WO2019022528A1 - 전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재 및 그의 제조방법 - Google Patents

전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재 및 그의 제조방법 Download PDF

Info

Publication number
WO2019022528A1
WO2019022528A1 PCT/KR2018/008457 KR2018008457W WO2019022528A1 WO 2019022528 A1 WO2019022528 A1 WO 2019022528A1 KR 2018008457 W KR2018008457 W KR 2018008457W WO 2019022528 A1 WO2019022528 A1 WO 2019022528A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
ptfe
polytetrafluoroethylene
composite material
stirring
Prior art date
Application number
PCT/KR2018/008457
Other languages
English (en)
French (fr)
Inventor
백철균
Original Assignee
엘에프피 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170096228A external-priority patent/KR102061018B1/ko
Priority claimed from KR1020170096265A external-priority patent/KR101954647B1/ko
Application filed by 엘에프피 주식회사 filed Critical 엘에프피 주식회사
Publication of WO2019022528A1 publication Critical patent/WO2019022528A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/80Mixers with rotating receptacles rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/80Mixers with rotating receptacles rotating about a substantially vertical axis
    • B01F29/84Mixers with rotating receptacles rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a polytetrafluoroethylene-carbon nanotube composite material having an electrically conductive function capable of replacing metal by incorporating a carbon-based material into polytetrafluoroethylene (PTFE) resin having excellent chemical resistance and a method for producing the same .
  • PTFE polytetrafluoroethylene
  • Hazardous compounds are strong acids, strong alkalis, toxic substances such as hydrochloric acid, nitric acid, and sulfuric acid, and there are chemical manufacturing plant PCBs and plating plants that make semiconductor harmful compounds.
  • a device for detecting a solution leakage in a process of washing with an acidic solution that is, a high sensitivity sensor, is required, and excellent electrical conductivity is required for fast signal transmission.
  • the new material should not generate particles, and must have a chemical resistance that is not corroded, and can withstand high temperatures, especially metals that function as high- New materials are needed.
  • a fine metallic powder such as known carbon black, graphite, silver, copper, nickel, aluminum and the like can be uniformly dispersed as a conductive filler in the production of a polymer resin There is a method of dispersion.
  • carbon black when carbon black is blended with a urethane resin to impart electrical conductivity, about 15 to 30% by weight of carbon black is used relative to the weight of the resin. However, in order to obtain better conductivity, the carbon black is used in an amount of 40% It is required to be used.
  • the introduction of such a large amount of carbon black makes it difficult for the particles to be uniformly dispersed, reduces the melt viscoelasticity of the resin, and causes the filler particles to aggregate with each other, resulting in an extremely increased viscosity.
  • the self-characteristics of the polymer resin is remarkably lowered, and problems such as contamination due to abrasion and short-circuiting of electric conductivity occur.
  • the metal powder has a specific surface area smaller than that of carbon black and must be compounded by an amount of 2 to 3 times or more to cause conductivity. In this case, the dispersibility becomes poor and the specific gravity becomes heavy.
  • Examples of conductive composite materials using polymer resins and carbon nanotubes are disclosed in Korean Patent Laid-Open Publication No. 10-2012-0077647, " Method for producing a composite material of polymer / carbon nanotubes ", Korean Patent Laid-Open Publication No. 10-2011-0078154 &Quot; Carbon nanotube-polymer nanocomposite material using fluidized bed multiwall carbon nanotubes, and a manufacturing method thereof ".
  • An object of the present invention is to provide a polytetrafluoroethylene (PTFE) resin having electrical conductivity which can be used in a specific place and environment in which contamination prevention such as strong chemical resistance, low electric resistance, Polyolefin-carbon nanotube composite material and a method for producing the same.
  • PTFE polytetrafluoroethylene
  • an object of the present invention is to provide an electrically conductive polytetra polyolefin-carbon nanotube composite material having an electric resistance of 1.00E + 00? ⁇ ⁇ m to 1.00E-02? ⁇ ⁇ m and a volume resistivity, and a process for producing the same .
  • PTFE Polytetrafluoroethylene
  • a multi-walled carbon nanotube (MWCNT), a state-of-the-art nano material known to have the highest electrical conductivity among the fillers to be filled in the polymer material for electrical conductivity,
  • the present invention can be achieved by providing a composite material in which MWCNT is synthesized as an electrically conductive filler in PTFE having chemical resistance and physical properties and a method for producing the composite material.
  • the present invention also provides a polytetrafluoroethylene-carbon nanotube composite material, wherein the polytetrafluoroethylene-carbon nanotube composite material has a volume resistivity of 1.0 E + 00 O. cm to 1.0 E-02 O. O. cm, And has electrical conductivity.
  • a primary stirring step in which the pressure in the stirring chamber is controlled to a pressure within a predetermined range while stirring for a stirring time proportional to the total amount of raw material introduced;
  • a second agitation step in which a metal coupling agent is added and then stirred for a predetermined time
  • the method further includes a step of comminuting the composite material to produce a powder, a sheet, a film, or a bar.
  • a stirring chamber rotating step for rotating the stirring chamber in a direction opposite to the mixing screw.
  • the mixing screw is rotated at a high rotation speed of 5,000 to 1,500 RPM, and the stirring chamber is rotated at a low speed of 1 to 200 RPM.
  • the stirring chamber rotating step is characterized by repeatedly controlling on / off by an intermittent rotation method.
  • PTFE powder 10 to 30% by weight of PTFE powder, 1 to 10% by weight of MWCNT, 59.9 to 88.1% by weight of an organic solvent, and 0.1 to 0.9% by weight of a metal coupling agent.
  • the stirring time at which the viscosity of the raw material to be stirred becomes 3,000 to 5,000 CPS is experimentally determined to determine the primary stirring time.
  • the temperature of the stirring chamber is maintained at a temperature range of 30 to 60 degrees and the pressure is maintained at 10 to 20 N / cm < 2 >.
  • an agitating chamber capable of heating and pressure control
  • the agitating chamber includes an internal rotating screw and a double And the rotating screw and the stirring chamber rotate in opposite directions to multiply the rotational speed at which the materials charged into the chamber are mixed.
  • conductive PTFE-CNT resin having low electric resistance which can substitute for metal can be manufactured, and it can be manufactured as a superconducting composite material while maintaining the characteristics of PTFE. Therefore, it is possible to manufacture a semiconductor process, a chemical manufacturing process, a PCB manufacturing process, A polytetrafluoroethylene-carbon nanotube composite material having an electrically conductive function of the present invention can be used as a material of a sensor for detecting leakage of harmful compounds having strong alkaline toxicity in the process.
  • PTFE Polytetrafluoroethylene
  • the present invention has not been able to achieve a low electrical resistance (volume resistivity of 1.0E + 00 ⁇ .cm to 1.0E-02 ⁇ .cm) to date, the composition of the present invention (1.0E + 00 ⁇ .cm to 1.0E-02 ⁇ . Cm. ≪ / RTI > Volume Resistivity).
  • the present invention can be applied to various fields such as electric, electronic, communication, automobile, medical, aviation, etc. using the superconducting PTFE + CNT nanocomposite material according to the present invention.
  • FIG. 1 is a classification comparison chart of electrical resistance of a composition to which electrical conductivity is imparted to a polymer resin.
  • FIG. 2 is a manufacturing process diagram for explaining an embodiment of the present invention.
  • 3 is a graph of change in electrical resistance according to the amount of carbon nanotubes according to the present invention.
  • Figs. 4A to 4C are comparative photographs showing measurement of gloss and contamination on the surface of a conductive PTFE composite material
  • 4A is a photograph of a conventional conductive PTFE material
  • 4B is a photograph of a CNT 5% + PTFE composite material
  • FIG. 4C is a photograph of a CNT 5% + PTFE + coupling agent (C) composite material according to the present invention.
  • 5A to 5C are explanatory diagrams for measuring the electric volume resistance of the PTFE + MWCNT composite material according to the present invention
  • Figure 5A illustrates the measurement of a specimen within one inch spacing
  • Fig. 5B shows a volume resistance measuring instrument
  • 5C is an explanatory view for measuring the electric volume resistance by combining a plug electrode and a minus electrode pin at a distance of less than 1 inch to the specimen
  • the present invention provides a polytetrafluoroethylene-carbon nanotube composite material having an electrically conductive function in which carbon nanotubes are bonded to polytetrafluoroethylene (PTFE) for imparting electrical conductivity.
  • PTFE polytetrafluoroethylene
  • the polytetrafluoroethylene (PTFE) is a material excellent in chemical resistance, non-tackiness, antifouling property, heat resistance and friction characteristics, and carbon nanotubes are used to impart electric conductivity which is insufficient in PTFE, so that the whole composite material has electric conductivity do.
  • the present invention can provide a composite material having excellent electrical conductivity such as a metal while maintaining the basic properties of polytetrafluoroethylene.
  • the present invention was developed based on polytetrafluoroethylene (PTFE) (CF 2 CF 2 ), which is superior in chemical stability among polymer materials.
  • PTFE polytetrafluoroethylene
  • Polytetrafluoroethylene is excellent in various properties such as chemical resistance, electrical characteristic, non-tackiness, antifouling property, heat resistance and friction characteristics.
  • PTFE materials are commonly used in various applications such as sealing of rotors, friction and gaskets, o-rings, chemical transfer pipes, heat-resistant anti-fouling films, It is widely used in industry.
  • PTFE Polytetra fluoroethylene
  • the electrical resistance should show a minimum resistance ( ⁇ 1.0E + 00 ⁇ .cm Volume Resistivity).
  • Fig. 1 is a classification comparison chart of electrical resistance of a composition to which electrical conductivity is imparted to a polymer resin.
  • a general polymer resin has a volume resistivity ( ⁇ 1.00E + 13 ⁇ .cm to 1.00E + 14 ⁇ .cm ⁇ ) as an insulator, and a conductive filler is added to the polymer resin Dissipative of electric resistance (1.00E + 07 ⁇ .cm to 1.00E + 12 ⁇ .cm), antisatic of electric resistance (1.00E + 04 ⁇ .cm to 1.00E + 06 ⁇ .cm) (1.00E + 01.OMEG.CM to 1.00E + 3 .OMEGA.cm), and the conventional compositions containing the conductive filler in the polymer resin are applicable.
  • the electric resistance of general PTFE resin shows (1.0E + 15 ⁇ .cm).
  • the electrical resistance required to replace the metal is less than 1.00E + 00 ?. OMEGA. Cm. However, it has not been possible to achieve a low electrical resistance (volume resistivity of 1.0E + 00 ?. to 1.0E-02?
  • the PTFE + MWCNT composites achieved electrical resistance of (1.00E-01 ⁇ .cm to 1.00E-02 ⁇ .cm volume resistivity).
  • 1.0 is an integer, indicating that + is not a positive number, and 00 to a negative power of 10 and a minus 2 power of -0210.
  • graphene, carbon black, graphite, carbon fibers and the like are inferior to carbon nanotubes in terms of electrical conductivity.
  • conductive particles In order to jumping electrons to each other, conductive particles must be added in a large amount, , Abrasion, and contamination.
  • the electrically conductive region a mixture of carbon nanotubes and one or more materials has a good effect, but a contamination due to a short circuit occurs when mixed.
  • the above-mentioned PTFE product of Goba can not have electrical conductivity enough to replace the metal ( ⁇ 1.0E + 03 ?. cm. Volume resistivity) and is difficult to use in places such as a sensor field requiring sensitivity. There are many limitations in the field of use.
  • the present invention solves the problem of contamination by abrasion or the like, and it is solved by solely injecting the carbon nanotubes as a conductive filler, and the problem of the electric conductivity is solved by using a carbon nanotube and PTFE in a graft method To combine with PTFE on a matrix to maximize the electrical conductivity of carbon nanotubes and solve the problem of short circuit contamination.
  • the carbon nanotubes may be single wall carbon nanotubes or multi wall carbon nanotubes, but multiwall carbon nanotubes are used in the aspect ratio.
  • PTFE polytetra fluoroethylene
  • PTFE + MWCNT composite material having an electric conductivity function that maintains the properties such as chemical resistance, abrasion resistance, high heat resistance, and high gloss of PTFE while maintaining sufficient electrical conductivity to replace the metal.
  • FIG. 2 is a manufacturing process diagram for explaining an embodiment of the present invention.
  • the order of PTFE + MWCNT composites composition was 100 weight%
  • a primary agitation step (S30) in which the agitator mixing screw is driven to change the RPM of 5,000 to 15,000 while adjusting the agitator pressure (10 to 20 N / cm2) .
  • a metal coupling agent is injected at a rate of 0.1% by weight to 0.9% by weight of the metal coupling agent (S40).
  • Second stirring step (S50) in which the reaction is stopped by stirring the reaction for 30 minutes to 60 minutes after the metal coupling agent is added.
  • a low-temperature drying step (S70) in which the remaining gas ( ⁇ 50 PPM) of the composite material composition in which the liquid organic solvent is removed is managed.
  • the composite material completed in the low-temperature drying step (S70) may be pulverized into a suitable size for commercialization and then commercialized as a powder, or may be formed into a sheet or a bar using powders.
  • PTFE powder, MWCNT powder, organic solvent and metal coupling agent are prepared as raw materials.
  • the MWCNT may use single-walled carbon nanotubes, and preferably multi-walled carbon nanotubes.
  • carbon nanotubes use a dispersed MWCNT as a material having its own aggregation phenomenon. That is, a van der Waals force is weakened to prepare a dispersed MWCNT in which the aggregation due to the ambient temperature is removed.
  • the stirring chamber is adjusted to a suitable temperature. In the experiment of the present invention, the temperature is adjusted to 30 to 60 ° C.
  • PTFE powder In the raw material input step S20, PTFE powder, MWCNT powder, and organic solvent are introduced.
  • the organic solvent is solvent, and PTFE is put into a size of 10-50 nm.
  • PTFE When the organic solvent containing solvent is added and stirred, the PTFE's van der Waals force is weakened Thereby preventing re-aggregation.
  • the CNTs are loaded with 5 to 15 nm of dispersed multiwall carbon nanotubes (MWCNT).
  • the rotating screw inserted in the stirring chamber and the stirring chamber itself are rotated and stirred. At this time, the temperature and pressure inside the stirring chamber should be appropriately adjusted.
  • the temperature starts stirring at about 10 ° C or higher as set in the preparation step, and the pressure starts stirring at a pressure of about 1 atm, that is, 10 N / cm 2. That is, in the initial start step, stirring can be started at normal room temperature and atmospheric pressure without separately adjusting pressure and temperature.
  • the temperature is increased to 10 to 30 DEG C at the start of stirring, but not more than 100 DEG C in the stirring step, stirring is started at a pressure of 10 N / cm2 at the start step, / Cm < 2 >.
  • the rotating screw in the stirring chamber is rotated while varying the speed in the range of 5,000 to 15,000 RPM, and the stirring chamber is rotated while varying the speed in the range of 10 to 200 RPM.
  • the internal pressure and the temperature are raised by high-speed rotation stirring.
  • the pressure is limited to about 10 N / cm 2 to 20 N / cm 2, and the temperature should not exceed 100 ° C.
  • the temperature and the pressure may be controlled by providing a temperature control means and a pressure control means in the stirring chamber and controlling the stirring speed to be interlocked.
  • the metal coupling agent (S40) when the viscosity of the stirring material is a predetermined viscosity, the metal coupling agent is charged with the capacity according to the predetermined recipe. It is difficult to measure the viscosity of the substance to be stirred in the stirring chamber.
  • the primary stirring time is determined experimentally to determine the viscosity of the raw material to be 3,000 CPS to 5,000 CPS in accordance with the total amount of raw material input, and the primary stirring time is determined.
  • the viscosity of the stirring internal material is expected to be in the range of 3,000 to 5,000 CPS, and when the primary stirring time has elapsed, the metal coupling agent is introduced .
  • the metal-coupling agent is a metal-oxide-based (C 60 H 123 O 15 P 3 Ti) nanocoupling agent to increase the affinity and the reaction between PTFE and one or more substances and the interface, To 0.3% by weight to 0.6% by weight.
  • the second agitation step (S50) is a step of injecting a metal coupling agent and performing reaction stirring, and the temperature, pressure, and time are experimentally determined and a secondary stirring step is performed according to the determined recipe.
  • the solid absorbs the gas and the liquid to form an 80 wt% paste-state intermediate product.
  • the paste-like intermediate product produced by the stirring step is transferred to a centrifuge to separate liquid and gas.
  • the organic solvent in the liquid state is removed from the intermediate product, and the intermediate product in the paste state is dried at low temperature together with the dehumidification.
  • the desired composition can be obtained by making it bake by low temperature drying.
  • composition is made into a product according to the intended use.
  • Powdered powder obtained by crushing the baked composition into a pulverized composition or a sheet or rod obtained by crushing the powder into a sheet or rod is extruded or otherwise produced into a desired shape.
  • the present invention provides a PTFE + CNT composite material having an electrically conductive function manufactured by the above-described production method.
  • the composite material obtained by synthesizing CNT with PFFE can be described as the following structural formula.
  • the left side of the above [Structural Formula] is a basic structural formula of PTFE, and the right side is a structural formula for a composite material of the present invention having CNT bonded to PTFE. That is, in the unit structure of PTFE, one "F” is replaced with "CNT".
  • the present invention is not a simple mixing of powders but a graft polymerization method.
  • the optimum temperature is the ideal temperature of PTFE melting point (about 325 °C), but unfortunately PTFE is hardened by heat and grafting process with carbon nanotubes is impossible.
  • the carbon nanotubes used in the present invention were prepared by dispersing MWCNTs having improved bundles, and the Aspect Ratio had an aspect ratio (diameter) of 5 nm or less and a length of 50 nm or less Respectively. In this study, the aspect ratio of the composition was the most excellent.
  • 3 is a graph of electrical resistance change according to the amount of carbon nanotubes according to the present invention.
  • the weight% of the carbon nanotubes in the composition weight 100% by weight is 3 to 4% by weight, the volume resistivity is 1.0E +
  • the weight of 1.0E-02? Cm is preferably 4 to 6%, and in order to obtain a further lower resistance value, 7 to 10% by weight is added, but the electrical resistivity volume resistivity 1.0E-02? .
  • the target value of the experiment was expected to decrease in proportion to increasing the CNT input amount, but it can be seen that there is a convergence section in which there is substantially no change in resistance.
  • the electric resistance when the CNT is not added to the PTFE, the electric resistance is 1.0E + 14 ?. cm, the electric resistance is 1.0E-01? ⁇ ⁇ m when the CNT is 5wt%, the electric resistance is 6wt%
  • the electric resistance of 1.0E-02 ?. cm was obtained and the electrical resistance at 1.0 wt% of CNT was 1.0E-02 ?. cm.
  • the carbon nanotubes showed a maximum range of 1.0E-02? ⁇ ⁇ m of the composition weight 100% by weight of the sugar content of 6 wt% to 7 wt%, and the convergence interval in which the electrical resistance did not change was confirmed even when the addition amount was increased.
  • the existing product is a conductive PTFE product of St. Gobain, France, and the existing product was compared with the present invention product produced by the present invention.
  • the product according to the present invention is improved almost in the field of measurement, and it can be seen that it has a low electric resistance which is possible to substitute metal.
  • a sheet having a composition of 0.3 mm in thickness was prepared, specimens were produced by a conventional method, and tensile strength, flexural elasticity, impact strength and specific gravity were measured and compared, and appearance was visually judged. And the result is measured through a measuring device.
  • the tensile strength, flexural elasticity and impact strength were superior to those of the conventional products, the specific gravity was the same, and the appearance was excellent. Especially, And it is found that the resistance value for the purpose of replacing the metal is sufficiently realized.
  • FIG. 4A is a photograph of a general conductive PTFE material
  • FIG. 4B is a photograph of a CNT 5% + PTFE composite material
  • FIG. 4C is a photograph of the present invention (CN) 5% + PTFE + coupling agent (CA) composite.
  • FIGS. 5A to 5C are explanatory views for measuring the electric volume resistance of the PTFE + MWCNT composite material according to the present invention, wherein FIG. 5A illustrates measurement of a specimen within an interval of 1 inch, FIG. 5B illustrates a volume resistance measurement device And FIG. 5C is an explanatory diagram of measuring the electric volume resistance by connecting the plug electrode and the negative electrode pin at a distance of less than 1 inch to the specimen.
  • composition of the present study and the existing products and research and development products were made into a film of 0.3 mm, and the state of the surface and the degree of contamination were measured and verified.
  • Conductive PTFE containing carbon black of the existing foreign company was sampled, which caused sludge formation due to abrasion and electrical conductivity short circuit.
  • the present invention relates to a composite material prepared by adding 5 wt% of CNT to PTFE, and the surface state of the composite material is poor due to the appearance of white specks and pinholes on the surface.
  • conventional conductive PFTE samples a conductive PTFE to which Goba's carbon block is added.
  • the appearance of the sample sheet was visually inspected for the appearance of each sample sheet, and the cross section of the inner surface was observed.
  • the illuminance and the degree of contamination were the illuminance reflectance, and the degree of contamination was the degree of contamination Respectively.
  • the electric volume resistance of the PTFE + CNT composite material according to the present invention was measured by preparing a sheet having a thickness of 0.3 mm as shown in Fig. 5 (a), preparing a specimen having a width of 1 inch, i.e., 15 cm x 10 cm x 0.3 mm , And foreign substances on the surface are removed.
  • a volume resistance in a 1 inch / sq interval was measured according to the ASTM D257 measurement method using a low resistance meter (HIOKI M-3548) as shown in FIG. 5 (B).
  • the resistance of the measurement band was maintained at 1.0E + 14 ⁇ .cm or more.
  • the specimen prepared by the present invention that is, the composite material prepared by stirring 5 wt% of CNT and coupling agent into PTFE was measured by the above measurement method, and as a result, the result of 1.0E-02? .
  • PTFE Polytetrafluoroethylene resin
  • the electrical resistance of general PTFE resin shows the volume resistivity (1.0E + 15 ⁇ .cm).
  • the volume resistivity of 1.0E + 00 ⁇ .cm to 1.0E-02 ⁇ .cm which is a low electric resistance range, has not been possible.
  • the composition of the present invention has a volume resistance of 1.0E + 00 ⁇ .cm to 1.0E-02 ⁇ .cm )).
  • PTFE Polytetrafluoroethylene
  • conductive PTFE material 1.0E + 01 ⁇ .cm to 1.0E + 03 ⁇ .cm volume resistivity
  • the present invention solves the above problems and maintains the PTFE (Polytetrafluoroethylene) own properties and realizes superior electrical resistance (1.0E + 00 ⁇ .cm to 1.0E-02 ⁇ .cm) than conventional products. It has proven to be very effective in pollution.
  • PTFE Polytetrafluoroethylene
  • the superconducting PTFE + CNT nanocomposite resin has been found to be superior to the conventional products, and it can be applied to various fields such as electric, electronic, communication, automobile, medical, Of the product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 폴리 테트라 플루오르 에틸렌-탄소나노튜브 복합소재 및 그의 제조방법에 관한 것으로서, PTFE와, CNT와 유기용매를 투입해 1차교반후 메탈 커플링 에이젼트를 투입해 2차 교반하여 중간 결과물을 생성하고, 중간 결과물에서 유기용매를 원심분리하여 제거후 건조시키고, 분쇄하여 제품화시킨 전기 저항이 1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 체적 저항률(Volume Resistivity)인 전기 전도성 기능을 갖는 폴리 테트라 플루오르 에틸렌-탄소나노튜브 복합소재를 제공할 수 있으며, 이는 PTFE의 특성을 그대로 유지시키면서도 낮은 전기저항으로 금속을 대체할 수 있는 고분자 수지 소재로서 제공될 수 있다.

Description

전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재 및 그의 제조방법
본 발명은 화학적 저항이 우수한 폴리테트라 플루오르에틸렌(PTFE ; Polytetrafluoroethylene) 수지에 탄소계열 소재를 병합하여 금속을 대체할 수 있는 전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재 및 그의 제조방법에 관한 것이다.
산업현장에서 유해 화합물을 다루는 산업군이 아주 많다. 유해 화합물이란, 염산, 질산, 황산 등 강산, 강알카리, 독성을 가진 물질을 말하며, 이는 반도체 유해 화합물을 만드는 케미컬 제조 공장 PCB, 도금 공장 등이 있다.
그런데 최근 들어 급속히 유해 화합물 유출 사고가 증가하여 환경오염, 이로 인한 화재 등으로 인한 2차 사고, 사고로 인한 재산적 손실이 증가하고 있다. 이 사고를 분석하여 보면 작업자의 부주의가 가장 크고 다음이 시설 관리의 미흡이다. 이러한 시설관리의 핵심으로 유체 누수를 감지할 수 있는 내화학성이 뛰어난 고감도 센서가 필요하다.
예를 들어, 반도체 산업에서 산성용액으로 세척하는 공정에서의 용액 유출 사고를 감지하는 장치 즉 고감도 센서(sensor)가 필요하며 빠른 신호의 전달을 위하여 우수한 전기 전도성이 필요하다. 우수한 전기 전도체인 금속은 산성 물질에 화학적 저항이 매우 취약하여 사용이 불가하다.
이와 같이 센서의 소재로 부식의 문제 때문에 금속을 사용하지 못하고, 또한 반도체 등의 고청정 관리 구역에서는 소재에서 파티클(Particle)이 발생되지 않아야 되기 때문에 이를 만족시키는 센서의 소재는 전무한 실정이다.
따라서 이를 해결 할 수 있는 방법은 이에 적합한 센서의 신소재가 필요하고, 신소재는 파티클(Particle)이 발생되지 않아야 하며, 부식이 되지 않는 내화학성을 가져야 되고, 고온에서 견디고 특히 고효율 센서의 기능을 하는 금속을 대체 할 수 있는 신소재가 필요하다.
종래에도 금속을 대체할 수 있는 소재로서, 고분자 수지에 전기 도전성을 위한 도전 충진제를 혼합한 복합소재들이 다양하게 개발되어 각종 분야에 이용되고 있다. 고분자 수지의 제조시 도전성 충진제로서, 공지의 카본블랙(carbon black), 그라파이트(graphite), 은(silver), 구리(copper), 니켈(nikel), 알루미늄(aluminum) 등과 같은 미세한 금속성 분말을 균일하게 분산시키는 방법이 있다.
그러나 이러한 도전성 충진제들이 상기 고분자에 도전성을 부여하기 위하여는, 상기 충진제들이 고분자 수지 내부에서 입자끼리 연속성을 가지는 경로(pathway)의 형성이 필요하다. 즉, 금속 입자나 카본블랙 입자가 물질 속에서 아주 가까이 접촉되어 있어서 상기 전도성 입자들이 서로 전자를 연결(jumping)시켜줄 수 있어야 한다
예를 들어, 카본블랙을 우레탄 수지에 배합하여 전기 전도성을 부여하고자 하는 경우, 수지의 중량에 대하여 대체로 15~30 중량% 정도의 카본 블랙이 사용되지만, 보다 좋은 전도성을 얻기 위하여는 40 중량% 이상 사용될 것이 요구된다.
그러나 이러한 다량의 카본블랙의 투입은 그 입자가 균일하게 분산되는 것을 어렵게 하고, 수지의 용융 점도탄성(melt viscoelasticity)을 감소시키며, 상기 충진제 입자들이 서로 응집하여 점도가 극도로 상승하는 원인이 된다. 그 결과, 고분자 수지 자체 특성이 현저하게 저하되고, 마모에 의한 오염 및 전기 전도성 단락 등의 에 의한 문제가 발생 된다. 한편, 금속분말을 사용하는 경우, 이러한 금속분말은 카본블랙 보다 비표면적이 작아 2~3배 이상의 양만큼 배합하여야 전도성이 일어나는데, 이 경우 분산성이 나빠지고, 비중이 무거워지는 문제점이 있다.
고분자 수지 또는 탄성체에 도전성을 부여하기 위한 방법을 개시하고 있는 구체적인 예로서는, 일본특개평 9-000816호, 일본특개평 2000-077891호, 미국특허 6,768,524호, 미국특허 6,784,363호 및 미국특허 4,548,862호 등이 있다.
또한, 고분자 수지와 탄소나노튜브를 이용한 전도성 복합소재로는 한국공개특허공보 제10-2012-0077647호 "고분자/탄소나노튜브 복합소재의 제조방법"과, 한국공개특허공보 제10-2011-0078154호 "유동층 다중벽 탄소나노튜브를 적용한 탄소나노튜브-고분자 나노 복합소재 및 그 제조방법"등이 있다.
그런데 상기한 선행 문헌의 기술들은 상기와 같이 유해 화학물질의 누출을 감지하기 위한 센서 소재와 같이 아주 높은 내화학성을 요구하면서도 금속을 충분히 대신할 만큼의 전기 전도도가 요구되며, 다양한 특성을 요구하는 화학공정에서의 용액누출 고감도 감지센서의 소재로는 적합하다고 할 수 없었다.
따라서, 화학물질에 강한 내화학성과 낮은 전기저항, 클린(Clean) 공정 등의 오염방지가 요구되는 특정한 장소 및 환경에서는 사용할 수 있는 새로운 소재의 개발이 요구된다.
본 발명의 목적은, 상기의 문제점을 해결하기 위하여 화학물질에 강한 내화학성과 낮은 전기저항, 클린(Clean) 공정 등의 오염방지가 요구되는 특정한 장소 및 환경에서 사용할 수 있는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재 및 그의 제조방법을 제공하기 위한 것이다.
또한, 본 발명의 목적은, 전기 저항이 1.00E+00Ω.㎝ ~ 1.00E-02Ω.㎝ 체적저항률이 되는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재 및 그의 제조방법을 제공하기 위한 것이다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기한 본 발명의 목적은,
화학적 저항이 우수한 고분자 소재에서 화학적 저항이 가장 우수하다고 알려진 PTFE(Polytetrafluoroethylene)수지를 선정하고,
고분자물질에 전기 전도성을 위하여 충진시키는 충진제 중에서 전기 전도도가 가장 뛰어나다고 알려진 최첨단 나노 소재인 다중벽 탄소나노튜브(MWCNT)를 선정하여,
내화학성을 물성을 갖고 있는 PTFE에 전기 전도성 충진제로서 MWCNT를 합성한 복합소재와 그의 제조방법을 제공함으로써 달성될 수 있다.
또한, 본 발명은, 상기 폴리 테트라 플루오르 에틸렌-탄소나노튜브 복합소재는, 전기 저항이 1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 체적 저항률(Volume Resistivity)로서, 금속을 대체하기에 충분한 전기 전도성을 가지는 것을 특징으로 한다.
본 발명의 목적을 달성하기 위한 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-다중벽 탄소나노튜브 복합소재의 제조방법은,
PFTE와 MWCNT를 준비하여 나노입자 특성인 반데르발스력(Van der Waals force's)에 의한 뭉침 현상을 제거하여 준비하고, 교반 챔버의 온도를 미리 설정한 범위 내의 온도로 조절하는 준비단계와;
교반 챔버에 PTFE 파우더와, 분산된 다중벽 탄소나노튜브 및 유기 용매를 미리 설정된 총량 대비 각 원료별 비율로 투입하는 원료투입단계와;
교반 챔버 내의 압력을 미리 설정한 범위 내의 압력으로 조절하면서 투입된 총 원료량에 비례하는 교반 시간동안 교반하는 1차 교반단계와;
1차 교반 후에 메탈 커플링 에이젼트(Metal Coupling Agent)를 총 원료량에 비례하여 미리 정해둔 범위의 량을 투입하는 메탈 커플링 에이젼트 투입단계와,
메탈 커플링 에이젼트를 투입한 후, 미리 정해둔 시간동안 교반하는 2차 교반단계와;
2차 교반후, 액상의 유기용매를 제거하는 유기용매 제거단계와;
액상의 유기용매를 제거한 조성물을 저온 건조시켜 PTFE에 다중벽 탄소나노튜브가 합성된 복합소재를 제조하는 저온 건조단계를 포함하는 것을 특징으로 한다.
또한, 본 발명은,
상기 합성된 복합소재를 분쇄 가공하여 파우더(Powder), 시트(Sheet), 필름(Film) 또는 바(Bar) 중 어느 하나의 제품으로 제품화하는 제품화 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 발명에 의한 상기 1차 및 2차 교반단계는,
교반 챔버 내에 삽입된 혼합 스크류를 회전시키는 혼합 스크류 회전단계와,
교반 챔버를 상기 혼합 스크류와 반대방향으로 회전시키는 교반 챔버 회전단계를 동시에 진행하는 것을 특징으로 한다.
또한, 본 발명은,
상기 혼합 스크류는 5,000 ~ 1,5000 RPM의 회전속도로 고속 회전시키고, 상기 교반 챔버는 1 ~ 200 RPM으로 저속 회전시키는 것을 특징으로 한다.
또한, 본 발명은
상기 교반 챔버 회전단계는, 간헐적 회전방식으로 온/오프를 반복하여 제어하는 것을 특징으로 한다.
또한, 본 발명에 의해 투입되는 원료는,
투입되는 원료의 100 중량% 대비,
PTFE 파우더 10 ~ 30 중량%, MWCNT 1 ~ 10중량%, 유기용매 59.9 ~ 88.1중량%, 메탈 커플링 에이젼트 0.1 ~ 0.9중량%를 투입하는 것을 특징으로 한다.
또한, 상기 1차교반단계는,
교반되는 원료의 점도(Viscosity)가 3,000CPS ~ 5,000 CPS가 되는 교반시간을 실험적으로 구하여 1차 교반시간을 정하는 것을 특징으로 한다.
또한, 상기 교반 챔버의 온도는 30 ~ 60도의 온도범위로 유지하고, 압력은 10~20N/㎠으로 유지하는 것을 특징으로 한다.
또한, 상기 유기용매 제거단계는,
원심분리기를 이용하여 액상의 유기용매를 분리하여 제거하는 것을 특징으로 한다.
상기와 같은 PTFE-CNT 복합소재의 제조방법을 구현하기 위한 교반장치는, 가열 및 압력 조절이 가능한 교반챔버를 사용하고, 교반챔버는 내부의 회전 스크류와, 교반챔버 자체를 회전시킬 수 있는 2중 회전 구조로 이루어지며, 회전 스크류와 교반챔버는 서로 반대방향으로 회전시켜 챔버 내부에 투입된 원료들을 혼합하는 회전 속도를 배가 시킨다. 이처럼 적정한 열과 압력을 가압한 상태에서 고속으로 교반시키고 적정 점도에서 커플링 에이젼트를 투입해 교반시킴으로써, PTFE 분자구조에서 하나의 F대신에 CNT가 교환되어 결합하는 구조로 그라프트 결합이 이루어질 수 있도록 한 것이다.
따라서, 금속을 대체할수 있는 낮은 전기저항을 갖는 전도성 PTFE-CNT 수지를 제조할 수 있고, PTFE의 특성을 그대로 유지하면서 초전도성 복합소재로서 제조될수 있어서 반도체 공정, 화학물 제조공정, PCB 제조공정 및 도금 공정과 같은 곳에서 강알칼리 독성을 가지는 유해화합물의 누수를 감지하기 위한 센서의 소재로서 본 발명의 전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재를 이용할 수 있다.
본 발명은 고분자 소재 중에서 화학적 저항이 가장 우수하다고 알려진 PTFE(Polytetrafluoroethylene) 수지를 선정하였고, 도전 충진제로서 CNT를 첨가하여 합성한 전기 전도성 기능이 있는 PTFE+CNT 복합소재를 제공하는 효과가 있다.
이에따라 PTFE 자체의 특성을 그대로 유지하면서 초전도성 기능을 갖는 복합소재를 제공할 수 있어서, 화학물질에 강한 내화학성과 낮은 전기저항, Clean 공정 등의 오염방지가 요구되는 특정한 장소 및 환경에서는 사용이 가능한 전도성 고분자 복합소재를 제공할 수 있는 효과가 있다.
또한, 본 발명은 현재까지 낮은 전기적 저항대인(1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 Volume Resistivity) 불가능하였으나, 본 발명의 조성물은(1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 체적 저항율(Volume Resistivity)) 전기적 저항을 실현한 효과가 있다.
본 발명에 의한 초전도성 PTFE+CNT 나노복합소재를 이용한 전기, 전자, 통신, 자동차, 의료, 항공 등등의 여러 분야에서 적용이 가능하게 되어 높은 품질의 제품 생산이 가능하게 되는 효과가 기대된다.
도 1은 고분자 수지에 전기 전도성을 부여한 조성물의 전기 저항에 대한 분류 비교도.
도 2는 본 발명의 실시 예를 설명하기 위한 제조공정도.
도 3은 본 발명에 의한 탄소나노투브 투입량에 따른 전기 저항 변화 그래프.
도 4a 내지 도 4c는 전도성 PTFE 복합소재의 표면의 광택 및 오염도 측정 비교 사진도면으로서,
도 4a는 일반 전도성 PTFE 소재의 사진도면이고,
도 4b는 CNT 5% + PTFE 복합소재의 사진도면이며,
도 4C는 본 발명에 의한 CNT 5% + PTFE + 커플링에이젼트(C.A) 복합소재 사진도면이다.
도 5a 내지 도 5c는 본 발명에 의한 PTFE+MWCNT 복합재료의 전기 체적 저항 측정 설명도로서,
도 5a는 시편을 1인치 간격 이내의 측정을 설명하고,
도 5b는, 체적저항 측정기기를 보인 것이며,
도 5c는 시편에 1인치 이내의 근접거리에서 플러그 전극과 마이너스 전극핀을 결합하여 전기 체적저항을 측정하는 설명도이다
이하, 본 발명의 실시 예를 기초로 첨부된 도면을 참조하여 PTFE+CNT의 복합소재 제조방법과 전기 저항치가 금속을 대체할 수 있는 저항치로서 초전도성 고분자 수지임을 설명한다. 여기에 기재되지 않은 응용 및 변형 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
본 발명은, 폴리테트라 플루오르 에틸렌(PTFE)에 전기 전도성 부여를 위한 탄소나노튜브를 결합한 전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재를 제공한다.
상기 폴리테트라 플루오르에틸렌(PTFE)은, 내화학성, 비점착성, 방오성, 내열성, 마찰특성이 우수한 소재이고, 탄소나노튜브는, PTFE에서 부족한 전기 전도성을 부여하기 것으로서 복합소재 전체가 전기 전도성을 가지도록 한다.
따라서, 본 발명은 폴리테트라 플루오르에틸렌(polytetrafluoroethylene)의 기본 성질을 유지하면서 금속과 같은 우수한 전기 전도도를 갖는 복합소재를 제공할 수 있다.
본 발명은, 고분자 소재중에서도 화학적 안정성이 뛰어난 폴리테트라 플루오로에틸렌 PTFE(Polytetra fluoroethylene)[CF2CF2]를 기반으로 연구개발 되었다.
폴리테트라 플루오르에틸렌(PTFE ; polytetrafluoroethylene)은 내약품성, 전기적 특성(Electrical characteristic ; 절연특성), 비점착성, 방오성, 내열성, 마찰특성 등의 여러 가지 특성이 뛰어나다. PTFE 소재는 일반적으로 마찰감소가 필요한 회전체의 씰링(sealing), 가스켓(gasket), 및 오링(O-ring), 화학물질의 이송파이프(pipe), 내열성 오염방지 필름(film) 등의 여러 가지 산업 분야에서 넓게 사용되고 있다.
PTFE(Polytetra fluoroethylene)는 외부의 다른 물질을 받아들이지 않기 때문에 내화학성 및 방오성이 현존하는 고분자 물질 중에서 가장 우수하다. 그러나 그런 뛰어난 특성으로 인하여 PTFE(Polytetra fluoroethylene) 고분자 수지에 특수한 기능으로 전기 전도성을 부여하기란 매우 어렵다.
한편, 금속을 대체하려면 전기 저항이 최소(<1.0E+00Ω.㎝ Volume Resistivity) 낮은 저항을 보여야 한다.
도 1은 고분자 수지에 전기 전도성을 부여한 조성물의 전기 저항에 대한 분류 비교도이다.
일반적인 고분자 수지는, 절연체로서 체적 저항률(Volume Resistivity; 이하, '전기 저항'이라 혼용함)( <1.00E+13Ω.㎝ ~ 1.00E+14Ω.㎝ ↑)이고, 고분자 수지에 도전성 충진제를 투입하여 전기 저항(1.00E+07Ω.㎝ ~ 1.00E+12Ω.㎝ )의 대전체(Antisatic), 전기 저항 (l.00E+04Ω.㎝ ~ 1.00E+06Ω.㎝)의 산일체(Dissipative), 전기 저항(1.00E+01Ω.㎝ ~ 1.00E+3Ω.㎝ )의 전도체(Conductive)의 용도로 분류되고 있으며, 고분자 수지에 도전성 충진제를 투입한 기존 조성물들이 이에 해당된다. 일반적인 PTFE수지의 전기 저항은 (1.0E+15Ω.㎝ ↑)특성을 보인다.
금속을 대체할 전기 저항은 1.00E+00Ω.㎝ 이하를 요구하고 있는데, 현재까지 낮은 전기적 저항대인 (1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 Volume Resistivity) 불가능 하였으나, 본원 발명에 의한 PTFE+MWCNT 복합소재는 ( 1.00E-01Ω.㎝ ~ 1.00E-02Ω.㎝ Volume Resistivity)의 전기 저항을 실현하였다.
상기 저항의 표식에서 (1.0E+00Ω.㎝ ~ 1.0E-02 ohm): 1.0은 정수이며, +는 가 아님을 나타내며 00 ~ 은 10의0승 이고 -02 10의 마이너스 2승을 의미한다.
일반적인 고분자 수지에 전기 전도성을 부여하기 위한 방법을 응용하여 PTFE(Polytetra fluoroethylene)고분자 물질에 전기 전도성 기능을 부여하기 위해서는, 탄소계열의 카본블랙, 카본나노튜브, 그래핀, 흑연 등을 하나 또는 하나 이상을 첨가하여야 하는데 합성이 매우 어려운 게 현실이며, 국내의 소재 생산업체는 전무하다.
경쟁 현황을 보면 세계적으로 아직 PTFE와 CNT를 합성한 복합 소재가 없어서 직접적으로 비교를 할 수 없으나, 현재 가장 이 분야에서 앞서가는 회사는 프랑스의 세인트 고바인 사로 볼 수 있다. 세인트 고바인 사는 전도성 물질로 카본 블랙(Carbon Black)을 사용하고 있어서 파티클(Particle) 때문에 고청정 지역에서 사용하는데 문제가 있다. 고바인사의 전도성 PTFE 제품의 Spec은 전기저항에서 3승 옴으로 금속 대체재로 사용할 수 있는 -2승 옴과는 많은 차이를 보이고 있다. 또한, 다른 회사로는 다이네온 사가 있는데 물질의 형태가 카본블랙(Carbon Black)을 사용한 잉크(INK) 형태이기 때문에 내구성과 적용에 제한이 있다.
또한, 그래핀, 카본블랙, 흑연, 카본 파이버 등은, 전기 전도도 면에서 탄소나노튜브에 비해 떨어지고, 전도성 입자가 서로 전자를 연결(jumping)시키기 위해서는 많은 량이 투입되어야 하므로, PTFE의 기본 특성이 떨어지고, 마모나 오염 등의 문제점이 발생하며, 전기 전도성 영역에서는 탄소나노튜브와 하나 이상의 물질을 혼합 사용이 좋은 효과가 있으나 혼합 사용시 단락에 의한 오염이 발생되는 결과가 발생한다.
또한, 상기한 고바인사의 PTFE 제품은 (<1.0E+03Ω.㎝ Volume Resistivity) 이상으로서 금속을 대체할 정도의 전기전도도를 가지지 못하여 민감도를 요구하는 센서분야의 소재와 같은 곳에는 사용하기 어렵고, 사용분야에 제한이 많다.
따라서, 본 발명은, 마모 등에 의한 오염 문제를 해결하는 방법으로 도전성 충진제로서 탄소나노튜브를 단독으로 투입하는 것을 선정하여 해결하고, 전기 전도성 문제는, 탄소나노튜브와 PTFE를 그라프트(Graft)방식을 활용하여 매트릭스(Matrix) 상에 PTFE와의 결합화하여 탄소나노튜브의 전기 전도성을 극대화시킴과 동시에 단락에 의한 오염 문제를 해결하였다. 여기서 탄소나노튜브는, 단일벽 탄소나노튜브를 사용할 수도 있고, 다중벽 탄소나노튜브를 사용할 수도 있으나, 가성비 측면에서 다중벽 탄소나노튜브를 사용하였다.
본 발명은, PTFE와, MWCNT 및 유기용매를 교반 챔버에 넣고 교반하다가 메탈 커플링 에이젼트를 투입해 교반한 후, 원심분리기를 이용해 유기용매를 제거하여 조성물을 제조하였다. 특수 열가압 교반장치를 이용하여 금속을 대체할 수 있는 저항(<1.0E+00Ω.㎝ ~ 1.0E-2Ω.㎝ Volume Resistivity)인 전기 전도도를 갖도록 고분자 물질 PTFE(Polytetra fluoroethylene)에 다중벽탄소나노튜브를 합성하여 전기 전도성이 금속을 대체하기에 충분하면서도 PTFE의 내화학성, 내마모성, 고내열성, 고광택 등의 특성을 그대로 유지시키는 전기 전도성 기능을 갖는 PTFE+MWCNT 복합소재를 제공할 수 있게 된 것이다.
[실시예 1]
도 2는 본 발명의 실시 예를 설명하기 위한 제조공정도이다.
PTFE+MWCNT 복합소재 조성물 제조 순서는 100 Weight% 기준에서
1. 교반 챔버 온도를 30도 ~ 60도 자동 냉각, 가열하는 준비단계(S10).
2. 교반 챔버에 PTFE 파우더(10um~250um) 수지를 10중량%~30중량% 투입하고, 교반 챔버에 MWCNT탄소나노튜브 1중량% ~ 10중량% 투입하며, 유기 용매 VOC(Volatile Organic Compounds)를 59.9중량% ~ 88.1중량% 투입하는 원료 투입단계(S20).
3. 교반기 압력(10~20N/㎠)을 조절하면서 교반기 혼합 스크류를 RPM 5,000~15,000의 변환 구동하고, 교반 챔버를 반대방향으로 RPM 10 - 200의 변환 구동하여 교반하는 1차교반단계(S30).
4. 교반 챔버 내부의 점도(Viscosity)가 3,000 CPS ~ 5,000 CPS가 되면 메탈 커플링 에이젼트(Metal Coupling Agent)를 0.1중량% ~ 0.9중량% 투입하는 메탈 커플링 에이젼트 투입단계(S40).
5. 메탈 커플링 에이젼트를 투입 이후 30分 ~ 60分 반응 교반시켜 정지하는 2차 교반단계(S50).
6. 교반 챔버에서 원심분리기로 이송하여 액상의 유기 용매 제거하는 유기용매제거단계(S60).
7. 액상 유기용매가 제거된 복합소재 조성물의 잔존 가스를(<50PPM)관리하는 저온건조 단계(S70).
8. 상기 저온건조단계(S70)에서 완성된 복합소재를 제품화하기 위하여 적정 사이즈로 분쇄한 후 파우더로 제품화하거나 파우더를 이용하여 시트, 바 등으로 제품화 할 수 있다.
본 발명에 의한 제조 방법은,
준비단계(S10)는, PTFE파우더와, MWCNT 파우더와, 유기용매 및 메탈 커플링 에이젼트를 원료로서 준비한다. 여기서 MWCNT는, 단일벽 탄소나노튜브를 사용할 수도 있고, 바람직하게는 다중벽 탄소나노튜브를 사용한다. 또한, 탄소나노튜브는 자체적인 뭉침 현상이 있는 소재로서 분산처리를 거친 MWCNT를 사용한다. 즉, 반데르 바알스 힘(van der Waals force)을 약화시켜 주변 온도에 의한 뭉침 현상을 제거한 분산 처리된 MWCNT를 준비한다. 그리고 교반챔버를 적당한 온도가 되도록 조절하는데 본 발명의 실험에서는 30 - 60℃로 조절하는 것을 예로 하였고, 초기에 30℃정도로 온도를 조절한다.
원료투입단계(S20)는, PTFE파우더와, MWCNT 파우더와, 유기용매를 투입한다. 유기용매는, 솔벤트가 포함되는 것으로서, PTFE는, 10 - 50nm 크기를 투입하게 되고, 솔벤트를 포함하는 유기용매를 투입하여 교반시킴으로써, 0.5㎛ 이하 크기로 만들면서 PTFE의 반데르바알스 힘을 약화시켜 재응집을 방지한다. CNT는 분산처리된 다중벽 탄소나노튜브(MWCNT) 5 ~ 15nm 크기를 투입한다.
1차 교반단계(S30)는, 교반챔버 내에 삽입 설치되는 회전스크류와, 교반챔버 자체를 회전시켜 교반시킨다. 이때 교반 챔버 내부 온도와 압력을 적절히 조절해야 한다.
온도는 준비단계에서 설정된 약 10℃이상에서 교반을 시작하며, 압력은, 약 1기압 즉, 10N/㎠의 압력으로 교반을 시작한다. 즉, 초기시작단계에서는 압력과 온도를 별도 조절하지 않고 통상의 실온 및 대기압하에서 교반을 시작할 수 있다.
다만, 교반 중에는 온도상승과 압력이 상승 되므로 실험적으로 구해진 온도와 압력 범위를 유지하도록 조절해야 한다.
바람직하게는 교반 시작시 온도를 10 ~ 30℃로 상승시키되, 교반중 100℃를 넘지 않도록 조절하고, 시작단계에서 10N/㎠ 압력으로 교반을 시작하고, 교반시 압력을 조절하여 교반 종료단계에서 20N/㎠를 추종하도록 압력을 조절하여 교반한다.
교반방법은, 교반챔버 내부의 회전스크류는 5,000 ~ 15,000RPM의 범위에서 속도를 가변시키면서 회전시키고, 교반챔버는 10 ~ 200 RPM 범위에서 속도를 가변시키면서 회전시킨다.
이때 교반기 내부의 회전스크류와, 교반챔버는 서로 반대방향으로 회전시켜 이중 역회전이 가해지도록 함으로써, 내부 교반되는 물질들이 받는 회전 압력이 더 배가되어 좀 더 교반이 잘되게 한다.
고속회전 교반으로 인해 내부 압력과 온도가 상승 되는데, 압력은 10N/㎠ ~ 20N/㎠정도로 제한하고, 온도는 100℃를 넘지 않도록 한다. 온도 및 압력은 교반챔버에 온도조절수단과 압력조절수단을 설치해 조절함과 아울러 교반되는 회전속도를 제어하여 연동시킬 수도 있다.
메탈 커플링 에이젼트 투입단계(S40)는, 교반 물질의 점도가 미리 설정된 점도일때 메탈 커플링 에이젼트를 정해진 레시피에 따른 용량을 투입한다. 교반 챔버 내부에서 교반되는 물질의 점도를 측정하기 어렵다.
따라서 원료 투입 총량에 대응하여 교반되는 원료의 점도(Viscosity)가 3,000CPS ~ 5,000 CPS가 되는 1차 교반시간을 실험적으로 구하여 1차 교반시간을 결정한다.
따라서 투입 원료 총량에 대응되는 1차 교반시간이 경과되면 교반되는 내부 물질의 점도는 3,000CPS ~ 5,000 CPS의 범위에 있을 것으로 예측되며, 이에 따라 1차교반 시간이 경과되면 메탈 커플링 에이젼트를 투입한다.
메탈 커플링 에이젼트는, PTFE와 하나 이상의 물질과 계면간의 친화력 및 성반응을 높이기 위하여 금속산화물계(C 60 H 123 O 15 P 3 Ti) 나노 커플링 에이젼트(Nano Coupling Agent)를 중량 100% 중량당비에서 0.3중량%~0.6중량% 첨가한다.
2차 교반단계(S50)는, 메탈 커플링 에이젼트를 투입하여 반응교반을 시키는 단계로서, 온도와 압력 및 시간을 실험적으로 구하여 정해둔 레시피에 따라 2차 교반단계를 실행한다. 2차 교반을 하게되면, 고체가 가스 및 액체를 흡수하여 80wt%의 페이스트 상태 중간 결과물이 형성된다.
유기용매 제거단계(S60)는, 상기 교반단계에 의해 생성된 페이스트 상태의 중간 결과물을 원심분리기로 옮겨 액체와 가스를 분리 제거한다.
저온 건조단계(S70)는, 중간 결과물에서 액체 상태의 유기용매를 제거하고 난 페이스트상태의 중간 결과물을 제습과 함께 저온 건조시킨다. 저온 건조에 의해 굳어진(bake) 상태로 만들면 원하는 조성물을 얻을 수 있다.
이후, 이렇게 얻어진 조성물을 사용 용도에 맞게 제품화 한다. 베이크 상태로 덩어리진 조성물을 분쇄하여 분말화 한 파우더나, 분쇄하여 분말을 시트로 압착시킨 시트 또는 로드로 압출하거나 기타 원하는 형태로 제품화한다.
본 발명은, 상기와 같은 제조방법에 의해 제조된 전기 전도성 기능을 갖는 PTFE + CNT 복합소재를 제공한다.
PTFE + CNT 교반 시 최적 비율, 최적 압력, 최적 온도 조건은,
PTFE와 하나 이상의 물질과 계면간의 친화력 및 반응성을 높이기 위하여 금속 산화물계(C60 H123 O15 P3 Ti) 나노 커플링 에이젼트(Nano Coupling Agent Weight)를 중량100% 중량당비에서 0.3중량%~0.6중량%를 첨가하였으며, 챔버온도는 2차 교반단계에서 60~70℃를 유지하고, 압력은 10~20N/㎠, 혼합 스크류 회전속도는 5,000~10,000 RPM, 시간은 30~60분 조건에서 그라프트(Graft) 방식으로 중합물을 제작하였으며, 일반 PTFE와의 기계적 물성, 전기적 물성을 상대비교하였다[표 1]. 이때 기계적인 물성, 전기적 물성 그리고 외관에서 가장 좋은 결과를 얻을 수 있었다.
PFFE에 CNT를 합성한 복합소재는 하기 구조식과 같이 설명될 수 있다.
[구조식]
Figure PCTKR2018008457-appb-I000001
(n은 정수)
상기 [구조식]의 좌측은 PTFE의 기본 구조식이고, 우측은 PTFE에 CNT가 결합된 본 발명의 복합소재에 대한 구조식이다. 즉, PTFE의 단위 구조에서 "F" 하나가 "CNT"로 대체된 것을 볼 수 있다. 본 발명은 파우더의 단순 혼합이 아니라 그라프트 방식으로 중합된 결과물을 얻을 수 있다.
PTFE 분자간의 결합에 열을 가하여 분자간의 사이를 벌림으로써 포텐셜(potential)을 상승시킨다. 적정온도는 PTFE의 융해점의 온도(약 325℃)가 가장 이상적이나 아쉽게도 PTFE는 열에 의한 경화가 발생되어 탄소나노튜브와의 그라프팅(GRAFTING )접합 공정이 불가하다.
따라서 높은 열은 최종 제품 성형 작업에서 이루어져야 되며, 본 개발 제품은 최소한의 열을 사용하여 분자간의 거리를 넓히기 위해서 압력 챔버(chamber)를 이용하였으며, 압력은 시작 10 N/㎠에서 종료단계에 20N/㎠을 유지한다. 상기의 실험을 통해 기존 제품보다 우수한 물성의 조성물 제조가 확인 되었다.
또한, 본 연구에서 사용 되어진 탄소나노튜브는 뭉침(Bundle)을 개선한 분산 처리된(Dispersed) MWCNT를 사용하였으며, 종횡비(Aspect ratio)는 지름(Diameter) 5nm이하, 길이(Length) 50nm 이하의 종횡비가 적용되었다. 상기의 종횡비가 본 연구에서는 조성물의 표면 광택성이 가장 우수하였다.
도 3은 본 발명에 의한 탄소나노투브 투입량에 따른 전기 저항 변화 그래프이다.
낮은 저항값을 얻기 위하여 조성물 weight 100% 중량당비에서 탄소나노튜브의 중량%는 전기적 저항 체적 저항률(Volume Resistivity) 1.0E+00Ω.㎝은 3~4중량% 이며, 전기적 저항 체적 저항률(Volume Resistivity) 1.0E-02Ω.㎝은 4~6%의 중량이 바람직하며, 더욱 더 낮은 저항값을 얻기 위하여 7~10중량%를 첨가하였으나 전기적 저항 체적 저항률(Volume Resistivity) 1.0E-02Ω.㎝은 변하지 않았다. 실험의 목표치는 CNT의 투입량을 증가시키는 것과 비례하여 저항치가 감소될 것을 기대하였으나, 실질적으로 저항의 변화가 없는 수렴구간이 있음을 알 수 있다.
즉, 도 3에 도시된 바와 같이, PTFE에 CNT가 첨가되지 않을시 전기 저항은 1.0E+14Ω.㎝으로 절연체이고, CNT 5wt% 시, 전기저항 1.0E-01Ω.㎝을 보이고, CNT 6wt% 시 전기저항 1.0E-02Ω.㎝를 얻을 수 있었고, CNT 7wt% 시 전기저항 1.0E-02Ω.㎝로서 투입량이 증가되어도 전기 저항치는 변화되지 않는 것을 알 수 있었다.
본 실험에서 탄소나노튜브는 조성물 weight 100% 중량당비 6중량%~7중량% 함량이 1.0E-02Ω.㎝의 최대 영역이며, 그 첨가량이 늘어나도 전기적 저항이 변하지 않는 수렴 구간이 확인되었다.
PTFE와 하나 이상의 물질과 계면간의 친화력 및 성반응을 높이기 위하여 금속산화물계(C 60 H 123 O 15 P 3 Ti) 나노 커플링 에이젼트(Nano Coupling Agent)를 Weight 100% 중량당비에서 0.3중량%~0.6중량% 첨가하였으며, 챔버 온도 60℃~70℃를 유지하며 압력 10~20N/㎠, 혼합스크류 5,000~10,000 RPM, 시간 30분~60분 그라프트(Graft) 중합물을 제작하여 기존 외국사의 전도성 PTFE(polytetrafluoroethylene)와의 기계적 물성, 물리적 물성을 상대비교 하였다.
기존 전도성 PTFE(polytetrafluoroethylene)와 연구개발 PTFE의 기계적 물성, 물리적 물성 비교
인장강도kgf/㎠ASTM D638 굴곡탄성kgf/㎠ASTM D790 충격강도kqf/㎠ASTM D256 비중ASTM D792 외관 저 항Ω.㎝ASTM D257
기존제품 250 ~ 350 4,650 10 ~ 12 2.0 ~ 2.2 우수 1.0E+02 ~ 03
본발명제품 400 ~ 500 5,800 11 ~ 13 2.0 ~ 2.2 매우우수 1.0E-01 ~ -02
여기서, 기존제품은 프랑스 세인트 고바인사의 전도성 PTFE 제품이고, 이 기존 제품과 본 발명에 의해 제조된 본 발명 제품을 비교하였다. 기존의 카본 블랙을 첨가한 제품에 비해 본원발명에 의한 제품은 거의 대부분 측정 분야에서 향상되었고, 특히 금속 대체가 가능한 낮은 전기 저항을 가진 것을 알 수 있다.
본 발명은 조성물을 0.3mm의 두께로 시트를 제작하여 통상의 실험방법으로 시편을 제작하여 인장강도, 굴곡탄성, 충격강도 및 비중을 실험하여 측정비교하고, 외관은 시각적으로 판단하였으며, 저항은 시편을 제작해 측정장치를 통해 측정한 결과이다.
실험하여 기존제품과 본원발명제품을 비교해본 결과 인장강도, 굴곡탄성, 충격강도는 기존제품보다 우수하고, 비중은 같으며, 외관은 매우 우수하고, 특히나 저항은 기존제품과 비교할 수 없는 정도의 큰 특성차이를 나타내고 있으며, 금속을 대체하기 위한 목적의 저항치를 충분히 구현한 것임을 알 수 있었다.
도 4는 본 발명에 의한 표면의 광택 및 오염도 측정 비교 사진도면으로서, 도 4a는 일반 전도성 PTFE 소재의 사진도면이고, 도 4b는 CNT 5% + PTFE 복합소재의 사진도면이며, 도 4C는 본 발명에 의한 CNT 5% + PTFE + 커플링에이젼트(C.A) 복합소재 사진도면이다.
도 5a 내지 도 5c는 본 발명에 의한 PTFE+MWCNT 복합재료의 전기 체적 저항 측정 설명도로서, 도 5a는 시편을 1인치 간격 이내의 측정을 설명하고, 도 5b는, 체적저항 측정기기를 보인 것이며, 도 5c는 시편에 1인치 이내의 근접거리에서 플러그 전극과 마이너스 전극핀을 결합하여 전기 체적저항을 측정하는 설명도이다.
본 연구의 조성물제조 공정도와 기존의 제품과 연구개발 제품을 0.3mm의 필름을 만들어 표면의 상태와 오염도를 측정하여 검증 기록하였다.
도 4a의 일반 전도성 PTFE 소재는,
기존 외국사의 카본블랙을 첨가한 전도성 PTFE를 샘플로 하였고, 이는 마모로 인한 슬러지 발생과, 전기 전도도의 단락이 발생 되었다.
도 4b의 CNT 5% + PTFE 복합소재는,
PTFE에 5중량%의 CNT를 첨가하여 합성한 복합재료에 대한 것으로서, 표면 상태에 흰색의 얼룩 반점 및 핀홀이 나타나는 등 표면 상태가 불량하였다.
도4c의 본 발명에 의한 CNT 5% + PTFE + 커플링에이젼트(C.A) 복합소재는,
PTFE에 5중량%의 탄소나노튜브와 커플링 에이젼트를 투입하여 합성한 결과를 보인 것으로서, 표면 조도, 분산 오염 상태에서 우수한 결과를 보였다. 즉, PTFE에 CNT를 5중량%를 투입 합성할 때 메탈 커플링 에이젼트(C.A)를 첨가하여 교반 합성한 결과가 가장 좋은 결과물을 얻을 수 있었다.
조성물 평가 비교(◎ : 매우 좋음, ○ : 좋음, △ : 보통, X : 나쁨)
▶기존전도성 PTFE ▶탄소나노튜브 5%▶PTFE ▶탄소나노튜브 5%▶PTFE▶Coupling Agent ▶탄소나노튜브 8%▶PTFE▶Coupling Agent
조성물외관 조도
조성물내부 단면
조성물조도 및 오염성
여기서, 기존 전도성 PFTE는 고바인사의 카본블록을 첨가한 전도성 PTFE를 샘플로 하였다.
외관조도는 각 샘플 시트의 외관을 시각적으로 살펴보았으며, 내부 단면을 절단된 단면을 확인하였고, 조도 및 오염도는 조도는 조명 반사도를 살펴본 것이고, 오염도는 표면을 문질렀을 때 오염물질이 묻어나는지를 검사하였다.
또한, 표에는 표시되지 않았으나 단락 오염도 즉, 전기 전도도가 균일한지의 여부는 도 5의 (다)와 같이 측정접점을 이용하여 시트의 전 면적의 각 위치에서 전기전도도를 측정하여 실험하였다.
본 발명에 의한 PTFE+CNT 복합 재료의 전기 체적 저항 측정은 도 5의 (가)와 같이 0.3mm 두께의 시트를 제작하고, 폭 1인치 즉, 15㎝ X 10㎝ X 0.3mm로 시편을 준비하고, 표면의 이물질 등을 제거한다.
이후 도 5 (나)의 사진과 같은 저저항계측기(HIOKI M-3548)을 사용하고, ASTM D257 측정방법에 준하여 1인치/sq 구간내의 체적 저항을 측정하였다. 측정대의 저항은 1.0E+14Ω.㎝ 이상의 조건을 유지하였다.
본 발명에 의해 제조된 시편, 즉, PTFE에 5중량%의 CNT와 커플링 에이젼트를 투입해 교반하여 제조된 복합 소재의 시편을 위의 측정방법으로 측정한 결과, 1.0E-02Ω.㎝의 결과를 얻었다.
이상에서 상세히 설명한 바와 같이 본 발명은 고분자 소재 중에서 화학적 저항이 가장 우수하다고 알려진 PTFE(Polytetrafluoroethylene) 수지를 선정하였다. 일반적인 PTFE수지의 전기적 저항은 Volume Resistivity (1.0E+15Ω.㎝ ↑)특성을 보인다. 현재까지 낮은 전기 저항대인 1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 Volume Resistivity 불가능하였으나, 본 발명의 조성물은(1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 체적 저항율(Volume Resistivity))을 실현하였다.
PTFE(Polytetrafluoroethylene)는 이미 화학 산업 분야에서 널리 사용되고 있었지만 기존의 전도성 PTFE(Polytetrafluoroethylene)소재의 전기적 저항은(1.0E+01Ω.㎝ ~ 1.0E+03Ω.㎝ Volume Resistivity) 이며, 탄소 소재인 카본블랙과 금속을 병합하여 개발되어 마모 및 오염의 문제점이 있다.
따라서 화학물질에 강한 내화학성과 낮은 전기저항, Clean 공정 등의 오염방지가 요구되는 특정한 장소 및 환경에서는 사용이 극히 제한적이다.
본 발명은 상기의 문제점을 해결하고 PTFE(Polytetrafluoroethylene)의 자체 물성을 보존하며 기존의 제품보다 월등한 전기적 저항(1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝ Volume Resistivity)을 실현 하였으며 단락에 의한 오염에서도 매우 뛰어난 효과가 검증되었다.
이 결과는 단순하게 전도성 물질의 함량만을 높인다고 하여서 저항과 오염이 문제가 해결되는 것은 아니다. 본 연구개발 조성물은 이러한 문제점을 보완하기 위하여 다양한 실험을 통하여 도 3, 도 4 및 [표 1], [표 2]와 같은 결과를 도출하였다.
기존의 전도성 PTFE(Polytetrafluoroethylene) 제품보다 10배에서~100,000배 정도 우수한 전기저항 성능과 카본에 의한 오염이 없는 제품 개발을 성공하였으며, 이것은 국가 경제발전과 수입에 의존해온 전도성 PTFE 제품의 고단가, 납기, A/S 문제를 해결하게 되었으며 반도체, 화학, 의료, 전자기파(EMC)설계 등등 여러 산업 영역에서 폭넓게 사용할 수 있다.
본 발명의 설명에서와 같이 초전도성 PTFE+CNT 나노복합수지는 기존의 제품보다 매우 우수함을 알 수 있었으며 이를 이용한 전기, 전자, 통신, 자동차, 의료, 항공 등등의 여러 분야에서 적용이 가능하게 되어 높은 품질의 제품 생산이 가능함을 입증 하였다.

Claims (13)

  1. 폴리 테트라 플루오르 에틸렌(PTFE); 및
    탄소나노튜브;
    를 포함하는 것을 특징으로 하는 전기 전도성 기능을 갖는 폴리 테트라 플루오르 에틸렌-탄소나노튜브 복합소재.
  2. 제 1 항에 있어서, 상기 폴리 테트라 플루오르 에틸렌-탄소나노튜브 복합소재는,
    전기 저항이 1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 체적 저항률(Volume Resistivity);
    인 것을 특징으로 하는 전기 전도성 기능을 갖는 폴리 테트라 플루오르 에틸렌-탄소나노튜브 복합소재.
  3. 제 1 항에 있어서,
    PTFE에 CNT를 그라프트 결합시키기 위하여 첨가된 메탈 커플링 에이젼트가 더 포함된 것을 특징으로 하는 전기 전도성 기능을 갖는 폴리 테트라 플루오르 에틸렌-탄소나노튜브 복합소재.
  4. 제 1 항에 있어서, 상기 탄소나노튜브는,
    단일벽 탄소나노튜브 또는 다중벽 탄소나노튜브
    인 것을 특징으로 하는 전기 전도성 기능을 갖는 폴리 테트라 플루오르 에틸렌-탄소나노튜브 복합소재.
  5. 교반 챔버에 PTFE 파우더와, 탄소나노튜브 및 유기 용매를 미리 설정된 총량 대비 각 원료별 비율로 투입하는 원료투입단계와;
    교반 챔버의 온도와 압력을 미리 설정한 범위 내로 조절하면서 투입된 총 원료량에 비례하는 교반시간동안 교반하는 1차 교반단계와;
    1차 교반 후에 메탈 커플링 에이젼트(Metal Coupling Agent)를 총 원료량에 비례하여 미리 정해둔 범위의 량을 투입하는 메탈 커플링 에이젼트 투입단계와,
    메탈 커플링 에이젼트를 투입한 후, 미리 정해둔 시간동안 교반하는 2차 교반단계와;
    2차 교반후, 액상의 유기용매를 제거하는 유기용매 제거단계와;
    액상의 유기용매를 제거한 조성물을 저온 건조시켜 PTFE에 다중벽 탄소나노튜브가 합성된 복합소재를 제조하는 저온 건조단계;
    를 수행하여 제조된 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재의 제조방법.
  6. 제 5 항에 있어서,
    상기 건조단계에서 제조된 결과물을 분쇄 가공하여 파우더(Powder), 시트(Sheet), 필름(Film) 또는 바(Bar) 중 어느 하나의 제품으로 제품화하는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재의 제조방법.
  7. 제 5 항에 있어서, 상기 원료투입 단계에서 투입하는 탄소나노튜브는,
    분산처리된 다중벽 탄소나노튜브인 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재의 제조방법.
  8. 제 5 항에 있어서, 상기 1차 및 2차 교반단계는,
    교반 챔버 내에 삽입된 혼합 스크류를 회전시키는 혼합 스크류 회전단계와,
    교반 챔버를 상기 혼합 스크류와 반대방향으로 회전시키는 교반 챔버 회전단계를 동시에 진행하는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재의 제조방법.
  9. 제 8 항에 있어서, 상기 1차 및 2차 교반단계는,
    상기 혼합 스크류는 5,000 ~ 1,5000 RPM의 회전속도로 고속 회전시키고, 상기 교반 챔버는 1 ~ 200 RPM으로 저속 회전시키는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재의 제조방법.
  10. 제 8 항에 있어서, 상기 1차 및 2차 교반단계는,
    혼합 스크류의 회전 및 교반 챔버의 회전 속도를 가변시키면서 교반시키는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재의 제조방법.
  11. 제 8 항에 있어서, 상기 교반 챔버 회전단계는, 간헐적 회전방식으로 온/오프를 반복하여 제어하는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재의 제조방법.
  12. 제 5 항에 있어서, 상기 1차교반단계는,
    교반되는 원료의 점도(Viscosity)가 3,000CPS ~ 5,000 CPS가 되는 교반시간을 실험적으로 구하여 1차 교반시간을 정하는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재의 제조방법.
  13. 제 5 항에 있어서, 상기 투입되는 원료는,
    투입되는 원료의 100 중량% 대비,
    PTFE 파우더 10 ~ 30 중량%, MWCNT 1 ~ 10중량%, 유기용매 59.9 ~ 88.1중량%, 메탈 커플링 에이젼트 0.1 ~ 0.9중량%를 투입하여 제조된 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 폴리오레 에틸렌-탄소나노튜브 복합소재의 제조방법.
PCT/KR2018/008457 2017-07-28 2018-07-26 전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재 및 그의 제조방법 WO2019022528A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0096228 2017-07-28
KR10-2017-0096265 2017-07-28
KR1020170096228A KR102061018B1 (ko) 2017-07-28 2017-07-28 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재
KR1020170096265A KR101954647B1 (ko) 2017-07-28 2017-07-28 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법

Publications (1)

Publication Number Publication Date
WO2019022528A1 true WO2019022528A1 (ko) 2019-01-31

Family

ID=65040752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008457 WO2019022528A1 (ko) 2017-07-28 2018-07-26 전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재 및 그의 제조방법

Country Status (1)

Country Link
WO (1) WO2019022528A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812477A (zh) * 2021-02-07 2021-05-18 成都希瑞方晓科技有限公司 一种填充改性聚四氟乙烯及其制备方法
CN113736124A (zh) * 2020-05-29 2021-12-03 深圳圣安技术有限公司 一种防水、透气、导电并绝缘的复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273741A (ja) * 2001-03-15 2002-09-25 Polymatech Co Ltd カーボンナノチューブ複合成形体及びその製造方法
KR20070027438A (ko) * 2005-09-06 2007-03-09 주식회사 엘지화학 탄소 나노튜브 함유 복합체 바인더 및 이를 포함하는 리튬이차전지
JP2008156646A (ja) * 2006-12-22 2008-07-10 Xerox Corp 塗料組成物及び融着部材
KR20100022306A (ko) * 2008-08-19 2010-03-02 제일모직주식회사 전기 전도성, 내마모성 및 내열성이 우수한 열가소성 수지 조성물
US20130274384A1 (en) * 2012-04-13 2013-10-17 Xerox Corporation Methods for preparing reinforced fluoropolymer composites comprising surface functionalized nanocrystalline cellulose
KR20150024104A (ko) * 2013-08-26 2015-03-06 주식회사 일웅플라텍 탄소나노튜브를 함유하는 폴리테트라플루오르에틸렌 나노복합수지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273741A (ja) * 2001-03-15 2002-09-25 Polymatech Co Ltd カーボンナノチューブ複合成形体及びその製造方法
KR20070027438A (ko) * 2005-09-06 2007-03-09 주식회사 엘지화학 탄소 나노튜브 함유 복합체 바인더 및 이를 포함하는 리튬이차전지
JP2008156646A (ja) * 2006-12-22 2008-07-10 Xerox Corp 塗料組成物及び融着部材
KR20100022306A (ko) * 2008-08-19 2010-03-02 제일모직주식회사 전기 전도성, 내마모성 및 내열성이 우수한 열가소성 수지 조성물
US20130274384A1 (en) * 2012-04-13 2013-10-17 Xerox Corporation Methods for preparing reinforced fluoropolymer composites comprising surface functionalized nanocrystalline cellulose
KR20150024104A (ko) * 2013-08-26 2015-03-06 주식회사 일웅플라텍 탄소나노튜브를 함유하는 폴리테트라플루오르에틸렌 나노복합수지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736124A (zh) * 2020-05-29 2021-12-03 深圳圣安技术有限公司 一种防水、透气、导电并绝缘的复合材料及其制备方法
CN112812477A (zh) * 2021-02-07 2021-05-18 成都希瑞方晓科技有限公司 一种填充改性聚四氟乙烯及其制备方法

Similar Documents

Publication Publication Date Title
KR101954647B1 (ko) 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법
KR100570634B1 (ko) 탄소나노튜브와 금속분말 혼성 복합에 의해 제조된 전자파차폐재
JP5268050B2 (ja) カーボンナノチューブ含有樹脂組成物、硬化物、成形体及びカーボンナノチューブ含有樹脂組成物の製造方法
WO2016190722A1 (ko) 2종 이상의 아민을 포함하는 기능화 그래핀 및 그 제조방법
WO2019022528A1 (ko) 전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재 및 그의 제조방법
WO2013066003A1 (ko) 대전방지 특성을 갖는 전방향족 액정 폴리에스테르 수지 컴파운드 및 물품
KR101963603B1 (ko) 고분자 복합소재를 제조하기 위한 교반장치
WO2019112227A1 (ko) 실리콘 복합재 및 이의 제조방법
KR20190014006A (ko) 전도성 ptfe-mwcnt복합소재 제조방법
WO2015030498A1 (ko) 탄소나노물질이 결합된 열가소성 고분자 및 이의 제조방법
KR20190032336A (ko) 고분자 복합소재를 제조하기 위한 교반장치
WO2015030501A1 (ko) 탄소나노물질 함유 수지 조성물 및 플라스틱 성형품
KR20210029333A (ko) 전기전도성을 갖는 ptfe-cnt 복합소재
JP4789312B2 (ja) 基板用カセット
JPH01272665A (ja) 炭素を含有する電気伝導性ポリアリーレンスルフイド混合物
CN106633690A (zh) 一种低磨耗导电pbt/pet复合材料及其制备方法
Abdel‐Aal et al. Epoxy resin/plasticized carbon black composites. Part II. Correlation among network structure and mechanical properties
WO2018135793A1 (ko) 실리콘 고무 복합재 및 이의 제조방법
WO2022098081A1 (ko) 우수한 기계적 강도 및 전기 전도성을 내재한 폴리머 복합 소재, 이의 제조방법 및 이의 제조에 사용되는 교반기
KR20190025861A (ko) 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법
KR102061018B1 (ko) 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재
KR20190025860A (ko) 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법
KR20190014005A (ko) 전도성 ptfe-mwcnt 복합소재
KR20190012773A (ko) 고분자 복합소재를 제조하기 위한 교반장치
CN114276619A (zh) 一种耐磨耐腐蚀的防静电材料制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837361

Country of ref document: EP

Kind code of ref document: A1