WO2019022123A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2019022123A1
WO2019022123A1 PCT/JP2018/027854 JP2018027854W WO2019022123A1 WO 2019022123 A1 WO2019022123 A1 WO 2019022123A1 JP 2018027854 W JP2018027854 W JP 2018027854W WO 2019022123 A1 WO2019022123 A1 WO 2019022123A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
inverter
cooling flow
cooling
housing
Prior art date
Application number
PCT/JP2018/027854
Other languages
French (fr)
Japanese (ja)
Inventor
佳久 奥畑
国博 梶田
美香 小長谷
陽介 伊東
Original Assignee
日本電産トーソク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産トーソク株式会社 filed Critical 日本電産トーソク株式会社
Priority to CN201890001000.5U priority Critical patent/CN212323923U/en
Publication of WO2019022123A1 publication Critical patent/WO2019022123A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits

Definitions

  • the present invention relates to a motor.
  • a motor is known in which a rotor and a stator and an inverter device are housed in a housing and integrated.
  • Japanese Patent Application Laid-Open No. 2015-104257 describes a configuration in which a rotor, a stator, and an inverter device are disposed on a central axis in a housing.
  • stator and the inverter device can be efficiently cooled.
  • a method of cooling the stator and the inverter device it is conceivable to provide a cooling flow passage through which the refrigerant flows in the housing.
  • simply providing the cooling flow path in the housing may not provide sufficient cooling efficiency of the stator and the inverter device.
  • An object of the present invention is to provide a motor having a structure capable of improving the cooling efficiency of a stator and an inverter unit by a cooling flow channel in view of the above-mentioned circumstances.
  • a rotor having a motor shaft disposed along a central axis extending in one direction, a stator opposed to the rotor via a gap in the radial direction, and the stator electrically An inverter unit to be connected, and a housing having a stator accommodating unit for accommodating the stator and an inverter accommodating unit for accommodating the inverter unit, the inverter accommodating unit being located radially outward of the stator accommodating unit
  • the housing has a cylindrical peripheral wall portion surrounding the rotor and the stator on the radially outer side of the rotor and the stator, and is a single member, and the peripheral wall portion is a cooling channel, and A partition wall portion for partitioning the stator housing portion and the inverter housing portion; and the cooling flow path includes an inlet through which a refrigerant flows and the cooling flow path It has an outlet through which the medium flows out, and extends in the circumferential direction, at least a part of the cooling channel being provided
  • a motor having a structure capable of improving the cooling efficiency of the stator and the inverter unit by the cooling flow passage is provided.
  • FIG. 1 is a perspective view showing the motor of the first embodiment.
  • FIG. 2 is a view showing the motor of the first embodiment, and is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a view showing the motor of the first embodiment, and is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a top view of the motor of the first embodiment.
  • FIG. 5 is a perspective view showing the cooling unit of the first embodiment.
  • FIG. 6 is a cross-sectional view showing a part of the motor of the first embodiment.
  • FIG. 7 is a cross-sectional view showing a part of a motor according to a modification of the first embodiment.
  • FIG. 8 is a perspective view showing a cooling unit of the second embodiment.
  • the Z-axis direction shown in each drawing is the vertical direction Z with the positive side as the upper side and the negative side as the lower side.
  • the Y-axis direction is a direction parallel to the central axis J extending in one direction shown in each drawing and a direction orthogonal to the vertical direction Z.
  • a direction parallel to the central axis J that is, the Y-axis direction is referred to as “axial direction Y”.
  • the positive side in the axial direction Y is referred to as “axial one side”
  • the negative side in the axial direction Y is referred to as “axial other side”.
  • the X-axis direction shown in each drawing is a direction orthogonal to both the axial direction Y and the vertical direction Z.
  • the X-axis direction is referred to as "width direction X”. Further, the positive side in the width direction X is referred to as “one side in the width direction”, and the negative side in the width direction X is referred to as the other side in the width direction.
  • the vertical direction Z corresponds to a predetermined direction.
  • a radial direction centered on the central axis J is simply referred to as “radial direction”, and a circumferential direction centered on the central axis J is simply referred to as “circumferential direction ⁇ ”.
  • the side advancing in the counterclockwise direction as viewed from the other side in the axial direction to the one side in the axial direction that is, the side opposite to the advancing side of the arrow showing the circumferential direction ⁇ in the figure
  • the side that travels clockwise, that is, the side on which the arrow indicating the circumferential direction ⁇ in the drawing proceeds, is referred to as the “other side in the circumferential direction”.
  • the motor 1 includes a housing 10, a lid 11, a cover member 12, a sensor cover 13, and a motor shaft 21 disposed along a central axis J. It has a rotor 20, a stator 30, an inverter unit 50, a connector portion 18, and a rotation detection portion 70.
  • the housing 10 accommodates the rotor 20, the stator 30, the rotation detection unit 70, and the inverter unit 50.
  • the housing 10 is a single member.
  • the housing 10 is made, for example, by sand casting.
  • the housing 10 has a peripheral wall portion 10b, a bottom wall portion 10a, a bearing holding portion 10c, and a rectangular tube portion 10e.
  • the peripheral wall portion 10 b has a cylindrical shape that surrounds the rotor 20 and the stator 30 on the radially outer side of the rotor 20 and the stator 30.
  • the peripheral wall portion 10 b is substantially cylindrical with the central axis J as a center.
  • the peripheral wall portion 10 b is open to one side in the axial direction.
  • the peripheral wall portion 10 b has a cooling portion 60 that cools the stator 30 and the inverter unit 50.
  • the bottom wall portion 10a is provided at the other end of the circumferential wall portion 10b in the axial direction.
  • the bottom wall portion 10a closes the other side of the circumferential wall portion 10b in the axial direction.
  • the bottom wall portion 10a has a sensor housing portion 10g penetrating the bottom wall portion 10a in the axial direction Y.
  • the sensor storage portion 10 g has, for example, a circular shape centered on the central axis J when viewed along the axial direction Y.
  • the bottom housing portion 10 a and the peripheral wall portion 10 b constitute a stator housing portion 14. That is, the housing 10 has a bottomed cylindrical stator housing portion 14 having a peripheral wall portion 10 b and a bottom wall portion 10 a.
  • the bearing holding portion 10c has a cylindrical shape that protrudes in the axial direction from the peripheral edge portion of the sensor accommodating portion 10g on the surface on the one side in the axial direction of the bottom wall portion 10a.
  • the bearing holder 10 c holds a bearing that supports the motor shaft 21 on the other side in the axial direction with respect to the rotor core 22 described later.
  • the rectangular tube portion 10 e has a rectangular tube shape extending upward from the peripheral wall portion 10 b.
  • the rectangular tube portion 10e opens upward.
  • the rectangular tube portion 10 e has, for example, a square tube shape.
  • the wall part on the other side in the axial direction is connected to the upper end part of the bottom wall part 10 a.
  • the square tube portion 10 e has a through hole 10 f penetrating in the axial direction Y a wall portion on one side in the axial direction among wall portions constituting the square tube portion 10 e.
  • the lower end portion of the through hole 10 f is connected to the opening on one side in the axial direction of the peripheral wall portion 10 b.
  • An inverter accommodating portion 15 is configured by the rectangular tube portion 10 e and the peripheral wall portion 10 b. That is, the housing 10 has an inverter accommodating portion 15.
  • the inverter accommodating portion 15 is located radially outside the stator accommodating portion 14. In the present embodiment, the inverter accommodating portion 15 is located above the stator accommodating portion 14 in the vertical direction Z orthogonal to the axial direction Y.
  • the stator housing portion 14 and the inverter housing portion 15 are partitioned in the vertical direction Z by the partition wall portion 10 d.
  • the partition wall portion 10d is an upper portion of the peripheral wall portion 10b. That is, the peripheral wall portion 10 b has a partition wall portion 10 d that divides the stator accommodation portion 14 and the inverter accommodation portion 15.
  • the dimension in the vertical direction Z of the partition wall portion 10 d becomes larger as it goes away from the central axis J in the width direction X orthogonal to both the axial direction Y and the vertical direction Z. That is, the dimension in the vertical direction Z of the partition wall portion 10d is smallest at the central portion where the position in the width direction X is the same as the central axis J, and increases as moving away from the central portion on both sides in the width direction X.
  • the lid 11 shown in FIG. 2 has a plate shape whose plate surface is orthogonal to the vertical direction Z.
  • the lid portion 11 is fixed to the upper end portion of the rectangular tube portion 10 e.
  • the lid 11 closes the upper opening of the rectangular tube 10 e.
  • illustration of the cover part 11 is abbreviate
  • the cover member 12 has a plate shape whose plate surface is orthogonal to the axial direction Y.
  • the cover member 12 is fixed to a surface on one side in the axial direction of the peripheral wall portion 10b and the rectangular tube portion 10e.
  • the cover member 12 closes the opening on one axial side of the peripheral wall portion 10b and the through hole 10f.
  • the cover member 12 has an output shaft hole 12 a that penetrates the cover member 12 in the axial direction Y.
  • the output shaft hole 12a has, for example, a circular shape passing through the central axis J.
  • the cover member 12 has a bearing holding portion 12b projecting to the other axial side from the peripheral edge portion of the output shaft hole 12a in the surface on the other axial side of the cover member 12.
  • the bearing holding portion 12 b holds a bearing that supports the motor shaft 21 on one side in the axial direction with respect to a rotor core 22 described later.
  • the sensor cover 13 is fixed to the other surface of the bottom wall portion 10 a in the axial direction.
  • the sensor cover 13 covers and closes the opening on the other side in the axial direction of the sensor housing portion 10g.
  • the sensor cover 13 covers the rotation detection unit 70 from the other side in the axial direction.
  • the rotor 20 has a motor shaft 21, a rotor core 22, a magnet 23, a first end plate 24 and a second end plate 25.
  • the motor shaft 21 is rotatably supported by bearings at axially opposite portions. The end of the motor shaft 21 on the one side in the axial direction protrudes from the opening on the one side in the axial direction of the peripheral wall portion 10 b toward the one side in the axial direction. An end of the motor shaft 21 on one side in the axial direction passes through the output shaft hole 12 a and protrudes to one side in the axial direction with respect to the cover member 12. The other axial end of the motor shaft 21 is inserted into the sensor housing 10g.
  • the rotor core 22 is fixed to the outer peripheral surface of the motor shaft 21.
  • the magnet 23 is inserted into a hole passing through the rotor core 22 provided in the rotor core 22 in the axial direction Y.
  • the first end plate 24 and the second end plate 25 are in the form of a radially expanding annular plate.
  • the first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction Y while in contact with the rotor core 22.
  • the first end plate 24 and the second end plate 25 press the magnet 23 inserted into the hole of the rotor core 22 from both sides in the axial direction.
  • the stator 30 faces the rotor 20 in the radial direction via a gap.
  • the stator 30 has a stator core 31 and a plurality of coils 32 mounted on the stator core 31.
  • the stator core 31 has an annular shape centered on the central axis J.
  • the outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the peripheral wall 10b.
  • the stator core 31 faces the radially outer side of the rotor core 22 via a gap.
  • the inverter unit 50 controls the power supplied to the stator 30.
  • the inverter unit 50 includes an inverter unit 51 and a capacitor unit 52. That is, the motor 1 includes an inverter unit 51 and a capacitor unit 52.
  • the inverter unit 51 is accommodated in the inverter accommodation unit 15.
  • the inverter unit 51 includes a first circuit board 51 a and a second circuit board 51 b as circuit boards.
  • the first circuit board 51 a and the second circuit board 51 b have a plate shape whose plate surface is orthogonal to the vertical direction Z.
  • the second circuit board 51b is spaced apart above the first circuit board 51a.
  • the first circuit board 51a and the second circuit board 51b are electrically connected.
  • the coil wire 32 a is connected to the first circuit board 51 a via the connector terminal 53.
  • the inverter unit 51 is electrically connected to the stator 30.
  • the capacitor portion 52 is in the shape of a rectangular solid long in the width direction X.
  • Capacitor portion 52 is accommodated in inverter accommodating portion 15.
  • the capacitor unit 52 is disposed on the other side of the inverter unit 51 in the axial direction. That is, in the inverter accommodating portion 15, the inverter portion 51 and the capacitor portion 52 are arranged side by side in the axial direction Y.
  • the capacitor unit 52 is electrically connected to the inverter unit 51.
  • the capacitor portion 52 is fixed to the upper surface of the partition wall portion 10 d. Condenser part 52 contacts partition wall part 10d.
  • the connector portion 18 is provided on the other surface of the rectangular tube portion 10 e in the width direction.
  • An external power supply (not shown) is connected to the connector portion 18. Power is supplied to the inverter unit 50 from an external power supply connected to the connector unit 18.
  • the rotation detection unit 70 detects the rotation of the rotor 20.
  • the rotation detection unit 70 is, for example, a VR (Variable Reluctance) resolver.
  • the rotation detection unit 70 is accommodated in the sensor accommodation unit 10 g. That is, the rotation detection unit 70 is disposed on the bottom wall portion 10a.
  • the rotation detection unit 70 includes a detection target unit 71 and a sensor unit 72.
  • the to-be-detected part 71 is annular shaped extended in the circumferential direction ⁇ .
  • the to-be-detected part 71 is fitted and fixed to the motor shaft 21.
  • the to-be-detected part 71 is made of magnetic material.
  • the sensor unit 72 has an annular shape surrounding the outside in the radial direction of the detection target 71.
  • the sensor unit 72 is fitted to the sensor storage unit 10g.
  • the sensor unit 72 is supported by the sensor cover 13 from the other side in the axial direction. That is, the sensor cover 13 supports the rotation detection unit 70 from the other side in the axial direction.
  • the sensor unit 72 has a plurality of coils along the circumferential direction ⁇ .
  • the motor 1 further includes a sensor wire that electrically connects the rotation detection unit 70 and the inverter unit 51.
  • One end of the sensor wiring is connected to the detected portion 71.
  • the sensor wiring is routed from the detected portion 71 to the inside of the inverter accommodating portion 15 through a through hole which penetrates the inside of the bottom wall portion 10a and the partition wall portion 10d in the radial direction.
  • the other end of the sensor wiring is connected to, for example, the first circuit board 51a.
  • the rotation detection unit 70 detects the rotation of the motor shaft 21 and detects the rotation of the rotor 20.
  • the rotation information of the rotor 20 detected by the rotation detection unit 70 is sent to the inverter unit 51 via the sensor wiring.
  • the cooling unit 60 has a cooling channel 61. That is, the peripheral wall portion 10 b has the cooling flow passage 61.
  • the cooling unit 60 is configured of only one cooling channel 61.
  • the internal space of the cooling unit 60 is shown as a three-dimensional shape.
  • a refrigerant flows in the cooling channel 61.
  • the refrigerant is not particularly limited as long as it is a fluid that can cool the stator 30 and the inverter unit 51.
  • the refrigerant may be water, a liquid other than water, or a gas.
  • the cooling channel 61 extends in the circumferential direction ⁇ .
  • the cooling channel 61 has a channel body 61a, an inlet 61b, and an outlet 61c.
  • the flow path main body portion 61 a has a circular arc shape which is wide in the axial direction Y and extends in the circumferential direction ⁇ . As shown in FIG. 3, the flow path main body portion 61a is provided on the peripheral wall portion 10b along the circumferential direction ⁇ substantially from the other side in the width direction of the peripheral wall portion 10b.
  • the central angle ⁇ of the flow passage main portion 61a is larger than 180 °.
  • the cooling flow passage 61 is in the shape of a circular arc having a central angle ⁇ larger than 180 °.
  • the cooling channel 61 has a C-shape opening on the other side in the width direction.
  • the inflow port 61 b is located at the center of the axial direction Y at the end on one circumferential side of the cooling channel 61.
  • the inflow port 61b protrudes to the other side in the width direction from an end on one side in the circumferential direction of the flow path main portion 61a.
  • the refrigerant flows into the inflow port 61b.
  • the cross-sectional shape orthogonal to the width direction X of the inflow port 61b is, for example, a circular shape.
  • the inflow pipe 16 is connected to the inflow port 61 b.
  • the inflow pipe 16 is inserted into a hole provided in the housing 10.
  • the inflow pipe 16 protrudes from the housing 10 to the other side in the width direction.
  • the outlet 61 c is located at the center in the axial direction Y at the other circumferential end of the cooling channel 61.
  • the outflow port 61c protrudes from the end on the other side in the circumferential direction of the flow path main portion 61a to the other side in the width direction.
  • the refrigerant flows out from the outlet 61c.
  • the cross-sectional shape orthogonal to the width direction X of the outflow port 61c is, for example, a circular shape.
  • the shape of the outlet 61c is similar to the shape of the inlet 61b. As shown in FIG. 5, the inlet 61 b and the outlet 61 c are disposed at the same position in the axial direction Y.
  • the inlet 61 b and the outlet 61 c are spaced apart in the vertical direction Z.
  • the outlet pipe 17 is connected to the outlet 61 c.
  • the outflow pipe 17 is inserted into a hole provided in the housing 10.
  • the outflow pipe 17 projects from the housing 10 to the other side in the width direction.
  • the inflow pipe 16 and the outflow pipe 17 are disposed at the same position in the axial direction Y.
  • the inflow pipe 16 and the outflow pipe 17 are spaced in the vertical direction Z from each other.
  • the refrigerant flowing through the cooling flow passage 61 flows only in one direction in the circumferential direction ⁇ . That is, in the present embodiment, the refrigerant flowing in the cooling flow passage 61 flows only from one circumferential side to the other circumferential side, and does not flow from the other circumferential side to the circumferential one side. Therefore, it is easy to circulate the refrigerant in the cooling flow passage 61 as compared to the case where a plurality of cooling flow passages in which the flow directions of the refrigerant flow are different from each other.
  • the refrigerant flows only in one direction in the circumferential direction ⁇ means that the vector component along the circumferential direction ⁇ among vector components in the moving direction of the refrigerant has one direction in the circumferential direction ⁇ . Including only cases. That is, if the position of the refrigerant moves in one direction in the circumferential direction ⁇ , the flow direction of the refrigerant as a whole may be inclined with respect to the circumferential direction ⁇ .
  • the stator accommodating portion 14 and the inverter accommodating portion 15 partitioned by the partition wall portion 10 d can be cooled by the refrigerant flowing through the cooling flow passage 61, and the stator 30 and the inverter accommodating portion 15 accommodated in the stator accommodating portion 14. Can be cooled.
  • the refrigerant having flowed into the cooling flow passage 61 is the upper end of the peripheral wall 10b, that is, the partition wall 10d, the one end of the peripheral wall 10b in the width direction, and the lower end of the peripheral wall 10b Flow through in order. Therefore, the refrigerant whose temperature is relatively low immediately after flowing into the cooling channel 61 from the inflow port 61 b can flow to the partition wall portion 10 d, and the inverter portion 51 can be cooled. This makes it easier to cool the inverter unit 51.
  • the heat generation of the inverter unit 51 is particularly likely to be large, and thus the motor 1 can be cooled more preferably by cooling the inverter unit 51 easily.
  • a portion provided in the partition wall portion 10 d in the cooling flow passage 61 is a single layer flow passage between the stator accommodation portion 14 and the inverter portion 51 in the radial direction. Therefore, the configuration of the cooling flow channel 61 can be simplified as compared with the case where the flow channels of a plurality of layers are provided side by side in the radial direction. As a result, both the stator 30 and the inverter unit 51 can be cooled by the single layer cooling flow passage 61, which is efficient. Further, the dimension in the radial direction of the partition wall portion 10d can be easily reduced, and the motor 1 can be easily miniaturized.
  • the cooling flow passage 61 extends in the circumferential direction ⁇ , for example, the cooling flow passage 61 can easily surround the stator 30 and the stator 30 can be cooled more easily than when the cooling flow passage extends in the axial direction Y.
  • the motor 1 having a structure capable of improving the cooling efficiency of the stator 30 and the inverter unit 51 by the cooling flow passage 61 can be obtained.
  • a channel is a channel in a single layer in a part
  • the portion of the cooling passage 61 provided between the stator accommodation portion 14 and the inverter portion 51 in the radial direction is only one continuous portion.
  • only one cooling channel 61 is provided and extends in the circumferential direction ⁇ . Therefore, for example, the cooling channel 61 can be easily manufactured as compared with the case where the cooling channel is formed in a wave shape. Further, for example, in the case where the cooling flow path is formed in a wave shape, the refrigerant does not flow between the flow path portions aligned in the waveform, so it may be difficult to sufficiently increase the area of the cooling flow path.
  • the cooling flow passage 61 is a single flow passage extending in the circumferential direction ⁇ , the area of the cooling flow passage 61 can be easily increased, and the cooling flow passage 61 can be cooled. It is easy to enlarge the range.
  • the cooling channel 61 is in the shape of a circular arc having a central angle ⁇ larger than 180 °. Therefore, it is easy to surround the stator 30 by the cooling flow passage 61, and the stator 30 can be cooled more.
  • the condenser portion 52 accommodated in the inverter accommodating portion 15 can also be cooled by the cooling flow passage 61.
  • three parts can be simultaneously cooled by one cooling channel 61, and cooling can be performed more efficiently while reducing the number of cooling channels 61.
  • the upper portion of the flow path main portion 61a is provided in the partition wall portion 10d.
  • a portion provided on partition wall portion 10 d of cooling flow channel 61 has a portion overlapping with inverter portion 51 and a portion overlapping with capacitor portion 52 when viewed along vertical direction Z. . Therefore, the stator 30, the inverter unit 51, and the capacitor unit 52 can be more easily cooled by the refrigerant flowing in the cooling flow passage 61.
  • the capacitor portion 52 contacts the partition wall portion 10d. Therefore, the heat of the condenser portion 52 is easily released to the refrigerant in the cooling flow passage 61 along the partition wall portion 10 d. Therefore, the condenser portion 52 can be more easily cooled by the cooling flow passage 61.
  • the portion 10i located between the cooling flow passage 61 and the inverter portion 51 in the radial direction The dimension in the radial direction is smaller than that of the portion 10 h positioned between the flow path 61 and the capacitor portion 52 in the radial direction. That is, the radial dimension L1 of the portion 10i is smaller than the radial dimension L3 of the portion 10h.
  • the portion 10 j of the partition wall portion 10 d located between the cooling flow passage 61 and the inverter accommodation portion 15 in the radial direction is located between the cooling flow passage 61 and the stator accommodation portion 14 in the partition wall portion 10 d.
  • the radial dimension is smaller than the located portion 10k. That is, the radial dimension L1 of the portion 10i and the radial dimension L3 of the portion 10h are smaller than the radial dimension L2 of the portion 10k.
  • the dimension L2 can be relatively easily increased, the dimension in the radial direction of the portion of the circumferential wall portion 10b in contact with the stator core 31 can be easily increased. Thereby, the intensity
  • the dimension L1, the dimension L2, and the dimension L3 satisfy the relationship of L1 ⁇ L3 ⁇ L2.
  • the above-described magnitude relationship between the dimension L1, the dimension L2, and the dimension L3 may be established at least between the minimum values of the respective dimensions.
  • the dimension L1 and the dimension L2 differ depending on the position in the circumferential direction ⁇ , when the minimum value of the dimension L1 and the minimum value of the dimension L2 are compared with the dimension L3, L1 ⁇ L3 ⁇ L2 described above It suffices to satisfy the relationship.
  • the magnitude relationship among the dimensions L1, L2, and L3 satisfies the relationship of L1 ⁇ L3 ⁇ L2 at the central portion in the width direction X of the partition wall 10d.
  • the dimension L4 in the axial direction Y of the cooling flow passage 61 is substantially uniform regardless of the position in the circumferential direction ⁇ .
  • the dimension L4 in the axial direction Y of the cooling flow passage 61 is larger than the dimension L5 in the axial direction Y of the first circuit board 51a and the dimension L6 in the axial direction Y of the second circuit board 51b. Therefore, the dimension L4 in the axial direction Y of the cooling flow passage 61 can be made relatively large, and the range that can be cooled by one cooling flow passage 61 can be broadened. Further, the flow rate of the refrigerant flowing into the cooling flow passage 61 can be increased. Therefore, the cooling efficiency by the cooling channel 61 can be further improved.
  • the dimension L5 in the axial direction Y of the first circuit board 51a is smaller than the dimension L6 in the axial direction Y of the second circuit board 51b. That is, the dimension L4, the dimension L5, and the dimension L6 satisfy the relationship of L5 ⁇ L6 ⁇ L4.
  • the dimension L 4 in the axial direction Y of the cooling flow passage 61 is larger than the dimension in the axial direction Y of the condenser portion 52. As shown in FIG. 4, in the present embodiment, the dimension L4 in the axial direction Y of the cooling flow passage 61 is smaller than the dimension in the width direction X of the second circuit board 51 b and the dimension in the width direction X of the capacitor portion 52. Although not shown, the dimension L4 in the axial direction Y of the cooling flow passage 61 is smaller than the dimension in the width direction X of the first circuit board 51a.
  • the inflow port 61b is located at the center of the axial direction Y at the end on one circumferential side of the cooling flow path 61
  • the outflow port 61c is the cooling flow path It is located at the center of the axial direction Y at the other end of the circumferential direction 61. Therefore, even when the dimension L4 in the axial direction Y of the cooling passage 61 is relatively large, stagnation of the refrigerant in the cooling passage 61 can be easily suppressed, and the refrigerant is directed from the inflow port 61b to the outflow port 61c. It is easy to flow Therefore, the pressure loss of the refrigerant flowing through the cooling channel 61 can be reduced.
  • the maximum dimension in the width direction X of the cooling flow passage 61 is larger than the dimension in the width direction X of the second circuit board 51 b and the dimension in the width direction X of the capacitor portion 52. Moreover, although illustration is abbreviate
  • the maximum dimension in the width direction X of the cooling flow channel 61 is the width between the portion located on the one side in the width direction in the cooling flow channel 61 and the portion located on the other side in the width direction on the cooling flow channel 61. It is the distance in the direction X. In the present embodiment, the maximum dimension of the cooling flow passage 61 in the width direction X corresponds to the outer diameter of the arc-shaped cooling flow passage 61.
  • the cooling unit 60 is formed by a portion of the sand mold having the shape of the cooling unit 60 when the housing 10 is manufactured by sand casting.
  • the housing 10 has a plurality of discharge holes 19 for discharging a sand mold for forming the cooling unit 60.
  • the sand mold for forming the cooling unit 60 is discharged from the discharge hole 19.
  • the discharge hole 19 is connected to the cooling unit 60.
  • the plug 80 is pressed into the discharge hole 19.
  • the discharge hole 19 is closed by the plug 80, and the refrigerant in the cooling unit 60 can be prevented from leaking to the outside of the housing 10.
  • the cooling flow passage 161 and the capacitor portion are provided in the portion 110 j of the partition wall portion 110 d located between the cooling flow passage 161 and the inverter accommodation portion 15 in the radial direction.
  • the radial dimension of the portion 110 h positioned between the radial direction 52 and the radial direction is smaller than that of the portion 110 i positioned between the cooling flow path 161 and the inverter portion 51 in the radial direction. That is, the radial dimension L9 of the portion 110h is smaller than the radial dimension L7 of the portion 110i.
  • the cooling flow passage 161 can be easily brought close to the condenser 52, and the condenser 52 can be cooled more easily.
  • the upper surface of the partition wall portion 110d in contact with the capacitor portion 52 is located lower than the upper surface of the partition wall portion 110d on which the inverter portion 51 is installed.
  • the portion 110 k of the partition wall portion 110 d located between the cooling flow passage 161 and the stator accommodation portion 14 in the radial direction is located between the cooling flow passage 161 and the inverter accommodation portion 15 in the partition wall portion 110 d.
  • the radial dimension is smaller than that of the located portion 110 j. That is, the radial dimension L8 of the portion 110k is smaller than the radial dimension L7 of the portion 110i and the radial dimension L9 of the portion 110h.
  • the cooling flow passage 161 can be made closer to the stator accommodation portion 14 than the inverter accommodation portion 15, and the stator accommodation portion 14 can be more easily cooled.
  • the dimensions L7, L8, and L9 satisfy the relationship of L8 ⁇ L9 ⁇ L7.
  • the dimension of the end in the circumferential direction on one side of the cooling flow passage 261 decreases in the axial direction Y as going from the other side in the circumferential direction to the one side in the circumferential direction.
  • the first reduction unit 261 d is an end on one circumferential side of the flow path main portion 261 a.
  • the end on the other side in the circumferential direction of the cooling flow passage 261 is a second reduction portion 261e in which the dimension in the axial direction Y decreases as going from the one side in the circumferential direction to the other side in the circumferential direction.
  • the second reduction portion 261 e is an end on the other side in the circumferential direction of the flow path main portion 261 a.
  • the inflow port 261 b is located at one end of the first reduction portion 261 d in the circumferential direction. Accordingly, the refrigerant flowing from the inflow port 261b flows into the cooling flow path 261 from a portion where the dimension of the first reduction portion 261d in the axial direction Y is relatively small, and proceeds to the other side in the circumferential direction. Therefore, it is possible to suppress that the refrigerant flowing from the inflow port 261 b stagnates in the cooling channel 261. Further, the dimension of the first reduction portion 261 d in the axial direction Y increases toward the other side in the circumferential direction, so that the flow rate of the refrigerant flowing in the cooling flow passage 261 can be secured.
  • the outlet 261 c is located at the other end of the second reduction portion 261 e in the circumferential direction.
  • the refrigerant flowing out of the outlet 261 c flows out from the portion of the second reduction portion 261 e in which the dimension in the axial direction Y is relatively small. Therefore, the refrigerant flowing through the cooling channel 261 can be collected toward the outlet 261 c, and stagnation of the refrigerant in the peripheral portion of the outlet 261 c can be suppressed.
  • the inlet 261 b and the outlet 261 c are disposed at the same position in the vertical direction Z.
  • the inlet 261 b and the outlet 261 c are spaced apart in the axial direction Y.
  • the first reduction portion 261 d and the second reduction portion 261 e overlap with each other as viewed along the axial direction Y. That is, the end on one circumferential side of the cooling flow passage 261 and the end on the other circumferential side of the cooling flow passage 261 overlap each other when viewed along the axial direction Y. Therefore, the cooling passage 261 can surround the entire outer periphery of the stator 30 in the radial direction, and the stator 30 can be further cooled.
  • the first reduction unit 261 d is disposed on one side in the axial direction of the second reduction unit 261 e.
  • the first reduction portion 261 d and the second reduction portion 261 e are portions on the other side in the width direction of the cooling channel 261. That is, a portion of the cooling flow channel 261 which overlaps with each other in the axial direction Y is a portion on the other side of the cooling flow channel 261 in the width direction. Therefore, in the present embodiment, the portion provided in the partition wall portion 10d of the cooling flow passage 261 is a portion different from the portion overlapping the cooling passage 261 when viewed along the axial direction Y. Therefore, it is possible to provide the partition wall portion 10d with a portion of the cooling flow passage 261 that has a relatively large dimension in the axial direction Y. Thus, the stator 30 and the inverter unit 51 can be more easily cooled by the cooling flow passage 261.
  • the cooling channel may have an arc shape with a central angle ⁇ of 180 ° or less.
  • the dimension of the cooling flow path in the axial direction Y may be smaller than the dimension of the circuit board in the inverter portion in the axial direction Y.
  • the dimension in the axial direction Y of the cooling channel may be larger than the dimension in the width direction X of the circuit board and the dimension in the width direction X of the capacitor portion.
  • Two or more cooling channels may be provided.
  • two or more inlets and outlets provided for each cooling channel are also provided.
  • the radial dimensions of the plurality of cooling channels and the dimensions in the axial direction Y may be different from each other or may be the same.
  • the shapes of the plurality of cooling channels may be different from each other or may be the same.
  • the portion provided in the partition wall portion in the cooling flow path may not overlap with the inverter portion or may not overlap with the capacitor portion as viewed along the vertical direction Z.
  • the inlet may be provided at a position other than the center in the axial direction Y at an end on one circumferential side of the cooling channel.
  • the outlet may be provided at a position other than the center in the axial direction Y at the other circumferential end of the cooling channel.
  • the application of the motor of the embodiment described above is not particularly limited.
  • the motor of the embodiment described above is mounted on, for example, a vehicle.
  • each structure mentioned above can be combined suitably in the range which does not contradiction mutually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

An embodiment of a motor according to the present invention comprises: a rotor including a motor shaft; a stator opposing the rotor with a space therebetween in the radial direction; an inverter part electrically connected to the stator; and a housing including a stator housing part that houses the stator and an inverter housing part that houses the inverter part. The inverter housing part is located outside the stator housing part in the radial direction. The housing is a single member, and includes a cylindrical circumferential wall part that surrounds the rotor and the stator outside the rotor and the stator in the radial direction. The circumferential wall part includes: a cooling flow path; and a partitioning wall part that separates the stator housing part and the inverter housing part. The cooling flow path extends in the circumferential direction, and includes an inlet into which a refrigerant flows and an outlet from which the refrigerant flows out. At least a portion of the cooling flow path is provided in the partitioning wall part. The portion of the cooling flow path provided in the partitioning wall part is a single-layer flow path between the stator housing part and the inverter part in the radial direction.

Description

モータmotor
 本発明は、モータに関する。 The present invention relates to a motor.
 ロータおよびステータとインバータ装置とがハウジングに収容され、一体化されたモータが知られる。例えば、特開2015-104257号公報には、ロータおよびステータとインバータ装置とがハウジング内で中心軸線上に配置された構成が記載される。 A motor is known in which a rotor and a stator and an inverter device are housed in a housing and integrated. For example, Japanese Patent Application Laid-Open No. 2015-104257 describes a configuration in which a rotor, a stator, and an inverter device are disposed on a central axis in a housing.
特開2015-104257号公報JP, 2015-104257, A
 上記のようなモータにおいては、ステータおよびインバータ装置を効率的に冷却できることが求められる。ステータおよびインバータ装置を冷却する方法としては、冷媒が流れる冷却流路をハウジングに設けることが考えられる。しかし、単に冷却流路をハウジングに設けただけでは、ステータおよびインバータ装置の冷却効率を十分に得られない場合があった。 In the motor as described above, it is required that the stator and the inverter device can be efficiently cooled. As a method of cooling the stator and the inverter device, it is conceivable to provide a cooling flow passage through which the refrigerant flows in the housing. However, simply providing the cooling flow path in the housing may not provide sufficient cooling efficiency of the stator and the inverter device.
 本発明は、上記事情に鑑みて、冷却流路によるステータおよびインバータ部の冷却効率を向上できる構造を有するモータを提供することを目的の一つとする。 An object of the present invention is to provide a motor having a structure capable of improving the cooling efficiency of a stator and an inverter unit by a cooling flow channel in view of the above-mentioned circumstances.
 本発明のモータの一つの態様は、一方向に延びる中心軸に沿って配置されるモータシャフトを有するロータと、前記ロータと径方向に隙間を介して対向するステータと、前記ステータと電気的に接続されるインバータ部と、前記ステータを収容するステータ収容部および前記インバータ部を収容するインバータ収容部を有するハウジングと、を備え、前記インバータ収容部は、前記ステータ収容部の径方向外側に位置し、前記ハウジングは、前記ロータおよび前記ステータの径方向外側において前記ロータおよび前記ステータを囲む筒状の周壁部を有し、かつ単一の部材であり、前記周壁部は、冷却流路と、前記ステータ収容部と前記インバータ収容部とを仕切る仕切り壁部と、を有し、前記冷却流路は、冷媒が流入する流入口および前記冷媒が流出する流出口を有し、かつ、周方向に延び、前記冷却流路の少なくとも一部は、前記仕切り壁部に設けられ、前記冷却流路のうち前記仕切り壁部に設けられる部分は、前記ステータ収容部と前記インバータ部との径方向の間において単一層の流路である。 According to one aspect of the motor of the present invention, there is provided a rotor having a motor shaft disposed along a central axis extending in one direction, a stator opposed to the rotor via a gap in the radial direction, and the stator electrically An inverter unit to be connected, and a housing having a stator accommodating unit for accommodating the stator and an inverter accommodating unit for accommodating the inverter unit, the inverter accommodating unit being located radially outward of the stator accommodating unit The housing has a cylindrical peripheral wall portion surrounding the rotor and the stator on the radially outer side of the rotor and the stator, and is a single member, and the peripheral wall portion is a cooling channel, and A partition wall portion for partitioning the stator housing portion and the inverter housing portion; and the cooling flow path includes an inlet through which a refrigerant flows and the cooling flow path It has an outlet through which the medium flows out, and extends in the circumferential direction, at least a part of the cooling channel being provided in the partition wall, and a portion of the cooling channel being provided in the partition The flow passage is a single layer between the radial direction of the stator accommodation portion and the inverter portion.
 本発明の一つの態様によれば、冷却流路によるステータおよびインバータ部の冷却効率を向上できる構造を有するモータが提供される。 According to one aspect of the present invention, a motor having a structure capable of improving the cooling efficiency of the stator and the inverter unit by the cooling flow passage is provided.
図1は、第1実施形態のモータを示す斜視図である。FIG. 1 is a perspective view showing the motor of the first embodiment. 図2は、第1実施形態のモータを示す図であって、図1におけるII-II断面図である。FIG. 2 is a view showing the motor of the first embodiment, and is a cross-sectional view taken along the line II-II in FIG. 図3は、第1実施形態のモータを示す図であって、図2におけるIII-III断面図である。FIG. 3 is a view showing the motor of the first embodiment, and is a cross-sectional view taken along the line III-III in FIG. 図4は、第1実施形態のモータを上側から視た図である。FIG. 4 is a top view of the motor of the first embodiment. 図5は、第1実施形態の冷却部を示す斜視図である。FIG. 5 is a perspective view showing the cooling unit of the first embodiment. 図6は、第1実施形態のモータの一部を示す断面図である。FIG. 6 is a cross-sectional view showing a part of the motor of the first embodiment. 図7は、第1実施形態における変形例のモータの一部を示す断面図である。FIG. 7 is a cross-sectional view showing a part of a motor according to a modification of the first embodiment. 図8は、第2実施形態の冷却部を示す斜視図である。FIG. 8 is a perspective view showing a cooling unit of the second embodiment.
 各図に示すZ軸方向は、正の側を上側とし、負の側を下側とする鉛直方向Zである。Y軸方向は、各図に示す一方向に延びる中心軸Jと平行な方向であり、鉛直方向Zと直交する方向である。以下の説明においては、中心軸Jと平行な方向、すなわちY軸方向を「軸方向Y」と呼ぶ。また、軸方向Yの正の側を、「軸方向一方側」と呼び、軸方向Yの負の側を、「軸方向他方側」と呼ぶ。各図に示すX軸方向は、軸方向Yおよび鉛直方向Zの両方と直交する方向である。以下の説明においては、X軸方向を「幅方向X」と呼ぶ。また、幅方向Xの正の側を「幅方向一方側」と呼び、幅方向Xの負の側を「幅方向他方側」と呼ぶ。本実施形態において、鉛直方向Zは、所定方向に相当する。 The Z-axis direction shown in each drawing is the vertical direction Z with the positive side as the upper side and the negative side as the lower side. The Y-axis direction is a direction parallel to the central axis J extending in one direction shown in each drawing and a direction orthogonal to the vertical direction Z. In the following description, a direction parallel to the central axis J, that is, the Y-axis direction is referred to as “axial direction Y”. Further, the positive side in the axial direction Y is referred to as “axial one side”, and the negative side in the axial direction Y is referred to as “axial other side”. The X-axis direction shown in each drawing is a direction orthogonal to both the axial direction Y and the vertical direction Z. In the following description, the X-axis direction is referred to as "width direction X". Further, the positive side in the width direction X is referred to as "one side in the width direction", and the negative side in the width direction X is referred to as the other side in the width direction. In the present embodiment, the vertical direction Z corresponds to a predetermined direction.
 また、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向θ」と呼ぶ。また、周方向θにおいて、軸方向他方側から軸方向一方側に向かって視て、反時計回りに進む側、すなわち図において周方向θを示す矢印の進む側と逆側を「周方向一方側」と呼び、時計回りに進む側、すなわち図において周方向θを示す矢印の進む側を「周方向他方側」と呼ぶ。 Further, a radial direction centered on the central axis J is simply referred to as “radial direction”, and a circumferential direction centered on the central axis J is simply referred to as “circumferential direction θ”. Further, in the circumferential direction θ, the side advancing in the counterclockwise direction as viewed from the other side in the axial direction to the one side in the axial direction, that is, the side opposite to the advancing side of the arrow showing the circumferential direction θ in the figure The side that travels clockwise, that is, the side on which the arrow indicating the circumferential direction θ in the drawing proceeds, is referred to as the “other side in the circumferential direction”.
 なお、鉛直方向、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 Note that the vertical direction and the upper and lower sides are simply names for describing the relative positional relationship of each part, and the actual positional relationship etc. is a positional relationship other than the positional relationship etc indicated by these names. May be
<第1実施形態>
 図1および図2に示すように、本実施形態のモータ1は、ハウジング10と、蓋部11と、カバー部材12と、センサカバー13と、中心軸Jに沿って配置されるモータシャフト21を有するロータ20と、ステータ30と、インバータユニット50と、コネクタ部18と、回転検出部70と、を備える。
First Embodiment
As shown in FIGS. 1 and 2, the motor 1 according to this embodiment includes a housing 10, a lid 11, a cover member 12, a sensor cover 13, and a motor shaft 21 disposed along a central axis J. It has a rotor 20, a stator 30, an inverter unit 50, a connector portion 18, and a rotation detection portion 70.
 図2に示すように、ハウジング10は、ロータ20とステータ30と回転検出部70とインバータユニット50とを収容する。ハウジング10は、単一の部材である。ハウジング10は、例えば、砂型鋳造で作製される。ハウジング10は、周壁部10bと、底壁部10aと、ベアリング保持部10cと、角筒部10eと、を有する。 As shown in FIG. 2, the housing 10 accommodates the rotor 20, the stator 30, the rotation detection unit 70, and the inverter unit 50. The housing 10 is a single member. The housing 10 is made, for example, by sand casting. The housing 10 has a peripheral wall portion 10b, a bottom wall portion 10a, a bearing holding portion 10c, and a rectangular tube portion 10e.
 周壁部10bは、ロータ20およびステータ30の径方向外側においてロータ20およびステータ30を囲む筒状である。本実施形態において周壁部10bは、中心軸Jを中心とする略円筒状である。周壁部10bは、軸方向一方側に開口する。周壁部10bは、ステータ30およびインバータユニット50を冷却する冷却部60を有する。 The peripheral wall portion 10 b has a cylindrical shape that surrounds the rotor 20 and the stator 30 on the radially outer side of the rotor 20 and the stator 30. In the present embodiment, the peripheral wall portion 10 b is substantially cylindrical with the central axis J as a center. The peripheral wall portion 10 b is open to one side in the axial direction. The peripheral wall portion 10 b has a cooling portion 60 that cools the stator 30 and the inverter unit 50.
 底壁部10aは、周壁部10bの軸方向他方側の端部に設けられる。底壁部10aは、周壁部10bの軸方向他方側を塞ぐ。底壁部10aは、底壁部10aを軸方向Yに貫通するセンサ収容部10gを有する。センサ収容部10gは、軸方向Yに沿って視て、例えば、中心軸Jを中心とする円形状である。底壁部10aと周壁部10bとによって、ステータ収容部14が構成される。すなわち、ハウジング10は、周壁部10bと底壁部10aとを有する有底筒状のステータ収容部14を有する。 The bottom wall portion 10a is provided at the other end of the circumferential wall portion 10b in the axial direction. The bottom wall portion 10a closes the other side of the circumferential wall portion 10b in the axial direction. The bottom wall portion 10a has a sensor housing portion 10g penetrating the bottom wall portion 10a in the axial direction Y. The sensor storage portion 10 g has, for example, a circular shape centered on the central axis J when viewed along the axial direction Y. The bottom housing portion 10 a and the peripheral wall portion 10 b constitute a stator housing portion 14. That is, the housing 10 has a bottomed cylindrical stator housing portion 14 having a peripheral wall portion 10 b and a bottom wall portion 10 a.
 ベアリング保持部10cは、底壁部10aの軸方向一方側の面におけるセンサ収容部10gの周縁部から軸方向一方側に突出する円筒状である。ベアリング保持部10cは、後述するロータコア22よりも軸方向他方側においてモータシャフト21を支持するベアリングを保持する。 The bearing holding portion 10c has a cylindrical shape that protrudes in the axial direction from the peripheral edge portion of the sensor accommodating portion 10g on the surface on the one side in the axial direction of the bottom wall portion 10a. The bearing holder 10 c holds a bearing that supports the motor shaft 21 on the other side in the axial direction with respect to the rotor core 22 described later.
 図1から図4に示すように、角筒部10eは、周壁部10bから上側に延びる角筒状である。角筒部10eは、上側に開口する。本実施形態において角筒部10eは、例えば、正方形筒状である。図2に示すように、角筒部10eを構成する壁部のうち軸方向他方側の壁部は、底壁部10aの上端部に繋がる。角筒部10eは、角筒部10eを構成する壁部のうち軸方向一方側の壁部を軸方向Yに貫通する貫通孔10fを有する。貫通孔10fの下端部は、周壁部10bの軸方向一方側の開口と繋がる。角筒部10eと周壁部10bとによって、インバータ収容部15が構成される。すなわち、ハウジング10は、インバータ収容部15を有する。 As shown in FIGS. 1 to 4, the rectangular tube portion 10 e has a rectangular tube shape extending upward from the peripheral wall portion 10 b. The rectangular tube portion 10e opens upward. In the present embodiment, the rectangular tube portion 10 e has, for example, a square tube shape. As shown in FIG. 2, of the wall parts constituting the rectangular tube part 10 e, the wall part on the other side in the axial direction is connected to the upper end part of the bottom wall part 10 a. The square tube portion 10 e has a through hole 10 f penetrating in the axial direction Y a wall portion on one side in the axial direction among wall portions constituting the square tube portion 10 e. The lower end portion of the through hole 10 f is connected to the opening on one side in the axial direction of the peripheral wall portion 10 b. An inverter accommodating portion 15 is configured by the rectangular tube portion 10 e and the peripheral wall portion 10 b. That is, the housing 10 has an inverter accommodating portion 15.
 インバータ収容部15は、ステータ収容部14の径方向外側に位置する。本実施形態においてインバータ収容部15は、軸方向Yと直交する鉛直方向Zにおいて、ステータ収容部14の上側に位置する。ステータ収容部14とインバータ収容部15とは、仕切り壁部10dによって鉛直方向Zに仕切られる。仕切り壁部10dは、周壁部10bの上側の部分である。すなわち、周壁部10bは、ステータ収容部14とインバータ収容部15とを仕切る仕切り壁部10dを有する。 The inverter accommodating portion 15 is located radially outside the stator accommodating portion 14. In the present embodiment, the inverter accommodating portion 15 is located above the stator accommodating portion 14 in the vertical direction Z orthogonal to the axial direction Y. The stator housing portion 14 and the inverter housing portion 15 are partitioned in the vertical direction Z by the partition wall portion 10 d. The partition wall portion 10d is an upper portion of the peripheral wall portion 10b. That is, the peripheral wall portion 10 b has a partition wall portion 10 d that divides the stator accommodation portion 14 and the inverter accommodation portion 15.
 図3に示すように、仕切り壁部10dの鉛直方向Zの寸法は、軸方向Yおよび鉛直方向Zの両方と直交する幅方向Xにおいて中心軸Jから離れる程、大きくなる。すなわち、仕切り壁部10dの鉛直方向Zの寸法は、幅方向Xの位置が中心軸Jと同じ中央部分において最も小さく、中央部分から幅方向Xの両側に離れるに従って大きくなる。 As shown in FIG. 3, the dimension in the vertical direction Z of the partition wall portion 10 d becomes larger as it goes away from the central axis J in the width direction X orthogonal to both the axial direction Y and the vertical direction Z. That is, the dimension in the vertical direction Z of the partition wall portion 10d is smallest at the central portion where the position in the width direction X is the same as the central axis J, and increases as moving away from the central portion on both sides in the width direction X.
 図2に示す蓋部11は、板面が鉛直方向Zと直交する板状である。蓋部11は、角筒部10eの上端部に固定される。蓋部11は、角筒部10eの上側の開口を閉塞する。なお、図4においては、蓋部11の図示を省略する。図1および図2に示すように、カバー部材12は、板面が軸方向Yと直交する板状である。カバー部材12は、周壁部10bおよび角筒部10eの軸方向一方側の面に固定される。カバー部材12は、周壁部10bの軸方向一方側の開口および貫通孔10fを閉塞する。 The lid 11 shown in FIG. 2 has a plate shape whose plate surface is orthogonal to the vertical direction Z. The lid portion 11 is fixed to the upper end portion of the rectangular tube portion 10 e. The lid 11 closes the upper opening of the rectangular tube 10 e. In addition, illustration of the cover part 11 is abbreviate | omitted in FIG. As shown in FIGS. 1 and 2, the cover member 12 has a plate shape whose plate surface is orthogonal to the axial direction Y. The cover member 12 is fixed to a surface on one side in the axial direction of the peripheral wall portion 10b and the rectangular tube portion 10e. The cover member 12 closes the opening on one axial side of the peripheral wall portion 10b and the through hole 10f.
 図2に示すように、カバー部材12は、カバー部材12を軸方向Yに貫通する出力軸孔12aを有する。出力軸孔12aは、例えば、中心軸Jを通る円形状である。カバー部材12は、カバー部材12の軸方向他方側の面における出力軸孔12aの周縁部から軸方向他方側に突出するベアリング保持部12bを有する。ベアリング保持部12bは、後述するロータコア22よりも軸方向一方側においてモータシャフト21を支持するベアリングを保持する。 As shown in FIG. 2, the cover member 12 has an output shaft hole 12 a that penetrates the cover member 12 in the axial direction Y. The output shaft hole 12a has, for example, a circular shape passing through the central axis J. The cover member 12 has a bearing holding portion 12b projecting to the other axial side from the peripheral edge portion of the output shaft hole 12a in the surface on the other axial side of the cover member 12. The bearing holding portion 12 b holds a bearing that supports the motor shaft 21 on one side in the axial direction with respect to a rotor core 22 described later.
 センサカバー13は、底壁部10aの軸方向他方側の面に固定される。センサカバー13は、センサ収容部10gの軸方向他方側の開口を覆い、閉塞する。センサカバー13は、回転検出部70を軸方向他方側から覆う。 The sensor cover 13 is fixed to the other surface of the bottom wall portion 10 a in the axial direction. The sensor cover 13 covers and closes the opening on the other side in the axial direction of the sensor housing portion 10g. The sensor cover 13 covers the rotation detection unit 70 from the other side in the axial direction.
 ロータ20は、モータシャフト21と、ロータコア22と、マグネット23と、第1エンドプレート24と、第2エンドプレート25と、を有する。モータシャフト21は、軸方向両側の部分をそれぞれベアリングによって回転自在に支持される。モータシャフト21の軸方向一方側の端部は、周壁部10bの軸方向一方側の開口から軸方向一方側へ向けて突出する。モータシャフト21の軸方向一方側の端部は、出力軸孔12aを通り、カバー部材12よりも軸方向一方側に突出する。モータシャフト21の軸方向他方側の端部は、センサ収容部10gに挿入される。 The rotor 20 has a motor shaft 21, a rotor core 22, a magnet 23, a first end plate 24 and a second end plate 25. The motor shaft 21 is rotatably supported by bearings at axially opposite portions. The end of the motor shaft 21 on the one side in the axial direction protrudes from the opening on the one side in the axial direction of the peripheral wall portion 10 b toward the one side in the axial direction. An end of the motor shaft 21 on one side in the axial direction passes through the output shaft hole 12 a and protrudes to one side in the axial direction with respect to the cover member 12. The other axial end of the motor shaft 21 is inserted into the sensor housing 10g.
 ロータコア22は、モータシャフト21の外周面に固定される。マグネット23は、ロータコア22に設けられたロータコア22を軸方向Yに貫通する孔部に挿入される。第1エンドプレート24および第2エンドプレート25は、径方向に拡がる円環板状である。第1エンドプレート24と第2エンドプレート25とは、ロータコア22と接触した状態で、ロータコア22を軸方向Yに挟む。第1エンドプレート24と第2エンドプレート25とは、ロータコア22の孔部に挿入されたマグネット23を軸方向両側から押さえる。 The rotor core 22 is fixed to the outer peripheral surface of the motor shaft 21. The magnet 23 is inserted into a hole passing through the rotor core 22 provided in the rotor core 22 in the axial direction Y. The first end plate 24 and the second end plate 25 are in the form of a radially expanding annular plate. The first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction Y while in contact with the rotor core 22. The first end plate 24 and the second end plate 25 press the magnet 23 inserted into the hole of the rotor core 22 from both sides in the axial direction.
 ステータ30は、ロータ20と径方向に隙間を介して対向する。ステータ30は、ステータコア31と、ステータコア31に装着される複数のコイル32と、を有する。ステータコア31は、中心軸Jを中心とした円環状である。ステータコア31の外周面は、周壁部10bの内周面に固定される。ステータコア31は、ロータコア22の径方向外側に隙間を介して対向する。 The stator 30 faces the rotor 20 in the radial direction via a gap. The stator 30 has a stator core 31 and a plurality of coils 32 mounted on the stator core 31. The stator core 31 has an annular shape centered on the central axis J. The outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the peripheral wall 10b. The stator core 31 faces the radially outer side of the rotor core 22 via a gap.
 インバータユニット50は、ステータ30に供給される電力を制御する。インバータユニット50は、インバータ部51と、コンデンサ部52と、を有する。すなわち、モータ1は、インバータ部51と、コンデンサ部52と、を備える。インバータ部51は、インバータ収容部15に収容される。インバータ部51は、回路基板として、第1回路基板51aと、第2回路基板51bと、を有する。第1回路基板51aおよび第2回路基板51bは、板面が鉛直方向Zと直交する板状である。第2回路基板51bは、第1回路基板51aの上側に離れて配置される。第1回路基板51aと第2回路基板51bとは電気的に接続される。第1回路基板51aには、コネクタ端子53を介してコイル線32aが接続される。これにより、インバータ部51は、ステータ30と電気的に接続される。 The inverter unit 50 controls the power supplied to the stator 30. The inverter unit 50 includes an inverter unit 51 and a capacitor unit 52. That is, the motor 1 includes an inverter unit 51 and a capacitor unit 52. The inverter unit 51 is accommodated in the inverter accommodation unit 15. The inverter unit 51 includes a first circuit board 51 a and a second circuit board 51 b as circuit boards. The first circuit board 51 a and the second circuit board 51 b have a plate shape whose plate surface is orthogonal to the vertical direction Z. The second circuit board 51b is spaced apart above the first circuit board 51a. The first circuit board 51a and the second circuit board 51b are electrically connected. The coil wire 32 a is connected to the first circuit board 51 a via the connector terminal 53. Thus, the inverter unit 51 is electrically connected to the stator 30.
 図2および図4に示すように、コンデンサ部52は、幅方向Xに長い直方体状である。コンデンサ部52は、インバータ収容部15に収容される。コンデンサ部52は、インバータ部51の軸方向他方側に配置される。すなわち、インバータ収容部15において、インバータ部51とコンデンサ部52とは、軸方向Yに並んで配置される。コンデンサ部52は、インバータ部51と電気的に接続される。図2に示すように、コンデンサ部52は、仕切り壁部10dの上面に固定される。コンデンサ部52は、仕切り壁部10dに接触する。 As shown in FIG. 2 and FIG. 4, the capacitor portion 52 is in the shape of a rectangular solid long in the width direction X. Capacitor portion 52 is accommodated in inverter accommodating portion 15. The capacitor unit 52 is disposed on the other side of the inverter unit 51 in the axial direction. That is, in the inverter accommodating portion 15, the inverter portion 51 and the capacitor portion 52 are arranged side by side in the axial direction Y. The capacitor unit 52 is electrically connected to the inverter unit 51. As shown in FIG. 2, the capacitor portion 52 is fixed to the upper surface of the partition wall portion 10 d. Condenser part 52 contacts partition wall part 10d.
 図1に示すように、コネクタ部18は、角筒部10eの幅方向他方側の面に設けられる。コネクタ部18には、図示しない外部電源が接続される。コネクタ部18に接続された外部電源からインバータユニット50に電源が供給される。 As shown in FIG. 1, the connector portion 18 is provided on the other surface of the rectangular tube portion 10 e in the width direction. An external power supply (not shown) is connected to the connector portion 18. Power is supplied to the inverter unit 50 from an external power supply connected to the connector unit 18.
 回転検出部70は、ロータ20の回転を検出する。本実施形態において回転検出部70は、例えば、VR(Variable Reluctance)型レゾルバである。図2に示すように、回転検出部70は、センサ収容部10gに収容される。すなわち、回転検出部70は、底壁部10aに配置される。回転検出部70は、被検出部71と、センサ部72と、を有する。 The rotation detection unit 70 detects the rotation of the rotor 20. In the present embodiment, the rotation detection unit 70 is, for example, a VR (Variable Reluctance) resolver. As shown in FIG. 2, the rotation detection unit 70 is accommodated in the sensor accommodation unit 10 g. That is, the rotation detection unit 70 is disposed on the bottom wall portion 10a. The rotation detection unit 70 includes a detection target unit 71 and a sensor unit 72.
 被検出部71は、周方向θに延びる環状である。被検出部71は、モータシャフト21に嵌め合わされて固定される。被検出部71は、磁性体製である。センサ部72は、被検出部71の径方向外側を囲む環状である。センサ部72は、センサ収容部10gに嵌め合わされる。センサ部72は、センサカバー13によって軸方向他方側から支持される。すなわち、センサカバー13は、回転検出部70を軸方向他方側から支持する。センサ部72は、周方向θに沿って複数のコイルを有する。 The to-be-detected part 71 is annular shaped extended in the circumferential direction θ. The to-be-detected part 71 is fitted and fixed to the motor shaft 21. The to-be-detected part 71 is made of magnetic material. The sensor unit 72 has an annular shape surrounding the outside in the radial direction of the detection target 71. The sensor unit 72 is fitted to the sensor storage unit 10g. The sensor unit 72 is supported by the sensor cover 13 from the other side in the axial direction. That is, the sensor cover 13 supports the rotation detection unit 70 from the other side in the axial direction. The sensor unit 72 has a plurality of coils along the circumferential direction θ.
 図示は省略するが、モータ1は、回転検出部70とインバータ部51とを電気的に接続するセンサ配線をさらに備える。センサ配線の一端は、被検出部71に接続される。センサ配線は、被検出部71から、底壁部10aの内部および仕切り壁部10dを径方向に貫通する貫通孔を通って、インバータ収容部15内まで引き回される。センサ配線の他端は、例えば、第1回路基板51aに接続される。 Although not shown, the motor 1 further includes a sensor wire that electrically connects the rotation detection unit 70 and the inverter unit 51. One end of the sensor wiring is connected to the detected portion 71. The sensor wiring is routed from the detected portion 71 to the inside of the inverter accommodating portion 15 through a through hole which penetrates the inside of the bottom wall portion 10a and the partition wall portion 10d in the radial direction. The other end of the sensor wiring is connected to, for example, the first circuit board 51a.
 モータシャフト21とともに被検出部71が回転することによって、センサ部72のコイルには、被検出部71の周方向位置に応じた誘起電圧が生じる。センサ部72は、誘起電圧を検出することで、被検出部71の回転を検出する。これにより、回転検出部70は、モータシャフト21の回転を検出して、ロータ20の回転を検出する。回転検出部70が検出したロータ20の回転情報は、センサ配線を介してインバータ部51に送られる。 When the detected portion 71 rotates with the motor shaft 21, an induced voltage is generated in the coil of the sensor portion 72 according to the circumferential position of the detected portion 71. The sensor unit 72 detects the induced voltage to detect the rotation of the detection target unit 71. Thus, the rotation detection unit 70 detects the rotation of the motor shaft 21 and detects the rotation of the rotor 20. The rotation information of the rotor 20 detected by the rotation detection unit 70 is sent to the inverter unit 51 via the sensor wiring.
 図5に示すように、冷却部60は、冷却流路61を有する。すなわち、周壁部10bは、冷却流路61を有する。本実施形態では、冷却部60は、1つの冷却流路61のみで構成される。なお、図5においては、冷却部60の内部空間を立体形状として示す。 As shown in FIG. 5, the cooling unit 60 has a cooling channel 61. That is, the peripheral wall portion 10 b has the cooling flow passage 61. In the present embodiment, the cooling unit 60 is configured of only one cooling channel 61. In FIG. 5, the internal space of the cooling unit 60 is shown as a three-dimensional shape.
 冷却流路61には、冷媒が流れる。冷媒は、ステータ30およびインバータ部51を冷却できる流体ならば、特に限定されない。冷媒は、水であってもよいし、水以外の液体であってもよいし、気体であってもよい。 A refrigerant flows in the cooling channel 61. The refrigerant is not particularly limited as long as it is a fluid that can cool the stator 30 and the inverter unit 51. The refrigerant may be water, a liquid other than water, or a gas.
 冷却流路61は、周方向θに延びる。冷却流路61は、流路本体部61aと、流入口61bと、流出口61cと、を有する。流路本体部61aは、軸方向Yに幅広で周方向θに延びる円弧状である。図3に示すように、流路本体部61aは、周壁部10bにおける幅方向他方側の部分から、周壁部10bを周方向θに沿ってほぼ一周して設けられる。流路本体部61aの中心角φは、180°よりも大きい。これにより、冷却流路61は、中心角φが180°よりも大きい円弧状である。冷却流路61は、幅方向他方側に開口するC字形状である。 The cooling channel 61 extends in the circumferential direction θ. The cooling channel 61 has a channel body 61a, an inlet 61b, and an outlet 61c. The flow path main body portion 61 a has a circular arc shape which is wide in the axial direction Y and extends in the circumferential direction θ. As shown in FIG. 3, the flow path main body portion 61a is provided on the peripheral wall portion 10b along the circumferential direction θ substantially from the other side in the width direction of the peripheral wall portion 10b. The central angle φ of the flow passage main portion 61a is larger than 180 °. Thus, the cooling flow passage 61 is in the shape of a circular arc having a central angle φ larger than 180 °. The cooling channel 61 has a C-shape opening on the other side in the width direction.
 図5に示すように、流入口61bは、冷却流路61の周方向一方側の端部における軸方向Yの中央に位置する。流入口61bは、流路本体部61aの周方向一方側の端部から幅方向他方側に突出する。流入口61bには、冷媒が流入する。流入口61bの幅方向Xと直交する断面形状は、例えば、円形状である。図3に示すように、流入口61bには、流入パイプ16が連結される。流入パイプ16は、ハウジング10に設けられた孔部に挿し込まれる。流入パイプ16は、ハウジング10から幅方向他方側に突出する。 As shown in FIG. 5, the inflow port 61 b is located at the center of the axial direction Y at the end on one circumferential side of the cooling channel 61. The inflow port 61b protrudes to the other side in the width direction from an end on one side in the circumferential direction of the flow path main portion 61a. The refrigerant flows into the inflow port 61b. The cross-sectional shape orthogonal to the width direction X of the inflow port 61b is, for example, a circular shape. As shown in FIG. 3, the inflow pipe 16 is connected to the inflow port 61 b. The inflow pipe 16 is inserted into a hole provided in the housing 10. The inflow pipe 16 protrudes from the housing 10 to the other side in the width direction.
 流出口61cは、冷却流路61の周方向他方側の端部における軸方向Yの中央に位置する。流出口61cは、流路本体部61aの周方向他方側の端部から幅方向他方側に突出する。流出口61cからは、冷媒が流出される。流出口61cの幅方向Xと直交する断面形状は、例えば、円形状である。流出口61cの形状は、流入口61bの形状と同様である。図5に示すように、流入口61bと流出口61cとは、軸方向Yにおいて同じ位置に配置される。流入口61bと流出口61cとは、鉛直方向Zに間隔を空けて配置される。 The outlet 61 c is located at the center in the axial direction Y at the other circumferential end of the cooling channel 61. The outflow port 61c protrudes from the end on the other side in the circumferential direction of the flow path main portion 61a to the other side in the width direction. The refrigerant flows out from the outlet 61c. The cross-sectional shape orthogonal to the width direction X of the outflow port 61c is, for example, a circular shape. The shape of the outlet 61c is similar to the shape of the inlet 61b. As shown in FIG. 5, the inlet 61 b and the outlet 61 c are disposed at the same position in the axial direction Y. The inlet 61 b and the outlet 61 c are spaced apart in the vertical direction Z.
 図3に示すように、流出口61cには、流出パイプ17が連結される。流出パイプ17は、ハウジング10に設けられた孔部に挿し込まれる。流出パイプ17は、ハウジング10から幅方向他方側に突出する。図1に示すように、流入パイプ16と流出パイプ17とは、軸方向Yにおいて同じ位置に配置される。流入パイプ16と流出パイプ17とは、鉛直方向Zに間隔を空けて配置される。 As shown in FIG. 3, the outlet pipe 17 is connected to the outlet 61 c. The outflow pipe 17 is inserted into a hole provided in the housing 10. The outflow pipe 17 projects from the housing 10 to the other side in the width direction. As shown in FIG. 1, the inflow pipe 16 and the outflow pipe 17 are disposed at the same position in the axial direction Y. The inflow pipe 16 and the outflow pipe 17 are spaced in the vertical direction Z from each other.
 流入パイプ16から流入口61bを介して冷却流路61に流入した冷媒は、周方向一方側から周方向他方側に向かって流れ、流出口61cから流出パイプ17を介して、ハウジング10の外部に流出する。本実施形態において冷却流路61を流れる冷媒は、周方向θのうち一方の向きのみに流れる。すなわち、本実施形態においては、冷却流路61を流れる冷媒は、周方向一方側から周方向他方側に向かってのみ流れ、周方向他方側から周方向一方側に向かっては流れない。そのため、冷媒の流れる向きが互いに異なる複数の冷却流路が設けられる場合に比べて、冷却流路61に冷媒を循環させることが容易である。 The refrigerant flowing from the inflow pipe 16 into the cooling flow passage 61 through the inflow port 61b flows from one side in the circumferential direction to the other side in the circumferential direction, and is discharged from the outflow port 61c to the outside of the housing 10 through the outflow pipe 17. leak. In the present embodiment, the refrigerant flowing through the cooling flow passage 61 flows only in one direction in the circumferential direction θ. That is, in the present embodiment, the refrigerant flowing in the cooling flow passage 61 flows only from one circumferential side to the other circumferential side, and does not flow from the other circumferential side to the circumferential one side. Therefore, it is easy to circulate the refrigerant in the cooling flow passage 61 as compared to the case where a plurality of cooling flow passages in which the flow directions of the refrigerant flow are different from each other.
 本明細書において「冷媒が、周方向θのうち一方の向きのみに流れる」とは、冷媒の移動する向きのベクトル成分のうち周方向θに沿ったベクトル成分が、周方向θの一方の向きのみの場合を含む。すなわち、冷媒の位置が周方向θにおいて一方の向きに移動するならば、冷媒全体としての流れる向きが周方向θに対して傾いていてもよい。 In the present specification, “the refrigerant flows only in one direction in the circumferential direction θ” means that the vector component along the circumferential direction θ among vector components in the moving direction of the refrigerant has one direction in the circumferential direction θ. Including only cases. That is, if the position of the refrigerant moves in one direction in the circumferential direction θ, the flow direction of the refrigerant as a whole may be inclined with respect to the circumferential direction θ.
 図6に示すように、冷却流路61の少なくとも一部は、仕切り壁部10dに設けられる。したがって、冷却流路61を流れる冷媒によって、仕切り壁部10dで仕切られるステータ収容部14とインバータ収容部15とを冷却することができ、ステータ収容部14に収容されるステータ30およびインバータ収容部15に収容されるインバータ部51を冷却することができる。 As shown in FIG. 6, at least a part of the cooling channel 61 is provided in the partition wall portion 10 d. Therefore, the stator accommodating portion 14 and the inverter accommodating portion 15 partitioned by the partition wall portion 10 d can be cooled by the refrigerant flowing through the cooling flow passage 61, and the stator 30 and the inverter accommodating portion 15 accommodated in the stator accommodating portion 14. Can be cooled.
 本実施形態では、冷却流路61に流入した冷媒は、周壁部10bの上端部、すなわち仕切り壁部10dと、周壁部10bの幅方向一方側の端部と、周壁部10bの下端部と、を順に通って流れる。そのため、流入口61bから冷却流路61に流入した直後の比較的温度が低い冷媒を仕切り壁部10dに流すことができ、インバータ部51を冷却できる。これにより、インバータ部51をより冷却しやすい。インバータ部51は、特に発熱が大きくなりやすいため、インバータ部51を冷却しやすいことで、より好適にモータ1の冷却を行える。 In the present embodiment, the refrigerant having flowed into the cooling flow passage 61 is the upper end of the peripheral wall 10b, that is, the partition wall 10d, the one end of the peripheral wall 10b in the width direction, and the lower end of the peripheral wall 10b Flow through in order. Therefore, the refrigerant whose temperature is relatively low immediately after flowing into the cooling channel 61 from the inflow port 61 b can flow to the partition wall portion 10 d, and the inverter portion 51 can be cooled. This makes it easier to cool the inverter unit 51. The heat generation of the inverter unit 51 is particularly likely to be large, and thus the motor 1 can be cooled more preferably by cooling the inverter unit 51 easily.
 本実施形態において冷却流路61のうち仕切り壁部10dに設けられる部分は、ステータ収容部14とインバータ部51との径方向の間において単一層の流路である。そのため、複数層の流路が径方向に並んで設けられる場合に比べて、冷却流路61の構成を簡単化できる。これにより、単一層の冷却流路61によってステータ30とインバータ部51との両方を冷却することができ、効率的である。また、仕切り壁部10dの径方向の寸法を小さくしやすく、モータ1を小型化しやすい。また、冷却流路61が周方向θに延びるため、例えば冷却流路が軸方向Yに延びる場合に比べて、冷却流路61によってステータ30の周囲を囲みやすく、ステータ30を冷却しやすい。 In the present embodiment, a portion provided in the partition wall portion 10 d in the cooling flow passage 61 is a single layer flow passage between the stator accommodation portion 14 and the inverter portion 51 in the radial direction. Therefore, the configuration of the cooling flow channel 61 can be simplified as compared with the case where the flow channels of a plurality of layers are provided side by side in the radial direction. As a result, both the stator 30 and the inverter unit 51 can be cooled by the single layer cooling flow passage 61, which is efficient. Further, the dimension in the radial direction of the partition wall portion 10d can be easily reduced, and the motor 1 can be easily miniaturized. In addition, since the cooling flow passage 61 extends in the circumferential direction θ, for example, the cooling flow passage 61 can easily surround the stator 30 and the stator 30 can be cooled more easily than when the cooling flow passage extends in the axial direction Y.
 以上により、本実施形態によれば、冷却流路61によるステータ30およびインバータ部51の冷却効率を向上できる構造を有するモータ1が得られる。 As described above, according to the present embodiment, the motor 1 having a structure capable of improving the cooling efficiency of the stator 30 and the inverter unit 51 by the cooling flow passage 61 can be obtained.
 本明細書において「ある流路が、ある部分において単一層の流路である」とは、ある部分内において、ある連続した流路が1つのみ設けられることを含む。例えば、全体として連続した同じ流路であっても、ある部分内において非連続となる2つの部分が設けられる場合には、ある部分において複数層の流路が設けられた状態である。本実施形態では、ステータ収容部14とインバータ部51との径方向の間に設けられる冷却流路61の部分は、連続した1つの部分のみである。 In the present specification, "a channel is a channel in a single layer in a part" includes that only one continuous channel is provided in a part. For example, even if the same flow path is continuous as a whole, in the case where two portions that are discontinuous in a certain portion are provided, a plurality of layers of flow paths are provided in a certain portion. In the present embodiment, the portion of the cooling passage 61 provided between the stator accommodation portion 14 and the inverter portion 51 in the radial direction is only one continuous portion.
 また、本実施形態によれば、冷却流路61は、1つのみ設けられ、周方向θに延びる。そのため、例えば冷却流路を波形状にする場合に比べて、冷却流路61を作製しやすい。また、例えば冷却流路を波形状にする場合、波形に並ぶ流路部分同士の間には、冷媒が流れないため、冷却流路の面積を十分に大きくしにくい場合があった。これに対して、本実施形態によれば、冷却流路61は、周方向θに延びる単一の流路であるため、冷却流路61の面積を大きくしやすく、冷却流路61によって冷却できる範囲を大きくしやすい。 Further, according to the present embodiment, only one cooling channel 61 is provided and extends in the circumferential direction θ. Therefore, for example, the cooling channel 61 can be easily manufactured as compared with the case where the cooling channel is formed in a wave shape. Further, for example, in the case where the cooling flow path is formed in a wave shape, the refrigerant does not flow between the flow path portions aligned in the waveform, so it may be difficult to sufficiently increase the area of the cooling flow path. On the other hand, according to the present embodiment, since the cooling flow passage 61 is a single flow passage extending in the circumferential direction θ, the area of the cooling flow passage 61 can be easily increased, and the cooling flow passage 61 can be cooled. It is easy to enlarge the range.
 また、本実施形態によれば、冷却流路61は、中心角φが180°よりも大きい円弧状である。そのため、冷却流路61によってステータ30の周りを囲みやすく、ステータ30をより冷却することができる。 Further, according to the present embodiment, the cooling channel 61 is in the shape of a circular arc having a central angle φ larger than 180 °. Therefore, it is easy to surround the stator 30 by the cooling flow passage 61, and the stator 30 can be cooled more.
 また、本実施形態によれば、冷却流路61によって、インバータ収容部15に収容されるコンデンサ部52も冷却することができる。これにより、1つの冷却流路61によって3つの部分を同時に冷却することができ、冷却流路61の数を少なくしつつ、より効率的に冷却を行うことができる。 Further, according to the present embodiment, the condenser portion 52 accommodated in the inverter accommodating portion 15 can also be cooled by the cooling flow passage 61. Thus, three parts can be simultaneously cooled by one cooling channel 61, and cooling can be performed more efficiently while reducing the number of cooling channels 61.
 本実施形態では、流路本体部61aの上側部分が、仕切り壁部10dに設けられる。図6に示すように、鉛直方向Zに沿って視て、冷却流路61のうち仕切り壁部10dに設けられる部分は、インバータ部51と重なる部分と、コンデンサ部52と重なる部分と、を有する。そのため、冷却流路61に流れる冷媒によって、ステータ30とインバータ部51とコンデンサ部52とをより冷却しやすい。 In the present embodiment, the upper portion of the flow path main portion 61a is provided in the partition wall portion 10d. As shown in FIG. 6, a portion provided on partition wall portion 10 d of cooling flow channel 61 has a portion overlapping with inverter portion 51 and a portion overlapping with capacitor portion 52 when viewed along vertical direction Z. . Therefore, the stator 30, the inverter unit 51, and the capacitor unit 52 can be more easily cooled by the refrigerant flowing in the cooling flow passage 61.
 また、上述したように、本実施形態においてコンデンサ部52は、仕切り壁部10dに接触する。そのため、コンデンサ部52の熱が、仕切り壁部10dを伝って冷却流路61内の冷媒に放出されやすい。したがって、冷却流路61によってコンデンサ部52をより冷却しやすい。 Further, as described above, in the present embodiment, the capacitor portion 52 contacts the partition wall portion 10d. Therefore, the heat of the condenser portion 52 is easily released to the refrigerant in the cooling flow passage 61 along the partition wall portion 10 d. Therefore, the condenser portion 52 can be more easily cooled by the cooling flow passage 61.
 仕切り壁部10dのうち冷却流路61とインバータ収容部15との径方向の間に位置する部分10jにおいて、冷却流路61とインバータ部51との径方向の間に位置する部分10iは、冷却流路61とコンデンサ部52との径方向の間に位置する部分10hよりも、径方向の寸法が小さい。すなわち、部分10iの径方向の寸法L1は、部分10hの径方向の寸法L3よりも小さい。これにより、冷却流路61をインバータ部51に近づけることができ、インバータ部51をより冷却しやすい。 In the portion 10j of the partition wall portion 10d located between the cooling flow passage 61 and the inverter accommodation portion 15 in the radial direction, the portion 10i located between the cooling flow passage 61 and the inverter portion 51 in the radial direction The dimension in the radial direction is smaller than that of the portion 10 h positioned between the flow path 61 and the capacitor portion 52 in the radial direction. That is, the radial dimension L1 of the portion 10i is smaller than the radial dimension L3 of the portion 10h. As a result, the cooling flow passage 61 can be brought close to the inverter unit 51, and the inverter unit 51 can be cooled more easily.
 仕切り壁部10dのうち冷却流路61とインバータ収容部15との径方向の間に位置する部分10jは、仕切り壁部10dのうち冷却流路61とステータ収容部14との径方向の間に位置する部分10kよりも、径方向の寸法が小さい。すなわち、部分10iの径方向の寸法L1および部分10hの径方向の寸法L3は、部分10kの径方向の寸法L2よりも小さい。これにより、冷却流路61をステータ収容部14よりもインバータ収容部15に近づけることができ、インバータ収容部15をより冷却しやすい。また、寸法L2を比較的大きくしやすいため、周壁部10bのうちステータコア31と接する部分の径方向の寸法を大きくしやすい。これにより、周壁部10bにおけるステータコア31を保持する強度を比較的大きくできる。以上のように、寸法L1と寸法L2と寸法L3とは、L1<L3<L2の関係を満たす。 The portion 10 j of the partition wall portion 10 d located between the cooling flow passage 61 and the inverter accommodation portion 15 in the radial direction is located between the cooling flow passage 61 and the stator accommodation portion 14 in the partition wall portion 10 d. The radial dimension is smaller than the located portion 10k. That is, the radial dimension L1 of the portion 10i and the radial dimension L3 of the portion 10h are smaller than the radial dimension L2 of the portion 10k. As a result, the cooling flow passage 61 can be made closer to the inverter accommodating portion 15 than the stator accommodating portion 14, and the inverter accommodating portion 15 can be more easily cooled. Further, since the dimension L2 can be relatively easily increased, the dimension in the radial direction of the portion of the circumferential wall portion 10b in contact with the stator core 31 can be easily increased. Thereby, the intensity | strength holding the stator core 31 in the surrounding wall part 10b can be comparatively enlarged. As described above, the dimension L1, the dimension L2, and the dimension L3 satisfy the relationship of L1 <L3 <L2.
 なお、上述した寸法L1と寸法L2と寸法L3との大小関係は、少なくとも各寸法の最小値同士の間において成り立てばよい。例えば、本実施形態では、寸法L1および寸法L2は周方向θの位置によって異なるが、寸法L1の最小値と寸法L2の最小値とを寸法L3と比べた際に、上述したL1<L3<L2の関係を満たせばよい。本実施形態では、寸法L1と寸法L2と寸法L3との大小関係は、仕切り壁部10dにおける幅方向Xの中央部分において、L1<L3<L2の関係を満たす。 Note that the above-described magnitude relationship between the dimension L1, the dimension L2, and the dimension L3 may be established at least between the minimum values of the respective dimensions. For example, in the present embodiment, although the dimension L1 and the dimension L2 differ depending on the position in the circumferential direction θ, when the minimum value of the dimension L1 and the minimum value of the dimension L2 are compared with the dimension L3, L1 <L3 <L2 described above It suffices to satisfy the relationship. In the present embodiment, the magnitude relationship among the dimensions L1, L2, and L3 satisfies the relationship of L1 <L3 <L2 at the central portion in the width direction X of the partition wall 10d.
 図5に示すように、冷却流路61の軸方向Yの寸法L4は、周方向θの位置によらず略均一である。図6に示すように、冷却流路61の軸方向Yの寸法L4は、第1回路基板51aの軸方向Yの寸法L5および第2回路基板51bの軸方向Yの寸法L6よりも大きい。そのため、冷却流路61の軸方向Yの寸法L4を比較的大きくでき、1つの冷却流路61によって冷却できる範囲を広くできる。また、冷却流路61内に流れる冷媒の流量を大きくできる。したがって、冷却流路61による冷却効率をより向上できる。第1回路基板51aの軸方向Yの寸法L5は、第2回路基板51bの軸方向Yの寸法L6よりも小さい。すなわち、寸法L4と寸法L5と寸法L6とは、L5<L6<L4の関係を満たす。 As shown in FIG. 5, the dimension L4 in the axial direction Y of the cooling flow passage 61 is substantially uniform regardless of the position in the circumferential direction θ. As shown in FIG. 6, the dimension L4 in the axial direction Y of the cooling flow passage 61 is larger than the dimension L5 in the axial direction Y of the first circuit board 51a and the dimension L6 in the axial direction Y of the second circuit board 51b. Therefore, the dimension L4 in the axial direction Y of the cooling flow passage 61 can be made relatively large, and the range that can be cooled by one cooling flow passage 61 can be broadened. Further, the flow rate of the refrigerant flowing into the cooling flow passage 61 can be increased. Therefore, the cooling efficiency by the cooling channel 61 can be further improved. The dimension L5 in the axial direction Y of the first circuit board 51a is smaller than the dimension L6 in the axial direction Y of the second circuit board 51b. That is, the dimension L4, the dimension L5, and the dimension L6 satisfy the relationship of L5 <L6 <L4.
 冷却流路61の軸方向Yの寸法L4は、コンデンサ部52の軸方向Yの寸法よりも大きい。図4に示すように、本実施形態において冷却流路61の軸方向Yの寸法L4は、第2回路基板51bの幅方向Xの寸法およびコンデンサ部52の幅方向Xの寸法よりも小さい。図示は省略するが、冷却流路61の軸方向Yの寸法L4は、第1回路基板51aの幅方向Xの寸法よりも小さい。 The dimension L 4 in the axial direction Y of the cooling flow passage 61 is larger than the dimension in the axial direction Y of the condenser portion 52. As shown in FIG. 4, in the present embodiment, the dimension L4 in the axial direction Y of the cooling flow passage 61 is smaller than the dimension in the width direction X of the second circuit board 51 b and the dimension in the width direction X of the capacitor portion 52. Although not shown, the dimension L4 in the axial direction Y of the cooling flow passage 61 is smaller than the dimension in the width direction X of the first circuit board 51a.
 ここで、本実施形態によれば、上述したように、流入口61bは、冷却流路61の周方向一方側の端部における軸方向Yの中央に位置し、流出口61cは、冷却流路61の周方向他方側の端部における軸方向Yの中央に位置する。そのため、冷却流路61の軸方向Yの寸法L4を比較的大きくした場合であっても、冷却流路61内において冷媒が淀むことを抑制しやすく、流入口61bから流出口61cに向けて冷媒を流しやすい。したがって、冷却流路61を流れる冷媒の圧力損失を低減できる。 Here, according to the present embodiment, as described above, the inflow port 61b is located at the center of the axial direction Y at the end on one circumferential side of the cooling flow path 61, and the outflow port 61c is the cooling flow path It is located at the center of the axial direction Y at the other end of the circumferential direction 61. Therefore, even when the dimension L4 in the axial direction Y of the cooling passage 61 is relatively large, stagnation of the refrigerant in the cooling passage 61 can be easily suppressed, and the refrigerant is directed from the inflow port 61b to the outflow port 61c. It is easy to flow Therefore, the pressure loss of the refrigerant flowing through the cooling channel 61 can be reduced.
 冷却流路61の幅方向Xの最大寸法は、第2回路基板51bの幅方向Xの寸法およびコンデンサ部52の幅方向Xの寸法よりも大きい。また、図示は省略するが、冷却流路61の幅方向Xの最大寸法は、第1回路基板51aの幅方向Xの寸法よりも大きい。そのため、冷却流路61によって、インバータ部51およびコンデンサ部52をより冷却しやすい。冷却流路61の幅方向Xの最大寸法とは、冷却流路61において最も幅方向一方側に位置する部分と、冷却流路61において最も幅方向他方側に位置する部分と、の間の幅方向Xの距離である。本実施形態において冷却流路61の幅方向Xの最大寸法は、円弧状の冷却流路61の外径に相当する。 The maximum dimension in the width direction X of the cooling flow passage 61 is larger than the dimension in the width direction X of the second circuit board 51 b and the dimension in the width direction X of the capacitor portion 52. Moreover, although illustration is abbreviate | omitted, the largest dimension of the width direction X of the cooling flow path 61 is larger than the dimension of the width direction X of the 1st circuit board 51a. Therefore, it is easier to cool the inverter unit 51 and the capacitor unit 52 by the cooling flow passage 61. The maximum dimension in the width direction X of the cooling flow channel 61 is the width between the portion located on the one side in the width direction in the cooling flow channel 61 and the portion located on the other side in the width direction on the cooling flow channel 61. It is the distance in the direction X. In the present embodiment, the maximum dimension of the cooling flow passage 61 in the width direction X corresponds to the outer diameter of the arc-shaped cooling flow passage 61.
 本実施形態において冷却部60は、ハウジング10が砂型鋳造によって作製される際に、冷却部60の形状を有する砂型の部分によって成形される。図1および図2に示すように、ハウジング10は、冷却部60を成形する砂型を排出するための複数の排出孔部19を有する。砂型鋳造によってハウジング10を製造した後、排出孔部19から冷却部60を成形する砂型を排出する。排出孔部19は、冷却部60と繋がる。排出孔部19には栓体80が圧入される。栓体80によって排出孔部19が閉塞され、冷却部60内の冷媒がハウジング10の外部に漏れることを抑制できる。 In the present embodiment, the cooling unit 60 is formed by a portion of the sand mold having the shape of the cooling unit 60 when the housing 10 is manufactured by sand casting. As shown in FIGS. 1 and 2, the housing 10 has a plurality of discharge holes 19 for discharging a sand mold for forming the cooling unit 60. After the housing 10 is manufactured by sand casting, the sand mold for forming the cooling unit 60 is discharged from the discharge hole 19. The discharge hole 19 is connected to the cooling unit 60. The plug 80 is pressed into the discharge hole 19. The discharge hole 19 is closed by the plug 80, and the refrigerant in the cooling unit 60 can be prevented from leaking to the outside of the housing 10.
(第1実施形態の変形例)
 図7に示すように、本変形例のハウジング110において、仕切り壁部110dのうち冷却流路161とインバータ収容部15との径方向の間に位置する部分110jにおいて、冷却流路161とコンデンサ部52との径方向の間に位置する部分110hは、冷却流路161とインバータ部51との径方向の間に位置する部分110iよりも、径方向の寸法が小さい。すなわち、部分110hの径方向の寸法L9は、部分110iの径方向の寸法L7よりも小さい。これにより、冷却流路161をコンデンサ部52に近づけやすく、コンデンサ部52をより冷却しやすい。本変形例においてコンデンサ部52が接触する仕切り壁部110dの上面は、インバータ部51が設置される仕切り壁部110dの上面よりも下側に位置する。
(Modification of the first embodiment)
As shown in FIG. 7, in the housing 110 of the present modification, the cooling flow passage 161 and the capacitor portion are provided in the portion 110 j of the partition wall portion 110 d located between the cooling flow passage 161 and the inverter accommodation portion 15 in the radial direction. The radial dimension of the portion 110 h positioned between the radial direction 52 and the radial direction is smaller than that of the portion 110 i positioned between the cooling flow path 161 and the inverter portion 51 in the radial direction. That is, the radial dimension L9 of the portion 110h is smaller than the radial dimension L7 of the portion 110i. As a result, the cooling flow passage 161 can be easily brought close to the condenser 52, and the condenser 52 can be cooled more easily. In the present modification, the upper surface of the partition wall portion 110d in contact with the capacitor portion 52 is located lower than the upper surface of the partition wall portion 110d on which the inverter portion 51 is installed.
 仕切り壁部110dのうち冷却流路161とステータ収容部14との径方向の間に位置する部分110kは、仕切り壁部110dのうち冷却流路161とインバータ収容部15との径方向の間に位置する部分110jよりも、径方向の寸法が小さい。すなわち、部分110kの径方向の寸法L8は、部分110iの径方向の寸法L7および部分110hの径方向の寸法L9よりも小さい。これにより、冷却流路161をインバータ収容部15よりもステータ収容部14に近づけることができ、ステータ収容部14をより冷却しやすい。このように、寸法L7と寸法L8と寸法L9とは、L8<L9<L7の関係を満たす。 The portion 110 k of the partition wall portion 110 d located between the cooling flow passage 161 and the stator accommodation portion 14 in the radial direction is located between the cooling flow passage 161 and the inverter accommodation portion 15 in the partition wall portion 110 d. The radial dimension is smaller than that of the located portion 110 j. That is, the radial dimension L8 of the portion 110k is smaller than the radial dimension L7 of the portion 110i and the radial dimension L9 of the portion 110h. As a result, the cooling flow passage 161 can be made closer to the stator accommodation portion 14 than the inverter accommodation portion 15, and the stator accommodation portion 14 can be more easily cooled. Thus, the dimensions L7, L8, and L9 satisfy the relationship of L8 <L9 <L7.
<第2実施形態>
 図8に示すように、本実施形態の冷却部260において、冷却流路261の周方向一方側の端部は、周方向他方側から周方向一方側に向かうに従って軸方向Yの寸法が小さくなる第1縮小部261dである。第1縮小部261dは、流路本体部261aの周方向一方側の端部である。冷却流路261の周方向他方側の端部は、周方向一方側から周方向他方側に向かうに従って軸方向Yの寸法が小さくなる第2縮小部261eである。第2縮小部261eは、流路本体部261aの周方向他方側の端部である。
Second Embodiment
As shown in FIG. 8, in the cooling unit 260 of the present embodiment, the dimension of the end in the circumferential direction on one side of the cooling flow passage 261 decreases in the axial direction Y as going from the other side in the circumferential direction to the one side in the circumferential direction. This is the first reduction unit 261 d. The first reduction portion 261 d is an end on one circumferential side of the flow path main portion 261 a. The end on the other side in the circumferential direction of the cooling flow passage 261 is a second reduction portion 261e in which the dimension in the axial direction Y decreases as going from the one side in the circumferential direction to the other side in the circumferential direction. The second reduction portion 261 e is an end on the other side in the circumferential direction of the flow path main portion 261 a.
 本実施形態において流入口261bは、第1縮小部261dの周方向一方側の端部に位置する。これにより、流入口261bから流入する冷媒は、第1縮小部261dにおける軸方向Yの寸法が比較的小さい部分から冷却流路261に流入し、周方向他方側に進む。そのため、流入口261bから流入した冷媒が冷却流路261内で淀むことを抑制できる。また、第1縮小部261dの軸方向Yの寸法は、周方向他方側に向かうに従って大きくなるため、冷却流路261に流れる冷媒の流量を確保できる。 In the present embodiment, the inflow port 261 b is located at one end of the first reduction portion 261 d in the circumferential direction. Accordingly, the refrigerant flowing from the inflow port 261b flows into the cooling flow path 261 from a portion where the dimension of the first reduction portion 261d in the axial direction Y is relatively small, and proceeds to the other side in the circumferential direction. Therefore, it is possible to suppress that the refrigerant flowing from the inflow port 261 b stagnates in the cooling channel 261. Further, the dimension of the first reduction portion 261 d in the axial direction Y increases toward the other side in the circumferential direction, so that the flow rate of the refrigerant flowing in the cooling flow passage 261 can be secured.
 流出口261cは、第2縮小部261eの周方向他方側の端部に位置する。これにより、流出口261cから流出する冷媒は、第2縮小部261eにおける軸方向Yの寸法が比較的小さい部分から流出する。そのため、冷却流路261を流れる冷媒を流出口261cに向けて集めることができ、流出口261cの周辺部において冷媒が淀むことを抑制できる。 The outlet 261 c is located at the other end of the second reduction portion 261 e in the circumferential direction. As a result, the refrigerant flowing out of the outlet 261 c flows out from the portion of the second reduction portion 261 e in which the dimension in the axial direction Y is relatively small. Therefore, the refrigerant flowing through the cooling channel 261 can be collected toward the outlet 261 c, and stagnation of the refrigerant in the peripheral portion of the outlet 261 c can be suppressed.
 以上のように、本実施形態によれば、冷却流路261の軸方向Yの寸法を大きくしつつ、冷却流路261に流入する冷媒および冷却流路261から流出する冷媒が淀むことを抑制できる。したがって、冷却流路261によって冷却できる範囲を広くしつつ、冷媒の圧力損失を低減することができる。本実施形態において流入口261bと流出口261cとは、鉛直方向Zにおいて同じ位置に配置される。流入口261bと流出口261cとは、軸方向Yに間隔を空けて配置される。 As described above, according to the present embodiment, it is possible to suppress the stagnation of the refrigerant flowing into the cooling flow passage 261 and the refrigerant flowing out of the cooling flow passage 261 while increasing the size in the axial direction Y of the cooling flow passage 261 . Therefore, the pressure loss of the refrigerant can be reduced while widening the range that can be cooled by the cooling flow passage 261. In the present embodiment, the inlet 261 b and the outlet 261 c are disposed at the same position in the vertical direction Z. The inlet 261 b and the outlet 261 c are spaced apart in the axial direction Y.
 第1縮小部261dと第2縮小部261eとは、軸方向Yに沿って視て、互いに重なる。すなわち、冷却流路261の周方向一方側の端部と冷却流路261の周方向他方側の端部とは、軸方向Yに沿って視て、互いに重なる。そのため、冷却流路261によって、ステータ30の径方向外側の全周を囲むことができ、ステータ30をより冷却できる。第1縮小部261dは、第2縮小部261eの軸方向一方側に配置される。 The first reduction portion 261 d and the second reduction portion 261 e overlap with each other as viewed along the axial direction Y. That is, the end on one circumferential side of the cooling flow passage 261 and the end on the other circumferential side of the cooling flow passage 261 overlap each other when viewed along the axial direction Y. Therefore, the cooling passage 261 can surround the entire outer periphery of the stator 30 in the radial direction, and the stator 30 can be further cooled. The first reduction unit 261 d is disposed on one side in the axial direction of the second reduction unit 261 e.
 第1縮小部261dおよび第2縮小部261eは、冷却流路261における幅方向他方側の部分である。すなわち、冷却流路261のうち軸方向Yに沿って視て互いに重なる部分は、冷却流路261の幅方向他方側の部分である。そのため、本実施形態において冷却流路261のうち仕切り壁部10dに設けられる部分は、冷却流路261のうち軸方向Yに沿って視て互いに重なる部分とは異なる部分である。したがって、冷却流路261のうち軸方向Yの寸法が比較的大きい部分を、仕切り壁部10dに設けることができる。これにより、冷却流路261によってステータ30およびインバータ部51をより冷却しやすい。 The first reduction portion 261 d and the second reduction portion 261 e are portions on the other side in the width direction of the cooling channel 261. That is, a portion of the cooling flow channel 261 which overlaps with each other in the axial direction Y is a portion on the other side of the cooling flow channel 261 in the width direction. Therefore, in the present embodiment, the portion provided in the partition wall portion 10d of the cooling flow passage 261 is a portion different from the portion overlapping the cooling passage 261 when viewed along the axial direction Y. Therefore, it is possible to provide the partition wall portion 10d with a portion of the cooling flow passage 261 that has a relatively large dimension in the axial direction Y. Thus, the stator 30 and the inverter unit 51 can be more easily cooled by the cooling flow passage 261.
 本発明は上述の実施形態に限られず、他の構成を採用することもできる。冷却流路は、中心角φが180°以下の円弧状であってもよい。冷却流路の軸方向Yの寸法は、インバータ部における回路基板の軸方向Yの寸法より小さくてもよい。冷却流路の軸方向Yの寸法は、回路基板の幅方向Xの寸法およびコンデンサ部の幅方向Xの寸法より大きくてもよい。 The present invention is not limited to the above-described embodiment, and other configurations can be adopted. The cooling channel may have an arc shape with a central angle φ of 180 ° or less. The dimension of the cooling flow path in the axial direction Y may be smaller than the dimension of the circuit board in the inverter portion in the axial direction Y. The dimension in the axial direction Y of the cooling channel may be larger than the dimension in the width direction X of the circuit board and the dimension in the width direction X of the capacitor portion.
 冷却流路は、2つ以上設けられてもよい。この場合、冷却流路ごとに設けられる流入口および流出口も2つ以上ずつ設けられる。この場合、複数の冷却流路の径方向の寸法および軸方向Yの寸法は、互いに異なってもよいし、同じであってもよい。また、この場合、複数の冷却流路の形状は、互いに異なってもよいし、同じであってもよい。冷却流路のうち仕切り壁部に設けられる部分は、鉛直方向Zに沿って視て、インバータ部と重ならなくてもよいし、コンデンサ部と重ならなくてもよい。 Two or more cooling channels may be provided. In this case, two or more inlets and outlets provided for each cooling channel are also provided. In this case, the radial dimensions of the plurality of cooling channels and the dimensions in the axial direction Y may be different from each other or may be the same. Moreover, in this case, the shapes of the plurality of cooling channels may be different from each other or may be the same. The portion provided in the partition wall portion in the cooling flow path may not overlap with the inverter portion or may not overlap with the capacitor portion as viewed along the vertical direction Z.
 流入口は、冷却流路の周方向一方側の端部における軸方向Yの中央以外の位置に設けられてもよい。流出口は、冷却流路の周方向他方側の端部における軸方向Yの中央以外の位置に設けられてもよい。 The inlet may be provided at a position other than the center in the axial direction Y at an end on one circumferential side of the cooling channel. The outlet may be provided at a position other than the center in the axial direction Y at the other circumferential end of the cooling channel.
 上述した実施形態のモータの用途は、特に限定されない。上述した実施形態のモータは、例えば、車両に搭載される。また、上述した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The application of the motor of the embodiment described above is not particularly limited. The motor of the embodiment described above is mounted on, for example, a vehicle. Moreover, each structure mentioned above can be combined suitably in the range which does not contradiction mutually.
 本出願は、2017年7月28日に出願された日本特許出願である特願2017-147115号に基づく優先権を主張し、当該日本特許出願に記載されたすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 201-147115, which is a Japanese patent application filed on Jul. 28, 2017, and incorporates the entire contents described in the Japanese patent application.
 1…モータ、10,110…ハウジング、10b…周壁部、10d,110d…仕切り壁部、14…ステータ収容部、15…インバータ収容部、20…ロータ、21…モータシャフト、30…ステータ、51…インバータ部、51a…第1回路基板(回路基板)、51b…第2回路基板(回路基板)、52…コンデンサ部、61,161,261…冷却流路、61b,261b…流入口、61c,261c…流出口、261d…第1縮小部、261e…第2縮小部、J…中心軸、Y…軸方向、Z…鉛直方向(所定方向)、θ…周方向、φ…中心角

 
DESCRIPTION OF SYMBOLS 1 ... Motor, 10, 110 ... Housing, 10b ... Peripheral wall part, 10d, 110d ... Partition wall part 14 ... Stator accommodating part, 15 ... Inverter accommodating part, 20 ... Rotor, 21 ... Motor shaft, 30 ... Stator, 51 ... Inverter part, 51a: first circuit board (circuit board), 51b: second circuit board (circuit board), 52: capacitor part, 61, 161, 261: cooling flow path, 61b, 261b: inlet, 61c, 261c ... outlet, 261d ... first reduction section, 261e ... second reduction section, J ... central axis, Y ... axial direction, Z ... vertical direction (predetermined direction), θ ... circumferential direction, φ ... central angle

Claims (11)

  1.  一方向に延びる中心軸に沿って配置されるモータシャフトを有するロータと、
     前記ロータと径方向に隙間を介して対向するステータと、
     前記ステータと電気的に接続されるインバータ部と、
     前記ステータを収容するステータ収容部および前記インバータ部を収容するインバータ収容部を有するハウジングと、
     を備え、
     前記インバータ収容部は、前記ステータ収容部の径方向外側に位置し、
     前記ハウジングは、前記ロータおよび前記ステータの径方向外側において前記ロータおよび前記ステータを囲む筒状の周壁部を有し、かつ単一の部材であり、
     前記周壁部は、
      冷却流路と、
      前記ステータ収容部と前記インバータ収容部とを仕切る仕切り壁部と、
     を有し、
     前記冷却流路は、冷媒が流入する流入口および前記冷媒が流出する流出口を有し、かつ、周方向に延び、
     前記冷却流路の少なくとも一部は、前記仕切り壁部に設けられ、
     前記冷却流路のうち前記仕切り壁部に設けられる部分は、前記ステータ収容部と前記インバータ部との径方向の間において単一層の流路である、モータ。
    A rotor having a motor shaft disposed along a central axis extending in one direction;
    A stator that faces the rotor in the radial direction via a gap;
    An inverter unit electrically connected to the stator;
    A housing having a stator housing portion for housing the stator and an inverter housing portion for housing the inverter portion;
    Equipped with
    The inverter accommodating portion is located radially outward of the stator accommodating portion.
    The housing has a cylindrical peripheral wall surrounding the rotor and the stator radially outside the rotor and the stator, and is a single member.
    The peripheral wall portion is
    A cooling channel,
    A partition wall which partitions the stator housing portion and the inverter housing portion;
    Have
    The cooling channel has an inlet through which a refrigerant flows in and an outlet through which the refrigerant flows out, and extends circumferentially,
    At least a part of the cooling channel is provided in the partition wall portion,
    In the motor, a portion provided in the partition wall portion in the cooling flow path is a flow path of a single layer in a radial direction between the stator accommodation portion and the inverter portion.
  2.  前記インバータ部は、回路基板を有し、
     前記冷却流路の軸方向の寸法は、前記回路基板の軸方向の寸法よりも大きい、請求項1に記載のモータ。
    The inverter unit has a circuit board,
    The motor according to claim 1, wherein an axial dimension of the cooling passage is larger than an axial dimension of the circuit board.
  3.  前記流入口は、前記冷却流路の周方向一方側の端部における軸方向の中央に位置し、
     前記流出口は、前記冷却流路の周方向他方側の端部における軸方向の中央に位置する、請求項1または2に記載のモータ。
    The inlet is located at an axial center at one circumferential end of the cooling channel,
    The motor according to claim 1, wherein the outlet is located at an axial center at an end on the other circumferential side of the cooling channel.
  4.  前記冷却流路は、中心角が180°よりも大きい円弧状である、請求項1から3のいずれか一項に記載のモータ。 The motor according to any one of claims 1 to 3, wherein the cooling channel is an arc having a central angle larger than 180 °.
  5.  前記冷却流路の周方向一方側の端部は、周方向他方側から周方向一方側に向かうに従って軸方向の寸法が小さくなる第1縮小部であり、
     前記冷却流路の周方向他方側の端部は、周方向一方側から周方向他方側に向かうに従って軸方向の寸法が小さくなる第2縮小部であり、
     前記流入口は、前記第1縮小部の周方向一方側の端部に位置し、
     前記流出口は、前記第2縮小部の周方向他方側の端部に位置する、請求項1から4のいずれか一項に記載のモータ。
    The end on one side in the circumferential direction of the cooling flow passage is a first reduction portion in which the dimension in the axial direction decreases as going from the other side in the circumferential direction to the one side in the circumferential direction,
    The other circumferential end of the cooling channel is a second reduction portion in which the axial dimension decreases as going from one circumferential side to the other circumferential side,
    The inlet is located at one end of the first reduction portion in the circumferential direction,
    The motor according to any one of claims 1 to 4, wherein the outlet is located at the other end of the second reduction portion in the circumferential direction.
  6.  前記冷却流路の周方向一方側の端部と前記冷却流路の周方向他方側の端部とは、軸方向に沿って視て、互いに重なる、請求項5に記載のモータ。 The motor according to claim 5, wherein an end on one circumferential side of the cooling channel and an end on the other circumferential side of the cooling channel overlap each other when viewed along the axial direction.
  7.  前記冷却流路のうち前記仕切り壁部に設けられる部分は、前記冷却流路のうち軸方向に沿って視て互いに重なる部分とは異なる部分である、請求項6に記載のモータ。 The motor according to claim 6, wherein a portion of the cooling flow path provided in the partition wall portion is a portion different from a portion overlapping in the axial direction of the cooling flow path.
  8.  前記インバータ部と電気的に接続されるコンデンサ部をさらに備え、
     前記インバータ収容部は、軸方向と直交する所定方向において前記ステータ収容部の一方側に位置し、
     前記所定方向に沿って視て、前記冷却流路のうち前記仕切り壁部に設けられる部分は、前記インバータ部と重なる部分と、前記コンデンサ部と重なる部分と、を有する、請求項1から7のいずれか一項に記載のモータ。
    It further comprises a capacitor unit electrically connected to the inverter unit,
    The inverter accommodating portion is located on one side of the stator accommodating portion in a predetermined direction orthogonal to the axial direction.
    The portion provided on the partition wall portion of the cooling flow passage, as viewed along the predetermined direction, has a portion overlapping the inverter portion and a portion overlapping the capacitor portion. The motor according to any one of the preceding claims.
  9.  前記仕切り壁部のうち前記冷却流路と前記インバータ収容部との径方向の間に位置する部分において、前記冷却流路と前記インバータ部との径方向の間に位置する部分は、前記冷却流路と前記コンデンサ部との径方向の間に位置する部分よりも、径方向の寸法が小さい、請求項8に記載のモータ。 In a portion of the partition wall portion located in the radial direction between the cooling flow path and the inverter accommodating portion, a portion located between the cooling flow path and the inverter portion in the radial direction is the cooling flow The motor according to claim 8, wherein the dimension in the radial direction is smaller than a portion located between the passage and the radial direction of the capacitor portion.
  10.  前記仕切り壁部のうち前記冷却流路と前記インバータ収容部との径方向の間に位置する部分は、前記仕切り壁部のうち前記冷却流路と前記ステータ収容部との径方向の間に位置する部分よりも、径方向の寸法が小さい、請求項1から9のいずれか一項に記載のモータ。 The portion of the partition wall portion located between the cooling flow passage and the inverter accommodation portion in the radial direction is located between the cooling flow passage and the stator accommodation portion in the partition wall portion. The motor according to any one of claims 1 to 9, wherein the dimension in the radial direction is smaller than that of the portion.
  11.  前記冷却流路を流れる前記冷媒は、周方向のうち一方の向きのみに流れる、請求項1から10のいずれか一項に記載のモータ。

     
    The motor according to any one of claims 1 to 10, wherein the refrigerant flowing in the cooling flow passage flows in only one direction in a circumferential direction.

PCT/JP2018/027854 2017-07-28 2018-07-25 Motor WO2019022123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890001000.5U CN212323923U (en) 2017-07-28 2018-07-25 Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-147115 2017-07-28
JP2017147115A JP2020162186A (en) 2017-07-28 2017-07-28 motor

Publications (1)

Publication Number Publication Date
WO2019022123A1 true WO2019022123A1 (en) 2019-01-31

Family

ID=65039826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027854 WO2019022123A1 (en) 2017-07-28 2018-07-25 Motor

Country Status (3)

Country Link
JP (1) JP2020162186A (en)
CN (1) CN212323923U (en)
WO (1) WO2019022123A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021151060A (en) * 2020-03-18 2021-09-27 東芝産業機器システム株式会社 Cooling structure of rotary electric machine and rotary electric machine
WO2022190183A1 (en) * 2021-03-08 2022-09-15 日産自動車株式会社 Rotating electrical machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103053A (en) * 1994-09-30 1996-04-16 Suzuki Motor Corp Cooler of motor
JP2011182480A (en) * 2010-02-26 2011-09-15 Hitachi Automotive Systems Ltd Rotary electric machine system
WO2013069319A1 (en) * 2011-11-11 2013-05-16 株式会社安川電機 Rotating electrical machine and vehicle
JP2014140276A (en) * 2013-01-21 2014-07-31 Mitsubishi Electric Corp Liquid-cooled rotary electric machine
JP2015077019A (en) * 2013-10-10 2015-04-20 株式会社神戸製鋼所 Rotary drive device and construction machine having the same
JP2016073058A (en) * 2014-09-29 2016-05-09 株式会社神戸製鋼所 Inverter integrated motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103053A (en) * 1994-09-30 1996-04-16 Suzuki Motor Corp Cooler of motor
JP2011182480A (en) * 2010-02-26 2011-09-15 Hitachi Automotive Systems Ltd Rotary electric machine system
WO2013069319A1 (en) * 2011-11-11 2013-05-16 株式会社安川電機 Rotating electrical machine and vehicle
JP2014140276A (en) * 2013-01-21 2014-07-31 Mitsubishi Electric Corp Liquid-cooled rotary electric machine
JP2015077019A (en) * 2013-10-10 2015-04-20 株式会社神戸製鋼所 Rotary drive device and construction machine having the same
JP2016073058A (en) * 2014-09-29 2016-05-09 株式会社神戸製鋼所 Inverter integrated motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021151060A (en) * 2020-03-18 2021-09-27 東芝産業機器システム株式会社 Cooling structure of rotary electric machine and rotary electric machine
JP7410763B2 (en) 2020-03-18 2024-01-10 東芝産業機器システム株式会社 Cooling structure for rotating electrical machines, rotating electrical machines
WO2022190183A1 (en) * 2021-03-08 2022-09-15 日産自動車株式会社 Rotating electrical machine

Also Published As

Publication number Publication date
JP2020162186A (en) 2020-10-01
CN212323923U (en) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2019022109A1 (en) Motor
WO2019022108A1 (en) Motor
JP2017002750A (en) Centrifugal compressor
CN113078765A (en) Electric motor
JP2012105487A (en) Cooling device for electric motor
CN111492565A (en) Electric motor
WO2019022123A1 (en) Motor
JP6705510B2 (en) Electric compressor
JP6950499B2 (en) Rotating machine and how to attach the lid member in the rotating machine
WO2017082023A1 (en) Dynamo-electric machine
JP2020078215A (en) Stator unit of rotary electric machine
JP5656758B2 (en) Rotating electric machine
US20200389071A1 (en) Rotary electric machine
JP2019170077A (en) motor
WO2019022116A1 (en) Motor
JP6852817B2 (en) Rotating machine
WO2019022125A1 (en) Motor
US20200395821A1 (en) Rotary electric machine
JP2019170068A (en) motor
JP6151668B2 (en) Rotor for rotating electrical machines
JP2019170066A (en) motor
JP7294479B1 (en) Rotating electric machine
JP6523403B1 (en) Electric rotating machine
JP2017163688A (en) Rotor
JP2022150085A (en) Cooling structure for motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP