WO2019021728A1 - 電池パック - Google Patents

電池パック Download PDF

Info

Publication number
WO2019021728A1
WO2019021728A1 PCT/JP2018/024317 JP2018024317W WO2019021728A1 WO 2019021728 A1 WO2019021728 A1 WO 2019021728A1 JP 2018024317 W JP2018024317 W JP 2018024317W WO 2019021728 A1 WO2019021728 A1 WO 2019021728A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
switch
sensor
contact switch
battery pack
Prior art date
Application number
PCT/JP2018/024317
Other languages
English (en)
French (fr)
Inventor
佐々木 浩
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to CN201880049668.1A priority Critical patent/CN110999021B/zh
Priority to JP2019532455A priority patent/JP6913754B2/ja
Priority to US16/631,679 priority patent/US11239679B2/en
Publication of WO2019021728A1 publication Critical patent/WO2019021728A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to charging of a secondary battery.
  • Patent document 1 starts discharge of the storage battery from a state where charging of the storage battery is stopped, and by causing discharge current to flow through the diode during the mechanical delay time of the switch contacts, It discloses a technology to prevent power failure.
  • the lifespan of a contact switch includes an electrical life due to an electrical load (energization) and a mechanical life due to a mechanical load (such as opening and closing of a switch).
  • the mechanical life is longer than the electrical life, and the life of the contact switch is substantially limited to the electrical life.
  • Patent Document 1 does not mention the lifetime of the contact switch.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technology for extending the life of a contact switch used to control charging of a storage battery.
  • the battery pack of the present invention comprises: 1) a battery connected to a load and a charger, 2) a contact type switch provided between the battery and the charger, 3) a control unit for controlling the switch, And d) a sensor that measures the current flowing through the battery or the temperature around the switch.
  • the battery, the charger, and the load are each connected in parallel.
  • the control unit turns off the switch when the value detected by the sensor is less than or equal to a reference value determined based on the specification of the switch.
  • each block in the block diagram represents not a hardware unit configuration but a function unit configuration.
  • FIG. 1 is a diagram illustrating a battery pack 2000 of Embodiment 1 together with its use environment.
  • the battery pack 2000 has a battery 2020.
  • the battery 2020 is a unit cell of an arbitrary secondary battery (for example, a lithium ion battery), or an assembled battery in which a plurality of unit cells of the secondary battery are connected.
  • a unit cell of the secondary battery is also referred to as a battery cell.
  • Battery pack 2000 is connected to charger 10 via power line 30.
  • the charger 10 is a device that supplies a charging current.
  • the battery 2020 is charged by the charging current supplied from the charger 10.
  • the battery pack 2000 is connected to the load 20 via the power line 40.
  • the load 20 is any electrical device driven by the power supplied from the battery pack 2000.
  • the load 20 is an electric device (for example, a server machine) installed in a facility such as a mobile terminal base station or a data center. As shown in FIG. 1, the charger 10, the battery 2020, and the power line 30 are connected in parallel.
  • Battery pack 2000 further includes a contact switch 2040, a control unit 2060, and a sensor 2080.
  • the contact type switch 2040 is a contact type switch provided between the charger 10 and the battery 2020.
  • the contact switch 2040 is, for example, an electromagnetic relay.
  • the control unit 2060 controls the contact switch 2040 based on the result of measurement by the sensor 2080.
  • the sensor 2080 is a current sensor that measures the current flowing to the battery 2020, or a temperature sensor that measures the temperature around the contact switch 2040.
  • the control unit 2060 turns off the contact type switch 2040 when the value detected by the sensor 2080 is equal to or less than the reference value defined based on the specification of the contact type switch 2040.
  • “turning off the contact switch 2040” means that the state of the contact switch 2040 does not flow current through the contact switch 2040.
  • “Turning on the contact switch 2040" can be reworded as "opening the contact switch 2040".
  • to make the state of the contact switch 2040 flow a current through the contact switch 2040 is referred to as "turn on the contact switch 2040" or "close the contact switch 2040".
  • the battery pack 2000 of this embodiment turns off the contact switch 2040. In this way, when the contact switch 2040 is turned off, the electrical load applied to the contact switch 2040 is small. Therefore, deterioration of the contact switch 2040 caused by turning off the contact switch 2040 is reduced, and the life of the contact switch 2040 is extended.
  • One of the purposes of providing the contact switch 2040 is to avoid float charging.
  • secondary batteries there are batteries which are characterized by float charge.
  • float charging is prevented by introducing a switch.
  • the battery pack 2000 of the present embodiment is particularly suitable when the secondary battery not suitable for float charging is used as the battery 2020 in this manner, and the battery 2020 is float-charged by appropriately controlling the contact switch 2040. To prevent the deterioration of the characteristics of the battery 2020 while prolonging the life of the contact switch 2040.
  • the control unit 2060 may be realized by hardware only (eg, hard-wired electronic circuit etc.) or a combination of hardware and software (eg, combination of electronic circuit and program for controlling the same etc.) May be realized by Hereinafter, the case where the control unit 2060 is realized by a combination of hardware and software will be further described.
  • FIG. 2 is a diagram illustrating a computer 1000 for realizing the control unit 2060.
  • the computer 1000 is an integrated circuit such as a SoC (System on Chip).
  • the computer 1000 may be a dedicated computer designed to realize the control unit 2060 or may be a general-purpose computer.
  • the computer 1000 includes a bus 1020, a processor 1040, a memory 1060, a storage device 1080, and an input / output interface 1100.
  • the bus 1020 is a data transmission path for the processor 1040, the memory 1060, the storage device 1080, and the input / output interface 1100 to mutually transmit and receive data.
  • the processor 1040 is a processor such as an MPU (Microprocessor).
  • the memory 1060 is a main storage device implemented using a RAM (Random Access Memory) or the like.
  • the storage device 1080 is an auxiliary storage device realized using a ROM (Read Only Memory), a flash memory, or the like.
  • the input / output interface 1100 is an interface for connecting the computer 1000 to other devices.
  • the computer 1000 is connected to the sensor 2080 via the input / output interface 1100.
  • the storage device 1080 stores program modules for realizing the functions of the control unit 2060.
  • the processor 1040 implements the function of the control unit 2060 by reading the program module into the memory 1060 and executing it.
  • FIG. 3 is a flowchart illustrating the flow of processing executed by the control unit 2060.
  • the control unit 2060 turns on the contact switch 2040 (S102). Thereby, charging of the battery 2020 is started. However, when the contact type switch 2040 is already on when the charger 10 is connected to the battery pack 2000, the control unit 2060 does not need to turn on the contact type switch 2040.
  • the control unit 2060 acquires the measurement result of the sensor 2080 (S104). The control unit 2060 determines whether the value detected by the sensor 2080 is equal to or less than the reference value (S106). If the value detected by the sensor 2080 is not less than or equal to the reference value (S106: NO), the process of FIG. 3 proceeds to S104. If the value detected by the sensor 2080 is less than or equal to the reference value (S106: YES), the control unit 2060 turns off the contact switch 2040 (S108).
  • S104 and S106 are repeatedly performed until the value detected by the sensor 2080 becomes less than or equal to the reference value. These processes are performed, for example, at a predetermined frequency (for example, once a second).
  • FIG. 4 is a diagram illustrating the time change of the charging voltage of the battery 2020 and the magnitude of the charging current output from the charger 10.
  • the solid line represents the charging voltage of the battery 2020
  • the dotted line represents the magnitude of the charging current output from the charger 10.
  • the charge voltage of the battery 2020 has reached the full charge voltage. That is, charging of the battery 2020 is completed at time t. As a result, after time t, the magnitude of the charging current output from the charger 10 decreases.
  • the control unit 2060 detects that the magnitude of the decreasing charging current has become equal to or less than the reference value, and turns off the contact switch 2040 according to the detection.
  • the sensor 2080 is 1) a current sensor that measures the current flowing to the battery 2020, or 2) a temperature sensor that measures the temperature around the contact switch 2040.
  • control by the control unit 2060 will be specifically exemplified for each of the case where the sensor 2080 is a current sensor and the case where it is a temperature sensor.
  • the control unit 2060 controls the contact-type switch if the value of the current detected by the sensor 2080 is equal to or less than the reference value of the current determined based on the specifications of the contact-type switch 2040. Turn off the 2040.
  • the “reference value of current determined based on the specification of the contact switch 2040” will be referred to as a current reference value.
  • the current reference value is determined based on, for example, the rated current of the contact switch 2040.
  • the current reference value is preferably 10% or less of the rated current of the contact switch 2040.
  • the current reference value is preferably set to 1% or more of the rated current of the contact switch 2040.
  • the control unit 2060 turns off the contact switch 2040 when the temperature detected by the sensor 2080 is equal to or less than a reference value determined based on the specifications of the contact switch 2040. Do.
  • the reference value is determined based on, for example, a specification value of the contact resistance of the contact switch 2040.
  • FIG. 5 is a diagram illustrating a battery pack 2000 having a rectifying element.
  • the rectifying element 2100 allows current to pass only in the discharge direction of the battery 2020. That is, while the rectifying element 2100 passes current in the direction from the battery 2020 toward the load 20, it does not pass current in the direction from the charger 10 to the battery 2020.
  • the rectifying element 2100 in the battery pack 2000 By providing the rectifying element 2100 in the battery pack 2000 in this manner, power can be supplied from the battery 2020 to the load 20 even while the contact switch 2040 is off. Therefore, when the load 20 starts to operate while the contact switch 2040 is turned off, the time until the load 20 starts to operate can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

蓄電池の充電の制御に用いられる接点式スイッチの寿命を長くする電池パックを提供する。電池パック2000は、負荷20および充電器10に接続された電池2020と、電池と充電器との間に設けられた接点式のスイッチ2040と、スイッチを制御する制御部2060と、電池に流れる電流またはスイッチの周辺の温度を測定するセンサ2080と、を有する。電池、充電器、および負荷は、それぞれ並列に接続されている。制御部は、センサによって検出される値が、スイッチの仕様に基づいて定められた基準値以下である場合に、スイッチをオフにする。

Description

電池パック
 本発明は二次電池の充電に関する。
 蓄電池の充電に関し、その充電を制御するための技術が開発されている。特許文献1は、蓄電池の充電が停止されている状態から蓄電池の放電を開始するに当たり、スイッチの接点の機械的遅れ時間の期間中にはダイオードを介して放電電流を流すようにすることで、電源断を生じさせないようにする技術を開示している。
特開2005-312195号公報
 接点式スイッチの寿命には、電気的な負荷(通電)に起因する電気的寿命と、機械的な負荷(スイッチの開閉など)に起因する機械的寿命とがある。一般に、機械的寿命は電気的寿命よりも長く、接点式スイッチの寿命は、実質的に電気的寿命に律速される。特許文献1は、接点式スイッチの寿命については言及していない。
 本願発明は以上の課題に鑑みてなされたものであり、蓄電池の充電の制御に用いられる接点式スイッチの寿命を長くする技術を提供することを目的の一つとする。
 本発明の電池パックは、1)負荷及び充電器に接続された電池と、2)電池と充電器との間に設けられた接点式のスイッチと、3)スイッチを制御する制御部と、4)電池に流れる電流又はスイッチの周辺の温度を測定するセンサと、を有する。電池、充電器、及び負荷は、それぞれ並列に接続されている。制御部は、センサによって検出される値が、スイッチの仕様に基づいて定められた基準値以下である場合に、スイッチをオフにする。
 本発明によれば、蓄電池の充電の制御に用いられる接点式スイッチの寿命を長くする技術が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態1の電池パックをその利用環境と共に例示する図である。 制御部を実現するための計算機を例示する図である。 制御部によって実行される処理の流れを例示するフローチャートである。 電池の充電電圧及び充電器から出力される充電電流の大きさの時間変化を例示する図である。 整流素子を有する電池パックを例示する図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、特に説明する場合を除き、ブロック図における各ブロックは、ハードウエア単位の構成ではなく、機能単位の構成を表している。
[実施形態1]
 図1は、実施形態1の電池パック2000をその利用環境と共に例示する図である。電池パック2000は、電池2020を有する。電池2020は、任意の二次電池(例えばリチウムイオン電池)の単位セルであるか、又は二次電池の単位セルが複数接続された組電池である。以下、二次電池の単位セルのことを電池セルとも表記する。電池パック2000は、電力線30を介して充電器10と接続されている。充電器10は、充電電流を供給する装置である。電池2020は、充電器10から供給される充電電流で充電される。
 また、電池パック2000は、電力線40を介して負荷20と接続されている。負荷20は、電池パック2000から供給される電力で駆動する任意の電気機器である。例えば負荷20は、携帯端末基地局やデータセンタなどの施設に設置されている電機機器(例えばサーバマシン)などである。図1に示す通り、充電器10、電池2020、及び電力線30は、それぞれ並列に接続されている。
 電池パック2000は、さらに、接点式スイッチ2040、制御部2060、及びセンサ2080を有する。接点式スイッチ2040は、充電器10と電池2020との間に設けられている接点式のスイッチである。接点式スイッチ2040は、例えば電磁リレーなどである。
 制御部2060は、センサ2080による測定の結果に基づいて接点式スイッチ2040を制御する。センサ2080は、電池2020に流れる電流を測定する電流センサであるか、又は接点式スイッチ2040の周辺の温度を測定する温度センサである。制御部2060は、センサ2080によって検出される値が、接点式スイッチ2040の仕様に基づいて定められた基準値以下である場合に、接点式スイッチ2040をオフにする。ここで、「接点式スイッチ2040をオフにする」とは、接点式スイッチ2040の状態を、接点式スイッチ2040を介して電流が流れない状態にすることを意味する。「接点式スイッチ2040をオフにする」は、「接点式スイッチ2040を開く」と言い換えることもできる。逆に、接点式スイッチ2040の状態を、接点式スイッチ2040を介して電流が流れる状態にすることを、「接点式スイッチ2040をオンにする」や「接点式スイッチ2040を閉じる」と表記する。
<作用・効果>
 仮に電池2020の充電が完了した直後に接点式スイッチ2040をオフにすると、接点式スイッチ2040に大きな充電電流が流れている最中に接点式スイッチ2040を開くことになり、接点式スイッチ2040に大きな電気的負荷がかかる。そのため、接点式スイッチ2040をオフにすることによる接点式スイッチ2040の劣化が大きく、接点式スイッチ2040の寿命が短くなってしまう。
 そこで本実施形態の電池パック2000は、センサ2080によって検出される値が、接点式スイッチ2040の仕様に基づいて定められた基準値以下である場合に、接点式スイッチ2040をオフになる。こうすることで、接点式スイッチ2040をオフにする際、接点式スイッチ2040にかかる電気的な負荷が小さい。よって、接点式スイッチ2040をオフすることによって生じる接点式スイッチ2040の劣化が小さくなり、接点式スイッチ2040の寿命が長くなる。
 なお、接点式スイッチ2040を設ける目的の1つには、フロート充電の回避がある。二次電池の中にはフロート充電によって特性劣化するものがある。このようにフロート充電に適さない二次電池の充電回路では、スイッチを導入することで、フロート充電が行われないようにする。本実施形態の電池パック2000は、このようにフロート充電に適さない二次電池を電池2020として利用する場合に特に好適であり、接点式スイッチ2040を適切に制御することで、電池2020がフロート充電されないようにして電池2020の特性劣化を防ぎつつ、接点式スイッチ2040の寿命を長くする。
<ハードウエア構成の概要>
 制御部2060は、ハードウエアのみ(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、制御部2060がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
 図2は、制御部2060を実現するための計算機1000を例示する図である。例えば計算機1000は、SoC(System on Chip)などの集積回路である。計算機1000は、制御部2060を実現するために設計された専用の計算機であってもよいし、汎用の計算機であってもよい。
 計算機1000は、バス1020、プロセッサ1040、メモリ1060、ストレージデバイス1080、及び入出力インタフェース1100を有する。バス1020は、プロセッサ1040、メモリ1060、ストレージデバイス1080、及び入出力インタフェース1100が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ1040などを互いに接続する方法は、バス接続に限定されない。プロセッサ1040は、MPU(Microprocessor)などのプロセッサである。メモリ1060は、RAM (Random Access Memory)などを用いて実現される主記憶装置である。ストレージデバイス1080は、ROM(Read Only Memory)やフラッシュメモリなどを用いて実現される補助記憶装置である。
 入出力インタフェース1100は、計算機1000と他のデバイスとを接続するためのインタフェースである。例えば計算機1000は、入出力インタフェース1100を介して、センサ2080と接続されている。
 ストレージデバイス1080は、制御部2060の機能を実現するためのプログラムモジュールを記憶している。プロセッサ1040は、このプログラムモジュールをメモリ1060に読み出して実行することで、制御部2060の機能を実現する。
<処理の流れ>
 図3は、制御部2060によって実行される処理の流れを例示するフローチャートである。制御部2060は、接点式スイッチ2040をオンにする(S102)。これにより、電池2020の充電が開始される。ただし、充電器10が電池パック2000に接続された際、既に接点式スイッチ2040がオンになっている場合、制御部2060は接点式スイッチ2040をオンにする必要はない。
 制御部2060は、センサ2080の測定結果を取得する(S104)。制御部2060は、センサ2080によって検出された値が基準値以下であるか否かを判定する(S106)。センサ2080によって検出された値が基準値以下でない場合(S106:NO)、図3の処理はS104に進む。センサ2080によって検出された値が基準値以下である場合(S106:YES)、制御部2060は、接点式スイッチ2040をオフにする(S108)。
 上述の流れによれば、センサ2080によって検出される値が基準値以下になるまで、S104及びS106が繰り返し実行される。これらの処理は、例えば所定の頻度(1秒間に1回など)で実行される。
<制御部2060による制御の詳細>
 前述したように、制御部2060は、センサ2080によって検出される値が、接点式スイッチ2040の仕様に基づいて定められた基準値以下である場合に、接点式スイッチ2040をオフにする。図4は、電池2020の充電電圧及び充電器10から出力される充電電流の大きさの時間変化を例示する図である。図4において、実線は電池2020の充電電圧を表しており、点線は充電器10から出力される充電電流の大きさを表している。
 時点tにおいて、電池2020の充電電圧は満充電電圧に達している。すなわち、電池2020の充電は時点tで完了している。その結果、時点t以降、充電器10から出力される充電電流の大きさが減少している。
 制御部2060は、このように減少していく充電電流の大きさが基準値以下となったことを検出し、その検出に応じて、接点式スイッチ2040をオフにする。
 ここで、センサ2080は、1)電池2020に流れる電流を測定する電流センサであるか、又は2)接点式スイッチ2040の周辺の温度を測定する温度センサである。以下、センサ2080が電流センサである場合と温度センサである場合のそれぞれについて、制御部2060による制御を具体的に例示する。
<<センサ2080が電流センサであるケース>>
 センサ2080が電流センサである場合、制御部2060は、センサ2080によって検出される電流の値が、接点式スイッチ2040の仕様に基づいて定められた電流の基準値以下である場合に、接点式スイッチ2040をオフにする。以下、「接点式スイッチ2040の仕様に基づいて定められた電流の基準値」を、電流基準値と呼ぶ。
 電流基準値は、例えば、接点式スイッチ2040の定格電流に基づいて定められる。例えば電流基準値は、接点式スイッチ2040の定格電流の10%以下の値とすることが好適である。また、電流基準値は、接点式スイッチ2040の定格電流の1%以上の値とすることが好適である。
<<センサ2080が温度センサであるケース>>
 センサ2080が温度センサである場合、制御部2060は、センサ2080によって検出される温度が、接点式スイッチ2040の仕様に基づいて定められた基準値以下である場合に、接点式スイッチ2040をオフにする。この基準値は、例えば、接点式スイッチ2040の接触抵抗の仕様値に基づいて定められる。
<負荷20への電力の供給について>
 図1の構成の場合、電池パック2000から負荷20に電力を供給するためには、接点式スイッチ2040をオンにする必要がある。そのため、例えば電池パック2000の充電が完了後に接点式スイッチ2040をオフにした後、負荷20が動作するタイミングで、接点式スイッチ2040をオンにする。
 ここで、負荷20が動作するタイミングで接点式スイッチ2040をオンにする場合、負荷20が動作しようとしてから実際に動作できるまでの間にタイムラグが生じる。このタイムラグを小さくするため、電池パック2000は、電池2020に並列させて、整流素子を設けることが好適である。図5は、整流素子を有する電池パック2000を例示する図である。
 整流素子2100は、電池2020の放電方向についてのみ、電流を通過させる。すなわち、整流素子2100は、電池2020から負荷20へ向かう方向には電流を通す一方で、充電器10から電池2020へ向かう方向には電流を通さないように構成されている。
 このように整流素子2100を電池パック2000に設けることにより、接点式スイッチ2040がオフの間も、電池2020から負荷20へ電力を供給することができる。そのため、接点式スイッチ2040がオフになっている間に負荷20が動作を開始する場合において、負荷20が動作を開始するまでの時間を短くすることができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2017年7月27日に出願された日本出願特願2017-145184号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (6)

  1.  負荷及び充電器に接続された電池と、
     前記電池と前記充電器との間に設けられた接点式のスイッチと、
     前記スイッチを制御する制御部と、
     前記電池に流れる電流又は前記スイッチの周辺の温度を測定するセンサと、を有し、
     前記電池、前記充電器、及び前記負荷は、それぞれ並列に接続されており、
     前記制御部は、前記センサによって検出される値が、前記スイッチの仕様に基づいて定められた基準値以下である場合に、前記スイッチをオフにする、電池パック。
  2.  前記センサが前記電池に流れる電流を測定する場合、前記基準値は前記電池の定格電流に基づいて定められる、請求項1に記載の電池パック。
  3.  前記基準値は、前記電池の定格電流の 10% 以下の値である、請求項2に記載の電池パック。
  4.  前記基準値は、前記電池の定格電流の 1% 以上の値である、請求項2又は3に記載の電池パック。
  5.  前記センサが前記スイッチの周辺の温度を測定する場合、前記基準値は前記スイッチの接触抵抗の仕様値に基づいて定められる、請求項1に記載の電池パック。
  6.  前記スイッチに並列に設けられ、前記電池の放電方向にのみ電流を流す素子を有する、請求項1乃至5いずれか一項に記載の電池パック。
PCT/JP2018/024317 2017-07-27 2018-06-27 電池パック WO2019021728A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880049668.1A CN110999021B (zh) 2017-07-27 2018-06-27 电池组
JP2019532455A JP6913754B2 (ja) 2017-07-27 2018-06-27 電池パック
US16/631,679 US11239679B2 (en) 2017-07-27 2018-06-27 Battery pack with charging control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145184 2017-07-27
JP2017-145184 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021728A1 true WO2019021728A1 (ja) 2019-01-31

Family

ID=65041049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024317 WO2019021728A1 (ja) 2017-07-27 2018-06-27 電池パック

Country Status (4)

Country Link
US (1) US11239679B2 (ja)
JP (1) JP6913754B2 (ja)
CN (1) CN110999021B (ja)
WO (1) WO2019021728A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105817A (ja) * 1989-09-13 1991-05-02 Merlin Gerin 回路遮断器
WO1994010718A1 (fr) * 1992-10-23 1994-05-11 Sony Corporation Batterie d'alimentation
WO2013065588A1 (ja) * 2011-11-04 2013-05-10 シャープ株式会社 電力変換装置、蓄電システムおよびその制御方法
EP3038226A1 (en) * 2014-12-26 2016-06-29 Fico Triad S.A. System and method for supplying electric power

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105817U (ja) * 1990-02-15 1991-11-01
JPH05205589A (ja) * 1992-01-28 1993-08-13 Oki Electric Ind Co Ltd リードリレー駆動装置
US5483408A (en) * 1994-03-25 1996-01-09 Eaton Corporation Overcurrent trip unit with separately adjustable neutral protection
JP4088838B2 (ja) 2004-04-22 2008-05-21 富士電機システムズ株式会社 電池の充放電制御方式
JP4398489B2 (ja) * 2007-05-29 2010-01-13 レノボ・シンガポール・プライベート・リミテッド 電池パック、機器、および充電制御方法
JP2012249410A (ja) * 2011-05-27 2012-12-13 Sharp Corp 電気自動車充電用の充電器及び充電装置
JP5899312B2 (ja) * 2011-06-17 2016-04-06 ユラ コーポレーション カンパニー リミテッド パワーリレーアセンブリー駆動装置及びその駆動方法
CN203480001U (zh) * 2013-10-17 2014-03-12 中国南方电网有限责任公司超高压输电公司天生桥局 阀控式铅酸蓄电池在线核对性容量测试装置
CN103794831B (zh) * 2014-02-19 2016-07-20 中达电通股份有限公司 一种电池充电方法及***
US10374444B2 (en) * 2014-08-26 2019-08-06 Elite Power Innovations, Llc. Method and system for battery management

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105817A (ja) * 1989-09-13 1991-05-02 Merlin Gerin 回路遮断器
WO1994010718A1 (fr) * 1992-10-23 1994-05-11 Sony Corporation Batterie d'alimentation
WO2013065588A1 (ja) * 2011-11-04 2013-05-10 シャープ株式会社 電力変換装置、蓄電システムおよびその制御方法
EP3038226A1 (en) * 2014-12-26 2016-06-29 Fico Triad S.A. System and method for supplying electric power

Also Published As

Publication number Publication date
JPWO2019021728A1 (ja) 2020-07-02
US11239679B2 (en) 2022-02-01
US20200169106A1 (en) 2020-05-28
CN110999021B (zh) 2024-07-09
JP6913754B2 (ja) 2021-08-04
CN110999021A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
US11121566B2 (en) Power supply and battery pack including same
US8305045B2 (en) Charge control circuit, battery pack, and charging system
EP2966743B1 (en) Protection device and method for preventing power source voltage of microcontroller from dropping in electronic cigarette
US20080174274A1 (en) Battery unit
CN104701927A (zh) 二次保护ic、二次保护ic的控制方法、保护模块及电池组
WO2013108336A1 (ja) 二次電池保護回路、電池パック及び電子機器
KR20210121885A (ko) 배터리 및 이를 포함하는 전자 장치
KR20170114576A (ko) 배터리 팩 관리 장치 및 관리 방법
JP2024096403A (ja) 携帯端末
US9748798B2 (en) Control module for an electrical energy accumulator, energy accumulator unit having such a control module, uninterruptible power supply unit and method for operating a control module
US20160094059A1 (en) Charging/discharging control device and battery device
WO2019021728A1 (ja) 電池パック
EP2221940B1 (en) Self-discharge circuit for secondary battery, and secondary battery including the same
WO2018119798A1 (zh) 电池充电方法、充电***、充电器及电池
JP2010141987A (ja) バッテリパックの充電方法及び充電装置
US11919421B2 (en) Heating pad control apparatus
CN113632288B (zh) Bms唤醒装置和方法
JP2013051819A (ja) 充電器
JP2011103764A (ja) 2次電池保護装置及び方法
KR102189986B1 (ko) 건전지 및 충전지 겸용 충방전 회로 장치 및 이의 구동 방법
US20220294034A1 (en) Bms wakeup device and method
US20210305820A1 (en) Charging system, charging method, and non-transitory computer-readable recording medium
KR20180032087A (ko) 밸런싱 배터리를 이용한 배터리 관리 시스템 및 방법
CN107210613B (zh) 本质安全的电池组电池的接通延迟
KR20170094689A (ko) 배터리 팩 관리 장치 및 관리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837625

Country of ref document: EP

Kind code of ref document: A1