WO2019021627A1 - 電源監視データ処理装置、電源監視データ処理方法、および電源監視データ処理プログラム - Google Patents

電源監視データ処理装置、電源監視データ処理方法、および電源監視データ処理プログラム Download PDF

Info

Publication number
WO2019021627A1
WO2019021627A1 PCT/JP2018/021121 JP2018021121W WO2019021627A1 WO 2019021627 A1 WO2019021627 A1 WO 2019021627A1 JP 2018021121 W JP2018021121 W JP 2018021121W WO 2019021627 A1 WO2019021627 A1 WO 2019021627A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
data
data processing
internal combustion
Prior art date
Application number
PCT/JP2018/021121
Other languages
English (en)
French (fr)
Inventor
平野 純
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019532415A priority Critical patent/JP7108874B2/ja
Priority to US16/326,083 priority patent/US20190190268A1/en
Publication of WO2019021627A1 publication Critical patent/WO2019021627A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • the present invention relates to a power supply monitoring data processing apparatus for processing monitoring data of a power supply system including a storage device for backup, a power supply monitoring data processing method, and a power supply monitoring data processing program.
  • a hybrid system combining a power generation device and a storage battery is often used.
  • a solar power generation device or a wind power generation device as a power generation device
  • an internal combustion generator for example, a diesel generator or a gas turbine generator
  • Many see, for example, Patent Documents 1 and 2).
  • an internal combustion generator fossil fuel is required.
  • the storage battery of the backup power supply system and the internal combustion generator supply backup power to the load.
  • the power management is not performed according to the stability of the system power supply, the operating time of the internal combustion power generator will be longer than expected, and the fuel will be consumed excessively.
  • many backup power supply systems in emerging countries can not confirm the current settings and environment, and it is often difficult to confirm the amount of fuel consumption.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for continuously performing efficient operation of a power supply system using an electric storage device and an internal combustion power generation device in combination.
  • a power supply monitoring data processing apparatus comprises: a switching unit that selectively outputs AC power supplied from a system power supply or an internal combustion power generator; As monitoring data of a power supply system including an AC / DC converter for converting AC power into DC power and outputting it to a DC load, and a power storage device connected to a DC bus between the AC / DC converter and the DC load A data acquisition unit for acquiring first data including an output voltage and / or output current of the switching unit and second data including an output voltage and / or output current of the power supply system; The operation status of the internal combustion power generator is estimated based on the first data and the second data, and the operation time of the internal combustion power generator is shortened. And a data processor for generating a configuration plan of system configuration and / or discharge lower limit value of the electric storage device.
  • FIG. 1 is a block diagram showing an overall configuration of a communication facility, a central monitoring system, and a power supply monitoring data processing apparatus. It is a figure which shows the structural example of the power supply system of a communication facility. It is a figure which shows the transition example of the power supply state of a certain power supply system. It is a figure showing an example of composition of a power supply surveillance data processor concerning an embodiment of the invention. It is a flowchart which shows the operation example of the power supply monitoring data processor which concerns on embodiment of this invention. It is a figure which shows an example of the format of a fuel reduction performance evaluation report.
  • FIGS. 7 (a) and 7 (b) are diagrams showing a modification of the graph area showing the operation results and the pre-improvement estimation operation of FIG.
  • FIG. 1 is a block diagram showing the overall configuration of a communication facility 1, a central monitoring system 2, and a power supply monitoring data processing apparatus 3. As shown in FIG. Each communication facility 1 includes a power supply system 10.
  • the communication facility 1 is a mobile phone base station device. Communication quality improves as the base station device of the mobile phone is installed in many places. In countries with a large land area, base station devices with more than 100,000 sites may be installed.
  • the central monitoring system 2 is a system for remotely monitoring the power supply systems 10 of a plurality of communication facilities 1, and is constructed of, for example, a plurality of servers.
  • the central monitoring system 2 is connected to the power supply system 10 of each communication facility 1 via a network, and collects monitoring data from each power supply system 10.
  • the network may use the Internet or a dedicated line.
  • the power supply monitoring data processing device 3 is a device that processes monitoring data of the plurality of power supply systems 10 collected by the central monitoring system 2.
  • the power supply monitoring data processing device 3 is configured by, for example, an information processing device such as a server, a PC, a tablet, and a smartphone.
  • the power supply monitoring data processing device 3 acquires monitoring data of the plurality of power supply systems 10 from the central monitoring system 2 via the network. Note that monitoring data of a plurality of power supply systems 10 may be acquired via a recording medium.
  • FIG. 1 illustrates the power supply monitoring data processing device 3 and the central monitoring system 2 as separated, the power supply monitoring data processing device 3 may be integrated into the central monitoring system 2.
  • FIG. 1 illustrates the power supply monitoring data processing device 3 and the central monitoring system 2 as separated, the power supply monitoring data processing device 3 may be integrated into the central monitoring system 2.
  • FIG. 1 illustrates the power supply monitoring data processing device 3 and the central monitoring system 2 as separated, the power supply monitoring data processing device 3 may be integrated into the central monitoring system 2.
  • the configuration 1 shows the configuration in which a plurality of power supply systems 10 are respectively connected to the central monitoring system 2 (star type), a hierarchical structure (tree type) or communication according to the geographical situation is shown.
  • the configuration may be a different connection configuration such as multiplexing (loop type) with emphasis on stability, and a combination thereof.
  • FIG. 2 is a diagram showing a configuration example of the power supply system 10 of the communication facility 1.
  • the power supply system 10 shown in FIG. 2 has three system power sources 5, a diesel generator 11, and a storage device 12 as power sources.
  • the diesel generator 11 is a device that generates electricity by a compression ignition method mainly using light oil as fuel, and outputs AC power.
  • a gas turbine generator may be used instead of the diesel generator 11, a gas turbine generator may be used.
  • the fuel is mainly natural gas.
  • other power supply equipment such as a solar power generation system, may be connected, it is not shown in the present embodiment.
  • the switching unit 13 selectively outputs the AC power supplied from the system power supply 5 and the AC power supplied from the diesel generator 11.
  • the AC / DC converter 14 converts AC power supplied via the switching unit 13 into DC power of a predetermined voltage (hereinafter referred to as a reference voltage) and outputs the DC power to the DC bus 15.
  • the DC bus 15 is connected to the DC load 1 L of the communication facility 1.
  • the DC bus 15 can be constructed of, for example, a bus bar.
  • Power storage device 12 is connected to DC bus 15, and power storage device 12 can charge and discharge DC bus 15. Charging / discharging is often controlled based on the state (voltage value, current value, etc.) of the DC bus 15.
  • the storage device 12 includes a plurality of storage modules m1 to mn connected in parallel, a battery management unit 121, and a switch 122.
  • Each storage module m1 to mn includes a plurality of cells connected in series.
  • the cells lithium ion battery cells, nickel hydrogen battery cells, lead battery cells, electric double layer capacitor cells, lithium ion capacitor cells, etc. can be used.
  • a lithium ion battery cell nominal voltage: 3.6-3.7 V
  • the plurality of power storage modules m1 to mn connected in parallel are connected to the DC bus 15 via the switch 122.
  • a relay can be used for the switch 122.
  • the battery management unit 121 monitors the states of the plurality of power storage modules m1 to mn. Specifically, the voltage, current, and temperature of each cell included in the plurality of power storage modules m1 to mn are monitored.
  • the battery management unit 121 executes state of charge (SOC) management, state of health (SOH) management, equalization control, battery protection, and the like.
  • SOC state of charge
  • SOH state of health
  • the SOC can be estimated by a current integration method or an OCV (Open Circuit Voltage) method.
  • SOH is defined by the ratio of the current full charge capacity to the initial full charge capacity, and the lower the value (the closer to 0%), the more the deterioration progresses.
  • SOH can be estimated based on the correlation with internal resistance.
  • the internal resistance can be estimated by dividing the voltage drop generated when a predetermined current flows in the battery for a predetermined time by the current.
  • the internal resistance is in the relation of decreasing as the temperature rises, and in the relation of increasing as the deterioration of the battery progresses.
  • Equalization control is control which equalizes the voltage or capacity of a plurality of cells connected in series.
  • the battery protection is control for electrically disconnecting the plurality of storage modules m1 to mn from the DC bus 15 by turning off the switch 122 when an overvoltage, an undervoltage, an overcurrent, or a temperature abnormality is detected.
  • the control unit 16 monitors and manages the entire power supply system 10.
  • the control unit 16 sets the voltage value and / or the current value (hereinafter referred to as first data) of the first point (N1), the voltage value of the second point (N2) and the basic monitoring data of the power supply system 10 And / or a current value (hereinafter referred to as second data) is detected.
  • the first data is a three-phase / single-phase AC voltage value and / or an AC current value output from the switching unit 13.
  • the second data is a direct current voltage value and / or a direct current value output from the AC / DC converter 14 and / or the storage device 12.
  • the control unit 16 transmits the measured first data and second data as monitoring data of the power supply system 10 periodically (for example, once every 10 minutes) to the central monitoring system 2 via the network.
  • the connection destination of the switching unit 13 is switched from the system power supply 5 to the diesel generator 11. This switching may be performed by hardware or may be performed by software control via the control unit 16. After the power failure occurs, the diesel generator 11 waits for a start instruction from the control unit 16.
  • the battery management unit 121 turns on the switch 122.
  • the battery management unit 121 receives the power failure detection signal from the sensor for detecting a power failure or the control unit 16 and recognizes the occurrence of the power failure.
  • the discharge start voltage of the storage modules m1 to mn is set to a voltage lower than the reference voltage of the DC bus 15 by a predetermined value.
  • the discharge from the storage device 12 to the DC bus 15 starts.
  • the battery management unit 121 transmits a discharge end notification to the control unit 16.
  • the lower limit value of the remaining capacity is a value set to suppress the overdischarge to protect the battery, and may be defined by a voltage or may be defined by an SOC.
  • the storage battery has a property that the life becomes shorter as the depth of discharge (DOD) is used deeper.
  • the control unit 16 When the control unit 16 receives the discharge end notification from the battery management unit 121, the control unit 16 transmits an operation command to the diesel generator 11.
  • the battery management unit 121 may directly transmit the operation command to the diesel generator 11. Further, the diesel generator 11 may have an operation determination function, and may be configured to manage the operation state in cooperation.
  • the diesel generator 11 receives the operation command and starts power generation, the voltage of the DC bus 15 starts to rise.
  • the voltage of the DC bus 15 becomes higher than the voltage of the storage modules m1 to mn
  • charging of the storage device 12 from the DC bus 15 starts.
  • the battery management unit 121 After the start of charging, when the remaining capacities of the storage modules m1 to mn reach the upper limit value, the battery management unit 121 transmits a charge end notification to the control unit 16.
  • the upper limit value of the remaining capacity is a value set to suppress overcharge and protect the battery, and may be defined by a voltage or may be defined by an SOC.
  • the control unit 16 When the control unit 16 receives the charge end notification from the battery management unit 121, the control unit 16 transmits a stop command to the diesel generator 11.
  • the battery management unit 121 may directly transmit the stop command to the diesel generator 11.
  • the diesel generator 11 may have an operation determination function, and may be configured to manage the operation state in cooperation.
  • the diesel generator 11 receives the stop command and stops the power generation, the voltage of the DC bus 15 starts to decrease.
  • the voltage of the DC bus 15 becomes lower than the voltage of the storage modules m1 to mn, the discharge from the storage device 12 is resumed. The above control is repeated until the system power supply 5 is restored.
  • the power supply system 10 uses the power storage device 12 and the diesel generator 11 to supply backup power to the DC load 1L until the system power supply 5 recovers.
  • the power storage device 12 is charged in advance, and power is supplied from the power storage device 12 using a power failure detection as a trigger.
  • the diesel generator 11 starts up.
  • FIG. 3 is a diagram showing a transition example of the power supply state of a certain power supply system 10.
  • a power supply that supplies power to the DC load 1L is switched from the system power supply 5 (described as EB in FIG. 3) to the power storage device 12 (described as Lib in FIG. 3). change.
  • the power failure period is long (see power failure period A)
  • the power supply for supplying power to the DC load 1L is alternately switched between the power storage device 12 and the diesel generator 11 (denoted as DG in FIG. 3).
  • the power failure period B only power storage device 12 is used as a power supply for supplying power to DC load 1L.
  • the behavior of all the devices of the power supply system 10 installed at the site where the communication facility 1 is provided is not measured.
  • the diesel generator 11 is configured to automatically start and stop according to the power supply state of the site, there is no data of when it starts and when it stops.
  • the data of the AC main trunk is output from the system power supply 5 or output from the diesel generator 11 .
  • FIG. 4 is a view showing a configuration example of the power supply monitoring data processing device 3 according to the embodiment of the present invention.
  • the power supply monitoring data processing device 3 includes an arithmetic unit 31, a communication unit 32, a storage unit 33, and a UI unit 34.
  • the calculation unit 31 includes a data acquisition unit 311, a data processing unit 312, and a report creation unit 313.
  • the configuration of the computing unit 31 can be realized by cooperation of hardware resources and software resources.
  • CPU, ROM, RAM and other LSIs can be used as hardware resources.
  • Programs such as operating systems and applications can be used as software resources.
  • the communication unit 32 executes communication processing in accordance with a predetermined communication protocol.
  • the communication unit 32 can be realized by cooperation of hardware resources and software resources, or by hardware resources alone.
  • the storage unit 33 includes non-volatile memory such as HDD and SDD.
  • the UI unit 34 includes input devices such as a keyboard, a mouse, a microphone, and a touch panel, and output devices such as a display, a speaker, and a printer.
  • FIG. 5 is a flowchart showing an operation example of the power supply monitoring data processing device 3 according to the embodiment of the present invention.
  • this operation example it is assumed that direct data indicating the operating conditions of the system power supply 5 and the diesel generator 11 can not be obtained. That is, it is assumed that accurate data can not be obtained for the normal power generation period and the power failure period of the grid power supply 5 and the power generation period and the power stop period of the diesel power generator 11.
  • the data acquisition unit 311 acquires first data and second data as monitoring data (performance data) of the target power supply system 10 (S10). It is desirable to continuously collect this monitoring data for a fixed period.
  • the data processing unit 312 applies the first data and the second data to a predetermined evaluation model to estimate the operating conditions of the grid power supply 5 and the diesel generator 11 (S11).
  • the evaluation model can be constructed based on the behavior of the first data and the second data of the multiple power supply systems 10.
  • the alternating current waveform of the system power supply 5 and the alternating current waveform of the diesel generator 11 transition at different degrees of stability. That is, the data processing unit 312 can estimate the operating state of the diesel generator 11 based on differences in changes in the AC waveform, such as the stability of the first data and the second data, and the transition of the stability.
  • Data processing unit 312 can also estimate the operating state of power storage device 12 based on the first data and the second data. If the first data is substantially zero and the second data is in the normal range as the output voltage / current to the DC load 1L, the storage device 12 is estimated to be in a discharged state. On the other hand, when the first data is in the normal range as the output voltage / current to DC load 1L, storage device 12 is estimated to be in the stop / charge state.
  • the data processing unit 312 generates a change plan for the power storage device 12 based on the stability of the system power supply 5, the operation status of the diesel power generation device 11, and the operation status of the power storage device 12 in the target power supply system 10 (S12) ).
  • the change plan of the power storage device 12 is a change plan for shortening the operating time of the diesel power generator 11, and is generated by inputting the above-described parameters into a predetermined change plan generation model.
  • the change plan generation model can be constructed based on the engineer's knowledge and / or learning data of change results of multiple power supply systems 10.
  • the change plan generation model exemplified below includes the change of the system configuration of the power storage device 12 and / or the change of the setting value. Specifically, the number of storage modules and the discharge lower limit value of the storage modules are used as change items. In order to shorten the operation time of the diesel generator 11, the discharge time of the storage device 12 needs to be increased. As a method for that purpose, increasing the storage capacity and deepening the depth of discharge may be mentioned.
  • the storage capacity can be increased by increasing the number of parallel storage modules.
  • the depth of discharge can be made deeper by lowering the discharge lower limit value.
  • the discharge lower limit value is often set to the recommended value described in the specification of the battery manufacturer when the power storage device 12 is installed. Therefore, depending on the use environment (for example, ambient temperature) of power storage device 12, it may be possible to use safely to a deeper region.
  • the discharge lower limit value is desirably changed by the battery management unit 121 in consideration of the deterioration of the battery regardless of the presence or absence of the change plan.
  • the data processing unit 312 calculates the predicted value of the operation suppression amount of the diesel generator 11 when the above change plan is implemented, based on the past operation status data of the system power supply 5 in the target power supply system 10 ( S13).
  • the operation suppression amount can be calculated by at least one of the suppression time, the fuel reduction amount, and the fuel reduction cost.
  • the data processing unit 312 compares the calculated predicted value of the operation suppression amount with a predetermined threshold (S14).
  • the predetermined threshold may be defined for each number of storage modules to be added. If the predicted value of the operation suppression amount is smaller than a predetermined threshold (N in S14), the proposal / implementation of the change plan is suspended (Step S21). If the predicted value of the operation suppression amount is equal to or more than the predetermined threshold (Y in S14), the manager of the power supply system 10 is proposed and notified of the change plan.
  • the proposal / notification of the change plan may be transmitted from the communication unit 32 to the terminal device of the administrator via the network, or may be performed face-to-face from the service person.
  • the case where the predicted value of the operation suppression amount is smaller than a predetermined threshold value means that the improvement of the fuel reduction effect predicted by the implementation of the change plan is small.
  • the extent of the effect improvement mainly depends on the power failure pattern of the system power supply 5 in the power supply system 10 and the environmental conditions of the place where the power supply system 10 is installed. Even if a storage module is added, the operation suppression amount of the diesel generator 11 may be small depending on the power failure pattern of the system power supply 5. Even when the improvement of the effect is expected to be small, if the power failure pattern of the system power supply 5 or the environmental conditions change with the passage of time, the improvement of the effect due to the change of the system configuration and / or setting of the power storage device 12 may be significant.
  • the data acquisition unit 311 acquires first data and second data as monitoring data of the power supply system 10 after the change plan is implemented (S16). Whether or not the system configuration and / or settings of the storage device 12 are actually changed can be detected by monitoring the detection value of a sensor (not shown) installed in the storage device 12 according to the change plan. Further, the change completion notification input to the terminal device by the operator may be detected by receiving via the network.
  • the data processing unit 312 applies the first data and the second data after the implementation of the change plan to the evaluation model to estimate the operation status (performance data) of the system power supply 5 and the diesel generator 11 (S17).
  • the data processing unit 312 estimates the operation status (estimated data) of the diesel generator 11 when the change plan is not implemented, based on the estimated operation status (actual data) of the system power supply 5 (S18). .
  • the data processing unit 312 compares the operation status (performance data) of the diesel generator 11 after the change plan is implemented with the operation status (estimated data) of the diesel generator 11 when the change plan is not implemented.
  • the operation suppression amount of the diesel generator 11 resulting from the implementation of the change plan is estimated (S19). For example, the operation suppression amount is estimated by calculating the difference between the operation times of the two diesel power generators 11.
  • the report creation unit 313 creates a fuel reduction performance evaluation report including the estimated operation suppression amount of the diesel generator 11 (S20).
  • the created report is transmitted from the communication unit 32 to the terminal device of the administrator of the power supply system 10 via the network. Or printed by printer, mailed or handed over.
  • steps S10 to S20 described above are performed periodically (for example, once a month) or as needed for each power supply system 10. For example, when the improvement work of the system power supply 5 is being performed, it is performed when the improvement work is completed.
  • the power supply system 10 in which the change plan has been implemented becomes a changed site, and the power supply monitoring data processing device 3 retains the changed system configuration and / or setting and continues data collection.
  • the power supply system 10 becomes a pending site (step S21).
  • the power supply system 10 that is the reserved site (S21)
  • a predetermined period for example, three months
  • the process transitions to step S10, and the change plan of the storage device 12 is regenerated (S10- S13).
  • the pending site has a longer interval period until the change plan is regenerated than the changed site.
  • the reserved site is a site with low expectation for improvement of the effect or a site with low awareness of improvement of the effect of the administrator.
  • the power supply backup setting in which the fuel consumption of the diesel power generation device 11 is suppressed is efficiently and continuously realized. it can.
  • the power supply monitoring data processing device 3 collects data of the power supply system 10 before / after the change plan implementation, and estimates the operating status of the diesel power generation device 11, the storage device 12, and the grid power supply 5.
  • the power supply monitoring data processing device 3 generates a change plan based on the estimated value, and creates a fuel reduction performance evaluation report by the change plan implementation.
  • a comprehensive cost reduction effect may be calculated in consideration of the long-term life of the storage battery. At that time, it is possible to take into consideration the life prediction of the storage capacity based on the operation data of the storage battery.
  • data may be input to the power supply monitoring data processing device 3 from the outside as determination auxiliary information that can be used when generating a change plan.
  • the tally value or estimated value of the data on which the change plan is generated may be output to the outside as the auxiliary information.
  • the data processing unit 312 continuously aggregates the collected actual data of the power supply system 10 to generate statistical data.
  • the statistical data can be used to detect anomalous signs of the whole / individual facility of the power supply system 10.
  • the system configuration and / or setting of power storage device 12 may be corrected to the system configuration and / or setting according to the aged state or the like.
  • a DC / DC converter may be connected between the DC bus 15 and the storage modules m1 to mn.
  • the battery management unit 121 can actively control the charge current / voltage and the discharge current / voltage, and the battery management unit 121 can adjust the charge pattern / discharge pattern. In this case, a change in charge pattern / discharge pattern can be added to the item of setting change of power storage device 12.
  • the report preparation part 313 produces the fuel reduction performance evaluation report containing the operation suppression amount of the diesel power generator 11 estimated.
  • the following is a specific example of the fuel reduction results evaluation report.
  • FIG. 6 is a diagram showing an example of the format of a fuel reduction performance evaluation report.
  • the reduction amount (hour) 36 of the operating time of the diesel generator 11 is described as the value of the fuel reduction performance of the corresponding period.
  • the amount of reduction (amount of money) of the fuel calculated from the operation efficiency of the diesel power generator 11, the operation time, and the fuel unit price of the corresponding period may be described as the value of the fuel reduction performance of the corresponding period.
  • only the amount of reduction (amount of money) of fuel may be described.
  • the performance evaluation report 35 shown in FIG. 6 describes the transition results of the operating state of the diesel generator 11 in the corresponding period.
  • FIG. 6 shows an example in which the transition result of the operating state is represented by a transition graph.
  • an excerpt of a partial period may be used.
  • the transition graph corresponds to a graph in which supply timings (periods) from DG in FIG. 3 are drawn using actual data. Since an environment where accurate detection information of EB / Lib / DG can not be acquired is assumed, the transition graph is drawn based on an estimated quantity based on actual data. The estimated amount here is different from "the operation status (estimated data) of the diesel generator 11 when the relevant change plan is not implemented", and the transition performance of the operation status was estimated from the actual data to the last It is a thing.
  • the power supply timing from EB and / or Lib may be drawn at the same time.
  • the format is the same as the transition graph of the power supply state of FIG. Moreover, you may match and draw the blackout period estimated from performance data.
  • An arrow indicating a power failure period is added to the power supply state transition graph of FIG. 3.
  • the transition graph of the power supply state of FIG. 3 corresponds to the format described before and after the implementation. This makes it possible to see at a glance how DG's operation has improved.
  • the transition graph when the change plan is not implemented may also include not only the power supply timing from DG but also the power supply timing from EB and / or Lib.
  • an arrow indicating a power failure period may be written together.
  • current setting information and / or setting information (past setting information) indicating the case where the change plan is not implemented may be described as reference information. It is rare for site administrators to remember all current and / or past settings of multiple sites, and it is more useful to describe current and / or past settings.
  • FIGS. 7A and 7B are diagrams showing a modification of the graph area 37 showing the operation results and the pre-improvement estimation operation of FIG.
  • the graph area 37a shown in FIG. 7A is obtained by adding an arrow 38 indicating a power failure period to the graph area 37 of FIG.
  • the graph area 37b shown in FIG. 7B is a format example in which an arrow 38 indicating a power failure period is added and power supply timing from EB and / or Lib is also described.
  • the embodiment may be specified by the following items.
  • a switching unit (13) for selectively outputting AC power supplied from the system power supply (5) or the internal combustion power generator (11); and converting the AC power output from the switching unit (13) into DC power And an AC / DC converter (14) for outputting to the DC load (1L), and a storage device (12) connected to a DC bus (15) between the AC / DC converter (14) and the DC load (1L) And monitoring data of the power supply system (10), the first data including the output voltage and / or output current of the switching unit (13), and the output voltage and / or output current of the power supply system (10)
  • a data acquisition unit (311) for acquiring second data; The operating condition of the internal combustion power generator (11) is estimated based on the first data and the second data acquired by the data acquisition unit (311), and the operating time of the internal combustion power generator (11)
  • a data processing unit (312) for generating a system configuration of the power storage device (12) and / or a change plan of the discharge lower limit value for shortening the Power supply monitoring data processing device (3).
  • the data processing unit (312) estimates the operating status of the internal combustion power generator (11) based on the amount of change of the first data and the second data.
  • the power supply monitoring data processing device (3) according to item 1.
  • the “change amount” indicates a change amount based on a change in at least one physical quantity variable, such as “stability” or “transition of stability”.
  • the data acquisition unit (311) acquires the first data and the second data of the power supply system (10) after implementing the change plan of the power storage device (12),
  • the data processing unit (312) Based on the first data and the second data of the power supply system (10) after the change, the operating condition of the internal combustion power generator (11) after the change, and the operation of the grid power supply (5) Estimate the situation, Based on the operating status of the system power supply (5), the operating status of the internal combustion power generator (11) when the change plan is not implemented is estimated, and the change plan is not implemented.
  • the operating status of the internal combustion power generator (11) and the operating status of the internal combustion power generator (11) after the implementation of the change plan are compared, and the internal combustion power generator (11) of the implementation of the change plan Estimate the amount of operation suppression,
  • the data processing unit (312) determines whether to suspend regeneration of the change plan based on the operation suppression amount of the internal combustion power generation device (11).
  • the power supply monitoring data processing device (3) according to item 3.
  • the data processing unit (312) suspends re-generation of the change plan if the operation suppression amount is smaller than a predetermined threshold or if the change plan is not implemented within a predetermined period.
  • the power supply monitoring data processing device (3) according to item 4.
  • the change of the system configuration of the power storage device (12) includes increase and decrease of the power storage modules (m1 to mn) configuring the power storage device (12),
  • the data processing unit (312) is based on an increase in costs associated with the implementation of the change plan of the power storage device (12) and a cost for reducing fossil fuels due to the shortening of the operation time of the internal combustion power generator (11). , Generate the change plan, The power supply monitoring data processing device (3) according to any one of items 1 to 5.
  • the data processing unit (312) performs the power supply system (10) based on the first data and the second data of the power supply system (10) after implementing the change plan of the power storage device (12). Perform anomaly detection of The power supply monitoring data processing device (3) according to any one of items 1 to 6.
  • the collected data can be effectively utilized besides fuel reduction.
  • a switching unit (13) for selectively outputting AC power supplied from the system power supply (5) or the internal combustion power generator (11); and converting the AC power output from the switching unit (13) into DC power And an AC / DC converter (14) for outputting to the DC load (1L), and a storage device (12) connected to a DC bus (15) between the AC / DC converter (14) and the DC load (1L) And monitoring data of the power supply system (10), the first data including the output voltage and / or output current of the switching unit (13), and the output voltage and / or output current of the power supply system (10) Acquiring the second data;
  • the power storage device (12) for estimating the operating status of the internal combustion power generator (11) based on the first data and the second data, and shortening the operating time of the internal combustion power generator (11) Generating a change plan of the system configuration and / or the discharge lower limit value of Power supply monitoring data processing method.
  • the power supply system (10) in which the power storage device (12) and the internal combustion power generator (11) are used in combination can be continuously performed.
  • it may be a non-transitory computer readable medium in which the computer program is written.
  • 1 Communication facility 1 L DC load, 2 central monitoring system, 3 Power supply monitoring data processor, 31 operation unit, 311 data acquisition unit, 312 data processing unit, 313 Report Creation Department, 32 communication units, 33 storage units, 34 UI Department, 5 power supplies, 10 power system, 11 diesel generators, 12 power storage devices, m1, m2, mn storage module, 121 Battery Management Department, 122 switches, 13 switching unit, 14 AC / DC converter, 15 DC buses, 16 control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

データ取得部は、系統電源または内燃力発電装置から供給される交流電力を選択的に出力する切替部と、切替部ら出力される交流電力を直流電力に変換して出力するAC/DCコンバータと、直流バスに接続される蓄電装置と、を備える電源システムの監視データとして、切替部の出力電圧および/または出力電流を含む第1データ、および当該電源システムの出力電圧および/または出力電流を含む第2データを取得する。データ処理部は、第1データと第2データをもとに内燃力発電装置の稼働状況を推定し、内燃力発電装置の稼働時間を短くするための、蓄電装置のシステム構成および/または放電下限値の変更プランを生成する。

Description

電源監視データ処理装置、電源監視データ処理方法、および電源監視データ処理プログラム
 本発明は、バックアップ用の蓄電装置を備えた電源システムの監視データを処理する電源監視データ処理装置、電源監視データ処理方法、および電源監視データ処理プログラムに関する。
 インド、東南アジア、南米、アフリカなどの新興国では、日本、欧州などの先進国と比較して電力事情が悪く、停電が頻繁に発生する。新興国では突発的な停電だけでなく計画停電も多い。そこで携帯電話基地局などのインフラ設備には原則として、系統電源の停電に備えたバックアップ電源システムが併設される。新興国では、通信施設の安定した施設管理と、電源確保が通信サービスの品質を左右する大きな鍵となる。
 バックアップ電源システムとして、発電装置と蓄電池を組み合わせたハイブリッドシステムが用いられることが多い。発電装置として太陽光発電装置や風力発電装置を使用することも考えられるが、天候に左右されずに発電できる内燃力発電装機(例えば、ディーゼル発電機、ガスタービン発電機)を使用することが多い(例えば、特許文献1、2参照)。内燃力発電装機を使用する場合、化石燃料が必要となる。
特開2004-062254号公報 特開2016-039648号公報
 系統電源が停電した際、バックアップ電源システムの蓄電池および内燃力発電機は負荷にバックアップ電源を供給する。その際、系統電源の安定度に応じて電源管理が行われないと、内燃力発電機の稼働時間が想定以上に長くなり、燃料を過剰に消費してしまうことになる。また新興国のバックアップ電源システムは、現状の設定や環境を確認できないものが多く、燃料消費の多寡を確認することが難しいものが多い。
 本発明はこうした状況に鑑みなされたものであり、その目的は、蓄電装置と内燃力発電装置を併用した電源システムの、効率的な運用を継続的に行うための技術を提供することにある。
 上記課題を解決するために、本発明のある態様の電源監視データ処理装置は、系統電源または内燃力発電装置から供給される交流電力を選択的に出力する切替部と、前記切替部から出力される交流電力を直流電力に変換して直流負荷に出力するAC/DCコンバータと、前記AC/DCコンバータと前記直流負荷間の直流バスに接続される蓄電装置と、を備える電源システムの監視データとして、前記切替部の出力電圧および/または出力電流を含む第1データ、および当該電源システムの出力電圧および/または出力電流を含む第2データを取得するデータ取得部と、前記データ取得部により取得された前記第1データと前記第2データをもとに前記内燃力発電装置の稼働状況を推定し、前記内燃力発電装置の稼働時間を短くするための、前記蓄電装置のシステム構成および/または放電下限値の変更プランを生成するデータ処理部と、を備える。
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、蓄電装置と内燃力発電装置を併用した電源システムの、効率的な運用を継続的に行うことができる。
通信施設、中央監視システム、電源監視データ処理装置の全体構成を示すブロック図である。 通信施設の電源システムの構成例を示す図である。 ある電源システムの電源状態の推移例を示す図である。 本発明の実施の形態に係る電源監視データ処理装置の構成例を示す図である。 本発明の実施の形態に係る電源監視データ処理装置の動作例を示すフローチャートである。 燃料削減実績評価レポートのフォーマットの一例を示す図である。 図7(a)、(b)は、図6の稼働実績と改善前推定動作を示すグラフ領域の変形例を示す図である。
 図1は、通信施設1、中央監視システム2、電源監視データ処理装置3の全体構成を示すブロック図である。各通信施設1は電源システム10を備えている。以下の説明では、通信施設1が携帯電話の基地局装置である例を想定する。携帯電話の基地局装置は、多くの場所に設置するほど通信品質が向上する。国土が広い国では、10万サイト以上の基地局装置が設置されることもある。
 中央監視システム2は、複数の通信施設1の電源システム10を遠隔監視するためのシステムであり、例えば、複数のサーバで構築される。中央監視システム2は各通信施設1の電源システム10とネットワークを介して接続され、各電源システム10から監視データを収集する。ネットワークは、インターネットを使用してもよいし、専用線を使用してもよい。
 電源監視データ処理装置3は、中央監視システム2が収集した複数の電源システム10の監視データを処理する装置である。電源監視データ処理装置3は例えば、サーバ、PC、タブレット、スマートフォンなどの情報処理装置で構成される。電源監視データ処理装置3はネットワークを介して、中央監視システム2から複数の電源システム10の監視データを取得する。なお、記録メディアを介して複数の電源システム10の監視データを取得してもよい。なお図1では、電源監視データ処理装置3と中央監視システム2が分離された構成で描かれているが、電源監視データ処理装置3が中央監視システム2に統合された構成でもよい。なお図1では、中央監視システム2に対して複数の電源システム10がそれぞれ接続している(スター型)構成で描かれているが、地理的状況に応じた階層構造(ツリー型)や通信の安定性を重視した多重化(ループ型)など異なる接続構成およびその組み合わせの構成でもよい。
 図2は、通信施設1の電源システム10の構成例を示す図である。図2に示す電源システム10は電力源として系統電源5、ディーゼル発電装置11、蓄電装置12の3つを有する。ディーゼル発電装置11は、主に軽油を燃料として圧縮着火方式で発電する装置であり、交流電力を出力する。なおディーゼル発電装置11の代わりに、ガスタービン発電装置を使用してもよい。その場合、燃料は主に天然ガスになる。また、太陽光発電システムなどその他の電源設備が接続している場合もあるが、本実施の形態においては不図示とする。
 切替部13は、系統電源5から供給される交流電力と、ディーゼル発電装置11から供給される交流電力を選択的に出力する。AC/DCコンバータ14は、切替部13を介して供給される交流電力を、所定の電圧(以下、基準電圧という)の直流電力に変換して直流バス15に出力する。直流バス15は通信施設1の直流負荷1Lに接続されている。直流バス15は例えば、バスバーで構築することができる。
 直流バス15には蓄電装置12が接続され、蓄電装置12は直流バス15に対して充放電を行うことができる。直流バス15の状態(電圧値、電流値など)をもとに充放電が制御されることが多い。
 蓄電装置12は、並列接続された複数の蓄電モジュールm1~mn、電池管理部121、スイッチ122を備える。各蓄電モジュールm1~mnは、直列接続された複数のセルを含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセルなどを用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。並列接続された複数の蓄電モジュールm1~mnは、スイッチ122を介して直流バス15に接続される。スイッチ122には例えば、リレーを使用することができる。
 電池管理部121は、複数の蓄電モジュールm1~mnの状態を監視する。具体的には、複数の蓄電モジュールm1~mnに含まれる各セルの電圧、電流、温度を監視する。電池管理部121は、SOC(State Of Charge)管理、SOH(State Of Health)管理、均等化制御、電池保護などを実行する。
 SOCは、電流積算法またはOCV(Open Circuit Voltage)法により推定することができる。SOHは、初期の満充電容量に対する現在の満充電容量の比率で規定され、数値が低いほど(0%に近いほど)劣化が進行していることを示す。SOHは、内部抵抗との相関関係をもとに推定することができる。内部抵抗は、電池に所定の電流を所定時間流した際に発生する電圧降下を、当該電流で割ることにより推定することができる。内部抵抗は温度が上がるほど低下する関係にあり、電池の劣化が進行するほど増加する関係にある。
 均等化制御は、直列接続された複数のセルの電圧または容量を均等化させる制御である。電池保護は、過電圧、過小電圧、過電流、または温度異常を検出すると、スイッチ122をターンオフして複数の蓄電モジュールm1~mnを、直流バス15から電気的に切り離す制御である。
 制御部16は、電源システム10全体を監視・管理する。制御部16は、電源システム10の基礎的な監視データとして、第1地点(N1)の電圧値および/または電流値(以下、第1データという)と、第2地点(N2)の電圧値および/または電流値(以下、第2データという)を検出する。第1データは、切替部13から出力される三相/単相の、交流電圧値および/または交流電流値である。第2データは、AC/DCコンバータ14および/または蓄電装置12から出力される直流電圧値および/または直流電流値である。なお電流値を測定する場合は、直流バス15上において、蓄電装置12の合流地点(Nb)より直流負荷1L側もしくは蓄電装置12側の電流値を測定する必要がある。
 制御部16は測定した第1データおよび第2データを、電源システム10の監視データとして、ネットワークを介して中央監視システム2に定期的(例えば、10分に1回)に送信する。
 系統電源5の停電が発生すると、切替部13の接続先が、系統電源5からディーゼル発電装置11に切り替わる。この切り替えは、ハードウェア的に実行されてもよいし、制御部16を介在させたソフトウェア制御により実行されてもよい。停電が発生した後、ディーゼル発電装置11は、制御部16から起動指示があるまで待機する。電池管理部121は、スイッチ122をターンオンさせる。電池管理部121は停電の発生を、停電検知用のセンサまたは制御部16から停電検知信号を受信して認識する。
 蓄電モジュールm1~mnの放電開始電圧は、直流バス15の基準電圧より所定値低い電圧に設定されている。スイッチ122がオン状態では、直流バス15の電圧が蓄電モジュールm1~mnの電圧より低くなると、蓄電装置12から直流バス15への放電が開始する。放電開始後、蓄電モジュールm1~mnの残容量が下限値に到達すると、電池管理部121は制御部16に放電終了通知を送信する。残容量の下限値は、過放電を抑制して電池を保護するために設定される値であり、電圧で規定されもよいし、SOCで規定されてもよい。蓄電池は、放電深度(DOD:Depth of Discharge)を深く使用するほど寿命が短くなる性質がある。
 制御部16は、電池管理部121から放電終了通知を受信すると、ディーゼル発電装置11に稼働指令を送信する。なお電池管理部121からディーゼル発電装置11に直接、稼働指令を送信する構成でもよい。また、ディーゼル発電装置11に稼働判断機能があり、稼働の状態を連携して管理する構成でもよい。ディーゼル発電装置11が稼働指令を受信して、発電を開始すると、直流バス15の電圧が上昇を開始する。直流バス15の電圧が蓄電モジュールm1~mnの電圧より高くなると、直流バス15から蓄電装置12への充電が開始する。充電開始後、蓄電モジュールm1~mnの残容量が上限値に到達すると、電池管理部121は制御部16に充電終了通知を送信する。残容量の上限値は、過充電を抑制して電池を保護するために設定される値であり、電圧で規定されもよいし、SOCで規定されてもよい。
 制御部16は、電池管理部121から充電終了通知を受信すると、ディーゼル発電装置11に停止指令を送信する。なお電池管理部121からディーゼル発電装置11に直接、停止指令を送信する構成でもよい。また、ディーゼル発電装置11に稼働判断機能があり、稼働の状態を連携して管理する構成でもよい。ディーゼル発電装置11が停止指令を受信して、発電を停止すると、直流バス15の電圧が低下を開始する。直流バス15の電圧が蓄電モジュールm1~mnの電圧より低くなると、蓄電装置12からの放電が再開する。以上の制御が系統電源5が復活するまで繰り返される。
 このように電源システム10は、系統電源5が停電した際、蓄電装置12およびディーゼル発電装置11を用いて系統電源5が回復するまで直流負荷1Lにバックアップ電源を供給する。バックアップ時の基本動作としては、蓄電装置12をあらかじめ充電しておき、停電検知をトリガとして蓄電装置12から電力を供給する。蓄電装置12の供給電力が低下すると、ディーゼル発電装置11が起動する。
 図3は、ある電源システム10の電源状態の推移例を示す図である。系統電源5の停電が発生すると、直流負荷1Lに電力を供給する電源が、系統電源5(図3ではEBと表記している)から蓄電装置12(図3ではLibと表記している)に変わる。停電期間が長い場合(停電期間A参照)、直流負荷1Lに電力を供給する電源が、蓄電装置12とディーゼル発電装置11(図3ではDGと表記している)の間で交互に切り替わる。停電期間が短い場合(停電期間B参照)、直流負荷1Lに電力を供給する電源として蓄電装置12のみが使用される。
 電源システム10において、系統電源5の安定度に応じた電源管理が行われないと、ディーゼル発電装置11の稼働が想定以上に長期に渡り、ディーゼル発電装置11の燃料を過剰に消費する問題がある。ディーゼル発電装置11の燃料を使い切ると結局、通信施設1全体がダウンすることになる。またディーゼル発電装置11の稼働時間が長くなると、燃料そのもののコストだけでなく、人的コストも増大する。給油・運搬はエンジニアが手作業で行う必要があり、人件費の増大を招く。
 通信施設1が設けられているサイトに設置されている電源システム10の全ての機器の挙動が計測されているわけではない。例えば、ディーゼル発電装置11がサイトの給電状態に応じて自動で起動・停止する仕組みのものである場合、いつ起動して、いつ停止したかのデータは残っていない。例えば、交流主幹および直流バス15の電気系データしか計測されていない場合、交流主幹のデータが、系統電源5から出力されたものか、ディーゼル発電装置11から出力されたものか区別することができない。
 またサイトの数が膨大な数にのぼる場合、全てのサイトの電源システム10の仕様を統一することは難しく、使用するディーゼル発電装置11や蓄電装置12の機種を統一することも難しい。また電源システム10の設置工事の際、作業員が設備機器の差異や設置環境の差異を考慮して完璧に機器を設置・設定できていないことも多い。
 新興国の電源システム10では、現状の設定や環境が外部から確認できないものが多いため、燃料消費の多寡を確認することが難しい。また停電の発生が頻繁であったり、電源インフラが複雑であったりもする。電力系統において十分な信頼性のある協調が取れていないケースがある。またサイトごとに停電のパターンが異なる。月ごとの停電時間がバラバラで、停電時間のきちんとしたデータが残っていないことが多い。また新興国では、資材や燃料の盗難の発生頻繁が先進国より多い。
 以上の状況下、燃料費削減の取り組みが行われているが、その取り組みの成果が確認できず、活動継続のモチベーションも低いのが現状である。以下、電源監視データ処理装置3を用いて、燃料費削減の取り組みを効率的かつ継続的に行う仕組みを説明する。
 図4は、本発明の実施の形態に係る電源監視データ処理装置3の構成例を示す図である。電源監視データ処理装置3は、演算部31、通信部32、記憶部33、UI部34を備える。演算部31は、データ取得部311、データ処理部312、レポート作成部313を含む。
 演算部31の構成は、ハードウェア資源とソフトウェア資源の協働により実現できる。ハードウェア資源としてCPU、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーションなどのプログラムを利用できる。通信部32は、所定の通信プロトコルに従った通信処理を実行する。通信部32は、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源単体により実現できる。記憶部33は、HDD、SDDなどの不揮発性メモリを備える。UI部34は、キーボード、マウス、マイク、タッチパネルなどの入力デバイスと、ディスプレイ、スピーカ、プリンタなどの出力デバイスを備える。
 図5は、本発明の実施の形態に係る電源監視データ処理装置3の動作例を示すフローチャートである。本動作例では、系統電源5およびディーゼル発電装置11の稼働状況を示す直接的なデータが得られない状況を前提とする。すなわち、系統電源5が正常な期間と停電している期間、およびディーゼル発電装置11が発電している期間と停止している期間の正確なデータが得られない状況を前提とする。
 データ取得部311は、対象とする電源システム10の監視データ(実績データ)として第1データおよび第2データを取得する(S10)。この監視データの収集は一定期間、継続して行うことが望ましい。データ処理部312は、第1データおよび第2データを所定の評価モデルに適用して、系統電源5とディーゼル発電装置11の稼働状況を推定する(S11)。評価モデルは、多数の電源システム10の第1データおよび第2データの振る舞いに基づいて構築することができる。一般的な傾向として、系統電源5の交流波形と、ディーゼル発電装置11の交流波形とはそれぞれ異なる安定度で推移する。すなわち、データ処理部312は、第1データおよび第2データの安定度や安定度の推移など、それぞれの交流波形の変化の相違に基づき、ディーゼル発電装置11の稼働状況を推定することができる。
 データ処理部312は、第1データおよび第2データをもとに蓄電装置12の稼働状況も推定することができる。第1データが実質的にゼロであり、第2データが直流負荷1Lへの出力電圧/電流として正常な範囲である場合、蓄電装置12が放電状態と推定する。一方、第1データが直流負荷1Lへの出力電圧/電流として正常な範囲である場合、蓄電装置12が停止/充電状態と推定する。
 データ処理部312は、対象とする電源システム10における、系統電源5の安定性、ディーゼル発電装置11の稼働状況、蓄電装置12の稼働状況をもとに蓄電装置12の変更プランを生成する(S12)。蓄電装置12の変更プランは、ディーゼル発電装置11の稼働時間を短くするための変更プランであり、所定の変更プラン生成モデルに上記パラメータを入力することにより生成される。変更プラン生成モデルは、エンジニアの知見および/または多数の電源システム10の変更実績の学習データをもとに構築することができる。
 以下に例示する変更プラン生成モデルでは、蓄電装置12のシステム構成の変更および/または設定値の変更を含む。具体的には変更項目として、蓄電モジュールの数、蓄電モジュールの放電下限値を使用する。ディーゼル発電装置11の稼働時間を短くするためには、蓄電装置12の放電時間を長くする必要がある。そのための方法として、蓄電容量を増加する、放電深度を深くすることが挙げられる。
 蓄電容量は、蓄電モジュールの並列数を増やすことにより増加させることができる。放電深度は、放電下限値を下げることにより深くすることができる。放電下限値は、蓄電装置12の設置時に、電池メーカの仕様書に記載された推奨値に設定されることが多い。従って、蓄電装置12の使用環境(例えば、周囲温度)によっては、より深い領域まで安全に使用できる場合もある。なお放電下限値は変更プランの有無に関係なく、電池の劣化も勘案して電池管理部121により変更されることが望ましい。
 データ処理部312は、対象とする電源システム10における過去の系統電源5の稼働状況データをもとに、上記変更プランを実施した場合のディーゼル発電装置11の稼働抑制量の予測値を算出する(S13)。稼働抑制量は、抑制時間、燃料の削減量、燃料の削減費の少なくとも1つで算出することができる。燃料の削減費で算出する場合、正味の削減費で算出することが望ましい。すなわち、ディーゼル発電装置11の燃料の削減費から、蓄電装置12の変更プランの実施に伴う増加費用(例えば、蓄電モジュールの増設費用)を減算した額を使用する。
 データ処理部312は、算出した稼働抑制量の予測値と所定のしきい値を比較する(S14)。所定のしきい値は、追加する蓄電モジュールの数ごとに規定されてもよい。当該稼働抑制量の予測値が所定のしきい値より小さい場合(S14のN)、上記変更プランの提案・実施を保留する(ステップS21)。当該稼働抑制量の予測値が所定のしきい値以上の場合(S14のY)、当該電源システム10の管理者に上記変更プランを提案・通知する。当該変更プランの提案・通知は、通信部32からネットワークを介して、当該管理者の端末装置に送信されてもよいし、サービスパーソンから対面で行われてもよい。
 上記稼働抑制量の予測値が所定のしきい値より小さい場合とは、当該変更プランの実施により予測される燃料削減の効果改善が小さい場合を意味する。効果改善の程度は主に、当該電源システム10における系統電源5の停電パターン、当該電源システム10が設置されている場所の環境条件に依存する。蓄電モジュールを増設しても、系統電源5の停電パターンによっては、ディーゼル発電装置11の稼働抑制量が小さい場合もある。効果改善が小さいと予測される場合でも時間経過に伴い、系統電源5の停電パターンや環境条件が変わると、蓄電装置12のシステム構成および/または設定の変更による効果改善が大きくなる場合もある。
 上記変更プランが実施された場合(S15のY)、データ取得部311は、当該変更プラン実施後の、当該電源システム10の監視データとして第1データおよび第2データを取得する(S16)。上記変更プランに従い、実際に蓄電装置12のシステム構成および/または設定が変更されたか否かは、蓄電装置12に設置されたセンサ(不図示)の検出値を監視することにより検知できる。また、オペレータが端末装置に入力した変更完了通知を、ネットワークを介して受信することにより検知してもよい。
 データ処理部312は、当該変更プラン実施後の第1データおよび第2データを上記評価モデルに適用して、系統電源5とディーゼル発電装置11の稼働状況(実績データ)を推定する(S17)。データ処理部312は、推定した系統電源5の稼働状況(実績データ)をもとに、当該変更プランを実施しなかった場合のディーゼル発電装置11の稼働状況(想定データ)を推定する(S18)。
 データ処理部312は、当該変更プラン実施後のディーゼル発電装置11の稼働状況(実績データ)と、当該変更プランを実施しなかった場合のディーゼル発電装置11の稼働状況(想定データ)を比較して、当該変更プランの実施に起因するディーゼル発電装置11の稼働抑制量を推定する(S19)。例えば、両者のディーゼル発電装置11の稼働時間の差分を算出することにより、当該稼働抑制量を推定する。レポート作成部313は、推定したディーゼル発電装置11の稼働抑制量を含む燃料削減実績評価レポートを作成する(S20)。作成されたレポートは、通信部32からネットワークを介して、当該電源システム10の管理者の端末装置に送信される。またはプリンタで印刷されて、郵送または手渡しされる。
 以上のステップS10~S20までの処理は、電源システム10ごとに定期的(例えば、1ヶ月に1回)または必要に応じて実行される。例えば、系統電源5の改良工事が行われている場合、改良工事が終了した時点で実行される。変更プランが実施された電源システム10は変更済みサイトとなり、電源監視データ処理装置3は、変更したシステム構成および/または設定を保持し、データ収集も継続する。
 ステップS15において、上記変更プランが管理者に提案・通知された後、上記変更プランが実施されない間(S15のN)、当該電源システム10は保留サイトとなる(ステップS21)。保留サイトとなっている電源システム10について(S21)、所定期間(例えば、3ヶ月)が経過すると(S22のY)、ステップS10に遷移し、蓄電装置12の変更プランを再生成する(S10-S13)。保留サイトは、変更済サイトより、変更プラン再生成までのインターバル期間が長く設定される。保留サイトは、効果改善の期待が低いサイト、または管理者の効果改善に対する意識が低いサイトである。保留サイトの変更プランの生成頻度を下げることにより、変更プラン生成にかかる処理負荷を低減させることができる。
 以上説明したように本実施の形態によれば、ディーゼル発電装置11と蓄電装置12を併用した電源システム10において、ディーゼル発電装置11の燃料消費を抑制した電源バックアップ設定を効率的・継続的に実現できる。具体的には、電源監視データ処理装置3は、変更プラン実施前/実施後の電源システム10のデータを収集し、ディーゼル発電装置11、蓄電装置12、系統電源5の稼働状況を推定する。電源監視データ処理装置3は当該推定値をもとに変更プランを生成し、変更プラン実施による燃料削減実績評価レポートを作成する。
 初期のシステム構成・設計事項を定めるだけでなく、電源システム10の設備に関わる効率的な稼働を継続的に実現できる。また、長期にわたる系統電源5の安定性の変化を考慮した蓄電装置12のシステム構成および/または設定の変更が可能である。また、システム構成および/または設定の変更後の効果確認を並行して実施可能であり、変更による効果を適切に評価することができる。
 以上のようなサイト管理により、電源システム10の効率的な稼働を継続的に実現することができ、また稼働データと実績評価を連携することで、燃料削減のための改善提案にかかるサービスの成果を定量的に確認できる。なお太陽光発電システムと蓄電装置を併用した電源システムの場合、蓄電装置のシステム構成および/または設定を変更しても、発電コスト(化石燃料費)が変動しないため、上記サービスの必要性は低い。
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 上述の実施の形態では、系統電源5およびディーゼル発電装置11の正確な稼働データを得られない状態を想定した。この点、系統電源5および/またはディーゼル発電装置11の正確な稼働データが得られるサイトの場合、系統電源5および/またはディーゼル発電装置11の稼働状況を推定する必要はなく、測定された稼働データをそのまま使用すればよい。また、蓄電装置12の稼働データや状態データを取得できるサイトの場合、蓄電装置12の劣化度や環境条件を考慮して、より精緻に、システム構成および/または設定の変更プランを生成することができる。
 図5のフローチャートのステップS12において変更プランを生成する際、蓄電池の長期的な寿命も勘案して総合的な経費削減効果を算出してもよい。その際、蓄電池の稼働データに基づく蓄電容量の寿命予測を勘案してもよい。また、変更プランを生成する際に利用可能な判定補助情報として、外部から電源監視データ処理装置3にデータを入力できる構成でもよい。また、変更プラン生成の根拠とするデータの集計値や推定値を、補助情報として外部に出力できる構成でもよい。このような入力/出力インタフェースを設けることにより、担当エンジニアなどの人間の判断を介在させることができ、より精緻な変更プランの生成が可能となる。また熟練エンジニアの経験則に基づく補正も可能となる。
 データ処理部312は、収集した電源システム10の実績データを継続的に集計して統計データを生成する。当該統計データは、電源システム10の全体/個別の設備の異常予兆の検知に活用することができる。また、検知結果に基づいて、蓄電装置12のシステム構成および/または設定を、経年状態などに応じたシステム構成および/または設定に補正してもよい。
 また直流バス15と蓄電モジュールm1~mnの間に、スイッチ122に加えてまたはスイッチ122の代わりにDC/DCコンバータを接続してもよい。この構成では、電池管理部121は、充電電流/電圧および放電電流/電圧を能動的に制御することができ、電池管理部121は充電パターン/放電パターンを調整することができる。この場合、蓄電装置12の設定変更の項目に、充電パターン/放電パターンの変更を加えることができる。
 また上述の実施の形態では、レポート作成部313が、推定したディーゼル発電装置11の稼働抑制量を含む燃料削減実績評価レポートを作成する構成とした。以下、燃料削減実績評価レポートの具体例を挙げる。
 図6は、燃料削減実績評価レポートのフォーマットの一例を示す図である。図6に示す実績評価レポート35には、該当期間の燃料削減実績の値として、ディーゼル発電装置11の稼働時間の削減量(時間)36が記載される。なお、該当期間の燃料削減実績の値として、ディーゼル発電装置11の運転効率、稼働時間、及び該当期間の燃料単価から算出される燃料の削減量(金額)が記載されてもよい。なお、燃料の削減量(金額)のみが記載されてもよい。
 図6に示す実績評価レポート35には、該当期間のディーゼル発電装置11の稼働状態の推移実績が記載される。図6では、稼働状態の推移実績が推移グラフで表記される例が示されている。なお、推移グラフ内に該当期間の全期間が入らない場合は一部期間の抜粋でもよい。
 上記推移グラフは、図3のDGからの供給タイミング(期間)を実績データで描画したグラフに相当する。EB/Lib/DGの正確な検出情報が取得できない環境を前提としているので、当該推移グラフは、実績データをもとにした推定量をもとに描画されている。ここでの推定量とは「当該変更プランを実施しなかった場合のディーゼル発電装置11の稼働状況(想定データ)」とは別のものであり、あくまでも実績データから稼働状態の推移実績を推定したものである。
 グラフ内に、DGからの電力供給タイミングに加えて、EBおよび/またはLibからの電力供給タイミングを合わせて描画しても良い。その場合、図3の電源状態の推移グラフと同じフォーマットになる。また、実績データから推定される停電期間を合わせて描画しても良い。図3の電源状態の推移グラフには、停電期間を示す矢印が付加されている。
 また、当該変更プランを実施しなかった場合のディーゼル発電装置11の稼働状況(想定データ)を推移グラフで表記したものを併記しても良い。図3の電源状態の推移グラフが実施前と実施後で上下に併記されるフォーマットに相当する。これにより、DGの稼働がどう良化しているのかが一目で分かるようになる。変更プランを実施しなかった場合の推移グラフも、DGからの電力供給タイミングだけでなく、EBおよび/またはLibからの電力供給タイミングを併記しても良い。また停電期間を示す矢印を併記しても良い。
 なお必須ではないが、現在の設定情報および/または当該変更プランを実施しなかった場合を示す設定情報(過去の設定情報)が、参考情報として記載されていても良い。複数サイトの現在および/または過去の設定状態をサイト管理者が全て覚えていることは稀であり、現在および/または過去の設定情報を記載しておいたほうが親切である。
 図7(a)、(b)は、図6の稼働実績と改善前推定動作を示すグラフ領域37の変形例を示す図である。図7(a)に示すグラフ領域37aは、図6のグラフ領域37に、停電期間を示す矢印38が追加されたものである。図7(b)に示すグラフ領域37bは、停電期間を示す矢印38が追加されるともに、EBおよび/またはLibからの電力供給タイミングも併記されるフォーマット例である。
 なお、実施の形態は、以下の項目によって特定されてもよい。
 [項目1]
 系統電源(5)または内燃力発電装置(11)から供給される交流電力を選択的に出力する切替部(13)と、前記切替部(13)から出力される交流電力を直流電力に変換して直流負荷(1L)に出力するAC/DCコンバータ(14)と、前記AC/DCコンバータ(14)と前記直流負荷(1L)間の直流バス(15)に接続される蓄電装置(12)と、を備える電源システム(10)の監視データとして、前記切替部(13)の出力電圧および/または出力電流を含む第1データ、および当該電源システム(10)の出力電圧および/または出力電流を含む第2データを取得するデータ取得部(311)と、
 前記データ取得部(311)により取得された前記第1データと前記第2データをもとに前記内燃力発電装置(11)の稼働状況を推定し、前記内燃力発電装置(11)の稼働時間を短くするための、前記蓄電装置(12)のシステム構成および/または放電下限値の変更プランを生成するデータ処理部(312)と、を備える、
 電源監視データ処理装置(3)。
 これによれば、蓄電装置(12)と内燃力発電装置(11)を併用した電源システム(10)の、効率的な運用を継続的に行うことができる。
 「項目2]
 前記データ処理部(312)は、前記第1データおよび前記第2データの変化量に基づき、前記内燃力発電装置(11)の稼働状況を推定する、
 項目1に記載の電源監視データ処理装置(3)。
 「変化量」とは、「安定度」や「安定度の推移」などの、少なくとも1つの物理量変数の変化に基づく変化量を示す。
 これによれば、内燃力発電装置(11)の稼働データを直接取得できない場合でも、蓄電装置(12)の変更プランを生成することができる。
 「項目3]
 前記データ取得部(311)は、前記蓄電装置(12)の変更プランを実施した後の前記電源システム(10)の前記第1データおよび前記第2データを取得し、
 前記データ処理部(312)は、
 前記変更後における前記電源システム(10)の前記第1データおよび前記第2データをもとに、前記変更後における前記内燃力発電装置(11)の稼働状況と、前記系統電源(5)の稼働状況を推定し、
 前記系統電源(5)の稼働状況をもとに、前記変更プランを実施しなかった場合の前記内燃力発電装置(11)の稼働状況を推定し、前記変更プランを実施しなかった場合の前記内燃力発電装置(11)の稼働状況と前記変更プランを実施した後における前記内燃力発電装置(11)の稼働状況を比較して、前記変更プランの実施による前記内燃力発電装置(11)の稼働抑制量を推定する、
 項目1または2に記載の電源監視データ処理装置(3)。
 これによれば、変更プランの実施による燃料削減効果を定量的に評価することができる。
 「項目4]
 前記データ処理部(312)は、前記内燃力発電装置(11)の稼働抑制量にもとづき前記変更プランの再生成を保留するか否か決定する、
 項目3に記載の電源監視データ処理装置(3)。
 これによれば、変更プランの生成数を減少させることができ、処理負荷を軽減させることができる。
 「項目5]
 前記データ処理部(312)は、前記稼働抑制量が所定のしきい値より小さい場合、あるいは、前記変更プランが所定の期間内に実施されなかった場合、前記変更プランの再生成を保留する、
 項目4に記載の電源監視データ処理装置(3)。
 これによれば、効果改善の低いと予測される電源システム(10)の変更プランの再生成を保留することにより、電源監視データ処理装置(3)の資源を有効に活用することができる。
 「項目6]
 前記蓄電装置(12)のシステム構成の変更は、前記蓄電装置(12)を構成する蓄電モジュール(m1~mn)の増減を含み、
 前記データ処理部(312)は、前記蓄電装置(12)の変更プランの実施に伴う増加費用、および前記内燃力発電装置(11)の稼働時間の短縮に伴う化石燃料の削減費用をもとに、前記変更プランを生成する、
 項目1から5のいずれかに記載の電源監視データ処理装置(3)。
 これによれば、変更プラン実施によるコストパフォーマンスを正味で算出することができる。
 「項目7]
 前記データ処理部(312)は、前記蓄電装置(12)の変更プランを実施した後における前記電源システム(10)の前記第1データおよび前記第2データをもとに、前記電源システム(10)の異常検出を行う、
 項目1から6のいずれかに記載の電源監視データ処理装置(3)。
 これによれば、収集したデータを燃料削減以外にも有効に活用することができる。
 「項目8]
 系統電源(5)または内燃力発電装置(11)から供給される交流電力を選択的に出力する切替部(13)と、前記切替部(13)から出力される交流電力を直流電力に変換して直流負荷(1L)に出力するAC/DCコンバータ(14)と、前記AC/DCコンバータ(14)と前記直流負荷(1L)間の直流バス(15)に接続される蓄電装置(12)と、を備える電源システム(10)の監視データとして、前記切替部(13)の出力電圧および/または出力電流を含む第1データ、および当該電源システム(10)の出力電圧および/または出力電流を含む第2データを取得するステップと、
 前記第1データと前記第2データをもとに前記内燃力発電装置(11)の稼働状況を推定し、前記内燃力発電装置(11)の稼働時間を短くするための、前記蓄電装置(12)のシステム構成および/または放電下限値の変更プランを生成するステップと、を有する、
 電源監視データ処理方法。
 これによれば、蓄電装置(12)と内燃力発電装置(11)を併用した電源システム(10)の、効率的な運用を継続的に行うことができる。
 「項目9]
 系統電源(5)または内燃力発電装置(11)から供給される交流電力を選択的に出力する切替部(13)と、前記切替部(13)から出力される交流電力を直流電力に変換して直流負荷(1L)に出力するAC/DCコンバータ(14)と、前記AC/DCコンバータ(14)と前記直流負荷(1L)間の直流バス(15)に接続される蓄電装置(12)と、を備える電源システム(10)の監視データとして、前記切替部(13)の出力電圧および/または出力電流を含む第1データ、および当該電源システム(10)の出力電圧および/または出力電流を含む第2データを取得する機能と、
 前記第1データと前記第2データをもとに前記内燃力発電装置(11)の稼働状況を推定し、前記内燃力発電装置(11)の稼働時間を短くするための、前記蓄電装置(12)のシステム構成および/または放電下限値の変更プランを生成する機能と、をコンピュータに実行させる、
 電源監視データ処理プログラム。
 これによれば、蓄電装置(12)と内燃力発電装置(11)を併用した電源システム(10)の、効率的な運用を継続的に行うことができる。また、そのコンピュータプログラムが記載された非一過性の記憶媒体(Non-transitory computer readable medium)であっても良い。
 1 通信施設、
 1L 直流負荷、
 2 中央監視システム、
 3 電源監視データ処理装置、
 31 演算部、
 311 データ取得部、
 312 データ処理部、
 313 レポート作成部、
 32 通信部、
 33 記憶部、
 34 UI部、
 5 系統電源、
 10 電源システム、
 11 ディーゼル発電装置、
 12 蓄電装置、
 m1,m2,mn 蓄電モジュール、
 121 電池管理部、
 122 スイッチ、
 13 切替部、
 14 AC/DCコンバータ、
 15 直流バス、
 16 制御部。

Claims (9)

  1.  系統電源または内燃力発電装置から供給される交流電力を選択的に出力する切替部と、前記切替部から出力される交流電力を直流電力に変換して直流負荷に出力するAC/DCコンバータと、前記AC/DCコンバータと前記直流負荷間の直流バスに接続される蓄電装置と、を備える電源システムの監視データとして、前記切替部の出力電圧および/または出力電流を含む第1データ、および当該電源システムの出力電圧および/または出力電流を含む第2データを取得するデータ取得部と、
     前記データ取得部により取得された前記第1データと前記第2データをもとに前記内燃力発電装置の稼働状況を推定し、前記内燃力発電装置の稼働時間を短くするための、前記蓄電装置のシステム構成および/または放電下限値の変更プランを生成するデータ処理部と、を備える、
     電源監視データ処理装置。
  2.  前記データ処理部は、前記第1データおよび前記第2データの変化量に基づき、前記内燃力発電装置の稼働状況を推定する、
     請求項1に記載の電源監視データ処理装置。
  3.  前記データ取得部は、前記蓄電装置の変更プランを実施した後の前記電源システムの前記第1データおよび前記第2データを取得し、
     前記データ処理部は、
     前記変更後における前記電源システムの前記第1データおよび前記第2データをもとに、前記変更後における前記内燃力発電装置の稼働状況と、前記系統電源の稼働状況を推定し、
     前記系統電源の稼働状況をもとに、前記変更プランを実施しなかった場合の前記内燃力発電装置の稼働状況を推定し、前記変更プランを実施しなかった場合の前記内燃力発電装置の稼働状況と前記変更プランを実施した後における前記内燃力発電装置の稼働状況を比較して、前記変更プランの実施による前記内燃力発電装置の稼働抑制量を推定する、
     請求項1または2に記載の電源監視データ処理装置。
  4.  前記データ処理部は、前記内燃力発電装置の稼働抑制量にもとづき前記変更プランの再生成を保留するか否か決定する、
     請求項3に記載の電源監視データ処理装置。
  5.  前記データ処理部は、前記稼働抑制量が所定のしきい値より小さい場合、あるいは、前記変更プランが所定の期間内に実施されなかった場合、前記変更プランの再生成を保留する、
     請求項4に記載の電源監視データ処理装置。
  6.  前記蓄電装置のシステム構成の変更は、前記蓄電装置を構成する蓄電モジュールの増減を含み、
     前記データ処理部は、前記蓄電装置の変更プランの実施に伴う増加費用、および前記内燃力発電装置の稼働時間の短縮に伴う化石燃料の削減費用をもとに、前記変更プランを生成する、
     請求項1から5のいずれかに記載の電源監視データ処理装置。
  7.  前記データ処理部は、前記蓄電装置の変更プランを実施した後における前記電源システムの前記第1データおよび前記第2データをもとに、前記電源システムの異常検出を行う、
     請求項1から6のいずれかに記載の電源監視データ処理装置。
  8.  系統電源または内燃力発電装置から供給される交流電力を選択的に出力する切替部と、前記切替部から出力される交流電力を直流電力に変換して直流負荷に出力するAC/DCコンバータと、前記AC/DCコンバータと前記直流負荷間の直流バスに接続される蓄電装置と、を備える電源システムの監視データとして、前記切替部の出力電圧および/または出力電流を含む第1データ、および当該電源システムの出力電圧および/または出力電流を含む第2データを取得するステップと、
     前記第1データと前記第2データをもとに前記内燃力発電装置の稼働状況を推定し、前記内燃力発電装置の稼働時間を短くするための、前記蓄電装置のシステム構成および/または放電下限値の変更プランを生成するステップと、を有する、
     電源監視データ処理方法。
  9.  系統電源または内燃力発電装置から供給される交流電力を選択的に出力する切替部と、前記切替部から出力される交流電力を直流電力に変換して直流負荷に出力するAC/DCコンバータと、前記AC/DCコンバータと前記直流負荷間の直流バスに接続される蓄電装置と、を備える電源システムの監視データとして、前記切替部の出力電圧および/または出力電流を含む第1データ、および当該電源システムの出力電圧および/または出力電流を含む第2データを取得する機能と、
     前記第1データと前記第2データをもとに前記内燃力発電装置の稼働状況を推定し、前記内燃力発電装置の稼働時間を短くするための、前記蓄電装置のシステム構成および/または放電下限値の変更プランを生成する機能と、をコンピュータに実行させる、
     電源監視データ処理プログラム。
PCT/JP2018/021121 2017-07-26 2018-06-01 電源監視データ処理装置、電源監視データ処理方法、および電源監視データ処理プログラム WO2019021627A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019532415A JP7108874B2 (ja) 2017-07-26 2018-06-01 電源監視データ処理装置、電源監視データ処理方法、および電源監視データ処理プログラム
US16/326,083 US20190190268A1 (en) 2017-07-26 2018-06-01 Power supply monitoring data processing device, power supply monitoring data processing method, and power supply monitoring data processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-144503 2017-07-26
JP2017144503 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019021627A1 true WO2019021627A1 (ja) 2019-01-31

Family

ID=65039525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021121 WO2019021627A1 (ja) 2017-07-26 2018-06-01 電源監視データ処理装置、電源監視データ処理方法、および電源監視データ処理プログラム

Country Status (3)

Country Link
US (1) US20190190268A1 (ja)
JP (1) JP7108874B2 (ja)
WO (1) WO2019021627A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005993A (ja) * 2019-06-27 2021-01-14 大和ハウス工業株式会社 電力供給システム
JP2021078286A (ja) * 2019-11-12 2021-05-20 株式会社Gsユアサ サーバ、及び、集計方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186178B2 (en) * 2016-11-24 2021-11-30 Insurtap Inc. Monitoring system, server, terminal device, monitoring method, and storage medium
CN111062633A (zh) * 2019-12-24 2020-04-24 广东电网有限责任公司 一种基于多源异构数据的输变电线路和设备状态评估***
CN117394409B (zh) * 2023-10-16 2024-03-19 南方电网调峰调频(广东)储能科技有限公司 储能电站设备状态的智能评估方法及***
CN117375245B (zh) * 2023-12-04 2024-02-09 碳丝路文化传播(成都)有限公司 一种基于物联网的电源控制***及电源控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004062254A (ja) * 2002-07-25 2004-02-26 Hitachi Ltd 情報供給システム及び情報供給方法
JP2015070637A (ja) * 2013-09-26 2015-04-13 Kddi株式会社 電力供給システム
JP2015186347A (ja) * 2014-03-24 2015-10-22 株式会社Nttファシリティーズ 監視装置、監視方法、およびプログラム
JP2016208771A (ja) * 2015-04-27 2016-12-08 富士電機株式会社 運用シミュレーション装置、運用シミュレーションシステム、発電機用の蓄電池設備のシミュレーション方法、及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767591A (en) * 1996-09-09 1998-06-16 Active Power, Inc. Method and apparatus for providing startup power to a genset-backed uninterruptible power supply
US20080203734A1 (en) * 2007-02-22 2008-08-28 Mark Francis Grimes Wellbore rig generator engine power control
US7915760B2 (en) * 2007-12-12 2011-03-29 Evans Sr Bruce Jonathan Electric power conservation system for storing electric power for use during off-peak hours
US20140319911A1 (en) * 2013-04-29 2014-10-30 Ideal Power, Inc. Systems and methods for uninterruptible power supplies with generators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004062254A (ja) * 2002-07-25 2004-02-26 Hitachi Ltd 情報供給システム及び情報供給方法
JP2015070637A (ja) * 2013-09-26 2015-04-13 Kddi株式会社 電力供給システム
JP2015186347A (ja) * 2014-03-24 2015-10-22 株式会社Nttファシリティーズ 監視装置、監視方法、およびプログラム
JP2016208771A (ja) * 2015-04-27 2016-12-08 富士電機株式会社 運用シミュレーション装置、運用シミュレーションシステム、発電機用の蓄電池設備のシミュレーション方法、及びプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005993A (ja) * 2019-06-27 2021-01-14 大和ハウス工業株式会社 電力供給システム
JP7346099B2 (ja) 2019-06-27 2023-09-19 大和ハウス工業株式会社 電力供給システム
JP2021078286A (ja) * 2019-11-12 2021-05-20 株式会社Gsユアサ サーバ、及び、集計方法
JP7334584B2 (ja) 2019-11-12 2023-08-29 株式会社Gsユアサ サーバ、及び、集計方法

Also Published As

Publication number Publication date
JP7108874B2 (ja) 2022-07-29
JPWO2019021627A1 (ja) 2020-05-28
US20190190268A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP7108874B2 (ja) 電源監視データ処理装置、電源監視データ処理方法、および電源監視データ処理プログラム
Amirioun et al. Metrics and quantitative framework for assessing microgrid resilience against windstorms
Ashton et al. Novel application of detrended fluctuation analysis for state estimation using synchrophasor measurements
US8110941B2 (en) Power demand management method and system
CN105556779A (zh) 用于提供电源接口的设备和方法
CN109245085A (zh) 具有削峰填谷功能的直流储能后备电源及控制方法
EP2592740A1 (en) Power control device
EP3334000B1 (en) A method for controlling an electric power distribution micro-grid
JP5165042B2 (ja) 系統電力安定化システム、系統電力安定化方法、及び充放電器
JP2014230454A (ja) 電力制御装置及び発電システム
Avritzer et al. Survivability models for the assessment of smart grid distribution automation network designs
Núñez-Mata et al. Coupling an adaptive protection system with an energy management system for microgrids
CN110896221B (zh) 一种电力管理***
CN117674228A (zh) 一种构网型储能***
JP6135019B2 (ja) 蓄電池管理装置、蓄電池管理方法、プログラム
Armenta-Deu Prediction of battery behaviour in SAPV applications
Chiaradonna et al. On a modeling approach to analyze resilience of a smart grid infrastructure
KR20130119180A (ko) 에너지 저장장치용 모니터링 시스템
KR20160128706A (ko) 하이브리드 에너지 저장 시스템의 제어 장치 및 제어 방법
Parlikar et al. Topology and efficiency analysis of utility-scale battery energy storage systems
Moghadam et al. Randomized response electric vehicles for distributed frequency control in smart grid
CN209119812U (zh) 具有削峰填谷功能的直流储能后备电源
CN108988371B (zh) 用户侧储能***的能量管控方法、装置、存储介质及***
CN203205969U (zh) 基于can总线的多能源多模式不间断电源
KR20200005070A (ko) 무정전 전력 공급 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837623

Country of ref document: EP

Kind code of ref document: A1