WO2019023878A1 - 触摸检测方法和触控芯片 - Google Patents

触摸检测方法和触控芯片 Download PDF

Info

Publication number
WO2019023878A1
WO2019023878A1 PCT/CN2017/095262 CN2017095262W WO2019023878A1 WO 2019023878 A1 WO2019023878 A1 WO 2019023878A1 CN 2017095262 W CN2017095262 W CN 2017095262W WO 2019023878 A1 WO2019023878 A1 WO 2019023878A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
values
original
frequency
value
Prior art date
Application number
PCT/CN2017/095262
Other languages
English (en)
French (fr)
Inventor
刘松松
姜海宽
彭永豪
杨威
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201780000761.9A priority Critical patent/CN109791448B/zh
Priority to PCT/CN2017/095262 priority patent/WO2019023878A1/zh
Publication of WO2019023878A1 publication Critical patent/WO2019023878A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present application relates to the field of electronic devices, and in particular, to a touch detection method and a touch chip.
  • a capacitive touch screen is a human-machine interaction device that is mainly composed of a driving electrode and a sensing electrode.
  • the driving electrode can output driving signals of different frequencies according to the set parameters, and the sensing electrodes are responsible for receiving the sensing signals.
  • the touch chip performs digital signal processing on the signal received by the sensing electrode to obtain an original value.
  • the original value collected by the touch chip is smaller than the original value collected by the touch chip from the sensing electrode when there is no finger touch on the capacitive touch screen.
  • the original value collected by the touch chip from the sensing electrode can be used as a reference when there is no finger touch on the capacitive touch screen.
  • the difference between the original values that is, the amount of change in the original value caused by the touch, can be obtained.
  • the touch chip can determine the coordinates of the finger touch point on the capacitive touch screen according to the difference, and obtain information such as the position of the specific touch of the finger.
  • noise such as environmental noise, common mode noise, electromagnetic noise and so on.
  • the noise will make the original value become larger or smaller, which will cause the original value difference to become larger or smaller, which will result in no finger touch on the capacitive touch screen, but the touch chip is mistaken for touch, or there is a finger touch on the capacitive touch screen.
  • the touch chip mistakenly believes that there is no touch or misunderstanding that there are multiple touch points.
  • An effective solution to reduce noise on the touch chip to determine the touch on the capacitive touch screen is frequency hopping. Specifically, the frequency of the drive signal of the drive electrode is changed.
  • the touch chip When the driving electrodes input driving signals of different frequencies, the touch chip obtains different original values according to the sensing signals output by the sensing electrodes. For example, the higher the frequency of the driving signal input by the driving electrode, the larger the original value obtained by the touch chip according to the sensing signal outputted by the sensing electrode. Therefore, when the driving electrodes input driving signals of different frequencies, the touch chip should determine the touch position on the capacitive touch screen according to different references.
  • the original value obtained by the touch chip based on the sensing signal outputted by the sensing electrode is used as a reference. This method will result in the determination of the touch position on the capacitive touch screen. The rate of decline is low.
  • the application provides a touch detection method and a touch chip, which helps improve the detection accuracy of the touch position on the touch screen.
  • the present application provides a touch detection method.
  • the touch detection method includes: determining that a driving signal of the touch screen is frequency hopped from a current frequency to a target frequency; driving the touch screen with a driving signal of a reference frequency, wherein the reference frequency is different from the target frequency; collecting the original value set when the touch screen operates at the reference frequency As a first set of original values; determining, according to the set of backup reference values of the first set of original values and the reference frequency, determining a first touch position on the touch screen; driving the touch screen with a driving signal of the target frequency; and collecting the touch screen when the target frequency is operated
  • the original value set is used as a second original value set; the reference value set of the target frequency is determined according to the second original value set and the first touch position; and the touch position when the touch screen operates at the target frequency is determined according to the reference value set of the target frequency.
  • the first touch position on the touch screen is determined according to the first original value set corresponding to the reference frequency and the backup reference value set of the reference frequency, and then the second original value set and the first touch position corresponding to the target frequency are determined according to the target frequency. Determining the set of reference values of the target frequency helps to reduce the influence of the touch on the reference set of the target frequency when there is a touch in the process of the frequency hopping of the touch screen from the current frequency to the target frequency, thereby helping to improve the touch position on the touch screen. Detection accuracy.
  • determining, according to the first set of original values and the set of backup reference values of the reference frequency, determining that the first touch location of the touch exists on the touch screen comprises: backing up according to the first function Fitting a set of reference values and a set of first original values to obtain a pending coefficient in the first function; according to the set of backup reference values, the undetermined coefficient and the first function, obtaining a set of fitting reference values; according to the set of fitting reference values And the first set of original values, determining the first touch location.
  • the set of backup reference values of the reference frequency and the first set of original values are first fitted, and then the set of the fitted reference values is obtained according to the set of the backup reference value and the function obtained by the fitting, and then according to the fitting reference value.
  • the set and the first set of original values determine the first touch position, and the influence of temperature, noise, and the like on the first touch position may be eliminated, thereby further improving the detection accuracy of the touch position on the touch screen.
  • the first function is a linear function, fitted to a least squares fit.
  • determining a reference value set of the target frequency according to the second original value set and the first touch position including: determining, according to the second original value set and the reference value set of the current frequency, the first reference value set in the target frequency Touch the baseline value of the location.
  • the detection accuracy of determining the touch position on the touch screen can be further improved.
  • determining, according to the second set of original values and the set of reference values of the current frequency, determining an original value of the corresponding first touch position in the reference value set of the target frequency include:
  • the touch detection method further includes: when the touch screen is operated at the target frequency and the touch screen is not touched.
  • the original value set is the third original value set; the first original value in the third original value set is used as the second reference value in the reference value set of the target frequency, and the first original value is the third original value set and the first The original value corresponding to a touch position, the position of the first original value in the third original value set is the same as the position of the second reference value in the reference value set of the target frequency.
  • the touch position on the touch screen when the touch screen operates on the target frequency can be determined according to the updated reference value set of the target frequency, thereby improving the detection accuracy of the touch position on the touch screen.
  • the present application provides a touch chip.
  • the touch chip comprises a memory, a microprocessor control unit (MCU), a driving circuit and a sensing circuit, and the MCU comprises a processor and a conversion circuit.
  • MCU microprocessor control unit
  • the memory is used to store a computer program code, a reference frequency, a backup reference value set of a reference frequency, a dynamically collected original value set, and a dynamically generated reference value set.
  • the processor is configured to execute computer program code stored in the memory, and can control the driving circuit to output a driving signal of a corresponding frequency to the touch screen to drive the touch screen to work, and generate a reference value set.
  • the touch position and the like are detected based on the original value set and the reference value set and the backup reference value set.
  • the conversion circuit is configured to generate a set of original values according to the sensing signals collected by the sensing circuit from the touch screen.
  • the driving circuit is configured to output a driving signal of a corresponding frequency to the touch screen under the control of the processor.
  • the sensing circuit is configured to collect the sensing signal output by the touch screen under the control of the processor.
  • the processor is configured to determine that the driving signal of the touch screen is frequency hopped from the current frequency to the target frequency.
  • the driving circuit is for driving the touch screen with a driving signal of a reference frequency.
  • the conversion circuit is configured to generate, according to the sensing signal collected by the sensing circuit, a set of original values as a first set of original values, wherein the reference frequency is different from the target frequency.
  • the processor is configured to determine, according to the set of backup reference values of the reference frequency and the first set of original values collected by the conversion circuit, the first touch location where the touch exists on the touch screen.
  • the drive circuit is further configured to drive the touch screen with a drive signal of a target frequency.
  • the conversion circuit is further configured to generate a set of original values as a second set of original values according to the sensing signals collected by the sensing circuit when the touch screen operates at the target frequency.
  • the processor is further configured to determine a reference value set of the target frequency according to the second set of original values generated by the conversion circuit and the first touch position determined by the processor.
  • the processor is further configured to determine a touch position when the touch screen operates at the target frequency according to the set of reference values of the target frequency.
  • the touch chip in the embodiment of the present application first determines a first touch position on the touch screen according to the first original value set and the backup reference value set corresponding to the reference frequency, and then corresponds to the second original value set and the first touch according to the target frequency.
  • Position determining a set of reference values of the target frequency which helps to reduce the influence of the touch on the reference set of the target frequency when there is a touch in the process of the drive signal of the touch screen being hopped from the current frequency to the target frequency, thereby contributing to Improve the touch detection accuracy of the touch screen.
  • the processor is specifically configured to:
  • a first touch location is determined based on the set of fitted reference values and the first set of original values.
  • the first function is a linear function and the fit is a least squares fit.
  • the processor is specifically configured to determine, according to the second set of original values and the set of reference values of the current frequency, a reference value corresponding to the first touch position in the set of reference values of the target frequency.
  • the processor is specifically configured to:
  • the first reference value and the second reference value are both values corresponding to the first touch position, and the position of the first reference value in the reference value set of the current frequency is the same as the position of the second reference value in the reference value set of the target frequency.
  • the conversion circuit is further configured to use the original value set collected when the touch screen operates at the target frequency and there is no touch on the touch screen.
  • the third set of original values is further configured to use the original value set collected when the touch screen operates at the target frequency and there is no touch on the touch screen.
  • the processor is further configured to use the first original value in the third set of original values as the second reference value in the set of reference values of the target frequency, where the first original value is the first touch position and the first touch position Corresponding original values, the position of the first original value in the third set of original values is the same as the position of the third reference value in the set of reference values of the target frequency.
  • the touch chip provided by the present application may include a module for performing the touch detection method in the first aspect or any possible implementation manner of the first aspect, the module may be software and/or Or hardware.
  • a still further aspect of the present application provides a computer readable storage medium having instructions stored therein, such that when the instruction is run on a touch chip, the touch chip performs the first aspect or the first A touch detection method in any of the possible implementations of the aspects.
  • a further aspect of the present application provides a computer program product comprising instructions, when executed on a touch chip, causing the touch chip to perform a touch in any one of the possible implementations of the first aspect or the first aspect Detection method.
  • FIG. 1 is a diagram showing an example of a system of a capacitive touch screen and a touch chip according to an embodiment of the present application.
  • FIG. 2 is a diagram showing an example of a set of reference values for an embodiment of the present application.
  • FIG. 3 is a diagram showing an example of a set of original values for an embodiment of the present application.
  • FIG. 4 is a diagram showing an example of a difference set of an embodiment of the present application.
  • FIG. 5 is an exemplary flowchart of a touch detection method according to an embodiment of the present application.
  • FIG. 6 is a diagram showing an example of a backup reference value set in one embodiment of the present application.
  • FIG. 7 is a diagram showing an example of a set of original values for another embodiment of the present application.
  • Figure 8 is a diagram showing an example of function coefficients of one embodiment of the present application.
  • FIG. 9 is a diagram showing an example of a set of fitted reference values for an embodiment of the present application.
  • FIG. 10 is a diagram showing an example of a difference set of another embodiment of the present application.
  • FIG. 11 is an exemplary structural diagram of a touch chip according to an embodiment of the present application.
  • FIG. 12 is an exemplary structural diagram of a touch chip according to another embodiment of the present application.
  • FIG. 1 is a diagram showing an example of a system of a capacitive touch screen and a touch chip. It should be understood that the system illustrated in FIG. 1 is merely an example, and other modules or units may be included in the system, or include modules similar in function to the various modules in FIG. 1.
  • the capacitive touch screen shown in FIG. 1 is a mutual capacitance touch screen, and the capacitive touch screen in the embodiment of the present application may also be a self-capacitive touch screen.
  • the touch chip can also be referred to as a touch control chip or a touch controller.
  • the capacitive sensor of the capacitive touch screen 110 is generally composed of a driving electrode (TX) and a sensing electrode (RX).
  • TX driving electrode
  • RX sensing electrode
  • the position at which each of the drive electrodes and each of the sense electrodes intersect can be considered as a capacitive sensing node.
  • the touch chip 120 can input a signal of a certain frequency to the driving electrode, and the signal can be referred to as a driving signal.
  • the driving signal passes through the capacitive sensor and is output from the sensing electrode to the touch chip.
  • the signal that the sensing electrode outputs to the touch chip can be referred to as an inductive signal. After the touch chip performs analog-to-digital conversion and digital signal processing on the sensing signal, the original value of the corresponding capacitive sensing node can be obtained.
  • a set of reference values as shown in FIG. 2 may be stored in the memory of the touch chip.
  • the values corresponding to the positions where TX i and RX j intersect are used to determine whether there is a touch at the capacitive sensing node where the i-th driving electrode and the j-th sensing electrode of the capacitive touch screen intersect.
  • i takes from 1 to 8
  • j also takes 1 to 8.
  • FIG. 2 An example of a set of raw values collected by the touch chip when there is a touch on the capacitive touch screen is shown in FIG.
  • the set of reference values shown in FIG. 2 is subtracted from the original set of values shown in FIG. 3 to obtain a set of differences as shown in FIG.
  • the touch on the capacitive touch screen can be determined according to the difference set shown in FIG.
  • the location is specifically a capacitive sensing node corresponding to the original value in the dotted box shown in FIG.
  • the touch chip can output a drive signal of another frequency supported by the touch screen to the capacitive touch screen, that is, frequency hopping to avoid noise on the capacitive touch screen. The impact of the detection accuracy of the touch location.
  • the touch chip collects a set of original values when the touch screen works at the frequency of the frequency hopping, and directly sets the original value set as the determined capacitive touch screen to operate at the frequency after the frequency modulation.
  • a set of reference values for detecting a touch location on the capacitive touch screen is
  • the touch chip will use the original value set collected when the touch screen operates at the frequency of the frequency hopping frequency as the reference value set of the frequency after the frequency hopping, if there is a touch on the capacitive touch screen during the acquisition, the frequency reference set of the frequency after the frequency hopping will be The reference value at the touch position is incorrect, so that the touch detection error of the touch position when the capacitive touch screen operates at the frequency after the frequency hopping is incorrect, that is, the touch is not detected, and the detection accuracy of the touch position on the capacitive touch screen is affected. Therefore, the embodiment of the present application proposes a new touch detection method.
  • FIG. 5 is a schematic flowchart of a touch detection method according to an embodiment of the present application. It should be understood that FIG. 5 shows the steps or operations of the touch detection method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations in FIG. 5.
  • the touch chip when the touch screen is driven by the driving signal of the current frequency, the touch chip performs noise detection. When noise is detected and the noise value exceeds a predetermined threshold, the frequency hopping may be performed, that is, at a frequency different from the current frequency.
  • the drive signal drives the touch screen to work in order to reduce the effects of noise.
  • the frequency of the frequency hopped drive signal is referred to as the target frequency.
  • the touch screen can be a capacitive touch screen.
  • the driving signal of the touch screen after determining that the driving signal of the touch screen needs to be hopped to the target frequency, it can be hopped to a reference frequency different from the target frequency.
  • the reference frequency can be pre-configured.
  • the original value set is collected, and the original value set is referred to as a first original value set.
  • S540 Determine a touch screen according to the first set of original values and the set of backup reference values of the reference frequency. There is a first touch location on the touch.
  • the touch position of the touch on the touch screen when the touch screen operates at the reference frequency may be determined according to the first original value set and the backup reference value set of the reference frequency.
  • the touch position determined according to the first set of original values and the set of backup reference values of the reference frequency is referred to as a first touch position.
  • the set of backup reference values for the reference frequency can be pre-configured.
  • the configuration can be completed at the time before the touch chip is shipped from the factory, at the initialization time, and the like.
  • a possible implementation manner of obtaining a set of backup reference values of the reference frequency and the reference frequency may include: driving a touch screen by inputting a plurality of frequency driving signals to the touch screen, and driving signals of each frequency may be repeatedly input multiple times, thus corresponding to Each frequency of the driving signal may collect a plurality of original value sets; respectively compare the plurality of original value sets corresponding to the driving signals of each frequency; and record the frequency corresponding to the plurality of original value sets with the smallest change as the reference frequency And averaging the plurality of original value sets corresponding to the reference frequency as a backup reference value set of the reference frequency.
  • the frequency hopping to the target frequency drives the touch screen with the driving signal of the target frequency.
  • the first set of original values collected when the touch screen is operated at the target frequency is used as the second set of original values.
  • S550 and S560 may be executed first, and then S520 and S530. That is to say, the driving signal of the touch screen can be first hopped from the current frequency to the target frequency, and the touch chip collects the second original value set; then the driving signal of the touch screen is hopped from the target frequency to the reference frequency, and the touch chip is collected. A collection of original values. Thereafter, the drive signal of the touch screen is then hopped to the target frequency.
  • the reference value set of the target frequency is determined according to the second set of original values collected when the touch screen operates at the target frequency and the first touch position where the touch exists on the touch screen.
  • the original value set when the touch screen works on the target frequency may be collected, and the touch position on the touch screen may be determined according to the set of the original value set and the reference value set of the target frequency.
  • the set of reference values of the target frequency may be subtracted from the set of original values collected when the touch screen operates at the target frequency to obtain a difference set, and the touch position on the touch screen is determined according to the difference set.
  • the set and the first touch position obtain a reference value set of the target frequency, which helps the touch screen to reduce the influence of the touch on the reference value set of the target frequency when there is a touch in the process of frequency hopping from the current frequency to the target frequency, thereby facilitating Improve the detection accuracy of the touch position on the touch screen.
  • a possible implementation manner may include: backing up the reference frequency according to the first function.
  • the set of values and the first set of original values are fitted to obtain a pending coefficient in the first function; according to the set of backup reference values of the reference frequency, the first function obtains a set of fitted reference values; according to the set of fitting reference values and the first A set of original values that determine the first touch location.
  • the set of backup reference values of the reference frequency and the first set of original values are fitted, and then the set of fitted reference values is obtained according to the obtained function and the set of backup reference values, and then according to the fitting reference value.
  • the set and the first set of original values determine the first touch location. This helps to eliminate the influence of temperature, noise and the like on the first touch position, thereby further improving the detection accuracy of the touch position on the touch screen.
  • one possible way of fitting may be a least squares fit.
  • the value of the drive signal direction along the drive electrode is used as the first function of the independent variable, and the value of the drive signal direction along the drive electrode in the first original value set is used as the dependent variable of the first function.
  • the backup reference value set can be substituted into the first function as an independent variable, and the corresponding function values are obtained, and the function values constitute a set of fitting reference values.
  • the touch chip may subtract the first set of original value values from the set of the reference reference original values to obtain a set of original value differences, and obtain a first touch position according to the original value difference set.
  • the values of the obtained i-th m and b are as shown in the ith column of FIG. 8, where i is taken from 1 to 8.
  • the i-th column reference value in FIG. 6 is substituted as an argument x into the linear function determined according to the i-th column m and b in FIG. 8, and the fitting reference value of the i-th column in FIG. 9 is obtained.
  • the first touch position that is, the position of the capacitance sensing node corresponding to the difference in the broken line shown in FIG. 10 can be determined.
  • the foregoing method for determining the first touch location according to the set of backup reference values of the first set of original values and the reference frequency is only an exemplary description, which is not limited by the embodiment of the present application.
  • the set of backup reference values of the reference frequency can be subtracted from the first set of original values and the first touch location determined based on the resulting set of differences.
  • determining a reference value set of the target frequency according to the second original value set and the first touch position collected when the touch screen operates at the target frequency may include: determining the target according to the second original value set and the current frequency reference value set. A reference value corresponding to the first touch position in the set of reference values of the frequency.
  • one or more reference values may be associated with the first touch position in the reference value set of the target frequency, and the reference value corresponding to the first touch position in the reference value set of the target frequency may be set by the second original value and A set of reference values for the current frequency is obtained.
  • determining, according to the second set of original values and the set of reference values of the current frequency, a reference value corresponding to the first touch location in the set of reference values of the target frequency may include: Calculating an average of all the original values in the second set of original values as a first average value; calculating an average of all the reference values in the set of reference values of the current frequency as a second average value; and ranking the first in the set of reference values of the current frequency
  • the reference value is added to the first average value, and the value obtained by subtracting the second average value is used as the second reference value in the reference value set of the target frequency, and the first reference value and the second reference value are both the first touch position
  • the position of the first reference value in the set of reference values of the current frequency is the same as the position of the second reference value in the set of reference values of the target frequency.
  • the first reference value is one of the reference values corresponding to the first touch position in the reference value set of the current frequency
  • the second reference value is a reference value corresponding to the first touch position in the reference value set of the target frequency.
  • all of the reference values corresponding to the first touch position in the reference value set of the target frequency may be acquired according to the above method of determining the second reference value.
  • the reference value other than the first touch position in the reference value set of the target frequency may be directly obtained from the original value other than the first touch position in the second original value set, that is, the second original value set may be the first
  • the original value outside the touch position corresponds to a reference value other than the first touch position in the reference value set of the target frequency.
  • the reference value set of the obtained target frequency may be the second original value set, that is, the second original value may be directly used.
  • the set is the set of reference values for the target frequency.
  • the touch detection method of the embodiment of the present application may further include : a set of original values collected when the touch screen operates at a target frequency and no touch on the touch screen is used as a third set of original values; a first original value in the third set of original values is used as a second reference value in a set of reference values of the target frequency
  • the first original value is an original value corresponding to the first touch position in the third original value set, the position of the first original value in the third reference value set and the position of the second reference value in the reference value set of the target frequency the same.
  • the reference value corresponding to the first touch position in the reference value set of the target frequency is updated. This helps to improve the touch detection rate accuracy rate at the first touch position when the touch screen operates at the target frequency and there is no touch on the first touch position, thereby improving the touch detection of the touch screen. Accuracy.
  • the first original value is an original value of the original values corresponding to the first touch position in the third original value set.
  • each of the reference values corresponding to the first touch position in the reference value set of the target frequency may be implemented in accordance with the method of updating the second reference value.
  • FIG. 11 is an exemplary structural diagram of a touch chip according to an embodiment of the present disclosure, which can implement the function of the touch chip in the embodiment shown in FIG. 5. It should be understood that the touch chip 1100 shown in FIG. 11 is only an example. The touch chip of the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 11 , or Includes all the modules in Figure 11.
  • the first processing module 1110 is configured to determine that the driving signal of the touch screen is frequency hopped from the current frequency to the target frequency.
  • the driving module 1120 is configured to drive the touch screen with a driving signal of a reference frequency.
  • the collecting module 1130 is configured to collect a set of original values when the touch screen operates at a reference frequency as a first set of original values, where the reference frequency is different from the target frequency.
  • the second processing module 1140 is configured to determine, according to the set of backup reference values of the reference frequency and the first set of original values collected by the collection module, the first touch location where the touch exists on the touch screen.
  • the driving module 1120 is further configured to drive the touch screen with a driving signal of a target frequency.
  • the acquisition module 1130 is further configured to collect the original set of values as the second set of original values when the touch screen operates at the target frequency.
  • the third processing module 1150 is configured to determine a reference value set of the target frequency according to the second original value set collected by the collection processing module and the first touch position determined by the second processing module.
  • the second processing module 1140 is further configured to determine a touch position when the touch screen operates at the target frequency according to the reference value set of the target frequency.
  • the touch chip in the embodiment of the present application first determines a first touch position on the touch screen according to the first original value set and the backup reference value set corresponding to the reference frequency, and then corresponds to the second original value set and the first touch according to the target frequency.
  • Position determining a set of reference values of the target frequency which helps to reduce the influence of the touch on the reference set of the target frequency when there is a touch in the process of the drive signal of the touch screen being hopped from the current frequency to the target frequency, thereby contributing to Improve the touch detection accuracy of the touch screen.
  • the first processing module 1110 may be specifically configured to: according to the first function, the backup base And fitting the set of the first value to the first set of original values to obtain the undetermined coefficient in the first function; according to the set of backup reference values, the undetermined coefficient and the first function, obtaining a set of fitting reference values; according to the set of fitting reference values And the first set of original values, determining the first touch location.
  • the first function may be a linear function and the fit may be a least squares fit.
  • the third processing module 1150 is specifically configured to: determine, according to the second set of original values and the set of reference values of the current frequency, a reference value corresponding to the first touch position in the set of reference values of the target frequency.
  • the third processing module 1150 is specifically configured to:
  • the collection module 1130 is further configured to use the original set of values collected when the touch screen operates at the target frequency and there is no touch on the touch screen as the third set of original values.
  • the third processing module 1150 is further configured to use the first original value in the third original value set as the second reference value in the reference value set of the target frequency, where the first original value is the third original value set and the first The original value corresponding to a touch position, the position of the first original value in the third original value set is the same as the position of the third reference value in the reference value set of the target frequency.
  • FIG. 12 is a schematic structural diagram of a touch chip according to another embodiment of the present application.
  • the touch chip is used to implement the function of the touch chip in the embodiment shown in FIG. 5. It should be understood that the touch chip 1200 shown in FIG. 12 is only an example.
  • the touch chip of the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 12, or Includes all the modules in Figure 12.
  • the memory 1210 stores computer program code, reference frequency, backup reference value set of reference frequency, dynamically collected original value set, dynamically generated reference value set, and the like.
  • the processor 1221 in the MCU 1220 executes computer program code stored in the memory, and
  • the control driving circuit 1230 outputs a driving signal of a corresponding frequency to the touch screen to drive the touch screen operation, and generates a reference value set, and detects a touch position or the like according to the original value set and the reference value set and the backup reference value set.
  • the conversion circuit 1222 generates a set of original values based on the sensing signals acquired by the sensing circuit 1240 from the touch screen.
  • the driving circuit 1230 outputs a driving signal of a corresponding frequency to the touch screen under the control of the MCU 1220.
  • the sensing circuit 1240 collects the sensing signal output by the touch screen under the control of the MCU 1220.
  • the processor 1221 is configured to determine that the driving signal of the touch screen is frequency hopped from the current frequency to the target frequency.
  • the driving circuit 1230 is for driving the touch screen with a driving signal of a reference frequency.
  • the conversion circuit 1222 is configured to generate, according to the sensing signal collected by the sensing circuit 1240, a set of original values as a first set of original values when the touch screen operates at the reference frequency, wherein the reference frequency is different from the target frequency.
  • the processor 1221 is configured to determine, according to the set of backup reference values of the reference frequency and the first set of original values collected by the conversion circuit 1222, that the first touch position of the touch exists on the touch screen.
  • the driving circuit 1230 is further configured to drive the touch screen with a driving signal of a target frequency.
  • the conversion circuit 1222 is further configured to generate, according to the sensing signal collected by the sensing circuit 1240, a set of original values as a second set of original values when the touch screen operates at the target frequency.
  • the processor 1221 is further configured to determine a reference value set of the target frequency according to the second set of original values generated by the conversion circuit 1222 and the first touch position determined by the processor 1221.
  • the processor 1221 is further configured to determine a touch position when the touch screen operates at the target frequency according to the reference value set of the target frequency.
  • the touch chip in the embodiment of the present application first determines a first touch position on the touch screen according to the first original value set and the backup reference value set corresponding to the reference frequency, and then corresponds to the second original value set and the first touch according to the target frequency.
  • Position determining a set of reference values of the target frequency which helps to reduce the influence of the touch on the reference set of the target frequency when there is a touch in the process of the drive signal of the touch screen being hopped from the current frequency to the target frequency, thereby contributing to Improve the touch detection accuracy of the touch screen.
  • the processor 1221 is specifically configured to:
  • a first touch location is determined based on the set of fitted reference values and the first set of original values.
  • the first function is a linear function and the fitting is a least squares fit.
  • the processor 1221 is configured to: determine, according to the second set of original values and the set of reference values of the current frequency, a reference value corresponding to the first touch position in the set of reference values of the target frequency.
  • the processor 1221 is specifically configured to:
  • the first reference value and the second reference value are both values corresponding to the first touch position, and the position of the first reference value in the reference value set of the current frequency is the same as the position of the second reference value in the reference value set of the target frequency.
  • the conversion circuit 1222 is further configured to use the original set of values collected when the touch screen operates at the target frequency and there is no touch on the touch screen as the third set of original values.
  • the processor 1221 is further configured to use the first original value in the third original value set as the second reference value in the reference value set of the target frequency, where the first original value is the third original value set and the first touch The original value corresponding to the position, the position of the first original value in the third original value set is the same as the position of the third reference value in the reference value set of the target frequency.
  • the disclosed systems, devices, and The method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种触摸检测方法和触控芯片。该触摸检测方法包括:确定触摸屏的驱动信号从当前频率跳频到目标频率(S510);以参考频率的驱动信号驱动所述触摸屏,其中,参考频率与目标频率不相同(S520);采集触摸屏工作在参考频率时的原始值集合作为第一原始值集合(S530);根据第一原始值集合与参考频率的备份基准值集合,确定触摸屏上存在触摸的第一触摸位置(S540);以目标频率的驱动信号驱动所述触摸屏(S550);采集触摸屏工作在目标频率时的原始值集合作为第二原始值集合(S560);根据第二原始值集合和第一触摸位置,确定目标频率的基准值集合(S570);根据目标频率的基准值集合,确定触摸屏工作在目标频率时的触摸位置(S580)。该触摸检测方法和触控芯片,有助于提高触摸屏上触摸位置的检测准确率。

Description

触摸检测方法和触控芯片 技术领域
本申请涉及电子设备领域,尤其涉及触摸检测方法和触控芯片。
背景技术
电容触摸屏是一种人机交互装置,其主要由驱动电极和感应电极组成。驱动电极可以根据设置的参数输出不同频率的驱动信号,感应电极负责接收感应信号。
触控芯片对感应电极接收到的信号进行数字信号处理等操作会得到原始值。手指触摸电容触摸屏时,触控芯片采集到的原始值,相对于电容触摸屏上没有手指触摸时,触控芯片从感应电极采集的原始值,会变小。
可以将电容触摸屏上没有手指触摸时,触控芯片从感应电极采集的原始值作为基准。使用该基准减去电容触摸屏上有手指触摸时触摸芯片从感应电极采集的原始值,就可以得到原始值的差值,也就是触摸所导致原始值变化量的大小。触摸芯片可以根据该差值确定电容触摸屏上手指触摸点的坐标,得到手指具体触摸的位置等信息。
在使用过程中,不可避免的会存在噪声,如环境噪声、共模噪声、电磁噪声等等。噪声会使得原始值变大或者变小,从而导致原始值差值变大或者变小,进而会导致电容触摸屏上无手指触摸、但触控芯片误认为有触摸,或者电容触摸屏上有手指触摸、但触控芯片却误认为无触摸或者误认为存在多个触摸点的情况发生。
降低噪声对触摸芯片判断电容触摸屏上触摸情况的一种有效解决方案是跳频。具体地说,就是改变驱动电极的驱动信号的频率。
驱动电极输入不同频率的驱动信号时,触控芯片根据感应电极输出的感应信号得到的原始值不同。如,驱动电极输入的驱动信号的频率越高,触控芯片根据感应电极输出的感应信号得到的原始值越大。因此,驱动电极输入不同频率的驱动信号时,触控芯片应该根据不同的基准确定电容触摸屏上的触摸位置。
现有的跳频过程中,直接采用跳频后触控芯片根据感应电极输出的感应信号得到的原始值作为基准。该方式会导致电容触摸屏上触摸位置的确定准 确率较低。
发明内容
本申请提供了触摸检测方法和触控芯片,有助于提高触摸屏上触摸位置的检测准确率。
第一方面,本申请提供了一种触摸检测方法。该触摸检测方法包括:确定触摸屏的驱动信号从当前频率跳频到目标频率;以参考频率的驱动信号驱动触摸屏,其中,参考频率与目标频率不相同;采集触摸屏工作在参考频率时的原始值集合作为第一原始值集合;根据第一原始值集合与参考频率的备份基准值集合,确定触摸屏上存在触摸的第一触摸位置;以目标频率的驱动信号驱动触摸屏;采集触摸屏工作在目标频率时的原始值集合作为第二原始值集合;根据第二原始值集合和第一触摸位置,确定目标频率的基准值集合;根据目标频率的基准值集合,确定触摸屏工作在目标频率时的触摸位置。
该实现方式中,先根据参考频率对应的第一原始值集合和参考频率的备份基准值集合确定触摸屏上的第一触摸位置,然后再根据目标频率对应的第二原始值集合和第一触摸位置确定目标频率的基准值集合,有助于在触摸屏由当前频率跳频到目标频率的过程中存在触摸时,减少该触摸对目标频率的基准值集合的影响,进而有助于提高触摸屏上触摸位置的检测准确率。
结合第一方面,在第一种可能的实现方式中,根据第一原始值集合和参考频率的备份基准值集合,确定触摸屏上存在触摸的第一触摸位置,包括:根据第一函数,对备份基准值集合和第一原始值集合进行拟合,得到第一函数中的待定系数;根据备份基准值集合,所述待定系数和第一函数,得到拟合基准值集合;根据拟合基准值集合和第一原始值集合,确定第一触摸位置。
该实现方式中,先对参考频率的备份基准值集合和第一原始值集合进行拟合,再根据备份基准值集合和拟合得到的函数得到拟合基准值集合,然后才根据拟合基准值集合和第一原始值集合确定第一触摸位置,可以消除温度、噪声等因素对第一触摸位置的影响,从而可以进一步提高触摸屏上触摸位置的检测准确率。
结合第一种可能的实现方式,在第二种可能的实现方式中,第一函数为线性函数,拟合为最小二乘法拟合。
结合第一方面、第一种或第二种可能的实现方式,在第三种可能的实现 方式中,根据第二原始值集合和第一触摸位置,确定目标频率的基准值集合,包括:根据第二原始值集合和当前频率的基准值集合,确定目标频率的基准值集合中对应第一触摸位置的基准值。
该实现方式中,根据当前频率的基准值集合确定目标频率的基准值集合中对应第一触摸位置的基准值,可以进一步提高确定触摸屏上触摸位置的检测准确率。
结合第三种可能的实现方式,在第四种可能的实现方式中,根据第二原始值集合和当前频率的基准值集合,确定目标频率的基准值集合中对应第一触摸位置的原始值,包括:
计算第二原始值集合中所有原始值的平均值作为第一平均值;
计算当前频率的基准值集合中所有基准值的平均值作为第二平均值;
将当前频率的基准值集合中的第一基准值加上第一平均值,并减去第二平均值后所得的数值作为目标频率的基准值集合中的第二基准值,第一基准值和第二基准值均为与第一触摸位置对应的值,第一基准值在当前频率的基准值集合中的位置与第二基准值在目标频率的基准值集合中的位置相同。
结合第一方面或者第一种至第四种中任意一种可能的实现方式,在第五种可能的实现方式中,触摸检测方法还包括:将触摸屏工作在目标频率且触摸屏上没有触摸时采集的原始值集合作为第三原始值集合;将第三原始值集合中的第一原始值作为目标频率的基准值集合中的第二基准值,第一原始值为第三原始值集合中与第一触摸位置对应的原始值,第一原始值在第三原始值集合中的位置与第二基准值在目标频率的基准值集合中的位置相同。
该实现方式中,可以根据目标频率的更新后的基准值集合确定触摸屏工作于目标频率时,触摸屏上的触摸位置,从而提高触摸屏上触摸位置的检测准确率。
第二方面,本申请提供了一种触控芯片。该触控芯片包括存储器、微处理机控制器(microprocessor control unit,MCU)、驱动电路和感应电路,MCU包括处理器和转化电路。
其中,存储器用于存储计算机程序代码、参考频率、参考频率的备份基准值集合、动态采集的原始值集合和动态生成的基准值集合等。
处理器用于执行存储器中存储的计算机程序代码,并可以控制驱动电路向触摸屏输出相应频率的驱动信号,以驱动触摸屏工作,以及生成基准值集 合,根据原始值集合和基准值集合以及备份基准值集合检测触摸位置等。
转化电路用于根据感应电路从触摸屏采集的感应信号生成原始值集合。
驱动电路用于在处理器的控制下,向触摸屏输出相应频率的驱动信号。
感应电路用于在处理器的控制下,采集触摸屏输出的感应信号。
具体地,处理器用于确定触摸屏的驱动信号从当前频率跳频到目标频率。
驱动电路用于以参考频率的驱动信号驱动触摸屏。
转换电路用于触摸屏工作在参考频率时,根据感应电路采集的感应信号生成原始值集合作为第一原始值集合,其中,参考频率与目标频率不相同。
处理器用于根据参考频率的备份基准值集合和转换电路采集的第一原始值集合,确定所述触摸屏上存在触摸的第一触摸位置。
驱动电路还用于以目标频率的驱动信号驱动所述触摸屏。
转换电路还用于触摸屏工作在目标频率时,根据感应电路采集的感应信号生成原始值集合作为第二原始值集合。
处理器还用于根据转换电路生成的第二原始值集合和处理器确定的第一触摸位置,确定目标频率的基准值集合。
处理器还用于根据目标频率的基准值集合,确定触摸屏工作在目标频率时的触摸位置。
本申请实施例中的触控芯片,先根据参考频率对应的第一原始值集合和备份基准值集合确定触摸屏上的第一触摸位置,然后再根据目标频率对应第二原始值集合和第一触摸位置确定目标频率的基准值集合,有助于在触摸屏的驱动信号由当前频率跳频到目标频率的过程中存在触摸时,减小该触摸对目标频率的基准值集合的影响,从而有助于提高触摸屏的触摸检测准确率。
结合第二方面,在第一种可能的实现方式中,处理器具体用于:
根据第一函数,对备份基准值集合和第一原始值集合进行拟合,得到第一函数中的待定系数;
根据备份基准值集合,所述待定系数和第一函数,得到拟合基准值集合;
根据拟合基准值集合和第一原始值集合,确定第一触摸位置。
结合第一种可能的实现方式,在第二种可能的实现方式中,所述第一函数为线性函数,所述拟合为最小二乘法拟合。
结合第二方面、第一种或第二种可能的实现方式,在第三种可能的实现 方式中,处理器具体用于根据第二原始值集合和当前频率的基准值集合,确定目标频率的基准值集合中对应第一触摸位置的基准值。
结合第三种可能的实现方式,在第四种可能的实现方式中,处理器具体用于:
计算第二原始值集合中所有原始值的平均值作为第一平均值;
计算当前频率的基准值集合中所有基准值的平均值作为第二平均值;
将当前频率的基准值集合中的第一基准值加上所述第一平均值,并减去第二平均值后所得的数值作为目标频率的基准值集合中的第二基准值,第一基准值和第二基准值均为与第一触摸位置对应的值,第一基准值在当前频率的基准值集合中的位置与第二基准值在目标频率的基准值集合中的位置相同。
结合第二方面或第二方面中任意一种可能的实现方式,在第五种可能的实现方式中,转换电路还用于将触摸屏工作在目标频率且触摸屏上没有触摸时采集的原始值集合作为第三原始值集合。
相应地,处理器还用于将第三原始值集合中的第一原始值作为目标频率的基准值集合中的第二基准值,第一原始值为第三原始值集合中与第一触摸位置对应的原始值,第一原始值在第三原始值集合中的位置与第三基准值在目标频率的基准值集合中的位置相同。
在一种可能的设计中,本申请提供的触控芯片可以包括用于执行第一方面或第一方面中任意一种可能的实现方式中的触摸检测方法的模块,该模块可以是软件和/或硬件。
本申请的又一方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在触控芯片上运行时,使得触控芯片执行第一方面中或第一方面中任意一种可能的实现方式中的触摸检测方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在触控芯片上运行时,使得触控芯片执行第一方面或第一方面中任意一种可能的实现方式中的触摸检测方法。
附图说明
图1是本申请实施例的电容触摸屏和触控芯片的***示例图。
图2是本申请一个实施例的基准值集合示例图。
图3是本申请一个实施例的原始值集合示例图。
图4是本申请一个实施例的差值集合示例图。
图5是本申请实施例的触摸检测方法的示例性流程图。
图6是本申请一个实施例的备份基准值集合示例图。
图7是本申请另一个实施例的原始值集合示例图。
图8是本申请一个实施例的函数系数示例图。
图9是本申请一个实施例的拟合基准值集合示例图。
图10本申请另一个实施例的差值集合示例图。
图11是本申请一个实施例的触控芯片的示例性结构图。
图12是本申请另一个实施例的触控芯片的示例性结构图。
具体实施方式
图1为电容触摸屏和触控芯片的***示例图。应理解,图1示出的***仅是示例,该***中还可包括其他模块或单元,或者包括与图1中各个模块功能相似的模块。如,图1所示的电容触摸屏为互电容触摸屏,本申请实施例中的电容触摸屏也可以是自电容触摸屏。
应注意,触控芯片也可以称为触摸控制芯片或者触摸控制器。
如图1所示,电容触摸屏110的电容传感器一般由驱动电极(TX)和感应电极(RX)组成。每条驱动电极和每条感应电极相交的位置可以认为是一个电容感应节点。
触控芯片120可向驱动电极输入一定频率的信号,该信号可以称为驱动信号。驱动信号经过电容传感器后由感应电极输出到触控芯片。感应电极向触控芯片输出的信号可以称为感应信号。触控芯片对感应信号进行模数转换以及数字信号处理等操作后可得到对应电容感应节点的原始值。
例如,触控芯片的存储器中可以存储有如图2所示的基准值集合。图2中,TXi和RXj交叉的位置对应的值用于确定电容触摸屏的第i个驱动电极与第j个感应电极相交处的电容感应节点处有无触摸。i从1取到8,j也从1取到8。
当电容触摸屏上有触摸时,触控芯片采集到的原始值集合的一个示例如图3所示。将图3所示的原始值集合减去图2所示的基准值集合,得到如图4所示的差值集合。根据图4所示的差值集合可以确定电容触摸屏上的触摸 位置,具体为图4所示虚线框中原始值对应的电容感应节点。
电容触摸屏工作在其支持的所有频率中的一个频率时,若噪声影响过大,则触摸芯片可以向电容触摸屏输出其支持的另一频率的驱动信号,即跳频,以避免噪声对电容触摸屏上触摸位置的检测准确率的影响。
现有技术中,电容触摸屏的工作频率跳频率,触控芯片会在触摸屏工作在跳频后频率时采集一个原始值集合,并直接将该原始值集合作为确定电容触摸屏工作在该调频后频率时,检测电容触摸屏上触摸位置的基准值集合。
若触控芯片将在触摸屏工作于跳频后频率时采集的原始值集合作为跳频后频率的基准值集合,采集时电容触摸屏上有触摸,则会导致跳频后频率的基准值集合中该触摸位置处的基准值有误,从而导致电容触摸屏工作在跳频后频率时该触摸位置处的触摸判断错误,即检测不出该触摸,进而导致电容触摸屏上触摸位置的检测准确率受影响。因此本申请实施例提出了一种新的触摸检测方法。
图5是本申请一个实施例的触摸检测方法的示意性流程图。应理解,图5示出了的该触摸检测方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图5中的各个操作的变形。
S510,确定触摸屏的驱动信号从当前频率跳频到目标频率。
例如,触摸屏在当前频率的驱动信号的驱动下工作时,触控芯片会进行噪声检测,当检测到噪声且噪声值超过预定的阈值时,可以跳频,即以与当前频率不相同的频率的驱动信号驱动触摸屏工作,以便于减小噪声的影响。为了后续描述方面,将跳频后的驱动信号的频率称为目标频率。
该触摸屏可以是电容式触摸屏。
S520,以参考频率的驱动信号驱动触摸屏,其中,参考频率与目标频率不相同。
也就是说,确定触摸屏的驱动信号需要跳频到目标频率后,可以跳频到与目标频率不相同的参考频率。其中,参考频率可以是预先配置好的。
S530,采集触摸屏工作在参考频率时的原始值集合作为第一原始值集合。
具体而言,以参考频率的驱动信号驱动触摸屏时,采集原始值集合,并将该原始值集合称为第一原始值集合。
S540,根据第一原始值集合和参考频率的备份基准值集合,确定触摸屏 上存在触摸的第一触摸位置。
也就是说,在S530中采集第一原始值集合后,可以根据第一原始值集合与参考频率的备份基准值集合,确定触摸屏工作在参考频率时触摸屏上存在触摸的触摸位置。
根据第一原始值集合和参考频率的备份基准值集合确定的触摸位置称为第一触摸位置。
参考频率的备份基准值集合可以是预先配置好的。例如,可以在触控芯片出厂前、初始化时刻等时间节点完成配置。
配置参考频率和参考频率的备份基准值集合前,需要先确定或者说获取参考频率和参考频率的备份基准值集合。
获取参考频率和参考频率的备份基准值集合的一种可能的实现方式可以包括:向触摸屏输入多个频率的驱动信号驱动触摸屏,并且每个频率的驱动信号可以重复输入多次,这样,对应于每个频率的驱动信号,可以采集到多个原始值集合;分别对每个频率的驱动信号对应的多个原始值集合进行比较;将变化最小的多个原始值集合对应的频率记为参考频率,并将该参考频率对应的多个原始值集合的平均值、作为参考频率的备份基准值集合。
获取参考频率的备份基准值集合的过程中,采集原始值集合时,通常情况下,触摸屏上没有触摸。此外,应尽快减小噪声的影响。
S550,以目标频率的驱动信号驱动触摸屏。
即跳频到目标频率,以目标频率的驱动信号驱动触摸屏。
S560,采集触摸屏工作在目标频率时的原始值集合作为第二原始值集合。
也就是说,以目标频率的驱动信号驱动触摸屏时,采集原始值集合,并将该原始值集合作为第二原始值集合。
通常情况下,将触摸屏工作在目标频率时采集的第一个原始值集合作为第二原始值集合。
应理解,本申请实施例不限制S520、S530与S550、S560的执行顺序。例如,可以先执行S550和S560,再执行S520和S530。也即是说,触摸屏的驱动信号可以先从当前频率跳频到目标频率,触控芯片采集第二原始值集合;然后触摸屏的驱动信号再从目标频率跳频到参考频率,触控芯片采集第一原始值集合。此后,触摸屏的驱动信号再跳频到目标频率。
S570,根据第二原始值集合和第一触摸位置,确定目标频率的基准值集合,
具体而言,就是根据触摸屏工作在目标频率时采集的第二原始值集合和触摸屏上存在触摸的第一触摸位置,确定目标频率的基准值集合。
S580,根据目标频率的基准值集合,确定触摸屏工作在目标频率时的触摸位置。
也就是说,确定目标频率时的基准值集合后,可以采集触摸屏工作于目标频率时的原始值集合,并可以根据该原始值集合与目标频率的基准值集合,确定触摸屏上的触摸位置。
例如,可以将目标频率的基准值集合减去触摸屏工作于目标频率时采集的原始值集合,得到差值集合,并根据该差值集合确定触摸屏上的触摸位置。
本申请实施例中,先根据参考频率的备份基准值集合和在参考频率下采集的第一原始值集合确定触摸屏上存在触摸的第一触摸位置,然后再根据目标频率下采集的第二原始值集合和第一触摸位置得到目标频率的基准值集合,有助于触摸屏从当前频率跳频到目标频率的过程中存在触摸时,减小该触摸对目标频率的基准值集合的影响,进而有助于提高触摸屏上触摸位置的检测准确率。
S540中,根据第一原始值集合和参考频率的备份基准值集合,确定触摸屏上存在触摸的第一触摸位置时,一种可能的实现方式可以包括:根据第一函数,对参考频率的备份基准值集合和第一原始值集合进行拟合,得到第一函数中的待定系数;根据参考频率的备份基准值集合,第一函数,得到拟合基准值集合;根据拟合基准值集合和第一原始值集合,确定第一触摸位置。
也即是说,先对参考频率的备份基准值集合和第一原始值集合进行拟合,再根据拟合得到的函数和备份基准值集合得到拟合基准值集合,然后才根据拟合基准值集合和第一原始值集合确定第一触摸位置。这有助于消除温度、噪声等因素对第一触摸位置的影响,从而可以进一步提高触摸屏上触摸位置的检测准确率。
可选地,对参考频率的备份基准值集合和第一原始值集合进行拟合时所使用的第一函数可以是线性函数,如第一函数可以为y=m*x+b。
可选地,对参考频率的备份基准值集合和第一原始值集合进行拟合时,一种可能的拟合方式可以是最小二乘法拟合。具体地,可以将备份基准值集 合中沿驱动电极上的驱动信号方向的值作为第一函数的自变量,将第一原始值集合中沿驱动电极上的驱动信号方向的值作为第一函数的因变量,进行拟合。
拟合得到第一函数后,可以将备份基准值集合作为自变量代入第一函数,得到相应的函数值,这些函数值组成拟合基准值集合。
可选地,触控芯片可以将拟合基准原始值集合减去第一原始值集合,得到原始值差值集合,并根据该原始值差值集合得到第一触摸位置。
下面以一个更为详细的例子介绍如何根据参考频率的备份基准值集合和第一原始值集合确定第一触摸位置。
参考频率的备份基准值集合的示例如图6所示,参考频率的第一原始值集合的示例如图7所示。将图6中的第i列基准值作为函数y=m*x+b中的自变量x,将图7中的第i列原始值作为该函数的因变量y,进行最小二乘法拟合,得到的第i个m和b的值如图8中的第i列所示,其中,i从1取到8。
将图6中的第i列基准值作为自变量x代入根据图8中第i列m和b所确定的一次函数中,得到如图9中第i列的拟合基准值。
将图9所示的拟合基准值集合减去图7所示的第一原始值集合,得到如图10所示的差值集合。根据图10所示的差值集合可以确定第一触摸位置,即图10所示虚线中的差值对应的电容感应节点的位置。
应理解,上述根据第一原始值集合和参考频率的备份基准值集合确定第一触摸位置的方法,只是示例性说明,本申请实施例对此并不限定。例如,可以将参考频率的备份基准值集合减去第一原始值集合,并根据得到的差值集合确定第一触摸位置。
S570中,根据触摸屏工作在目标频率时采集的第二原始值集合和第一触摸位置,确定目标频率的基准值集合,可以包括:根据第二原始值集合和当前频率的基准值集合,确定目标频率的基准值集合中对应第一触摸位置的基准值。
具体而言,目标频率的基准值集合中可以有一个或多个基准值与第一触摸位置对应,目标频率的基准值集合中与第一触摸位置对应的基准值可以由第二原始值集合和当前频率的基准值集合得到。
根据第二原始值集合和当前频率的基准值集合,确定目标频率的基准值集合中对应所述第一触摸位置的基准值时,一种可能的实现方式可以包括: 计算第二原始值集合中所有原始值的平均值作为第一平均值;计算当前频率的基准值集合中所有基准值的平均值作为第二平均值;将当前频率的基准值集合中的第一基准值加上第一平均值,并减去第二平均值后所得的数值作为目标频率的基准值集合中的第二基准值,第一基准值和第二基准值均为与第一触摸位置对应的值,第一基准值在当前频率的基准值集合中的位置与第二基准值在目标频率的基准值集合中的位置相同。
其中,第一基准值是当前频率的基准值集合中与第一触摸位置对应的基准值中的一个基准值,第二基准值是目标频率的基准值集合中与第一触摸位置对应的基准值中的一个基准值。
应理解,目标频率的基准值集合中与第一触摸位置对应的所有基准值均可以按照上述确定第二基准值的方法获取。目标频率的基准值集合中与第一触摸位置对应外的基准值可以直接由第二原始值集合中与第一触摸位置对应外的原始值得到,即可以将第二原始值集合中与第一触摸位置对应外的原始值作为目标频率的基准值集合中与第一触摸位置对应外的基准值。
应注意的是,S540中,根据第一原始值集合与参考频率的备份基准值集合确定触摸屏上存在触摸的第一触摸位置时,一种可能的结果是触摸屏上不存在触摸,也就是说,第一触摸位置可以为空。此时,S570中,根据第二原始值集合和第一触摸位置,确定目标频率的基准值集合时,得到目标频率的基准值集合可以是第二原始值集合,即可以直接将第二原始值集合作为目标频率的基准值集合。
当S540中确定的第一触摸位置不为空,且目标频率的基准值集合是根据第二原始值集合和当前频率的基准值集合确定得到时,本申请实施例的检触摸检测方法还可以包括:将触摸屏工作在目标频率且触摸屏上没有触摸时采集的原始值集合作为第三原始值集合;将第三原始值集合中的第一原始值作为目标频率的基准值集合中的第二基准值,第一原始值为第三原始值集合中与第一触摸位置对应的原始值,第一原始值在第三基准值集合中的位置与第二基准值在目标频率的基准值集合中的位置相同。
换句话说,当根据触摸屏工作在目标频率时采集的第三原始值集合确定第一触摸位置上已没有触摸时,更新目标频率的基准值集合中与第一触摸位置对应的基准值。这样有助于提高触摸屏工作在目标频率且第一触摸位置上无触摸时第一触摸位置上的触摸检测率准确率,进而提高触摸屏的触摸检测 准确率。
其中,第一原始值为第三原始值集合中与第一触摸位置对应的原始值中的一个原始值。
应注意,更新目标频率的基准值集合的过程中,目标频率的基准值集合中与第一触摸位置对应的基准值中的每个基准值均可以按照上述更新第二基准值的方法来实现。
图11是本申请一个实施例的触控芯片的示例性结构图,该触控芯片可以实现图5所示实施例中的触控芯片的功能。应理解,图11示出的触控芯片1100仅是示例,本申请实施例的触控芯片还可包括其他模块或单元,或者包括与图11中的各个模块的功能相似的模块,或者并非要包括图11中的所有模块。
第一处理模块1110,用于确定触摸屏的驱动信号从当前频率跳频到目标频率。
驱动模块1120,用于以参考频率的驱动信号驱动触摸屏。
采集模块1130,用于采集触摸屏工作在参考频率时的原始值集合作为第一原始值集合,其中,参考频率与目标频率不相同。
第二处理模块1140,用于根据参考频率的备份基准值集合和采集模块采集的第一原始值集合,确定触摸屏上存在触摸的第一触摸位置。
驱动模块1120还用于以目标频率的驱动信号驱动触摸屏。
采集模块1130还用于在触摸屏工作在目标频率时采集原始值集合作为第二原始值集合。
第三处理模块1150,用于根据采集处理模块采集的第二原始值集合和第二处理模块确定的第一触摸位置,确定目标频率的基准值集合。
第二处理模块1140还用于根据目标频率的基准值集合,确定触摸屏工作在目标频率时的触摸位置。
本申请实施例中的触控芯片,先根据参考频率对应的第一原始值集合和备份基准值集合确定触摸屏上的第一触摸位置,然后再根据目标频率对应第二原始值集合和第一触摸位置确定目标频率的基准值集合,有助于在触摸屏的驱动信号由当前频率跳频到目标频率的过程中存在触摸时,减小该触摸对目标频率的基准值集合的影响,从而有助于提高触摸屏的触摸检测准确率。
可选地,第一处理模块1110可以具体用于:根据第一函数,对备份基 准值集合和第一原始值集合进行拟合,得到第一函数中的待定系数;根据备份基准值集合,所述待定系数和第一函数,得到拟合基准值集合;根据拟合基准值集合和第一原始值集合,确定第一触摸位置。
可选地,第一函数可以为线性函数,所述拟合可以为最小二乘法拟合。
可选地,第三处理模块1150可以具体用于:根据第二原始值集合和当前频率的基准值集合,确定目标频率的基准值集合中对应第一触摸位置的基准值。
可选地,第三处理模块1150具体用于:
计算第二原始值集合中所有原始值的平均值作为第一平均值;
计算当前频率的基准值集合中所有基准值的平均值作为第二平均值;
将当前频率的基准值集合中的第一基准值加上第一平均值,并减去第二平均值后所得的数值作为目标频率的基准值集合中的第二基准值,第一基准值和第二基准值均为与第一触摸位置对应的值,第一基准值在当前频率的基准值集合中的位置与第二基准值在目标频率的基准值集合中的位置相同。
可选地,采集模块1130还用于将触摸屏工作在目标频率且触摸屏上没有触摸时采集的原始值集合作为第三原始值集合。
对应地,第三处理模块1150还用于将第三原始值集合中的第一原始值作为目标频率的基准值集合中的第二基准值,第一原始值为第三原始值集合中与第一触摸位置对应的原始值,第一原始值在第三原始值集合中的位置与第三基准值在目标频率的基准值集合中的位置相同。
应理解,图11所示本申请实施例的触控芯片的各个单元的上述和其它操作和/或功能可以分别进一步参考实现图5所示实施例中由触控芯片执行的相应流程,为了简洁,在此不再赘述。
图12是本申请另一个实施例的触控芯片的示意性结构图。该触控芯片用于实现图5所示实施例中触控芯片的功能。应理解,图12示出的触控芯片1200仅是示例,本申请实施例的触控芯片还可包括其他模块或单元,或者包括与图12中的各个模块的功能相似的模块,或者并非要包括图12中的所有模块。
存储器1210存储计算机程序代码、参考频率、参考频率的备份基准值集合、动态采集的原始值集合和动态生成的基准值集合等。
MCU 1220中的处理器1221执行存储器中存储的计算机程序代码,并可 以控制驱动电路1230向触摸屏输出相应频率的驱动信号,以驱动触摸屏工作,以及生成基准值集合,根据原始值集合和基准值集合以及备份基准值集合检测触摸位置等。
转化电路1222根据感应电路1240从触摸屏采集的感应信号生成原始值集合。
驱动电路1230在MCU 1220的控制下,向触摸屏输出相应频率的驱动信号。
感应电路1240在MCU 1220的控制下,采集触摸屏输出的感应信号。
具体地,处理器1221用于确定触摸屏的驱动信号从当前频率跳频到目标频率。
驱动电路1230用于以参考频率的驱动信号驱动触摸屏。
转换电路1222用于触摸屏工作在参考频率时,根据感应电路1240采集的感应信号生成原始值集合作为第一原始值集合,其中,参考频率与目标频率不相同。
处理器1221用于根据参考频率的备份基准值集合和转换电路1222采集的第一原始值集合,确定所述触摸屏上存在触摸的第一触摸位置。
驱动电路1230还用于以目标频率的驱动信号驱动所述触摸屏。
转换电路1222还用于触摸屏工作在目标频率时,根据感应电路1240采集的感应信号生成原始值集合作为第二原始值集合。
处理器1221还用于根据转换电路1222生成的第二原始值集合和处理器1221确定的第一触摸位置,确定目标频率的基准值集合。
处理器1221还用于根据目标频率的基准值集合,确定触摸屏工作在目标频率时的触摸位置。
本申请实施例中的触控芯片,先根据参考频率对应的第一原始值集合和备份基准值集合确定触摸屏上的第一触摸位置,然后再根据目标频率对应第二原始值集合和第一触摸位置确定目标频率的基准值集合,有助于在触摸屏的驱动信号由当前频率跳频到目标频率的过程中存在触摸时,减小该触摸对目标频率的基准值集合的影响,从而有助于提高触摸屏的触摸检测准确率。
可选地,处理器1221具体用于:
根据第一函数,对备份基准值集合和第一原始值集合进行拟合,得到第一函数中的待定系数;
根据备份基准值集合,所述待定系数和第一函数,得到拟合基准值集合;
根据拟合基准值集合和第一原始值集合,确定第一触摸位置。
可选地,所述第一函数为线性函数,所述拟合为最小二乘法拟合。
可选地,处理器1221具体用于:根据第二原始值集合和当前频率的基准值集合,确定目标频率的基准值集合中对应第一触摸位置的基准值。
可选地,处理器1221具体用于:
计算第二原始值集合中所有原始值的平均值作为第一平均值;
计算当前频率的基准值集合中所有基准值的平均值作为第二平均值;
将当前频率的基准值集合中的第一基准值加上所述第一平均值,并减去第二平均值后所得的数值作为目标频率的基准值集合中的第二基准值,第一基准值和第二基准值均为与第一触摸位置对应的值,第一基准值在当前频率的基准值集合中的位置与第二基准值在目标频率的基准值集合中的位置相同。
可选地,转换电路1222还用于将触摸屏工作在目标频率且触摸屏上没有触摸时采集的原始值集合作为第三原始值集合。
相应地,处理器1221还用于将第三原始值集合中的第一原始值作为目标频率的基准值集合中的第二基准值,第一原始值为第三原始值集合中与第一触摸位置对应的原始值,第一原始值在第三原始值集合中的位置与第三基准值在目标频率的基准值集合中的位置相同。
应理解,图12所示本申请实施例的触控芯片的各个单元的上述和其它操作和/或功能可以分别进一步参考实现图5所示实施例中由触控芯片执行的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和 方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种触摸检测方法,其特征在于,包括:
    确定触摸屏的驱动信号从当前频率跳频到目标频率;
    以参考频率的驱动信号驱动所述触摸屏,其中,所述参考频率与所述目标频率不相同;
    采集所述触摸屏工作在所述参考频率时的触摸原始值作为第一原始值集合;
    根据所述第一原始值集合与所述参考频率的备份基准值集合,确定所述触摸屏上存在触摸的第一触摸位置;
    以所述目标频率的驱动信号驱动所述触摸屏;
    采集所述触摸屏工作在所述目标频率时的触摸原始值作为第二原始值集合;
    根据所述第二原始值集合和所述第一触摸位置,确定所述目标频率的基准值集合;
    根据所述目标频率的基准值集合,确定所述触摸屏工作在所述目标频率时的触摸位置。
  2. 根据权利要求1所述的触摸检测方法,其特征在于,所述根据所述第一原始值集合和所述参考频率的备份基准值集合,确定所述触摸屏上存在触摸的第一触摸位置,包括:
    根据第一函数,对所述备份基准值集合和所述第一原始值集合进行拟合,得到所述第一函数中的待定系数;
    根据所述备份基准值集合,所述待定系数和所述第一函数,得到拟合基准值集合;
    根据所述拟合基准值集合和所述第一原始值集合,确定所述第一触摸位置。
  3. 根据权利要求2所述的触摸检测方法,其特征在于,所述第一函数为线性函数,所述拟合为最小二乘法拟合。
  4. 根据权利要求1至3中任一项所述的触摸检测方法,其特征在于,所述根据所述第二原始值集合和所述第一触摸位置,确定所述目标频率的基准值集合,包括:
    根据所述第二原始值集合和所述当前频率的基准值集合,确定所述目标 频率的基准值集合中对应所述第一触摸位置的基准值。
  5. 根据权利要求4所述的触摸检测方法,其特征在于,所述根据所述第二原始值集合和所述当前频率的基准值集合,确定所述目标频率的基准值集合中对应所述第一触摸位置的基准值,包括:
    计算所述第二原始值集合中所有原始值的平均值作为第一平均值;
    计算所述当前频率的基准值集合中所有基准值的平均值作为第二平均值;
    将所述当前频率的基准值集合中的第一基准值加上所述第一平均值,并减去所述第二平均值后所得的数值作为所述目标频率的基准值集合中的第二基准值,所述第一基准值和所述第二基准值均为与所述第一触摸位置对应的值,所述第一基准值在所述当前频率的基准值集合中的位置与所述第二基准值在所述目标频率的基准值集合中的位置相同。
  6. 根据权利要求4或5所述的触摸检测方法,其特征在于,所述触摸检测方法还包括:
    将所述触摸屏工作在所述目标频率且所述第一触摸位置处无触摸时采集的原始值集合作为第三原始值集合;
    将所述第三原始值集合中的第一原始值作为所述目标频率的基准值集合中的所述第二基准值,所述第一原始值为所述第三原始值集合中与所述第一触摸位置对应的原始值,所述第一原始值在所述第三原始值集合中的位置与所述第二基准值在所述目标频率的基准值集合中的位置相同。
  7. 一种触控芯片,其特征在于,包括:
    第一处理模块,用于确定触摸屏的驱动信号从当前频率跳频到目标频率;
    驱动模块,用于以参考频率的驱动信号驱动所述触摸屏;
    采集模块,用于采集所述触摸屏工作在所述参考频率时的原始值集合作为第一原始值集合;
    第二处理模块,用于根据所述参考频率的备份基准值集合和所述采集模块采集的所述第一原始值集合,确定所述触摸屏上存在触摸的第一触摸位置;
    所述驱动模块还用于以所述目标频率的驱动信号驱动所述触摸屏;
    所述采集模块还用于所述触摸屏工作在所述目标频率时采集原始值集 合作为第二原始值集合;
    第三处理模块,用于根据所述采集模块采集的所述第二原始值集合和所述第二处理模块确定的所述第一触摸位置,确定所述目标频率的基准值集合;
    所述第二处理模块还用于根据所述第三处理模块确定的所述目标频率的基准值集合,确定所述触摸屏工作在所述目标频率时的触摸位置。
  8. 根据权利要求7所述的触控芯片,其特征在于,所述第二处理模块具体用于:
    根据第一函数,对所述备份基准值集合和所述第一原始值集合进行拟合,得到所述第一函数中的待定系数;
    根据所述备份基准值集合,所述待定系数和所述第一函数,得到拟合基准值集合;
    根据所述拟合基准值集合和所述第一原始值集合,确定所述第一触摸位置。
  9. 根据权利要求8所述的触控芯片,其特征在于,所述第一函数为线性函数,所述拟合为最小二乘法拟合。
  10. 根据权利要求7至9中任一项所述的触控芯片,其特征在于,所述第三处理模块具体用于:
    根据所述第二原始值集合和所述当前频率的基准值集合,确定所述目标频率的基准值集合中对应所述第一触摸位置的基准值。
  11. 根据权利要求10所述的触控芯片,其特征在于,所述第三处理模块具体用于:
    计算所述第二原始值集合中所有原始值的平均值作为第一平均值;
    计算所述当前频率的基准值集合中所有基准值的平均值作为第二平均值;
    将所述当前频率的基准值集合中的第一基准值加上所述第一平均值,并减去所述第二平均值后所得的数值作为所述目标频率的基准值集合中的第二基准值,所述第一基准值和所述第二基准值均为与所述第一触摸位置对应的值,所述第一基准值在所述当前频率的基准值集合中的位置与所述第二基准值在所述目标频率的基准值集合中的位置相同。
  12. 根据权利要求10或11所述的触控芯片,其特征在于,所述采集模 块还用于将所述触摸屏工作于所述目标频率且所述第一触摸位置处无触摸时采集的原始值集合作为第三原始值集合;
    所述第三处理模块还用于将所述第三原始值集合中的第一原始值作为所述目标频率的基准值集合中的所述第二基准值,所述第一原始值为所述第三原始值集合中与所述第一触摸位置对应的原始值,所述第一原始值在所述第三原始值集合中的位置与所述第三基准值在所述目标频率的基准值集合中的位置相同。
PCT/CN2017/095262 2017-07-31 2017-07-31 触摸检测方法和触控芯片 WO2019023878A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780000761.9A CN109791448B (zh) 2017-07-31 2017-07-31 触摸检测方法和触控芯片
PCT/CN2017/095262 WO2019023878A1 (zh) 2017-07-31 2017-07-31 触摸检测方法和触控芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095262 WO2019023878A1 (zh) 2017-07-31 2017-07-31 触摸检测方法和触控芯片

Publications (1)

Publication Number Publication Date
WO2019023878A1 true WO2019023878A1 (zh) 2019-02-07

Family

ID=65232286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095262 WO2019023878A1 (zh) 2017-07-31 2017-07-31 触摸检测方法和触控芯片

Country Status (2)

Country Link
CN (1) CN109791448B (zh)
WO (1) WO2019023878A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363639A (zh) * 2020-11-11 2021-02-12 青岛海信商用显示股份有限公司 一种智能设备及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110362240A (zh) * 2019-07-22 2019-10-22 深圳市华科创智技术有限公司 一种具有通道切换功能的电容屏及终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830837A (zh) * 2012-07-19 2012-12-19 深圳市汇顶科技有限公司 一种用于触摸检测的噪声抑制方法、***及触摸终端
CN103853408A (zh) * 2012-12-05 2014-06-11 株式会社日本显示器 带有触摸检测功能的显示装置、其驱动方法及电子设备
CN106598363A (zh) * 2015-10-20 2017-04-26 乐金显示有限公司 驱动触摸传感器的方法和电路以及使用这种电路的显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125456B2 (en) * 2007-01-03 2012-02-28 Apple Inc. Multi-touch auto scanning
KR101416724B1 (ko) * 2013-10-15 2014-07-09 주식회사 아나패스 공통 노이즈 제거 방법 및 이를 이용한 터치 정보 검출 방법
TWI531141B (zh) * 2015-01-12 2016-04-21 友達光電股份有限公司 雜訊抑制方法及電壓轉換器
KR102276911B1 (ko) * 2015-01-14 2021-07-13 삼성전자주식회사 터치 컨트롤러, 터치 센싱 장치 및 터치 센싱 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830837A (zh) * 2012-07-19 2012-12-19 深圳市汇顶科技有限公司 一种用于触摸检测的噪声抑制方法、***及触摸终端
CN103853408A (zh) * 2012-12-05 2014-06-11 株式会社日本显示器 带有触摸检测功能的显示装置、其驱动方法及电子设备
CN106598363A (zh) * 2015-10-20 2017-04-26 乐金显示有限公司 驱动触摸传感器的方法和电路以及使用这种电路的显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363639A (zh) * 2020-11-11 2021-02-12 青岛海信商用显示股份有限公司 一种智能设备及其控制方法
CN112363639B (zh) * 2020-11-11 2023-04-18 青岛海信商用显示股份有限公司 一种智能设备及其控制方法

Also Published As

Publication number Publication date
CN109791448A (zh) 2019-05-21
CN109791448B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
JP6862432B2 (ja) 電極の間の局所空間内のインピーダンス変化を感知する
CN106155409B (zh) 用于模式变化的电容性度量处理
JP6975138B2 (ja) 接近アクティブ化ジェスチャ
CN106886766B (zh) 一种指纹识别方法、指纹识别电路及移动终端
US9459729B2 (en) Sensing baseline management
US9454278B2 (en) Weighting for display noise removal in capacitive sensors
WO2014160436A1 (en) Baseline management for sensing device
US20120249448A1 (en) Method of identifying a gesture and device using the same
US20170090670A1 (en) Mitigating interference in capacitance sensing
US11460953B2 (en) Noise suppression circuit
WO2014160425A1 (en) Proximity sensing
US9811218B2 (en) Location based object classification
WO2019023878A1 (zh) 触摸检测方法和触控芯片
US10606386B2 (en) Mixer circuit
US11353978B2 (en) Method and apparatus for determining a touch point
US20160147317A1 (en) Smart resonating pen
US10540042B2 (en) Impedance ratio-based current conveyor
KR100480155B1 (ko) 다중 터치패널의 구동방법, 구동장치 및 그를 사용한 다중터치패널 장치
CN108334217B (zh) 触控***的侦测更新方法
TWI480790B (zh) 觸控裝置及其驅動方法
US10558306B2 (en) In-cell touch apparatus and a water mode detection method thereof
US11106317B1 (en) Common mode noise suppression with restoration of common mode signal
US11914820B2 (en) Distributed analog display noise suppression circuit
KR102502789B1 (ko) 랜드 리프트 이벤트용 위치 필터링
KR20240042720A (ko) 터치 기능이 구비된 전자 장치 및 그의 터치 감도 복원 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920144

Country of ref document: EP

Kind code of ref document: A1