formed by film formation in an atmosphere containing oxygen gas using a sputtering apparatus. Accordingly, with the insulator 274 as an oxygen supply source, oxygen in the insulator 274 can be supplied to the insulator 250 and the insulator 280, and an excess oxygen region can be formed in the insulator 250 and the insulator 280.
  • the insulator 250 and the insulator 280 in which the excess oxygen region is formed as described above can effectively supply oxygen from the excess oxygen region to the region 234 of the oxide 230 through the oxide 230 c and the like. it can.
  • heat treatment can be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • oxygen contained in an insulator such as the insulator 250 can be supplied to the oxide 230.
  • hydrogen trapped in the oxygen vacancy formed in the region 231 of the oxide 230 can be absorbed into the insulator 274 through the insulator 244 and the insulator 280, and hydrogen in the oxide 230 can be reduced. There is a case.
  • the insulator 281 is formed over the insulator 274.
  • the insulator 281 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a spin coating method, a dip method, a droplet discharge method (such as an inkjet method), a printing method (such as screen printing or offset printing), a doctor knife method, a roll coater method, a curtain coater method, or the like can be used.
  • silicon oxynitride is used as the insulator 281.
  • the insulator 281 is preferably formed to have a flat top surface.
  • the top surface of the insulator 281 may have flatness immediately after film formation.
  • the insulator 281 may have flatness by removing the insulator or the like from the top surface so as to be parallel to a reference surface such as the back surface of the substrate after film formation.
  • Such processing is called planarization processing.
  • the planarization process includes a CMP process, a dry etching process, and the like. In this embodiment, a CMP process is used as the planarization process.
  • the top surface of the insulator 281 may not necessarily have flatness.
  • an opening which reaches the oxide 230 is formed in the insulator 281, the insulator 274, the insulator 280, and the insulator 244.
  • the formation of the opening may be performed using a lithography method. Note that the opening is formed so as to expose the side surface of the oxide 230 in the opening reaching the oxide 230 so that the conductor 240 a and the conductor 240 b are provided in contact with the side surface of the oxide 230.
  • a conductive film to be a first conductor of the conductor 240 and a second conductor of the conductor 240 is formed.
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • CMP treatment is performed to remove part of the conductive film to be the conductor 240 a and the conductor 240 b, thereby exposing the insulator 281.
  • the conductor 240a and the conductor 240b whose top surface is flat can be formed (see FIG. 13). Note that part of the insulator 281 may be removed by the CMP treatment.
  • a semiconductor device including the transistor 200 can be manufactured. As shown in FIGS. 4 to 13, by using the method for manufacturing a semiconductor device described in this embodiment, a transistor 200 which has favorable electrical characteristics and can be miniaturized or can be highly integrated can be manufactured. it can.
  • a semiconductor device which can be miniaturized or highly integrated can be provided.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device having favorable frequency characteristics can be provided.
  • a semiconductor device with high reliability can be provided.
  • a semiconductor device with low off current can be provided.
  • a semiconductor device with large on-state current can be provided.
  • a semiconductor device with reduced power consumption can be provided.
  • a semiconductor device with high productivity can be provided.
  • FIG. 14 to FIG. 17 shows a top view.
  • (B) in each drawing is a cross-sectional view corresponding to a portion indicated by an alternate long and short dash line A1-A2 illustrated in (A), and is also a cross-sectional view in the channel length direction of the transistor 200.
  • (C) in each drawing is a cross-sectional view corresponding to a portion indicated by dashed dotted line A3-A4 in (A), and is also a cross-sectional view in the channel width direction of the transistor 200.
  • one part element is abbreviate
  • the transistor 200 illustrated in FIG. 14 is different from the transistor 200 illustrated in FIG. 1 in that an insulator 252 is provided between the oxide 230, the conductor 242, the insulator 280, and the oxide 230c.
  • an insulator which can be used for the insulator 244 and has a function of suppressing permeation of impurities such as hydrogen and oxygen can be used as the insulator 252.
  • oxidation of the surfaces of the conductor 242a and the conductor 242b in contact with the insulator 252 can be suppressed.
  • the insulator 252 is provided between the conductor 242 and the conductor 260, and the insulator 252 is not provided between the oxide 230 b and the conductor 260. Accordingly, in the transistor 200 illustrated in FIG. 14, the parasitic capacitance between the conductor 260 and the conductor 242 can be reduced by providing the insulator 252. Accordingly, in the transistor 200 illustrated in FIG. 14, the thickness of the insulator 250 between the conductor 242 and the conductor 260 and the thickness of the insulator 250 between the oxide 230 b and the conductor 260 are approximately the same. It may be configured.
  • the transistor 200 illustrated in FIG. 1 a structure in which three layers of an oxide 230 a, an oxide 230 b, and an oxide 230 c are stacked as the oxide 230 is illustrated; however, the semiconductor device described in this embodiment It is not limited to For example, as in the transistor 200 illustrated in FIG. 15, the oxide 230c may not be provided.
  • the insulator 244 is provided to cover the conductor 242, the oxide 230, and the insulator 224, but the semiconductor device described in this embodiment is limited thereto. It is not something that can be done.
  • the insulator 244 may not be provided as in the transistor 200 illustrated in FIG.
  • oxygen added to the insulator 280 can be supplied from the side surface of the oxide 230 by deposition of the insulator 274. In this case, oxygen added to the insulator 280 can also be supplied to the oxide 230 through the insulator 224. Thus, oxygen can be more effectively supplied to the region 234 of the oxide 230.
  • the transistor 200 illustrated in FIG. 17 is different from the transistor 200 illustrated in FIG. 1 in that the conductor 242 is not provided.
  • the region 243 may be formed by increasing the carrier density of the oxide 230 and adding an element which can reduce resistance as a dopant.
  • an element that forms an oxygen vacancy, an element that bonds to an oxygen vacancy, or the like may be used.
  • Such an element typically includes boron or phosphorus.
  • hydrogen, carbon, nitrogen, fluorine, sulfur, chlorine, titanium, a rare gas or the like may be used.
  • helium, neon, argon, krypton, xenon and the like can be given as typical examples of the rare gas element.
  • metals such as aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum and the like
  • metal elements selected from elements may be added.
  • dopants mentioned above boron and phosphorus are preferred. In the case of using boron or phosphorus as a dopant, equipment of a manufacturing line of amorphous silicon or low temperature polysilicon can be used, so that equipment investment can be suppressed. The concentration of the element may be measured using SIMS or the like.
  • an element which easily forms an oxide is preferably used as an element added to the region 243.
  • Such elements typically include boron, phosphorus, aluminum, magnesium and the like.
  • the element added to the region 243 can deprive oxygen in the oxide 230 to form an oxide. As a result, many oxygen vacancies occur in the region 243. The combination of the oxygen vacancy and the hydrogen in the oxide 230 generates carriers, which are extremely low-resistance regions.
  • the element added to the region 243 exists in the region 243 in a stable oxide state, it is hard to be released from the region 243 even if processing which requires high temperature is performed in the subsequent steps. That is, by using an element which easily forms an oxide as an element to be added to the region 243, a region in which a high resistance is difficult to be formed even in a high temperature process can be formed in the oxide 230.
  • the conductor 240 functioning as a plug can be connected to the region 243 without providing a source electrode and a drain electrode formed of metal. it can.
  • a dummy gate is formed at a position where the oxide 230c, the insulator 250, and the conductor 260 are provided, and the dopant gate is added using the dummy gate as a mask. It is good.
  • the region 243 including the above element can be formed in a region where the dummy gate does not overlap.
  • an ion implantation method in which ionized source gas is separated by mass separation and added an ion doping method in which an ionized source gas is added without mass separation, plasma immersion ion implantation method and the like are used.
  • mass separation the added ion species and its concentration can be strictly controlled.
  • mass separation is not performed, high concentration ions can be added in a short time.
  • an ion doping method may be used which generates and ionizes clusters of atoms or molecules.
  • the dopant may be rephrased as an ion, a donor, an acceptor, an impurity, an element, or the like.
  • the transistor 200 can have stable electrical characteristics and reliability can be improved.
  • an insulator 280 may be formed, CMP may be performed until the dummy gate is exposed, and the exposed dummy gate may be removed. In this way, the opening 245 shown in FIG. 7 can be formed.
  • FIG. 18A and 18B show a cell 600 which constitutes a memory device.
  • the cell 600 includes a transistor 200a, a transistor 200b, a capacitor 100a, and a capacitor 100b.
  • FIG. 18A is a top view of the cell 600.
  • FIG. 18B is a cross-sectional view of a portion indicated by an alternate long and short dash line in A1-A2 in FIG. Note that in the top view of FIG. 18A, some elements are omitted for the sake of clarity.
  • the cell 600 includes a transistor 200a and a transistor 200b, has a capacitor 100a superimposed on the transistor 200a, and has a capacitor 100b superimposed on the transistor 200b.
  • the transistor 200a and the transistor 200b, and the capacitor 100a and the capacitor 100b may be arranged in line symmetry.
  • the transistor 200a and the transistor 200b preferably have similar structures
  • the capacitor 100a and the capacitor 100b preferably have similar structures.
  • the insulator 130 is provided over the insulator 281 over the transistors 200 a and 200 b, and the insulator 150 is provided over the insulator 130.
  • the insulator 150 an insulator that can be used for the insulator 281 may be used.
  • the conductor 160 is provided over the insulator 150.
  • the conductor 240 is provided so as to be embedded in the openings formed in the insulator 280, the insulator 274, the insulator 281, the insulator 130, and the insulator 150.
  • the lower surface of the conductor 240 is in contact with the conductor 242 b, and the upper surface of the conductor 240 is in contact with the conductor 160.
  • the transistor 200 described in the above embodiment can be used for the transistor 200 a and the transistor 200 b.
  • the description of the transistor 200 can be referred to.
  • FIGS. 18A and 18B reference numerals of elements of the transistors 200a and 200b are omitted.
  • the transistor 200a and the transistor 200b illustrated in FIGS. 18A and 18B are examples, and the present invention is not limited to the structures, and appropriate transistors may be used depending on the circuit configuration and the driving method.
  • the transistors 200a and 200b are both formed of the oxide 230, and one of the source and the drain of the transistor 200a and one of the source and the drain of the transistor 200b are in contact with the conductor 242b. Thus, one of the source and the drain of the transistor 200a and one of the source and the drain of the transistor 200b are electrically connected to the conductor 240 through the conductor 242b. Thus, the contact portions of the transistor 200a and the transistor 200b are shared, and the number of plugs and contact holes can be reduced. As described above, by sharing the wiring electrically connected to one of the source and the drain, the occupied area of the memory cell array can be further reduced.
  • Capacitance Element 100a and Capacitance Element 100b As illustrated in FIGS. 18A and 18B, the capacitor 100a is provided in a region overlapping with the transistor 200a. Similarly, the capacitor 100 b is provided in a region overlapping with the transistor 200 b. Note that the capacitor 100 b has a structure corresponding to that of the capacitor 100 a. Although the detailed structure of the capacitive element 100a will be described below, the description of the capacitive element 100a can be referred to for the capacitive element 100b unless otherwise noted.
  • the capacitive element 100 a includes the conductor 110, the insulator 130, and the conductor 120 over the insulator 130.
  • the conductor 110 and the conductor 120 a conductor that can be used for the conductor 203, the conductor 205, the conductor 260, or the like may be used.
  • the capacitor element 100 a is formed in an opening of the insulator 244, the insulator 280, the insulator 274, and the insulator 281.
  • the conductor 110 functioning as the lower electrode and the conductor 120 functioning as the upper electrode face each other on the bottom surface and the side surface of the opening with the insulator 130 functioning as the dielectric interposed therebetween.
  • the conductor 110 of the capacitor 100a is formed in contact with the conductor 242a of the transistor 200a.
  • the capacitive element 100 a be cylindrical (the side area is larger than the base area).
  • the capacitance per unit area of the capacitor 100a can be increased, and miniaturization or high integration of the semiconductor device can be promoted.
  • the thickness of the insulator 280, the insulator 274, and the insulator 281 can appropriately set the value of the capacitance of the capacitor 100a. Therefore, a semiconductor device with a high degree of freedom in design can be provided.
  • an insulator having a large dielectric constant it is preferable to use an insulator having a large dielectric constant.
  • an insulator containing an oxide of one or both of aluminum and hafnium can be used.
  • an insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like.
  • the insulator 130 may have a stacked structure, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, hafnium oxide, an oxide containing hafnium and aluminum (hafnium aluminate), etc. Therefore, two or more layers may be selected to form a laminated structure. For example, it is preferable to deposit hafnium oxide, aluminum oxide, and hafnium oxide in order by an ALD method to form a stacked structure. The film thicknesses of hafnium oxide and aluminum oxide are respectively 0.5 nm or more and 5 nm or less. With such a stacked structure, the capacitor 100a can have a large capacitance value and a small leak current.
  • the conductor 110 or the conductor 120 may have a stacked structure.
  • the conductor 110 or the conductor 120 is a stack of a conductive material whose main component is titanium, titanium nitride, tantalum, or tantalum nitride, and a conductive material whose main component is tungsten, copper, or aluminum. It may be a structure.
  • the conductor 110 or the conductor 120 may have a single-layer structure or a stacked structure of three or more layers.
  • the insulator 140 is preferably formed inside the conductor 120.
  • the insulator 140 an insulator that can be used for the insulator 281 may be used.
  • the top surface of the insulator 140 is preferably substantially flush with the top surface of the conductor 120.
  • the present invention is not limited to this.
  • the film thickness of the conductor 120 may be increased to fill the opening, or the insulator 150 may be formed in a state where the opening is formed inside the conductor 120 You may fill the opening.
  • FIG. 19 is a circuit diagram showing one form in which the cells shown in FIG. 18 are arranged in a matrix.
  • FIG. 20 is a schematic view showing a cross-sectional structure in the vicinity of the cell 600 in the circuit diagram shown in FIG. 19 and the cell 601 adjacent to the cell 600.
  • FIG. 21 is a schematic view showing a layout of the wiring WL, the wiring BL, and the oxide 230 in the circuit diagram shown in FIG.
  • the extending direction of the wiring BL is the x direction
  • the extending direction of the wiring WL is the y direction
  • the direction perpendicular to the xy plane is the z direction.
  • FIG. 19 and 21 show an example in which 3 ⁇ 3 cells are arranged, the present embodiment is not limited to this, and the number and arrangement of memory cells or interconnections included in the cell array May be set as appropriate. Further, in the top view of FIG. 21, for the sake of clarity of the drawing, some elements shown in FIG. 19 are omitted.
  • one of the source and the drain of the transistor 200a and the transistor 200b which form a cell is electrically connected to a common wiring BL (BL01, BL02, BL03).
  • the wiring BL is also electrically connected to one of the source and the drain of the transistor 200 a and the transistor 200 b included in the cell 600 arranged in the x direction.
  • the first gate of the transistor 200a and the first gate of the transistor 200b which form the cell 600 are electrically connected to different wirings WL (WL01 to WL06).
  • the wirings WL electrically connect a first gate of the transistor 200 a and a first gate of the transistor 200 b included in the cell 600 arranged in the y direction.
  • one electrode of the capacitor 100 a and one electrode of the capacitor 100 b included in the cell 600 are electrically connected to the wiring PL.
  • the wiring PL may be formed to extend in the y direction.
  • the second gate BG may be provided in the transistor 200 a and the transistor 200 b included in each cell 600.
  • the potential applied to BG can control the threshold of the transistor.
  • the BG is connected to the transistor 400, and the potential applied to the BG can be controlled by the transistor 400.
  • the conductor 160 is extended in the x direction to function as the wiring BL, and the conductor 260 is extended in the y direction to function as the wiring WL, and the conductor 120 is extended in the y direction.
  • the conductor 203 can be extended in the y direction to function as a wiring connected to BG.
  • the conductor 120 functioning as one electrode of the capacitor 100b of the cell 600 preferably doubles as one of the electrodes of the capacitor 100a of the cell 601.
  • the conductor 120 functioning as one electrode of the capacitor 100 a of the cell 600 doubles as one electrode of the capacitor of the cell adjacent to the left side of the cell 600.
  • the same configuration is applied to the cell on the right side of the cell 601. Therefore, a cell array can be configured. With the configuration of the cell array, the distance between adjacent cells can be reduced, so that the projection area of the cell array can be reduced and high integration can be achieved.
  • the oxide 230 and the wirings WL are arranged in a matrix, whereby the semiconductor device of the circuit diagram shown in FIG. 19 can be formed.
  • the wiring BL is preferably provided in a layer different from the wiring WL and the oxide 230.
  • the capacitor 100a and the capacitor 100b in a lower layer than the wiring BL, a layout in which the long side direction of the oxide 230 and the wiring BL are substantially parallel can be realized. Therefore, the layout of cells can be simplified, the degree of freedom in design can be improved, and the process cost can be reduced.
  • the oxide 230 and the wiring WL are provided so that the long side of the oxide 230 is substantially orthogonal to the extending direction of the wiring WL, but the present invention is not limited to this.
  • the long side of the oxide 230 may not be orthogonal to the extending direction of the wiring WL, and the long side of the oxide 230 may be inclined with respect to the extending direction of the wiring WL.
  • the oxide 230 and the wiring WL may be provided such that the angle between the long side of the oxide 230 and the wiring WL is 20 ° to 70 °, preferably 30 ° to 60 °.
  • the cell array may be stacked not only on a plane surface. By stacking a plurality of cell arrays, cells can be integrated and arranged without increasing the area occupied by the cell array. That is, a 3D cell array can be configured.
  • a semiconductor device which can be miniaturized or highly integrated can be provided.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device with low off current can be provided.
  • a semiconductor device with large on-state current can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device with reduced power consumption can be provided.
  • a semiconductor device with high productivity can be provided.
  • FIG. 22 is a cross-sectional view of the transistors 200 and 300 in the channel length direction.
  • FIG. 23 is a cross-sectional view in the channel width direction of the transistor 300 in the vicinity of the transistor 300.
  • the transistor 200 is a transistor in which a channel is formed in a semiconductor layer including an oxide semiconductor. Since the transistor 200 has low off-state current, stored data can be held for a long time by using the transistor for the memory device. That is, since the refresh operation is not required or the frequency of the refresh operation is extremely low, power consumption of the memory device can be sufficiently reduced.
  • the wiring 1001 is electrically connected to the source of the transistor 300, and the wiring 1002 is electrically connected to the drain of the transistor 300.
  • the wiring 1003 is electrically connected to one of the source and the drain of the transistor 200, the wiring 1004 is electrically connected to the top gate of the transistor 200, and the wiring 1006 is electrically connected to the bottom gate of the transistor 200.
  • the gate of the transistor 300 and the other of the source and the drain of the transistor 200 are electrically connected to one of the electrodes of the capacitor 100, and the wiring 1005 is electrically connected to the other of the electrodes of the capacitor 100. .
  • the memory device illustrated in FIG. 22 has such a characteristic that the potential of the gate of the transistor 300 can be held, whereby information can be written, held, and read as described below.
  • the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned on, whereby the transistor 200 is turned on.
  • the potential of the wiring 1003 is applied to the node SN electrically connected to the gate of the transistor 300 and one of the electrodes of the capacitor 100. That is, predetermined charge is given to the gate of the transistor 300 (writing).
  • the potential of the wiring 1004 is set to a potential at which the transistor 200 is turned off, whereby the transistor 200 is turned off, whereby charge is held at the node SN (holding).
  • the wiring 1002 takes a potential corresponding to the amount of charge held at the node SN.
  • the apparent threshold voltage V th — H when the high level charge is given to the gate of the transistor 300 is when the low level charge is given to the gate of the transistor 300 This is because the apparent threshold voltage V th_L of the
  • the apparent threshold voltage refers to the potential of the wiring 1005 required to make the transistor 300 conductive.
  • the charge given to the node SN can be determined. For example, in the case where a high level charge is given to the node SN in writing, the transistor 300 is turned on when the potential of the wiring 1005 is V 0 (> V th — H ). On the other hand, in the case where low level charge is applied to the node SN, the transistor 300 remains off even when the potential of the wiring 1005 becomes V 0 ( ⁇ V th — L ). Therefore, the information held in the node SN can be read by determining the potential of the wiring 1002.
  • information of a desired memory cell must be read at the time of reading.
  • the memory cell array has a NOR configuration
  • only information of a desired memory cell can be read by turning off the transistor 300 of the memory cell from which information is not read.
  • a potential at which the transistor 300 is turned off regardless of the charge applied to the node SN that is, a potential lower than Vth_H may be applied to the wiring 1005 connected to the memory cell which does not read data.
  • a potential at which the transistor 300 is turned on regardless of the charge applied to the node SN that is, a potential higher than V th — L may be applied to the wiring 1005 connected to the memory cell from which data is not read.
  • the memory device of one embodiment of the present invention includes a transistor 300, a transistor 200, and a capacitor 100 as illustrated in FIG.
  • the transistor 200 is provided above the transistor 300
  • the capacitor 100 is provided above the transistor 300 and the transistor 200.
  • the transistor 300 is provided over a substrate 311 and includes a conductor 316, an insulator 315, a semiconductor region 313 formed of part of the substrate 311, a low resistance region 314a functioning as a source region or a drain region, and a low resistance region 314b.
  • a conductor 316 includes a conductor 316, an insulator 315, a semiconductor region 313 formed of part of the substrate 311, a low resistance region 314a functioning as a source region or a drain region, and a low resistance region 314b.
  • the top surface of the semiconductor region 313 and the side surface in the channel width direction are covered with the conductor 316 with the insulator 315 in between.
  • the on-characteristic of the transistor 300 can be improved by increasing the effective channel width.
  • the contribution of the electric field of the gate electrode can be increased, the off characteristics of the transistor 300 can be improved.
  • the transistor 300 may be either p-channel or n-channel.
  • a semiconductor such as a silicon-based semiconductor is preferably included in a region where the channel of the semiconductor region 313 is to be formed, a region in the vicinity thereof, a low resistance region 314a to be a source or drain region, a low resistance region 314b, and the like.
  • crystalline silicon is included.
  • it may be formed using a material having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide) or the like. It is also possible to use silicon whose effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing.
  • the transistor 300 may be a HEMT (High Electron Mobility Transistor) by using GaAs and GaAlAs or the like.
  • the low-resistance region 314a and the low-resistance region 314b impart p-type conductivity such as an element imparting n-type conductivity such as arsenic or phosphorus or p-type conductivity such as boron in addition to the semiconductor material applied to the semiconductor region 313 Containing elements.
  • the conductor 316 functioning as a gate electrode is a semiconductor material such as silicon containing an element imparting n-type conductivity such as arsenic or phosphorus or an element imparting p-type conductivity such as boron, a metal material, an alloy Materials or conductive materials such as metal oxide materials can be used.
  • the Vth of the transistor can be adjusted by changing the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Furthermore, in order to achieve both conductivity and embeddability, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and it is particularly preferable to use tungsten from the viewpoint of heat resistance.
  • transistor 300 illustrated in FIG. 22 is an example and is not limited to the structure, and an appropriate transistor may be used depending on the circuit configuration and the driving method.
  • An insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked over the transistor 300.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, or the like is used as the insulator 320, the insulator 322, the insulator 324, and the insulator 326. Just do it.
  • the insulator 322 may have a function as a planarization film which planarizes a difference in level caused by the transistor 300 or the like provided therebelow.
  • the top surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like to enhance the planarity.
  • CMP chemical mechanical polishing
  • a film having a barrier property to prevent diffusion of hydrogen or an impurity from the substrate 311, the transistor 300, or the like to the region where the transistor 200 is provided is preferably used.
  • a film having a barrier property to hydrogen for example, silicon nitride formed by a CVD method can be used.
  • silicon nitride formed by a CVD method when hydrogen diffuses into a semiconductor element having an oxide semiconductor such as the transistor 200 or the like, the characteristics of the semiconductor element may be deteriorated. Therefore, it is preferable to use a film which suppresses diffusion of hydrogen between the transistor 200 and the transistor 300.
  • the film that suppresses the diffusion of hydrogen is a film with a small amount of desorption of hydrogen.
  • the desorption amount of hydrogen can be analyzed, for example, using a thermal desorption gas analysis method (TDS) or the like.
  • TDS thermal desorption gas analysis method
  • the amount of desorption of hydrogen in the insulator 324 is converted to the amount of desorption of hydrogen atoms per area of the insulator 324 in the range where the surface temperature of the film is 50 ° C. to 500 ° C. In this case, it is 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 326 preferably has a dielectric constant lower than that of the insulator 324.
  • the dielectric constant of the insulator 326 is preferably less than 4, and more preferably less than 3.
  • the relative permittivity of the insulator 326 is preferably 0.7 times or less of the relative permittivity of the insulator 324, and more preferably 0.6 times or less.
  • the conductor 328 electrically connected to the capacitor 100 or the transistor 200, the conductor 330, and the like are embedded.
  • the conductor 328 and the conductor 330 have a function as a plug or a wiring.
  • the conductor which has a function as a plug or wiring may put several structure together, and may provide the same code
  • the wiring and the plug electrically connected to the wiring may be an integral body. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • each plug and a wiring As a material of each plug and a wiring (conductor 328 and conductor 330 and the like), a single layer or a stack of a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material It can be used. It is preferable to use a high melting point material such as tungsten or molybdenum which achieves both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low resistance conductive material.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material It can be used. It is preferable to use a high melting point material such as tungsten or molybdenum which achieves both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of
  • a wiring layer may be provided over the insulator 326 and the conductor 330.
  • an insulator 350, an insulator 352, and an insulator 354 are sequentially stacked and provided.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 has a function as a plug or a wiring. Note that the conductor 356 can be provided using a material similar to the conductor 328 and the conductor 330.
  • an insulator having a barrier property to hydrogen is preferably used.
  • the conductor 356 preferably includes a conductor having a barrier property to hydrogen.
  • a conductor having a barrier to hydrogen is formed in an opening of the insulator 350 having a barrier to hydrogen.
  • the tantalum nitride layer having a barrier property to hydrogen preferably has a structure in contact with the insulator 350 having a barrier property to hydrogen.
  • a wiring layer may be provided over the insulator 354 and the conductor 356.
  • an insulator 360, an insulator 362, and an insulator 364 are sequentially stacked.
  • a conductor 366 is formed in the insulator 360, the insulator 362, and the insulator 364.
  • the conductor 366 has a function as a plug or a wiring. Note that the conductor 366 can be provided using a material similar to the conductor 328 and the conductor 330.
  • the conductor 366 preferably includes a conductor having a barrier property to hydrogen.
  • a conductor having a barrier to hydrogen is formed in an opening of the insulator 360 having a barrier to hydrogen.
  • a wiring layer may be provided over the insulator 364 and the conductor 366.
  • an insulator 370, an insulator 372, and an insulator 374 are sequentially stacked.
  • a conductor 376 is formed over the insulator 370, the insulator 372, and the insulator 374.
  • the conductor 376 functions as a plug or a wiring. Note that the conductor 376 can be provided using a material similar to the conductor 328 and the conductor 330.
  • an insulator having a barrier property to hydrogen is preferably used.
  • the conductor 376 preferably includes a conductor having a barrier property to hydrogen.
  • a conductor having a barrier to hydrogen is formed in an opening portion of the insulator 370 having a barrier to hydrogen.
  • a wiring layer may be provided over the insulator 374 and the conductor 376.
  • an insulator 380, an insulator 382, and an insulator 384 are sequentially stacked.
  • a conductor 386 is formed on the insulator 380, the insulator 382, and the insulator 384.
  • the conductor 386 has a function as a plug or a wiring. Note that the conductor 386 can be provided using a material similar to the conductor 328 and the conductor 330.
  • the conductor 386 preferably includes a conductor having a barrier property to hydrogen.
  • a conductor having a barrier to hydrogen is formed in an opening of the insulator 380 having a barrier to hydrogen.
  • the memory device According to this embodiment It is not limited to this.
  • the number of wiring layers similar to the wiring layer including the conductor 356 may be three or less, and the number of wiring layers similar to the wiring layer including the conductor 356 may be five or more.
  • An insulator 210, an insulator 212, an insulator 214, and an insulator 216 are sequentially stacked over the insulator 384.
  • a material having a barrier property to oxygen or hydrogen is preferably used.
  • the insulator 210 and the insulator 214 for example, a film having a barrier property to prevent diffusion of hydrogen and impurities from the region where the substrate 311 or the transistor 300 is provided to the region where the transistor 200 is provided Is preferred. Therefore, the same material as the insulator 324 can be used.
  • silicon nitride formed by a CVD method can be used as an example of a film having a barrier property to hydrogen.
  • silicon nitride formed by a CVD method when hydrogen diffuses into a semiconductor element having an oxide semiconductor such as the transistor 200 or the like, the characteristics of the semiconductor element may be deteriorated. Therefore, it is preferable to use a film which suppresses diffusion of hydrogen between the transistor 200 and the transistor 300.
  • the film that suppresses the diffusion of hydrogen is a film with a small amount of desorption of hydrogen.
  • a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide is preferably used for the insulator 210 and the insulator 214.
  • aluminum oxide has a high blocking effect of preventing permeation of the film against both oxygen and impurities such as hydrogen and moisture which cause fluctuation of the electrical characteristics of the transistor.
  • aluminum oxide can prevent impurities such as hydrogen and moisture from being mixed in the transistor 200 during and after the manufacturing process of the transistor. Further, release of oxygen from the oxide of the transistor 200 can be suppressed. Therefore, it is suitable to be used as a protective film for the transistor 200.
  • the same material as the insulator 320 can be used.
  • a material having a relatively low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 212 and the insulator 216.
  • the conductor 218, a conductor (the conductor 205) included in the transistor 200, and the like are embedded.
  • the conductor 218 has a function as a plug electrically connected to the capacitor 100 or the transistor 300, or a wiring.
  • the conductor 218 can be provided using a material similar to the conductor 328 and the conductor 330.
  • the conductor 218 in a region in contact with the insulator 210 and the insulator 214 is preferably a conductor having a barrier property to oxygen, hydrogen, and water.
  • the transistor 300 and the transistor 200 can be separated by a layer having a barrier property to oxygen, hydrogen, and water, and diffusion of hydrogen from the transistor 300 to the transistor 200 can be suppressed.
  • the transistor 200 is provided above the insulator 216.
  • the structure of the transistor 200 may be a transistor included in the semiconductor device described in the above embodiment.
  • the transistor 200 illustrated in FIG. 22 is an example, and is not limited to the structure. An appropriate transistor may be used in accordance with the circuit configuration and the driving method.
  • An insulator 281 is provided above the transistor 200.
  • An insulator 282 is provided on the insulator 281.
  • a substance having a barrier property to oxygen or hydrogen is preferably used. Therefore, the same material as the insulator 214 can be used for the insulator 282.
  • metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide is preferably used.
  • aluminum oxide has a high blocking effect of preventing permeation of the film against both oxygen and impurities such as hydrogen and moisture which cause fluctuation of the electrical characteristics of the transistor.
  • aluminum oxide can prevent impurities such as hydrogen and moisture from being mixed in the transistor 200 during and after the manufacturing process of the transistor. Further, release of oxygen from the oxide of the transistor 200 can be suppressed. Therefore, it is suitable to be used as a protective film for the transistor 200.
  • an insulator 286 is provided over the insulator 282.
  • the insulator 286 can be made of the same material as the insulator 320.
  • parasitic capacitance generated between wirings can be reduced.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 286.
  • the conductor 246, the conductor 248, and the like are embedded. There is.
  • the conductor 246 and the conductor 248 each function as a plug or a wiring electrically connected to the capacitor 100, the transistor 200, or the transistor 300.
  • the conductor 246 and the conductor 248 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the capacitive element 100 includes a conductor 110, a conductor 120, and an insulator 130.
  • the conductor 112 may be provided over the conductor 246 and the conductor 248.
  • the conductor 112 functions as a plug or a wiring electrically connected to the capacitor 100, the transistor 200, or the transistor 300.
  • the conductor 110 has a function as an electrode of the capacitor 100. Note that the conductor 112 and the conductor 110 can be formed at the same time.
  • a tantalum nitride film, a titanium nitride film, a molybdenum nitride film, a tungsten nitride film, or the like can be used.
  • indium tin oxide indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon oxide
  • Conductive materials such as indium tin oxide can also be applied.
  • the conductor 112 and the conductor 110 each have a single-layer structure in FIG. 22, the structure is not limited to this structure, and a stacked structure of two or more layers may be employed. For example, between a conductor having a barrier property and a conductor having high conductivity, a conductor having high adhesion to a conductor having a barrier property and a conductor having high conductivity may be formed.
  • the conductor 120 is provided to overlap with the conductor 110 through the insulator 130.
  • a conductive material such as a metal material, an alloy material, or a metal oxide material can be used. It is preferable to use a high melting point material such as tungsten or molybdenum which achieves both heat resistance and conductivity, and it is particularly preferable to use tungsten.
  • tungsten In the case of forming simultaneously with other structures such as a conductor, Cu (copper) or Al (aluminum) or the like which is a low resistance metal material may be used.
  • An insulator 150 is provided over the conductor 120 and the insulator 130.
  • the insulator 150 can be provided using a material similar to that of the insulator 320.
  • the insulator 150 may function as a planarizing film which covers the uneven shape below it.
  • a semiconductor device using a transistor including an oxide semiconductor variation in electrical characteristics can be suppressed and reliability can be improved.
  • a semiconductor device having an oxide semiconductor with large on-state current can be provided.
  • a semiconductor device including an oxide semiconductor with low off current can be provided.
  • a semiconductor device with reduced power consumption can be provided.
  • miniaturization or high integration can be achieved.
  • Embodiment 4 a transistor using an oxide as a semiconductor (hereinafter, referred to as an OS transistor) and a memory element to which a capacitor is applied according to one embodiment of the present invention with reference to FIGS. 24 to 26.
  • a NOSRAM will be described as an example of the device.
  • NOSRAM registered trademark
  • NOSRAM is an abbreviation of "nonvolatile oxide semiconductor RAM” and refers to a RAM having memory cells of gain cell type (2T type, 3T type).
  • a memory device using an OS transistor such as a NOSRAM may be referred to as an OS memory.
  • OS memory a memory device in which an OS transistor is used for a memory cell is applied.
  • the OS memory is a memory that has at least a capacitor and an OS transistor that controls charging and discharging of the capacitor. Since the OS transistor is a transistor with extremely small off current, the OS memory has excellent retention characteristics and can function as a non-volatile memory.
  • FIG. 24 shows a configuration example of the NOSRAM.
  • the NOSRAM 1600 shown in FIG. 24 includes a memory cell array 1610, a controller 1640, a row driver 1650, a column driver 1660, and an output driver 1670.
  • the NOSRAM 1600 is a multivalued NOSRAM that stores multivalued data in one memory cell.
  • the memory cell array 1610 has a plurality of memory cells 1611, a plurality of word lines WWL, a plurality of word lines RWL, a bit line BL, and a source line SL.
  • the word line WWL is a write word line
  • the word line RWL is a read word line.
  • 3-bit (eight-valued) data is stored in one memory cell 1611.
  • the controller 1640 controls the entire NOSRAM 1600 in a centralized manner, writes the data WDA [31: 0], and reads the data RDA [31: 0].
  • the controller 1640 processes external command signals (for example, a chip enable signal, a write enable signal, etc.) to generate control signals for the row driver 1650, the column driver 1660 and the output driver 1670.
  • the row driver 1650 has a function of selecting a row to access.
  • the row driver 1650 includes a row decoder 1651 and a word line driver 1652.
  • Column driver 1660 drives source line SL and bit line BL.
  • the column driver 1660 includes a column decoder 1661, a write driver 1662, and a DAC (digital-to-analog conversion circuit) 1663.
  • the DAC 1663 converts 3-bit digital data into an analog voltage.
  • the DAC 1663 converts 32-bit data WDA [31: 0] into analog voltages every three bits.
  • the write driver 1662 has a function of precharging the source line SL, a function of electrically floating the source line SL, a function of selecting the source line SL, and an input of the write voltage generated by the DAC 1663 to the selected source line SL.
  • the output driver 1670 includes a selector 1671, an ADC (analog-digital conversion circuit) 1672, and an output buffer 1673.
  • the selector 1671 selects the source line SL to be accessed, and transmits the potential of the selected source line SL to the ADC 1672.
  • the ADC 1672 has a function of converting an analog voltage into 3-bit digital data. The potential of the source line SL is converted into 3-bit data in the ADC 1672, and the output buffer 1673 holds the data output from the ADC 1672.
  • the configurations of the row driver 1650, the column driver 1660, and the output driver 1670 described in this embodiment are not limited to the above. Arrangements of these drivers and wirings connected to the drivers may be changed according to the configuration or driving method of the memory cell array 1610 or the like, or functions of the drivers and wirings connected to the drivers are changed Or you may add. For example, part of the functions of the source line SL may be provided in the bit line BL.
  • each memory cell 1611 is 3 bits in the above description, the configuration of the storage device described in this embodiment is not limited to this.
  • the amount of information held by each memory cell 1611 may be 2 bits or less, or 4 bits or more.
  • the DAC 1663 and the ADC 1672 may not be provided.
  • FIG. 25A is a circuit diagram showing a configuration example of the memory cell 1611.
  • the memory cell 1611 is a 2T-type gain cell, and the memory cell 1611 is electrically connected to the word line WWL, the word line RWL, the bit line BL, the source line SL, and the wiring BGL.
  • the memory cell 1611 includes a node SN, an OS transistor MO61, a transistor MP61, and a capacitive element C61.
  • the OS transistor MO61 is a write transistor.
  • the transistor MP61 is a read transistor, and is formed of, for example, a p-channel Si transistor.
  • the capacitive element C61 is a holding capacitance for holding the potential of the node SN.
  • the node SN is a data holding node and corresponds to the gate of the transistor MP61 here.
  • the NOSRAM 1600 can hold data for a long time.
  • bit line is a common bit line for writing and reading, but as shown in FIG. 25B, the bit line WBL functioning as a writing bit line and the reading bit line And the bit line RBL may be provided.
  • FIGS. 25C to 25E show other configuration examples of the memory cell.
  • FIGS. 25C to 25E show an example in which the write bit line WBL and the read bit line RBL are provided. However, as shown in FIG. 25A, they are shared by writing and reading. Bit lines may be provided.
  • a memory cell 1612 shown in FIG. 25C is a modified example of the memory cell 1611, in which the read transistor is changed to an n-channel transistor (MN 61).
  • the transistor MN61 may be an OS transistor or a Si transistor.
  • the OS transistor MO61 may be an OS transistor without a bottom gate.
  • the memory cell 1613 shown in FIG. 25D is a 3T type gain cell, and is electrically connected to the word lines WWL and RWL, the bit line WBL, the bit line RBL, the source line SL, the wiring BGL, and the wiring PCL.
  • the memory cell 1613 includes a node SN, an OS transistor MO62, a transistor MP62, a transistor MP63, and a capacitor C62.
  • the OS transistor MO62 is a write transistor.
  • the transistor MP62 is a read transistor, and the transistor MP63 is a selection transistor.
  • a memory cell 1614 shown in FIG. 25E is a modification of the memory cell 1613, in which the read transistor and the select transistor are changed to n-channel transistors (transistor MN62 and transistor MN63).
  • the transistors MN62 and MN63 may be OS transistors or Si transistors.
  • the OS transistor provided in each of the memory cells 1611 to 1614 may be a transistor without a bottom gate or a transistor with a bottom gate.
  • NOR type memory device in which memory cells 1611 and the like are connected in parallel is described, but the memory device described in this embodiment is not limited to this.
  • NAND memory device in which memory cells 1615 as shown below are connected in series may be used.
  • FIG. 26 is a circuit diagram showing a configuration example of a NAND type memory cell array 1610.
  • the memory cell array 1610 illustrated in FIG. 26 includes a source line SL, a bit line RBL, a bit line WBL, a word line WWL, a word line RWL, a wiring BGL, and a memory cell 1615.
  • the memory cell 1615 includes a node SN, an OS transistor MO63, a transistor MN64, and a capacitive element C63.
  • the transistor MN64 is formed of, for example, an n-channel Si transistor.
  • the transistor MN 64 may be a p-channel Si transistor or an OS transistor.
  • the memory cell 1615a and the memory cell 1615b illustrated in FIG. 26 will be described as an example.
  • reference numerals of a wiring or a circuit element connected to either the memory cell 1615 a or the memory cell 1615 b are denoted by a or b.
  • the gate of the transistor MN64a, one of the source and the drain of the OS transistor MO63a, and one of the electrodes of the capacitive element C63a are electrically connected. Further, the bit line WBL and the other of the source and the drain of the OS transistor MO63a are electrically connected. In addition, the word line WWLa and the gate of the OS transistor MO63a are electrically connected. Further, the wiring BGLa and the bottom gate of the OS transistor MO63a are electrically connected. The word line RWLa and the other of the electrodes of the capacitive element C 63 a are electrically connected.
  • the memory cell 1615 b can be provided symmetrically with the memory cell 1615 a with the contact portion with the bit line WBL as an axis of symmetry. Accordingly, the circuit element included in the memory cell 1615 b is also connected to the wiring in the same manner as the memory cell 1615 a.
  • the source of the transistor MN64a included in the memory cell 1615a is electrically connected to the drain of the transistor MN64b in the memory cell 1615b.
  • the drain of the transistor MN64a included in the memory cell 1615a is electrically connected to the bit line RBL.
  • the source of the transistor MN64b included in the memory cell 1615b is electrically connected to the source line SL through the transistor MN64 included in the plurality of memory cells 1615.
  • the plurality of transistors MN64 are connected in series between the bit line RBL and the source line SL.
  • write operation and read operation are performed for each of a plurality of memory cells (hereinafter referred to as a memory cell column) connected to the same word line WWL (or word line RWL).
  • the write operation can be performed as follows. A potential at which the OS transistor MO63 is turned on is applied to the word line WWL connected to the memory cell column to be written, and the OS transistor MO63 of the memory cell column to be written is turned on. As a result, the potential of the bit line WBL is applied to one of the gate of the transistor MN64 of the designated memory cell column and the electrode of the capacitive element C63, and a predetermined charge is applied to the gate. Then, when the OS transistor MO63 of the memory cell column is turned off, the predetermined charge applied to the gate can be held. Thus, data can be written to the memory cell 1615 of the specified memory cell column.
  • the read operation can be performed as follows. First, to a word line RWL not connected to a memory cell column to be read, a potential that turns on the transistor MN64 regardless of the charge applied to the gate of the transistor MN64 is applied to read a memory cell column The other transistors MN64 are turned on. Then, a potential (read potential) is applied to the word line RWL connected to the memory cell column to be read by the charge of the gate of the transistor MN64 so that the on state or the off state of the transistor MN64 is selected. Then, a constant potential is applied to the source line SL, and the reading circuit connected to the bit line RBL is brought into an operating state.
  • the conductance between the source line SL and the bit line RBL is for reading It is determined by the state (on state or off state) of the transistor MN64 of the memory cell column.
  • the conductance of the transistor differs depending on the charge of the gate of the transistor MN64 in the memory cell column to be read, and accordingly, the potential of the bit line RBL takes a different value.
  • Information can be read out from the memory cell 1615 of the specified memory cell column by reading out the potential of the bit line RBL by the reading circuit.
  • the number of times of rewriting is in principle not limited, and data can be written and read with low energy.
  • the refresh frequency can be reduced.
  • the transistor 200 is used as the OS transistor MO61, the OS transistor MO62, and the OS transistor MO63.
  • the capacitor C100 can be used as the element C61, the capacitor C62, and the capacitor C63, and the transistor 300 can be used as the transistor MP61, the transistor MP62, the transistor MP63, the transistor MN61, the transistor MN62, the transistor MN63, and the transistor MN64.
  • the area occupied by the pair of the transistor and the capacitor in top view can be reduced, so that the memory device according to this embodiment can be further highly integrated. Therefore, the storage capacity per unit area of the storage device according to the present embodiment can be increased.
  • DOSRAM is described as an example of a memory device to which an OS transistor and a capacitor are applied according to one embodiment of the present invention with reference to FIGS. 27 and 28.
  • DOSRAM registered trademark
  • a RAM having memory cells of 1T (transistor) 1C (capacitance) type.
  • OS memory is applied to the DOSRAM as well as the NOSRAM.
  • FIG. 27 shows a configuration example of the DOSRAM.
  • the DOSRAM 1400 has a controller 1405, a row circuit 1410, a column circuit 1415, a memory cell and a sense amplifier array 1420 (hereinafter referred to as "MC-SA array 1420").
  • the row circuit 1410 includes a decoder 1411, a word line driver circuit 1412, a column selector 1413, and a sense amplifier driver circuit 1414.
  • the column circuit 1415 has a global sense amplifier array 1416 and an input / output circuit 1417.
  • the global sense amplifier array 1416 has a plurality of global sense amplifiers 1447.
  • the MC-SA array 1420 has a memory cell array 1422, a sense amplifier array 1423, and global bit lines GBLL and GBLR.
  • the MC-SA array 1420 has a stacked structure in which the memory cell array 1422 is stacked on the sense amplifier array 1423.
  • Global bit line GBLL and global bit line GBLR are stacked on memory cell array 1422.
  • a hierarchical bit line structure hierarchized by local bit lines and global bit lines is adopted as the structure of bit lines.
  • the memory cell array 1422 includes N (N is an integer of 2 or more) local memory cell arrays 1425 ⁇ 0> to local memory cell arrays 1425 ⁇ N-1>.
  • N is an integer of 2 or more
  • the local memory cell array 1425 has a plurality of memory cells 1445, a plurality of word lines WL, a plurality of bit lines BLL, and a plurality of bit lines BLR.
  • the structure of the local memory cell array 1425 is an open bit line type, but may be a folded bit line type.
  • FIG. 28B shows a circuit configuration example of a pair of memory cells 1445a and 1445b connected in pair to the common bit line BLL (bit line BLR).
  • the memory cell 1445a includes a transistor MW1a, a capacitive element CS1a, a terminal B1a, and a terminal B2a, and is connected to the word line WLa and the bit line BLL (bit line BLR).
  • the memory cell 1445 b includes a transistor MW1 b, a capacitive element CS1 b, a terminal B1 b, and a terminal B2 b, and is connected to the word line WLb and the bit line BLL (bit line BLR). Note that, in the following, when one of the memory cell 1445a and the memory cell 1445b is not particularly limited, the memory cell 1445 and the configuration attached to the memory cell 1445 may not be denoted by the symbol a or b.
  • the transistor MW1a has a function of controlling charging and discharging of the capacitive element CS1a
  • the transistor MW1b has a function of controlling charging and discharging of the capacitive element CS1b.
  • the gate of transistor MW1a is electrically connected to word line WLa, the first terminal is electrically connected to bit line BLL (bit line BLR), and the second terminal is electrically connected to the first terminal of capacitive element CS1a It is done.
  • the gate of transistor MW1b is electrically connected to word line WLb, the first terminal is electrically connected to bit line BLL (bit line BLR), and the second terminal is electrically connected to the first terminal of capacitive element CS1b. It is connected to the.
  • bit line BLL bit line BLR
  • the bit line BLR is commonly used for the first terminal of the transistor MW1a and the first terminal of the transistor MW1b.
  • the transistor MW1 has a function of controlling charging and discharging of the capacitive element CS1.
  • the second terminal of the capacitive element CS1 is electrically connected to the terminal B2.
  • a constant potential (for example, low power supply potential) is input to the terminal B2.
  • the transistor 200a as the transistor MW1a and the transistor 200b as the transistor MW1b, the capacitive element 100a as the capacitive element CS1a, and a capacitive element as the capacitive element CS1b 100b can be used.
  • the area occupied by the pair of the transistor and the capacitor in top view can be reduced, so that the memory device according to this embodiment can be highly integrated. Therefore, the storage capacity per unit area of the storage device according to the present embodiment can be increased.
  • the transistor MW1 comprises a bottom gate, which is electrically connected to the terminal B1. Therefore, the Vth of the transistor MW1 can be changed by the potential of the terminal B1.
  • the potential of the terminal B1 may be a fixed potential (for example, a negative constant potential), or the potential of the terminal B1 may be changed according to the operation of the DOSRAM 1400.
  • the bottom gate of the transistor MW1 may be electrically connected to the gate, the source, or the drain of the transistor MW1. Alternatively, the transistor MW1 may not have a bottom gate.
  • the sense amplifier array 1423 includes N local sense amplifier arrays 1426 ⁇ 0> to 1426 ⁇ N-1>.
  • the local sense amplifier array 1426 includes one switch array 1444 and a plurality of sense amplifiers 1446.
  • a bit line pair is electrically connected to sense amplifier 1446.
  • the sense amplifier 1446 has a function of precharging the bit line pair, a function of amplifying the potential difference of the bit line pair, and a function of holding this potential difference.
  • the switch array 1444 has a function of selecting a bit line pair and conducting between the selected bit line pair and the global bit line pair.
  • bit line pair means two bit lines which are simultaneously compared by the sense amplifier.
  • the global bit line pair refers to two global bit lines which are simultaneously compared by the global sense amplifier.
  • a bit line pair can be called a pair of bit lines, and a global bit line pair can be called a pair of global bit lines.
  • bit line BLL and the bit line BLR form a pair of bit lines.
  • Global bit line GBLL and global bit line GBLR form a pair of global bit lines.
  • bit line pair (BLL, BLR) and the global bit line pair (GBLL, GBLR) are also referred to.
  • the controller 1405 has a function of controlling the overall operation of the DOS RAM 1400.
  • the controller 1405 performs a logical operation on an externally input command signal to determine an operation mode, and generates a control signal for the row circuit 1410 and the column circuit 1415 so that the determined operation mode is executed. And a function of holding an address signal input from the outside, and a function of generating an internal address signal.
  • the row circuit 1410 has a function of driving the MC-SA array 1420.
  • the decoder 1411 has a function of decoding an address signal.
  • the word line driver circuit 1412 generates a selection signal for selecting the word line WL in the access target row.
  • the column selector 1413 and the sense amplifier driver circuit 1414 are circuits for driving the sense amplifier array 1423.
  • the column selector 1413 has a function of generating a selection signal for selecting a bit line of the access target column.
  • the selection signal of column selector 1413 controls switch array 1444 of each local sense amplifier array 1426.
  • the control signals of the sense amplifier driver circuit 1414 drive the plurality of local sense amplifier arrays 1426 independently.
  • Column circuit 1415 has a function of controlling an input of data signal WDA [31: 0] and a function of controlling an output of data signal RDA [31: 0].
  • the data signal WDA [31: 0] is a write data signal
  • the data signal RDA [31: 0] is a read data signal.
  • Global sense amplifier 1447 is electrically connected to global bit line pair (GBLL, GBLR).
  • the global sense amplifier 1447 has a function of amplifying the potential difference between the global bit line pair (GBLL, GBLR) and a function of holding this potential difference. Writing and reading of data to the global bit line pair (GBLL, GBLR) are performed by the input / output circuit 1417.
  • Data is written to the global bit line pair by input / output circuit 1417.
  • Data of the global bit line pair is held by the global sense amplifier array 1416.
  • the data of the global bit line pair is written to the bit line pair of the target column by the switch array 1444 of the local sense amplifier array 1426 specified by the address signal.
  • the local sense amplifier array 1426 amplifies and holds the written data.
  • the row circuit 1410 selects the word line WL of the target row, and the data held by the local sense amplifier array 1426 is written to the memory cell 1445 of the selected row.
  • One row of the local memory cell array 1425 is designated by the address signal.
  • the word line WL in the target row is selected, and the data of the memory cell 1445 is written to the bit line.
  • the local sense amplifier array 1426 detects and holds the potential difference of the bit line pair of each column as data.
  • data in the column designated by the address signal is written to the global bit line pair by switch array 1444.
  • Global sense amplifier array 1416 detects and holds data of global bit line pairs. The held data of the global sense amplifier array 1416 is output to the input / output circuit 1417. Thus, the read operation is completed.
  • the number of times of rewriting is not limited in principle in the DOSRAM 1400, and data can be written and read with low energy.
  • the circuit configuration of the memory cell 1445 is simple, the capacity can be easily increased.
  • the transistor MW1 is an OS transistor. Since the off-state current of the OS transistor is extremely small, charge leakage from the capacitive element CS1 can be suppressed. Therefore, the retention time of the DOS RAM 1400 is very long compared to the DRAM. Therefore, since the frequency of refresh can be reduced, the power required for the refresh operation can be reduced. Therefore, the DOSRAM 1400 is suitable for a memory device that rewrites a large amount of data with high frequency, for example, a frame memory used for image processing.
  • the stacked structure of the MC-SA array 1420 allows the bit lines to be shortened to a length approximately equal to the length of the local sense amplifier array 1426. By shortening the bit line, the bit line capacitance can be reduced and the storage capacitance of the memory cell 1445 can be reduced. Further, by providing the switch array 1444 in the local sense amplifier array 1426, the number of long bit lines can be reduced. From the above reasons, the load driven at the time of access to the DOS RAM 1400 is reduced, and power consumption can be reduced.
  • FIG. 29 is a block diagram showing a configuration example of the AI system 4041.
  • the AI system 4041 includes an operation unit 4010, a control unit 4020, and an input / output unit 4030.
  • the operation unit 4010 includes an analog operation circuit 4011, a DOSRAM 4012, an NOSRAM 4013, and an FPGA (field programmable gate array) 4014.
  • the DOSRAM 4012 and the NOSRAM 4013 the DOSRAM 1400 and the NOSRAM 1600 described in the above embodiment can be used.
  • OS memory is applied to the configuration memory and the register.
  • OS-FPGA Such an FPGA is called "OS-FPGA".
  • the control unit 4020 includes a central processing unit (CPU) 4021, a graphics processing unit (GPU) 4022, a phase locked loop (PLL) 4023, a static random access memory (SRAM) 4024, and a programmable read only memory (PROM) 4025. , A memory controller 4026, a power supply circuit 4027, and a PMU (Power Management Unit) 4028.
  • CPU central processing unit
  • GPU graphics processing unit
  • PLL phase locked loop
  • SRAM static random access memory
  • PROM programmable read only memory
  • the input / output unit 4030 includes an external storage control circuit 4031, an audio codec 4032, a video codec 4033, a general purpose input / output module 4034, and a communication module 4035.
  • the operation unit 4010 can execute learning or inference by a neural network.
  • the analog operation circuit 4011 includes an A / D (analog / digital) conversion circuit, a D / A (digital / analog) conversion circuit, and a product-sum operation circuit.
  • the analog arithmetic circuit 4011 is preferably formed using an OS transistor.
  • the analog operation circuit 4011 using the OS transistor has an analog memory, and can perform the product-sum operation necessary for learning or inference with low power consumption.
  • the DOSRAM 4012 is a DRAM formed using an OS transistor, and the DOSRAM 4012 is a memory for temporarily storing digital data sent from the CPU 4021.
  • the DOSRAM 4012 has a memory cell including an OS transistor and a read out circuit unit including an Si transistor. Since the memory cell and the read out circuit portion can be provided in different stacked layers, the DOSRAM 4012 can reduce the entire circuit area.
  • Calculations using neural networks may have more than 1000 input data.
  • the SRAM has a limited circuit area and a small storage capacity, so the input data can not but be divided and stored.
  • the DOSRAM 4012 can arrange memory cells in a highly integrated manner even with a limited circuit area, and has a larger storage capacity than an SRAM. Therefore, the DOSRAM 4012 can store the input data efficiently.
  • the NOSRAM 4013 is a non-volatile memory using an OS transistor.
  • the NOSRAM 4013 consumes less power when writing data as compared to other non-volatile memories such as flash memory, ReRAM (Resistive Random Access Memory) and MRAM (Magnetoresistive Random Access Memory).
  • flash memory ReRAM (Resistive Random Access Memory)
  • MRAM Magneticoresistive Random Access Memory
  • the NOSRAM 4013 can store multi-value data of 2 bits or more in addition to 1-bit binary data.
  • the NOSRAM 4013 can reduce the memory cell area per bit by storing multi-value data.
  • the NOSRAM 4013 can store analog data. Therefore, the analog operation circuit 4011 can also use the NOSRAM 4013 as an analog memory. Since the NOSRAM 4013 can store analog data as it is, no D / A conversion circuit or A / D conversion circuit is required. Therefore, the NOSRAM 4013 can reduce the area of peripheral circuits.
  • analog data refers to data having a resolution of 3 bits (eight values) or more. The above-mentioned multi-value data may be included in the analog data.
  • Data and parameters used for neural network calculations can be temporarily stored in the NOSRAM 4013.
  • the above data and parameters may be stored in a memory provided outside the AI system 4041 via the CPU 4021.
  • the NOSRAM 4013 provided internally has higher speed and lower power consumption for the above data and parameters. Can be stored. Further, since the NOSRAM 4013 can make the bit line longer than the DOS RAM 4012, the storage capacity can be increased.
  • the FPGA 4014 is an FPGA using an OS transistor.
  • the AI system 4041 uses the FPGA 4014 to perform deep neural networks (DNN), convolutional neural networks (CNN), recursive neural networks (RNN), self-coder, deep Boltzmann machine (DBM), which will be described later in hardware. It is possible to configure connections of neural networks, such as Deep Belief Networks (DBNs).
  • DNNs Deep Belief Networks
  • the FPGA 4014 is an FPGA having an OS transistor.
  • the OS-FPGA can have a smaller memory area than an FPGA configured with an SRAM. Therefore, even if the context switching function is added, the area increase is small. Also, the OS-FPGA can transmit data and parameters at high speed by boosting.
  • the AI system 4041 can provide the analog operation circuit 4011, the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 on one die (chip). Therefore, the AI system 4041 can execute neural network calculation at high speed and low power consumption. Further, the analog arithmetic circuit 4011, the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 can be manufactured by the same manufacturing process. Therefore, the AI system 4041 can be manufactured at low cost.
  • the arithmetic unit 4010 need not have all the DOS RAM 4012, the NOSRAM 4013, and the FPGA 4014.
  • One or more of the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 may be selected and provided in accordance with the problem that the AI system 4041 wants to solve.
  • the AI system 4041 can perform deep neural network (DNN), convolutional neural network (CNN), recursive neural network (RNN), self-coder, deep Boltzmann machine (DBM), deep belief network ( Methods such as DBN) can be implemented.
  • the PROM 4025 may store programs for performing at least one of these techniques. In addition, part or all of the program may be stored in the NOSRAM 4013.
  • the AI system 4041 preferably includes a GPU 4022.
  • the AI system 4041 can execute the product-sum operation that is rate-limiting in the operation unit 4010 and can execute the other product-sum operations in the GPU 4022. By doing so, learning and inference can be performed at high speed.
  • the power supply circuit 4027 not only generates a low power supply potential for a logic circuit, but also performs potential generation for analog operation.
  • the power supply circuit 4027 may use an OS memory.
  • the power supply circuit 4027 can reduce power consumption by storing the reference potential in the OS memory.
  • the PMU 4028 has a function of temporarily turning off the power supply of the AI system 4041.
  • the CPU 4021 and the GPU 4022 preferably have OS memory as a register.
  • OS memory By having the OS memory, the CPU 4021 and the GPU 4022 can keep data (logical value) in the OS memory even when the power supply is turned off. As a result, the AI system 4041 can save power.
  • the PLL 4023 has a function of generating a clock.
  • the AI system 4041 operates based on the clock generated by the PLL 4023.
  • the PLL 4023 preferably has an OS memory.
  • the PLL 4023 having an OS memory can hold an analog potential for controlling the oscillation cycle of the clock.
  • the AI system 4041 may store data in an external memory such as DRAM. Therefore, the AI system 4041 preferably has a memory controller 4026 that functions as an interface with an external DRAM. In addition, the memory controller 4026 is preferably disposed near the CPU 4021 or the GPU 4022. By doing so, it is possible to exchange data at high speed.
  • Part or all of the circuits illustrated in the control unit 4020 can be formed over the same die as the computing unit 4010. By doing so, the AI system 4041 can execute neural network calculations at high speed and low power consumption.
  • the AI system 4041 preferably includes an external storage control circuit 4031 that functions as an interface with an external storage device.
  • the AI system 4041 includes a voice codec 4032 and a video codec 4033.
  • the audio codec 4032 encodes (decodes) and decodes (decodes) audio data
  • the video codec 4033 encodes and decodes video data.
  • the AI system 4041 can perform learning or inference using data obtained from an external sensor. Therefore, the AI system 4041 has a general purpose input / output module 4034.
  • the general-purpose input / output module 4034 includes, for example, Universal Serial Bus (USB), Inter-Integrated Circuit (I2C), and the like.
  • the AI system 4041 can perform learning or inference using data obtained via the Internet. Therefore, the AI system 4041 preferably has a communication module 4035.
  • the analog operation circuit 4011 may use a multi-level flash memory as an analog memory.
  • the flash memory is limited in the number of rewrites.
  • the analog arithmetic circuit 4011 may use ReRAM as an analog memory.
  • ReRAM is limited in the number of times of rewriting, and there is a problem in storage accuracy.
  • the element since the element has two terminals, the circuit design that separates writing and reading of data becomes complicated.
  • the analog operation circuit 4011 may use an MRAM as an analog memory.
  • the MRAM has a low rate of change in resistance, and has problems in storage accuracy.
  • the analog arithmetic circuit 4011 use the OS memory as an analog memory.
  • FIG. 30A shows an AI system 4041A in which the AI systems 4041 described with reference to FIG. 29 are arranged in parallel to enable transmission and reception of signals between the systems via a bus line.
  • An AI system 4041A illustrated in FIG. 30A includes a plurality of AI systems 4041_1 to AI systems 4041 — n (n is a natural number).
  • the AI systems 4041_1 to AI systems 4041 — n are connected to one another via a bus line 4098.
  • FIG. 30B arranges the AI system 4041 described in FIG. 29 in parallel in the same manner as FIG. 30A, and enables transmission and reception of signals between systems via a network. It is.
  • An AI system 4041B illustrated in FIG. 30B includes a plurality of AI systems 4041_1 to AI systems 4041 — n.
  • the AI systems 4041_1 to AI systems 4041 — n are connected to one another via a network 4099.
  • the network 4099 may be provided with a communication module for each of the AI systems 4041_1 to 4041_n to perform communication by wireless or wired communication.
  • the communication module can communicate via the antenna.
  • the Internet intranet, extranet, PAN (Personal Area Network), LAN (Local Area Network), CAN (Campus Area Network), MAN (Metropolitan Area Network), WAN (Wide Area), which is the foundation of the World Wide Web (WWW).
  • Communication can be performed by connecting each electronic device to a computer network such as Network) or GAN (Global Area Network).
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rates for GSM Evolution
  • CDMA2000 Code Division Multiple Access 2000
  • W-CDMA registered trademark
  • IEEE Wi-Fi
  • Bluetooth registered trademark
  • ZigBee registered trademark
  • analog signals obtained by an external sensor or the like can be processed by different AI systems.
  • information such as brain waves, pulse, blood pressure, and body temperature may be acquired by various sensors such as brain wave sensors, pulse wave sensors, blood pressure sensors, and temperature sensors, and analog signals may be processed by separate AI systems. it can.
  • processing or learning signals in each of the separate AI systems it is possible to reduce the amount of information processing per AI system. Therefore, signal processing or learning can be performed with a smaller amount of calculation. As a result, recognition accuracy can be enhanced. From information obtained by each AI system, it can be expected that changes in complexly changing biological information can be grasped in an integrated manner in an instant.
  • This embodiment mode shows an example of an IC in which the AI system shown in the above embodiment mode is incorporated.
  • the AI system described in the above embodiment integrates a digital processing circuit consisting of a Si transistor such as a CPU, an analog operation circuit using an OS transistor, an OS memory such as an OS-FPGA and DOSRAM, NOSRAM, etc. into one die. be able to.
  • FIG. 31 shows an example of an IC incorporating an AI system.
  • An AI system IC 7000 shown in FIG. 31 has a lead 7001 and a circuit portion 7003.
  • AI system IC 7000 is mounted on, for example, printed circuit board 7002.
  • a plurality of such IC chips are combined and electrically connected on the printed circuit board 7002 to complete a board (mounting board 7004) on which electronic components are mounted.
  • the various circuits described in the above embodiment are provided in one die.
  • the circuit portion 7003 has a stacked structure and is roughly classified into a Si transistor layer 7031, a wiring layer 7032, and an OS transistor layer 7033. Since the OS transistor layer 7033 can be stacked on the Si transistor layer 7031, the AI system IC 7000 can be easily miniaturized.
  • QFP Quad Flat Package
  • a digital processing circuit such as a CPU, an analog operation circuit using an OS transistor, an OS-FPGA and an OS memory such as DOSRAM or NOSRAM may be formed in the Si transistor layer 7031, the wiring layer 7032 and the OS transistor layer 7033 it can. That is, the elements constituting the above AI system can be formed by the same manufacturing process. Therefore, the IC shown in this embodiment does not need to increase the manufacturing process even if the number of elements is increased, and the above-mentioned AI system can be incorporated at low cost.
  • the semiconductor device according to one embodiment of the present invention can be used for various electronic devices.
  • 32 to 34 illustrate specific examples of electronic devices using the semiconductor device according to one embodiment of the present invention.
  • the robot 2100 shown in FIG. 32A includes an arithmetic unit 2110, an illuminance sensor 2101, a microphone 2102, an upper camera 2103, a speaker 2104, a display 2105, a lower camera 2106, an obstacle sensor 2107, and a movement mechanism 2108.
  • the microphone 2102 has a function of detecting the user's speech and environmental sounds.
  • the speaker 2104 has a function of emitting sound.
  • the robot 2100 can communicate with the user using the microphone 2102 and the speaker 2104.
  • the display 2105 has a function of displaying various information.
  • the robot 2100 can display information desired by the user on the display 2105.
  • the display 2105 may have a touch panel.
  • the upper camera 2103 and the lower camera 2106 have a function of imaging the periphery of the robot 2100. Further, the obstacle sensor 2107 can detect the presence or absence of an obstacle in the traveling direction when the robot 2100 advances using the movement mechanism 2108. The robot 2100 can recognize the surrounding environment and move safely by using the upper camera 2103, the lower camera 2106 and the obstacle sensor 2107.
  • a flying body 2120 shown in FIG. 32B includes an arithmetic unit 2121, a propeller 2123, and a camera 2122 and has a function of autonomously flying.
  • the above electronic components can be used for the arithmetic device 2121 and the camera 2122.
  • FIG. 32C is an external view showing an example of a car.
  • the automobile 2980 has a camera 2981 and the like.
  • the automobile 2980 includes various sensors such as an infrared radar, a millimeter wave radar, a laser radar, and the like.
  • the automobile 2980 can analyze an image captured by the camera 2981, determine a surrounding traffic condition such as the presence or absence of a pedestrian, and perform automatic driving.
  • FIG. 32D shows a state in which the portable electronic device 2130 is caused to perform simultaneous interpretation in communication between a plurality of people who speak different languages from each other.
  • the portable electronic device 2130 has a microphone, a speaker, and the like, and has a function of recognizing the user's speech and translating it into the language spoken by the other party.
  • the user has a portable microphone 2131.
  • the portable microphone 2131 has a wireless communication function, and has a function of transmitting the detected voice to the portable electronic device 2130.
  • FIG. 33A is a schematic cross-sectional view showing an example of a pacemaker.
  • the pacemaker main body 5300 has at least batteries 5301a and 5301b, a regulator, a control circuit, an antenna 5304, a wire 5302 to the right atrium, and a wire 5303 to the right ventricle.
  • the pacemaker body 5300 is placed in the body by surgery, and the two wires pass through the subclavian vein 5305 and the superior vena cava 5306 of the human body, and one wire tip is placed in the right ventricle and the other wire tip in the right atrium. To be done.
  • the pacemaker main body 5300 has a plurality of batteries, it is highly safe and can function as an auxiliary power supply because one can function even if one breaks down.
  • an antenna that can transmit a physiological signal may be provided.
  • physiological signals such as pulse, respiratory rate, heart rate, and temperature can be checked by an external monitor device. System for monitoring various cardiac activities.
  • the sensor 5900 shown in FIG. 33B is attached to the human body using an adhesive pad or the like.
  • the sensor 5900 supplies a signal to the electrode 5931 and the like attached to the human body via the wiring 5932 to acquire biological information such as a heart rate and an electrocardiogram.
  • the acquired information is transmitted as a wireless signal to a terminal such as a reader.
  • FIG. 34 is a schematic view showing an example of the cleaning robot.
  • the cleaning robot 5100 has a display 5101 disposed on the upper surface, a plurality of cameras 5102 disposed on the side, a brush 5103, and an operation button 5104.
  • the lower surface of the cleaning robot 5100 is provided with a tire, a suction port, and the like.
  • the cleaning robot 5100 further includes various sensors such as an infrared sensor, an ultrasonic sensor, an acceleration sensor, a piezo sensor, an optical sensor, and a gyro sensor.
  • the cleaning robot 5100 is provided with a wireless communication means.
  • the cleaning robot 5100 can self-propelled, detect the dust 5120, and can suction the dust from the suction port provided on the lower surface.
  • the cleaning robot 5100 can analyze the image captured by the camera 5102 to determine the presence or absence of an obstacle such as a wall, furniture, or a step. In addition, when an object that is likely to be entangled in the brush 5103 such as wiring is detected by image analysis, the rotation of the brush 5103 can be stopped.
  • the display 5101 can display the remaining amount of the battery, the amount of suctioned dust, and the like.
  • the path traveled by the cleaning robot 5100 may be displayed on the display 5101.
  • the display 5101 may be a touch panel, and the operation button 5104 may be provided on the display 5101.
  • the cleaning robot 5100 can communicate with a portable electronic device 5140 such as a smartphone.
  • the image captured by the camera 5102 can be displayed on the portable electronic device 5140. Therefore, the owner of the cleaning robot 5100 can know the state of the room even from outside.
  • the display of the display 5101 can also be confirmed by a portable electronic device such as a smartphone.
  • a memory device using the semiconductor device of one embodiment of the present invention can hold control information of the electronic device described above, a control program, and the like for a long time.
  • a highly reliable electronic device can be realized.
  • an IC in which the AI system described in the above embodiment is incorporated can be used for the arithmetic device or the like of the electronic device described above. Accordingly, the electronic device described in this embodiment can perform appropriate operation according to the situation with low power consumption by the AI system.
  • This embodiment can be implemented in appropriate combination with the structures described in the other embodiments and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)

Abstract

要約書 微細化または高集積化が可能な半導体装置を提供する。 酸化物と、 酸化物上に、 互いに離して配置された第1の導電体、 および第2の導電体と、 第1の導電 体および第2の導電体上に配置され、第1の導電体と第2の導電体の間に重畳して開口が形成された 第1の絶縁体と、開口の中に配置された第3の導電体と、酸化物、第1の導電体、第2の導電体、お よび第1の絶縁体と、第3の導電体と、の間に配置された第2の絶縁体と、を有し、第2の絶縁体は、 酸化物と第3の導電体の間において、 第1の膜厚を有し、 第1の導電体または第2の導電体と第3の 導電体の間において、第2の膜厚を有し、第1の膜厚は、第2の膜厚より薄い。

Description

半導体装置、および半導体装置の作製方法
 本発明の一態様は、半導体装置、ならびに半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、モジュール、および電子機器に関する。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、および電子機器などは、半導体装置を有すると言える場合がある。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
 近年、半導体装置の開発が進められ、LSIやCPUやメモリが主に用いられている。CPUは、半導体ウエハから切り離された半導体集積回路(少なくともトランジスタおよびメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 LSIやCPUやメモリなどの半導体回路(ICチップ)は、回路基板、例えば、プリント配線板に実装され、様々な電子機器の部品の一つとして用いられる。
 また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。当該トランジスタは集積回路(IC)や画像表示装置(単に表示装置とも表記する。)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。
 また、酸化物半導体を用いたトランジスタで、ゲート電極を開口部に埋め込んで作製する方法などが開示されている(特許文献2参照。)。
 また、近年では電子機器の小型化、軽量化に伴い、トランジスタなどを高密度に集積した集積回路の要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。
 酸化物半導体としては、例えば、酸化インジウム、酸化亜鉛などの一元系金属の酸化物のみでなく、多元系金属の酸化物も知られている。多元系金属の酸化物の中でも、特に、In−Ga−Zn酸化物(以下、IGZOとも呼ぶ。)に関する研究が盛んに行われている。
 IGZOに関する研究により、酸化物半導体において、単結晶でも非晶質でもない、CAAC(c−axis aligned crystalline)構造およびnc(nanocrystalline)構造が見出された(非特許文献1乃至非特許文献3参照。)。非特許文献1および非特許文献2では、CAAC構造を有する酸化物半導体を用いてトランジスタを作製する技術も開示されている。さらに、CAAC構造およびnc構造よりも結晶性の低い酸化物半導体でさえも、微小な結晶を有することが、非特許文献4および非特許文献5に示されている。
 さらに、IGZOを活性層として用いたトランジスタは極めて低いオフ電流を持ち(非特許文献6参照。)、その特性を利用したLSIおよびディスプレイが報告されている(非特許文献7および非特許文献8参照。)。
特開2012−257187号公報 特開2017−050530号公報
S.Yamazaki et al.,"SID Symposium Digest of Technical Papers",2012,volume 43,issue 1,p.183−186 S.Yamazaki et al.,"Japanese Journal of Applied Physics",2014,volume 53,Number 4S,p.04ED18−1−04ED18−10 S.Ito et al.,"The Proceedings of AM−FPD’13 Digest of Technical Papers",2013,p.151−154 S.Yamazaki et al.,"ECS Journal of Solid State Science and Technology",2014,volume 3,issue 9,p.Q3012−Q3022 S.Yamazaki,"ECS Transactions",2014,volume 64,issue 10,p.155−164 K.Kato et al.,"Japanese Journal of Applied Physics",2012,volume 51,p.021201−1−021201−7 S.Matsuda et al.,"2015 Symposium on VLSI Technology Digest of Technical Papers",2015,p.T216−T217 S.Amano et al.,"SID Symposium Digest of Technical Papers",2010, volume 41,issue 1,p.626−629
 本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。本発明の一態様は、良好な周波数特性を有する半導体装置を提供することを課題の一つとする。本発明の一態様は、信頼性が良好な半導体装置を提供することを課題の一つとする。本発明の一態様は、生産性の高い半導体装置を提供することを課題の一つとする。
 本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、情報の書き込み速度が速い半導体装置を提供することを課題の一つとする。本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、酸化物と、酸化物上に、互いに離して配置された第1の導電体、および第2の導電体と、第1の導電体および第2の導電体上に配置され、第1の導電体と第2の導電体の間に重畳して開口が形成された第1の絶縁体と、開口の中に配置された第3の導電体と、酸化物、第1の導電体、第2の導電体、および第1の絶縁体と、第3の導電体と、の間に配置された第2の絶縁体と、を有し、第2の絶縁体は、酸化物と第3の導電体の間において、第1の膜厚を有し、第1の導電体または第2の導電体と第3の導電体の間において、第2の膜厚を有し、第1の膜厚は、第2の膜厚より薄い、ことを特徴とする半導体装置である。
 また、上記において、第2の絶縁体は、第3の絶縁体と第4の絶縁体とを有し、第3の絶縁体は、酸化物、第1の導電体、第2の導電体、および第1の絶縁体と、第3の導電体と、の間に配置され、第4の絶縁体は、第1の導電体、第2の導電体、および第1の絶縁体と、第3の絶縁体と、の間に配置されてもよい。
 また、上記において、酸化物、第1の導電体、および第2の導電体と、第1の絶縁体と、の間に第5の絶縁体が配置され、第5の絶縁体は、アルミニウムおよびハフニウムの少なくとも一方を含む、酸化物であってもよい。
 また、上記において、酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を有する、ことが好ましい。
 また、本発明の他の一態様は、第1の酸化物と、第1の酸化物上に、互いに離して配置された第1の導電体、および第2の導電体と、第1の導電体および第2の導電体上に配置され、第1の導電体と第2の導電体の間に重畳して開口が形成された第1の絶縁体と、開口の中に配置された第3の導電体と、第1の酸化物、第1の導電体、第2の導電体、および第1の絶縁体と、第3の導電体と、の間に配置された第2の絶縁体と、第1の酸化物、第1の導電体、第2の導電体、および第1の絶縁体と、第2の絶縁体と、の間に配置された第2の酸化物と、を有し、第2の絶縁体は、第1の酸化物と第3の導電体の間において、第1の膜厚を有し、第1の導電体または第2の導電体と第3の導電体の間において、第2の膜厚を有し、第1の膜厚は、第2の膜厚より薄い、ことを特徴とする半導体装置である。
 また、上記において、第1の酸化物、第1の導電体、および第2の導電体と、第1の絶縁体と、の間に第3の絶縁体が配置され、第3の絶縁体は、アルミニウムおよびハフニウムの少なくとも一方を含む、酸化物であってもよい。
 また、上記において、第4の絶縁体は、第1の導電体、第2の導電体、および第1の絶縁体と、第2の酸化物と、の間に配置され、第4の絶縁体は、アルミニウムおよびハフニウムの少なくとも一方を含む、酸化物であってもよい。
 また、上記において、第1の酸化物および第2の酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を有することが好ましい。
 また、上記において、第1の絶縁体の上面と、第3の導電体の上面と、第2の絶縁体の上面は概略一致してもよい。また、上記において、第1の絶縁体の上面と、第3の導電体の上面と、第2の絶縁体の上面に接して、第6の絶縁体が配置され、第6の絶縁体は、アルミニウムを含む酸化物であってもよい。
 また、上記において、第1の導電体、および第2の導電体は、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、およびランタンの少なくとも一を有する、ことが好ましい。
 また、上記において、第1の導電体、および第2の導電体は、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、およびランタンとニッケルを含む酸化物の少なくとも一を有する、ことが好ましい。
 本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。本発明の一態様により、良好な周波数特性を有する半導体装置を提供することができる。本発明により、信頼性が良好な半導体装置を提供することができる。本発明の一態様により、生産性の高い半導体装置を提供することができる。
 または、長期間においてデータの保持が可能な半導体装置を提供することができる。または、データの書き込み速度が速い半導体装置を提供することができる。または、設計自由度が高い半導体装置を提供することができる。または、消費電力を抑えることができる半導体装置を提供することができる。または、新規な半導体装置を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る記憶装置の上面図および断面図。 本発明の一態様に係る記憶装置の回路図。 本発明の一態様に係る記憶装置の模式図。 本発明の一態様に係る記憶装置の模式図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成例を示すブロック図。 本発明の一態様に係る記憶装置の構成例を示す回路図。 本発明の一態様に係る記憶装置の構成例を示す回路図。 本発明の一態様に係る記憶装置の構成例を示すブロック図。 本発明の一態様に係る記憶装置の構成例を示すブロック図および回路図。 本発明の一態様に係るAIシステムの構成例を示すブロック図。 本発明の一態様に係るAIシステムの応用例を説明するブロック図。 本発明の一態様に係るAIシステムを組み込んだICの構成例を示す斜視模式図。 本発明の一態様に係る電子機器を示す図。 本発明の一態様に係る電子機器を示す図。 本発明の一態様に係る電子機器を示す図。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために省略して示すことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
 また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
 例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接的に接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
 ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
 XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
 XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きくできる回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
 また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域、またはドレイン電極)とソース(ソース端子、ソース領域、またはソース電極)の間にチャネルが形成される領域を有しており、チャネルが形成される領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネルが形成される領域とは、電流が主として流れる領域をいう。
 また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。
 なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに、半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値、または平均値とする。
 チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに、半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅が全ての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値、または平均値とする。
 なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
 このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
 そこで、本明細書では、見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
 なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
 なお、本明細書等において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多いものである。例えば、好ましくは酸素が55原子%以上65原子%以下、窒素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。また、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多いものである。例えば、好ましくは窒素が55原子%以上65原子%以下、酸素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。
 また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
 また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
 また、本明細書等に示すトランジスタは、明示されている場合を除き、電界効果トランジスタとする。また、本明細書等に示すトランジスタは、明示されている場合を除き、nチャネル型のトランジスタとする。よって、その閾値電圧(「Vth」ともいう。)は、明示されている場合を除き、0Vよりも大きいものとする。
 また、本明細書等において、「平行」とは、二つの直線が−10度以上10度以下の角度で配置されている状態をいう。したがって、−5度以上5度以下の場合も含まれる。また、「略平行」とは、二つの直線が−30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。
 なお、本明細書において、バリア膜とは、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、当該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む。)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう。)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETあるいはOSトランジスタと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。
 また、本明細書等において、ノーマリーオフとは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりの電流が、室温において1×10−20A以下、85℃において1×10−18A以下、または125℃において1×10−16A以下であることをいう。
(実施の形態1)
 以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
<半導体装置の構成例>
 図1(A)、図1(B)、および図1(C)は、本発明の一態様に係るトランジスタ200、およびトランジスタ200周辺の上面図および断面図である。
 図1(A)は、トランジスタ200を有する半導体装置の上面図である。また、図1(B)、および図1(C)は、当該半導体装置の断面図である。ここで、図1(B)は、図1(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図1(C)は、図1(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 本発明の一態様の半導体装置は、トランジスタ200と、層間膜として機能する絶縁体210、絶縁体212、および絶縁体281を有する。また、トランジスタ200と電気的に接続し、配線として機能する導電体203、およびプラグとして機能する導電体240(導電体240a、および導電体240b)とを有する。
 なお、導電体203は、絶縁体212の開口の内壁に接して導電体203aが形成され、さらに内側に導電体203bが形成されている。ここで、導電体203の上面の高さと、絶縁体212の上面の高さは同程度にできる。なお、トランジスタ200では、導電体203が導電体203aおよび導電体203bの積層構造となる構成について示しているが、本発明はこれに限られるものではない。例えば、導電体203を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
 また、導電体240は、絶縁体244、絶縁体280、絶縁体274、および絶縁体281の開口の内壁に接して導電体240の第1の導電体が形成され、さらに内側に導電体240の第2の導電体が形成されている。ここで、導電体240の上面の高さと、絶縁体281の上面の高さは同程度にできる。なお、トランジスタ200では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
[トランジスタ200]
 図1に示すように、トランジスタ200は、基板(図示しない。)の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230b上に、互いに離して配置された導電体242a、および導電体242bと、導電体242aおよび導電体242b上に配置され、導電体242aと導電体242bの間に重畳して開口が形成された絶縁体280と、開口の中に配置された導電体260と、酸化物230b、導電体242a、導電体242b、および絶縁体280と、導電体260と、の間に配置された絶縁体250と、酸化物230b、導電体242a、導電体242b、および絶縁体280と、絶縁体250と、の間に配置された酸化物230cと、を有する。また、図1に示すように、酸化物230a、酸化物230b、導電体242a、および導電体242bと、絶縁体280の間に絶縁体244が配置されることが好ましい。また、図1に示すように、導電体260は、絶縁体250の内側に設けられた導電体260aと、導電体260aの内側に埋め込まれるように設けられた導電体260bと、を有することが好ましい。また、図1に示すように、絶縁体280、導電体260、および絶縁体250の上に絶縁体274が配置されることが好ましい。
 なお、以下において、酸化物230a、酸化物230b、および酸化物230cをまとめて酸化物230という場合がある。また、導電体242aおよび導電体242bをまとめて導電体242という場合がある。
 なお、トランジスタ200では、チャネルが形成される領域(以下、チャネル形成領域ともいう。)と、その近傍において、酸化物230a、酸化物230b、および酸化物230cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bの単層、酸化物230bと酸化物230aの2層構造、酸化物230bと酸化物230cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ200では、導電体260を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体260が、単層構造であってもよいし、3層以上の積層構造であってもよい。
 ここで、導電体260は、トランジスタのゲート電極として機能し、導電体242aおよび導電体242bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体260は、絶縁体280の開口、および導電体242aと導電体242bに挟まれた領域に埋め込まれるように形成される。ここで、導電体260、導電体242aおよび導電体242bの配置は、絶縁体280の開口に対して、自己整合的に選択される。つまり、トランジスタ200において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体260を位置合わせのマージンを設けることなく形成することができるので、トランジスタ200の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
 さらに、導電体260が、導電体242aと導電体242bの間の領域に自己整合的に形成されるので、導電体260は、導電体242aまたは導電体242bと重畳する領域を有さない。これにより、導電体260と導電体242aおよび導電体242bとの間に形成される寄生容量を低減することができる。よって、トランジスタ200のスイッチング速度を向上させ、トランジスタ200に高い周波数特性を有することができる。
 また、トランジスタ200は、絶縁体212の上に配置された絶縁体214と、絶縁体214の上に配置された絶縁体216と、絶縁体214および絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216と導電体205の上に配置された絶縁体220と、絶縁体220の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、を有することが好ましい。絶縁体224の上に酸化物230aが配置されることが好ましい。
 また、トランジスタ200は、チャネル形成領域を含む酸化物230(酸化物230a、酸化物230b、および酸化物230c)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。
 チャネル形成領域に酸化物半導体を用いたトランジスタ200は、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタ200に用いることができる。
 例えば、酸化物230として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。また、酸化物230として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
 ここで、酸化物230は、水素、窒素、または金属元素などの不純物が存在すると、キャリア密度が増大し、低抵抗化する場合がある。また、酸化物230に含まれる酸素濃度が低下すると、キャリア密度が増大し、低抵抗化する場合がある。
 酸化物230上に接するように設けられ、ソース電極やドレイン電極として機能する導電体242(導電体242a、および導電体242b)が、酸化物230の酸素を吸収する機能を有する場合、または酸化物230に水素、窒素、または金属元素などの不純物を供給する機能を有する場合、酸化物230には、部分的に低抵抗領域が形成される場合がある。
 絶縁体244は、導電体242の酸化を抑制するために設けられている。よって、導電体242が、耐酸化性材料、または酸素を吸収しても導電性が著しく低下することがない場合は、絶縁体244は必ずしも設ける必要はない。
 ここで、図1(B)において一点鎖線で囲む、領域239の拡大図を図2に示す。図2に示すように、絶縁体250は、酸化物230bと導電体260の間において、膜厚T1を有し、導電体242aまたは導電体242bと導電体260の間において、膜厚T2を有する。絶縁体250において、膜厚T1は膜厚T2より薄いことが好ましい。
 絶縁体250の膜厚T1を、膜厚T2より薄くするには、例えば、酸化物230bと、導電体260の間に位置する絶縁体250を単層とし、導電体242と、導電体260の間に位置する絶縁体250を積層構造とすることが好ましい。酸化物230bと、導電体260の間に位置する絶縁体250を積層構造とする場合、導電体242と、導電体260の間に位置する絶縁体250の積層数は、酸化物230bと、導電体260の間に位置する絶縁体250の積層数より多くすればよい。
 このように絶縁体250の膜厚T2を、膜厚T1より厚くすることにより、導電体260と導電体242の間の寄生容量を低減し、高い周波数特性を有するトランジスタ200を提供することができる。さらに、膜厚T1が薄いので、ゲート電極からの電界が弱まることもないので、良好な電気特性を有するトランジスタ200を提供することができる。
 また、図2に示すように、酸化物230上に接するように導電体242が設けられ、酸化物230の、導電体242との界面とその近傍には、低抵抗領域として、領域243(領域243a、および領域243b)が形成されている。酸化物230は、トランジスタ200のチャネル形成領域として機能する領域234と、領域243の一部を含み、ソース領域またはドレイン領域として機能する領域231(領域231a、および領域231b)と、領域243の一部を含み、接合領域として機能する領域232(領域232a、および領域232b)と、を有する。
 ソース領域またはドレイン領域として機能する領域231において、特に領域243は、酸素濃度が低い、または水素や、窒素や、金属元素などの不純物を含む、ことでキャリア濃度が増加し、低抵抗化した領域である。すなわち、領域231は、領域234と比較して、キャリア密度が高く、低抵抗な領域である。また、チャネル形成領域として機能する領域234は、領域231のうち、特に領域243よりも、酸素濃度が高い、または不純物濃度が低いため、キャリア密度が低い高抵抗領域である。また、領域232の酸素濃度は、領域231の酸素濃度と同等、またはそれよりも高く、領域234の酸素濃度と同等、またはそれよりも低いことが好ましい。または、領域232の不純物濃度は、領域231の不純物濃度と同等、またはそれよりも低く、領域234の不純物濃度と同等、またはそれよりも高いことが好ましい。
 なお、低抵抗領域である領域243が金属元素を含む場合、領域243は、酸化物230に含まれる金属元素の他に、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの金属元素の中から選ばれるいずれか一つまたは複数の金属元素を有することが好ましい。
 また、図2では、領域243が、酸化物230bの膜厚方向において、酸化物230bの導電体242との界面近傍に形成されているが、これに限られない。例えば、領域243は、酸化物230bの膜厚と概略同じ厚さを有していてもよいし、酸化物230aにも、形成されていてもよい。また、図2では、領域243が領域231、および領域232に形成されているが、これに限らない。例えば、領域231のみに形成されていてもよいし、領域231と、領域232の一部と、に形成されていてもよいし、領域231と、領域232と、領域234の一部と、に形成されていてもよい。
 また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、ならびに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう。)していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、ならびに水素、および窒素などの不純物元素の濃度が減少していればよい。
 酸化物230を、選択的に低抵抗化するには、導電体242として、例えば、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの導電性を高める金属元素、および不純物の少なくとも一を含む材料を用いることが好ましい。または、導電体242となる導電膜242Aの形成において、酸化物230に、酸素欠損を形成する元素、または酸素欠損に捕獲される元素などの不純物が注入される材料や成膜方法などを用いればよい。例えば、当該元素として、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、およびキセノン等がある。
 ここで、酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となりやすい。したがって、チャネルが形成される領域234中の酸素欠損はできる限り低減されていることが好ましい。
 トランジスタのノーマリーオン化を抑制するには、酸化物230と近接する絶縁体250が、化学量論的組成を満たす酸素よりも多くの酸素(過剰酸素ともいう。)を含むことが好ましい。絶縁体250が有する酸素は、酸化物230へと拡散し、酸化物230の酸素欠損を低減し、トランジスタのノーマリーオン化を抑制することができる。
 つまり、絶縁体250および絶縁体280が有する酸素が、酸化物230の領域234へと拡散することで、酸化物230の領域234における酸素欠損を低減することができる。
 また、絶縁体250および絶縁体280に酸素領域を設けるには、絶縁体250および絶縁体280の上面に接する絶縁体274として、酸化物を、スパッタリング法により成膜するとよい。酸化物の成膜にスパッタリング法を用いることにより、酸素を多く含み、かつ、水または水素などの不純物の少ない絶縁体を成膜することができる。例えば、絶縁体274は、酸化アルミニウムを用いることが好ましい。
 スパッタリング法による成膜時には、ターゲットと基板との間には、イオンとスパッタされた粒子とが存在する。例えば、ターゲットは、電源が接続されており、電位E0が与えられる。また、基板は、接地電位などの電位E1が与えられる。ただし、基板が電気的に浮いていてもよい。また、ターゲットと基板の間には電位E2となる領域が存在する。各電位の大小関係は、E2>E1>E0である。
 プラズマ内のイオンが、電位差E2−E0によって加速され、ターゲットに衝突することにより、ターゲットからスパッタされた粒子がはじき出される。このスパッタされた粒子が成膜表面に付着し、堆積することにより成膜が行われる。また、一部のイオンはターゲットによって反跳し、反跳イオンとして形成された膜を通過し、被成膜面と接する絶縁体250および絶縁体280に取り込まれる場合がある。また、プラズマ内のイオンは、電位差E2−E1によって加速され、成膜表面を衝撃する。この際、一部のイオンは、絶縁体280内部まで到達する。イオンが絶縁体250および絶縁体280に取り込まれることにより、イオンが取り込まれた領域が絶縁体280に形成される。つまり、イオンが酸素を含むイオンであった場合において、絶縁体250および絶縁体280に過剰酸素領域が形成される。
 絶縁体250および絶縁体280に過剰な酸素を導入することで、絶縁体250および絶縁体280中に過剰酸素領域を形成することができる。絶縁体250および絶縁体280の過剰な酸素は、熱処理などによって、酸化物230に供給され、酸化物230の領域234における酸素欠損を補填することができる。
 なお、絶縁体280は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、空孔を有する酸化シリコンを用いることが好ましい。酸化窒化シリコンなどの材料は、過剰酸素領域を形成されやすい傾向がある。一方、上述の酸化窒化シリコンなどの材料と比較して、酸化物230は、スパッタリング法を用いて成膜した酸化膜を、酸化物230上に形成したとしても、過剰酸素領域が形成されにくい傾向がある。したがって、過剰酸素領域を有する絶縁体280を、酸化物230の領域234の周辺に設けることで、酸化物230の領域234へ、絶縁体280の過剰酸素を効果的に供給することができる。
 以上より、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。
 以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。
 導電体203は、図1(A)および図1(C)に示すように、チャネル幅方向に延伸されており、導電体205に電位を印加する配線として機能する。なお、導電体203は、絶縁体212に埋め込まれて設けることが好ましい。
 導電体205は、酸化物230、および導電体260と、重なるように配置する。また、導電体205は、導電体203の上に接して設けるとよい。また、導電体205は、絶縁体214および絶縁体216に埋め込まれて設けることが好ましい。
 ここで、導電体260は、第1のゲート(トップゲートともいう。)電極として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう。)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のVthを制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthを0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 また、導電体203上に導電体205を設けることで、第1のゲート電極、および配線としての機能を有する導電体260と、導電体203との距離を適宜設計することが可能となる。つまり、導電体203と導電体260の間に絶縁体214および絶縁体216などが設けられることで、導電体203と導電体260の間の寄生容量を低減し、導電体203と導電体260の間の絶縁耐圧を高めることができる。
 また、導電体203と導電体260の間の寄生容量を低減することで、トランジスタ200のスイッチング速度を向上させ、高い周波数特性を有するトランジスタにすることができる。また、導電体203と導電体260の間の絶縁耐圧を高めることで、トランジスタ200の信頼性を向上させることができる。よって、絶縁体214および絶縁体216の膜厚を厚くすることが好ましい。なお、導電体203の延伸方向はこれに限られず、例えば、トランジスタ200のチャネル長方向に延伸されてもよい。
 なお、導電体205は、図1(A)に示すように、酸化物230、および導電体260と重なるように配置する。また、導電体205は、酸化物230における領域234よりも、大きく設けるとよい。特に、図1(C)に示すように、導電体205は、酸化物230の領域234のチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。
 上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながり、酸化物230に形成されるチャネル形成領域を覆うことができる。
 つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
 また、導電体205は、絶縁体214および絶縁体216の開口の内壁に接して導電体205aが形成され、さらに内側に導電体205bが形成されている。ここで、導電体205aおよび導電体205bの上面の高さと、絶縁体216の上面の高さは同程度にできる。なお、トランジスタ200では、導電体205aおよび導電体205bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体205は、単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
 ここで、導電体205aまたは導電体203aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一またはすべての拡散を抑制する機能とする。
 導電体205aまたは導電体203aが酸素の拡散を抑制する機能を持つことにより、導電体205bまたは導電体203bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。したがって、導電体205aまたは導電体203aとしては、上記導電性材料を単層または積層とすればよい。これにより、水素、水などの不純物が、導電体203、および導電体205を通じて、トランジスタ200側に拡散するのを抑制することができる。
 また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。なお、導電体205bを単層で図示したが、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
 また、導電体203bは、配線として機能するため、導電体205bより導電性が高い導電体を用いることが好ましい。例えば、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体203bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
 特に、導電体203bに、銅を用いることが好ましい。銅は抵抗が小さいため、配線等に用いることが好ましい。一方、銅は拡散しやすいため、酸化物230に拡散することで、トランジスタ200の電気特性を低下させる場合がある。そこで、例えば、絶縁体214には、銅の透過性が低い酸化アルミニウム、または酸化ハフニウムなどの材料を用いることで、銅の拡散を抑えることができる。
 なお、導電体205、絶縁体214、および絶縁体216は必ずしも設けなくともよい。その場合、導電体203の一部が第2のゲート電極として機能することができる。
 絶縁体210、および絶縁体214は、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体210、および絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料を用いることが好ましい。
 例えば、絶縁体210として酸化アルミニウムなどを用い、絶縁体214として窒化シリコンなどを用いることが好ましい。これにより、水素、水などの不純物が絶縁体210および絶縁体214よりも基板側からトランジスタ200側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体210および絶縁体214よりも基板側に、拡散するのを抑制することができる。
 また、導電体203の上に導電体205を積層して設ける構成にすることにより、導電体203と導電体205の間に絶縁体214を設けることができる。ここで、導電体203bに銅など拡散しやすい金属を用いても、絶縁体214として窒化シリコンなどを設けることにより、当該金属が絶縁体214より上の層に拡散するのを抑制することができる。
 また、層間膜として機能する絶縁体212、絶縁体216、絶縁体280、および絶縁体281は、絶縁体210、または絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 例えば、絶縁体212、絶縁体216、絶縁体280、および絶縁体281として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン、または窒化シリコンを積層して用いてもよい。
 絶縁体220、絶縁体222、絶縁体224、および絶縁体250は、ゲート絶縁体としての機能を有する。
 ここで、酸化物230と接する絶縁体224は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体224には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
 過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
 また、絶縁体224が、過剰酸素領域を有する場合、絶縁体222は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。
 絶縁体222が、酸素や不純物の拡散を抑制する機能を有することで、酸化物230が有する酸素は、絶縁体220側へ拡散することがなく、好ましい。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。
 絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。
 または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体220は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、high−k材料の絶縁体と絶縁体220とを組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。
 なお、絶縁体220、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
 酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
 なお、酸化物230は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。
 また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。
 ここで、酸化物230a、酸化物230b、および酸化物230cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物230a、酸化物230b、および酸化物230cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物230aと酸化物230b、酸化物230bと酸化物230cが、酸素以外に共通の元素を有する(主成分とする。)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn−Ga−Zn酸化物の場合、酸化物230aおよび酸化物230cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
 このとき、キャリアの主たる経路は酸化物230bとなる場合がある。酸化物230a、酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は高いオン電流を得られる。
 また、酸化物230は、領域231および領域234を有する。なお、領域231の少なくとも一部は、導電体242と接する領域を有する。
 なお、トランジスタ200をオンさせると、領域231a、または領域231bは、ソース領域、またはドレイン領域として機能する。一方、領域234の少なくとも一部は、チャネルが形成される領域として機能する。また、領域231と領域234との間に、接合領域として機能する領域232を有していてもよい。
 つまり、各領域の範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。
 酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。例えば、領域234となる金属酸化物としては、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
 酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。
 酸化物230b上には、ソース電極、およびドレイン電極として機能する導電体242(導電体242a、および導電体242b)が設けられる。導電体242としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 酸化物230と接するように上記導電体242を設けることで、領域243の酸素濃度が低減する場合がある。また、領域243に導電体242に含まれる金属と、酸化物230の成分とを含む金属化合物層が形成される場合がある。このような場合、領域243のキャリア密度が増加し、領域243は、低抵抗領域となる。
 ここで、導電体242aと導電体242bの間の領域は、絶縁体280の開口に重畳して形成される。これにより、導電体242aと導電体242bの間に導電体260を自己整合的に配置することができる。
 絶縁体244は、導電体242を覆うように設けられ、導電体242の酸化を抑制する。このとき、絶縁体244は、酸化物230の側面を覆い、絶縁体224と接するように設けられてもよい。
 絶縁体244として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
 特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱履歴において、結晶化しにくいため好ましい。なお、導電体242が耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない場合、絶縁体244は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
 絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、酸化物230cの内側(上面および側面)に接して配置されることが好ましい。絶縁体250は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。例えば、昇温脱離ガス分光法分析(TDS分析)にて、酸素分子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下の範囲が好ましい。
 具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
 加熱により酸素が放出される絶縁体を、絶縁体250として、酸化物230cの上面に接して設けることにより、絶縁体250から、酸化物230cを通じて、酸化物230bの領域234に効果的に酸素を供給することができる。また、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
 また、絶縁体250は、酸化物230bと導電体260の間だけでなく、導電体242と導電体260の間にも設けられる。絶縁体250として要求される膜厚により、導電体242と導電体260の間に寄生容量が形成され、トランジスタ200、あるいは半導体装置の特性に悪影響を与えてしまう場合には、導電体242と導電体260の間に位置する絶縁体250の膜厚を、酸化物230bと導電体260の間に位置する絶縁体250の膜厚より、厚くするのが好ましい。そのためには、例えば、導電体242と導電体260の間に位置する絶縁体250を2層構造とし、酸化物230bと導電体260の間に位置する絶縁体250を単層構造とすればよい。詳細は後述するが、酸化物230cとなる酸化膜230Cの内側に、第1の絶縁体となる絶縁膜を形成し、該絶縁膜に対して異方性エッチングを行い、酸化膜230Cの内壁のみに第1の絶縁体を形成する。続けて、第2の絶縁体となる絶縁膜を形成することで、酸化物230bと導電体260の間に位置する絶縁体250は単層構造となり、導電体242と導電体260の間に位置する絶縁体250は2層構造となる。よって、導電体242と導電体260の間に位置する絶縁体250の膜厚を酸化物230bと導電体260の間に位置する絶縁体250の膜厚より、厚くすることができる。
 また、絶縁体250が有する過剰酸素を、効率的に酸化物230へ供給するために、絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体250から導電体260への過剰酸素の拡散が抑制される。つまり、酸化物230へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体260の酸化を抑制することができる。
 また、当該金属酸化物は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、当該金属酸化物は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。ゲート絶縁体を、絶縁体250と当該金属酸化物との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
 具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
 特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱履歴において、結晶化しにくいため好ましい。なお、当該金属酸化物は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
 第1のゲート電極として機能する導電体260は、図1では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
 導電体260aは、導電体205aと同様に、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。
 また、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層構造としてもよい。
 また、図1(C)に示すように、導電体205が、酸化物230のチャネル幅方向と交わる端部よりも外側の領域において、延伸している場合、導電体260は、当該領域において、絶縁体250を介して、導電体205と重畳していることが好ましい。つまり、酸化物230の側面の外側において、導電体205と、絶縁体250と、導電体260とは、積層構造を形成することが好ましい。
 上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながり、酸化物230に形成されるチャネル形成領域を覆うことができる。
 つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。
 絶縁体280は、絶縁体244を介して、導電体242上に設けられる。絶縁体280は、過剰酸素領域を有することが好ましい。例えば、絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
 上述のように、絶縁体280は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体280を、酸化物230cと接して設けることで、絶縁体280中の酸素を、酸化物230cを通じて、酸化物230の領域234へと効率良く供給することができる。なお、絶縁体280中の水または水素などの不純物濃度が低減されていることが好ましい。
 また、絶縁体280の上面は、導電体260の上面、および絶縁体250の上面と概略一致することが好ましい。
 絶縁体274は、絶縁体280の上面、導電体260の上面、および絶縁体250の上面に接して設けられることが好ましい。絶縁体274をスパッタリング法で成膜することで、絶縁体250および絶縁体280へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物230中に酸素を供給することができる。
 例えば、絶縁体274として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
 特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。例えば、スパッタリング法で成膜した酸化アルミニウムを絶縁体274に用いることで、絶縁体274は、絶縁体280に酸素供給を行うとともに、絶縁体274の上方からの水素などの不純物が、絶縁体280側に混入するのを抑制することができる。
 また、絶縁体274の上に、層間膜として機能する絶縁体281を設けることが好ましい。絶縁体281は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
 また、絶縁体281、絶縁体274、絶縁体280、および絶縁体244に形成された開口に、導電体240aおよび導電体240bを配置する。導電体240aおよび導電体240bは、導電体260を挟んで対向して設ける。なお、導電体240aおよび導電体240bの上面の高さは、絶縁体281の上面と、同一平面上としてもよい。
 なお、絶縁体281、絶縁体274、絶縁体280、および絶縁体244の開口の内壁に接して、導電体240aの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242aが位置しており、導電体240aが導電体242aと接する。同様に、絶縁体281、絶縁体274、絶縁体280、および絶縁体244の開口の内壁に接して、導電体240bの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242bが位置しており、導電体240bが導電体242bと接する。
 ここで、図3(A)に、図1(A)にA5−A6の一点鎖線で示す部位、すなわちトランジスタ200のソース領域またはドレイン領域の断面図を示す。図3に示すように、導電体240a(導電体240b)は、少なくとも導電体242a(導電体242b)の上面、および側面と接し、さらに酸化物230bの側面、および酸化物230aの側面と接することが好ましい。特に、導電体240a(導電体240b)は、酸化物230のチャネル幅方向と交わる側面において、A5側の側面、およびA6側の側面の双方または一方と接することが好ましい。また、導電体240a(導電体240b)が、酸化物230のチャネル長方向と交わる側面において、A1側(A2側)の側面と接する構成にしてもよい。このように、導電体240a、および導電体240bを、導電体242a(導電体242b)の上面、および側面に加えて、酸化物230bの側面、および酸化物230aの側面と接する構成にすることにより、導電体240a(導電体240b)と導電体242a(導電体242b)のコンタクト部の上面積を増やすことなく、コンタクト部の接触面積を増加させ、導電体240a(導電体240b)と導電体242a(導電体242b)の接触抵抗を低減することができる。これにより、トランジスタのソース電極およびドレイン電極の微細化を図りつつ、オン電流を大きくすることができる。
 また、図3(B)は、導電体242a(導電体242b)の一部を露出する開口を形成する際、リソグラフィー法におけるマスクのアライメントが、A5方向にずれてしまった場合の例を示している。チャネル幅方向において、導電体242a(導電体242b)、酸化物230b、および酸化物230aの幅よりも、開口の幅を大きくすることにより、アライメントずれが生じても、導電体240a(導電体240b)は、導電体242a(導電体242b)の上面、および側面、酸化物230bの側面、および酸化物230aの側面と接することができ、良好なコンタクトが得られる。
 導電体240aおよび導電体240bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240aおよび導電体240bは積層構造としてもよい。
 また、導電体240を積層構造とする場合、酸化物230a、酸化物230b、導電体242、絶縁体244、絶縁体280、絶縁体274、絶縁体281と接する導電体には、導電体205aなどと同様に、水または水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体281より上層から水素、水などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。
 また、図示しないが、導電体240aの上面、および導電体240bの上面に接して配線として機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。なお、当該導電体は、導電体203などと同様に、絶縁体に設けられた開口に埋め込むように形成してもよい。
<半導体装置の構成材料>
 以下では、半導体装置に用いることができる構成材料について説明する。
<<基板>>
 トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
 また、基板として、可撓性基板を用いてもよい。なお、可撓性基板上にトランジスタを設ける方法としては、非可撓性の基板上にトランジスタを作製した後、トランジスタを剥離し、可撓性基板である基板に転置する方法もある。その場合には、非可撓性基板とトランジスタとの間に剥離層を設けるとよい。また、基板が伸縮性を有してもよい。また、基板は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板は、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下の厚さとなる領域を有する。基板を薄くすると、トランジスタを有する半導体装置を軽量化することができる。また、基板を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板上の半導体装置に加わる衝撃などを緩和することができる。すなわち、丈夫な半導体装置を提供することができる。
 可撓性基板である基板としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。また、基板として、繊維を編み込んだシート、フィルムまたは箔などを用いてもよい。可撓性基板である基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。可撓性基板である基板としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可撓性基板である基板として好適である。
<<絶縁体>>
 絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
 また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
 また、特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定である。そのため、例えば、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。また、例えば、酸化シリコン、および酸化窒化シリコンは、比誘電率の高い絶縁体と組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。
 また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。
 水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、または酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
 例えば、絶縁体274として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、シリコンの窒化物や、酸素を含むシリコンの窒化物、すなわち、窒化シリコンや、窒化酸化シリコンなどを用いることができる。
 特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。また、酸化ハフニウムは、酸化アルミニウムよりもバリア性が低いが、膜厚を厚くすることによりバリア性を高めることができる。したがって、酸化ハフニウムの膜厚を調整することで、水素、および窒素の適切な添加量を調整することができる。
 例えば、ゲート絶縁体として機能する絶縁体250および絶縁体224は、過剰酸素領域を有する絶縁体であることが好ましい。例えば、過剰酸素領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
 また、例えば、ゲート絶縁体の一部として機能する絶縁体222において、アルミニウム、ハフニウム、およびガリウムの一種または複数種の酸化物を含む絶縁体を用いることができる。特に、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
 例えば、絶縁体220には、熱に対して安定である酸化シリコンまたは酸化窒化シリコンを用いることが好ましい。ゲート絶縁体として、熱に対して安定な膜と、比誘電率が高い膜との積層構造とすることで、物理膜厚を保持したまま、ゲート絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
 上記積層構造とすることで、ゲート電極からの電界の影響を弱めることなく、オン電流の向上を図ることができる。また、ゲート絶縁体の物理的な厚みにより、ゲート電極と、チャネルが形成される領域との間の距離を保つことで、ゲート電極とチャネル形成領域との間のリーク電流を抑制することができる。
 絶縁体212、絶縁体216、絶縁体280、および絶縁体281は、比誘電率の低い絶縁体を有することが好ましい。例えば、絶縁体212、絶縁体216、絶縁体280、および絶縁体281は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。または、絶縁体212、絶縁体216、絶縁体280、および絶縁体281は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、またはアクリルなどがある。
 絶縁体210、絶縁体214、絶縁体244、および絶縁体274としては、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。絶縁体210、絶縁体214、絶縁体244、および絶縁体274としては、例えば、酸化アルミニウム、酸化ハフニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、または酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いればよい。
<<導電体>>
 導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
 なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
 導電体260、導電体203、導電体205、導電体242、および導電体240としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
<<金属酸化物>>
 酸化物230として、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
 ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、またはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
[金属酸化物の構成]
 以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
 なお、本明細書等において、CAAC(c−axis aligned crystal)、およびCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
 CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの半導体層に用いる場合、導電性の機能は、キャリアとなる電子(または正孔)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
 また、CAC−OSまたはCAC−metal oxideは、導電性領域、および絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
 また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
 また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、および高い電界効果移動度を得ることができる。
 すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
[金属酸化物の構造]
 酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、および非晶質酸化物半導体などがある。
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
 ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
 また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
 CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう。)など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
 なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、上述のナノ結晶により構成されることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
 酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
[金属酸化物を有するトランジスタ]
 続いて、上記金属酸化物をトランジスタのチャネル形成領域に用いる場合について説明する。
 なお、上記金属酸化物をトランジスタのチャネル形成領域に用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 また、トランジスタには、キャリア密度の低い金属酸化物を用いることが好ましい。金属酸化物膜のキャリア密度を低くする場合においては、金属酸化物膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。例えば、金属酸化物は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。
 また、高純度真性または実質的に高純度真性である金属酸化物膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、金属酸化物のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い金属酸化物をチャネル形成領域に有するトランジスタは、電気特性が不安定となる場合がある。
 したがって、トランジスタの電気特性を安定にするためには、金属酸化物中の不純物濃度を低減することが有効である。また、金属酸化物中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
 また、トランジスタの半導体に用いる金属酸化物として、結晶性の高い薄膜を用いることが好ましい。該薄膜を用いることで、トランジスタの安定性または信頼性を向上させることができる。該薄膜として、例えば、単結晶金属酸化物の薄膜または多結晶金属酸化物の薄膜が挙げられる。しかしながら、単結晶金属酸化物の薄膜または多結晶金属酸化物の薄膜を基板上に形成するには、高温またはレーザー加熱の工程が必要とされる。よって、製造工程のコストが増加し、さらに、スループットも低下してしまう。
 2009年に、CAAC構造を有するIn−Ga−Zn酸化物(CAAC−IGZOと呼ぶ。)が発見されたことが、非特許文献1および非特許文献2で報告されている。ここでは、CAAC−IGZOは、c軸配向性を有する、結晶粒界が明確に確認されない、低温で基板上に形成可能である、ことが報告されている。さらに、CAAC−IGZOを用いたトランジスタは、優れた電気特性および信頼性を有することが報告されている。
 また、2013年には、nc構造を有するIn−Ga−Zn酸化物(nc−IGZOと呼ぶ。)が発見された(非特許文献3参照。)。ここでは、nc−IGZOは、微小な領域(例えば、1nm以上3nm以下の領域)において原子配列に周期性を有し、異なる該領域間で結晶方位に規則性が見られないことが報告されている。
 非特許文献4および非特許文献5では、上記のCAAC−IGZO、nc−IGZO、および結晶性の低いIGZOのそれぞれの薄膜に対する電子線の照射による平均結晶サイズの推移が示されている。結晶性の低いIGZOの薄膜において、電子線が照射される前でさえ、1nm程度の結晶性IGZOが観察されている。よって、ここでは、IGZOにおいて、完全な非晶質構造(completely amorphous structure)の存在を確認できなかった、と報告されている。さらに、結晶性の低いIGZOの薄膜と比べて、CAAC−IGZOの薄膜およびnc−IGZOの薄膜は電子線照射に対する安定性が高いことが示されている。よって、トランジスタの半導体として、CAAC−IGZOの薄膜またはnc−IGZOの薄膜を用いることが好ましい。
 金属酸化物を用いたトランジスタは、非導通状態において極めてリーク電流が小さい、具体的には、トランジスタのチャネル幅1μmあたりのオフ電流がyA/μm(10−24A/μm)オーダである、ことが非特許文献6に示されている。例えば、金属酸化物を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(非特許文献7参照。)。
 また、金属酸化物を用いたトランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置への応用が報告されている(非特許文献8参照。)。表示装置では、表示される画像が1秒間に数十回切り換っている。1秒間あたりの画像の切り換え回数はリフレッシュレートと呼ばれている。また、リフレッシュレートを駆動周波数と呼ぶこともある。このような人の目で知覚が困難である高速の画面の切り換えが、目の疲労の原因として考えられている。そこで、表示装置のリフレッシュレートを低下させて、画像の書き換え回数を減らすことが提案されている。また、リフレッシュレートを低下させた駆動により、表示装置の消費電力を低減することが可能である。このような駆動方法を、アイドリング・ストップ(IDS)駆動と呼ぶ。
 CAAC構造およびnc構造の発見は、CAAC構造またはnc構造を有する金属酸化物を用いたトランジスタの電気特性および信頼性の向上、ならびに、製造工程のコスト低下およびスループットの向上に貢献している。また、該トランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置およびLSIへの応用研究が進められている。
[不純物]
 ここで、金属酸化物中における各不純物の影響について説明する。
 金属酸化物において、第14族元素の一つであるシリコンや炭素が含まれると、金属酸化物において欠陥準位が形成される。このため、金属酸化物におけるシリコンや炭素の濃度と、金属酸化物との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、金属酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、金属酸化物において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。したがって、当該金属酸化物において、チャネル形成領域の窒素はできる限り低減されていることが好ましい。例えば、金属酸化物中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
 また、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。当該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。したがって、水素が含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。
 また、金属酸化物に含まれる水素は、金属酸化物中に浅い欠陥準位(sDOS:shallow level Density of States)を形成する場合がある。浅い欠陥準位とは、伝導帯下端の近くに位置する界面準位を指す。浅い欠陥準位は、金属酸化物中の高密度領域と低密度領域の境界近傍に存在することが推定される。ここでは、金属酸化物中の高密度領域と低密度領域は、領域に含まれる水素の量で区別する。すなわち、低密度領域と比較して、高密度領域は、水素をより多く含む領域とする。金属酸化物中の高密度領域と低密度領域の境界近傍は、両領域間の応力歪によって、微小なクラックが生じやすく、当該クラック近傍に酸素欠損およびインジウムのダングリングボンドが発生し、ここに、水素または水などの不純物が局在することで、浅い欠陥準位が形成されるものと推定される。
 また、上記金属酸化物中の高密度領域は、低密度領域よりも結晶性が高くなる場合がある。また、上記金属酸化物中の高密度領域は、低密度領域よりも膜密度が高くなる場合がある。また、上記金属酸化物が、インジウムと、ガリウムと、亜鉛と、有する組成の場合、高密度領域は、インジウムと、ガリウムと、亜鉛と、を有し、低密度領域は、インジウムと、亜鉛と、を有する場合がある。別言すると、低密度領域は、高密度領域よりもガリウムの割合が少ない場合がある。
 なお、上記浅い欠陥準位は、酸素欠損に起因すると推定される。金属酸化物中の酸素欠損が増えると、浅い欠陥準位とともに深い欠陥準位(dDOS:deep level Density of States)も増えると推定される。これは、深い欠陥準位も酸素欠損によるものだと考えられるためである。なお、深い欠陥準位とは、バンドギャップの中央付近に位置する欠陥準位を指す。
 したがって、金属酸化物中の酸素欠損を抑制することで、浅い欠陥準位及び深い欠陥準位の双方の準位を低減させることが可能となる。また、浅い欠陥準位については、金属酸化物の成膜時の温度を調整することで、ある程度制御できる可能性がある。具体的には、金属酸化物の成膜時の温度を、170℃またはその近傍、好ましくは130℃またはその近傍、さらに好ましくは室温とすることで、浅い欠陥準位を低減することができる。
 また、金属酸化物の浅い欠陥準位は、金属酸化物を半導体層に用いたトランジスタの電気特性に影響を与える。すなわち、浅い欠陥準位によって、トランジスタのドレイン電流−ゲート電圧(Id−Vg)特性において、ゲート電圧Vgに対するドレイン電流Idの変化が緩やかとなり、トランジスタのオフ状態からオン状態への立ち上がり特性の良し悪しの目安の1つである、S値(Subthreshold Swing、SSとも言う。)が悪化する。これは浅い欠陥準位に電子がトラップされたためと考えられる。
 このため、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
<半導体装置の作製方法>
 次に、本発明に係るトランジスタ200を有する半導体装置について、作製方法を図4乃至図13を用いて説明する。また、図4乃至図13において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 まず、基板(図示しない。)を準備し、当該基板上に絶縁体210を成膜する。絶縁体210の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、またはALD(Atomic Layer Deposition)法などを用いて行うことができる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法も、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。また、ALD法は、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。
 CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整にかかる時間を要さない分、成膜にかかる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 本実施の形態では、絶縁体210として、スパッタリング法によって酸化アルミニウムを成膜する。また、絶縁体210は、多層構造としてもよい。例えば、スパッタリング法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、ALD法によって酸化アルミニウムを成膜する構造としてもよい。または、ALD法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、スパッタリング法によって酸化アルミニウムを成膜する構造としてもよい。
 次に絶縁体210上に絶縁体212を成膜する。絶縁体212の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体212として、CVD法によって酸化シリコンを成膜する。
 次に、絶縁体212に、絶縁体210に達する開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成にはウエットエッチング法を用いてもよいが、ドライエッチング法を用いるほうが微細加工には好ましい。また、絶縁体210は、絶縁体212をエッチングして開口を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、開口を形成する絶縁体212に酸化シリコン膜を用いた場合は、絶縁体210は、エッチングストッパ膜として機能する絶縁膜として、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜を用いるとよい。
 開口の形成後に、導電体203aとなる導電膜を成膜する。当該導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが好ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体203aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 本実施の形態では、導電体203aとなる導電膜として、スパッタリング法によって窒化タンタル、または、窒化タンタルの上に窒化チタンを積層した膜を成膜する。導電体203aとしてこのような金属窒化物を用いることにより、後述する導電体203bで銅など拡散しやすい金属を用いても、当該金属が導電体203aから外に拡散するのを抑制することができる。
 次に、導電体203aとなる導電膜上に、導電体203bとなる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、導電体203bとなる導電膜として、銅などの低抵抗導電性材料を成膜する。
 次に、CMP処理を行うことで、導電体203aとなる導電膜、ならびに導電体203bとなる導電膜の一部を除去し、絶縁体212を露出する。その結果、開口部のみに、導電体203aとなる導電膜、ならびに導電体203bとなる導電膜が残存する。これにより、上面が平坦な、導電体203aおよび導電体203bを含む導電体203を形成することができる(図4参照。)。なお、当該CMP処理により、絶縁体212の一部が除去される場合がある。
 次に、絶縁体212、および導電体203上に絶縁体214を成膜する。絶縁体214の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体214として、CVD法によって窒化シリコンを成膜する。このように、絶縁体214として、窒化シリコンなどの銅が透過しにくい絶縁体を用いることにより、導電体203bに銅など拡散しやすい金属を用いても、当該金属が絶縁体214より上の層に拡散するのを抑制することができる。
 次に、絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216として、CVD法によって酸化シリコンを成膜する。
 次に、絶縁体214および絶縁体216に、導電体203に達する開口を形成する。開口の形成にはウエットエッチング法を用いてもよいが、ドライエッチング法を用いるほうが微細加工には好ましい。
 開口の形成後に、導電体205aとなる導電膜を成膜する。該導電膜は、酸素の透過を抑制する機能を有する導電性材料を含むことが好ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 本実施の形態では、導電体205aとなる導電膜として、スパッタリング法によって窒化タンタルを成膜する。
 次に、導電体205aとなる導電膜上に、導電体205bとなる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 本実施の形態では、導電体205bとなる導電膜として、CVD法によって窒化チタンを成膜し、当該窒化チタン上にCVD法によってタングステンを成膜する。
 次に、CMP処理を行うことで、導電体205aとなる導電膜、ならびに導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する。その結果、開口部のみに、導電体205a、および導電体205bとなる導電膜が残存する。これにより、上面が平坦な、導電体205aおよび導電体205bを含む導電体205を形成することができる(図4参照。)。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 次に、絶縁体216、および導電体205上に絶縁体220を成膜する。絶縁体220の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体220として、CVD法によって酸化シリコンを成膜する。
 次に、絶縁体220上に絶縁体222を成膜する。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制することができる。
 絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体224として、CVD法によって酸化シリコンを成膜する。
 続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 本実施の形態では、加熱処理として、絶縁体224の成膜後に窒素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体224に含まれる水素や水などの不純物を除去することなどができる。
 また、加熱処理は、絶縁体220成膜後、および絶縁体222の成膜後のそれぞれのタイミングで行うこともできる。当該加熱処理は、上述した加熱処理条件を用いることができるが、絶縁体220成膜後の加熱処理は、窒素を含む雰囲気中で行うことが好ましい。
 ここで、絶縁体224に過剰酸素領域を形成するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えば、マイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率良く絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水素や水などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。
 ここで、絶縁体224上に、後工程において、絶縁体280、絶縁体244A、および導電体242Bをエッチングする際のストッパとして機能する絶縁体を成膜してもよい。当該絶縁体としては、絶縁体222に用いることができる絶縁体を用いればよい。当該絶縁体の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。当該絶縁体の成膜後に、前述した加熱処理を行ってもよい。
 次に、絶縁体224上に、酸化物230aとなる酸化膜230Aと、酸化物230bとなる酸化膜230Bを順に成膜する(図4参照。)。なお、上記酸化膜は、大気環境に晒さずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Aと酸化膜230Bとの界面近傍を清浄に保つことができる。
 酸化膜230A、および酸化膜230Bの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 例えば、酸化膜230A、および酸化膜230Bをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、例えば、In−M−Zn酸化物ターゲットを用いることができる。
 特に、酸化膜230Aの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、酸化膜230Aのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
 また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。
 本実施の形態では、酸化膜230Aとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜する。また、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。
 次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A、および酸化膜230B中の水素や水などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。
 次に、酸化膜230B上に導電膜242Aを形成する。導電膜242Aは、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。なお、導電膜242Aの形成は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 次に、導電膜242Aを加工して、酸化膜230A、および酸化膜230Bを加工するためのハードマスクを形成する。
 なお、導電膜242Aの加工はリソグラフィー法を用いて行えばよい。また、当該加工はドライエッチング法やウエットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
 リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、レジスト上に直接描画を行うため、上述のレジスト露光用のマスクは不要となる。なお、レジストマスクは、アッシングなどのドライエッチング処理を行う、ウエットエッチング処理を行う、ドライエッチング処理後にウエットエッチング処理を行う、またはウエットエッチング処理後にドライエッチング処理を行う、などで、除去することができる。
 次に、レジストマスクを用いて、導電膜242Aをエッチングすることでハードマスクとして機能する導電体242Bを形成する(図5参照。)。導電体242B形成後は、レジストマスクを除去してから酸化膜の加工を行ってもよいし、レジストマスクを残したまま行ってもよい。後者の場合、エッチング中にレジストマスクが消失することがある。上記酸化膜のエッチング後にハードマスクをエッチングにより除去してもよいが、本実施の形態では、導電体242Bをさらに加工して、ソース電極、およびドレイン電極を形成するため、導電体242Bは除去しない。
 ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
 次に、導電体242Bをハードマスクとして用い、酸化膜230A、および酸化膜230Bを島状に加工して、酸化物230a、および酸化物230bを形成する(図5参照。)。なお、当該加工処理にて、絶縁体224の一部が除去される場合がある。
 ここで、酸化物230a、および酸化物230bは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230a、および酸化物230bの側面は、絶縁体222の上面に対し、略垂直であることが好ましい。酸化物230a、および酸化物230bの側面が、絶縁体222の上面に対し、略垂直であることで、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。なお、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角が鋭角になる構成にしてもよい。その場合、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角は大きいほど好ましい。
 また、酸化物230a、酸化物230b、および導電体242Bの側面と、導電体242Bの上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、導電体242Bの端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とする。端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。
 なお、当該酸化膜の加工は、導電体242Bをハードマスクに用い、ドライエッチング法やウエットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
 また、上記ドライエッチングなどの処理を行うことによって、エッチングガスなどに起因した不純物が、酸化物230a、および酸化物230bなどの側面または内部に付着または拡散することがある。不純物としては、例えば、フッ素または塩素などがある。
 上記の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液など用いたウエット洗浄、プラズマを用いたプラズマ処理、または熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。
 ウエット洗浄としては、シュウ酸、リン酸、過酸化水素水、またはフッ化水素酸などを炭酸水または純水で希釈した水溶液を用いて洗浄処理を行ってもよい。または、純水または炭酸水を用いた超音波洗浄を行ってもよい。本実施の形態では、純水または炭酸水を用いた超音波洗浄を行う。
 続いて、加熱処理を行ってもよい。加熱処理の条件は、前述の加熱処理の条件を用いることができる。ただし、該加熱処理により、導電体242Bの酸化が懸念される場合、該加熱処理は、酸素を含まない雰囲気で行われることが好ましい。一方、導電体242Bが、耐酸化性材料を含む場合、該加熱処理を、酸素を含む雰囲気で行ってもよい。
 次に、絶縁体224、酸化物230a、酸化物230b、および導電体242B上に絶縁体244Aを成膜する(図6参照。)。なお、絶縁体244Aは、絶縁性バリアとして機能することが好ましく、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。バリア性を有する絶縁体244Aにより、導電体242Bの酸化を抑制することができる。なお、導電体242Bが、耐酸化性材料を含む場合、絶縁体244Aは、必ずしも設ける必要は無い。なお、絶縁体244Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 次に、絶縁体244Aの上に、絶縁体280を成膜する。絶縁体280は、比誘電率の低い絶縁体を有することが好ましい。例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、空孔を有する酸化シリコンを絶縁体280に用いると、後の工程で絶縁体280中に過剰酸素領域を容易に形成できるため好ましい。また、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。絶縁体280の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。または、スピンコート法、ディップ法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)、ドクターナイフ法、ロールコーター法、またはカーテンコーター法などを用いて行うことができる。本実施の形態では、絶縁体280として、CVD法によって酸化窒化シリコンを成膜する。
 なお、絶縁体280は、上面が平坦性を有するように形成することが好ましい。例えば、絶縁体280は、成膜した直後に上面が平坦性を有していてもよい。または、例えば、絶縁体280は、成膜後に基板裏面などの基準面と平行になるよう絶縁体などを上面から除去していくことで平坦性を有してもよい。このような処理を、平坦化処理と呼ぶ。平坦化処理としては、CMP処理、ドライエッチング処理などがある。本実施の形態では、平坦化処理として、CMP処理を用いる。ただし、絶縁体280の上面は必ずしも平坦性を有さなくてもよい。
 次に、少なくとも導電体205と重なる領域を有するように、絶縁体280に対して加工処理を行い、開口245を形成する(図7参照。)。開口の形成にはウエットエッチング法を用いてもよいが、微細加工が可能な点、また絶縁体280の側面を概略垂直に加工できる点からドライエッチング法を用いるほうが好ましい。また、開口245の形成は、絶縁体280上にハードマスクを形成して行うことが好ましい。当該ハードマスクは、導電体を用いてもよいし、絶縁体を用いてもよい。
 次に、絶縁体244A、および導電体242Bを加工し、絶縁体244、および導電体242(導電体242a、および導電体242b)を形成する(図8参照。)。該加工には、異方性エッチングが可能なドライエッチングを用いることが好ましい。該加工により、酸化物230aの側面、酸化物230bの表面、側面、および絶縁体224の表面の一部が露出する。また、該加工により絶縁体224の一部がエッチングされる場合がある。また、導電体242a、および導電体242bが互いに向かい合う面の断面は、テーパー形状を有する場合がある。一方、該断面は概略垂直形状を有していてもよい。
 このとき、絶縁体280および/または上記ハードマスクをマスクとして用いて、導電体242a、および導電体242bを形成する。よって、絶縁体280に形成された開口245は、導電体242aと導電体242bの間の領域に重畳することになる。これにより、後の工程において、導電体242aと導電体242bの間に導電体260を自己整合的に配置することができる。
 ここで、加熱処理を行うことが好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気で行う。一方、導電体242が耐酸化性を有する導電体の場合、該加熱処理を、酸素を含む雰囲気で行ってもよい。また、加熱処理は減圧状態で行ってもよい。例えば、加熱処理として、窒素雰囲気にて400℃の温度で1時間の処理を行う。
 該加熱処理により、酸化物230a、および酸化物230bに含まれる水素や水などの不純物を除去することができる。また、上記加工におけるドライエッチングにて酸化物230a、または酸化物230bに生じたダメージを回復することができる。また、酸素を含む雰囲気で加熱処理を行った場合、酸化物230a、および酸化物230bに酸素を添加することができる。
 また、上記加熱処理により、導電体242から、上述した金属元素が酸化物230へ拡散し、酸化物230に金属元素を添加することができる。また、酸化物230の導電体242との界面近傍における酸素が導電体242に吸収される場合がある。その結果、酸化物230の導電体242との界面近傍が金属化合物となり、低抵抗化する。なお、その際、酸化物230の一部と、上述した金属元素とが、合金化してもよい。酸化物230の一部と金属元素が、合金化することで、酸化物230に添加された金属元素は、比較的安定な状態となるため、信頼性の高い半導体装置を提供することができる。なお、図8(B)では、酸化物230の上記低抵抗化領域の一例として、点線にて領域243a、および領域243bを示している。
 領域243a、および領域243bは、酸化物230bの導電体242近傍において、深さ方向に拡散するように設けられる例を示しているが、本発明はこれに限らない。領域243a、および領域243bは、深さ方向において、酸化物230bの全体に形成されていてもよいし、酸化物230aに形成されていてもよい。また、領域243a、および領域243bは、水平方向において、導電体242から水平方向に拡散した領域(図2に示す領域231、および領域232)に形成される例を示しているが、本発明はこれに限らない。領域243a、および領域243bは、導電体242と重なる領域(領域231)のみに形成されてもよいし、後工程で形成される導電体260の一部と重なる領域(領域234の一部)にも形成されてもよい。
 また、酸化物230中の水素は、図2で示した、領域231に拡散し、領域231に存在する酸素欠損の中に入った場合、比較的安定な状態となる。また、領域234に存在する酸素欠損中の水素は、250℃以上の熱処理によって、酸素欠損から抜け出し、領域231に拡散し、領域231に存在する酸素欠損の中に入り、比較的安定な状態となる。したがって、熱処理によって、領域231は、より低抵抗化し、領域234は、高純度化(水、水素などの不純物の低減)し、より高抵抗化する。
 また、窒素または不活性ガス雰囲気で加熱処理した後に、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。
 なお、導電膜242Aの成膜後、または、導電体242の形成後の加熱処理において、導電膜242Aまたは導電体242に、酸化物230の領域231の酸素が吸収されることで、領域231に酸素欠損が生じる場合がある。酸化物230中の水素が、当該酸素欠損に入ることで、領域231のキャリア密度は、増加する。したがって、酸化物230の領域231は、n型となり、低抵抗化される。
 領域231の酸素濃度は、領域234の酸素濃度より低い場合がある。また、領域232の酸素濃度は、領域231の酸素濃度以上、領域234の酸素濃度以下となる場合がある。また、領域231の水素濃度は、領域234の水素濃度より高い場合がある。また、領域232の水素濃度は、領域234の水素濃度以上、領域231の水素濃度以下となる場合がある。
 次に、酸化物230aの側面、酸化物230bの上面および側面、導電体242の側面、絶縁体280の側面と接する領域を有するように、絶縁体280上に酸化物230cとなる酸化膜230Cを成膜する(図9参照)。
 酸化膜230Cの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化物230cに求める特性に合わせて、酸化膜230A、または酸化膜230Bと同様の成膜方法を用いて、酸化膜230Cを成膜すればよい。本実施の形態では、酸化膜230Cとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜する。
 続いて、酸化膜230C上に、絶縁体250Aを成膜する(図9参照。)。
 絶縁体250Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁体250Aとして、CVD法により、酸化窒化シリコンを成膜することが好ましい。なお、絶縁体250Aを成膜する際の成膜温度は、350℃以上450℃未満、特に400℃前後とすることが好ましい。絶縁体250Aを、400℃で成膜することで、不純物が少ない絶縁体を成膜することができる。
 なお、マイクロ波で酸素を励起し、高密度な酸素プラズマを発生させ、当該酸素プラズマに絶縁体250Aを曝すことで、絶縁体250A、へ酸素を導入することができる。
 また、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁体250Aの水分濃度および水素濃度を低減させることができる。
 ここで、導電体242と、後工程で形成される導電体260は、寄生容量を形成し得る。すなわち、導電体242の側面に設けられる絶縁膜は、該寄生容量の誘電体として機能し得る。一方、該絶縁膜は、トランジスタ200のゲート絶縁体として機能するため、20nm以下、好ましくは10nm以下、より好ましくは5nm以下の薄膜で形成するのが好ましい。導電体242の側面に設けられる絶縁膜を、上記寄生容量が無視できる程度に厚くするためには、絶縁膜を、少なくとも導電体242の側面において2層以上の積層構造とするのが好ましい。
 そこで、絶縁体250Aに対して異方性エッチングを行い、導電体242の側面、および絶縁体280の側面に、酸化膜230Cを介して絶縁体250Bを形成するのが好ましい(図10参照)。
 次に、酸化膜230C、および絶縁体250Bを覆うように絶縁体250Cを形成する(図11参照)。絶縁体250Cは、絶縁体250Aと同様の装置を用いて、同様の材料にて形成することができる。上記工程により、酸化物230b上方には、絶縁体250Cが設けられ、導電体242の側面には、絶縁体250B、および絶縁体250Cを設けることができる。すなわち、導電体242の側面に、酸化物230b上方の絶縁体より厚い絶縁体を設けることができる。
 続いて、導電膜260A、および導電膜260Bを順次成膜する(図11参照。)。導電膜260Aおよび導電膜260Bは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。例えば、導電膜260Aとして、窒化チタンを成膜し、導電膜260Bとして、タングステンを成膜してもよい。
 導電膜260Aとして、CVD法、またはスパッタリング法により、金属窒化物を形成するとよい。導電膜260Aに金属窒化物を用いることにより、絶縁体250Cが有する酸素により、導電膜260Bが酸化して導電率が低下することを防ぐことができる。
 また、導電膜260Bとして、低抵抗の金属膜を積層することで、駆動電圧が小さなトランジスタを提供することができる。
 続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。なお、加熱処理は行わなくてもよい場合がある。本加熱処理によって、酸化物230bに低抵抗領域が形成される場合がある。
 次に、導電膜260B、導電膜260A、絶縁体250B、絶縁体250C、および酸化膜230Cを加工して平坦化処理を行い、導電体260(導電体260a、および導電体260b)、絶縁体250(絶縁体250a、および絶縁体250b)、および酸化物230cを形成する(図12参照。)。平坦化処理には、CMP法を用いて、導電膜260B、導電膜260A、絶縁体250B、絶縁体250C、および酸化膜230Cを研磨する方法や、エッチバック法を用いる方法などがある。なお、導電膜260B、導電膜260A、絶縁体250B、絶縁体250C、および酸化膜230Cを一括で加工する必要はなく、条件を適宜変更しながら加工すればよい。
 このようにして、導電体260は、絶縁体280の開口、および導電体242aと導電体242bに挟まれた領域に、埋め込まれるように形成される。導電体260の形成は、リソグラフィー法を用いることなく自己整合的に行われるので、導電体260の位置合わせのマージンを設ける必要がない。よって、トランジスタ200の占有面積の縮小を図り、半導体装置の微細化、高集積化を図ることができる。また、リソグラフィー工程が不要となるので工程簡略化による生産性の向上が見込まれる。
 また、半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体260の導電性が下がらないようにする必要がある。そのために導電体260の膜厚を大きくすると、導電体260はアスペクト比が高い形状となりうる。本実施の形態では、導電体260を絶縁体280の開口に埋め込むように設けるため、導電体260をアスペクト比の高い形状にしても、工程中に導電体260を倒壊させることなく、形成することができる。
 このとき、導電体260は、少なくとも一部が、導電体205、酸化物230a、および酸化物230bと重なるように形成される。
 また、該加工により、絶縁体280の上面と、導電体260の上面と、絶縁体250の上面と、酸化物230cの上面は、概略一致することが好ましい。
 ここで、絶縁体250bは、酸化物230b、導電体242a(導電体242b)、および絶縁体280と、導電体260との間に配置され、絶縁体250aは、導電体242a(導電体242b)、および絶縁体280と、絶縁体250bとの間に配置される。つまり、絶縁体250は、酸化物230bと導電体260の間において、絶縁体250bを有し、導電体242と導電体260の間において、絶縁体250aおよび絶縁体250bを有する。よって、以上の方法でトランジスタ200を作製することにより、絶縁体250の膜厚T1を、膜厚T2より薄くすることができる。これにより、導電体260と導電体242の間の寄生容量を低減し、高い周波数特性を有するトランジスタ200を提供することができる。
 なお、本実施の形態では、絶縁体250を絶縁体250aと絶縁体250bを用いて作製する方法を示したが、本実施の形態に示す半導体装置の作製方法はこれに限られるものではない。例えば、図10に示す工程の異方性エッチングにおいて、絶縁体250Aの開口245の底部に当たる領域を完全に除去するのではなく、当該領域の膜厚を薄くする程度にすれればよい。これにより、絶縁体250Aだけで、膜厚T1が膜厚T2より薄い絶縁体250を形成することができる。
 また、本実施の形態において、絶縁体250に絶縁体250aと絶縁体250bの2層を用いたが、トランジスタ200の構成はこれに限られるものではない。導電体242と、導電体260の間に位置する絶縁体250の積層数を、酸化物230bと、導電体260の間に位置する絶縁体250の積層数より多くするなら、絶縁体250が3層以上で構成されていてもよい。
 次に、絶縁体280、および導電体260上に絶縁体274を成膜する(図13参照。)。絶縁体274は、バリア性を有するアルミニウムおよびハフニウムの一方または双方の酸化物を用いることが好ましい。例えば、スパッタリング法を用いて酸化アルミニウムを成膜することが好ましい。スパッタリング法を用いることにより、酸素を多く含み、かつ、水または水素などの不純物の少ない酸化アルミニウムを成膜することができる。
 また、スパッタリング装置を用いて、酸素ガスを含む雰囲気下で成膜を行うことで、絶縁体274を成膜しながら、絶縁体250および絶縁体280に酸素を導入することもできる。これにより、絶縁体274を酸素供給源として、絶縁体250および絶縁体280に絶縁体274中の酸素が供給され、絶縁体250および絶縁体280中に過剰酸素領域を形成することができる。
 上述のようにして過剰酸素領域が形成された絶縁体250および絶縁体280は、当該過剰酸素領域から、酸化物230cなどを通じて、酸化物230の領域234へ、酸素を効果的に供給することができる。
 続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。加熱処理を行うことで、絶縁体250などの絶縁体が有する酸素を酸化物230に供給することができる。また、酸化物230の領域231に形成された酸素欠損に捕獲された水素が、絶縁体244、および絶縁体280を通じて、絶縁体274へ吸収され、酸化物230中の水素を低減することができる場合がある。
 次に、絶縁体274の上に、絶縁体281を成膜する。絶縁体281の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。または、スピンコート法、ディップ法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)、ドクターナイフ法、ロールコーター法、またはカーテンコーター法などを用いて行うことができる。本実施の形態では、当該絶縁体281として、酸化窒化シリコンを用いる。
 次に、絶縁体281の一部を除去する。絶縁体281は、上面が平坦性を有するように形成することが好ましい。例えば、絶縁体281は、成膜した直後に上面が平坦性を有していてもよい。または、例えば、絶縁体281は、成膜後に基板裏面などの基準面と平行になるよう絶縁体などを上面から除去していくことで平坦性を有してもよい。このような処理を、平坦化処理と呼ぶ。平坦化処理としては、CMP処理、ドライエッチング処理などがある。本実施の形態では、平坦化処理として、CMP処理を用いる。ただし、絶縁体281の上面は必ずしも平坦性を有さなくてもよい。
 次に、絶縁体281、絶縁体274、絶縁体280、および絶縁体244に、酸化物230に達する開口を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。なお、導電体240a、および導電体240bが酸化物230の側面に接して設けられるように、酸化物230に達する開口において、酸化物230の側面が露出するように、当該開口を形成する。
 次に、導電体240の第1の導電体、および導電体240の第2の導電体となる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 次に、CMP処理を行うことで、導電体240a、および導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240a、および導電体240bを形成することができる(図13参照。)。なお、当該CMP処理により、絶縁体281の一部が除去する場合がある。
 以上により、トランジスタ200を有する半導体装置を作製することができる。図4乃至図13に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、良好な電気特性を有し、微細化または高集積化が可能なトランジスタ200を作製することができる。
 本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、良好な周波数特性を有する半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、オフ電流の小さい半導体装置を提供することができる。または、本発明の一態様により、オン電流の大きい半導体装置を提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
 以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
<半導体装置の変形例>
 以下では、図14乃至図17を用いて、先の<半導体装置の構成例>で示したものとは異なる、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
 また、図14乃至図17において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 なお、図14乃至図17に示す半導体装置において、<半導体装置の構成例>に示した半導体装置(図1参照。)を構成する構造と同機能を有する構造には、同符号を付記する。なお、本項目において、トランジスタ200の構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。
 図14に示すトランジスタ200は、酸化物230、導電体242、および絶縁体280と、酸化物230cと、の間に絶縁体252が配置されている点において、図1に示すトランジスタ200と異なる。ここで、絶縁体252は、絶縁体244に用いることができる、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。このような絶縁体252を用いることにより、導電体242aおよび導電体242bの絶縁体252と接する面の酸化を抑制することができる。
 また、図14に示すトランジスタ200は、導電体242と導電体260の間に絶縁体252が設けられ、酸化物230bと導電体260の間には絶縁体252が設けられない。よって、図14に示すトランジスタ200では、絶縁体252が設けられることで、導電体260と導電体242の間の寄生容量を低減することができる。これにより、図14に示すトランジスタ200では、導電体242と導電体260の間の絶縁体250の膜厚と、酸化物230bと導電体260の間の絶縁体250の膜厚を概略同じにする構成にしてもよい。
 また、図1に示すトランジスタ200においては、酸化物230として、酸化物230a、酸化物230b、および酸化物230cの3層を積層する構成を示したが、本実施の形態に示す半導体装置はこれに限られるものではない。例えば、図15に示すトランジスタ200のように、酸化物230cを設けない構成にしてもよい。
 また、図1に示すトランジスタ200においては、導電体242、酸化物230、および絶縁体224を覆って、絶縁体244を設ける構成を示したが、本実施の形態に示す半導体装置はこれに限られるものではない。例えば、導電体242に耐酸化性材料を用いる場合、図16に示すトランジスタ200のように、絶縁体244を設けない構成にしてもよい。
 絶縁体244を設けない構成にすることにより、絶縁体274の成膜により、絶縁体280に添加した酸素を、酸化物230の側面からも供給することができる。また、この場合、絶縁体280に添加した酸素を、絶縁体224を介して酸化物230に供給することもできる。これにより、酸化物230の領域234へ、酸素をより効果的に供給することができる。
 図17に示すトランジスタ200は、導電体242が設けられていない点において、図1に示すトランジスタ200と異なる。図17に示すトランジスタ200においては、例えば、酸化物230のキャリア密度を増大させ、低抵抗化させることができる元素をドーパントとして添加することによって、領域243を形成すればよい。
 ドーパントとしては、酸素欠損を形成する元素、または酸素欠損と結合する元素などを用いればよい。このような元素としては、代表的には、ホウ素、またはリンが挙げられる。また、水素、炭素、窒素、フッ素、硫黄、塩素、チタン、希ガス等を用いてもよい。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。また、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの金属元素の中から選ばれるいずれか一つまたは複数の金属元素を添加してもよい。上述した中でもドーパントとしては、ホウ素、及びリンが好ましい。ホウ素、リンをドーパントとして用いる場合、アモルファスシリコン、または低温ポリシリコンの製造ラインの装置を使用することができるため、設備投資を抑制することができる。上記元素の濃度は、SIMSなどを用いて測定すればよい。
 特に、領域243に添加する元素として、酸化物を形成しやすい元素を用いることが好ましい。このような元素としては、代表的にはホウ素、リン、アルミニウム、マグネシウム等がある。領域243に添加された当該元素は、酸化物230中の酸素を奪って酸化物を形成しうる。その結果、領域243には多くの酸素欠損が生じる。当該酸素欠損と、酸化物230中の水素とが結合することでキャリアが生じ、極めて低抵抗な領域となる。さらに、領域243に添加された元素は安定な酸化物の状態で領域243に存在するため、その後の工程で高い温度を要する処理が行われたとしても、領域243から脱離しにくい。すなわち、領域243に添加する元素として、酸化物を形成しやすい元素を用いることで、酸化物230中に高温のプロセスを経ても高抵抗化しにくい領域を形成できる。
 酸化物230にソース領域またはドレイン領域として機能する領域243を形成することで、金属で形成されたソース電極およびドレイン電極を設けることなく、領域243にプラグとして機能する導電体240を接続することができる。
 ドーパントの添加によって領域243を形成する場合、例えば、酸化物230c、絶縁体250、および導電体260を設ける位置に、ダミーゲートを形成し、当該ダミーゲートをマスクとして用いて、ドーパントの添加を行えばよい。これにより、酸化物230において、当該ダミーゲートが重畳していない領域に、上記の元素を含む領域243を形成することができる。
 ドーパントの添加方法としては、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。質量分離を行う場合、添加するイオン種およびその濃度を厳密に制御することができる。一方、質量分離を行わない場合、短時間で高濃度のイオンを添加することができる。また、原子または分子のクラスターを生成してイオン化するイオンドーピング法を用いてもよい。なお、ドーパントを、イオン、ドナー、アクセプター、不純物または元素などと言い換えてもよい。
 また、領域243に酸素欠損を形成する元素を添加して、熱処理を行うことで、チャネル形成領域として機能する領域234に含まれる水素を、領域243に含まれる酸素欠損で捕獲できる場合がある。これにより、トランジスタ200に安定な電気特性を与え、信頼性の向上を図ることができる。
 なお、ドーパントの添加後は、図6に示すように絶縁体280を成膜し、ダミーゲートが露出するまでCMP処理を行い、露出したダミーゲートを除去すればよい。このようにして、図7に示す開口245を形成することができる。
 以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
 本実施の形態では、上記実施の形態とは異なる、記憶装置として機能する半導体装置の一形態を、図18乃至図21を用いて説明する。
<記憶装置1>
 図18(A)(B)に記憶装置を構成するセル600を示す。セル600は、トランジスタ200a、トランジスタ200b、容量素子100a、および容量素子100bを有している。図18(A)は、セル600の上面図である。また、図18(B)は、図18(A)にA1−A2の一点鎖線で示す部位の断面図である。なお、図18(A)の上面図では、図の明暸化のために一部の要素を省いて図示している。
 セル600は、トランジスタ200aおよびトランジスタ200bを有し、トランジスタ200aの上に重畳して容量素子100aを有し、トランジスタ200bの上に重畳して容量素子100bを有する。セル600では、トランジスタ200aとトランジスタ200b、および容量素子100aと容量素子100bは、線対称に配置される場合がある。よって、トランジスタ200aとトランジスタ200bは同様の構成を有することが好ましく、容量素子100aと容量素子100bは同様の構成を有することが好ましい。
 トランジスタ200aおよびトランジスタ200b上の絶縁体281の上に絶縁体130を有し、絶縁体130の上に絶縁体150を有する。ここで、絶縁体150は、絶縁体281に用いることができる絶縁体を用いればよい。
 さらに、絶縁体150の上に導電体160を有する。また、絶縁体280、絶縁体274、絶縁体281、絶縁体130、および絶縁体150に形成された開口に埋め込まれるように導電体240が設けられる。導電体240の下面は導電体242bと接し、導電体240の上面は導電体160と接している。
 トランジスタ200aおよびトランジスタ200bは、上記実施の形態に示すトランジスタ200を用いることができる。よって、トランジスタ200aおよびトランジスタ200bの構成については、上記トランジスタ200の記載を参酌することができる。また、図18(A)(B)において、トランジスタ200a、トランジスタ200bの要素の符号は省略している。なお、図18(A)(B)に示すトランジスタ200aおよびトランジスタ200bは一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
 トランジスタ200aとトランジスタ200bは、両方とも酸化物230により構成されており、トランジスタ200aのソースおよびドレインの一方と、トランジスタ200bのソースおよびドレインの一方は、いずれも導電体242bと接している。よって、トランジスタ200aのソースおよびドレインの一方と、トランジスタ200bのソースおよびドレインの一方は、導電体242bを介して導電体240と電気的に接続している。これにより、トランジスタ200aおよびトランジスタ200bのコンタクト部が共有され、プラグとコンタクトホールの数を低減することができる。このように、ソースおよびドレインの一方と電気的に接続する配線を共有することで、メモリセルアレイの占有面積をさらに縮小することができる。
[容量素子100aおよび容量素子100b]
 図18(A)(B)に示すように、容量素子100aは、トランジスタ200aと重畳する領域に設ける。同様に、容量素子100bは、トランジスタ200bと重畳する領域に設ける。なお、容量素子100bは、容量素子100aが有する構造と、それぞれ対応する構造を有する。以下において、容量素子100aの詳細な構造について説明するが、特にことわりが無い限り容量素子100bについては、容量素子100aの説明を参酌することができる。
 容量素子100aは、導電体110、絶縁体130、絶縁体130上の導電体120を有する。ここで、導電体110および導電体120は、導電体203、導電体205、または導電体260などに用いることができる導電体を用いればよい。
 容量素子100aは、絶縁体244、絶縁体280、絶縁体274、および絶縁体281が有する開口に形成されている。当該開口の、底面、および側面において、下部電極として機能する導電体110と、上部電極として機能する導電体120が、誘電体として機能する絶縁体130を挟んで対向する構成である。ここで、容量素子100aの導電体110は、トランジスタ200aの導電体242aに接して形成されている。
 特に、絶縁体280、絶縁体274、および絶縁体281が有する開口の深さを深くすることで、投影面積は変わらず、容量素子100aの静電容量を大きくすることができる。従って、容量素子100aは、シリンダー型(底面積よりも、側面積の方が大きい)とすることが好ましい。
 上記構成とすることで、容量素子100aの単位面積当たりの静電容量を大きくでき、半導体装置の微細化または高集積化を推し進めることができる。また、絶縁体280、絶縁体274、および絶縁体281の膜厚により、容量素子100aの静電容量の値を、適宜設定することができる。従って、設計自由度が高い半導体装置を提供することができる。
 また、絶縁体130は、誘電率の大きい絶縁体を用いることが好ましい。例えば、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を用いることができる。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
 また、絶縁体130は、積層構造であってもよく、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などから、2層以上を選び積層構造としても良い。例えば、ALD法によって、酸化ハフニウム、酸化アルミニウムおよび酸化ハフニウムを順に成膜し、積層構造とすることが好ましい。酸化ハフニウムおよび酸化アルミニウムの膜厚は、それぞれ、0.5nm以上5nm以下とする。このような積層構造とすることで、容量値が大きく、かつ、リーク電流の小さな容量素子100aとすることができる。
 なお、導電体110、または導電体120は、積層構造であってもよい。例えば、導電体110、または導電体120は、チタン、窒化チタン、タンタル、または窒化タンタルを主成分とする導電性材料と、タングステン、銅、またはアルミニウムを主成分とする導電性材料と、の積層構造としてもよい。また、導電体110、または導電体120は、単層構造としてもよいし、3層以上の積層構造としてもよい。
 また、容量素子100aを形成する開口において、導電体120の内側に絶縁体140を形成することが好ましい。ここで、絶縁体140は、絶縁体281に用いることができる絶縁体を用いればよい。また、絶縁体140の上面は、導電体120の上面と概略面一であることが好ましい。ただし、これに限られず、例えば、導電体120の膜厚を大きくして開口を埋めてもよいし、導電体120の内側に開口が形成された状態で、絶縁体150を成膜して当該開口を埋めてもよい。
[セルアレイの構造]
 次に、上記のセルを行列またはマトリクス状に配置した、セルアレイの一例について、図19乃至図21を用いて説明する。
 図19は、図18に示すセルを、マトリクス状に配置した一形態を示す回路図である。図20は、図19に示す回路図のセル600と、セル600に隣接するセル601の近傍の断面構造を示す模式図である。図21は、図19に示す回路図の配線WL、配線BL、および酸化物230のレイアウトを示した模式図である。図19乃至図21では、配線BLの延伸方向をx方向とし、配線WLの延伸方向をy方向とし、xy平面に垂直な方向をz方向とする。なお、図19および図21では、セルを3×3個配置する例を示しているが、本実施の形態はこれに限られることなく、セルアレイに含まれるメモリセルまたは配線等の、個数及び配置は、適宜設定すればよい。また、図21の上面図では、図の明瞭化のために、図19に示す一部の要素を省いて図示している。
 図19に示すように、セルを構成するトランジスタ200aとトランジスタ200bのソースおよびドレインの一方が共通の配線BL(BL01、BL02、BL03)と電気的に接続する。また、当該配線BLは、x方向に配列されたセル600が有するトランジスタ200aとトランジスタ200bのソースおよびドレインの一方とも電気的に接続する。一方、セル600を構成する、トランジスタ200aの第1のゲートと、トランジスタ200bの第1のゲートは、それぞれ異なる配線WL(WL01乃至WL06)と電気的に接続する。また、これらの配線WLは、y方向に配列されたセル600が有する、トランジスタ200aの第1のゲートと、トランジスタ200bの第1のゲートと、それぞれ電気的に接続する。
 また、セル600が有する、容量素子100aの一方の電極、および容量素子100bの一方の電極は、配線PLと電気的に接続する。例えば、配線PLはy方向に延伸して形成すればよい。
 また、各セル600が有するトランジスタ200aおよびトランジスタ200bには第2のゲートBGが設けられていてもよい。BGに印加される電位により、トランジスタのしきい値を制御することができる。当該BGはトランジスタ400と接続されており、BGに印加される電位は、トランジスタ400によって制御することができる。
 例えば、図20に示すように、導電体160をx方向に延伸させて配線BLとして機能させ、導電体260をy方向に延伸させて配線WLとして機能させ、導電体120をy方向に延伸させて配線PLとして機能させることができる。また、導電体203をy方向に延伸させてBGに接続する配線として機能させることもできる。
 また、図20に示すように、セル600が有する容量素子100bの一方の電極として機能する導電体120が、セル601が有する容量素子100aの一方の電極をも兼ねる構成とすることが好ましい。また、図示しないが、セル600が有する容量素子100aの一方の電極として機能する導電体120が、セル600の左側に隣接するセルの容量素子の一方の電極を兼ねている。セル601の右側のセルについても同様の構成となっている。従って、セルアレイを構成することができる。当該セルアレイの構成とすることで、隣り合うセルの間隔を小さくすることができるので、セルアレイの投影面積を小さくすることができ、高集積化が可能となる。
 また、図21に示すように、酸化物230および配線WLをマトリクス状に配置することで、図19に示す回路図の半導体装置を形成することができる。ここで、配線BLは、配線WLおよび酸化物230とは異なる層に設けることが好ましい。特に、配線BLよりも、下層に容量素子100a、および容量素子100bを設けることで、酸化物230の長辺方向と、配線BLが、概略平行になるレイアウトを実現することができる。従って、セルのレイアウトを単純化することができ、設計の自由度が向上し、工程コストを低減することができる。
 また、図21では、酸化物230の長辺が配線WLの延伸方向と概略直交するように、酸化物230および配線WLを設けたが、これに限られるものではない。例えば、酸化物230の長辺が配線WLの延伸方向と直交せず、酸化物230の長辺が配線WLの延伸方向に対して傾けて配置されるレイアウトにしてもよい。好ましくは、酸化物230の長辺と配線WLのなす角が、20°以上70°以下、好ましくは30°以上60°以下になるように、酸化物230と配線WLを設ければよい。
 また、当該セルアレイを平面のみでなく積層する構成としてもよい。複数のセルアレイを積層することにより、セルアレイの専有面積を増やすことなく、セルを集積して配置することができる。つまり、3Dセルアレイを構成することができる。
 以上のように、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オフ電流の小さい半導体装置を提供することができる。または、本発明の一態様により、オン電流の大きい半導体装置を提供することができる。または、本発明の一態様により、信頼性の高い半導体装置を提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
 以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、上記実施の形態とは異なる、記憶装置として機能する半導体装置の一形態を、図22および図23を用いて説明する。
<記憶装置2>
 図22に示す記憶装置は、トランジスタ300と、トランジスタ200、および容量素子100を有している。図22は、トランジスタ200およびトランジスタ300のチャネル長方向の断面図である。図23には、トランジスタ300近傍のトランジスタ300のチャネル幅方向の断面図を示す。
 トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
 図22に示す記憶装置において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200のトップゲートと電気的に接続され、配線1006はトランジスタ200のボトムゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。
 図22に示す記憶装置は、トランジスタ300のゲートの電位が保持可能という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能である。
 情報の書き込みおよび保持について説明する。まず、配線1004の電位を、トランジスタ200が導通状態となる電位にして、トランジスタ200を導通状態とする。これにより、配線1003の電位が、トランジスタ300のゲート、および容量素子100の電極の一方と電気的に接続するノードSNに与えられる。すなわち、トランジスタ300のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下、Lowレベル電荷、Highレベル電荷という。)のどちらかが与えられるものとする。その後、配線1004の電位を、トランジスタ200が非導通状態となる電位にして、トランジスタ200を非導通状態とすることにより、ノードSNに電荷が保持される(保持)。
 トランジスタ200のオフ電流が小さい場合、ノードSNの電荷は長期間にわたって保持される。
 次に情報の読み出しについて説明する。配線1001に所定の電位(定電位)を与えた状態で、配線1005に適切な電位(読み出し電位)を与えると、配線1002は、ノードSNに保持された電荷量に応じた電位をとる。これは、トランジスタ300をnチャネル型とすると、トランジスタ300のゲートにHighレベル電荷が与えられている場合の見かけ上の閾値電圧Vth_Hは、トランジスタ300のゲートにLowレベル電荷が与えられている場合の見かけ上の閾値電圧Vth_Lより低くなるためである。ここで、見かけ上の閾値電圧とは、トランジスタ300を導通状態とするために必要な配線1005の電位をいうものとする。したがって、配線1005の電位をVth_HとVth_Lの間の電位Vとすることにより、ノードSNに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードSNにHighレベル電荷が与えられていた場合には、配線1005の電位がV(>Vth_H)となれば、トランジスタ300は導通状態となる。一方、ノードSNにLowレベル電荷が与えられていた場合には、配線1005の電位がV(<Vth_L)となっても、トランジスタ300は非導通状態のままである。このため、配線1002の電位を判別することで、ノードSNに保持されている情報を読み出すことができる。
 なお、メモリセルをアレイ状に配置する場合、読み出し時には、所望のメモリセルの情報を読み出さなくてはならない。例えば、メモリセルアレイがNOR型の構成の場合、情報を読み出さないメモリセルのトランジスタ300を非導通状態にすることで、所望のメモリセルの情報のみを読み出すことができる。この場合、ノードSNに与えられた電荷によらずトランジスタ300が非導通状態となるような電位、つまり、Vth_Hより低い電位を、情報を読み出さないメモリセルと接続される配線1005に与えればよい。または、例えば、メモリセルアレイがNAND型の構成の場合、情報を読み出さないメモリセルのトランジスタ300を導通状態にすることで、所望のメモリセルの情報のみを読み出すことができる。この場合、ノードSNに与えられた電荷によらずトランジスタ300が導通状態となるような電位、つまり、Vth_Lより高い電位を、情報を読み出さないメモリセルと接続される配線1005に与えればよい。
<記憶装置2の構造>
 本発明の一態様の記憶装置は、図22に示すようにトランジスタ300、トランジスタ200、容量素子100を有する。トランジスタ200はトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200の上方に設けられている。
 トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
 トランジスタ300は、図23に示すように、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
 トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
 低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
 ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
 なお、導電体の材料により、仕事関数が定まるため、導電体の材料を変更することでトランジスタのVthを調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
 なお、図22に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
 トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
 絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
 絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 また、絶縁体324には、基板311、またはトランジスタ300などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
 水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 各プラグ、および配線(導電体328、および導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図22において、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
 なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
 絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図22において、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグ、または配線としての機能を有する。なお、導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
 絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図22において、絶縁体370、絶縁体372、および絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、および絶縁体374には、導電体376が形成されている。導電体376は、プラグ、または配線としての機能を有する。なお、導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
 絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、図22において、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグ、または配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
 上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る記憶装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
 絶縁体384上には絶縁体210、絶縁体212、絶縁体214、および絶縁体216が、順に積層して設けられている。絶縁体210、絶縁体212、絶縁体214、および絶縁体216のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
 例えば、絶縁体210、および絶縁体214には、例えば、基板311、またはトランジスタ300を設ける領域などから、トランジスタ200を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
 水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 また、水素に対するバリア性を有する膜として、例えば、絶縁体210、および絶縁体214には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。
 また、例えば、絶縁体212、および絶縁体216には、絶縁体320と同様の材料を用いることができる。また、比較的誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体212、および絶縁体216として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
 また、絶縁体210、絶縁体212、絶縁体214、および絶縁体216には、導電体218、およびトランジスタ200を構成する導電体(導電体205)等が埋め込まれている。なお、導電体218は、容量素子100、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体218は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 特に、絶縁体210、および絶縁体214と接する領域の導電体218は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ200とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
 絶縁体216の上方には、トランジスタ200が設けられている。なお、トランジスタ200の構造は、先の実施の形態で説明した半導体装置が有するトランジスタを用いればよい。また、図22に示すトランジスタ200は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
 トランジスタ200の上方には、絶縁体281を設ける。
 絶縁体281上には、絶縁体282が設けられている。絶縁体282は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体282には、絶縁体214と同様の材料を用いることができる。例えば、絶縁体282には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。
 また、絶縁体282上には、絶縁体286が設けられている。絶縁体286は、絶縁体320と同様の材料を用いることができる。また、比較的誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体286として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
 また、絶縁体220、絶縁体222、絶縁体224、絶縁体280、絶縁体274、絶縁体281、絶縁体282、および絶縁体286には、導電体246、および導電体248等が埋め込まれている。
 導電体246、および導電体248は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体246、および導電体248は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 続いて、トランジスタ200の上方には、容量素子100が設けられている。容量素子100は、導電体110と、導電体120、絶縁体130とを有する。
 また、導電体246、および導電体248上に、導電体112を設けてもよい。導電体112は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体110は、容量素子100の電極としての機能を有する。なお、導電体112、および導電体110は、同時に形成することができる。
 導電体112、および導電体110には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
 図22では、導電体112、および導電体110は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 絶縁体130を介して、導電体110と重畳するように、導電体120を設ける。なお、導電体120は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
 導電体120、および絶縁体130上には、絶縁体150が設けられている。絶縁体150は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体150は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
 本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制するとともに、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有する半導体装置を提供することができる。または、オフ電流が小さい酸化物半導体を有する半導体装置を提供することができる。または、消費電力が低減された半導体装置を提供することができる。または、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
 以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
 本実施の形態では、図24乃至図26を用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ。)、および容量素子が適用されている記憶装置の一例として、NOSRAMについて説明する。NOSRAM(登録商標)とは「Nonvolatile Oxide Semiconductor RAM」の略称であり、ゲインセル型(2T型、3T型)のメモリセルを有するRAMを指す。なお、以下において、NOSRAMのようにOSトランジスタを用いたメモリ装置を、OSメモリと呼ぶ場合がある。
 NOSRAMでは、メモリセルにOSトランジスタが用いられるメモリ装置(以下、「OSメモリ」と呼ぶ。)が適用されている。OSメモリは、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有するメモリである。OSトランジスタが極小オフ電流のトランジスタであるので、OSメモリは優れた保持特性をもち、不揮発性メモリとして機能させることができる。
<<NOSRAM1600>>
 図24にNOSRAMの構成例を示す。図24に示すNOSRAM1600は、メモリセルアレイ1610、コントローラ1640、行ドライバ1650、列ドライバ1660、出力ドライバ1670を有する。なお、NOSRAM1600は、1のメモリセルで多値データを記憶する多値NOSRAMである。
 メモリセルアレイ1610は複数のメモリセル1611、複数のワード線WWL、複数のワード線RWL、ビット線BL、ソース線SLを有する。ワード線WWLは書き込みワード線であり、ワード線RWLは読み出しワード線である。NOSRAM1600では、1のメモリセル1611で3ビット(8値)のデータを記憶する。
 コントローラ1640は、NOSRAM1600全体を統括的に制御し、データWDA[31:0]の書き込み、データRDA[31:0]の読み出しを行う。コントローラ1640は、外部からのコマンド信号(例えば、チップイネーブル信号、書き込みイネーブル信号など)を処理して、行ドライバ1650、列ドライバ1660および出力ドライバ1670の制御信号を生成する。
 行ドライバ1650は、アクセスする行を選択する機能を有する。行ドライバ1650は、行デコーダ1651、およびワード線ドライバ1652を有する。
 列ドライバ1660は、ソース線SLおよびビット線BLを駆動する。列ドライバ1660は、列デコーダ1661、書き込みドライバ1662、DAC(デジタル−アナログ変換回路)1663を有する。
 DAC1663は3ビットのデジタルデータをアナログ電圧に変換する。DAC1663は32ビットのデータWDA[31:0]を3ビットごとに、アナログ電圧に変換する。
 書き込みドライバ1662は、ソース線SLをプリチャージする機能、ソース線SLを電気的に浮遊状態にする機能、ソース線SLを選択する機能、選択されたソース線SLにDAC1663で生成した書き込み電圧を入力する機能、ビット線BLをプリチャージする機能、ビット線BLを電気的に浮遊状態にする機能等を有する。
 出力ドライバ1670は、セレクタ1671、ADC(アナログ−デジタル変換回路)1672、出力バッファ1673を有する。セレクタ1671は、アクセスするソース線SLを選択し、選択されたソース線SLの電位をADC1672に送信する。ADC1672は、アナログ電圧を3ビットのデジタルデータに変換する機能を持つ。ソース線SLの電位はADC1672において、3ビットのデータに変換され、出力バッファ1673はADC1672から出力されるデータを保持する。
 なお、本実施の形態に示す、行ドライバ1650、列ドライバ1660、および出力ドライバ1670の構成は、上記に限定されるものではない。メモリセルアレイ1610の構成または駆動方法などに応じて、これらのドライバおよび当該ドライバに接続される配線の配置を変更してもよいし、これらのドライバおよび当該ドライバに接続される配線の有する機能を変更または追加してもよい。例えば、上記のソース線SLが有する機能の一部を、ビット線BLに有する構成にしてもよい。
 なお、上記においては、各メモリセル1611に保持させる情報量を3ビットとしたが、本実施の形態に示す記憶装置の構成はこれに限られない。各メモリセル1611に保持させる情報量を2ビット以下にしてもよいし、4ビット以上にしてもよい。例えば、各メモリセル1611に保持させる情報量を1ビットにする場合、DAC1663およびADC1672を設けない構成にしてもよい。
<メモリセル1611乃至メモリセル1614>
 図25(A)はメモリセル1611の構成例を示す回路図である。メモリセル1611は2T型のゲインセルであり、メモリセル1611はワード線WWL、ワード線RWL、ビット線BL、ソース線SL、配線BGLに電気的に接続されている。メモリセル1611は、ノードSN、OSトランジスタMO61、トランジスタMP61、容量素子C61を有する。OSトランジスタMO61は書き込みトランジスタである。トランジスタMP61は読み出しトランジスタであり、例えばpチャネル型Siトランジスタで構成される。容量素子C61はノードSNの電位を保持するための保持容量である。ノードSNはデータの保持ノードであり、ここではトランジスタMP61のゲートに相当する。
 メモリセル1611の書き込みトランジスタがOSトランジスタMO61で構成されているため、NOSRAM1600は長時間データを保持することが可能である。
 図25(A)の例では、ビット線は、書き込みと読み出しで共通のビット線であるが、図25(B)に示すように、書き込みビット線として機能する、ビット線WBLと、読み出しビット線として機能する、ビット線RBLとを設けてもよい。
 図25(C)乃至図25(E)にメモリセルの他の構成例を示す。図25(C)乃至図25(E)には、書き込み用のビット線WBLと読み出し用のビット線RBLを設けた例を示しているが、図25(A)のように書き込みと読み出しで共有されるビット線を設けてもよい。
 図25(C)に示すメモリセル1612は、メモリセル1611の変形例であり、読み出しトランジスタをnチャネル型トランジスタ(MN61)に変更したものである。トランジスタMN61はOSトランジスタであってもよいし、Siトランジスタであってもよい。
 メモリセル1611、メモリセル1612において、OSトランジスタMO61はボトムゲートの無いOSトランジスタであってもよい。
 図25(D)に示すメモリセル1613は、3T型ゲインセルであり、ワード線WWL、RWL、ビット線WBL、ビット線RBL、ソース線SL、配線BGL、配線PCLに電気的に接続されている。メモリセル1613は、ノードSN、OSトランジスタMO62、トランジスタMP62、トランジスタMP63、容量素子C62を有する。OSトランジスタMO62は書き込みトランジスタである。トランジスタMP62は読み出しトランジスタであり、トランジスタMP63は選択トランジスタである。
 図25(E)に示すメモリセル1614は、メモリセル1613の変形例であり、読み出しトランジスタおよび選択トランジスタをnチャネル型トランジスタ(トランジスタMN62、トランジスタMN63)に変更したものである。トランジスタMN62、トランジスタMN63はOSトランジスタであってもよいし、Siトランジスタであってもよい。
 メモリセル1611乃至メモリセル1614に設けられるOSトランジスタは、ボトムゲートの無いトランジスタでもよいし、ボトムゲートが有るトランジスタであってもよい。
 上記においては、メモリセル1611などが並列に接続された、いわゆるNOR型の記憶装置について説明したが、本実施の形態に示す記憶装置はこれに限られるものではない。例えば、以下に示すようなメモリセル1615が直列に接続された、いわゆるNAND型の記憶装置にしてもよい。
 図26はNAND型のメモリセルアレイ1610の構成例を示す回路図である。図26に示すメモリセルアレイ1610は、ソース線SL、ビット線RBL、ビット線WBL、ワード線WWL、ワード線RWL、配線BGL、およびメモリセル1615を有する。メモリセル1615は、ノードSN、OSトランジスタMO63、トランジスタMN64、容量素子C63を有する。ここで、トランジスタMN64は、例えばnチャネル型Siトランジスタで構成される。これに限られず、トランジスタMN64は、pチャネル型Siトランジスタ、であってもよいし、OSトランジスタであってもよい。
 以下では、図26に示すメモリセル1615aおよびメモリセル1615bを例として説明する。ここで、メモリセル1615aまたはメモリセル1615bのいずれかに接続する配線、または回路素子の符号については、aまたはbの符号を付して表す。
 メモリセル1615aにおいて、トランジスタMN64aのゲートと、OSトランジスタMO63aのソースおよびドレインの一方と、容量素子C63aの電極の一方とは、電気的に接続されている。また、ビット線WBLとOSトランジスタMO63aのソースおよびドレインの他方とは、電気的に接続されている。また、ワード線WWLaと、OSトランジスタMO63aのゲートとは、電気的に接続されている。また、配線BGLaと、OSトランジスタMO63aのボトムゲートとは、電気的に接続されている。そして、ワード線RWLaと、容量素子C63aの電極の他方は電気的に接続されている。
 メモリセル1615bは、ビット線WBLとのコンタクト部を対称の軸として、メモリセル1615aと対称的に設けることができる。よって、メモリセル1615bに含まれる回路素子も、上記メモリセル1615aと同じように配線と接続される。
 さらに、メモリセル1615aが有するトランジスタMN64aのソースは、メモリセル1615bのトランジスタMN64bのドレインと電気的に接続される。メモリセル1615aが有するトランジスタMN64aのドレインは、ビット線RBLと電気的に接続される。メモリセル1615bが有するトランジスタMN64bのソースは、複数のメモリセル1615が有するトランジスタMN64を介してソース線SLと電気的に接続される。このように、NAND型のメモリセルアレイ1610では、ビット線RBLとソース線SLの間に、複数のトランジスタMN64が直列に接続される。
 図26に示すメモリセルアレイ1610を有する記憶装置では、同じワード線WWL(またはワード線RWL)に接続された複数のメモリセル(以下、メモリセル列と呼ぶ。)ごとに、書き込み動作および読み出し動作を行う。例えば、書き込み動作は次のように行うことができる。書き込みを行うメモリセル列に接続されたワード線WWLにOSトランジスタMO63がオン状態となる電位を与え、書き込みを行うメモリセル列のOSトランジスタMO63をオン状態にする。これにより、指定したメモリセル列のトランジスタMN64のゲートおよび容量素子C63の電極の一方にビット線WBLの電位が与えられ、当該ゲートに所定の電荷が与えられる。それから当該メモリセル列のOSトランジスタMO63をオフ状態にすると、当該ゲートに与えられた所定の電荷を保持することができる。このようにして、指定したメモリセル列のメモリセル1615にデータを書き込むことができる。
 また、例えば、読み出し動作は次のように行うことができる。まず、読み出しを行うメモリセル列に接続されていないワード線RWLに、トランジスタMN64のゲートに与えられた電荷によらず、トランジスタMN64がオン状態となるような電位を与え、読み出しを行うメモリセル列以外のトランジスタMN64をオン状態とする。それから、読み出しを行うメモリセル列に接続されたワード線RWLに、トランジスタMN64のゲートが有する電荷によって、トランジスタMN64のオン状態またはオフ状態が選択されるような電位(読み出し電位)を与える。そして、ソース線SLに定電位を与え、ビット線RBLに接続されている読み出し回路を動作状態とする。ここで、ソース線SL−ビット線RBL間の複数のトランジスタMN64は、読み出しを行うメモリセル列を除いてオン状態となっているため、ソース線SL−ビット線RBL間のコンダクタンスは、読み出しを行うメモリセル列のトランジスタMN64の状態(オン状態またはオフ状態)によって決定される。読み出しを行うメモリセル列のトランジスタMN64のゲートが有する電荷によって、トランジスタのコンダクタンスは異なるから、それに応じて、ビット線RBLの電位は異なる値をとることになる。ビット線RBLの電位を読み出し回路によって読み出すことで、指定したメモリセル列のメモリセル1615から情報を読み出すことができる。
 容量素子C61、容量素子C62、または容量素子C63の充放電によってデータを書き換えるため、NOSRAM1600は原理的には書き換え回数に制約はなく、かつ、低エネルギーで、データの書き込みおよび読み出しが可能である。また、長時間データを保持することが可能であるので、リフレッシュ頻度を低減できる。
 上記実施の形態に示す半導体装置をメモリセル1611、メモリセル1612、メモリセル1613、メモリセル1614、メモリセル1615に用いる場合、OSトランジスタMO61、OSトランジスタMO62、OSトランジスタMO63としてトランジスタ200を用い、容量素子C61、容量素子C62、容量素子C63として容量素子100を用い、トランジスタMP61、トランジスタMP62、トランジスタMP63、トランジスタMN61、トランジスタMN62、トランジスタMN63、トランジスタMN64としてトランジスタ300を用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る記憶装置をさらに高集積化させることができる。よって、本実施の形態に係る記憶装置の単位面積当たりの記憶容量を増加させることができる。
 本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
 本実施の形態では、図27および図28を用いて、本発明の一態様に係る、OSトランジスタ、および容量素子が適用されている記憶装置の一例として、DOSRAMについて説明する。DOSRAM(登録商標)とは、「Dynamic Oxide Semiconductor RAM」の略称であり、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMを指す。DOSRAMも、NOSRAMと同様に、OSメモリが適用されている。
<<DOSRAM1400>>
 図27にDOSRAMの構成例を示す。図27に示すように、DOSRAM1400は、コントローラ1405、行回路1410、列回路1415、メモリセルおよびセンスアンプアレイ1420(以下、「MC−SAアレイ1420」と呼ぶ。)を有する。
 行回路1410はデコーダ1411、ワード線ドライバ回路1412、列セレクタ1413、センスアンプドライバ回路1414を有する。列回路1415はグローバルセンスアンプアレイ1416、入出力回路1417を有する。グローバルセンスアンプアレイ1416は複数のグローバルセンスアンプ1447を有する。MC−SAアレイ1420はメモリセルアレイ1422、センスアンプアレイ1423、グローバルビット線GBLL、GBLRを有する。
(MC−SAアレイ1420)
 MC−SAアレイ1420は、メモリセルアレイ1422をセンスアンプアレイ1423上に積層した積層構造をもつ。グローバルビット線GBLL、グローバルビット線GBLRはメモリセルアレイ1422上に積層されている。DOSRAM1400では、ビット線の構造に、ローカルビット線とグローバルビット線とで階層化された階層ビット線構造が採用されている。
 メモリセルアレイ1422は、N個(Nは2以上の整数)のローカルメモリセルアレイ1425<0>乃至ローカルメモリセルアレイ1425<N−1>を有する。図28(A)にローカルメモリセルアレイ1425の構成例を示す。ローカルメモリセルアレイ1425は、複数のメモリセル1445、複数のワード線WL、複数のビット線BLL、複数のビット線BLRを有する。図28(A)の例では、ローカルメモリセルアレイ1425の構造はオープンビット線型であるが、フォールデッドビット線型であってもよい。
 図28(B)に共通のビット線BLL(ビット線BLR)に接続される、ペア状の一組のメモリセル1445aおよびメモリセル1445bの回路構成例を示す。メモリセル1445aはトランジスタMW1a、容量素子CS1a、端子B1a、端子B2aを有し、ワード線WLa、ビット線BLL(ビット線BLR)に接続される。また、メモリセル1445bはトランジスタMW1b、容量素子CS1b、端子B1b、端子B2bを有し、ワード線WLb、ビット線BLL(ビット線BLR)に接続される。なお、以下において、メモリセル1445aおよびメモリセル1445bのいずれかを特に限定しない場合は、メモリセル1445およびそれに付属する構成にaまたはbの符号を付さない場合がある。
 トランジスタMW1aは容量素子CS1aの充放電を制御する機能をもち、トランジスタMW1bは容量素子CS1bの充放電を制御する機能をもつ。トランジスタMW1aのゲートはワード線WLaに電気的に接続され、第1端子はビット線BLL(ビット線BLR)に電気的に接続され、第2端子は容量素子CS1aの第1端子に電気的に接続されている。また、トランジスタMW1bのゲートはワード線WLbに電気的に接続され、第1端子はビット線BLL(ビット線BLR)に電気的に接続され、第2端子は容量素子CS1bの第1端子に電気的に接続されている。このように、ビット線BLL(ビット線BLR)がトランジスタMW1aの第1端子とトランジスタMW1bの第1端子に共通で用いられる。
 トランジスタMW1は容量素子CS1の充放電を制御する機能をもつ。容量素子CS1の第2端子は端子B2に電気的に接続されている。端子B2には、定電位(例えば、低電源電位)が入力される。
 上記実施の形態に示す半導体装置をメモリセル1445a、メモリセル1445bに用いる場合、トランジスタMW1aとしてトランジスタ200a、トランジスタMW1bとしてトランジスタ200bを用い、容量素子CS1aとして容量素子100aを用い、容量素子CS1bとして容量素子100bを用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る記憶装置を高集積化させることができる。よって、本実施の形態に係る記憶装置の単位面積当たりの記憶容量を増加させることができる。
 トランジスタMW1はボトムゲートを備えており、ボトムゲートは端子B1に電気的に接続されている。そのため、端子B1の電位によって、トランジスタMW1のVthを変更することができる。例えば、端子B1の電位は固定電位(例えば、負の定電位)であってもよいし、DOSRAM1400の動作に応じて、端子B1の電位を変化させてもよい。
 トランジスタMW1のボトムゲートをトランジスタMW1のゲート、ソース、またはドレインに電気的に接続してもよい。あるいは、トランジスタMW1にボトムゲートを設けなくてもよい。
 センスアンプアレイ1423は、N個のローカルセンスアンプアレイ1426<0>乃至ローカルセンスアンプアレイ1426<N−1>を有する。ローカルセンスアンプアレイ1426は、1のスイッチアレイ1444、複数のセンスアンプ1446を有する。センスアンプ1446には、ビット線対が電気的に接続されている。センスアンプ1446は、ビット線対をプリチャージする機能、ビット線対の電位差を増幅する機能、この電位差を保持する機能を有する。スイッチアレイ1444は、ビット線対を選択し、選択したビット線対とグローバルビット線対との間を導通状態にする機能を有する。
 ここで、ビット線対とは、センスアンプによって、同時に比較される2本のビット線のことをいう。グローバルビット線対とは、グローバルセンスアンプによって、同時に比較される2本のグローバルビット線のことをいう。ビット線対を一対のビット線と呼ぶことができ、グローバルビット線対を一対のグローバルビット線と呼ぶことができる。ここでは、ビット線BLLとビット線BLRが1組のビット線対を成す。グローバルビット線GBLLとグローバルビット線GBLRとが1組のグローバルビット線対をなす。以下、ビット線対(BLL,BLR)、グローバルビット線対(GBLL,GBLR)とも表す。
(コントローラ1405)
 コントローラ1405は、DOSRAM1400の動作全般を制御する機能を有する。コントローラ1405は、外部からの入力されるコマンド信号を論理演算して、動作モードを決定する機能、決定した動作モードが実行されるように、行回路1410、列回路1415の制御信号を生成する機能、外部から入力されるアドレス信号を保持する機能、内部アドレス信号を生成する機能を有する。
(行回路1410)
 行回路1410は、MC−SAアレイ1420を駆動する機能を有する。デコーダ1411はアドレス信号をデコードする機能を有する。ワード線ドライバ回路1412は、アクセス対象行のワード線WLを選択する選択信号を生成する。
 列セレクタ1413、センスアンプドライバ回路1414はセンスアンプアレイ1423を駆動するための回路である。列セレクタ1413は、アクセス対象列のビット線を選択するための選択信号を生成する機能をもつ。列セレクタ1413の選択信号によって、各ローカルセンスアンプアレイ1426のスイッチアレイ1444が制御される。センスアンプドライバ回路1414の制御信号によって、複数のローカルセンスアンプアレイ1426は独立して駆動される。
(列回路1415)
 列回路1415は、データ信号WDA[31:0]の入力を制御する機能、データ信号RDA[31:0]の出力を制御する機能を有する。データ信号WDA[31:0]は書き込みデータ信号であり、データ信号RDA[31:0]は読み出しデータ信号である。
 グローバルセンスアンプ1447はグローバルビット線対(GBLL,GBLR)に電気的に接続されている。グローバルセンスアンプ1447はグローバルビット線対(GBLL,GBLR)間の電位差を増幅する機能、この電位差を保持する機能を有する。グローバルビット線対(GBLL,GBLR)へのデータの書き込み、および読み出しは、入出力回路1417によって行われる。
 DOSRAM1400の書き込み動作の概要を説明する。入出力回路1417によって、データがグローバルビット線対に書き込まれる。グローバルビット線対のデータは、グローバルセンスアンプアレイ1416によって保持される。アドレス信号が指定するローカルセンスアンプアレイ1426のスイッチアレイ1444によって、グローバルビット線対のデータが、対象列のビット線対に書き込まれる。ローカルセンスアンプアレイ1426は、書き込まれたデータを増幅し、保持する。指定されたローカルメモリセルアレイ1425において、行回路1410によって、対象行のワード線WLが選択され、選択行のメモリセル1445にローカルセンスアンプアレイ1426の保持データが書き込まれる。
 DOSRAM1400の読み出し動作の概要を説明する。アドレス信号によって、ローカルメモリセルアレイ1425の1行が指定される。指定されたローカルメモリセルアレイ1425において、対象行のワード線WLが選択状態となり、メモリセル1445のデータがビット線に書き込まれる。ローカルセンスアンプアレイ1426によって、各列のビット線対の電位差がデータとして検出され、かつ保持される。スイッチアレイ1444によって、ローカルセンスアンプアレイ1426の保持データの内、アドレス信号が指定する列のデータが、グローバルビット線対に書き込まれる。グローバルセンスアンプアレイ1416は、グローバルビット線対のデータを検出し、保持する。グローバルセンスアンプアレイ1416の保持データは入出力回路1417に出力される。以上で、読み出し動作が完了する。
 容量素子CS1の充放電によってデータを書き換えるため、DOSRAM1400には原理的には書き換え回数に制約はなく、かつ、低エネルギーで、データの書き込みおよび読み出しが可能である。また、メモリセル1445の回路構成が単純であるため、大容量化が容易である。
 トランジスタMW1はOSトランジスタである。OSトランジスタはオフ電流が極めて小さいため、容量素子CS1から電荷がリークすることを抑えることができる。したがって、DOSRAM1400の保持時間はDRAMに比べて非常に長い。したがってリフレッシュの頻度を低減できるため、リフレッシュ動作に要する電力を削減できる。よって、DOSRAM1400は大容量のデータを高頻度で書き換えるメモリ装置、例えば、画像処理に利用されるフレームメモリに好適である。
 MC−SAアレイ1420が積層構造であることによって、ローカルセンスアンプアレイ1426の長さと同程度の長さにビット線を短くすることができる。ビット線を短くすることで、ビット線容量が小さくなり、メモリセル1445の保持容量を低減することができる。また、ローカルセンスアンプアレイ1426にスイッチアレイ1444を設けることで、長いビット線の本数を減らすことができる。以上の理由から、DOSRAM1400のアクセス時に駆動する負荷が低減され、消費電力を低減することができる。
 本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態6)
 本実施の形態では、図29を用いて、上記実施の形態に示す半導体装置を適用した、AIシステムについて説明を行う。
 図29は、AIシステム4041の構成例を示すブロック図である。AIシステム4041は、演算部4010と、制御部4020と、入出力部4030を有する。
 演算部4010は、アナログ演算回路4011と、DOSRAM4012と、NOSRAM4013と、FPGA(フィールドプログラマブルゲートアレイ)4014と、を有する。DOSRAM4012およびNOSRAM4013として、上記実施の形態に示す、DOSRAM1400、NOSRAM1600を用いることができる。また、FPGA4014は、コンフィギュレーションメモリ、およびレジスタにOSメモリが適用されている。ここでは、このようなFPGAを「OS−FPGA」と呼ぶ。
 制御部4020は、CPU(Central Processing Unit)4021と、GPU(Graphics Processing Unit)4022と、PLL(Phase Locked Loop)4023と、SRAM(Static Random Access Memory)4024と、PROM(Programmable Read Only Memory)4025と、メモリコントローラ4026と、電源回路4027と、PMU(Power Management Unit)4028と、を有する。
 入出力部4030は、外部記憶制御回路4031と、音声コーデック4032と、映像コーデック4033と、汎用入出力モジュール4034と、通信モジュール4035と、を有する。
 演算部4010は、ニューラルネットワークによる学習または推論を実行することができる。
 アナログ演算回路4011はA/D(アナログ/デジタル)変換回路、D/A(デジタル/アナログ)変換回路、および積和演算回路を有する。
 アナログ演算回路4011はOSトランジスタを用いて形成することが好ましい。OSトランジスタを用いたアナログ演算回路4011は、アナログメモリを有し、学習または推論に必要な積和演算を、低消費電力で実行することが可能になる。
 DOSRAM4012は、OSトランジスタを用いて形成されたDRAMであり、DOSRAM4012は、CPU4021から送られてくるデジタルデータを一時的に格納するメモリである。DOSRAM4012は、OSトランジスタを含むメモリセルと、Siトランジスタを含む読み出し回路部を有する。上記メモリセルと読み出し回路部は、積層された異なる層に設けることができるため、DOSRAM4012は、全体の回路面積を小さくすることができる。
 ニューラルネットワークを用いた計算は、入力データが1000を超えることがある。上記入力データをSRAMに格納する場合、SRAMは回路面積に制限があり、記憶容量が小さいため、上記入力データを小分けにして格納せざるを得ない。DOSRAM4012は、限られた回路面積でも、メモリセルを高集積に配置することが可能であり、SRAMに比べて記憶容量が大きい。そのため、DOSRAM4012は、上記入力データを効率良く格納することができる。
 NOSRAM4013はOSトランジスタを用いた不揮発性メモリである。NOSRAM4013は、フラッシュメモリや、ReRAM(Resistive Random Access Memory)、MRAM(Magnetoresistive Random Access Memory)などの他の不揮発性メモリと比べて、データを書き込む際の消費電力が小さい。また、フラッシュメモリやReRAMのように、データを書き込む際に素子が劣化することもなく、データの書き込み可能回数に制限が無い。
 また、NOSRAM4013は、1ビットの2値データの他に、2ビット以上の多値データを記憶することができる。NOSRAM4013は多値データを記憶することで、1ビット当たりのメモリセル面積を小さくすることができる。
 また、NOSRAM4013は、デジタルデータの他にアナログデータを記憶することができる。そのため、アナログ演算回路4011は、NOSRAM4013をアナログメモリとして用いることもできる。NOSRAM4013は、アナログデータのまま記憶することができるため、D/A変換回路やA/D変換回路が不要である。そのため、NOSRAM4013は周辺回路の面積を小さくすることができる。なお、本明細書においてアナログデータとは、3ビット(8値)以上分解能を有するデータのことを指す。上述した多値データがアナログデータに含まれる場合もある。
 ニューラルネットワークの計算に用いられるデータやパラメータは、一旦、NOSRAM4013に格納することができる。上記データやパラメータは、CPU4021を介して、AIシステム4041の外部に設けられたメモリに格納してもよいが、内部に設けられたNOSRAM4013の方が、より高速かつ低消費電力に上記データやパラメータを格納することができる。また、NOSRAM4013は、DOSRAM4012よりもビット線を長くすることができるので、記憶容量を大きくすることができる。
 FPGA4014は、OSトランジスタを用いたFPGAである。AIシステム4041は、FPGA4014を用いることによって、ハードウェアで後述する、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの、ニューラルネットワークの接続を構成することができる。上記のニューラルネットワークの接続をハードウェアで構成することで、より高速に実行することができる。
 FPGA4014は、OSトランジスタを有するFPGAである。OS−FPGAは、SRAMで構成されるFPGAよりもメモリの面積を小さくすることができる。そのため、コンテキスト切り替え機能を追加しても面積増加が少ない。また、OS−FPGAはブースティングによりデータやパラメータを高速に伝えることができる。
 AIシステム4041は、アナログ演算回路4011、DOSRAM4012、NOSRAM4013、およびFPGA4014を1つのダイ(チップ)の上に設けることができる。そのため、AIシステム4041は、高速かつ低消費電力に、ニューラルネットワークの計算を実行することができる。また、アナログ演算回路4011、DOSRAM4012、NOSRAM4013、およびFPGA4014は、同じ製造プロセスで作製することができる。そのため、AIシステム4041は、低コストで作製することができる。
 なお、演算部4010は、DOSRAM4012、NOSRAM4013、およびFPGA4014を、全て有する必要はない。AIシステム4041が解決したい課題に応じて、DOSRAM4012、NOSRAM4013、およびFPGA4014の一または複数を、選択して設ければよい。
 AIシステム4041は、解決したい課題に応じて、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行することができる。PROM4025は、これらの手法の少なくとも一つを実行するためのプログラムを保存することができる。また、当該プログラムの一部または全てを、NOSRAM4013に保存してもよい。
 ライブラリとして存在する既存のプログラムは、GPUの処理を前提としているものが多い。そのため、AIシステム4041はGPU4022を有することが好ましい。AIシステム4041は、学習と推論で用いられる積和演算のうち、律速となる積和演算を演算部4010で実行し、それ以外の積和演算をGPU4022で実行することができる。そうすることで、学習と推論を高速に実行することができる。
 電源回路4027は、論理回路用の低電源電位を生成するだけではなく、アナログ演算のための電位生成も行う。電源回路4027はOSメモリを用いてもよい。電源回路4027は、基準電位をOSメモリに保存することで、消費電力を下げることができる。
 PMU4028は、AIシステム4041の電力供給を一時的にオフにする機能を有する。
 CPU4021およびGPU4022は、レジスタとしてOSメモリを有することが好ましい。CPU4021およびGPU4022はOSメモリを有することで、電力供給がオフになっても、OSメモリ中にデータ(論理値)を保持し続けることができる。その結果、AIシステム4041は、電力を節約することができる。
 PLL4023は、クロックを生成する機能を有する。AIシステム4041は、PLL4023が生成したクロックを基準に動作を行う。PLL4023はOSメモリを有することが好ましい。PLL4023はOSメモリを有することで、クロックの発振周期を制御するアナログ電位を保持することができる。
 AIシステム4041は、DRAMなどの外部メモリにデータを保存してもよい。そのため、AIシステム4041は、外部のDRAMとのインターフェースとして機能するメモリコントローラ4026を有することが好ましい。また、メモリコントローラ4026は、CPU4021またはGPU4022の近くに配置することが好ましい。そうすることで、データのやり取りを高速に行うことができる。
 制御部4020に示す回路の一部または全ては、演算部4010と同じダイの上に形成することができる。そうすることで、AIシステム4041は、高速かつ低消費電力に、ニューラルネットワークの計算を実行することができる。
 ニューラルネットワークの計算に用いられるデータは外部記憶装置(HDD(Hard Disk Drive)、SSD(Solid State Drive)など)に保存される場合が多い。そのため、AIシステム4041は、外部記憶装置とのインターフェースとして機能する外部記憶制御回路4031を有することが好ましい。
 ニューラルネットワークを用いた学習と推論は、音声や映像を扱うことが多いので、AIシステム4041は音声コーデック4032および映像コーデック4033を有する。音声コーデック4032は、音声データのエンコード(符号化)およびデコード(復号)を行い、映像コーデック4033は、映像データのエンコードおよびデコードを行う。
 AIシステム4041は、外部センサから得られたデータを用いて学習または推論を行うことができる。そのため、AIシステム4041は汎用入出力モジュール4034を有する。汎用入出力モジュール4034は、例えば、USB(Universal Serial Bus)やI2C(Inter−Integrated Circuit)などを含む。
 AIシステム4041は、インターネットを経由して得られたデータを用いて学習または推論を行うことができる。そのため、AIシステム4041は、通信モジュール4035を有することが好ましい。
 アナログ演算回路4011は、多値のフラッシュメモリをアナログメモリとして用いてもよい。しかし、フラッシュメモリは書き換え可能回数に制限がある。また、多値のフラッシュメモリは、エンベディッドで形成する(演算回路とメモリを同じダイの上に形成する。)ことが非常に難しい。
 また、アナログ演算回路4011は、ReRAMをアナログメモリとして用いてもよい。しかし、ReRAMは書き換え可能回数に制限があり、記憶精度の点でも問題がある。さらに、2端子でなる素子であるため、データの書き込みと読み出しを分ける回路設計が複雑になる。
 また、アナログ演算回路4011は、MRAMをアナログメモリとして用いてもよい。しかし、MRAMは抵抗変化率が低く、記憶精度の点で問題がある。
 以上を鑑み、アナログ演算回路4011は、OSメモリをアナログメモリとして用いることが好ましい。
 本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態7)
<AIシステムの応用例>
 本実施の形態では、上記実施の形態に示すAIシステムの応用例について図30を用いて説明を行う。
 図30(A)は、図29で説明したAIシステム4041を並列に配置し、バス線を介してシステム間での信号の送受信を可能にした、AIシステム4041Aである。
 図30(A)に図示するAIシステム4041Aは、複数のAIシステム4041_1乃至AIシステム4041_n(nは自然数)を有する。AIシステム4041_1乃至AIシステム4041_nは、バス線4098を介して互いに接続されている。
 また、図30(B)は、図29で説明したAIシステム4041を図30(A)と同様に並列に配置し、ネットワークを介してシステム間での信号の送受信を可能にした、AIシステム4041Bである。
 図30(B)に図示するAIシステム4041Bは、複数のAIシステム4041_1乃至AIシステム4041_nを有する。AIシステム4041_1乃至AIシステム4041_nは、ネットワーク4099を介して互いに接続されている。
 ネットワーク4099は、AIシステム4041_1乃至AIシステム4041_nのそれぞれに通信モジュールを設け、無線または有線による通信を行う構成とすればよい。通信モジュールは、アンテナを介して通信を行うことができる。例えばWorld Wide Web(WWW)の基盤であるインターネット、イントラネット、エクストラネット、PAN(Personal Area Network)、LAN(Local Area Network)、CAN(Campus Area Network)、MAN(Metropolitan Area Network)、WAN(Wide Area Network)、GAN(Global Area Network)等のコンピュータネットワークに各電子装置を接続させ、通信を行うことができる。無線通信を行う場合、通信プロトコルまたは通信技術として、LTE(Long Term Evolution)、GSM(Global System for Mobile Communication:登録商標)、EDGE(Enhanced Data Rates for GSM Evolution)、CDMA2000(Code Division Multiple Access 2000)、W−CDMA(登録商標)などの通信規格、またはWi−Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)等のIEEEにより通信規格化された仕様を用いることができる。
 図30(A)および図30(B)の構成とすることで、外部のセンサ等で得られたアナログ信号を別々のAIシステムで処理することができる。例えば、生体情報のように、脳波、脈拍、血圧、体温等といった情報を脳波センサ、脈波センサ、血圧センサ、温度センサといった各種センサで取得し、別々のAIシステムでアナログ信号を処理することができる。別々のAIシステムのそれぞれで信号の処理、または学習を行うことで一つのAIシステムあたりの情報処理量を少なくできる。そのため、より少ない演算量で信号の処理、または学習を行うことができる。その結果、認識精度を高めることができる。それぞれのAIシステムで得られた情報から、複雑に変化する生体情報の変化を瞬時に統合的に把握することができるといったことが期待できる。
 本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態8)
 本実施の形態では、上記実施の形態に示すAIシステムが組み込まれたICの一例を示す。
 上記実施の形態に示すAIシステムは、CPU等のSiトランジスタでなるデジタル処理回路と、OSトランジスタを用いたアナログ演算回路、OS−FPGAおよびDOSRAM、NOSRAM等のOSメモリを、1のダイに集積することができる。
 図31に、AIシステムを組み込んだICの一例を示す。図31に示すAIシステムIC7000は、リード7001および回路部7003を有する。AIシステムIC7000は、例えばプリント基板7002に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板7002上で電気的に接続されることで電子部品が実装された基板(実装基板7004)が完成する。回路部7003には、上記実施の形態で示した各種の回路が1のダイに設けられている。回路部7003は、先の実施の形態に示すように、積層構造をもち、Siトランジスタ層7031、配線層7032、OSトランジスタ層7033に大別される。OSトランジスタ層7033をSiトランジスタ層7031に積層して設けることができるため、AIシステムIC7000の小型化が容易である。
 図31では、AIシステムIC7000のパッケージにQFP(Quad Flat Package)を適用しているが、パッケージの態様はこれに限定されない。
 CPU等のデジタル処理回路と、OSトランジスタを用いたアナログ演算回路、OS−FPGAおよびDOSRAM、NOSRAM等のOSメモリは、全て、Siトランジスタ層7031、配線層7032およびOSトランジスタ層7033に形成することができる。すなわち、上記AIシステムを構成する素子は、同一の製造プロセスで形成することが可能である。そのため、本実施の形態に示すICは、構成する素子が増えても製造プロセスを増やす必要がなく、上記AIシステムを低コストで組み込むことができる。
 本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態9)
<電子機器>
 本発明の一態様に係る半導体装置は、様々な電子機器に用いることができる。図32乃至図34に、本発明の一態様に係る半導体装置を用いた電子機器の具体例を示す。
 図32(A)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106および障害物センサ2107、移動機構2108を備える。
 マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
 ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。
 上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。
 図32(B)に示す飛行体2120は、演算装置2121と、プロペラ2123と、カメラ2122と、を有し、自律して飛行する機能を有する。
 飛行体2120において、演算装置2121およびカメラ2122に上記電子部品を用いることができる。
 図32(C)は、自動車の一例を示す外観図である。自動車2980は、カメラ2981等を有する。また、自動車2980は、赤外線レーダー、ミリ波レーダー、レーザーレーダーなど各種センサなどを備える。自動車2980は、カメラ2981が撮影した画像を解析し、歩行者の有無など、周囲の交通状況を判断し、自動運転を行うことができる。
 図32(D)に、互いに別々の言語で話す複数の人間のコミュニケーションにおいて、携帯電子機器2130に同時通訳を行わせる状況を示す。
 携帯電子機器2130は、マイクロフォンおよびスピーカ等を有し、使用者の話し声を認識してそれを話し相手の話す言語に翻訳する機能を有する。
 また、図32(D)において、使用者は携帯型マイクロフォン2131を有する。携帯型マイクロフォン2131は、無線通信機能を有し、検知した音声を携帯電子機器2130に送信する機能を有する。
 図33(A)は、ペースメーカの一例を示す断面模式図である。
 ペースメーカ本体5300は、バッテリー5301a、5301bと、レギュレータと、制御回路と、アンテナ5304と、右心房へのワイヤ5302、右心室へのワイヤ5303とを少なくとも有している。
 ペースメーカ本体5300は手術により体内に設置され、二本のワイヤは、人体の鎖骨下静脈5305及び上大静脈5306を通過させて一方のワイヤ先端が右心室、もう一方のワイヤ先端が右心房に設置されるようにする。
 また、アンテナ5304で電力が受信でき、その電力は複数のバッテリー5301a、5301bに充電され、ペースメーカの交換頻度を少なくすることができる。ペースメーカ本体5300は複数のバッテリーを有しているため、安全性が高く、一方が故障したとしてももう一方が機能させることができるため、補助電源としても機能する。
 また、電力を受信できるアンテナ5304とは別に、生理信号を送信できるアンテナを有していてもよく、例えば、脈拍、呼吸数、心拍数、体温などの生理信号を外部のモニタ装置で確認できるような心臓活動を監視するシステムを構成してもよい。
 図33(B)に示すセンサ5900は、接着パッド等を用いて人体に取り付けられる。センサ5900は、配線5932を介して人体に取り付けられた電極5931等に信号を与えて心拍数、心電図等の生体情報等を取得する。取得された情報は無線信号として、読み取り器等の端末に送信される。
 図34は、掃除ロボットの一例を示す模式図である。
 掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
 掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
 また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
 ディスプレイ5101には、バッテリーの残量や、吸引したゴミの量などを表示することができる。掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
 掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。また、ディスプレイ5101の表示をスマートフォンなどの携帯電子機器で確認することもできる。
 例えば、本発明の一態様の半導体装置を用いた記憶装置は、上述した電子機器の制御情報や、制御プログラムなどを長期間保持することができる。本発明の一態様に係る半導体装置を用いることで、信頼性の高い電子機器を実現することができる。
 また、例えば、上述した電子機器の演算装置などに、先の実施の形態で示したAIシステムが組み込まれたICを用いることができる。これにより、本実施の形態に示す電子機器は、AIシステムによって、状況に応じた的確な動作を、低消費電力で行うことができる。
 本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
200:トランジスタ、200a:トランジスタ、200b:トランジスタ、203:導電体、203a:導電体、203b:導電体、205:導電体、205a:導電体、205b:導電体、210:絶縁体、212:絶縁体、214:絶縁体、216:絶縁体、218:導電体、220:絶縁体、222:絶縁体、224:絶縁体、230:酸化物、230a:酸化物、230A:酸化膜、230b:酸化物、230B:酸化膜、230c:酸化物、230C:酸化膜、231:領域、231a:領域、231b:領域、232:領域、232a:領域、232b:領域、234:領域、239:領域、240:導電体、240a:導電体、240b:導電体、242:導電体、242a:導電体、242A:導電膜、242b:導電体、242B:導電体、243:領域、243a:領域、243b:領域、244:絶縁体、244A:絶縁体、245:開口、246:導電体、248:導電体、250:絶縁体、250a:絶縁体、250A:絶縁体、250b:絶縁体、250B:絶縁体、250C:絶縁体、252:絶縁体、260:導電体、260a:導電体、260A:導電膜、260b:導電体、260B:導電膜、274:絶縁体、280:絶縁体、281:絶縁体、282:絶縁体、286:絶縁体、

Claims (12)

  1.  酸化物と、
     前記酸化物上に、互いに離して配置された第1の導電体、および第2の導電体と、
     前記第1の導電体および前記第2の導電体上に配置され、前記第1の導電体と前記第2の導電体の間に重畳して開口が形成された第1の絶縁体と、
     前記開口の中に配置された第3の導電体と、
     前記酸化物、前記第1の導電体、前記第2の導電体、および前記第1の絶縁体と、前記第3の導電体と、の間に配置された第2の絶縁体と、を有し、
     前記第2の絶縁体は、前記酸化物と前記第3の導電体の間において、第1の膜厚を有し、前記第1の導電体または前記第2の導電体と前記第3の導電体の間において、第2の膜厚を有し、
     前記第1の膜厚は、前記第2の膜厚より薄い、ことを特徴とする半導体装置。
  2.  請求項1において、
     前記第2の絶縁体は、第3の絶縁体と第4の絶縁体とを有し、
     前記第3の絶縁体は、前記酸化物、前記第1の導電体、前記第2の導電体、および前記第1の絶縁体と、前記第3の導電体と、の間に配置され、
     前記第4の絶縁体は、前記第1の導電体、前記第2の導電体、および前記第1の絶縁体と、前記第3の絶縁体と、の間に配置される、ことを特徴とする半導体装置。
  3.  請求項1または請求項2において、
     前記酸化物、前記第1の導電体、および前記第2の導電体と、前記第1の絶縁体と、の間に第5の絶縁体が配置され、
     前記第5の絶縁体は、アルミニウムおよびハフニウムの少なくとも一方を含む、酸化物である、ことを特徴とする半導体装置。
  4.  請求項1または請求項2において、
     前記酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を有する、ことを特徴とする半導体装置。
  5.  第1の酸化物と、
     前記第1の酸化物上に、互いに離して配置された第1の導電体、および第2の導電体と、
     前記第1の導電体および前記第2の導電体上に配置され、前記第1の導電体と前記第2の導電体の間に重畳して開口が形成された第1の絶縁体と、
     前記開口の中に配置された第3の導電体と、
     前記第1の酸化物、前記第1の導電体、前記第2の導電体、および前記第1の絶縁体と、前記第3の導電体と、の間に配置された第2の絶縁体と、
     前記第1の酸化物、前記第1の導電体、前記第2の導電体、および前記第1の絶縁体と、前記第2の絶縁体と、の間に配置された第2の酸化物と、を有し、
     前記第2の絶縁体は、前記第1の酸化物と前記第3の導電体の間において、第1の膜厚を有し、前記第1の導電体または前記第2の導電体と前記第3の導電体の間において、第2の膜厚を有し、
     前記第1の膜厚は、前記第2の膜厚より薄い、ことを特徴とする半導体装置。
  6.  請求項5において、
     前記第1の酸化物、前記第1の導電体、および前記第2の導電体と、前記第1の絶縁体と、の間に第3の絶縁体が配置され、
     前記第3の絶縁体は、アルミニウムおよびハフニウムの少なくとも一方を含む、酸化物である、ことを特徴とする半導体装置。
  7.  請求項6において、
     前記第4の絶縁体は、前記第1の導電体、前記第2の導電体、および前記第1の絶縁体と、前記第2の酸化物と、の間に配置され、
     前記第4の絶縁体は、アルミニウムおよびハフニウムの少なくとも一方を含む、酸化物である、ことを特徴とする半導体装置。
  8.  請求項5または請求項6において、
     前記第1の酸化物および前記第2の酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を有する、ことを特徴とする半導体装置。
  9.  請求項1、請求項2、請求項5、および請求項6のいずれか一項において、
     前記第1の絶縁体の上面と、前記第3の導電体の上面と、前記第2の絶縁体の上面は概略一致する、ことを特徴とする半導体装置。
  10.  請求項1、請求項2、請求項5、および請求項6のいずれか一項において、
     前記第1の絶縁体の上面と、前記第3の導電体の上面と、前記第2の絶縁体の上面に接して、第6の絶縁体が配置され、
     前記第6の絶縁体は、アルミニウムを含む酸化物である、ことを特徴とする半導体装置。
  11.  請求項1、請求項2、請求項5、および請求項6のいずれか一項において、
     前記第1の導電体、および前記第2の導電体は、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、およびランタンの少なくとも一を有する、ことを特徴とする半導体装置。
  12.  請求項1、請求項2、請求項5、および請求項6のいずれか一項において、
     前記第1の導電体、および前記第2の導電体は、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、およびランタンとニッケルを含む酸化物の少なくとも一を有する、ことを特徴とする半導体装置。
PCT/IB2018/055578 2017-08-04 2018-07-26 半導体装置、および半導体装置の作製方法 WO2019025911A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/630,977 US20200227562A1 (en) 2017-08-04 2018-07-26 Semiconductor device and method for manufacturing semiconductor device
KR1020207003875A KR102608084B1 (ko) 2017-08-04 2018-07-26 반도체 장치 및 반도체 장치의 제작 방법
CN201880050764.8A CN110998808B (zh) 2017-08-04 2018-07-26 半导体装置及半导体装置的制造方法
JP2019533720A JP7232764B2 (ja) 2017-08-04 2018-07-26 半導体装置
KR1020237040618A KR20230168211A (ko) 2017-08-04 2018-07-26 반도체 장치 및 반도체 장치의 제작 방법
JP2023024496A JP2023057165A (ja) 2017-08-04 2023-02-20 半導体装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-151446 2017-08-04
JP2017151446 2017-08-04
JP2018027721 2018-02-20
JP2018-027721 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019025911A1 true WO2019025911A1 (ja) 2019-02-07

Family

ID=65232429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/055578 WO2019025911A1 (ja) 2017-08-04 2018-07-26 半導体装置、および半導体装置の作製方法

Country Status (5)

Country Link
US (1) US20200227562A1 (ja)
JP (2) JP7232764B2 (ja)
KR (2) KR20230168211A (ja)
CN (1) CN110998808B (ja)
WO (1) WO2019025911A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229915A1 (ja) * 2019-05-10 2020-11-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2021064503A1 (ja) * 2019-10-04 2021-04-08 株式会社半導体エネルギー研究所 半導体装置
WO2021090106A1 (ja) * 2019-11-08 2021-05-14 株式会社半導体エネルギー研究所 トランジスタ、および電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460417B2 (ja) 2015-02-04 2024-04-02 東洋紡株式会社 包装体、およびその製造方法、包装緩衝材用積層シート、梱包体
JP2020141100A (ja) * 2019-03-01 2020-09-03 キオクシア株式会社 半導体装置およびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139055A (ja) * 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd 半導体素子、半導体装置及びそれらの作製方法
JP2016167584A (ja) * 2015-03-03 2016-09-15 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
WO2016189425A1 (ja) * 2015-05-28 2016-12-01 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2016201541A (ja) * 2015-04-13 2016-12-01 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2017045989A (ja) * 2015-08-26 2017-03-02 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2017050530A (ja) * 2015-07-08 2017-03-09 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100521369B1 (ko) * 2002-12-18 2005-10-12 삼성전자주식회사 고속도 및 저전력 소모 반도체 소자 및 그 제조 방법
TWI309066B (en) * 2005-12-19 2009-04-21 Nanya Technology Corp Semiconductor device having a trench gate the fabricating method of the same
JP5394025B2 (ja) * 2007-09-20 2014-01-22 ローム株式会社 半導体装置および半導体装置の製造方法
DE112011102644B4 (de) 2010-08-06 2019-12-05 Semiconductor Energy Laboratory Co., Ltd. Integrierte Halbleiterschaltung
JP2012119356A (ja) * 2010-11-29 2012-06-21 Panasonic Corp 半導体装置及びその製造方法
TWI663726B (zh) * 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. 半導體裝置、模組及電子裝置
CN113793872A (zh) * 2014-12-10 2021-12-14 株式会社半导体能源研究所 半导体装置及其制造方法
CN107210227B (zh) * 2015-02-06 2021-03-16 株式会社半导体能源研究所 半导体装置及其制造方法
TWI695415B (zh) * 2015-03-30 2020-06-01 日商半導體能源研究所股份有限公司 半導體裝置的製造方法
WO2017103723A1 (ja) * 2015-12-15 2017-06-22 株式会社半導体エネルギー研究所 トランジスタ、半導体装置、電子機器およびトランジスタの作製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139055A (ja) * 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd 半導体素子、半導体装置及びそれらの作製方法
JP2016167584A (ja) * 2015-03-03 2016-09-15 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2016201541A (ja) * 2015-04-13 2016-12-01 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
WO2016189425A1 (ja) * 2015-05-28 2016-12-01 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2017050530A (ja) * 2015-07-08 2017-03-09 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2017045989A (ja) * 2015-08-26 2017-03-02 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229915A1 (ja) * 2019-05-10 2020-11-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2021064503A1 (ja) * 2019-10-04 2021-04-08 株式会社半導体エネルギー研究所 半導体装置
WO2021090106A1 (ja) * 2019-11-08 2021-05-14 株式会社半導体エネルギー研究所 トランジスタ、および電子機器

Also Published As

Publication number Publication date
KR20200032122A (ko) 2020-03-25
KR20230168211A (ko) 2023-12-12
KR102608084B1 (ko) 2023-11-29
JP2023057165A (ja) 2023-04-20
JPWO2019025911A1 (ja) 2020-08-06
CN110998808B (zh) 2024-04-30
JP7232764B2 (ja) 2023-03-03
CN110998808A (zh) 2020-04-10
US20200227562A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP7051561B2 (ja) 半導体装置
JP7232764B2 (ja) 半導体装置
TWI776924B (zh) 半導體裝置及半導體裝置的製造方法
TWI787312B (zh) 半導體裝置
WO2019008483A1 (ja) 半導体装置及び半導体装置の駆動方法
JP7017430B2 (ja) 半導体装置
US20200227561A1 (en) Semiconductor device and method for manufacturing the same
WO2019048987A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019048984A1 (ja) 半導体装置、および半導体装置の作製方法
JP2019047101A (ja) 半導体装置、および半導体装置の作製方法
JP2019047020A (ja) 半導体装置、および半導体装置の作製方法
JP7017428B2 (ja) 半導体装置
WO2019048983A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019038664A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019048968A1 (ja) 半導体装置、および半導体装置の作製方法
JP7258754B2 (ja) 半導体装置、および半導体装置の作製方法
JP7086934B2 (ja) 半導体装置
TWI776948B (zh) 半導體裝置及其製造方法
JP2018206828A (ja) 半導体装置、および半導体装置の作製方法
KR20190122804A (ko) 반도체 장치 및 반도체 장치의 제작 방법
JP2018195794A (ja) 記憶装置
CN118248744A (en) Semiconductor device and method for manufacturing semiconductor device
WO2018163020A1 (ja) 導電体、導電体の作製方法、半導体装置、および半導体装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207003875

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18841401

Country of ref document: EP

Kind code of ref document: A1